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Multimode N00N states in driven atomtronic circuits
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We propose a method to generate multimode N00N states with arrays of ultracold atoms. Our protocol requires
a strong relative offset among the wells and a drive of the interparticle interaction at a frequency resonant with
the offsets. The proposal is demonstrated by a numerical and a Floquet analysis of the quantum dynamics of
a ring-shaped atomtronics circuit made of M weakly coupled optical traps. We generate a hierarchy of energy
scales down to very few low-energy states where N00N dynamics takes place, making multimode N00N states
appear at nearly regular time intervals. The production of multimode N00N states can be probed by time-of-flight
imaging. Such states may be used to build a multiple beam splitter.
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I. INTRODUCTION

Entanglement is at the root of quantum technology [1].
Depending on the number of subsystems involved, such
genuine quantum correlations can be of very different na-
ture [2,3]. While the picture for the pairwise case has been
cleared up, multipartite entanglement remains challenging for
both its mathematical analysis and quantum state engineering
(see Refs. [4–6]). Nonetheless, multipartite entangled states
were recognized as an important resource in different areas
of quantum technology, including quantum information the-
ory, quantum cryptography, and noteworthy quantum sensing
[7–10]. As an example, nonclassical states of several identi-
cal particles possess intrinsic quantum correlations that can
be exploited in technological applications. Among the most
well-known nonclassical states, the bipartite “N00N” states
correspond to the macroscopic superposition ψ = (|N, 0〉 +
|0, N〉)/

√
2, where |n1, n2〉 have n1, n2 bosons in the modes 1

and 2, respectively. Such states are maximally entangled and
highly sought for applications, e.g., to high-precision interfer-
ometry [11–13].

We focus on N00N states with multipartite entanglement
[14]. The suggested platform is provided by cold atoms. They
can be controlled with high precision and flexibility of the
operating conditions [15]. In these systems, the physical con-
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ditions, as for instance the atom-atom interaction, can be tuned
in a wide range of values or as function of time [16–20].
Control of the atom number in small traps is achieved by
fluorescence [21]. It is now possible to handle the atomic
confinement on local spatial scales (micrometers) [22,23], and
on timescales much shorter than atom’s dynamics timescales
[22,24–30]. Atomtronics exploits these progresses with the
goal to widen the scope of cold atom simulators and to achieve
new concepts of devices of practical value [31,32]. Roads
to formation of bipartite N00N states with ultracold atoms
were proposed either by phase imprinting followed by a free
evolution [33–35], via rotation of the condensate [36], or
using time-dependent fields [18,37–39]. Very few experiments
with N00N states exist with ultracold atoms [40], and other
nonclassical states have been reported such as squeezed [8]
and oversqueezed states [41].

In this work, we propose a protocol for the genera-
tion of multimode N00N states, i.e. the states of the type
|N000 . . . 〉 + |0N00 . . . 〉 + |00N . . . 〉 + . . . Such states are
relevant to different contexts of quantum technology such as
multiport interferometry [14]. Here we show how the inter-
play between periodic driving of the interaction and a strong
offset can generate multimode N00N states with high fidelity
at nearly periodic time intervals. As examples, we consider
mesoscopic atom numbers (from N = 2 to 10) and number of
modes M = 2–5.

Our atomtronic circuit is made of N neutral bosons trapped
in M optical traps arranged in a ring geometry at zero tem-
perature (Fig. 1). All the well’s minima are offset by an
energy ±μ with respect to a reference well (the “source”),
with μ � Ji j where the Ji j are the interwell tunneling am-
plitudes. The interaction is driven periodically [16–20,42,43]
around 0 with frequency ω, chosen to be resonant with the
offset, h̄ω = 2μ. This makes both single-atom transitions
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FIG. 1. Scheme of the three-well geometry: bosons are confined
in a triple-well ring configuration, where J is the tunneling rate, μ1 =
μ, μ2 = 0, and μ3 = −μ are respectively the local energy bias in
sites 1,2, and 3. The blue arrows represent motion of bosons in pairs,
triggered by the periodic drive. (Insets) M = 4-site and M = 5-site
configurations with corresponding bias.

between offset wells and pair transitions from the source
well resonant, with very different energy scales. A Floquet
analysis shows that this generates very few low-energy states
connecting the N00N state components. Optimal parameters
for N00N states are found close to coherent destruction of
tunnelling (CDT [16,18,44,45]) from the initial state, which
we explain by a ”Russian doll” fitting of five different en-
ergy (or time) scales, down to the N00N recurrence time.
This turns out to be a powerful scenario to create multimode
N00N states (M � 3) on timescales much shorter than those
associated to the free evolution of the system (e.g., after a
quench) [46–48]. Our analysis involves an exact solution of
the quantum dynamics from the time-dependent Hamiltonian,
as well as a high-frequency expansion of the Floquet Hamil-
tonian, that gives excellent agreement with the direct solution.
Finally, we discuss how to detect experimentally such a
correlated transport: second-order momentum correlations,
as obtained after a time-of-flight expansion, can distin-
guish between coherent and localized states achieved in the
transfer.

Section II presents the model and the analytical or nu-
merical methods. Section III presents in detail the correlated
boson transfer obtained from the driven dynamics. Section IV
discusses the setup constraints and provides an explanation
of multipartite N00N state formation. Section V explains the
readout protocol. Section VI concludes, and appendices pro-
vide more details.

II. THE MODEL AND ITS ANALYSIS

The system is described by the M-mode Bose-Hubbard
Hamiltonian subjected to a periodic modulation of the inter-

action strength:

H (t ) = −
M∑

i, j=1(i �= j)

(
Ji j a†

j ai + H.c.
)

+
(
U0+U1

2
sin(ωt )

) M∑
i=1

n̂i(n̂i −1)−
M∑

i=1

μi n̂i, (1)

where a†
i creates a boson in site i and n̂i = a†

i ai is the number
operator. The parameters Ji j quantify the hopping strengths,
U0 is the average interparticle interaction, U1 the amplitude of
its periodic modulation, and μi the local chemical potential,
i.e., the well offset of the site i.

Let us first briefly mention the behavior of a three-atom
ring with strong offset but static interaction U0 only and
μ1 = μ,μ3 = −μ. Details can be found in Appendix A.
A second-order perturbative analysis in J/μ shows how to
transfer a single pair with high fidelity from site 2 to sites
(1,3) altogether, i.e., obtain a nearly perfect Rabi resonance
between states |n1, n2, n3〉 and |n1 + 1, n2 − 2, n3 + 1〉. Such
a highly correlated transition requires a fine tuning of the
offset μ2. Importantly, this does not allow to transfer many
pairs simultaneously, and the presence of a strong residual
interaction that competes with the pair hopping prevents from
creating a coherent state made of boson pairs.

Our aim is now to investigate how a correlated pair trans-
port of ultracold bosonic atoms can be triggered with U0 = 0
by a suitable choice of μi, U1, and ω. To illustrate the analysis
in presence of a driven interaction, let us consider a three-well
ring (see Fig. 1), with equal and real couplings Ji j = J , and
offsets μ1,2,3 = μ, 0,−μ. We drive the interaction strength as
in Eq. (1) with ω � J/h̄ (see Refs. [49,50]). A key param-
eter for the dynamics is K0 = U1/(h̄ω). Given the values of
the relative offsets between the bosonic islands (1,2,3), one
encounters two different Josephson frequencies for noninter-
acting atoms in a ring geometry: ωJ = μ/h̄ for single boson
transitions between 1 (or 3) and 2, and ωJ = 2μ/h̄ for boson
pairs hopping between 1 (or 3) and 2, as well as for single
boson transitions between 1 and 3. Therefore coherent pair
correlations are expected to be formed for resonant driving
frequencies ω = 2μ/h̄.

We study the dynamics through exact diagonalization of
the many-body Hamiltonian (1) and the evolution of an initial
state chosen to be |0N0〉. We complement this study by the
analysis of an effective time-averaged Hamiltonian, follow-
ing the method proposed by Dalibard and Goldman [51,52]
(see also Ref. [53]). Our derivation (Appendix B) involves
elimination of the second and third terms in Eq. (1) by a
canonical transformation. The dressed 1 ↔ 3 transitions can
be directly averaged on time while the 1 ↔ 2 and 3 ↔ 2
transitions require a Floquet expansion of order 1/ω yielding:

Heff = −J
[
J1[K0(n̂1 − n̂3 − 1)] a†

1 a3 + H.c.
]

+ J2

μ

[
L(K0, n̂1, n̂2) (a†

1a2)2 +L(K0, n̂2, n̂3) (a†
2 a3)2

+M(K0, n̂1, n̂2, n̂3) a†
1 a†

3 (a2)2 +N (K0, n̂1, n̂2, n̂3) a†
1 a3 + H.c.

]
(2)

+J2

μ

[
n̂2(n̂1 + 1) P(K0, n̂1, n̂2) − n̂1(n̂2 + 1) P(K0, n̂2, n̂1) + n̂2(n̂3 + 1) P(K0, n̂2, n̂3) − n̂3(n̂2 + 1) P(K0, n̂3, n̂2)

]
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FIG. 2. Generation of two-mode N00N states. (Top) Map of the
N00N fidelity indicator 4FN0F0N with the interaction K0 and reduced
time. (Bottom) Time variation of the fidelities for a N00N state (FS =
FN0 + F0N ). N = 10 particles, μ = 15J , and K0 = 2.81.

L,M,N,P being infinite series of Bessel functions of the
arguments K0(n̂i − n̂ j ) (see Appendix B).

III. CORRELATED ATOM PAIR TRANSPORT

The initial state involves N atoms in the unbiased trap 2.
This choice aims at a redistribution in time of the N atoms into
traps 1 and 3. Traps 2, and 1,3 can be respectively considered
as the “source” and “output” modes of an atomic “beam split-
ter.” The exact evolution of the initial state �(t = 0) = |0N0〉
under the time-dependent Hamiltonian, or under the Floquet
expansion Hamiltonian Heff , is obtained by discretization of
the Trotter formula. Convergence is checked with respect to
the time step, much smaller than the smallest timescale in the
Hamiltonian, i.e., the drive period.

A. The two-mode model

Let us benchmark our protocol with a driven two-mode
model. In contrast with the models studied so far [18,34,35],
driving of the interaction is combined with a large static offset.
Starting in the state |N, 0〉 at time t = 0, Fig. 2 show a fidelity
map for the N00N state as a function of K0 and reduced time
t (in units of h̄/J). We choose as an indicator the product
4FN0F0N , where FN0 = |〈N0|�(t )〉|2, F0N = |〈0N |�(t )〉|2. It
shows that N00N states are created in sizable intervals of K0

(Fig. 2), nearly with time periodicity. The recurrence time of
N00N states is controlled by the interplay of small energy
scales and is of the order of a few hundred times h̄/J . The
protocol operates for even values of N . Its efficiency comes
from the atom pair dynamics triggered by the resonant drive,
which considerably reduces the effective Hilbert space and
helps atoms to bunch equally in both wells.

FIG. 3. Optimum transfer and three-mode N00N states. (Top)
Comparison of the fidelity (maximized over t ∼ 2000 h̄/J) for trans-
fer from |0, 4, 0〉 to |4, 0, 0〉, calculated from the exact dynamics
(blue) and from the Floquet expansion (red). (Middle) Interaction-
time map of the fidelity FW . (Bottom) Time evolution of the fidelities
FW (in black) and for states |N, 0, 0〉, |0, N, 0〉, |0, 0, N〉, with N = 8
and K0 = 2.59, μ = 17J .

B. Three modes and tripartite entanglement

Remarkably, the two-mode result generalizes to larger well
arrays, despite the growth of the Hilbert space. Let us consider
the three-well symmetric case. Equation (2) shows that atom
pair transfers 2 ↔ 1 and 2 ↔ 3 as well as 2 ↔ (1, 3) are
dynamically generated.

Directed transfer of N atoms. Let us first consider full
transfer from the “source” trap 2 to trap 1. Figure 3 shows the
time dynamics of the transfer fidelity FN00 = |〈N00|�(t )〉|2
from state |0, N, 0〉 to state |N, 0, 0〉 as a function of the inter-
action, as well as its maximum on a large time interval (middle
and top panels). The agreement between the exact dynamics
and the one resulting from the effective Hamiltonian (3) is
remarkable. For specific values of K0, the fidelity displays
marked peaks. Such a targeted optimal transfer requires a fine
tuning of the interaction parameter, especially for large (even)
N . The system achieves a coherent transfer of N bosons from
trap 2 to trap 1 (or to trap 3, at the same K0 value but at
different times). Moreover, for K0 � 1, the asymptotic expan-
sion of the Bessel functions gives L ∼ sin(2K0 )

2K0
(Appendix B).

Therefore the transfer of pairs from the islands 2 to 1 or 3
is suppressed for K0,n ∼ nπ/2, n ∈ N. One verifies that this
makes the system trapped in the initial state |0, N, 0〉, by a
CDT mechanism [44], as visible on the fidelity map of Fig. 3.
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Three-mode generalized N00N states. We now demonstrate
that, exploiting the ring geometry, coherent superpositions
of the states |N, 0, 0〉, |0, N, 0〉, |0, 0, N〉 can be dynamically
created for a wider range of system’s parameters. To illus-
trate this, we represent the state of the system as |�S (t )〉 =
|�W (t )〉 + |�W ⊥(t )〉 with

|�W (t )〉 = a1(t )|N, 0, 0〉 + a2(t )|0, N, 0〉 + a3(t )|0, 0, N〉
(3)

with |�W ⊥(t )〉 an orthogonal vector to |�W (t )〉, and compute
the fidelity on |�S (t )〉

FW (t ) = |a1(t )|2 + |a2(t )|2 + |a3(t )|2. (4)

For all the explored values of N (2 � N � 10), we find that
FW (t ) maxima are nearly periodic and close to 1 (see Fig. 3,
bottom panel and Appendix C). In particular, in specific inter-
vals of K0, a three-component W -like superposition �W [4]
with comparable amplitudes |a1| � |a2| � |a3| is generated
with high fidelity at nearly regular times. Notice that forming
a W-state a1|0N0〉 + a2|N00〉 + a3|00N〉 is equivalent to a
three-mode beam splitter operation.

One can check the effect of asymmetries (see Appendix C).
First, taking the couplings J21 and J23 from the “source” well
2 as different, a similar efficiency is achieved for moderate
asymmetry |J21−J23|

J21+J23
. Second, varying the coupling J13 has a

stronger effect. If J13 = 0, i.e., a linear configuration of the
three wells, no three-mode N00N state is achieved, only two-
mode N00N states are attained, either between wells 2,1 or
between wells 2,3. Strikingly, the ring configuration turns out
to be essential to create multimode N00N states.

C. More than three modes

Remarkably, our protocol can be generalized to engineer
M-mode W states with M > 3. A four-mode and a five-mode
N00N generator circuit are represented on Fig. 1. The latter
is scalable to any odd M. Figure 4 shows fidelities up to
90% for M = 4 and 80% for M = 5. For N atoms in M
modes, the size of the Hilbert space isN (N, M ) = (N+M−1)!

N!(M−1)! ,
e.g., for instance, N (4, 3) = 15, N (10, 3) = 66, N (4, 5) =
70. Achieving N00N states with the latter numbers requires a
precision of about 1% in the choice of parameter K0. This pre-
cision grows with N (N, M ) but the average time (recurrence
time) �t separating the occurrence of N00N states does not
increase. For the values of μ taken in this study, the recurrence
time is of the order of a few hundreds times h̄

J . This time scales
linearly with the ratio μ

J2 , as shown by the amplitude of the pair
atom transfer in the Floquet expansion (3).

IV. DISCUSSION

A. Energy scale separation

The formation of multimode N00N states stems from the
Floquet effective model, Eq. (2). It relies on energy scale
separation. The resonant drive eliminates the largest scale μ

from the averaged motion, leaving a dressed hopping of order
J between wells 1,3, and pair hoppings as well as potential
terms of order J2/μ << J . As a result, the spectrum of Heff

shows a few low-energy states with splittings ∼J2/μ, among

FIG. 4. Generation of M-mode N00N states. (Top) Four sites,
K0 = 3.08, μ = 20, and N = 4. (Bottom) Five sites, K0 = 1.57,
μ = 15, and N = 4. The total fidelity FS generalizes Eq. (4) to M
components.

high-energy states at scale ∼J . During time evolution from
state |0N0〉 (N even) the wave function mostly stays within
the low-energy sector made of paired states |n1, n2, n3〉, i.e.,
with ni even, while most Fock states other than |N00〉, |00N〉
participate in the high-energy one. This eventually makes the
fully unbalanced states |N00 . . . 〉, |0N0 . . . 〉 linked together
by a connecting chain of about N

2 states only. This drastically
reduces the transition time between those states, compared
to an undriven system. The process can be further optimized
by noting that close to values yielding CDT, K0 � n π

2 + δK0,
some of the transition amplitudes within the connecting chain
are very small, of order δJ = (J2/μ)δK0/K0. A perturba-
tive analysis eventually makes a much lower energy scale
emerge, that controls the transition between states |N00 . . . 〉,
|0N0 . . . 〉,...To summarize, a kind of renormalization scheme
produces a hierarchy of energy scales μ � J � J2/μ �
δJ � (δJ/J )2μ ∼ h̄/τrec, where τrec is the typical N00N re-
currence time (see Appendix D for a detailed analysis). The
latter time is still experimentally accessible, as it is way
shorter than the recurrence time predicted from a standard
undriven dynamics of an interacting system.

B. The setup constraints

Let us now comment on the setup constraints. First, the
multimode N00N states generated at times ti are perfectly co-
herent. Yet, the relative phases of the components of each state
change from a time ti to another recurrence (see Appendix C).
Notice that this is not detrimental to the multipartite entangle-
ment of each state, and allows its use as a multiphase probe
after release. Second, our protocol requires even filling of
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FIG. 5. Read-out maps (a) n(k) for a W state; (b) σ (k,−k) for
|0, 0, N〉, (c) σ (k,−k) for |0, N, 0〉, (d) σ (k,−k) for the (nonideal)
W -type state; σ (k, k) for a W -type state, either perfect (e) or with a
component |�W ⊥(t )〉 [Eq. (3)]. (f) N = 8.

the trap array, and the atom number to be constant during
a time interval �t , where �t � |ti+1 − ti|. This requires an
evaporation time τev > �t .

The protocol assumes a drive resonant with the offsets.
If this resonance is not perfect, i.e., ω = 2μ/h̄ + δω, the
many-body interference making multimode N00N states is
destroyed at long times. This can be estimated by comparing
the “beating” frequency δω to the recurrence time �t . We
indeed find numerically that N00N states still occur at times
t << δω−1, which requires the condition δω << �t−1 for the
protocol to operate. This implies in practice that the offset μ

should not be taken too large.

V. READOUT OF MULTIMODE N00N STATES

The diagnostic of the system relies on the time-of-flight
technique: in our dynamical scheme, the state is prepared,
driven and then released at the time t = t̄ . The long-time
density in real space can be accessed by the Fourier transform
at the releasing time t̄ [54,55]

n̂(k) =
∑
i, j

eik·(Ri−Rj )a†
i a j, n(k, t̄ ) = 〈�(t̄ )| n̂(k) |�(t̄ )〉.

(5)
While n(k) is featureless [Fig. 5(a)], pair and many-boson pair
transfers can be probed through the correlations in n̂(k):

σ (k, k′, t̄ ) = 〈�S (t̄ )| n̂(k) n̂(k′) |�S (t̄ )〉 − n(k, t̄ ) n(k′, t̄ ).

(6)

A perfect |0N0〉 state [Fig. 5(c)] is characterized by a
pattern in σ (k, k′) with k = −k′, due to coherent virtual

single-atom transitions towards one of the unoccupied sites
(Appendix E). Rotated but similar patterns are obtained for
states |0, 0, N〉 [Fig. 5(b)] and |N, 0, 0〉. The combination
thereof gives rise to the pattern corresponding to the optimal
W state: 1√

3
(|0, N, 0〉 + |N, 0, 0〉 + |0, 0, N〉). The pattern for

a dynamically achieved W -type state [see Fig. 5(d)] is indeed
very similar to that of an optimal one (see Appendix E).
Remarkably, it is also possible to probe the overall fidelity
of the W state: indeed, the patterns taken instead at k = k′ are
structureless for ideal W states. Therefore they allow probing
other states contributing to FW < 1 [Figs. 5(e) and 5(f)] (see
Appendix E for details).

VI. CONCLUSIONS

We have considered a class of atomtronic circuits to study
the correlated dynamics in bosonic networks: M coupled
mesoscopic dots of interacting particles in—this is essential—
a ring geometry. The correlated transfer results from the
combination of suitable offset potentials and strong resonant
driving of the interaction. The dynamics of such a system
is dictated by short chains of states connecting the N00N
components, making multimode N00N states form on realistic
timescales. The diagnosis of the system states is carried out
through the analysis of the momentum distribution which, in
a cold atoms setting, corresponds to time of flight images. Our
protocol continously produces multimode N00N states and is
only limited by the lifetime of the optically trapped atoms.
These states could be used to bring parallelism in multiple
phase-imaging protocols [14]. Our study provides a new route
to engineer complex correlations in quantum networks. The
physical system we studied is within the current experimental
capabilities in the atomtronics field.
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APPENDIX A: NONLOCAL PAIR TRANSPORT
COMBINING BIAS AND STATIC REPULSION

Let us consider the effect of the strong offset μ with a static
interaction only, with the Hamiltonian:

H=
U0

2

3∑
j=1

n j (n j − 1) −
3∑

j=1

μ jn j − J
3∑

i, j=1(i �= j)

(a†
j ai + H.c.).

(A1)

This simple system indeed triggers correlated pair hopping
between site 2 and sites (1,3) altogether. We choose for this
purpose μ1 = −μ3 = μ. Specifically, starting from the ini-
tial state |ψi〉 = |n1i, n2i, n3i〉, the correlated transport of m
pairs brings the system coherently through the states |ψ f 〉 =
|n1i + m, n2i − 2m, n3i + m〉. NT being the total number of
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pairs, an entangled target state is a superposition of such
states:

|ψT 〉 =
NT∑

m=1

cm |n1i + m, n2i − 2m, n3i + m〉. (A2)

The Hilbert space described by the states |n1, n2, n3〉, can be
split into subspaces with fixed difference n1 − n3, that con-
tain the target state (A2). Correlated processes are favoured
by enforcing energy separation of these subspaces, i.e., we
set μ � J,U0, μ2. We use both exact diagonalization and
second-order perturbation theory in J/μ to analyze how a pair
of bosons is transferred with high fidelity within one subspace.

Two-atom and higher-order virtual processes allow to iden-
tify an effective model for single pair transfer:

Heff,hop = Jeff[(a
†
2)2a1a3 + H.c.], (A3)

Consider the transfer of a single pair from the state |ψi〉 =
|n1, n2, n3〉 to the state |ψ f 〉 = |n1 + 1, n2 − 2, n3 + 1〉.
Following a second-order effective hopping process,
the intermediate virtual states are respectively |ψl1〉 =
|n1 + 1, n2 − 1, n3〉 and |ψl2〉 = |n1, n2 − 1, n3 + 1〉. By
mean of a quasidegenerate perturbation theory approach, the
amplitude probability of the process is given by the sum over
the contributions of all intermediate paths. We find that the
effective hopping is given by

JII
eff = − J2U0

(
μ2 + μ2

2 + 2U 2
0 + 3μ2U0

)
(−μ + μ2 + U0)(−μ + μ2 + 2U0)(μ + μ2 + U0)(μ + μ2 + 2U0)

. (A4)

For μ2 = 0 and small interaction, JII
eff � −J2U0/μ

2. More
generally, the second-order hopping probability is zero for
noninteracting particles U0 = 0, due to a destructive interfer-
ence between the virtual paths such as

|0, N, 0〉 → |1, N − 1, 0〉 → |1, N − 2, 1〉,
|0, N, 0〉 → |0, N − 1, 1〉 → |1, N − 2, 1〉. (A5)

Optimization of the resonance between two states differ-
ing by one nonlocal atom pair happens when two levels of
the spectrum encounter an anticrossing. In the vicinity of
the anticrossing, these states are little different from states
|0, N, 0〉 and |1, N − 2, 1〉. This generates a Rabi oscillation
with nearly perfect fidelity on very long timescales (Fig. 6).

FIG. 6. (Top) Rabi-type oscillations of F|1,8,1〉 =
|〈1, 8, 1|e−iHt |0, 10, 0〉|2 and F|0,10,0〉 = |〈0, 10, 0|e−iHt |0, 10, 0〉|2
(see text in Appendix A). Anticrossing makes a very long timescale
emerge on top of fast single particle processes. Parameters are
μ = 48, U0 = 0.9, μ2 = 7.635 (in J units). (Bottom) Dotted lines
indicate the offset μ(N ) required to achieve through tuning μ2 a
given fidelity transfer from |0, N, 0〉 to |1, N − 2, 1〉.

Notice that in this correlated transport regime, the interac-
tion U0 must be large compared to the transfer rates JII

eff. As
a result, coherent combinations involving a large number of
states in Eq. (A2) cannot be achieved with the present static
protocol. Single pair correlated transfer, though, is obtained
with high fidelity by fine tuning the potential μ2 to com-
pensate the total interaction energy. It connects two states
well-separated from the rest of the spectrum. High fidelity
transfer can hold for any number of atoms N = 2NT for large
enough μ, under the condition that the manifolds of states
with the same n1 − n3 are well-separated from each other
(in order that second-order processes in J/μ is well-defined).
Large μ leads to a nearly perfect resonance (Fig. 6). Figure 6
also shows the corresponding scaling μ(NT , F ) of the mini-
mum μ necessary to obtain a given fidelity F . Readout of the
resulting superposition can be achieved by time-of-flight (see
Appendix E).

APPENDIX B: DRIVEN INTERACTION, FLOQUET
EXPANSION, AND THE EFFECTIVE MODEL

We consider a resonantly driven three-mode model (ω =
2μ/h̄) with a strong offset between sites 1 and 3.

H = −J
3∑

i, j=1(i �= j)

(
a†

j ai + H.c.
)

+ U1

2
sin(ωt )

3∑
i=1

n̂i(n̂i − 1) −
3∑

i=1

μin̂i , (B1)

We apply the analysis carried out by Goldman et al. [52] (see
also Ref. [53]) to obtain an effective model in the strongly
driven regime. Since U1 = K0ω where K0 ∼ 1 and ω = 2μ/h̄,
two terms diverge in the limit of ω → ∞. They can be elimi-
nated away by a unitary transformation. We first rewrite the
Hamiltonian in a reference frame rotating with the driving
term as

H̃ = R†(t )H (t )R(t ) − iR†(t )∂tR(t ) (B2)
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with

R(t ) = − exp

(
i
∫ t

0
O(τ )dτ

)
, (B3)

O(t ) = μ(n̂1 − n̂3) + U1

2
sin (ωt )

∑
j

n̂ j (n̂ j − 1). (B4)

The Hamiltonian takes the form

H̃ (t ) = −J

(
a†

2 exp
[
iK0 (n̂2 − n̂1) sin ωt − i

ω

2
t
]

a1

+ a†
2 exp

[
iK0 (n̂2 − n̂3) sin ωt + i

ω

2
t
]

a3

+ a†
1 exp

[
iK0 (n̂1 − n̂3) sin ωt + iωt

]
a3

)
+ H.c.

= H̃ (21)(t ) + H̃ (23)(t ) + H̃ (13)(t ). (B5)

Following the high-frequency expansion, the effective Hamil-
tonian at order zero is given by

H (0)
eff = 1

T

∫ T

0
H̃ (t )dt . (B6)

The term H̃ (13)(t ) obviously has a nonzero time average on
a period T = 2π

ω
, yielding the following term corresponding

to transitions between sites 1 and 3:

H (13)
eff = −J a†

1 J1[K0(n̂1 − n̂3)] a3 + H.c. (B7)

On the other hand, due to the half-frequency factor in the
transitions from site 2 to sites 1 and 3, the corresponding terms
have a zero average on the period 2T , which is the actual
period of the transformed Hamiltonian H̃ . Thus one needs to
perform a Floquet expansion to first order in 1/ω, yielding
terms of order J2/μ:

H (21)
eff + H (23)

eff =
∑
p>0

1

pμ

[
H̃ p

12 + H̃ p
23 , H̃−p

12 + H̃−p
23

]
, (B8)

where H̃ p
i j denotes the pth harmonic of H̃i j .

The calculation of the harmonics and of the commutators
is straightforward and yields Eq. (2) with the definitions:

L(K0, n̂, n̂′) =
∑
m�0

1

(2m + 1)

× (Jm+1[K0(n̂ − n̂′ − 1)]J−m[K0(n̂ − n̂′ − 3)] −J−m[K0(n̂ − n̂′ − 1)]Jm+1[K0(n̂ − n̂′ − 3)]),

M(K0, n̂i=1,2,3) =
∑
m�0

1

(2m + 1)

× (Jm[K0(n̂2 − n̂1 − 1)]J−m[K0(n̂2 − n̂3 − 2)] −Jm[K0(n̂2 − n̂1 − 2)]J−m[K0(n̂2 − n̂3 − 1)]

+Jm+1[K0(n̂1 − n̂2 − 1)]J−(m+1)[K0(n̂3 − n̂2 − 2)] −Jm+1[K0(n̂1 − n̂2 − 2)]J−(m+1)[K0(n̂3 − n̂2 − 2)]),

N (K0, n̂i=1,2,3) =
∑
m�0

1

(2m + 1)

× [(Jm+1[K0(n̂1 − n̂2 − 1)]J−m[K0(n̂2 − n̂3)] − J−m[K0(n̂1 − n̂2)]Jm+1[K0(n̂2 − n̂3 + 1)]) (n̂2 + 1)

+J−m[K0(n̂1 − n̂2 + 1)]Jm+1[K0(n̂2 − n̂3)] −Jm+1[K0(n̂1 − n̂2)]J−m[K0(n̂2 − n̂3 − 1)] n̂2)],

P(K0, n̂, n̂′) =
∑
m�0

1

(2m + 1)
(Jm[K0(n̂ − n̂′ − 1)]2 −Jm+1[K0(n̂ − n̂′ − 1)]2}). (B9)

This effective Hamiltonian can be further simplified in the limit of large interaction K0 � 1, where the asymptotic expansion
holds:

Jn(x) ∼
√

2

πx
cos

(
x − nπ

2
− π

4

)
(B10)

yielding after a few steps the following form of the second-order terms in J/μ:

HAsympt,(2)
eff = [

H (12)(a†
1 a2)2 + H (23)(a†

2 a3)2 + H (123)(a†
2)2 a1 a3

] + H.c. + H (123)
pot (B11)

with

H12 = J2

2K0μ
[δn̂12,2 cos(2K0) + (1 − δn̂12,1)(1 − δn̂12,2)(1 − δn̂12,3) sin(2K0)]

1√|n̂12 − 1||n̂12 − 3|

+ J2

μ
[δn̂12,1 + δn̂12,3] J1(2K0),

H23 = J2

2K0μ
[δn̂23,2 cos(2K0) + (1 − δn̂23,1)(1 − δn̂23,2)(1 − δn̂23,3) sin(2K0)]

1√|n̂23 − 1||n̂23 − 3|

+ J2

μ
[δn̂23,1 + δn̂23,3] J1(2K0),
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FIG. 7. Trajectories and readout maps for (from top to bottom) N = 4, K0 = 2.4, μ = 15; N = 6, K0 = 2.7, μ = 19; and N = 10, K0 =
1.16, μ = 11.7, starting at t = 0 from state |0N0〉: (left) fidelities for states |0N0〉, |N00〉, |00N〉 and their sum FW ; (right) two-atom correlation
σ (k,−k) (see Sec. V and Appendix E) for a W -type state realized at times indicated by a vertical dotted line on the left panels.

H123 = J2

2K0μ

[
(1 − δn̂32,1)(1 − δn̂12,2)√|n̂12 − 1||n̂32 − 2| cos (K0(n̂13 − 1)) − (1 − δn̂32,2)(1 − δn̂12,1)√|n̂12 − 2||n̂32 − 1| cos (K0(n̂13 + 1))

]

+ [δn̂12,2J0(K0(n̂32 − 1)) + δn̂32,1J0(K0(n̂12 − 2)) − δn̂12,1J0(K0(n̂32 − 2)) − δn̂32,2J0(K0(n̂12 − 1))],

H123
pot = J2

2μ
[sinc(2K0(n̂21 − 1)) n̂1 (n̂2 + 1) − sinc(2K0(n̂21 + 1)) n̂2 (n̂1 + 1)

+ sinc(2K0(n̂32 − 1)) n̂2 (n̂3 + 1) − sinc(2K0(n̂32 + 1)) n̂3 (n̂2 + 1)], (B12)

where sinc(x) = sin x
x . Inspection of the successive terms helps

to understand several features of the exact numerical solution.
First, the termH123 vanishes when the wells 1,3 have the same
occupation. Second, termsH12,H23 vanish when K0,n = nπ

2 ,
therefore coherent destruction of tunneling (CDT) is obtained
starting from state |0, N, 0〉 with K0 close to those K0,n val-
ues. Despite the approximation contained in this asymptotic
expansion, it explains very well the map of Fig. 3, middle
panel.

APPENDIX C: ADDITIONAL DATA WITH A DRIVEN
INTERACTION

We present here some wave-function trajectories for other
even atom numbers. For N = 4, 6, 10 one finds the same
trends as in Fig. 3, bottom panel: tuning the interaction K0

allows to periodically achieve a high-fidelity superposition

of states |0N0〉, |N00〉, |00N〉, in particular W -type states
(Fig. 7). Notice the nearly periodical appearance of such
states, with a very long period (several 100J−1) related to an-
ticrossings in the Floquet pseudoenergy spectrum. The larger
N , the finer the tuning of K0 necessary to obtain high fidelities.

We have also tested the effect of coupling asymmetries
in the ring geometry (M = 3). Writing the intersite coupling
as HJ = ∑

i �= j Ji j a†
j ai, three-mode N00N states can still be

generated with moderate asymmetry J12 �= J32 (Fig. 8). On
the other hand, keeping J12 = J32 but taking J13 �= J12, N00N
states also occur unless J13 is too small.

An important point is the coherence of the multimode
N00N states. First, as resulting from the unitary evolution of a
pure state |0N0〉, they are by construction pure states. We do
not discuss here the possible causes of decoherence due to
external fluctuations. Let us instead focus on the relative
phases of the states forming such states, i.e., the phases of
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FIG. 8. Trajectories for an asymmetric three-site ring (top) N =
6, μ = 17, K0 = 2.65, J12 = 0.9, J23 = 1.1, J13 = 1 and (bottom)
N = 6, μ = 17, K0 = 2.7, J12 = J13 = 1, J13 = 0.9.

the coefficients ai(t ) of a state:

�S (tk ) =
∑

i

ai(tk ) |00 . . . Ni . . . 00〉. (C1)

We find that the ai’s are in general complex numbers, and their
phases, fixed for a given time, are not correlated from an oc-
currence time tk to another tl . This comes from the nontrivial
interferences occurring in the many-body wave function. As
an example, Fig. 9 gives the phases of successive N00N states
components.

APPENDIX D: FORMATION OF THREE-MODE N00N
STATES BY THE EMERGENCE OF VERY LOW ENERGY

SCALES

Let us show how our protocol defines a hierarchy of energy
scales, down to very low ones where N00N states form by
resonance of very few low-energy Floquet states. The analysis
is performed on the effective Hamiltonian, which provides a
very accurate qualitative and almost quantitative description
of the motion, averaged on the period h̄/μ. Compared to the
exact dynamics, the one led by Heff misses the fast motion
(on times h̄/μ) and yields some irrelevant drift at longer
scales, without changing the main conclusions. The scheme

FIG. 9. Phases (in radians) of the coefficients of states
|006〉, |060〉, |600〉 for different W states obtained successively
in time.

will be illustrated on N = 2, 4, 6 examples with three wells. It
generalizes to any even N .

The Floquet averaging leaves two kinds of terms in Heff .
Direct averaging of the transitions between wells 1 and 3
yields a dressed single-atom hopping term of order J � μ.
This is, hierarchically speaking, the second energy scale in
the problem. The third energy scale is J2/μ � J , it governs
three kinds of terms, given by series of products of Bessel
functions: (i) atom pair hoppings from 2 to 1, from 2 to 3,
and from 2 to (1,3) simultaneously, as a nonlocal pair; (ii)
corrections to the hopping between 1 and 3; (iii) potential
terms. Notice that when the occupations n1 and n3 are equal,
pair hopping from 2 to (1,3) is forbidden by a cancellation
of terms in the Bessel series. This situation reminds that
encountered in the undriven case with a constant repulsive
interaction (Appendix A), where such transitions are found
only if the repulsive interaction is nonzero. In the driven case,
the average interaction is in fact zero.

One also notices that within the Fock space |n1, n2, n3〉,
Heff splits into two uncoupled blocks, one made with even n2

and the other made with odd n2. Starting with the initial state
|0N0〉 with N even, the dynamics restricts to states |n1, n2, n3〉
with n2 even but n1, n3 can still be even or odd. This leaves 4
states over 6 for N = 2, 9 states over 15 for N = 4, 16 states
over 28 for N = 6, more generally ( N

2 + 1)2 states.

1. The limit of infinite μ

Let us treat Heff by solving first the infinite-μ limit, then
in perturbations in J/μ. Dropping all the J2/μ terms yields
(1 + N

2 ) blocks of states where n2 is constant (and even), con-
nected by 1 ↔ 3 hopping. Block n (n = 0, . . . , N

2 ) is formed
by (2n + 1) Fock states:

|2n, N − 2n, 0〉, |2n − 1, N − 2n, 1〉 . . . |0, N − 2n, 2n〉.
(D1)

This subspace is represented by a symmetric tridiagonal
matrix with all diagonal terms being zero, and successive
couplings Tn,1, Tn,2, . . . , Tn,2n, which are of order J and obey
Tn,m = −Tn,2n−m+1 (change of sign by interchanging n1 and
n3), as can be understood by inspection of the Bessel functions
in Eq. (B9). As a result, the matrix is simplified by taking the
combinations:

|ψn,m,±〉 = 2−1/2(|2n − m, N − 2n, m〉
± |m, N − 2n, 2n − m〉). (D2)

The dimension of this matrix is 2n + 1 and its spectrum
consists of n pairs of states with energies ±E (0)

n,κ (κ = 1, . . . n)
of order J , and one state at E = 0. To show this, one con-
siders the two cases, n even and n odd and observe that this
matrix further splits into two blocks. In the first one |�n,0,+〉 is
coupled to |�n,1,−〉 and successively to |�n,n/2,+〉 if n is odd,
and up to the “central” state |n, N − 2n, n〉 if n is even. The
second point is that such tridiagonal matrices possess a zero
eigenvalue if their dimension is odd. One checks that this is
always the case with the matrix containing the state |�n,0,+〉 =
2−1/2(|2n, N − 2n, 0〉 + |0, N − 2n, 2n〉). For n = N/2 this is
nothing but the N00N state 2−1/2(|N00〉 + |00N〉) built on
wells 1,3. Moreover, the zero-energy state of each block is
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obtained by successively eliminating all odd combinations,
leaving only “even” states |n − 2p, N − 2n, 2p〉. Therefore,
all zero-energy states in the infinite μ limit are made exclu-
sively with even occupations of all three sites 1,2,3, spanning
a reduced Hilbert space of dimension (N + 2)(N + 4)/8 in-
stead of (N + 1)(N + 2)/2 in the full space. We show in the
following that the essential of the dynamics takes place within
this restricted boson pair Fock space.

The nth E = 0 state can be formally written as∣∣ψ (0)
n

〉 = α0(|2n, N − 2n, 0〉
+ |0, N − 2n, 2n〉) + α1(|2n − 2, N − 2n, 2〉
+ |2, N − 2n, 2n − 2〉) + · · · (D3)

The α’s are coefficients of order 1. One has |ψ (0)
0 〉 = |0N0〉,

and |ψ (0)
N/2〉 contains the (1,3) N00N state. Those remain to be

connected to form the W state.
Gathering all blocks thus yields for the infinite-μ limit

(1 + N
2 ) zero-energy states and N

4 (1 + N
2 ) pairs of high-energy

states with opposite energies of order J . The latter can be
written with generality:

|ψ (H )
n,κ 〉 =

∑
m,±

βn,κ,m,± |�n,m,±〉 (D4)

with coefficients of order 1.

2. Perturbation in J2/μ

Let us now sketch the perturbative effect of all pair and
potential terms. First, it raises the degeneracy of the (1 + N

2 )
zero-energy states, yielding (1 + N

2 ) states whose energies are
of order J2/μ. They are separated from the remaining states
that stay at order J . Without details, one can write these low-
energy states as

|� (L)
ζ 〉 =

N/2∑
n=0

aζ ,n

∣∣� (0)
n

〉
(D5)

with coefficients of order 1 in general (except close to a CDT,
see below), and energies εζ of order J2/μ. On the other hand,
the high-energy states mix together to form states |� (H )

κ 〉 with
energies Eκ of order J .

The dynamics from the initial state |0N0〉 is obtained by
expanding this state at t = 0 in the basis |� (L)

ζ 〉, |� (H )
κ 〉, which

yields at time t :

|�(t )〉 =
∑

ζ

aζ eiεζ t
∣∣� (L)

ζ

〉 +
∑

κ

bκeiEκ t
∣∣� (H )

κ

〉
. (D6)

The first part of the sum with coefficients aζ of order 1
contains only even occupation states, while the second part
contains all states, but with small coefficients bκ,n,± of or-
der J/μ. Let us consider the transition probability to state
2−1/2(|N00〉 + |00N〉), mainly contained in the |� (L)

ζ 〉’s, with
a small component in the |� ((H )

κ 〉. It is essentially given by

PN00+00N (t ) =
∑
ζ ,ζ ′

cζ ,ζ ′ cos(εζ − εζ ′ )t (D7)

with cζ ,ζ ′ of order 1, plus terms of order (J/μ)2, and it oscil-
lates slowly. This formal calculation shows that the probability
to form the state 2−1/2(|N00〉 + |00N〉) is large in the course

of time. Moreover, corrections will also weakly couple to
state 2−1/2(|N00〉 − |00N〉) (participating to the high-energy
states), thus explaining why in the trajectories, the fidelities
for states |N00〉 and |00N〉 are quite similar but not identical
(small corrections produce drift at very long timescales).

The conclusion of this perturbative analysis is that the
interesting dynamics merely develops in a low-energy sector
emerging from slightly perturbed degenerate states, with one
in each block with constant n2. The number of these states is
1 + (N/2). Despite one works in a three-mode system, it is
similar to the number of states of a two-mode system, with in
addition a perfect pair correlation making a huge reduction of
the chain of states connecting |0N0〉 to states |N00〉, |00N〉.

3. Proximity to CDT

The latter reasoning holds for any value of the interaction
drive K0, but it does not yet explain why among the (N +
2)(N + 4)/8 pair states, excellent W states made of well-
balanced superpositions of |0N0〉, |N00〉, and |00N〉 can form
for some values of K0. For values of N larger than 4, those
can indeed be found in the vicinity of CDT regimes where the
system is merely blocked in the initial state. The asymptotic
expansion shows that this happens when K0 = nπ/2. CDT
due to vanishing of Bessel function dressing has been found in
the past for coupled wells [16], and Watanabe [18] noticed the
proximity of CDT to good N00N states generated in such a
simpler system. We hereafter give an explanation in our more
general case.

The low-energy states connecting |0N0〉 to states |N00〉,
|00N〉 are successively |� (L)

1 〉, |� (L)
2 〉, . . . , |� (L)

N/2〉. Let us call

their mutual couplings (of order J2/μ) t (L)
1 , t (L)

2 . . . , t (L)
N/2, that

result from the amplitudes of the terms in Heff transferring
pairs one by one from, say, well 2 to well 1. The asymptotic
form of these terms does not always vanish at CDT: it does
so if n1 − n2 < 1 or if n1 − n2 > 3, numbers being taken in
the final state of each transition [see Eq. (B12)]. As a result,
ti’s vanish except for n1 − n2 = 2, which happens once in the
connecting chain if N/2 is odd. It it is even, a few other cou-
plings to even state will be nonzero (see Fig. 10). In practice,
working close to a CDT point and expanding the cardinal sine
function with K0 = nπ/2 + δK0, most pair couplings ti’s are
of order of the very low scale t (vL) = (J2/μ)(δK0/K0), and a
few ones stay of order J2/μ.

At this stage one can repeat the scheme already used in
front of two different energy scales: diagonalize the matrix at
CDT, followed by a perturbative expansion. At CDT one finds
that states |0N0〉, |N00〉, |00N〉 are disconnected, as well as
the states of the other first blocks n < N/4, which happens
only for N � 8. Other states lie at energies of order J2/μ

due to their nonvanishing couplings at CDT. Then, deviating
slightly from CDT, transitions from |0N0〉 to |N00〉 or to
|00N〉 involve perturbative couplings trough those states, with
amplitudes t (vL). This eventually generates an effective cou-
pling between N00N components, of order (t (vL) )2/(J2/μ) ∼
(J2/μ)(δK0/K0)2. The latter fixes the typical recurrence fre-
quency ωrec of W states.

At these energy and time scales, we are left with the three
N00N state components, plus a few even states sitting in
the first blocks (zero for N = 2–6, two for N = 8, 10, ...).
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FIG. 10. Fock states for (a) N = 2, (b) 4, and (c) 6. At infinite
μ, rectangles delimit decoupled blocks, each containing one zero-
energy eigenstate of Heff . Thin black arrows denote single-atom
transitions [couplings T1 = O(J ) with T1 = T ′

1 if μ = ∞], double
black arrows denote pair transitions [couplings t1 = O(J2/μ)] and
double red arrows pair transitions vanishing at CDT (K0 = nπ/2),
having couplings t0 = O((J2/μ)(δK0/K0)) (represented only for
N = 4 and 6).

Eventually, the good fidelity of the three-mode N00N state
at some precise times relies on canceling the probabilities of
those “parasitic” states by interferences, which is quite easy
to achieve when their number is small. To summarize, our
hierarchical scheme—a kind of ad hoc renormalization—has
successively eliminated: (i) odd n2 states by approximating
the exact dynamics by that of Heff (at order J/μ); (ii) odd
n1, n3 states at order J/μ; and (iii) close to CDT, most pair
states except |0N0〉, |N00〉, |00N〉 and very few others.

The hierarchy of energies thus generated is

μ � J � J2/μ � t (vL) = J2/μ (δK0/K0)

� ωrec = J2/μ (δK0/K0)2. (D8)

4. Examples: N = 2, N = 4, N = 6

For N = 2, there are only two degenerate states at infinite
μ: |020〉 and 2−1/2(|200〉 + |002〉). The only remaining even
n2 state is |101〉, which will happen only at order (J/μ)2.
Therefore the dynamics starting from |020〉 reaches excellent
W states of two bosons, whatever K0 and at any time. Nearly
balanced W states can be found at regular times. In this simple
case there is no need for CDT. The reduction of the Hilbert
space to a few atom pair states suffices, which shows the
power of our scheme based on strong offset and resonant
drive, making atom pair correlations.

For N = 4, the three infinite-μ degenerate states are |040〉,
2−1/2(|220〉 + |022〉) and α(|400〉 + |004〉) + β|202〉) with
α, β numbers of order 1. Figure 10 shows in red the couplings
that vanish at CDT, and in black the small (double arrow, order
J2/μ) and the large (simple arrow, order J) couplings that
are insensitive to CDT. Close to CDT, the resulting dynamics
essentially involves states |040〉, |400〉, |004〉, the others being
split at higher energy. Actually, the small size of the pair
Hilbert space makes possible to find N00N states even far
from CDT values. This shows that our protocol is very robust
already to maximally entangle two or four particles in three
modes, which is a nontrivial achievement.

The case N = 6 illustrates well the above discussion. Four
blocks yield four degenerate states at infinite μ. Among them,
the initial state |060〉 and the combination 2−1/2(|600〉 +
|006〉) are specially favoured because they are very weakly
coupled to other states close to CDT. This for instance gener-
ates N00N states on timescales ∼104h̄/J for K0 ∼ 7.73, close
to 5π/2.

Figure 11 shows the spectrum of Heff for N = 2, 4, 6, first
in a large K0 range: one clearly sees a quasiperiodicity and
a decreasing envelope characteristic of the Bessel functions

FIG. 11. Spectrum of the effective Hamiltonian for (a) N = 2, (b) 4, and (c) 6 at different scales, showing the low-energy states emerging
in the center of the spectrum: two states for N = 2, three states for N = 4, four states for N = 6 of which two are only distinguished at very
low scale. Zooming is made in the region of a CDT.
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FIG. 12. Characterization of a resonant pair state with a
static repulsive interaction. Parameters are μ = 20, μ2 = 5.781,

and U0 = 0.9.

forming the various components of the Hamiltonian. Second,
in a more restricted K0 range containing a CDT, the low-
energy states are plotted. One more zoom is made in the N =
6 case to show the very low energy states and the anticrossing
at the CDT. Notice that there is no strong anomaly in the
spectrum at an optimum K0 value for N00N states (K0 = 7.73
for N = 6).

APPENDIX E: READOUT MAPS, DETAILS AND
EXPLOITATION

The two states |�W 〉 and |�pair〉 that we have shown to be
generated in our system are superpositions of states that are
connected by at least one pair transfer. Therefore, the usual
time-of-flight observable n(k) = 〈n̂(k)〉 is flat for both states

and one has to analyze higher-order correlations to probe the
presence of these states. We are interested in the following
quantity : σ� (k, k′) = 〈n̂(k)n̂(k′)〉 − 〈n̂(k)〉〈n̂(k′)〉, with

n̂(k) = |w(k)|2
N

∑
i, j

eik.(ri−r j )b†
i b j , w(k) = e− x2 |k|2

4 (E1)

x defining a phenomenological broadening. The vectors ri

defines the position of the sites representing the three wells.
These sites are represented as the three summits of an equi-
lateral triangle of length a = 1 . We choose the origin of the
coordinates as the center of this triangle.

1. With static repulsive interaction only

(See Appendix A) Let us now consider |�pair〉 =
α|0, N, 0〉 + β|1, N − 2, 1〉. The two states are connected by
operators like b†

1b2b†
3b2 or b†

2b1b†
2b3 so that in the case k′ =

+k, the phase acquired is eik.(x21+x23 ) = ei
√

3ky . Finally:

σ�pair (k,+k) = |w(k)|4
[ 2

N
+ 4

√
N (N − 1)

N2
|α||β| cos (

√
3ky + φα − φβ )

]

(E2)

where φα, φβ are the phases of coefficients α, β.
We can see that the resulting pattern is made of stripes

modulated along ky with a periodicity 2π√
3

(see Fig. 12). More-
over, as |0, N, 0〉 and |1, N − 2, 1〉 are connected by only
one pair transfer, σ�pair (k,+k) also depends on the phase
difference between the coefficient α and β. Therefore one
can directly probe the coherence of this state by measuring
σ�pair (k,+k).

FIG. 13. Readout maps for ideal cases: fully localized (top panels), ideal W and W -type state, and N00N state (bottom). Red dots denote
useful points for the determination of the weights of the W -state components (see text).
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FIG. 14. Readout maps for a dynamically generated state, as a function of the filtering parameter κ (see text). (Left) σ (k,−k) is slightly
modified by the parasitic states. (Right) σ (k, k) is a direct fingerprint of the parasitic states.

2. With a driven interaction: ideal cases

In the three-mode Bose-Hubbard with a strong offset be-
tween the sites 1 and 3, we have shown that the modulation of
the inter-particle interaction can dynamically trigger W -type
superposition states of the form:

|�W 〉 = α|N00〉 + β|0N0〉 + γ |00N〉. (E3)

One easily checks that the usual time-of-flight observable
n(k) = 〈n̂(k)〉 is flat. The same holds for different compo-
nents of |�W 〉 individually and for |�W 〉 itself. For a “perfect”
state |�W 〉, there is only one contribution to σ�W (k, k′) which
leads to a k dependence. This contribution is due to virtual
processes where a boson hops from a site i to a site j and
comes back so that the phase acquired is (k − k′) · xi j . Look-
ing at the case k′ = −k, we find

Re(σ�W (k,−k))

= |w(k)|4
N

[(|α|2 + |β|2) cos
(
kx +

√
3ky) + (|α|2 + |γ |2)

× cos (2kx ) + (|β|2 + |γ |2) cos (kx −
√

3ky)]. (E4)

As the states |N00〉, |0N0〉, and |00N〉 are not connected
by second-order hopping, we can write

σ�S (k, k′) = σ|N00〉(k, k′) + σ|0N0〉(k, k′) + σ|00N〉(k, k′)
(E5)

with

Re[σ|0N0〉(k,−k)] = |w(k)|4
N

(E6)

|β|2(cos (kx +
√

3ky) + cos (kx −
√

3ky)), (E7)

Re[σ|N00〉(k,−k)]

= |w(k)|4
N

|α|2(cos (kx +
√

3ky) + cos (2kx )), (E8)

Re[σ|00N〉(k,−k)]

= |w(k)|4
N

|γ |2(cos (kx −
√

3ky) + cos (2kx )). (E9)

Therefore the probabilities in state W can be recovered using
the following relations:

|α|2 = − N

2|w( π
2 ,−

√
2π
2 )|4

Re[σ (k,−k))]k=( π
2 ,−

√
2π
2 )

, (E10)

|β|2 = − N

2|w(π, 0)|4 Re[σ (k,−k)]k=(π,0), (E11)

|γ |2 = − N

2|w( π
2 ,+

√
2π
2 )|4

Re[σ (k,−k)]
k=( π

2 ,
√

2π
2 )

, (E12)

1 = −N

2
Re[σ (k,−k)]k=(0,0). (E13)
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As we can see in Fig. 13, for a symmetric setup the three
Fock states that compose the superposition state give the same
pattern but with a different orientation. The perfect W state
with α = β = γ yields a pattern with an hexagonal symmetry
and an asymmetric amplitude with respect to zero. A NOON
state (for instance, α = β, γ = 0) and an asymmetric super-
position give a pattern similar to that of the perfect W state but
distorted in different directions, depending on the coefficients
α, β, and γ . These characteristics allow to probe the presence
of a superposition of the three states |N, 0, 0〉, |0, N, 0〉, and
|0, 0, N〉.

3. Checking purity

Here we show some results for N = 8 and for superposition
states that are generated dynamically. Starting from the state
|0N0〉, we let it evolve and stop at T = 198t J/h̄, when the
system is in a good superposition state. At this time, the fi-
delity for such a state is 0.9. This means that the wavefunction
has also sizable components over a few other states. One finds
that σ�W (k, k) is flat for a perfect superposition state, this
observable can indicate the contributions of the other parasitic
states. To see this effect, one can delete all the states |p〉 in the
wavefunction for which the coefficient |C p|2 < κ and plot the
quantities σ�W (k,−k) and σ�W (k, k) for different values of κ

(Fig. 14). For κ = 0.0, all the states are present, for κ = 0.1
there is a small fraction of the parasitic states and for κ = 0.2
there are only the three states |N00〉, |0N0〉, and |00N〉.

The parasitic states can also alter the values of σ�W (k,−k)
so that it is more difficult to recover the composition of |�W 〉
with the help of the analytical formula for the perfect state.

In the case κ = 0.1, there are only two parasitic states:
|N − 2, 0, 2〉 and |2, 0, N − 2〉. The only contributions to
σ�W (k, k) are the terms which transfer 2 particles between 1
and 3, in the same direction, so that the result is an oscillation
in the direction kx (the period is π , as we can see in Fig. 14).
The two quantities σ�W (k,−k) and σ�W (k, k) are thus com-
plementary : the first serves to probe the superposition and the
second to check its purity.

As an example, let us consider that |�〉 = |�W 〉 + ε(|N −
2, 0, 2〉 + |2, 0, N − 2〉) like in the case κ = 0.1. At order ε,
the only contribution is obtained when the operator b†

i b jb
†
l bm

connects |N − 2, 0, 2〉 + |2, 0, N − 2〉 with |�W 〉. There are
only two terms so that the result is σ� (k, k′) = σ�W (k, k′) +
2ε

√
2N (N−1)

N2 (ei(k+k′ ).x13 + ei(k+k′ ).x31 ). So in the case k = k′,
we can characterize the parasitic states:

σ� (k,+k) = σ�W (k,+k) + 4ε|w(k)|4
√

2N (N − 1)

N2

× cos (2kx ) + O(ε2).
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