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Abstract

Snowball sampling is the common name for sampling designs on human
populations where respondents are requested to share the questionnaire
among their social ties. With some exceptions, estimates from snowball
samplings are considered biased. However, the magnitude of the bias is
influenced by a combination of elements of the sampling design and fea-
tures of the target population. Hybrid Probabilistic-Snowball Sampling
Designs (HPSSD) aims to reduce the main source of bias in the snowball
sample through randomly oversampling the first stage 0 of the snowball.
To check the behaviour of HPSSD for applications, we developed
an algorithm that, by grafting the edges of a stochastic blockmodel
into a graph of cliques, simulates an assortative network of tobacco
smokers. Different outcomes of the HPSSD operations are simulated, too.
Inference on 8,000 runs of the simulation leads to think that
HPSSD does not improve reliability of samples that are already
representative. But if homophily in the population is sufficiently
low, even the unadjusted sample mean of HPSSD has a slightly
better performance than a random, but undersized, sampling.
De-biasing the estimates of HPSSD shows improvement in the perfor-
mance, so an adjusted HPSSD estimator is a desirable development.

Keywords: snowball sampling, cliques-and-blocks, network generation,
simulation inference, smoking
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2 Hybrid Probabilistic-Snowball Sampling

1 Introduction

In population studies, designs of sampling procedures involving randomisa-
tion in the process of drawing the respondents are recognised as probabilistic
designs. Probabilistic designs, if properly implemented, reduce confounding
and colliding effects in observed outcomes. In this case, the sample statistics
are assumed to be unbiased estimators of features in the whole population.
Probabilistic designs are operationally expensive but reliable for surveys aimed
at mapping novel phenomena in social sciences. So, it is correct to consider
them the ‘gold standard’ of population studies.

However, as remarked by Groves (2011), operational costs (e.g., costs in
working hours) still represent a serious burden to conduct high quality research
for replication studies, monitoring, censi, etc.

This is even more truthful in the Internet Era. Non-responses (attrition) are
the Achilles’ Heel of probabilistic designs, because it increase the operational
cost of surveys. There are evidences that attrition rates has increased over years
(De Heer and De Leeuw, 2002; Bethlehem, 2016; Williams and Brick, 2018). For
example, the fact that mobile phones have been adopted worldwide increased,
not decreased, the operational costs of traditional telephonic surveys (Vicente
and Marques, 2017). With exception of some sensible survey (e.g. on political
opinions), it is assumed that non-responses are missing at random: missing
data is uncorrelated with observed outcomes of the survey. This assumptions
does not hold always (Weidmann and Miratrix, 2021), so a raise in attrition
rates would not only increase operational costs, but also bias the results.

On parallel, the adoption of non-probabilistic sampling designs has grown
in social sciences(Lehdonvirta et al, 2021). Non-probabilistic designs are not
justified through Probability Theory alone. Sometimes contextual features of
the research or robust prior knowledge can justify alone the adoption of a
non-probabilistic design1.

However, there is specific non-probabilistic survey design that is, more often
than not, problematic at its core: when a person or few people ask to their
own social ties to fill a survey tool (i.e., a questionnaire). The contacted people
can also be encouraged to share the survey tool among their own social ties.
This process of ‘responding-sharing-responding’ can be modeled as a Galton-
Watson branching process tree, that is a conceptual expansion of the more
common concept of discrete Markov Chain (Rohe, 2019). An ensemble of trees
will be then called ‘a forest’ (Figure 1).

From this parallel, one can recognize the pitfall of this design: for any
non-trivial correlation between stages (i.e., correlation between the state of
the recruiter and the recruited), the final sample will be dependent on the
random outcomes in early stages. With some exceptions (Spreen, 1992), sample
statistics will be biased.

1The theory behind the adoption of a non-probabilistic sampling design should be contextual to
a phenomenon that is already well studied with other tools. The political poll conducted among
Xbox gaming players by Wang et al (2015) and the adopted weighting scheme is a notorious case
of a non-probabilistic (‘non-representative’) design that led into an accurate forecast.
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Fig. 1 The tree is a spatial chain that can fork itself into different sub-chains. Colours
represent discrete states of one attribute. A forest is a graph made of trees. The apex node
of the tree is called seed. In a forest, a seed alone without children nodes can represent a
sub-graph of the forest. The t-stage of a node is the number of steps necessary to reach that
node from the seed.

This process is sometimes called, maybe improperly (Goodman, 2011),
‘snowball sampling’. In the practice, it happens that the first stage of responses
is not even randomly drawn, and that further responses are collected until a
sample size deemed sufficient is reached. If this is the case, it is hard to image
that the final sample could it be representative of the target population.

Correlations between stages of a recruitment forest happen because:

• The underlying population is assortative: nodes have a general preferential
attachment for connecting to nodes with some characteristics and not others
(McPherson et al, 2001; Cantwell et al, 2021; Evtushenko and Kleinberg,
2021).

• The mechanism generating the forest is assortative: by design or just by indi-
vidual preferences, something is biasing the specific collection of respondents
(Crawford et al, 2018).

When assortative mechanics bring out connections among nodes with similar
features, it is said that there is homophily among the nodes in the graph.

Since the final outcome depends on the early stages, in our opinion, the
practical problem is better framed as a problem of sample size and sampling
design of the fraction of sample units collected at the stage 0, the seeds.

In this paper, a computational study is carried out to enquire if sufficient
conditions exist for allowing an estimation better or equally good than proba-
bilistic sampling designs, but with reduced operational costs. This proposal is
called Hybrid Probabilistic-Snowball Sampling Design (HPSSD).

To assert this result, we developed a computational simulation (Section 3)
in two parts:

1. an algorithm that simulates a network where the population of nodes can be
homophile both regarding a binary variable and the number of connections
(degree)
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2. another algorithm that simulates a HPSSD in the artificial population.

This procedure is iterated 8, 000 times (Monte Carlo), each mutually inde-
pendent and initiated with random hyperparameters. As a reference case,
a network of people is modeled with around a quarter of nodes as tobacco
smokers (Section 2).

Inference is performed on summary statistics over the 8, 000 independent
runs. Results (Section 4) induces to think that even small homophily would
make the HPSSD less reliable than the costwise alternative random sampling.
However, even a coarse technique to reduce bias in the estimator would make
HPSSD consistently performing better than the gold standard. Developments,
heuristics, generalizability, and other limitations for the study are discussed in
Section 5.

2 Theoretical Background

In Section 1, snowball sampling has been presented as a method employed
by qualitative researchers, decoupled from the problem of estimation (Bier-
nacki and Waldorf, 1981). However, as remarked by the first proponent of
a ‘snowball’ sampling, Leo Goodman (2011), this description stems from a
misconception. Goodman’s model (Goodman, 1961) was originally aimed to
treat analytically the methodology of data collection pioneered by the team
of sociologist James Coleman (1958). Originally, the first stage 0 of snowball
sampling was supposed to be a randomised drawing of a small number of units
from the target population and not any available set of eligible participants
(Granovetter, 1976; Frank, 1978; Rapoport, 1979).

In the Goodman’s model, after the first draw, each sampled unit is asked
to recruit a fixed m of other respondents within the target population:

nt = nt−1 ·m; n0 = nseeds (1)

m being fixed implies in Eq. 1 that zero attrition is expected in the recruitment
process. In this case the proprieties of the tree can be derived, with only minor
adjustments, from the proprieties of the Markov Chain (Lu et al, 2012; Rohe,
2019).

The tree model corrected with r attrition

nt ∼ nt−1 ·m(1− r); n0 ∼ nseeds · (1− r) (2)

is not anymore an exact model, but a stochastic one. It follows that knowing
the proportion of non-responses in the sample r, then it is possible to model
the distribution of ri as if each unit has an individual attrition ri.

Network sampling has been revamped by the works of Frank and Sni-
jders (1994) and Heckathorn (1997), under a new name: Respondent-Driven
Sampling (RDS). RDS has a different axiomatization than snowball sampling:

• RDS has always a finite ‘target’ population, that is also always a network.
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• mi is allowed to variate across sample units i
• each respondent unit has to self-report the ki number of its social ties within

the target population
• RDS lacks the assumption that seeds are randomly drawn. While for some

target population, this is quite convenient, it has been demonstrated to be a
flaw more than a strength. For example, Khabbazian et al (2017) proposed
an alternative, Anti-Clustering RDS, expressively to avoid the issue of intra-
cluster branching of the respondents.

An interesting methodological introduction of RDS is the explicit imple-
mentation of link-tracing of the links within the forest of respondents. This
implementation has been discussed even between introduction of Internet in
households (Spreen, 1992).

RDS theory and RDS estimators (Volz and Heckathorn, 2008) have been
object of (self) criticism, for example regarding: the asymptotic proprieties for
the sample size (Verdery et al, 2017); subjectivity in estimation of ki (Lu et al,
2012); and unavoidable biases in variance estimators (Goel and Salganik, 2010;
Ott and Gile, 2016; Verdery et al, 2017).

Crawdford, Aronow, Zheng, and Li (2018), partially basing on the previous
work of Gile and Handcock (2010) and Tomas and Gile (2011), pointed out
that in the case of highly attribute-assortative forests, ki is not a sufficient
information for unbiased inference in a network. This problem is exacerbated
if non-responses2 are biased by underlying attribute-assortativity, too (Smith
et al, 2017).

The standard measure of assortativity is the Bravais-Pearson’s linear cor-
relation. This standard holds across different data formats, since for binary
attributes the correlation’s coefficient is reduced to Pearson’s φ for pairs of
connected nodes with same or different values (McPherson et al, 2001; New-
man, 2010), with only minor differences between directed and undirected
networks. While other measures of correlation have been proposed (Noldus
and Van Mieghem, 2015), the assumption of linearity of the correlations is
paradigmatic.

In most application, φ is correctly measured on the whole population or
very large samples3.

2The problem of attrition is the characteristic issue of population studies as an empirical social
science: this problem is virtually absent in applications of network sampling designs originated
outside social sciences and only then applied for inferences on human populations. For example,
network-crawling techniques applied on Social Media (Leskovec and Faloutsos, 2006; Gjoka et al,
2010), although considered very successful for demographic inference, do not assume any agency
in the nodes, i.e. nodes cannot refute to be surveyed.

3Inference of characteristics of a network from a sample is an advanced task, because a summary
statistic of the graph cannot be decomposed as a linear function of sample space of the population
of the nodes. For example, it holds:

l[φ(a,b), φ(c,d)] 6= φ[l(a, c), l(b,d)]

for any l linear function (e.g., the average). So to infer features of the network (not of the nodes)
the sampling design is aimed to sample not a collection of nodes, but a collection of subgraphs
that are representative projections of the whole graph (Leskovec and Faloutsos, 2006; Ahmed
et al, 2013; Crane, 2018). Interestingly, in this case random sampling is not ‘gold standard’ and
it is inefficient to reach a representative sample of subgraphs of the whole network (Zhang and
Patone, 2017).
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2.1 Hybrid Design

In Hybrid Probabilistic-Snowball Sampling Design (HPSSD) a fraction of
respondents is recruited with a probabilistic procedure, and a subsequent frac-
tion is recruited by the first fraction. Differently from Goodman’s model, mi

is not fixed: seeds are required to spread the survey tool as much as possible
among their social ties.

What is the implication of the formulation “as much as possible” in terms
of statistical distribution of mi-recruitments within the tree? Social networks
have a tendency to generate scale-free distribution of ki-degrees (Fortunato
et al, 2006; Barabási, 2009), hence in a scenario where mi is correlated with
ki it may happen that many chained respondents share a small number of
common seeds, while the other seeds are ‘infertile’.

However, we would argue that the case for a exceptionally large tree dom-
inating a forest, while possible, is not the typical scenario of a HPSSD. We
expect seeds to just share the survey tool in more private and family-oriented
social media, since these are possibly the most efficient platforms to informally
recruit social ties, compared to alternatives (Baltar and Brunet, 2012; Brick-
man Bhutta, 2012; Herbell and Zauszniewski, 2018; Lindsay et al, 2021). This
would be a case when even nodes with high ki would recruit a modest mi.

2.2 Application on tobacco smoking

An interesting antecedent has been designed in Etter and Perneger (1997)
in the context of sampling tobacco smokers in Geneva, Switzerland, in 1999.
Authors randomly sampled 3300 inhabitants through a register of email
addresses. These have been equipped with a virtual coupon and then asked

• if smokers or ex-smokers (target): to fill a questionnaire and to send it back to
researchers through an online procedure, with the coupon number. Coupons
returned in this stage are the primary component of the sample.

• if not target: to ask to any known person within target to fill the question-
naire, and to send it back with the coupon number of the seed. Coupons
returned in this stage are the secondary component of the sample.

578 questionnaires have been returned in the primary component of the sample.
With an estimated smoking prevalence of .32, the estimated attrition is 1 −

578
.32·(3300) ∼ .45.

The respondents in the secondary component were 566. This is significantly
lower than the expected value of .68 · (3300) · (1 − .45)2 = 678 (see, Eq. 2),
meaning that at least one of the two average attrition rates (r̄i) in the two
sample components is higher than expected.

Nevertheless, authors report that not only the two components showed
only minor statistically significant differences (in particular, a small gender
prevalence in the secondary component), but also that the estimates on the
combined hybrid sample were not statistically different from a previous repre-
sentative benchmark (Etter et al, 1997). Authors explained the performance



Hybrid Probabilistic-Snowball Sampling 7

of the union of the two components through the overall sample size of the
primary component of the sample (seeds), that is randomly drawn.

For a population of smokers (in Geneva, 1999) that could not exceed 40.000
people, a random sample of 578 is associated to a maximum margin of error
of .98√

578
· 100 = 4.07%4 with Confidence Level 95%. While this number is too

high to consider n = 578 a truly ‘representative’ sample, is not excessively
high. Why even the secondary component alone performed so well for the esti-
mation? A simple explanation for it is that, given a fraction of random seeds,
even not representative of a population, but close to an acceptable margin of
error, then the snowball sample performs as a representative sample. This is
the hypothesis of the present study on HPSSD.

However, other explanatory elements could occur. For example, correlation
between attrition ri and smoking can be only weak (McCoy et al, 2009; Powers
and Loxton, 2010; Zethof et al, 2016), and very likely correlated through a
mediation effect, e.g. level of scientific education (Siddiqui et al, 1996; Cunradi
et al, 2005; Young et al, 2006; Haring et al, 2009; McDonald et al, 2017). A
discussion on assortativity among smokers requires a more complex analysis.
There are strong evidences that family is the main driver of smoking status
(Otten et al, 2007). Smokers tend to start families together (Clark and Etilé,
2006; Agrawal et al, 2006; Malagón et al, 2017) and their smoking status is
then culturally inherited by their children (Charlton, 1996; Bricker et al, 2006;
Leonardi-Bee et al, 2011). This is a case of complex social contagion (Centola,
2018) in the sense of mutually reinforced (or, looped) causality. In another
example of social influence within households: when married people decide to
quit smoking, both of them, as individuals, are less successful in it if the other
partner ceases to quit smoking(Waldron and Lye, 1989; Christakis and Fowler,
2008; Blondé et al, 2022).

The second driver of assortativity in smokers regards how and why smokers
bond with family-unrelated peers. When smoking has been seen as a harmless
element of fashion, smokers were the most central individuals in social net-
works, but after smoking was associated with diseases, the quota of smokers
plummeted, and the smokers were clustered into peripheral areas of the social
network (Christakis and Fowler, 2008; Philip et al, 2022). There is relevant
debate if a process of transitions from never-smoker to smoker to ex-smoker can
be called a social ‘contagion’ (‘influence’). Aral, Muchnik, and Sundararajan
(2009), and Shalizi and Thomas (2011) have been opposed to these definitions
because social influence usually is not identified without the mediation effect
of pre-contagion assortativity, that is the association between being linked as
social ties and the factors of risk of falling into smoking status. In this sense,
it would be a common environment driver and not a direct influence (Go et al,
2012; Cheadle et al, 2013).

Hence, we propose a model of assortative networks where connections are
not driven by the target variable (smoking), but by its risk score, that is

4Here is applied the standard Laplace’s formula for the margin of error 1.96 ·
√
σ2

n · 100 that

maximises the expected entropy assuming that the target variables are uniformly split.
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a summary number in the unit interval that measures the likelihood of the
expected outcome (smoker/non-smoker).

Here the risk score can resemble a propensity score (Austin, 2011), but it
is only a numerical abstraction useful for generating a sophisticated artificial
network of smokers, instead. Nodes would be degree-assortative and smoking-
assortative as a epiphenomenon of the homophily in their propensity to be
smoker.

In detail, the individual risk score is a compact summary of the joint effect
of a multivariate distribution of predictive factors of smoking. So, if it true that
there is a common inheritance of these factors within the household, this can be
represented as a clique (that could be even a single person) sharing a common
coefficient of the risk score. Then the individual risk score could be represented
as a function of the coefficient fixed within the clique and a random coefficient.
From this model to represent determination of the propensity to smoke, stem
the random network generating model that we called “cliques-and-blocks”,
presented in Section 3.1.

3 Methods

3.1 Population Generation Model: cliques-and-blocks

The goal for the algorithm is to generate a network of smokers and not smokers
(binary attribute y). The binary attribute follows a Bernoulli distribution. The
parameter of the Bernoulli is a risk score that is a mixed value from a α-
coefficient fixed within clique and a second random β-coefficient. We want the
network to be assortative in regards of the y binary attribute.

To achieve this goal, the algorithm has to:

1. draw a set of ω-cliques with a fixed α within clique;
2. randomly assign i-nodes into the cliques and then assign β to i;
3. compute a mixing function:

e(i) = αω · w + βi · (1− w) (3)

where βi and αω are values drawn from the same D distribution on the unit
interval, and w is a weight parameter, fixed for the whole population.

A tabular representation of this scheme is provided in Table 1. All the nodes
within the same ω-clique would be connected to each other. A number of other
links would be drawn between pairs of (i, j) nodes, with a probability that is
inversely proportional to | βi − βj |.

Pr.(iβi ↔ jβj ) ∝
1

| βi − βj |
(4)
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Table 1 Example of a table of attributes for the i
nodes.

i ω-clique βi αω e(i) yi

1 1 β1 α1 e | (β1, α1) y1 | e(i = 1)
2 2 β2 α2 e | (β2, α2) y2 | e(i = 2)
3 2 β3 α2 e | (β3, α2) y3 | e(i = 3)
4 3 β4 α3 e | (β4, α3) y4 | e(i = 4)
... ... ... ... ... ...
i ω βi αω e | (βi, αω) yi | e(i)

and ki would be the sum of all the links connecting i to other nodes (degree
of i), without distinction between linked nodes sharing the same clique of i or
not.

In practice, for networks of large size, this method is computationally
expensive, because it would require to compute | βi − βj | for each pair of
nodes: these operations will happen in an exponential time.

An efficient way to reduce the computation to a linear time is to adopt a
stochastic blockmodel (Rohe et al, 2018). In the previous case, nodes would
have been added individually to the pre-existing network of cliques. In this
case, the set of edges from the cliques is engrafted with a set of edges generated
from a stochastic blockmodel. For this reason, we call this model of network
generation: ‘cliques-and-blocks’. The concept can be visualized in Figure 2.

Fig. 2 The left graph is an ensemble of cliques. Each clique is associated to a α random
value, shared among all the members of the clique. It can be noticed that a clique consists of
only one node. Colours of nodes in the center graph represent membership of two different
blocks. In the right graph, the edges of the center graph have been exported into the left
graph, alongside the β value associated to their block. α and β will mix according to Eq. 3
into the risk score e(i).

Adopting cliques-and-block, minor adjustments occur to Eq. 4. Each block
would ideally represent a level of risk, that is an ordinal category along the unit
interval [0, 1]. As a consequence, aforementioned distribution Dα = Dβ = D
can only be discrete since the numbers of blocks is finite. Assortativity can be
parameterised through a mixing matrix B that associates the probability that
nodes in one block would link with nodes in another block.

In Fig. 3 it is represented a small network of 38 nodes that has been gener-
ated through the cliques-and-blocks simulation methodology. 11 of these (28%)
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are smokers (in dark green). It can be noticed that many smokers, but not
all of them, are isolated from the more dense area of the network. These dark
green nodes are still quite well-connected with other dark green nodes.

Fig. 3 Toy graph made of only 38 nodes. The dark green nodes are the smokers. Red
edges are the cliques, while orange edges are imported from the stochastic blockmodel. In
this graph, the parameter that regulates the isolation of smokers has been set very high to
visualize how ‘cliques-and-block’ can generate artificial isolation of a group without inducing
modularity of in the network. In the simulation, the number of nodes can exceed 30.000 and
usually smokers are less isolated.

In this simulation, operations are simulated with the help of softwares
igraph, tidyverse, tidygraph, Matrix, and fastRG.

3.1.1 Model Parameterisation

Cliques are drawn with an internal size equal to:

E(nω) ∼ P(1.2) + 1 (5)

The reference for the λ parameter in Eq. 5 is the average number of members
of households in Western Europe in 2020.

10 levels of risk (discrete coefficients) are parameterised as β-blocks, rang-
ing from β = .05 to β = .95. Given that this statistic is discrete and
constrained, the probability mass function of density (PMF) for D can be
modeled after a Binomial. However, if so, the variance of e(i) would be lesser
than the Binomial model, since applying the formula in Eq. 3 it follows:

σ([B(9, p)] · w + [B(9, p)] · [1− w]) ≤ σ(B(9, p)); ∀(p, w) (6)
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To solve this issue, we adopt an Overdispersed Binomial model (Prentice,
1986; Moore and Tsiatis, 1991)5:

pD ∼ Uniform(.15, .30)

D = OverBin.(9, pD, ϑD) · .1 + .05 (7)

According to our calibrations, for the target pD in Eq. 7, a fixed overdispersion
parameter ϑD = .3 stabilizes the variance as:

σ2(D) ∼ E(D) (8)

in most of the cases. The PMF for the average case of pD+ .05 = .275, ϑD = .3
is provided in Fig. 4. In Figure 5 is represented the distribution of e(i) in a
run of the algorithm.

Fig. 4 Example of how probability is distributed across 10 ordered categories in an Overdis-
persed Binomial model with parameter of centrality equal to .275 and parameter of dispersion
ϑ = .3. The 10 categories are the blocks of the cliques-and-block models, hence they are
levels of risk of being a smoker. Higher levels of risks are always very rare in the simulation,
but they are more likely when the parameter pD is higher.

Undirected edges are parameterised after a mixing matrix of β-blocks, that,
for the case of undirected graph, is a symmetric square matrix B : πDβ , where
πDβ is the propensity that a i node within block β is connected to a j node in
a different block β′.

The algorithm assigns πβ,β′ following the PDF of the Normal distribution.
Here it is documented for R language.

5We adopted the command VGAM::rbetabinomial in R.
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Fig. 5 Probability Density Function (PDF) of the e(i) risk scores in a run with 19.413
nodes, w = .15, pD = .21. e(i), and ϑ = .3. αi and βi are generated through Eq. 7, then they
are mixed into the risk scores e(i) (Eq. 3). This example satisfies the principle enunciated
in Eq. 8, since ē(i) = .185 and σ2(e(i)) = 19.6.

l ibrary ( purrr )
l ibrary ( Matrix )

map dfc (
seq ( 1 , 10 , 1 ) ,
function ( . x ) {

(dnorm( seq ( 1 , 1 0 , 1 ) , . x , . x )
) }

) |>
as . matrix ( ) |>

forceSymmetric ( uplo = ”U” ) |>
as . matrix ( ) −> B

B/sum(B) −> B

The core of the algorithm is that it associates the baseline πβ-propensity
(for nodes i from block β) to be linked to nodes j from the same β-block to
the normalised6 density of the probability to observe a random value x : x = µ
from a Normal distribution that holds (β + .05) · 10 both as location and
standard deviation parameters7:

Pr.(iβ ↔ jβ) ∝ P ((β + .05) · 10 ∈ N (µ = σ = (β + .05) · 10) (9)

Likewise, each deviation of π for propensity of nodes connecting with nodes
from another block (iβ ↔ jβ′) is modeled after the normalised density of

6It holds
∑
πDβ = 1, that is guaranteed through the imputation B/sum(B) -> B.

7Pr. indicates the mass of probability of a discrete value, P indicates the density of probability
of a point value in a continuous distribution
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probability for the deviation from locations in N (β, β):

Pr.(iβ ↔ jβ′) ∝ P ((β′ + .05) · 10 ∈ N (µ = σ = (β + .05) · 10) (10)

As a model for a baseline mixing matrix, this satisfies two desired axioms that
are discussed extensively in the Section 2:

1. From Eq. 9 and Eq. 10, it follows that each block always has a higher
propensity to link within itself than any other block, hence the network will
be smoking-assortative.

2. Lower β-blocks are more connected than higher β-blocks, hence non-
smokers have higher ki-degree than smokers.

This algorithmic approach to network generation, does not raise modularity
of smokers (i.e., divisibility of the graph in clusters of smokers vs. non-smokers).
As a consequence, since there are more non-smokers than smokers (see the
distribution of parameter pD in Eq. 7), the networks will also show degree-
assortativity.

Memberships of a i-node to a ω-clique and to a β-block are mutually inde-
pendent. This assumption is not discussed in Section 2, and it could be relaxed
in more refined parameterisations (discussed in Section 5).

The axioms can be both visually checked in Fig. 3.1.1. Dispersion of the
πDβ can be controlled through a re-parameterisation with a γ exponent8:

πDβ |γ =
πγB∑
πγB

(11)

For any practical evaluation of the role of γ in the network generation
model, it can be said that the higher the γ, the higher will be attribute-
homophily in the network, hence the degree-homophily, too.

The stochastic blockmodel generation is run through software fastRG.
fastRG will generate a composite population of links and the distribution of
the degree of the links of the blockmodel kβ will follow a Poisson model.

As anticipated in Table 1, once the network has been generated, to each
i-node is assigned the binary yi with:

Pr.(yi = 1) = Bernoulli(ei) (12)

8Another technique to alter the deviations in B is through matrix exponentiation:

B : (πDβ |γ) =
Bγ∑
πBγ

instead of exponentiation of the element.
This is not suited for this work in particular because, for matrix exponentiation ∃γ such that
axioms 1. and 2. would be violated.



14 Hybrid Probabilistic-Snowball Sampling

Fig. 6 This mixing matrix has been generated applying the algorithm and then exponen-
tiating each πβ,β′ element of the baseline matrix B to γ = .5. One can notice that diagonal
of the matrix follows a geometric progression such that the difference between πβ,β and
πβ+.05,β+.05 is always the half of the difference between the difference between πβ−.05,β−.05
and πβ,β . This propriety hold ∀γ, γ only regulates the statistical distances between the
diagonal and the other elements of the matrix, and indirectly the homophily in the network.

3.2 Recruitment

In order to evaluate the alternative outcome of switching from gold standard
to HPSSD, 8, 000 v-runs are generated following the model in Section 3.1. y
denotes the quota of nodes with a positive outcome in Eq. 12, so it holds
yv = ȳi∈v.

For each run, a universal parameter of attrition rv is randomly set. Each
node at v has an individual parameter of attrition ri:

pr = rv + (
ei − ēi)

10
) · .25

ri ∼
B(100, pr)

100
(13)

b 1,000
(1−rv)c nodes are uniformly random drawn from the population for each

v-run. Each of these nodes is be pooled in or out into a benchmark sample with
a probability equal to ri. This sample is referred as CF or ‘the golden sample’
for v. The average of the golden sample ȳF is the gold standard estimate.

From here, for each run, four parallel processes of recruitment are initiated
from the golden sample, each representing a different scenario of HPSSD within
the random parameterisation featured in v. These scenarios are alternative
“what if?”, so they could be evaluated comparatively as proper alternative
outcomes for a casual analysis of the effect of switching from a benchmark to
HPSSD.
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3.2.1 Scenario I: Full sample, low dispersion

In this scenario, the golden sample and the stage 0 for HPSSD are the same
set CF = Ct0 .

Each seed recruits mi new j-nodes into the next stage of respondents t1.
The number of recruited by i (mi) follows a Poisson model (λ := .5), and if
it exceeds ki, it is floored into k. Each of the j recruited nodes is pooled into
the stage t1 with a probability equal to 1 − rj . Also, if j ∈ n<t already, then
it is excluded from nt. This is iterated through t stages until nt = 0.

As a consequence of λ := .5, it holds:

E(nt) ∼
(1− r) · n(t−1)

2
(14)

so it follows
rv = 0⇒ E(nt>0) ∼ E(n0) (15)

so we expect the sample size to be roughly the double of the seeds, given no
attrition.

In this scenario, the union
⋃
i ∈ t constitutes the hybrid sample CI of the

I scenario. CI allows to evaluate performance of HPSSD assuming parity of
operational cost between CF and CI .

3.2.2 Scenario II: Full sample, high dispersion

This scenario is identical to I, with the difference that for mi, instead of a
Poisson model is adopted a (shifted) Yule model(Huillet, 2020). Yule is a
mono-parametric discrete distribution within the family of Power Laws9. The
PMF for a shifted Yule distribution is:

f(k ∈ N0 | λ) =
λ · (λ! · k!)

(λ+ k + 1)!
(16)

and it holds

E(k | λ) =
λ

λ− 1
− 1 (17)

From Eq. 17 it follows that a shifted Yule process converges to finite values
∀λ > 2, and this convergence is strong for λ > 3. Therefore, to preserve the
principle of Eq. 15, from Eq. 17 it follows that λYule := 3.

In this scenario II, few seeds would be responsible for the majority of the
snowball component of the hybrid sample CII , hence the mention of “high
dispersion”.

3.2.3 Scenario III: Half sample, low dispersion

This scenario is identical to I, with the only difference that in this case Ct0 is
half of the size of CF, by discarding half of the members of CF.

9The unshifted model has been formalised by Yule. It is also known as Yule-Simon because
Herbert Simon (1955) linked the model to the Zipf’s Law and the Principle of Least Effort.
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3.2.4 Scenario IV: Half sample, high dispersion

This scenario combines both the features of Scenario II and Scenario III.

3.3 Evaluation Strategy

In Section 3.2 all of the four scenarios start with a common random sample
CF that is also the benchmark sample for that run. The process that samples
Cscenario from CF can be seen, conceptually, as a causal intervention, since it
preserves random-generated features inherent to that run as a form of ceteris
paribus. This specific design allows to compute evaluative statistics on differ-
ences within the same run. These differences can be interpreted as specific
performances of the HPSSD samples, given CF as a benchmark.

Differences in absolute errors between the two samples measure the
performance of HPSSD:

∆ =
| y − ŷ0 | − | y − ŷ1 |

y
(18)

where ŷ1 represents the estimate of y according to the benchmark design, and
ŷ0 according to the alternative proposal, i.e. HPSSD in a scenario. That means
that if ∆ is > 1, then to adopt the alternative would have been beneficial in
that run, because it would minimize the expected margin of error. However,
the difference still depends by the prevalence in the population y, hence in Eq.
18 it is divided to y. This operation allows to employ a summary statistic of
∆ across the runs as an estimate of the expected improvement in the margin
of error after switching to the alternative. In other words, given that the runs
are all generated independently, ∆̄ works as an estimate of the net benefit,
expressed as a rate of increase of performance expected after switching into
HPSSD. A negative value would indicate a worse performance.

A second proposal for performance evaluation is non parametric:

ζ =
n(| y − ŷ0 |>| y − ŷ1 |)

N
(19)

Eq. 19 does not estimate the net benefit of switching from one design to
another, but the expected relative frequency that the alternative will outper-
form the standard. This statistic is easier to be interpreted and, combined to
∆̄, it should provide the whole picture on the results of the simulation.

Determinants of the errors are variance and bias. Being random sampling
unbiased, error of gold standard is always due to inherent variance given the
sample size. HPSSD has always a sample size that is higher of its random stage
0, so the expected error component due variance should be inferior. However
HPSSD is also biased due to homophily in the population. In other words,
when switching to HPSSD there is a trade-off between a reduction in variance
and an increase of bias.
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The Design Effect is the analytical statistic to evaluate the expected
reduction of variance in a sample estimator that is alternative to gold standard:

DE =
σ2(θ̂1)

σ2(θ̂0)
(20)

where θ̂0 represents the random sampling estimator and θ̂1 the alternative
proposal. With minor adaptations, from Eq. 20 it can derived a statistic for
the evaluation of the rate of reduction in random error after switching to the
alternative:

ψ = 1− s2(y − ŷ1)

s2(y − ŷ0)
(21)

Estimation of bias is straightforward, given independent runs. Since bias is
nothing more than the location of the errors of a design,

bias = 〈y − ŷ〉 (22)

it follows
ˆbias = avg(y − ŷ) (23)

4 Results

8, 000 v-runs have been randomly generated with the cliques-and-block engraft-
ing model described in Section 3.1. A run is a population of nodes connected in
a graph. A y quota of this population is made of target units with a (’smoker’).
y is also the estimand of the sampling procedures that are compared in this
study. General features of the populations are:

• nodes are fully connected in very small clusters of few nodes (cliques) and
sparsely connected with nodes outside their clique.

• the network is both y-assortative and degree-assortative
• target nodes (i | y = 1) are more isolated than non target nodes (i | y = 0)
• all nodes have a propensity to non-response (individual attrition) to a survey

and this individual attrition is slightly higher in target nodes.

To achieve variability in the intensity of these features, each run is distinct
from the others through the variability of 6 parameters (see, Table 2).

In particular, through Eq. 11, γ determines jointly the levels of degree-
homophily φk and y-homophily φy. Across the runs, φk is both higher and
more variable than φy (Fig. 7).

Indeed, across the variety of parameters under analysis in this study, the
homophily parameter is the second most predictive of the absolute error of
HPSSD across the different scenarios, only behind the value of the estimate of
y in t0 (Table 3).

In Table 3, attrition shows a negative coefficient. That would imply that
more attrition leads into lower margin of error. It requires an explanation:
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Table 2 Parameters of the network population.

Symbol Concept Range Documented

y Target Quota [.15, .35] Eq. 12
ω Number of cliques [5.000, 15.000] Eq. 5
〈k〉 Ego-nets size ∼ [5, 25] Sec. 3.1.1
w Familism [.1, .5] Eq. 3
γ Homophily [.2, .8] Eq. 11
r Attrition [0, .5] Eq. 13

Fig. 7 Joint density of frequency of φy (x-axis) and φk (y-axis), across the 8, 000 runs.
Colours represent how much of the sample is frequent in the colored area. Half of the density
is in the dark area.

the model links nF to the expected attrition (see, Section 3.2) in order to fix
nF ∼ 1, 000. Higher attrition would still impact nscenario reducing the snowball
component, hence increasing sample variance. However, across the majority of
the runs, the snowball quota has a negative impact on the performance of the
estimator ŷ for sample scenarios I and II (see, in Table 4, row “ALL”).

As a consequence, reducing the snowball quota through higher attrition, in
many cases, improves the estimate. This hypothesis has been checked through
a multivariate regression:

∆ ∼ a+ b1(n− n0) + b2(γ) + b3(r) (24)

For the I scenario, the b3 coefficient for r is positive (.15 ± .034), but still
inferior to b2 coefficient for gamma (.188 ± .01) and b1 coefficient for n − n0

(.247± .034), and similar results hold for the other scenarios.
Across the scenarios, when not controlled per gamma, ∆̄ is negative or

trivially positive (see “ALL” in Table 4). However, for low level of homophily
the margin of error is reduced, even if for abysmal quantities (0.25% is .0025
of the error, less than 1%). These very small values lead to conclude that
the impact of the snowball component of HPSDD is very little, too. At the
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Table 3 Standardized bivariate regressions on the absolute error in each scenario.

Scenarios

Regressor Concept I II III IV

ŷ0 Stage 0 0.373±.01 0.379±.01 0.237±.011 0.230±.011
γ Homophily 0.207±.01 0.211±.01 0.146±.011 0.137±.011
w Familism -0.112±.01 -0.108±.01 -0.090±.011 -0.093±.011
r Attrition -0.093±.01 -0.085±.01 -0.045±.011 -0.045±.011
〈k〉 Ego-nets size 0.082±.01 0.086±.01 0.051±.011 0.045±.011
y Target Quota 0.053±.01 0.065±.01 0.054±.011 0.075±.011
N Pop. Size 0.030±.011 0.035±.011 0.014±.011 0.016±.011

Values in the columns are the coefficients of | y − ŷscenario | ∼ Regressor, plus the
standard error of the coefficients for each scenario. These are computed on the Monte
Carlo sample of the simulation, made of 8, 000 runs. Mathematically, these values
will fall very close to the values of linear correlation coefficients in those cases where
intercepts are 0 by design. All the coefficients are associated to p-value very close to 0.

Table 4 Average improvement in the margin of
error in scenarios

Scenarios

Homophily I II III IV

Low 0.25% 0.25% 0.76% 0.75%
Mid-Low -0.37% -0.36% 0.5% 0.44%
Mid-High -0.87% -0.8% -0.3% -0.17%
High -1.73% -1.73% -0.92% -0.92%
ALL -0.68% -0.66% 0.01% 0.03%

Values are ∆̄ · 100. Scenarios are crossed scenarios
with four quartiles of the distribution of γ across the
8, 000 runs of the simulation. A positive ∆ indicates
that switching to the HPSSD in that run would
decrease the absolute error in the estimate of y.

same time, the result that ∆̄ is higher for the III and IV scenarios (when y0

is computed on half of the golden sample) suggests a conclusion: for null or
low levels of homophily HPSSD is still a viable design to reduce the margin of
error if the research has financial hardship to reach a representative sample.
This could be the case for many small scientific projects that cannot fall into
the lens subject general national surveys.

Researchers should always primarily aim to reach representative sample
size with a randomised design, and only is that is not wholly possible, then
resort to augment it with a snowball component. HPSSD cannot be justified
by the unexpensive increase in sample size alone, because the ∆ of the absolute
errors is very sensitive to variability in the homophily parameter (see Fig. 7).
The Table 5 of ζ support this suggestion.
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Table 5 Relative frequency of
runs where gold standard has a
higher absolute error than HPSSD,
given the scenario.

Scenarios

Homophily I II III IV

Low .52 .52 .55 .55
Mid-Low .44 .44 .54 .54
Mid-High .38 .39 .45 .47
High .29 .31 .40 .40

4.1 De-biased HPSSD estimates

Estimation of y through the sample mean of HPSSD is biased, however when
homophily is lower and the bias is trivial, it holds a lesser margin of error than
the costwise random standard, because the random component of the error is
reduced through the increase in sample size (Table 6).

Table 6 Reduction of variance, and
estimate of bias, across the scenarios

Scenarios

I II III IV

ψ 0.28% 0.26% 0.31% 0.30%
ˆbias -.01 -.01 -.01 -.01

Removing the average bias −.01 from ȳ, for all levels of homophily HPSSD
performs better than its own random component C0 (Table 7)

Table 7 Relative frequency of runs
where gold standard has a higher
absolute error than de-biased
HPSSD, given the scenario.

Scenarios

Homophily I II III IV

Low .58 .56 .58 .58
Mid-Low .60 .60 .61 .62
Mid-High .60 .60 .59 .60
High .55 .55 .57 .56
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Even if the addition of .01 to the estimate does not equate with an exact
correction for the unbiased estimation10, now is less risky to adopt HPSSD
because ζ > .5 in the de-biased estimates (see Table 7))

However, without a solid prior knowledge for the levels of homophily in
the real population to sample, the proposed de-biasing correction would only
show that there is potential for true unbiased estimators of HPSSD that would
perform better than the costwise random alternatives.

5 Discussion

This study has been conducted having in mind specific heuristics of applied
Statistics. This would explain why b 1,000

(1−rv)c is been elicited as the representa-

tive sample size for CF, as if the practitioners have already an exact prior of the
attrition - that is often the case for rigorous population studies. Researchers
would know that a random sample of ∼ 1, 000 can infer binary features within
virtually any human population with a margin of error inferior to 3% and a
Confidence Level of 95%11.

Addition of .01 stochastically improves the performance of HPSSD for all
the tested levels of homophily in Table 7. Should this correction be regarded
as a heuristic to improve estimates in absence of an analytically validated
estimator? We suppose that our study only shows that there is potential for
analytical proposal for an unbiased HPSSD estimator, and more research is
needed before drawing conclusions on this subject.

There are two major issues in the analytical quest for a HPSSD: the first
is that even if homophily has a relevant role in the bias of HPSSD, the model
generating the population still has 6 primary hyperparameters (Table 2). It is
hard to validate an unbiased estimator through all the sources of variance of the
model. At the same time, results show that homophily must be treated before
the other parameters. In this sense, the lack of relevant differences between
scenarios with low and high dispersion of recruitments is helpful, because it
means that the unbiased estimator could be potentially agnostic in regards of
the distribution of recruited per respondent.

Vacca et al. (2019) and Audemard (2020) are noteworthy for linking the
inference in chained observations to inference in hierarchical data (Gelman
and Hill, 2007). Actually, the general problem in the research of a unbiased
estimator for snowball sampling is that at the current stage is very hard to
have a prior knowledge on the assortativity in the network and/or in the forests
(Fig. 1) within the sample space.

Analogous issues would impact the adoption of the adjusted Volz-
Heckathorn estimator (Volz and Heckathorn, 2008), that is the standard for

10Since the correction should account for the individual features that can be inferred on the
run under observation, and not only for a global statistic

11This would also explain why there was no need for networks with more than 35.000 nodes, as
the effect of N on ŷ and ∆ is abysmal (see Table 3).
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RDS:

ŷ = ȳ · k̄

(k̄ | y = 1)
(25)

with the difference that while in RDS k represents an estimate of the ego
network size of the respondent unit i, in HPSSD k is an observed value that
is drawn within the limited small portion of the ego network of i. Here the
limit is that in HPSSD, k does not depend entirely on i, because in real cases
j could refuse-by-default to be recruited by i; that is a corollary on the main
argument of Crawford et al (2018) on the modeling of preferential recruitment
as a separated sub-process within RDS.

We spouse the idea that link-tracing technology, even as something sepa-
rated from analytical inference, should be more adopted in population studies.
In facts, the idea that a snowball sample in t-stages can be represented through
a multilevel model stem from the fact that each unit belongs to a specific
Galton-Watson tree. Especially for data not showing overdispersion of k across
the trees, the difference between the variance of the attribute between the trees
and the variance of the attribute within the trees should be indicative of the
presence of homophily in the networks. More in general, the benefit of metadata
collection in sampling design has been historically underrated. For example,
Liu and Stainbeck (2013) found that gender and ethnicity of the interviewer is
significantly correlated with gender and ethnicity of the respondents in the US
General Social Survey. The assignment of interviewers is independent of the
features of the drawn statistical units (e.g. households, phone numbers, etc.).
Hence, excluding bad faith of the interviewers, this correlation can be possi-
ble only because the attrition of the potential respondents is influenced by the
characteristics of the interviewer. This is an example that shows how the prac-
tice of tracking who is the interviewer has a direct impact in expanding the
theory behind sampling designs for population studies.

This observation opens the discussion regarding two assumptions that
constitutes limitations in the models of this present study:

1. The assumption that α of the cliques and β of the blocks are mutually
independent implies that, in a human population, the propensity of the
target variable that is derived by facts happening outside the household is
uncorrelated with the characteristics that are shared within the household.
In reality, this assumption would not always hold. For example, it is possible
that poor families live in the same neighborhoods. Assuming that poverty
is a driver for smoking (Giordano and Lindström, 2011), the likelihood to
recruit a j-smoker from a i-poor would not only be influenced by j and i
living in the same neighborhood, but also by the likelihood that the j lives
in a household where someone else smokes, an occurrence more likely in
poor neighborhoods. The model does not assume influence effects outside
households, but this is a very open controversy in science (Aral et al, 2009;
Shalizi and Thomas, 2011).

2. The model has an assumption which considerably simplifies the compu-
tation: the network has not the necessity to represent those ties having
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a zero probability to be recruited. These connections are just not repre-
sented. In practice, it involves the choice of how to model the k parameter
in fastRG::sbm() (kβ in Section 3.1.1) that, summed to the size of the
clique of i, would determine ki. In this study, 〈k〉 is modeled to not exceed
25 (see Table 2). This range is modeled following the study in human
social networks of Robin Dunbar (1998), according to whom the number
of very strong social ties is limited in humans and it varies between 5
and 25. This ego network represents family members (the clique) or close
friends (the other edges). Dunbar’s theory is paradigmatic in social networks
and has been validated multiple times under different research frameworks
(Gonçalves et al, 2011; West et al, 2020; Dunbar et al, 2015). However, it
has also been disproved under both empirical (McCarty et al, 2005) and
methodological (Lindenfors et al, 2021) arguments, too. The simplification
that helps computation regards the fact that the mi recruited among the
ji-nodes in the ego-network of i are drawn with a uniform probability. We
do not think that this holds exactly, but that it holds stochastically, in the
sense that, for example, within the specific ego-network of close peers, some
people could be slightly more prone to recruit members of the family, oth-
ers could be slightly more prone to recruit colleagues or friends, etc. So we
assumed that overall the distribution of the probabilities should be uniform
to represent equal levels of social proximity between i and each ji. This
assumption is paradigmatic across the literature on RDS, even if Crawford
et al. (2018) suggests that given the shortage of empirical validation, this
could not be the case, at least on a theoretical level. Indeed, alternative
models would involve a relation between e i - e j and Pr.(i ↔ j), but it
would incur into expensive computations, as mentioned for Eq. 4. In this
sense technical developments for speeding up the computation are strongly
suggested.

There is a third argument worth of discussion that could be seen both as
a limitation and a strength of the results, that is the principle encapsulated
in Eq. 15: the snowball component is not expected to be much larger than
the random component. In practice, even if snowball branching process should
converge to a finite size, we expected much more variability in the relation
between the quotas of random and snowball component of HPSSD. In the
documented case of Etter and Perneger (2000) they are actually more or less of
the same size, even if attrition was higher than zero, but this was reached under
a peculiar design not implemented in HPSSD. To our knowledge, the premises
of HPSSD such that the random component of the sampling should be semi-
representative of the populations are not met in previous empirical studies. In
absence of further evidences on the expected ratio between components, we
believe that our choice has been conservative.
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