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Abstract
In this paper, we propose a two-stage stochastic optimization model for the provi-
sion services in a multi-tiered network, consisting in user or devices on the ground 
requiring services to controller UAVs in flight. The requested services are executed 
by a fleet of pre-existing and additional UAVs. The possible occurrence of disaster 
scenarios and the related uncertainty and severity could cause an unexpected and 
sudden increase in demand. Hence, the aim of the proposed model is to optimize 
the management of the pre-existing and additional resources in order to maximize 
the total profit of service providers and, simultaneously, minimize the expected loss 
related to a possible unmet demand. A variational approach is proposed, and some 
numerical examples are performed to validate the effectiveness of our model.

Keywords Unmanned aerial vehicles · Disaster management · Stochastic 
optimization · Variational inequality

1 Introduction

The 5G technology (fifth-generation technology), whose worldwide distribution 
started in 2019, aims to achieve greater efficiency and versatility in the support 
of network applications (see [1]). Through the optimization of the use of network 
resources (see [2]), the definition of virtual subnets, the virtualization of most of 
the network devices (see [3]), the ability to manage a greater number of devices 
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per unit of surface area, the support of more advanced features in terms of latency 
to ensure real-time response times, higher data rates and a significant reduction in 
power consumption, 5G networks are used primarily as general internet service pro-
viders, competing with existing ISPs providing networked services, and enable new 
applications in the Internet of Things, IoT (see [4]), and machine-to-machine areas. 
In less than a year, 81 operators in 42 countries have launched commercial 5G ser-
vices and 386 operators in 97 countries have invested in the new networks. The 5G 
technologies and their features are currently used in all possible fields of application, 
from retail to education, transportation to entertainment, smart homes to healthcare, 
agricultural sector to supply chain management (see [5–8]).

Parallel to the advent and growth of 5G networks around the world, COVID-19 
pandemic rapidly spread around the world affecting almost all countries and 179 
million people, including 3 million deaths (see [9]) and raising enormous health, 
economic and social challenges (see [10, 11]). The strong containment measures, the 
nation-wide lockdowns and the social distancing norms, have resulted in increased 
Internet traffic demands (see [12]) and in the use of digital technologies in the daily 
lives. Work, education and all human activities have been profoundly changed by the 
advent of the pandemic and, for instance, educational institutions shift to distance 
learning to guarantee the education at all levels (see [13]). The need to move all 
normal activities into a secure and virtual environment is an evidence of the digital 
acceleration process. In this contest, 5G technologies and their ability to manage a 
greater number of heterogeneous users or devices and digital traffic can play a vital 
role to address the wide spectrum of challenges due to COVID-19. (see [14]).

In general, when a disaster occurs, it is plausible to assume that the physical con-
nections that guarantee certain types of services are compromised (for example in 
the event of an earthquake, landslide, tsunami). In such cases, it is necessary that 
these types of services are restored quickly or introduced for the first time and the 
introduction of a 5G network could be the only way to have the provision of ser-
vices in the event of serious disruptions at ground level, especially if these services 
are requested by emergency services. The restoration of such services requires that 
service providers be able to cover the sudden and increasing demand from users or 
devices on some areas of the ground and this could be challenging and expensive 
especially if the service providers are totally unprepared for this event. For these 
reasons, to help the providers to supply the requested services in disasters scenarios, 
the Unmanned Aerial Vehicles (UAVs) can be very useful (if not even necessary) to 
monitor hard-to-reach areas and also provide services in rural or energy-deprived 
areas (see [15] for a survey collecting much earlier work in the intersection of UAVs 
and communications). The UAVs, such as drones, can be connected to each other 
and form a real network capable of receiving requests, such as automotive applica-
tions, data sharing, wearable health sensors, video calling, smart -traffic control sys-
tems, Video Monitoring or video surveillance (see [16] for an extended 5G network 
slice for video monitoring with a FANET), managing them and executing them 
through the computer elements they have above (see [17–20] for optimization mod-
els for 5G network with UAVs).
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Many authors, in their works, are dealt with the use of UAVs in managing a 
disaster (see [21] for an interesting review of the state-of-the-art optimization 
approaches in the civil application of drone operations and drone-truck combined 
operations including construction/infrastructure, agriculture, transportation/logis-
tics, security/disaster management, entertainment/media, etc.). In [22], authors 
deal with the problem of locating trapped people and routing aid to them after a 
disaster event. To address the issues associated with the probable failures in the 
transportation and telecommunications networks, which are often rendered unusa-
ble by the disaster at hand, the authors propose two-echelon vehicle routing frame-
works for performing these operations using aerial uncrewed autonomous vehicles 
(UAVs or drones). Specifically, they present two decision frameworks, in which 
the resulting optimization problem is formulated as a two-echelon vehicle routing 
problem. The first framework addresses the problem in two stages: providing tele-
communications capabilities in the first stage and satisfying the resulting demands 
in the second. The second framework, on the other hand, addresses the problem as 
a stochastic emergency aid delivery problem, which uses a two- stage robust opti-
mization model to handle demand uncertainty. Zhao et al. in [23], propose a uni-
fied framework of UAV-assisted emergency network in disasters. Particularly, first 
the trajectory and scheduling of UAV are jointly optimized to provide wireless 
service to ground devices with surviving BSs and, then, the transceiver design of 
UAV and establishment of multi-hop ground device-to-device (D2D) communica-
tion are studied to extend the wireless coverage of UAV.

Moreover, another aspect of fundamental importance, especially in a disaster situa-
tion, is represented by the possibility of adding resources to those already present (see 
[24]). Such additional resources could be, for instance, new UAVs put into flight and 
added to the network or they also may consist of increasing the capabilities of pre-
existing UAVs. The additional resources make it possible to satisfy a greater quantity of 
requests (which during disastrous events, as already mentioned above, generally tend to 
increase or move to zones).

In this paper we propose a two-stage stochastic optimization model, where the first 
stage is the deterministic stage while the second one depends on the disaster scenario 
that may occur. Both the preparation stage and the response stage are important in 
managing a disaster. Particularly, the consideration of uncertainty of possible disaster 
scenarios and their severity, with the appropriate management of additional resources, 
could guarantee service providers greater efficiency in their response to a disaster 
advent.

The paper is organized as follows. In Sect. 2, we present the mathematical network 
model and derive a two-stage stochastic constrained optimization model whose solu-
tions are obtained through the variational formulation, presented in Sect. 3. Through 
the Lagrange theory, in Sect.  4, we get an equivalent variational formulation to the 
one obtained that we will use in the resolution of some numerical examples, contained 
in Sect. 5, together with a discussion of the results. Finally, Sect. 6 is devoted to the 
conclusions.
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2  The Mathematical Model

The two-stage stochastic optimization model consists of G users or devices on the 
ground, with a typical one denoted by g; K types of services, with a generic one 
denoted by k; U controller UAVs in flight, with a generic one denoted by u; F̂1 pre-
existing UAVs, with a generic one denoted by f̂  and F̃2 additional UAVs, with a 
typical one denoted by f̃  . We consider the following sets:

that are, respectively, the set of pre-existing UAVs, the set of possible additional 
UAVs and the set of all the UAVs, where |F| = F3 = F̂1 + F̃2.

Services requested by a user or device on the ground are received by the control-
ler UAVs, which are spatially distributed in the considered geographical area, and 
each controller UAV sends the requests for execution of the services to the fleet of 
UAVs at the higher level which performs the executions. Moreover, we consider the 
possibility to add additional drones to the fleet of UAVs and additional capacities to 
controller UAVs.

The supply chain network, consisting of a fleet of UAVs, controller UAVs and 
users or devices on the ground, is depicted in Fig. 1.

As mentioned in the Introduction, when a disaster scenario occurs, there may be 
the need to restore or introduce some services to cope with a possible growth in 
request. The total unpreparedness of the service providers could make this process 
expensive, difficult and time-consuming. For these reasons, in this paper, we pro-
vide a two-stage stochastic optimization model where the first stage represents the 
pre-crisis phase and the second one represents the critical phase. In the first stage 
that represents the preparedness phase, a service provider has to solve a determin-
istic optimization problem. In the second stage, a service provider considers several 

F̂1 = {1̂,… , f̂ ,… , F̂1},

F̃2 = {1̃,… , f̃ ,… , F̃2},

F3 = F̂1 ∪ F̃2,

Fig. 1  Network Topology
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scenarios with different probabilities to better face a probable subsequent critical 
phase, trying to maximize its total profit (defined by the difference between the rev-
enue and the sum of costs and penalties). Hence, the actions that a service provider 
takes in Stage 2, as soon as the disaster has occurred, depend on the possible sce-
nario and the realization of probabilistic parameters.

Let us consider Ω the set of all possible disastrous scenarios and � ∈ Ω a typical 
disaster scenario.

As previously mentioned, in this model we provide a system stochastic optimiza-
tion perspective, determining a profit maximization problem for service providers.

The variables and parameters for the model both in Stages 1 and 2 are reported in 
Tables 1 and 2, respectively.

The cost functions, both in the first and in the second stage, are now described. 
Let:

Table 1  Variables for the model

Notation Variables

x1
guk

the quantity of service k requested by user or device g on the ground to the controller UAV 
u in Stage 1. We group these quantities, for all services, into the vector X1,1

gu
 and in turn, for 

all g and for all u, we group the quantities into the vector X1,1.
x1
uf̂ k

the quantity of service k requests sent by the controller UAV u to the pre-existing UAV 
f̂ ∈ F̂1 belonging to the upper tier fleet in Stage 1. We group these quantities, for all k, into 
the vector X2,1

uf̂
 and, in turn, we group these quantities, for all u, into the vector X2,1

f̂
 . Finally, 

we group the last vectors, for all f̂  , into the vector X2,1.
x1
uf̃ k

the quantity of service k requests sent by the controller UAV u to the additional UAV f̃ ∈ F̃2 
which the provider can decide to activate in Stage 1. We group these quantities, for all k, 
into the vector X3,1

uf̃
 and, in turn, we group these quantities, for all u, into the vector X3,1

f̃
 . 

Finally, we group the last vectors, for all f̃  , into the vector X3,1.
�1
u

the additional capacity which can be added to controller UAV u in Stage 1. We group these 
quantities into the vector Γ1.

x2�
guk

the quantity of service k requested by user or device g on the ground to the controller UAV u 
in Stage 2 when scenario � ∈ Ω occurs. We group these quantities, for all services k, into 
the vector X1,2�

gu
 and in turn, for all g and for all u, we group the quantities into the vector 

X1,2� . Finally, we group for all scenarios � ∈ Ω into the vector X1,2.
x2𝜔
uf̂ k

the quantity of service k requests sent by the controller UAV u to the pre-existing UAV 
f̂ ∈ F̂1 belonging to the upper tier fleet in Stage 2 when scenario � ∈ Ω occurs. We group 
these quantities, for all k, into the vector X2,2𝜔

uf̂
 and, in turn, we group these quantities, 

for all u, into the vector X2,2𝜔

f̂
 . We group the last vectors, for all f̂  , into the vector X2,2� . 

Finally, we group for all scenarios � ∈ Ω into the vector X2,2.
x2𝜔
uf̃ k

the quantity of service k requests sent by the controller UAV u to the additional UAV f̃ ∈ F̃2 
which the provider can decide to activate in Stage 2 when scenario � ∈ Ω occurs. We 
group these quantities, for all k into the vector X3,2𝜔

uf̃
 and, in turn, we group these quantities, 

for all u, into the vector X3,2𝜔

f̃
 . We group the last vectors, for all f̃  , into the vector X3,2� and, 

finally, we group for all scenario � ∈ Ω into the vector X3,2.
�2�
u

the additional capacity which can be added to controller UAV u in Stage 2 under scenario 
� ∈ Ω . We group these quantities, for all u into the vector Γ2� and for all scenario � ∈ Ω 
into the vector Γ2.

�1 the vector (X1,1,X2,1,X3,1,Γ1).
�2 the vector (X1,2,X2,2,X3,2,Γ2).
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• c1
gu be the transmission cost of the service requests from user or device g to 

controller UAV u in Stage 1 and let us assume c1
gu

 is a function of 
K∑
k=1

x1
guk

 : 

• c2�
gu  the transmission cost of the service requests from user or device g to con-

troller UAV u in Stage 2 under scenario � ∈ Ω and let us assume c2�
gu

 is a func-

tion of 
K∑
k=1

x2�
guk

 : 

• c1
uf

 be the transmission cost of the service requests from controller UAV u to 
any UAV f ∈ F3 in the upper tier fleet (that could be represented by a pre-

c1
gu

= c1
gu

(
K∑
k=1

x1
guk

)
= c1

gu
(X1

gu
), ∀g = 1,… ,G, ∀u = 1,… ,U;

c2�
gu

= c2�
gu

(
K∑
k=1

x2�
guk

)
= c2�

gu
(X2�

gu
), ∀g = 1,… ,G, ∀u = 1,… ,U, ∀� ∈ Ω;

Table 2  Parameters for the model

Notation Parameters

p� the probability of disaster scenario � in Stage 2, � ∈ Ω.
R1

gk
the demand for service (application service or network service) k from the user or device g on 

the ground, in Stage 1.
R2�
gk

the demand for service (application service or network service) k from the user or device g on 
the ground, in Stage 2 under scenario � , ∀� ∈ Ω.

Su the maximum capacity related to the controller UAV u, that is the maximum number of 
service requests that the controller UAV u is able to manage, ∀u = 1,… ,U in both first and 
second stage.

sk the execution space requested to perform service k in both first and second stage, 
∀k = 1,… ,K.

Sf the maximum capacity related to the UAV f, ∀f ∈ F3 , that is the maximum execution space 
that the (pre-existing or additional) UAV f can bear in both first and second stage.

�
1

u
the maximum additional capacity which can be added to controller UAV u, ∀u = 1,… ,U , in 

Stage 1.

�
2�

u
the maximum additional capacity which can be added to controller UAV u, ∀u = 1,… ,U , in 

Stage 2 under scenario � , ∀� ∈ Ω.
�1
k

the revenue obtained for a unit of service k executed in Stage 1, ∀k = 1,… ,K.

�2�
k

the revenue obtained for a unit of service k executed in Stage 2 under scenario � , 
∀k = 1,… ,K , ∀� ∈ Ω;

B
1 the maximum available budget for additional UAVs at the highest level of the network and 

additional capacities at the controller UAVs in Stage 1.

B
2� the maximum available budget for additional UAVs at the highest level of the network and 

additional capacities at the controller UAVs in Stage 2 under scenario � ∈ Ω.
�k the unit penalty encumbered by service providers on the unmet demand of service k, 

k = 1,… ,K.
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existing UAV f̂ ∈ F̂1 or an additional UAV f̃ ∈ F̃2 ) in Stage 1 and let us 

assume c1
uf

 is a function of 
K∑
k=1

x1
ufk

 : 

 that is c1
uf̂
= c1

uf̂
(X

2,1

uf̂
), ∀u = 1,… ,U, ∀f̂ ∈ F̂1 and 

c1
uf̃
= c1

uf̃
(X

3,1

uf̃
), ∀u = 1,… ,U, ∀f̃ ∈ F̃2;

• c2�
uf

 be the transmission cost of the service requests from controller UAV u to 
any UAV f ∈ F3 in the upper tier fleet (that could be represented by a pre-
existing UAV f̂ ∈ F̂1 or an additional UAV f̃ ∈ F̃2 ) in Stage 2 under scenario 

� ∈ Ω and let us assume c2�
uf

 is a function of 
K∑
k=1

x2�
ufk

 : 

 that is c2𝜔
uf̂

= c2𝜔
uf̂
(X

2,2𝜔

uf̂
), ∀u = 1,… ,U, ∀f̂ ∈ F̂1 and c2𝜔

uf̃
= c2𝜔

uf̃
(X

3,2𝜔

uf̃
) , 

∀u = 1,… ,U, ∀f̃ ∈ F̃2;
• c

(E),1

f
 be the execution cost of requested services to the UAV f ∈ F3 in Stage 1 

and let us assume c(E),1
f

 is a function of the total amount of executed services, 
U∑
u=1

K∑
k=1

x1
ufk

 : 

 that is c(E),1
f̂

(
X
2,1

f̂

)
, c

(E),1

f̃

(
X
3,1

f̃

)
∀f ∈ F3, ∀f̂ ∈ F̂1, ∀f̃ ∈ F̃2;

• c
(E),2�

f
 be the execution cost of requested services to the UAV f ∈ F3 in Stage 

2 under scenario � ∈ Ω and let us assume c(E),2�
f

 is a function of the total 

amount of executed services, 
U∑
u=1

K∑
k=1

x2�
ufk

 : 

 that is c(E),2𝜔
f̂

(
X
2,2𝜔

f̂

)
, c

(E),2𝜔

f̃

(
X
3,2𝜔

f̃

)
,  ∀f ∈ F3, ∀f̂ ∈ F̂1, ∀f̃ ∈ F̃2, ∀𝜔 ∈ Ω;

• c1
u be the cost due to add capacity to controller UAV u, ∀u = 1,… ,U in Stage 

1 and let us assume c1
u
 is a function of the additional capacity �1

u
 , that is: 

c1
uf
= c1

uf

(
K∑
k=1

x1
ufk

)
, ∀u = 1,… ,U, ∀f ∈ F3,

c2�
uf

= c2�
uf

(
K∑
k=1

x2�
ufk

)
, ∀u = 1,… ,U, ∀f ∈ F3 ∀� ∈ Ω,

c
(E),1

f
= c

(E),1

f

(
U∑
u=1

K∑
k=1

x1
ufk

)
,

c
(E),2�

f
= c

(E),2�

f

(
U∑
u=1

K∑
k=1

x2�
ufk

)
,

c1
u
= c1

u
(�1

u
), ∀u = 1,… ,U;
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• c2�
u  be the cost due to add capacity to controller UAV u, ∀u = 1,… ,U in Stage 2 

when scenario � occurs, ∀� ∈ Ω and let us assume c2�
u

 is a function of the addi-
tional capacity in Stage 2 under scenario � , �2�

u
 , that is: 

• c1
f̃
 be the cost due to add a new UAV f̃ ∈ F̃2 at the highest level of the network in 

Stage 1 and let us assume c1
f̃
 is a function of the flow of requests received: 

 Note that, in this framework, we will suppose that there are not fixed costs to 
reserving the use of UAVs or they can be considered negligible. Therefore, in the 
event that no service request is sent to the UAV f̃  , we obtain that this function is 
null ( c1

f̃
(0) = 0).

• c2𝜔
f̃

 be the cost due to add a new UAV f̃ ∈ F̃2 at the highest level of the network 
in Stage 2 under scenario � ∈ Ω and let us assume c2𝜔

f̃
 is a function of the flow of 

requests received: 

 As in Stage 1, we will assume that these functions are determined such that they 
are null in the event that no service request is sent to the UAV f̃  ( c2𝜔

f̃
(0) = 0).

In this paper the limited flight duration due to the consumption of batteries, that is 
the limitation that distinguishes UAVs, is also taken into account since we integrated 
it in the execution cost of requested services and in the maximum capacity of each 
UAV. Moreover, since we consider the cost of handling requests, at the level of con-
troller UAVs, negligible and we assume to be constant the cost to keep the UAVs u 
in flight, we do not include them in our model, but extension to a more general case 
is easy. We analyze the system from the point of view of the network and service 
provider. Therefore, the presented model aims at determining the optimal distribu-
tions of services requests flows from users and devices on the ground to the control-
ler UAVs, the optimal distributions of services requests flows from the controller 
UAVs to the (pre-existing and additional) UAVs belonging to the fleet at the highest 
level of the network, but also the possible additional capacities to put in each con-
troller UAV.

The objective function to maximize consists of the profit of both the two stages 
and is given by the total revenue, to which all transmission and execution costs are 
subtracted, as well as the costs for additional UAVs and to increase the capacities 
of the controller UAVs are subtracted. Also the expected value of the profit in the 
second stage is added.

A service provider is faced with the following two-stage stochastic optimization 
model, in which it seeks to maximize the total expected profit:

c2�
u

= c2�
u
(�1

u
), ∀u = 1,… ,U, ∀� ∈ Ω;

c1
f̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)
= c1

f̃

(
X
3,1

f̃

)
, ∀f̃ ∈ F̃2.

c2𝜔
f̃

(
U∑
u=1

K∑
k=1

x2𝜔
uf̃ k

)
= c2𝜔

f̃

(
X
3,2𝜔

f̃

)
, ∀f̃ ∈ F̃2, ∀𝜔 ∈ Ω.
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subject to:

Constraint (2) represents a conservation law in Stage 1 and establishes that the 
quantity of service k requested by user or device g on the ground to all controller 
UAVs cannot be less than the demand R1

gk
 , in Stage 1 (this allows us not only to 

meet the demand for Stage 1, but also to prepare for Stage 2).
Constraint (3) establishes that the quantity of service requests that the control-

ler UAV u can receive in Stage 1 does not exceed its maximum capacity. Observe 
that constraint (2) must be verified, therefore, the total capacity of controller 
UAVs are such as to satisfy the demand of Stage 1 for services from all users and 
devices.

Constraint (4) states that, in Stage 1, the quantity of service k requests sent by 
the controller UAV u to all the pre-existing and additional UAVs is less than or 

(1)

Max

�
U�
u=1

�
f∈F3

K�
k=1

𝜌1
k
x1
ufk

−

G�
g=1

U�
u=1

c1
gu

�
K�
k=1

x1
guk

�
−

U�
u=1

�
f∈F3

c1
uf

�
K�
k=1

x1
ufk

�

−
�
f∈F3

c
(E),1

f

�
U�
u=1

K�
k=1

x1
ufk

�
−

�
f̃∈F̃2

c1
f̃

�
U�
u=1

K�
k=1

x1
uf̃ k

�
−

U�
u=1

c1
u
(𝛾1

u
) + �Ω[P

2(𝜒2,𝜔)]

⎫
⎪⎬⎪⎭

(2)
U∑
u=1

x1
guk

≥R1

gk
∀g = 1,… ,G, ∀k = 1,… ,K,

(3)
K∑
k=1

G∑
g=1

x1
guk

≤ Su+�
1

u
∀u = 1,… ,U,

(4)
∑
f̂∈F̂1

x1
uf̂ k

+
∑
f̃∈F̃2

x1
uf̃ k

≤

G∑
g=1

x1
guk

∀u = 1,… ,U, ∀k = 1,… ,K,

(5)
U∑
u=1

K∑
k=1

skx
1

ufk
≤ Sf ∀f ∈ F3,

(6)
∑
f̃∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)
+

U∑
u=1

c1
u
(𝛾1

u
) ≤ B

1

,

(7)�1
u
≤ �

1

u
, ∀u = 1,… ,U,

(8)x1
guk

, x1
uf̂ k

, x1
uf̃ k

, 𝛾1
u
∈ ℝ+,∀g, ∀u, ∀f̂ , ∀f̃ ∈ F̃2, ∀f , ∀k.
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equal to the quantity of service k requested by all users or devices on the ground 
to the controller UAV u.

Constraint (5) is a capacity constraint and it establishes that the requests of ser-
vices that each pre-existing and additional UAV f, ∀f ∈ F3 , can receive in Stage 1 
must not exceed the maximum allowed.

Constraint (6) is a budget constraint ([18, 25]) and it states that, in Stage 1, 
there is a budget limit, B

1 , which represents the maximum available budget for 
adding new UAVs at the highest level of the network and additional capacities to 
the controller UAVs.

Constraint (7) states that, in Stage 1, it is possible to add a limited additional 
capacity to each controller UAV.

Finally, constraints (8) are non-negative constraints in Stage 1.
The last term of the objective function (1) represents the expected value of the 

profit of service provider in the second stage. Assuming a discrete probability 
distribution, the expected profit of service provider in the second stage can be 
written as follows:

namely the weighted sum of the profits in each disaster scenario in Stage 2, 
P2(X1,2,X2,2,X3,2,Γ2,�) , where the weights are the probabilities p� that the scenario 
� occurs, for each � ∈ Ω . This profit depends, in addition to the stochastic param-
eters and variables previously introduced, also on the unmet demand of services 
requested on the ground, for which the service provider is forced to pay a penalty 
cost, i.e., 

The profit in Stage 2, in turn, is determined as the solution to the following 
second stage stochastic maximization problem:

(9)�Ω[P
2(X1,2,X2,2,X3,2,Γ2,�)] =

∑
�∈Ω

p�[P
2(X1,2,X2,2,X3,2,Γ2,�)],

(10)
G∑
g=1

R2�
gk

−

(
U∑
u=1

∑
f∈F3

x2�
ufk

+

U∑
u=1

∑
f∈F3

x1
ufk

−

G∑
g=1

R1

gk

)
.

(11)

Max

{
U∑
u=1

∑
f∈F3

K∑
k=1

𝜌2𝜔
k
x2𝜔
ufk

−

G∑
g=1

U∑
u=1

c2𝜔
gu

(
K∑
k=1

x2𝜔
guk

)
−

U∑
u=1

∑
f∈F3

c2𝜔
uf

(
K∑
k=1

x2𝜔
ufk

)

−
∑
f∈F3

c
(E),2𝜔

f

(
U∑
u=1

K∑
k=1

x2𝜔
ufk

)
−

∑
f̃∈F̃2

c2𝜔
f̃

(
U∑
u=1

K∑
k=1

x2𝜔
uf̃ k

)
−

U∑
u=1

c2𝜔
u
(𝛾2𝜔

u
)

−

K∑
k=1

𝛽k

[
G∑
g=1

R2𝜔
gk

−

(
U∑
u=1

∑
f∈F3

x2𝜔
ufk

+

U∑
u=1

∑
f∈F3

x1
ufk

−

G∑
g=1

R1

gk

)]}
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subject to constraints:

Constraint (12) ensures that the quantity of service k requested by user or 
device g on the ground to all controller UAVs in Stage 2 under scenario � does 
not exceed the demand R2�

gk
 minus the amount of services executed and not pro-

vided at Stage 1, that is the quantity of services prepared at Stage 1 to supply at 
Stage 2. Constraints (13)-(18) have the same meaning as the constraints (3)-(8), 
defined for the first stage, except for the budget constraint (16) which is more 
complete than the equivalent constraint (6) because it includes the costs for addi-
tional UAVs and additional capacities of both Stages 1 and 2 and, hence, the sum 
of budgets ( B

1 and B
2� ). Therefore, it is also possible to use part of the unspent 

budget in Stage 1, during the disastrous event in Stage 2. However, the parame-
ters introduced in Stage 2 differ from the equivalent ones defined in Stage 1, 

(12)
U∑
u=1

x2�
guk

≤R2�
gk
−

[
U∑
u=1

x1
guk

− R1

gk

]
, ∀g, ∀k, ∀� ∈ Ω,

(13)
K∑
k=1

G∑
g=1

x2�
guk

≤ Su+�
2�
u
, ∀u ∀� ∈ Ω,

(14)
∑
f̂∈F̂1

x2𝜔
uf̂ k

+
∑
f̃∈F̃2

x2𝜔
uf̃ k

≤

G∑
g=1

x2𝜔
guk

, ∀u ∀k ∀𝜔 ∈ Ω,

(15)
U∑
u=1

K∑
k=1

skx
2�
ufk

≤ Sf , ∀f ∈ F3, ∀� ∈ Ω,

(16)

∑
f̃∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)
+

U∑
u=1

c1
u
(𝛾1

u
)

+
∑
f̃∈F̃2

c2𝜔
f̃

(
U∑
u=1

K∑
k=1

x2𝜔
uf̃ k

)
+

U∑
u=1

c2𝜔
u
(𝛾2𝜔

u
) ≤ B

1

+B
2𝜔
, ∀𝜔,

(17)�2�
u

≤ �
2�

u
, ∀u = 1,… ,U, ∀� ∈ Ω,

(18)x2𝜔
guk

, x2𝜔
uf̂ k

, x2𝜔
uf̃ k

, 𝛾2𝜔
u

∈ ℝ+,∀g, ∀u, ∀f̂ , ∀f̃ ∈ F̃2, ∀f , ∀k, ∀𝜔.
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because they are affected by the information about the severity of the disaster 
event.

Following [26, 27] and the standard stochastic programming theory (see [28, 
29]), the first- and second-stage problems can be solved together through a unique 
maximization problem, that is:

subject to constraints (2)-(8) and (12)-(18).

3  Variational Formulation

In this section, we derive a variational inequality formulation ([30]) of the stochas-
tic maximization problem described in the previous section. We assume that all the 
involved cost functions are continuously differentiable and convex. We have the fol-
lowing result.

Theorem  1 A vector �∗ ∈ � is a solution to the stochastic maximization prob-
lem (19);(2)-(8);(12)-(18) if and only if it satisfies the variational inequality: Find 
�∗ = (�1∗,�2∗) ∈ � such that:

(19)

Max

{
U∑
u=1

∑
f∈F3

K∑
k=1

𝜌1
k
x1
ufk

−

G∑
g=1

U∑
u=1

c1
gu

(
K∑
k=1

x1
guk

)
−

U∑
u=1

∑
f∈F3

c1
uf

(
K∑
k=1

x1
ufk

)

−
∑
f∈F3

c
(E),1

f

(
U∑
u=1

K∑
k=1

x1
ufk

)
−

∑
f̃∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)
−

U∑
u=1

c1
u
(𝛾1

u
)

+
∑
𝜔∈Ω

p𝜔

[
U∑
u=1

∑
f∈F3

K∑
k=1

𝜌2𝜔
k
x2𝜔
ufk

−

G∑
g=1

U∑
u=1

c2𝜔
gu

(
K∑
k=1

x2𝜔
guk

)
−

U∑
u=1

∑
f∈F3

c2𝜔
uf

(
K∑
k=1

x2𝜔
ufk

)

−
∑
f∈F3

c
(E),2𝜔

f

(
U∑
u=1

K∑
k=1

x2𝜔
ufk

)
−

∑
f̃∈F̃2

c2𝜔
f̃

(
U∑
u=1

K∑
k=1

x2𝜔
uf̃ k

)
−

U∑
u=

c2𝜔
u
(𝛾2𝜔

u
)

−

K∑
k=1

𝛽k

(
G∑
g=1

R2𝜔
gk

−

(
U∑
u=1

∑
f∈F3

x2𝜔
ufk

+

U∑
u=1

∑
f∈F3

x1
ufk

−

G∑
g=1

R1

gk

))]}
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where

is the feasible set of the problem.

The previous theorem allows us to utilize the well-known variational inequal-
ity theory to obtain the optimal solutions of the problem (see [30]).

We can put variational inequality (20) into standard form, that is: find a vector 
X∗ ∈ K such that:

G�
g=1

U�
u=1

K�
k=1

�
𝜕c1

gu
(X1,1∗

gu
)

𝜕x1
guk

�
× (x1

guk
− x1∗

guk
)

+

U�
u=1

�
f̂∈F̂1

K�
k=1

⎡⎢⎢⎢⎣

𝜕c1
uf̂
(X

2,1∗

uf̂
)

𝜕x1
uf̂ k

+

𝜕c
(E),1

f̂

�
X
2,1∗

f̂

�

𝜕x1
uf̂ k

− 𝜌1
k
− 𝛽k

⎤⎥⎥⎥⎦
× (x1

uf̂ k
− x1∗

uf̂ k
)

+

U�
u=1

�
f̃∈F̃2

K�
k=1

⎡⎢⎢⎢⎣

𝜕c1
uf̃
(X

3,1∗

uf̃
)

𝜕x1
uf̃ k

+

𝜕c
(E),1

f̃

�
X
3,1∗

f̃

�

𝜕x1
uf̃ k

+

𝜕c1
f̃
(X

3,1∗

f̃
)

𝜕x1
uf̃ k

− 𝜌1
k
− 𝛽k

⎤⎥⎥⎥⎦
× (x1

uf̃ k
− x1∗

uf̃ k
)

+

U�
u=1

�
𝜕c1

u
(𝛾1∗

u
)

𝜕𝛾1
u

�
× (𝛾1

u
− 𝛾1∗

u
)

+
�
𝜔∈Ω

p𝜔

G�
g=1

U�
u=1

K�
k=1

�
𝜕c2𝜔

gu
(X1,2𝜔∗

gu
)

𝜕x2𝜔
guk

�
× (x2𝜔

guk
− x2𝜔∗

guk
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
f̂∈F̂1

K�
k=1

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̂
(X

2,2𝜔∗

uf̂
)

𝜕x2𝜔
uf̂ k

+

𝜕c
(E),2𝜔

f̂

�
X
2,2𝜔∗

f̂

�

𝜕x2𝜔
uf̂ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎥⎦
× (x2𝜔

uf̂ k
− x2𝜔∗

uf̂ k
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
f̃∈F̃2

K�
k=1

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̃
(X

3,2𝜔∗

uf̃
)

𝜕x2𝜔
uf̃ k

+

𝜕c
(E),2𝜔

f̃

�
X
3,2𝜔∗

f̃

�

𝜕x2𝜔
uf̃ k

+

𝜕c2𝜔
f̃
(X

3,2𝜔∗

f̃
)

𝜕x2𝜔
uf̃ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎦
× (x2𝜔

uf̃ k
− x2𝜔∗

uf̃ k
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
𝜕c2𝜔

u
(𝛾2𝜔∗

u
)

𝜕𝛾2𝜔
u

�
× (𝛾2𝜔

u
− 𝛾2𝜔∗

u
) ≥ 0,

(20)∀� = (�1,�2) ∈ �,

(21)
𝕂 ∶=

{
� = (�1,�2) ∈ ℝ

U(1+|Ω|)[(G+F3)K+1]

+ such that: (2) − (8) and (12) − (18) hold

}
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where K is a closed, convex set. In this regard, we set X = � , F(X) = (Fi(X))i=1,…,8 
and K ≡ � , where:

We note that, under the imposed assumptions for cost functions, F(X) is a con-
tinuous function. Moreover, the feasible set, K , is compact. Hence, from the clas-
sical theory of variational inequalities (see [31]), a solution to variational ine-
quality (20) or, equivalently to variational inequality (22), is guaranteed to exist. 

(22)⟨F(X∗),X − X∗⟩ ≥ 0, ∀X ∈ K,

F1

guk
(X) ≡

[
�c1

gu
(X1,1

gu
)

�x1
guk

]
, ∀g, u, k,

F2

uf̂ k
(X) ≡

⎡
⎢⎢⎢⎣

𝜕c1
uf̂
(X

2,1

uf̂
)

𝜕x1
uf̂ k

+

𝜕c
1,(E)

f̂

�
X
2,1

f̂

�

𝜕x1
uf̂ k

− 𝜌1
k
− 𝛽k

⎤
⎥⎥⎥⎦
, ∀u, f̂ , k,

F3

uf̃ k
≡

⎡
⎢⎢⎢⎣

𝜕c1
uf̃
(X

3,1

uf̃
)

𝜕x1
uf̃ k

+

𝜕c
(E),1

f̃

�
X
3,1

f̃

�

𝜕x1
uf̃ k

+

𝜕c1
f̃
(X

3,1

f̃
)

𝜕x1
uf̃ k

− 𝜌1
k
− 𝛽k

⎤
⎥⎥⎥⎦
, ∀uf̃ , k,

F4

u
≡

[
�c1

u
(�1

u
)

��1
u

]
, ∀u,

F
5,�

guk
≡ p�

[
�c2�

gu
(X1,2�

gu
)

�x2�
guk

]
, ∀g, u, k,�

F
6,𝜔

uf̂ k
≡ p𝜔

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̂
(X

2,2𝜔

uf̂
)

𝜕x2𝜔
uf̂ k

+

𝜕c
(E),2𝜔

f̂

�
X
2,2𝜔

f̂

�

𝜕x2𝜔
uf̂ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎥⎦
, ∀u, f̂ , k,𝜔,

F
7,𝜔

uf̃ k
≡ p𝜔

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̃
(X

3,2𝜔

uf̃
)

𝜕x2𝜔
uf̃ k

+

𝜕c
(E),2𝜔

f̃

�
X
3,2𝜔

f̃

�

𝜕x2𝜔
uf̃ k

+

𝜕c2𝜔
f̃
(X

3,2𝜔

f̃
)

𝜕x2𝜔
uf̃ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎥⎦
, ∀u, f̃ , k,𝜔,

(23)F8,�
u

≡ p�

[
�c2�

u
(�2�

u
)

��1
u

]
, ∀u,�.
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Moreover, a uniqueness result is ensured since the strictly monotonicity of func-
tion F(X) is guaranteed by the following:

Theorem 2 Let all the involved time and cost functions strictly convex in their vari-
ables. Then, the vector function F(X), defined by (23), is strictly monotone, i.e.,

Proof Let X1 = (X
1,1

1
,X

2,1

1
,X

3,1

1
,Γ1

1
,X

1,2

1
,X

2,2

1
,X

3,2

1
,Γ2

1
) ∈ K and X2 = (X

1,1

2
,X

2,1

2
, 

X
3,1

2
,Γ1

2
,X

1,2

2
,X

2,2

2
,X

3,2

2
,Γ2

2
) ∈ K be two admissible vectors such that X1 ≠ X2 . We 

evaluate the quantity:

Since all the involved cost functions are strictly convex, each of the eight terms 
in (24) are strictly greater than 0, if X1 ≠ X2 . Hence, F(X) is a strictly monotone 
function.

4  Lagrange Theory and Alternative Variational Inequality 
Formulation

In this section, we investigate the Lagrange theory associated with variational 
inequality (20) (see, for instance, [32–36] for an application of the Lagrange 
theory to various network models). Particularly, due to the non-linearity budget 
constraints (6) and (16), we relax such constraints into the objective function by 
associating to them the Lagrange multipliers. We also derive an alternative vari-
ational inequality to the one in (20) that we will use in the next section, devoted 
to numerical examples.

Let �1 ∈ ℝ+ be the Lagrange multiplier associated with budget constraint (6). 
Likewise, let �2� ∈ ℝ+ be the Lagrange multipliers associated with budget con-
straints (16), for each scenario � ∈ Ω . Let �2 = (�2�)�∈Ω ∈ ℝ

|Ω|
+ .

We set:

and we define:

⟨F(X) − F(Y),X − Y⟩ ≥ 0, ∀X,Y ∈ K, X ≠ Y .

(24)⟨F(X1) − F(X2),X1 − X2⟩ =
8�
i=1

Fi(X)(Xi
1
− Xi

2
).

(25)a1(X) =
∑
f̃∈F̃2

c1
f̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)
+

U∑
u=1

c1
u
(𝛾1

u
) − B

1

,

(26)
b2𝜔(X) =

�
f̃∈F̃2

c1
f̃

�
U�
u=1

K�
k=1

x1
uf̃ k

�
+

U�
u=1

c1
u
(𝛾1

u
) +

�
f̃∈F̃2

c2𝜔
f̃

�
U�
u=1

K�
k=1

x2𝜔
uf̃ k

�

+
∑U

u=1
c2𝜔
u
(𝛾2𝜔

u
) − B

1

− B
2𝜔
, ∀𝜔,
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Let us consider the Lagrange function:

Variational inequality (20) is equivalent to the following problem

This equivalence is justified because we have

We recall that all the involved functions are convex and continuously differen-
tiable. Moreover, since K is convex and the Slater condition is satisfied, if X∗ is a 

V(X) =

G�
g=1

U�
u=1

K�
k=1

�
𝜕c1

gu
(X1,1∗

gu
)

𝜕x1
guk

�
× (x1

guk
− x1∗

guk
)

+

U�
u=1

�
f̂∈F̂1

K�
k=1

⎡⎢⎢⎢⎣

𝜕c1
uf̂
(X

2,1∗

uf̂
)

𝜕x1
uf̂ k

+

𝜕c
(E),1

f̂

�
X
2,1∗

f̂

�

𝜕x1
uf̂ k

− 𝜌1
k
− 𝛽k

⎤⎥⎥⎥⎦
× (x1

uf̂ k
− x1∗

uf̂ k
)

+

U�
u=1

�
f̃∈F̃2

K�
k=1

⎡⎢⎢⎢⎣

𝜕c1
uf̃
(X

3,1∗

uf̃
)

𝜕x1
uf̃ k

+

𝜕c
(E),1

f̃

�
X
3,1∗

f̃

�

𝜕x1
uf̃ k

+

𝜕c1
f̃
(X

3,1∗

f̃
)

𝜕x1
uf̃ k

− 𝜌1
k
− 𝛽k

⎤⎥⎥⎥⎦
× (x1

uf̃ k
− x1∗

uf̃ k
)

+

U�
u=1

�
𝜕c1

u
(𝛾1∗

u
)

𝜕𝛾1
u

�
× (𝛾1

u
− 𝛾1∗

u
)

+
�
𝜔∈Ω

p𝜔

G�
g=1

U�
u=1

K�
k=1

�
𝜕c2𝜔

gu
(X1,2𝜔∗

gu
)

𝜕x2𝜔
guk

�
× (x2𝜔

guk
− x2𝜔∗

guk
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
f̂∈F̂1

K�
k=1

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̂
(X

2,2𝜔∗

uf̂
)

𝜕x2𝜔
uf̂ k

+

𝜕c
(E),2𝜔

f̂

�
X
2,2𝜔∗

f̂

�

𝜕x2𝜔
uf̂ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎥⎦
× (x2𝜔

uf̂ k
− x2𝜔∗

uf̂ k
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
f̃∈F̃2

K�
k=1

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̃
(X

3,2𝜔∗

uf̃
)

𝜕x2𝜔
uf̃ k

+

𝜕c
(E),2𝜔

f̃

�
X
3,2𝜔∗

f̃

�

𝜕x2𝜔
uf̃ k

+

𝜕c2𝜔
f̃
(X

3,2𝜔∗

f̃
)

𝜕x2𝜔
uf̃ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎦
× (x2𝜔

uf̃ k
− x2𝜔∗

uf̃ k
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
𝜕c2𝜔

u
(𝛾2𝜔∗

u
)

𝜕𝛾2𝜔
u

�
× (𝛾2𝜔

u
− 𝛾2𝜔∗

u
).

(27)

L(X, �1, �2) = V(X) + a1(X)�1 +
∑
�∈Ω

b2�(X)�2�, ∀X ∈ K, ∀�1 ∈ ℝ+, ∀�
2� ∈ ℝ+.

(28)min
X∈K

V(X) = 0.

V(X) ≥ 0 in K and min
X∈K

V(X) = V(X∗) = 0.
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minimal solution to problem (28), there exist �1∗ ∈ ℝ+ and �2∗ ∈ ℝ
|Ω|
+  , such that 

the vector (X∗, �1∗, �2∗) is a saddle point of the Lagrange function (27):

and

The right-hand side of (29) ensures that X∗ is a minimal point of the function 
L(X, �1∗, �2∗) . Hence, for all u, f̃ , k and for all � ∈ Ω , we have:

together with conditions (30).
Equations (31)-(34) and conditions (30) allow us to provide an alternative vari-

ational inequality formulation to the one in (20).

Theorem 3 Variational inequality (20) is equivalent to the following one: Determine 
(X∗, �1∗, �2∗) ∈ � such that

(29)L(X∗, �1, �2) ≤ L(X∗, �1∗, �2∗) ≤ L(X, �1∗, �2∗)

(30)
a1(X∗)�1∗ = 0;

b2�(X∗)�2�∗ = 0, ∀� ∈ Ω.

(31)

𝜕L(X∗, 𝜆1∗, 𝜆2∗)

𝜕x1
uf̃ k

=

⎡
⎢⎢⎢⎣

𝜕c1
uf̃
(X

3,1∗

uf̃
)

𝜕x1
uf̃ k

+

𝜕c
(E),1

f̃

�
X
3,1∗

f̃

�

𝜕x1
uf̃ k

+

𝜕c1
f̃
(X

3,1∗

f̃
)

𝜕x1
uf̃ k

−𝜌1
k
− 𝛽k+(𝜆

1∗ +
�
𝜔∈Ω

𝜆2𝜔∗)

𝜕c1
f̃
(X3,1∗)

𝜕x1
uf̃ k

�
= 0,

(32)
�L(X∗, �1∗, �2∗)

��1
u

=

[
�c1

u
(�1∗

u
)

��1
u

+(�1∗ +
∑
�∈Ω

�2�∗)
�c1

u
(�1∗

u
)

��1
u

]
= 0,

(33)

𝜕L(X∗, 𝜆1∗, 𝜆2∗)

𝜕x2𝜔
uf̃ k

=

⎡
⎢⎢⎢⎣

𝜕c2𝜔
uf̃
(X

3,2𝜔∗

uf̃
)

𝜕x2𝜔
uf̃ k

+

𝜕c
(E),2𝜔

f̃

�
X
3,2𝜔∗

f̃

�

𝜕x2𝜔
uf̃ k

+

𝜕c2𝜔
f̃
(X

3,2𝜔∗

f̃
)

𝜕x2𝜔
uf̃ k

−𝜌2𝜔
k

− 𝛽k+𝜆
2𝜔∗

𝜕c2𝜔
f̃
(X

3,2𝜔∗

f̃
)

𝜕x2𝜔
uf̃ k

⎤⎥⎥⎦
= 0,

(34)
�L(X∗, �1∗, �2∗)

��2�
u

=

[
�c2�

u
(�2�∗

u
)

��2�
u

+�2�∗
�c2�

u
(�2�∗

u
)

��2�
u

]
,
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G�
g=1

U�
u=1

K�
k=1

�
𝜕c1

gu
(X1,1∗

gu
)

𝜕x1
guk

�
× (x1

guk
− x1∗

guk
)

+

U�
u=1

�
f̂∈F̂1

K�
k=1

⎡⎢⎢⎢⎣

𝜕c1
uf̂
(X

2,1∗

uf̂
)

𝜕x1
uf̂ k

+

𝜕c
(E),1

f̂

�
X
2,1∗

f̂

�

𝜕x1
uf̂ k

− 𝜌1
k
− 𝛽k

⎤⎥⎥⎥⎦
× (x1

uf̂ k
− x1∗

uf̂ k
)

+

U�
u=1

�
f̃∈F̃2

K�
k=1

⎡⎢⎢⎢⎣

𝜕c1
uf̃
(X

3,1∗

uf̃
)

𝜕x1
uf̃ k

+

𝜕c
(E),1

f̃

�
X
3,1∗

f̃

�

𝜕x1
uf̃ k

+

𝜕c1
f̃
(X

3,1∗

f̃
)

𝜕x1
uf̃ k

− 𝜌1
k
− 𝛽k+

(𝜆1∗ +
�
𝜔∈Ω

𝜆2𝜔∗)

𝜕c1
f̃
(X3,1∗)

𝜕x1
uf̃ k

�
× (x1

uf̃ k
− x1∗

uf̃ k
)

+

U�
u=1

�
(1 + 𝜆1∗ +

�
𝜔∈Ω

𝜆2𝜔∗)
𝜕c1

u
(𝛾1∗

u
)

𝜕𝛾1
u

�
× (𝛾1

u
− 𝛾1∗

u
)

+
�
𝜔∈Ω

p𝜔

G�
g=1

U�
u=1

K�
k=1

�
𝜕c2𝜔

gu
(X1,2𝜔∗

gu
)

𝜕x2𝜔
guk

�
× (x2𝜔

guk
− x2𝜔∗

guk
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
f̂∈F̂1

K�
k=1

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̂
(X

2,2𝜔∗

uf̂
)

𝜕x2𝜔
uf̂ k

+

𝜕c
(E),2𝜔

f̂

�
X
2,2𝜔∗

f̂

�

𝜕x2𝜔
uf̂ k

− 𝜌2𝜔
k

− 𝛽k

⎤⎥⎥⎥⎦
× (x2𝜔

uf̂ k
− x2𝜔∗

uf̂ k
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
f̃∈F̃2

K�
k=1

⎡⎢⎢⎢⎣

𝜕c2𝜔
uf̃
(X

3,2𝜔∗

uf̃
)

𝜕x2𝜔
uf̃ k

+

𝜕c
(E),2𝜔

f̃

�
X
3,2𝜔∗

f̃

�

𝜕x2𝜔
uf̃ k

+

𝜕c2𝜔
f̃
(X

3,2𝜔∗

f̃
)

𝜕x2𝜔
uf̃ k

− 𝜌2𝜔
k

− 𝛽k

+𝜆2𝜔∗
𝜕c2𝜔

f̃
(X

3,2𝜔∗

f̃
)

𝜕x2𝜔
uf̃ k

⎤⎥⎥⎦
× (x2𝜔

uf̃ k
− x2𝜔∗

uf̃ k
)

+
�
𝜔∈Ω

p𝜔

U�
u=1

�
𝜕c2𝜔

u
(𝛾2𝜔∗

u
)

𝜕𝛾2𝜔
u

+𝜆2𝜔∗
𝜕c2𝜔

u
(𝛾2𝜔∗

u
)

𝜕𝛾2𝜔
u

�
× (𝛾2𝜔

u
− 𝛾2𝜔∗

u
)

+

⎡
⎢⎢⎣
B
1

−
�
f̃∈F̃2

c1
f̃

�
U�
u=1

K�
k=1

x1
uf̃ k

�
−

U�
u=1

c1
u
(𝛾1

u
)

⎤⎥⎥⎦
× (𝜆1 − 𝜆1∗)

+
�
𝜔∈Ω

⎡⎢⎢⎣
B
1

+B
2𝜔

−
�
f̃∈F̃2

c1
f̃

�
U�
u=1

K�
k=1

x1
uf̃ k

�
−

U�
u=1

c1
u
(𝛾1

u
) −

�
f̃∈F̃2

c2𝜔
f̃

�
U�
u=1

K�
k=1

x2𝜔
uf̃ k

�

−

U�
u=1

c2𝜔
u
(𝛾2𝜔

u
)

�
× (𝜆2𝜔 − 𝜆2𝜔∗) ≥ 0
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where

5  Numerical Examples

In this section, we provide some numerical examples to illustrate some key aspects 
of the model.

5.1  Network Topology and Data

As depicted in Fig. 2, we consider three users and devices on the ground ( G = 3 ) 
requiring a 5G service ( K = 1 ), two controller UAVs ( U = 2 ) which receive the ser-
vice requests (from users and devices) and send them to the two UAVs belonging to 
the fleet at the highest level of the network ( ̂F1 = 2 ) where services are performed. 
We also analyze the possibility to add the capacity at each controller UAV and to 
add a new UAV to the fleet ( ̃F2 = 1).

Moreover, in these examples we assume that 2 different scenarios (see [37] and 
[27]), �1 = 1 and �2 = 2 , can occur with different probabilities:

Case 1: p1 = 0.8 and p2 = 0.2;
Case 2: p1 = 0.2 and p2 = 0.8;
Case 3: p1 = 1.0 and p2 = 0.0.

(35)∀(X, �1, �2) ∈ �
2,

𝕂
2 ∶=

{
(X, �1, �2) ∈ ℝ

U(1+|Ω|)[(G+F3)K+1] ∶ (2) − (5);(7)

− (8);(12) − (15);(17) − (18) hold

}
.

Fig. 2  Network Topology for 
the Numerical Examples
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Note that in Case 1 it is estimated that the first scenario has a higher probability of 
occurrence than the second scenario; vice versa in Case 2. Finally, in Case 3 it is 
estimated that only the first scenario can occur (indeed the probability that the sec-
ond scenario occurs is zero).

We suppose the following general expressions for the cost functions, for all 
g, u, f̂ , f̃ :

Observe that, as mentioned above, no constant term appears in these functions. 
Therefore, if there is no flow in a link of the network (from a user or device on 
the ground to a controller UAV or from a controller UAV to a UAV in the upper 
tier fleet), the cost of transmission in that link is zero. Similarly, if a UAV does 
not execute any service, the execution cost for that UAV is zero. The same for the 
cost needed for additional UAVs and capacities.

For the numerical setting, we consider the coefficients for the cost functions 
involved in the formulation as in Table  3. Moreover, we select the parameters as 
follows:

c1
gu

= agu

(
K∑
k=1

x1
guk

)2

+ bgu

(
K∑
k=1

x1
guk

)
, c2�

gu
= agu

(
K∑
k=1

x2�
guk

)2

+ bgu

(
K∑
k=1

x2�
guk

)
;

c1
uf
= duf

(
K∑
k=1

x1
ufk

)2

+ euf

(
K∑
k=1

x1
ufk

)
, c2�

uf
= duf

(
K∑
k=1

x2�
ufk

)2

+ euf

(
K∑
k=1

x2�
ufk

)
;

c
1(E)

f
= gf

(
U∑
u=1

K∑
k=1

x1
ufk

)2

+ hf

(
U∑
u=1

K∑
k=1

x1
ufk

)
,

c
2�(E)

f
= gf

(
U∑
u=1

K∑
k=1

x2�
ufk

)2

+ hf

(
U∑
u=1

K∑
k=1

x2�
ufk

)
;

c1
f̃
= if̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)2

+ jf̃

(
U∑
u=1

K∑
k=1

x1
uf̃ k

)
,

c2𝜔
f̃

= if̃

(
U∑
u=1

K∑
k=1

x2𝜔
uf̃ k

)2

+ jf̃

(
U∑
u=1

K∑
k=1

x2𝜔
uf̃ k

)
;

c1
u
= ku(�

1

u
)2 + lu�

1

u
, c2�

u
= ku(�

2�
u
)2 + lu�

2�
u
.

𝛽1 = 50; 𝜌1 = 100, 𝜌2 = 100; s1 = 1; S1̂ = S2̂ = 4, S1̃ = 7;
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We have made the choice of this data assuming that the second user or device 
on the ground ( g = 2 ) is in a central position and is closest to both the control-
ler UAVs, indeed, the coefficients of its transmission cost functions ( agu and bgu ) 
are the smallest: a21 = b21 = a22 = b22 = 1 . The first user or device on the ground 
( g = 1 ) is closer to the first controller UAV, and it is the furthest away from the sec-
ond one ( a11 = b11 = 3, a12 = b12 = 4 ). On the contrary, the third user or device 
( g = 3 ) is closer to the controller UAV u = 2 than to the controller UAV u = 1 
( a31 = 4, b31 = 3, a32 = b32 = 2 ). In a similar way, we are assuming that the sec-
ond UAV belonging to the fleet, f̂ = 2̂ is geographically positioned in such a way 
that it is central and, hence, it is the closest one to both the controller UAVs, indeed, 
the coefficients of its transmission cost functions ( duf  and euf  ) are the smallest: 
d12̂ = e12̂ = d22̂ = e22̂ = 1 . The first UAV belonging to the fleet, f̂ = 1̂ , is closer to 
the first controller UAV than to the second ( d11̂ = e11̂ = 2, d21̂ = e21̂ = 3 ). Moreo-
ver, we assume that the additional UAV f̃ = 1̃ can be positioned to be equally distant 
from both the controller UAVs ( d11̃ = e11̃ = d21̃ = e21̃ = 2 ). In this way we have rep-
resented the different geographical scenarios that can arise, and it is easy to under-
stand how to represent and extend further real cases.

Since all the coefficients, gf  and hf , ∀f ∈ F3 , are the same, in these numerical 
examples we are assuming that all the UAVs have the same unit execution cost but it 
is clear that this does not constitute a limit since it is sufficient to replace these coef-
ficients with more appropriate ones.

S1 = S2 = 4; �
1

1
= �

1

2
= �

2�

1
= �

2�

2
= 4;

R1

11
= R1

21
= R1

31
= 2; R21

11
= 6, R21

21
= 10, R21

31
= 0; R22

11
= 3, R22

21
= 4, R22

31
= 3.

Table 3  Coefficients for the cost functions involved in the mathematical formulation

Description Numerical data

agu and bgu : Coefficients of the transmission cost of services from 
user g to the controller UAV u both in the first and second stage 
under scenario � ( c1

gu
 , c2�

gu
)

a11 = 3 , a12 = 4 , a21 = 1 , a22 = 1 , 
a31 = 4 , a32 = 2 , b11 = 3 , 
b12 = 4 , b21 = 1 , b22 = 1 , 
b31 = 3 , b32 = 2

duf  and euf  : Coefficients of the transmission cost of the service 
requests from controller UAV u to any UAV f ∈ F3 both in the 
first and second stage under scenario � , ( c1

uf
 , c2�

uf
)

d11̂ = 2 , d11̂ = 2 , d11̃ = 2 , d21̂ = 3 , 
d22̂ = 1 , d21̃ = 2 , e11̂ = 2 , 
e11̂ = 2 , e11̃ = 2 , e21̂ = 3 , 
e22̂ = 1 , e21̃ = 2

gf  and hf  : Coefficients of the execution cost of requested services to 
the UAV f ∈ F3 both in the first and second stage under scenario 
� , ( c(E),1

f
 , c(E),2�

f
)

g1̂ = g2̂ = g1̃ = 1 = h1̂ = h2̂ = h1̃

if̃  and jf̃  : Coefficients of the cost due to add a new UAV f̃ ∈ F̃  at 
the highest level of the network both in the first and second stage 
under scenario � ( c1

f̃
 , c2𝜔

f̃
)

i1̃ = 5 = j1̃

ku and lu : Coefficients of the cost due to add additional capacity 
to the controller UAV u, both in the first and second stage under 
scenario � ( c1

u
 , c2�

u
)

k1 = 1 , k2 = 2 , l1 = 1 , l2 = 1
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Furthermore, all the costs, included the costs due to insert additional UAVs into 
the network and adding capacity to the controller UAVs are the same for both stages 
but we are assuming adding capacity to the second controller UAV is slightly more 
expensive (because k2 = 2 while k1 = 1).

Regarding the capacity limits, we suppose a difference only on the maximum 
execution capacity of the additional UAV, S1̃ = 7 , that is greater than the maximum 
execution capacities of the pre-existing ones ( S1̂ = S2̂ = 4 ). Observe that the total 
demand in Stage 1, when no disastrous event occurs, is equal to 6; while in Stage 2, 
that is when a disastrous event occurs, in both scenarios �1 and �2 , the total demand 
G∑
g=1

U∑
u=1

R2�
gu

 is greater than that of the first stage. Particularly, in the first scenario 

there is a total demand equal to 16, while in the second scenario it is equal to 10. 
Therefore, Scenario 1 is more severe than Scenario 2. Moreover, we are assuming 
that in Scenario 1 the increase in demand is not constant, but actually decreases in 
one user or device and increases consistently in another user or device. On the other 
hand, in Scenario 2, the increase in demand is fairly uniform for all users and devices 
on the ground. Such data are in keeping with reality as disaster scenarios can be of 
different types: some have a zeroing of requests in one area and simultaneously an 
increase in other areas while other scenarios have a uniform increase in all areas.

We suppose two different situations: in the Situation 1 we assume that the maxi-
mum available budgets (for additional UAVs at the highest level of the network and 
the additional capacities at the controller UAVs) are the same for each stage and for 
each scenario (that is B

1

= B
21

= B
22

= 200 ); instead, in Situation 2 we assume dif-
ferent maximum available budgets. Particularly, we presume that the budget for the 
first stage (when no disaster event occurs) is less than the available budgets for both 
the scenarios, �1 and �2 , of the second stage and that the budget available for �1 , the 
most serious scenario, is greater than that for �2 ( B

1

= 50,B
21

= 200,B
22

= 120).

5.2  Optimal Solutions

For each of the 6 numerical examples (three cases and two situations), in Tables 4, 5 
and 6 are reported the values of the optimal solutions for Stage 1, Stage 2 - Scenario 
1 and Stage 2 - Scenario 2, respectively. We obtain these optimal solutions by solv-
ing the Variational Inequality (35) and are computed through the Euler Method (see 
[38] for a detailed description) using the MATLAB program on an HP laptop with 
an AMD compute cores 2C+3G processor, 8 GB RAM.

The main optimal solutions are also reported in Fig. 3, in which we have indi-
cated the use (or not) of the additional UAV, graphing the sum of the optimal varia-

bles relating to the flows toward the additional UAV ( 
U∑
u=1

xuf̃ k ) in Fig.  3a and the 

optimal variables relating to the additional capacities of each controller UAV ( �u ) in 
Fig. 3b.
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5.3  Analysis of the Results

We highlight that in Stage 1 of the first situation, Case 1 (second column of Table 4), 
7 more services are performed (6 was the total demand requested and 13 was the 
one executed) which are provided at Stage 2. To execute such services, both the 
additional capacities and additional UAVs are used at the first stage, while, addi-
tional capacity of only one controller UAV is used at the first scenario of Stage 2 
(whose severity is greater), and no additional UAVs and additional capacities are 
used at Stage 2, Scenario 2.

When the maximum budget for additional UAVs and additional capacities is tight 
(Situation 2) we get a different optimal solution where no additional UAVs and addi-
tional capacities are used in Stage 1; while they are used (for all the UAVs) in Sce-
nario 1 of Stage 2 (see Table 5 and Fig. 3).

We also emphasize that, unlike Case 1 (Situation 1), in Case 2, since the prob-
ability of occurrence of the most serious disaster scenario is lower (0.2 rather than 
0.8), in Stage 1 no additional UAVs and capacities are used while additional UAVs 
are used in both scenarios of Stage 2 and the additional capacities of both the con-
troller UAVs in the first scenario of Stage 2 are used.

Moreover, in Scenario 2 of Case 2, it is convenient to use the additional UAVs 
in Situation 1 (in which we have the necessary budget), instead, in Situation 2 we 

Table 4  Optimal solutions: Stage 1

Situation 1: Situation 2:

B
1

= B
21

= B
22

= 200 B
1

= 50,B
21

= 200,B
22

= 120

Case 1: Case 2: Case 3: Case 1: Case 2: Case 3:

Variables p1 = 0.8 p1 = 0.2 p1 = 1 p1 = 0.8 p1 = 0.2 p1 = 1

p2 = 0.2 p2 = 0.8 p2 = 0 p2 = 0.2 p2 = 0.8 p2 = 0

x1
111

2.74 1.49 2.70 1.41 1.54 1.37

x1
121

2.26 0.76 2.30 0.59 0.87 0.63

x1
211

3.30 1.94 3.31 2.05 1.87 2.07

x1
221

2.70 1.80 2.69 1.95 1.71 1.93

x1
311

0.75 0.57 0.77 0.54 0.58 0.56

x1
321

1.25 1.43 1.23 1.46 1.42 1.44

x1
11̂1

2.45 2.25 2.45 2.34 2.23 2.34

x1
12̂1

1.90 1.75 1.89 1.66 1.77 1.66

x1
21̂1

1.55 1.75 1.55 1.66 1.77 1.66

x1
22̂1

2.10 2.25 2.11 2.34 2.23 2.34

x1
11̃1

2.44 0.00 2.44 0.00 0.00 0.00

x1
21̃1

2.56 0.00 2.56 0.00 0.00 0.00

�1
1

2.80 0.00 2.78 0.00 0.00 0.00

�1
2

2.20 0.00 2.22 0.00 0.00 0.00
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cannot use the additional UAVs because the available budget is not enough to add 
new UAVs (see columns 3 and 6 of Table 6).

Case 3 is very similar to Case 1, but the second scenario cannot happen (as 
p2 = 0 ), therefore, all optimal solutions related to the second scenario are null.

Finally, we observe that, unlike Cases 1 and 3 of Situation 1, in the other cases 
and situations, in the first stage fewer more services are performed (only 2 more ser-
vices); this is explained because either there are not enough budgets (Situation 2) or 
the disastrous scenario, in which the demand is lower, is more likely to occur (Case 
2).

5.3.1  Additional Discussion On the Results

From the analysis of the obtained optimal solutions, it is possible to deduce some 
key findings that we will summarize here.

The results reveal that the management of both the preparation and the response 
phases has a significant impact when a disaster scenario occurs. In this paper we 
firstly analyzed the effects that scenarios of different severity could cause. Particu-
larly, we assume that the severity of each scenario is represented by an unexpected 
and sudden increase in demand which can be more or less intense. Therefore, we 
supposed that in both the considered disaster scenarios the service requests increase, 

Table 5  Optimal solutions: Stage 2 - Scenario 1

Situation 1: Situation 2:

B
1

= B
21

= B
22

= 200 B
1

= 50,B
21

= 200,B
22

= 120

Case 1: Case 2: Case 3: Case 1: Case 2: Case 3:

Variables p1 = 0.8 p1 = 0.2 p1 = 1 p1 = 0.8 p1 = 0.2 p1 = 1

p2 = 0.2 p2 = 0.8 p2 = 0 p2 = 0.2 p2 = 0.8 p2 = 0

x21
111

2.00 3.37 2.07 3.68 3.29 3.68

x21
121

1.00 2.38 0.93 2.32 2.29 2.32

x21
211

3.00 4.35 2.93 4.32 4.42 4.32

x21
221

3.00 3.91 3.07 3.68 4.00 3.68

x21
311

0.00 0.00 0.00 0.00 0.00 0.00

x21
321

0.00 0.00 0.00 0.00 0.00 0.00

x21
11̂1

2.51 2.55 2.52 4.00 2.55 4.00

x21
12̂1

1.98 2.11 1.97 3.67 2.11 3.56

x21
21̂1

1.49 1.45 1.48 0.00 1.45 0.00

x21
22̂1

2.02 1.89 2.03 0.33 1.89 0.44

x21
11̃1

0.51 3.06 0.51 0.33 3.06 0.44

x21
21̃1

0.49 2.94 0.49 5.67 2.94 5.56

�21
1

1.00 3.71 1.00 4.00 3.71 4.00

�21
2

0.00 2.29 0.00 2.00 2.29 2.00
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and that the first scenario is more severe, since the total quantity of requests in � = 1 
increases dramatically, especially is some areas (while in other areas the demand 
is zeroed), meanwhile, in the second scenario, requests for services increase fairly 
equally for all areas. So, even if with only two scenarios, we represented the most 
common types of demand changes.

Table 6  Optimal solutions: Stage 2 - Scenario 2

Situation 1: Situation 2:

B
1

= B
21

= B
22

= 200 B
1

= 50,B
21

= 200,B
22

= 120

Case 1: Case 2: Case 3: Case 1: Case 2: Case 3:

Variables p1 = 0.8 p1 = 0.2 p1 = 1 p1 = 0.8 p1 = 0.2 p1 = 1

p2 = 0.2 p2 = 0.8 p2 = 0 p2 = 0.2 p2 = 0.8 p2 = 0

x22
111

0.00 1.61 0.00 1.76 1.55 0.00

x22
121

0.00 1.13 0.00 1.24 1.04 0.00

x22
211

0.00 1.37 0.00 1.24 1.45 0.00

x22
221

0.00 0.88 0.00 0.76 0.96 0.00

x22
311

1.09 1.01 0.00 1.00 1.00 0.00

x22
321

1.91 1.99 0.00 2.00 2.00 0.00

x22
11̂1

0.48 0.00 0.00 2.25 2.20 0.00

x22
12̂1

0.61 0.53 0.00 1.75 1.80 0.00

x22
21̂1

0.33 0.00 0.00 1.75 1.80 0.00

x22
22̂1

1.58 0.47 0.00 2.25 2.20 0.00

x22
11̃1

0.00 3.47 0.00 0.00 0.00 0.00

x22
21̃1

0.00 3.53 0.00 0.00 0.00 0.00

�22
1

0.00 0.00 0.00 0.00 0.00 0.00

�22
2

0.00 0.00 0.00 0.00 0.00 0.00

(a) (b)

Fig. 3  Main optimal solutions
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We also underline that each of these scenarios can occur with different probabili-
ties. Therefore, in our numerical examples we have analyzed three different cases, 
in which such occurrence probabilities vary. Particularly, in Case 1 we supposed 
that the more severe scenario has a higher occurrence probability than the other sce-
nario; on the contrary, in Case 2 we assumed that the scenario with higher prob-
ability is the softer one. Finally, in Case 3 we analyzed the situation in which only a 
scenario can occur.

The main aim of the model proposed in this paper is to optimize the manage-
ment of the pre-existing and additional resources. Therefore, in our illustrative 
examples we investigated the behavior of the service provider (that seeks to maxi-
mize his total profit and to minimize the expected loss related to a possible unmet 
demand), paying particular attention to the possibility that he has to use or not 
additional resources. More specifically, we analyzed the obtained optimal results, 
observing if it is convenient, for the service provider, to use additional resources 
that means to put into flight new UAVs and, hence, to add them to the network 
and/or to further increase the capabilities of pre-existing controller UAVs (at the 
first and/or second stage), making possible to satisfy a greater number of requests.

Another fundamental aspect, especially in a disaster situation, not to be under-
estimated, is represented not only by the costs needed to add such resources, 
namely the costs due to add new UAVs at the highest level of the network and 
the costs due to add capacity to the controller UAVs, but also by the maximum 
available budget for additional resources: there exists a budget constraint which 
states that the overall cost for additional UAVs at the highest level of the network 
and additional capacities at the controller UAVs must not exceed the budget limit, 
B
1 or B

2� (in the first or second stage, respectively). Therefore, in our illustrative 
numerical experimentation we also analyzed some managerial insights obtained 
by not only the aforementioned cases but also by two different situations in which 
the maximum budget limits ( B

1 and B
2� ) vary.

Therefore, from the overall analysis of the examples, cases and situations that 
we have examined, and of the optimal solutions we found and reported above, we 
can deduce some key aspects that can provide support in managerial decisions.

We observed that during the preparation phase (Stage 1), that is when no disas-
trous scenario has yet occurred, it may be convenient to use additional resources 
or not. Indeed, in the case in which the scenario with the highest probability is 
the least serious one (Case 2), it is not necessary to use the additional resources 
and, hence, there is no cost to add UAVs or further capacities. On the contrary, 
it is more convenient to use both the additional UAVs and the additional capaci-
ties, when the most serious scenario (the one with the highest total demands) has 
a high probability of occurrence (cases 1 and 3), in order to satisfy the greatest 
number of requests.

It is important to point out that, as mentioned above, the budget limit assumes a 
fundamental role, in fact it should be noted that when the available budget is limited, 
the additional resources cannot be used (see Situation 2, Stage 1). Similarly, when 
the second scenario � = 2 is the one with higher probability (Case 2), if the budget 
is enough, it is convenient to use additional UAVs. Indeed in Situation 1 ( B

22

= 200 ) 
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they are used, while in Situation 2 ( B
22

= 120 ) they are not used. Therefore, it is 
clear that our model can also be used for simulations on the budgets by the service 
providers to estimate and establish if increasing the budget is suitable or not.

Further considerations can be expressed by comparing the results of the different 
stages and cases. When the most serious scenario has a high probability of occur-
rence (cases 1 and 3) and when the budget is enough, we have already observed that 
both the additional types of resources are used in Stage 1. In this situation, in stage 
2, under scenario 1 it is convenient to use the additional UAVs, but to add capac-
ity to just one of the controller UAVs while under scenario 2 it is not necessary to 
use additional resources (because the provider has fewer requests). If, instead, we 
are in Situation 2, where the budget was not sufficient (and therefore no additional 
resources were used in Stage 1), we obtain that in Stage 2, under Scenario 1 (the 
most serious), it is convenient to use all the additional resources, as is also if the less 
serious scenario is more likely (Case 2). Therefore, it is easy to guess that the pro-
posed model is also useful for investigating the consequences of scenarios and their 
probability of occurrence, in the different stages, with a particular reference to the 
suitable use of additional resources.

6  Conclusions

In this paper, we proposed a two-stage stochastic optimization model describing 
the provision of services in case of a disaster scenarios. The uncertainty of a such 
events, their severity and the unpreparedness of service providers could make chal-
lenging, expensive and time consuming the provision of services in case of disaster. 
Hence, to mitigate the consequences of a disaster advent, it is of fundamental impor-
tance to provide mathematical models that can allow service providers to make pre-
dictions on possible disastrous scenarios and act in such a way as to minimize the 
loss associated with a possible unsatisfied demand. This challenges led us to the 
two-stage optimization model described in this paper, which aims to maximize the 
profits associated with the provision of 5G services and, simultaneously, minimize 
the expected loss associated with a sudden growth in request. A variational approach 
was used as a tool to obtain the optimal solution of some numerical examples. The 
obtained results show that not only the optimal distribution of flows, but also the 
optimal management of any additional resources assumes a main role, together with 
the maximum budget available for these additional resources and the different prob-
abilities that disastrous scenarios (more or less serious) will occur. From the optimal 
solutions it emerges that the model turns out to be efficient, in case of prediction 
of one or more disastrous events (even different from each other), since it is able 
to help the services providers both in the preparation phase (Stage 1) and in the 
response phase (Stage 2). Indeed, it is possible to start preparing for the disastrous 
event even during Stage 1, always satisfying all constraints, including the nonlinear 
budget constraints. Summarizing the results obtained from the numerical examples, 
we can highlight the following key findings:



 Operations Research Forum            (2022) 3:18 

1 3

   18  Page 28 of 30

• We have predisposed different scenarios able to represent the common situations 
that can occur in the event of a disaster: increase in requests in a fairly evenly 
distributed manner or movement of requests from one area to another;

• We have conceived some cases in which the probabilities of occurrence of the 
scenarios vary;

• We have simulated different situations in which the maximum budgets available 
for the costs due to add/use additional resources (additional UAVs and additional 
capacities) vary;

• We have deduced the main features of the optimal behavior of service providers, 
regarding the convenience or otherwise on the use of additional resources. Such 
deductions provide us with some managerial insights and the results allow the 
service providers to carry out simulations and to make optimal decisions.

The model is very suitable to be applied to real-life situations, because all its com-
ponents (variables, objective function and constraints, the cost functions) allow 
us to represent reality. Despite this, the difficulties we expect to face when apply-
ing the model to real-life situations are given by some computational aspects due 
to the large-scale instances and iterative computational times required to solve the 
problem. Therefore, in future works, another interesting research would be solving 
large-scale examples using real data and alternative computational methods to test 
the validity of our model. Furthermore, we are going to study and analyze a new 
heuristic approach and a new model with 3 stages.

This proposed model could also be useful for providing other services or things 
in emergency situations.
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