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Abstract: The Etna volcano is renowned worldwide for its extraordinary lava fountains that rise 

several kilometers above the vent and feed eruptive columns, then drift hundreds of kilometers 

away from the source. The Italian Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo 

(INGV-OE) is responsible for the monitoring of Mt. Etna, and for this reason, has deployed a net-

work of visible and thermal cameras around the volcano. From these cameras, INGV-OE keeps a 

keen eye, and is able to observe the eruptive activity, promptly advising the civil protection and 

aviation authorities of any changes, as well as quantifying the spread of lava flows and the extent 

of pyroclastic and ash plumes by using a careful analysis of the videos recorded by the monitoring 

cameras. However, most of the work involves analysis carried out by hand, which is necessarily 

approximate and time-consuming, thus limiting the usefulness of these results for a prompt hazard 

assessment. In addition, the start of lava fountains is often a gradual process, increasing in strength 

from Strombolian activity, to intermediate explosive activity, and eventually leading to sustained 

lava fountains. The thresholds between these different fields (Strombolian, Intermediate, and lava 

fountains) are not clear cut, and are often very difficult to distinguish by a manual analysis of the 

images. In this paper, we presented an automated routine that, when applied to thermal images 

and with good weather conditions, allowed us to detect (1) the starting and ending time of each lava 

fountain, (2) the area occupied by hot pyroclasts, (3) the elevation reached by the lava fountains 

over time, and (4) eventually, to calculate in real-time the erupted volume of pyroclasts, giving re-

sults close to the manual analysis but more focused on the sustained portion of the lava fountain, 

which is also the most dangerous. This routine can also be applied to other active volcanoes, allow-

ing a prompt and uniform definition of the timing of the lava fountain eruptive activity, as well as 

the magnitude and intensity of the event. 
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1. Introduction 

New data and interpretations have emerged of the geodynamics of the eastern Sicily 

point to Etna as a volcano, undergoing an evolutionary phase where a future increase in 

highly energetic explosive activity is possible [1]. As a matter of fact, the last three decades 

of Etna’s activity were characterized by frequent highly explosive eruptions, here called 

paroxysms [2,3]. Paroxysms at Etna are characterized by lava fountaining lasting 1–2 h, 

reaching the height of 1–3 km above the crater, and generating conspicuous and lengthy 

ash plumes that can drift hundreds of kilometers from the vents [4,5], often accompanied 

by short-lasting lava overflows from the crater rim [6,7]. During the last few decades, Etna 

volcano underwent several eruptions characterized by lava flows mainly from the summit 
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vents, alternating with short-lasting but powerful explosive episodes [2,3,8–10]. In partic-

ular, between 2011 and 2015, Etna produced more than 50 such eruptions [3,10–12], re-

leasing a cumulative erupted volume of a similar order to a major flank eruption [2], 

which was normally ten times greater than summit activity [13]. Given that explosive par-

oxysms can have a major impact on aviation [14], on road and traffic conditions, and also 

on the villages on the slope of the volcano [15–17], it is of paramount importance for a 

volcano observatory such as the Istituto Nazionale di Geofisica e Vulcanologia-

Osservatorio Etneo (INGV-OE) to be able to raise an early warning as soon as possible, 

and then to advise the civil protection authorities of its possible impact on human 

activities [18–21]. The first and most important parameter to be detected as soon as 

possible is the timing of start and end of any impending activity, and this information 

needs to be completed with the extent of the ash plume, lava flows and lava fountains, 

and with the volume erupted [3,6,8,12,22,23]. The volume erupted during a lava fountain 

(LF) episode quantifies the magnitude of the event, whereas the eruption rate determines 

its intensity [24]. The information gathered from the monitoring system is then used to 

inform the civil protection of the magnitude and intensity of the event, and also in models 

routinely used for the prediction of the extent and distribution of the eruption products, 

which, at Etna, often comprise both lava flows [25,26] and pyroclastics [27–29]. An 

automated procedure to map the lava flows from the images of the thermal monitoring 

cameras was recently developed [6,7], whereas the LF detection and the estimation of the 

erupted volumes were normally carried out by manual analysis of the images [3,8,30]. The 

pyroclastic volume estimated by thermal images was compared to the total erupted 

volume estimated by strain and with the lava flow volume erupted during each episode 

as estimated by satellite [30], and an error of ~20% was estimated for the calculated fluid 

volume, comprising gas plus pyroclastics [31]. 

A sustained LF normally gives rise to an eruptive column comprising three main 

portions: a lower and innermost zone called gas-thrust region with the highest velocity at 

the exit of the erupting vent; an intermediate zone, where convective movements of the 

hot mixture of gas and tephra allow ingestion of the cold surrounding air, thereby slowing 

down the spreading hot jet, and an uppermost zone reaching the buoyancy zone and 

consisting of the laterally spreading umbrella region [32,33]. In addition, the eruptive 

columns at Etna can be distinguished into weak plumes if bent in the wind direction due 

to wind speeds greater than 10 m s−1, or strong to intermediate plumes when rising 

vertically above the vent or slightly bent in the wind direction for wind speeds lower than 

10 m s−1 [3]. 

LF heights were determined following several different methods. One of the earliest, 

applied at Kilauea, was carried out by digitizing film from 8 mm time-lapse movie 

cameras deployed on the ground, and using a few theodolite measurements as calibration 

points for the film [34]. At Etna, a C++ code was developed in order to explore the INGV-

OE thermal image library for image processing [35], applying appropriate thresholds, and 

converting the color images into a binary black and white image over which the maximum 

vertical extent of the LF can be easily retrieved. A less automated but sometimes more 

precise system involves the visual and manual analysis of each image [3,8], given that the 

thermal images can be affected by low gas, weather or ash clouds [36–40] that may reduce 

the automated measurement of the LF height, or the LF jet may be inclined [3,8,30,35]. 

Calibrated images of visible cameras can also be used to estimate the vertical extent of 

proximal ash plumes associated with the lava fountains [12,22]. 

One of the most difficult challenges in volcanology is to determine when an eruption 

is over, especially when it includes multiple episodes and long pauses [41], although 

sometimes, a gradual decline of the mass eruption rate may anticipate the end of the 

eruption [42]. During the lava fountain activity at Etna, the start and ending time, as well 

as any early warning alarm, is given on the basis of the volcanic tremor and infrasound 

[18,43–46]. However, a volcanic tremor does not allow us to calculate the volume erupted 

[3,8], and does not provide information about the extension of the lava fountains and ash 
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plume [5,22]. Another useful device is the borehole strainmeter, which allows calculating 

the total erupted volume [47,48], comprising both lava flows and pyroclastics [30]. 

However, in order to assess the impact on the population, the amount of solely the 

pyroclastics component erupted during a lava fountain event needs to be established, 

because this affects the stability of roofs, the cleaning up of roads and motorways, the 

impact on the nearby Catania international airport, and the health effects on the local 

population [49,50]. Automated routines for volcanic activity detection and 

characterization have been recently developed [23,45,51,52], and they will probably 

resolve most of the issues related with early warning alarms. In this paper, we presented 

a new automated routine that, when applied to the images recorded by the thermal 

monitoring cameras, allowed us to calculate (1) lava fountain height, (2) area of the lava 

fountain jet, and (3) volume of the erupted tephra, using the formula applied by Calvari 

et al. [3,8]. We compared these results with those obtained by a manual analysis, 

discussing limits and advantages, and future possible improvements. 

2. Methods 

The INGV-OE thermal camera network for monitoring Etna volcano includes four 

fixed, continuously operating thermal cameras located on the flanks of the volcano at 

different distances from and looking towards the summit (Figure 1, Table 1). The images 

recorded by these cameras are transmitted to the INGV-OE Operative Room and 

displayed in real-time to allow continuous monitoring of the volcano. From this 

perspective, operators have the task of recognizing the type of event as early as possible. 

Thermal cameras are remote-sensing ground-based fixed devices that have significantly 

improved INGV-OE’s observational capabilities. They allowed us to monitor the summit 

area continuously, and to identify and locate eruptive events. Only poor weather 

conditions, and especially thick clouds of water vapor, gas, and/or volcanic ash [37–40] 

may affect the visibility of the cameras, and consequently, the reliability of the acquired 

images, by partially or totally hiding what is happening in the monitored area. When, by 

manual examination of images, we recognized that visibility was limited to a few frames 

or interfering clouds were low and only partially obscured the lava fountain (LF), a linear 

interpolation was carried out on the data [3]. The manual analysis of the thermal images 

followed what was described by Calvari et al. [3,8]. 

Table 1. List of the INGV monitoring thermal cameras used in this paper and their main features. 

The field of view is considered at the crater rim. 

Label Type Location 
Distance from 

the Craters (km) 

Frame 

Rate 

Field of 

View 

ENT 
Thermal 

FLIR A40M 

Nicolosi, South flank 

730 m a.s.l. 
15.0 2 frames/s 

320 × 240 

pixels 

EBT 
Thermal 

FLIR A320 

Bronte, NW flank 

85 m a.s.l. 
13.5 2 frames/s 25° × 18.8° 

EMCT 
Thermal 

FLIR A320 

Mt. Cagliato, East 

flank 

1160 m a.s.l. 

8.3 2 frames/s 
320 × 240 

pixels 

EMOT 
Thermal 

FLIR A320 

Montagnola, South 

flank 
3.0 1 frame/s 

320 × 240 

pixels 
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2600 m a.s.l. 

 

Figure 1. (a) Google map of Sicily, with the white rectangle showing the area magnified in (b), which 

is the Google map of Etna volcano showing the position of the INGV thermal monitoring cameras 

used in this study. The red circle indicates the position of the summit craters producing the lava 

fountain activity. 

A sequence of LF episodes occurred at Mt. Etna between 2020 and 2022, and the list 

of these events is given in Table 2. We have analyzed the images of the thermal cameras 

that recorded the event (Figure 1, Table 2), and chose for each episode the one offering the 

best view and the entire vertical extension of the LF, as a function of the LF size, wind 

direction, and consequent ash plume fallout. In cases of rotating ash plumes, we used the 

integration of images from more than one camera. The manual analysis of the camera 

images allowed retrieving the starting and ending time of each episode, the duration 

expressed in minutes and seconds, the maximum height of the lava fountain and its 

average value, as well as the erupted volume of pyroclastics and the time-averaged 

discharge rate (TADR, [53]). The volume of pyroclastics was calculated by following the 

method by Calvari et al. [3,8], based on the measurements of the LF heights at time lapses 

of 1 min, and considering a constant vent radius of 15 m and a pyroclastic ratio of 0.18% 

of the total erupted fluids comprising gas plus pyroclastics. All these results, obtained 

from the manual analysis of the thermal camera images, are reported in Table 2. 
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Table 2. Paroxysmal explosive episodes occurring at Etna volcano between 2020 and 2022 (updated 

to 23 February 2022). The first column reports the episode’s progressive number. All times are 

expressed in UTC. LF = lava fountain. TADR = time averaged discharge rate [53]. Data from episode 

# 32 are lacking because there was no visibility from any of the thermal monitoring cameras. 

Ep. # Date 

Starting 

Time 

(hh:mm) 

Ending 

Time 

(hh:mm) 

Duration (in 

Minutes 

and in 

Seconds) 

Label 

of 

Cam-

era 

Used 

Max LF 

Height 

(m above 

the Crater) 

Mean LF 

Height 

(m above 

the Crater) 

LF Volume 

(×106 m3) 

TADR 

(m3 s−1) 

1 

13 

Decem

ber 

2020 

22:00 22:48 
48 min. 

2880 s 
 ENT  514 231 0.24 84 

2 

13–14 

Decem

ber 

2020 

23:58 00:11 
13 min. 

780 s 
 ENT  400 235 0.07 90 

3 

14 

Decem

ber 

2020 

01:02 01:40 
38 min. 

2280 s 
ENT   286 121 0.13 59 

4 

21 

Decem

ber 

2020 

09:11 09:59 
48 min. 

2880 s 
 EBT  3080 1296 0.58 201 

5 

22 

Decem

ber 

2020 

03:05 05:13 
128 min. 

7680 s 
 ENT  800 295 0.72 93 

6 

18 

January 

2021 

19:38 21:03 
85 min. 

5100 s 
 ENT  1067 343 0.52 101 

7 

16 

Februar

y 2021 

16:11 17:02 
51 min. 

3060 s 
 EMCT  1560 757 0.46 150 

8 

17–18 

Februar

y 2021 

22:32 00:51 
139 min. 

8340 s 
 EMCT  1230 358 0.82 98 

9 

19 

Februar

y 2021 

08:16 10:06 
110 min. 

6600 s 
EMCT   1365 492 0.78 118 

10 

20–21 

Februar

y 2021 

21:32 01:15 
223 min. 

13,380 s 
EMCT  1500 386 1.43 107 
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11 

22–23 

Februar

y 2021 

21:17 00:03 
166 min. 

9960 s 

ENT 

EMOT 

EMCT 

 3667 686 1.19 120 

12 

23 

Februar

y 2021 

03:52 04:50 
58 min. 

3480 s 

ENT 

EMOT 

EMCT 

 900 337 0.32 92 

13 

24 

Februar

y 2021 

18:56 21:41 
165 min. 

9900 s 
ENT  1800 649 1.37 139 

14 

28 

Februar

y 2021 

07:31 08:34 
63 min. 

3780 s 
ENT   3600 1376 0.70 185 

15 

2 

March 

2021 

11:23 14:50 
207 min. 

12,420 s 
EMOT  606 278 1.03 83 

16 

4 

March 

2021 

01:30 04:10 
160 min. 

9600 s 
ENT  600 204 0.75 78 

17 

4 

March 

2021 

07:11 09:32 
141 min. 

8460 s 
ENT  3233 1275 1.58 186 

18 

7 

March 

2021 

04:10 07:01 
171 min. 

10,260 s 

EMOT 

EBT 
 4000 638 1.07 104 

19 

9–10 

March 

2021 

23:55 02:46 
171 min. 

10,260 s  

ENT 

EMCT 
 1860 655 1.44 140 

20 

12 

March 

2021 

07:35 09:45 
130 min. 

7800 s 

ENT 

EBT 
 2400 1149 1.63 209 

21 

14–15 

March 

2021 

23:12 01:42 
150 min. 

9000 s  
ENT   1333 670 0.53 59 

22 

17 

March 

2021 

01:30 04:57 
207 min. 

12,420 s  
ENT   1533 538 1.58 128 

23 

19 

March 

2021 

08:18 10:13 
115 min. 

6900 s 
EMOT  629 171 0.75 108 

24 

23–24 

March 

2021 

21:33 08:19 
646 min. 

38,760 s 
EMCT   1333 456 4.56 118 

25 
31 

March– 
19:30 08:53 

803 min. 

48,180 s 
EMCT  630 241 4.10 85 
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1 April 

2021 

26 
19 May 

2021 
00:50 04:25 

215 min. 

12,900 s 
ENT  667 482 1.59 124 

27 
21 May 

2021 
00:50 02:44 

114 min. 

6840 s 
EMCT  1533 683 0.99 145 

28 
22 May 

2021 
20:27 22:08 

101 min. 

6060 s  
ENT  1200 649 0.87 143 

29 
24 May 

2021 
20:25 21:49 

84 min. 

5040 s 
ENT  1467 831 0.82 162 

30 
25 May 

2021 
18:20 18:53 

33 min. 

1980 s 
ENT  533 317 0.20 102 

31 
26 May 

2021 
10:20 11:10 

50 min. 

3000 s 
ENT  1267 627 0.41 137 

32 
27 May 

2021 
12:00 13:00 

60 min. 

3600 s 
EMCT 

 Poor 

visibility 

Poor 

visibility 

Poor 

visibility 

Poor 

visibility 

33 
28 May 

2021 
06:30 07:27 

57 min. 

3420 s  
ENT   800 433 0.40 116 

34 
28 May 

2021 
16:05 16:11 

6 min. 

360 s 
ENT   333 295 0.04 112 

35 
28 May 

2021 
19:48 20:50 

62 min. 

3720 s 
ENT   1000 601 0.51 138 

36 
30 May 

2021 
04:20 05:44 

84 min. 

5040 s 
ENT   1000 589 0.69 137 

37 
2 June 

2021 
08:30 10:46 

136 min. 

8160 s 
EBT   1640 924 1.38 170 

38 
4 June 

2021 
16:12 17:40 

88 min. 

5280 s 
EMCT   1170 665 0.76 143 

39 
12 June 

2021 
20:00 21:46 

106 min. 

6360 s  
EMCT   810 438 0.73 115 

40 
14 June 

2021 
21:15 22:21 

66 min. 

3960 s  
EMCT   870 419 0.45 112 

41 
16 June 

2021 
11:37 12:38 

61 min. 

3660 s 
ENT  1733 673 0.52 142 

42 
17 June 

2021 
22:40 23:55 

75 min. 

4500 s 
EMCT  1140 404 0.50 111 

43 
19 June 

2021 
18:47 19:35 

48 min. 

2880 s 
EMCT   1140 572 0.38 131 

44 
20 June 

2021 
22:40 23:44 

64 min. 

3840 s 
ENT   2467 892 0.63 165 
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45 
22 June 

2021 
02:30 03:45 

75 min. 

4500 s 
ENT  2000 848 0.71 159 

46 
23 June 

2021 
02:44 03:19 

35 min. 

2100 s 
ENT  1867 1035 0.38 183 

47 
23 June 

2021 
18:00 19:12 

72 min. 

4320 s 
ENT  2933 1301 0.60 153 

48 
24 June 

2021 
09:45 10:26 

41 min. 

2460 s 

ENT 

EMOT 
 1733 825 0.39 157 

49 
25 June 

2021 
00:38 01:48 

70 min. 

4200 s 
ENT   2333 876 0.64 153 

50 
25 June 

2021 
18:40 19:20 

40 min. 

2400 s 
ENT  1133 691 0.36 149 

51 
26 June 

2021 
16:00 16:38 

38 min. 

2280 s 
ENT  1600  772 0.35 155 

52 
27 June 

2021 
08:53 09:43 

50 min. 

3000 s 
ENT   1600 674 0.43 143 

53 
28 June 

2021 
14:25 15:30 

65 min. 

3900 s 
EBT  2390 1211 0.75 193 

54 
1–2 July 

2021 
22:50 00:27 

97 min. 

5820 s 
ENT   1800 804 0.91 156 

55 
4 July 

2021 
15:15 16:50 

95 min. 

5700 s 
ENT   1467 873 0.94 164 

56 
6 July 

2021 
22:16 23:44 

88 min. 

5280 s 
EBT  3270 1673 1.20 227 

57 
8 July 

2021 
20:35 22:12 

97 min. 

5820 s 
EBT  2710 1242 1.12 192 

58 
14 July 

2021 
10:45 12:30 

105 min. 

6300 s 
EBT  2230 1097 1.15 183 

59 
20 July 

2021 
05:10 08:11 

181 min. 

10,860 s 
EBT  3510 1533 2.26 208 

60 
31 July 

2021 
19:44 23:37 

233 min. 

13,980 s 
EBT  3830 1473 2.83 202 

61 

9 

August 

2021 

02:07 04:11 
124 min. 

7440 s 
EBT  2390 1280 1.48 199 

62 

29 

August 

2021 

16:24 17:55 
91 min. 

5460 s 
EBT  2390 1310 1.10 202 

63 
21 

Septem
07:21 08:35 

74 min. 

4440 s  
ENT   2333 1234 0.88 199 
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ber 

2021 

64 

23 

October 

2021 

08:20 10:17 
117 min. 

7020 s  
ENT  4000 1844 1.63 232 

65 

10 

Februar

y 2022 

18:40 21:56 
196 min. 

11,760 s 
ENT  5714 2160 2.88 245 

66 

21 

Februar

y 2022 

11:11 12:50 
99 min. 

5940 s 
ENT 4057 1865 1.39 234 

    

Average 

Duration 

(min./s) 

 

Average 

Max LF 

height 

(m) 

Average 

Mean LF 

height 

(m) 

Average 

LF volume 

(×106 m3) 

Average 

TADR 

(m3 s−1) 

    120/7171  1815 784 0.993 144.75 

The dataset consisted of 66 episodes of LF recorded between 13 December 2020 and 

21 February 2022 at Mt Etna by using the four thermal cameras of the INGV-OE 

monitoring network listed in Table 1, and whose position is shown in Figure 1. Additional 

technical details on the thermal sensors can be found in Calvari et al. [3,29]. Original data 

were provided as .avi format files, each containing about 5 min of recorded volcanic 

activity. Information concerning the name of the camera and the starting time of each file 

were embedded in its name. For instance, the filename EMOT 20210319–082500.avi, refers 

to a file recorded by the camera named EMOT, starting on 19 March 2021 at time 08:25:00. 

All times are UTC. Other information, such as the duration, the frame-rate, and other 

useful video properties, such as width, height, bits per pixel, and the video format were 

embedded in the file object. Files were pre-processed in order to crop the color bar and 

the information about the acquisition time and camera name, which are normally 

embedded in the frame. 

In order to detect the presence of LF, each frame was converted from the original 

RGB format to grayscale and further binarized by adopting a threshold luminance value, 

specified as a value in the range [0, 1]. In this way, the hottest objects, such as newly 

erupted or cooling down products, will be represented in the binarized image as white 

areas, while all the others will be represented in black (Figure 2). Thus, in the absence of 

hot objects, such as new ejected volcanic matter, hot spots or cooling lava, the binarized 

images will result completely black. However, as mentioned above, it should be noted 

that hot objects may not be detected due to the presence of a thick cloud cover. Clearly, 

the choice of the threshold parameter played a crucial role. In fact, although on one hand, 

it allowed filtering unwanted information, due, for example, to warming of the monitored 

area by the Sun, on the other hand, it could also remove useful information, especially in 

the phase of emergence of an LF episode. Unfortunately, there were no optimal criteria 

for the choice of this parameter which was therefore made for each camera, adopting the 

traditional trial and error method. Each binarized image was processed, and detected 

objects, represented in white color in Figure 2c, were measured in order to obtain: 

– the areas ��, � = 1, �, �� being the area in pixels of the i-th object and N the number 

of recognized objects; 

– the coordinates (��, ��)  of the centroid, of the i_th object, ��  and ��  being the 

horizontal and vertical coordinates, respectively. 
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Figure 2. (a) The original RGB thermal image from the EMOT camera, with temperatures in °C 

comprised between blue (0 °C) and white (>100 °C); (b) the cropped grayscale; (c) the binarized 

image, and (d) the binarized image with computed centroids (red asterisks), representing the center 

of mass of the hot objects detected by the threshold process. 

The overall process, starting from the original image (Figure 2a), through the 

grayscale (Figure 2b), the binarized (Figure 2c), and finally, to the labeled image (Figure 

2d) is reported, as an example, in Figure 2. In particular, the centroids of detected hot 

objects are shown by the red asterisks in Figure 2d. 

The presence of multiple objects, even from an individual LF episode, was due to the 

fact that the volume occupied by an LF does not have a uniform temperature, as can be 

seen from Figure 2a where the original colors of the thermal image indicate different 

temperatures in a scale starting from blue (0 °C) to white (>100 °C). However, for practical 

reasons, as different hot objects belong to the same individual LF, it is a good practice to 

consider all detected objects as a single one. In our case, this was obtained by summing 

up the areas of all detected objects, and calculating the coordinates of a single centroid by 

a weighted average of the coordinates of the individual centroids, as expressed in 

Equation (1). 

� = ∑ ����
�
��� ; � = ∑ ����

�
��� , �� =

��

∑ ��
�
���

  (1)

where Ai is the area of the i-th object, N is the number of detected objects, and ��  is the 

normalized area of the i-th object. It is straightforward to say that, with considerable 

approximation, due to the fact that the LF occurs in 3-D volume, while images refer to a 

2-D area, the estimated area A is, in some way, related to the volume of hot matter, while 

the y-coordinate of its centroid may be related with the mean elevation. Of course, A and 

its centroids’ coordinates (x,y), originally expressed in pixel units, can be converted into 

geographical units by appropriate conversion constants, depending on the position of the 

considered camera with respect to the monitored area. The graphical representation of the 

area A (Figure 3a) and its mean altitude (Figure 3b) for an LF episode occurring on Mt. 

Etna on 24 February 2021, is shown in Figure 3. 
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Figure 3. Area (a) and mean altitude (b) of the lava fountain episode at Mt Etna on 24 February 

2021. 

Figure 3 can be interpreted as follows: during 24 February 2021, a mass of previously 

erupted material was cooling down around the crater area. This can be deduced from the 

fact that the y-coordinate of the centroids (Figure 3b) fluctuates around zero during the 

time interval from 00:00 to about 19:25. In Figure 3b, for convenience, the zero value of the 

mean altitude has been arbitrarily set to the average value of the y-coordinate, measured 

throughout the recording period. The lack of signal in the mean altitude (in the reported 

example, for instance, around 14:20 and 14:40) is due to the thick cloud cover which 

prevented viewing of the cooling mass. After 19:15, an LF appeared, as can be seen from 

both the area signal (Figure 3a) and the increasing mean altitude of the center of mass 

(Figure 3b). The LF continued until about 20:00, after which, the erupted material began a 

cooling process. It should be observed that while the value of the area slowly decreased, 

the value of the mean altitude of the hot objects almost instantaneously decreased when 

the LF ended. As can be seen from Figure 3, an LF can therefore be recognized by the 

characteristic bell-shaped distribution of both the area and mean altitude time series. This 

suggests a criterion for identifying the time mark to be associated with the beginning and 

the end of the paroxysmal phenomenon, by using a Change Point Detection (CPD) 

algorithm, which will be explained in Section 3.2. 

3. Results 

3.1. Manual Estimation of the Eruptive Activity 

Of the 66 LF episodes that occurred between 13 December 2020 and 21 February 2022, 

only one could not be detected because of poor weather conditions: the episode of 27 May 

2021, when there was poor visibility from all the monitoring cameras. In all the other cases, 

visibility was more than 80% of the duration of the episode. Thus, for the short lapses of 

time when there was no visibility, the LF heights were linearly interpolated. The total 

volume of erupted pyroclastics during the 65 episodes was ~65 × 106 m3. The average 
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duration of the 65 episodes listed in Table 2 was of 120 min (minimum 6 min, maximum 

803 min), or 7171 s (minimum 360 s, maximum 48,180 s); the average erupted volume of 

pyroclastics was 0.99 × 106 m3, with 41 × 103 m3 as minimum value and 4.6 × 106 m3 as 

maximum value; the TADR, calculated for the only pyroclastic portion of the episodes 

and for the whole duration of each paroxysmal event, was 145 m3 s−1 on average, spanning 

from a minimum of 59 m3 s−1 and a maximum of 245 m3 s−1; maximum LF heights above 

the vents were 1815 m on average, spanning from a peak value of 5714 m to a minimum 

of 333 m, and the average heights of the LFs were between 115 m and 778 m, with a peak 

value of 2160. All values are listed in Table 2. 

From a volcanological point of view, it is worth noting that if we exclude the two 

outliers of 23 and 31 March 2021, which emitted more than 4 × 106 m3 of tephra, the volume 

of pyroclastics which erupted during the LF episodes occurring between mid-December 

2020 and February 2022 increased with time. This can clearly be seen from Figure 4, where 

we report the distribution of the erupted volumes with time and its linear trend. In 

addition, the time-averaged discharge rate (TADR) and its trend increased with time 

(Figure 5). These observations, i.e., of the increase of erupted volume of pyroclastics and 

rate of eruption with time, suggested that the sequence of paroxysmal events was not yet 

over [31]. 

 

Figure 4. Volume of pyroclastics (y-axis, expressed in m3) against time (x-axis, date) for the 65 

explosive episodes listed in Table 2, together with a linear trend and its formula. 
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Figure 5. Time-averaged discharge rate of pyroclastics (TADR, y-axis, expressed in m3 s−1) erupted 

during the lava fountain episodes against time (x-axis, date). The graph displays the data for the 65 

explosive episodes listed in Table 2, together with a linear trend and its formula. 

3.2. Change Point Detection 

A change point represents a transition between different states in a process that 

generates the time series. Change point detection (CPD) can be defined as the problem of 

choosing between two alternatives: no change or indeed, a change occurred. CPD 

algorithms are traditionally classified as online or offline [54]. Offline algorithms consider 

the whole data set at once and try to recognize where the change occurred. Thus, the aim 

in this case, is to identify all the sequence change points in batch mode. In contrast, online, 

or in real-time, algorithms run concurrently with the process they are monitoring, 

processing each data point as it becomes available, with the goal of detecting a change 

point as soon as possible after it occurs, ideally before the next data point arrives. In 

practice, no CPD algorithm operates in perfect real-time because it must wait for new data 

before determining if a change point occurred. However, different online algorithms 

require different amounts of new data before a change point can be detected. Based on 

this observation, an online algorithm, which needs at least ε samples in the new batch of 

data to be able to find a change, is usually denoted as ε-real time. Therefore, offline 

algorithms can be viewed as ∞-real time whereas the best online algorithm is 1-real time, 

because for every data point, it can predict whether or not a change point occurs before 

the new data point. Smaller ε values may lead to stronger, prompter CPD algorithms. To 

find a change point in a time series, a global optimization approach can be used with the 

following basic algorithm: 

1. Choose a point and divide the signal into two sections. 

2. Compute an empirical estimate of the desired statistical property for each section. 

3. At each point within a section, measure how much the property deviates from the 

empirical estimate, and at the end, add the deviation for all points. 

4. Add the deviations section-to-section to find the total residual error. 
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5. Vary the location of the division point until the total residual error attains a 

minimum. 

As noted above, the search for a change point k can be formulated as an optimization 

problem where the cost function J(k) to minimize it can be written, in the general case as: 

�(�) = ∑ ∆���; �([��, … , ����])����
��� + ∑ ∆���; �([��, … , ��])��

���   (2)

where {��,��, … ��} is the time series, χ is the chosen statistic, and ∆ is the deviation 

measurement. In particular, when χ is the mean, the cost function assumes the following 

form: 

�(�) = ∑ (�� − 〈�〉�
���)����

��� + ∑ (�� − 〈�〉�
�)��

���   (3)

where the symbol ⟨·⟩ indicates the mean operator. 

Another aspect to be considered, when formulating the optimization problem, is that 

signals of practical interest have more than one change point. Furthermore, the number 

of change points K is often not known a priori. To handle these features, the cost function 

can be generalized as: 

�(�) = � � ∆���; �([��, … , ����])�

������

����

���

�

+ �� (4)

where k0 and kK are, respectively, the indexes of the first and the last sample of the signal. 

In the expression (4), the term βK is a penalty term, linearly increasing with the number 

of change points K, which avoids the problem of overfitting [55]. Here, β represents a 

positive coefficient that weights the number of searched change points. Indeed, in an 

extreme case (i.e., β = 0), J(K) reaches the minimum value (i.e., 0) when every point 

becomes a change point (i.e., K = N). 

The algorithm described above for a univariate time series, can easily be extended to 

the case of a multivariate time series, which was the case, for instance, of a data set 

recorded by a GPS network [54]. In this case, the cost function was evaluated, of course, 

over the whole set of available time series. The software considered in this work was 

implemented in MATLAB based on the CPD algorithms described in [55,56]. The package 

can help the user at various levels. The lowest level is to consider the software to obtain 

the time series of area A and mean altitude MA of detected hot objects from images of 

volcanic activity, following the algorithm described in the previous section. Subsequently, 

the user, based on a visual inspection of these time series, can indicate presumed times for 

the starting and ending times of the LF, and request the software to calculate other 

quantities of interest such as the volumes emitted. Another possibility is to leave the 

software to search for the transition times from Strombolian to paroxysmal activity using 

the CPD algorithm, possibly selecting the statistic to be used to perform the detection (i.e., 

abrupt changes in the mean, in the variance or in the slope). While the latter possibility is 

preferable when the time series shows clear LF episodes, the former is more suitable when 

the automated detection of the transition from Strombolian to paroxysmal activity and 

vice versa can be more problematic due to external noise sources (e.g., poor visibility or 

interference by other kinds of hot objects). 

3.3. Timing the Lava Fountains Occurring at Etna during 2020–2022 

The main advantages of performing a computer process analysis of LF images are 

the following: 

– the user can quickly analyze the content of the image files recorded over days, an 

operation which, carried out manually, requires a considerable amount of time; 

– the user can speed up the computation of key quantities such as height and duration 

of the LF, which are necessary for the calculation of the volumes of erupted material); 



Remote Sens. 2022, 14, 2392 15 of 27 
 

 

– it is possible to implement algorithms for automatically timing the transition from 

Strombolian to paroxysmal activity, which is otherwise left to human judgment, 

gaining in uniformity and repeatability; 

– in case of lack of visibility, since it is necessary to proceed with interpolation of the 

data, a rather difficult operation to perform manually, the user can resort to 

automated interpolation techniques (e.g., linear interpolation, nearest, etc.). 

However, it should not be overlooked that quantitative measurements of the LF 

parameters, starting from the images, require overcoming several non-negligible 

difficulties. First of all, the aforementioned lack of visibility can make the reliability of the 

measurements poor. In fact, interpolation techniques can help in cases of limited amounts 

of data, but obviously cannot replace them when significant amounts are missing. 

Furthermore, since the LFs are recognized as hot objects, they can be confused with 

hot objects of other kinds. Hot areas are very often formed due to the sunlight reflection 

of both the ground (Figure 6a) and the clouds (Figure 6c). At other times, the Sun itself 

was included in the images as it travels its natural orbit (Figure 6d,e). Other kinds of hot 

objects, which could be confused with LFs, were cooling lava flows (Figure 6b). Moreover, 

different hot objects can combine their effects with those of the LFs (Figure 6e,f). Some of 

these effects could be avoided by using special cameras, but this is not always possible. 

Since the current state of development of the software does not allow a reliable distinction 

between the noise and the LF signal, the user, for the purpose of determining the start and 

end times, can limit the search space, so as to exclude particularly noisy periods. 

 

Figure 6. (a) Effect of the Sun reflection on the ground slope (green area), EMOT camera; (b) cooling 

lava flow (white area), EMOT camera; (c) Effect of the Sun on the clouds (pink area), ENT camera; 

(d) the Sun in the camera field of view (white circle), EMCT camera; (e) Combined effects: lava 

fountain in presence of the Sun in the field of view, EMCT camera; (f) lava fountain and Sun 

reflection on the vegetation in the foreground, EBT camera. a1 to f1 are the corresponding gray 

images, and a2 to f2 are the corresponding black and white binarized images. 

Normally, the area signal is smoother than the mean altitude signal and therefore, 

usually when determining the start and end time of an LF using the CPD algorithm, it is 

preferable to consider the time series of the areas. However, in some cases, it may be useful 

to consider the series of mean altitude, as described in the following example. For instance, 

consider the area signal shown in Figure 7a, which refers to an LF occurring on Etna on 

20 February 2021. As can be seen, due to the presence of a cooling lava flow, the area signal 

slowly decreases (thermal hysteresis), making it difficult to accurately perform the 

automated detection of the ending time of this LF episode. However, this shortcoming can 

be overcome by performing the CPD timing on the mean altitude signal, which is not 

affected by the thermal hysteresis (see Figure 7b). 
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Figure 7. (a) Area (in pixel2) and (b) mean altitude (in pixels above the crater rim) against time of 

the lava fountain on 20–21 February 2021 at Mt. Etna, retrieved from the EMCT camera. 

Here, the term ‘timing’ will be used to indicate the estimation of the starting and 

ending time of an LF episode. In particular, for this LF, while performing the CPD timing 

from the area signal (Figure 8a), the end of the LF is estimated to be tend = 06:38, whereas 

considering the mean altitude signal, the end of the LF is estimated tend = 00:56, which is 

closer to that manually estimated (tend = 01:15) and reported in Table 2. This difference was 

caused by the greater curvature that can be seen in Figure 8a, which was determined by 

the cooling lava flow area. 

 

Figure 8. (a) Area (in pixel2) and (b) mean altitude above the crater rim (in pixels, measured above 

the crater rim) with the timing (gray vertical lines) of start and end of the lava fountain episode. See 

text for explanation. 
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3.4. Timing the Lava Fountains by a Gaussian Function-Based Approach 

In some cases, assuming that a typical LF has a time distribution of area and mean 

altitude, which roughly has a bell shape, it might be useful to approximate the measured 

data by using a Gaussian function. This can be useful, for example, when the images are 

affected by thick clouds passing through the field of view of the camera, generating a 

trend such as those shown in Figure 9a, which refers to the LF episode on 13 December 

2020 and was observed from the ENT camera. 

  

(a) (b) 

Figure 9. (a) Area (in pixel2) and mean altitude (in pixels, measured above the crater rim) against 

time of the 13 December 2020 lava fountain episode as retrieved from the ENT camera, and (b) 

Gaussian interpolation (red line) of the pyroclastic area against time of the 13 December 2020 lava 

fountain episode retrieved from the ENT camera. 

For this LF episode, the manually estimated starting and ending times were 22:00 

and 22:48, respectively. However, from Figure 9a, it can be seen that precisely between 

these two times, the recorded signal is discontinuous due to poor visibility, but 

nevertheless, it can be seen that the area signal shows a well-detectable peak. Fitting the 

area samples, it is possible to obtain the results shown in Figure 9b and thus estimate the 

start and end dates of the LF to be 22:02 and 22:20, respectively, which are closer to the 

manually assessed corresponding times. 

Timing of an LF episode, after having carried out the approximation of the curve by 

means of a Gaussian function, is simply established by using a threshold approach: the 

starting time is set as the one in which the recorded data exceed, for the first time, a 

threshold of the normalized function height. Similarly, the end time is established as the 

one in which the recorded signal falls, for the first time, below the threshold. In this paper, 

the threshold value has been set, after a trial and error approach, to be 25% of the 

maximum value. 

Of course, the Gaussian approach can be used for timing LF as an alternative to the 

CPD one, even when the visibility problems described above do not exist, as shown in the 

example of Figure 10. 



Remote Sens. 2022, 14, 2392 18 of 27 
 

 

 

Figure 10. Graphs showing the timing of the LF episode N. 11, which occurred on 22–23 February 

2021 (Table 2) obtained from (a) the CPD method and from (b) the Gaussian method. The black 

vertical lines indicate the start and end time, and the red line in (b) is the Gaussian interpolation. 

Table 2 shows that the manual method indicated the LF episode took place between 21:17 on 22 

February and 00:03 of 23 February 2021. In accordance with the manual method, (a) shows that the 

CPD automated timing indicated that the sustained phase of the LF developed between 23:26 and 

23:55 on 22 February, and similarly, the Gaussian method (b) indicated a timing comprised between 

23:21 and 23:55 on 22 February. 

The software package presented in the previous sections was considered to perform 

the timing of the 65 LF episodes in the data set reported in Table 2. Moreover, for each 

episode, the heights of the LF at 1 min intervals were used to calculate the total fluid 

erupted volume from Equations (5) and (6), which included both gas and pyroclastics 

[8,31]: 

U = (2gH)�.� (5)

V = U ∙ A� ∙ D  (6)

In expression (5), U is the mean fluid exit velocity at the vent, H is the LF height, and 

g is the gravity acceleration, while in expression (6), V is the fluid volume (gas + 

pyroclastic) erupted by the LF, A� is the vent section area, and D is the duration of the LF 

in seconds. The vent surface area was calculated by assuming a circular vent with a 

diameter of 30 m [8] and supposed to be constant. Moreover, we have computed the 

volume V� of pyroclastics from the total erupted volume V (gas + pyroclastics), 

considering 0.18% as the ratio between the volumes of magma and fluids within the 

eruptive column as typical for Etna’s fountains [3]. 

According to expression (6), the estimated volumes depend on the mean fluid exit 

velocity U and LF duration D, for assigned values of the vent surface area. Thus, the 

performances of the automated approach will depend on its readability to estimate height 

H and duration D of the LF episodes. Concerning the reliability of the automated 

estimating H, the comparison with the corresponding manual reading, for a few episodes 

of the data set, is shown in Figure 11. 
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Figure 11. Time series of heights estimated by using the automated and the manual approaches for 

a few episodes of the data set against time, with the blue line for the automated, and the orange line 

for the manual detection: (a) Episode 7, 17–18 February 2021; (b) Episode 12, 28 February 2021; (c) 

Episode 65, 10 February 2022, and (d) Episode 66, 21 February 2022. 

It can be seen in Figure 11 that manual height readings normally have a greater range 

than those automatically estimated. Here, it should be borne in mind that, as expressed in 

Equation (1), the automatically measured heights are a weighted average of the centroids, 

while those measured manually are normally taken as the maximum height of the lava 

fountain jet taken along the spreading direction. Considering that the heights represent 

the only geometric element on which the volumes of erupted material depend, it follows 

that with the automated estimation, these will normally be slightly less when compared 

to the manual ones, but with the advantage of immediacy. It is also necessary to bear in 

mind that for the purposes of estimating the volume of erupted matters, it is not so much 

the precise values of the instantaneous heights that are relevant, but their average value, 

which therefore also depends on the estimated duration for each individual episode. The 

comparison among the mean heights for the whole LF episodes after estimating the 

duration D by using both the CPD and Gaussian approaches are shown in Figure 12. In 

this figure, the abscissa is the integer N ranging from 1 to 66, i.e., number of LF episodes 

in the considered dataset (Table 2). The episode 32 is lacking because of poor visibility 

from all the monitoring cameras (Table 2). 
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Figure 12. Mean altitude for each of the 65 lava fountain episodes estimated after having established 

the timing of start and end for each recorded time series by using both the CPD (blue line) and the 

Gaussian (red line) approach. Their values were compared with the corresponding manually 

estimated values (yellow line). Episode 32 was lacking because of poor visibility from the cameras 

(see Table 2). 

In more detail, Figure 12 shows that for most of the episodes, there is a good 

agreement between the average mean heights estimated for each episode, not only 

between those obtained by using the CPD and Gaussian approaches, but also between 

these and those manually estimated. Altitudes obtained with the manual approach are, 

on average, 12% lower than those obtained by using the CPD approach, and 7% lower 

than the Gaussian one. 

As regards to the duration D for each episode, the comparison between the 

automated and the manual estimation is shown in Figure 13. 
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Figure 13. Estimated duration performed after timing the LF episodes by the CPD (blue line) and 

Gaussian (red line) approaches, in comparison with the manual (black line) ones. 

Figure 13 shows that the durations obtained by using both the methods for 

automated timing are generally in good agreement with each other, as well as lower than 

those obtained manually. In more detail, duration manually estimated was on average 

about 34% higher, with a standard deviation of 77%, than those estimated by using the 

CPD, and about 3% higher, with a standard deviation of 93%, than the Gaussian one. To 

justify the discrepancy, it is worth noting that the automated approaches generally 

identify the sustained part of each LF, while the manual approach is not able to clearly 

distinguish the threshold of the intermediate phase preceding the sustained portion of the 

LF [3,8]. 

The comparison between estimated volumes and TADR by the three methods are 

reported in Figure 14a,b. A good agreement between the automated and manual 

estimation is apparent, bearing in mind that the automated volumes are usually smaller 

than the manual ones, because the durations refer to the sustained phase of the LF, while 

the manual and automated TADR are in good agreement because this feature is computed 

as the ratio between volumes and duration of each LF episode. In more detail, manual 

estimated volumes are, on average, about 26% higher, with a standard deviation of about 

77% than those estimated by using the CPD approach, and 13% lower than the Gaussian, 

with a standard deviation of about 107%. The TADR manually estimated is about 15% 

lower that the CPD, with a standard deviation of 77% and 8% lower than the Gaussian, 

with a standard deviation of 33%. 

Figure 15 shows the differences between the values obtained by the manual and 

automated routines, and indicates the good agreement between heights of the lava 

fountain (Figure 15a) and TADR (Figure 15d), and the discrepancies between duration 

(Figure 15b) and calculated erupted volume of pyroclastics (Figure 15c). 

Considering the results obtained from the automated routines, the total volume of 

erupted pyroclastics during the 65 episodes computed by using the automated CPD 

approach was ~34.5 × 106 m3, with a minimum of ~0.012 × 106 m3 and a maximum of ~3.25 

× 106 m3. The average duration of the sustained part of LF was of ~65.7 min (minimum 1 
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min, maximum 509 min). The TADR, calculated only for the pyroclastic portion of the 

episodes and for the whole duration of each paroxysmal event, was 159 m3 s−1 on average, 

spanning from a minimum of 84 m3 s−1 and a maximum of 379 m3 s−1; LF average height 

above the vents was 745 m, spanning from a peak value of 1834 m to a minimum of 223 

m. 

 

Figure 14. (a) Comparison among volumes, and (b) comparison among TADR obtained from the 

manual and automated approaches. 
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Figure 15. Comparison among automated and manual analysis of (a) heights of the lava fountain; 

(b) duration of each episode; (c) estimated erupted volume of pyroclastics, and (d) TADR (time-

averaged discharge rate [53]). 

4. Discussion 

In this paper, we have presented an automated routine that might help volcanic 

observatories such as INGV-OE to detect (1) the starting and ending time of an LF episode, 

(2) the LF heights, (3) the erupted volumes, and (4) the TADR, saving time and especially 

providing consistency and uniform data extraction from thermal monitoring videos. This 

would allow a prompt understanding of the state of the volcano, and of the magnitude 

and intensity of each explosive paroxysm as soon as it ended, allowing a timely volcanic 

hazard assessment. In addition, both our automated routines, based on the CPD and 

Gaussian interpolation, proved to be reliable in constraining the climax phase of the 

paroxysm leading to a sustained eruptive column, which is the phase posing the greater 

hazard for its impact on aviation and the population. Conversely, the manual analysis had 

clear difficulties in distinguishing the threshold between the intermediate phase and the 

LF sustained phase [3,8,30]. 

However, in order to routinely use the algorithms proposed here, it is necessary to 

overcome some limits that we described earlier and illustrated in Figure 6. The first 

shortcoming arose from the detection of unwanted objects falling in the field of view of 

the eruption, such as the Sun or the surfaces it irradiated. In distinguishing this anomalous 

pattern, the Gaussian interpolation might help, which would reveal and remove any 

deviation from the normal trend. A more common problem, and one that is hard to 

handle, is the cloud interference, with clouds resulting from water droplets, ash or gases 

filtering or obscuring the thermal images [36–40]. In the cases of clouds partially obscuring 

the field of view, it was still possible to interpolate the missing data, provided that they 

represent a small percentage of the total duration of the episode, which was the procedure 

also carried out with manual analysis. However, when the cloud cover was too continuous 

and extended in many directions, such as the episode of 27 May 2021 (Table 2), there was 

no way to retrieve any useful data, and an estimation of the erupted volume can only be 

performed by considering the timing obtained from the seismicity or from borehole 

strainmeters [17,43–45,47,48], and multiplying this for the average TADR estimated for 

each single episode occurring during the whole period lasting from 13 December 2020 to 

21 February 2022. Thus, considering for the episode # 32 of 27 May 2021, the duration of 

60 min (=3600 s) estimated from the seismicity, and multiplying this time for the TADR 

averaged over the 65 episodes (Table 2; ~146 m3 s−1), we obtained an estimated volume of 

~0.53 × 106 m3, which was in line with, and slightly below, the average of the other LF 

events here considered (Table 2). This brought the total erupted volume of pyroclastics or 

tephra, erupted between 13 December 2020 and 21 February 2022, to ~65.2 × 106 m3. 

Considering the manually obtained results, from a volcanological point of view, it is 

worth noting that, if we excluded the two outliers of 23 and 31 March 2021, which emitted 

more than 4 × 106 m3 of tephra (Table 2), the volume of pyroclastics erupted during the LF 

episodes, which occurred between mid-December 2020 and February 2022, increased with 

time (Figure 4), and also, the time-averaged discharge rate (TADR) increased with time 

(Figure 5). Figures 4 and 5 display a wide variability of values, and although this 

variability might hide shorter eruptive cycles, it is however clear that the trend of TADR 

and erupted volume increased with time. These observations, i.e., of the increase of 

erupted volume of pyroclastics and rate of eruption with time, would suggest that the 

sequence of paroxysmal events was not yet over [31], and urges reliable and automated 

routines to be promptly developed, tested, and applied to the analysis of the LF episodes. 
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5. Conclusions 

In this paper, we have presented the timing of start and end for 65 of the 66 LF 

episodes which took place at Etna volcano between 13 December 2020 and 21 February 

2022, together with their duration, maximum and average LF heights, erupted volume of 

pyroclastics, and TADR (Table 2), obtained by manual analysis of the monitoring thermal 

images recorded by the INGV-OE network. We have then presented two automated 

routines, based on the CPD and Gaussian interpolation, that analyzed the thermal images 

and provided a fast and reliable way to obtain the same parameters acquired manually, 

in a timely way. The results obtained with the automated and manual routines are 

comparable (Figure 15), thus suggesting that a complete automation of the process is 

feasible. However, our analysis also highlighted important shortcomings arising from the 

presence of unwanted hot objects comprised in the field of view of the explosive episode 

that may lead to false results. Moreover, the presence of ash, weather, and gas clouds 

caused important interference with the data analysis, and might have reached the point 

of a complete obscuration of the field of view, as in the case of the episode #32 of 27 May 

2021 (Table 2). We have shown that the Gaussian interpolation may limit the errors caused 

by a partial view, but more studies are necessary before this analysis can be routinely used 

for monitoring purposes. The results of our study showed an increasing magnitude 

(erupted volume) and intensity (TADR) of the explosive events in the period here 

considered (see Figures 4 and 5), and this issue would urge a faster and reliable analysis 

to be obtained as soon as possible, thus motivating the work presented here. 
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