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Abstract

The low-temperature physics of quantum many-body systems is largely governed by the structure of
their ground states. Minimizing the energy of local interactions, ground states often reflect strong
properties of locality such as the area law for entanglement entropy and the exponential decay of
correlations between spatially separated observables. Here, we present a novel characterization of
quantum states, which we call ‘local reversibility’. It characterizes the type of operations that are needed
to reverse the action of a general disturbance on the state. We prove that unique ground states of
gapped local Hamiltonian are locally reversible. This way, we identify new universal features of many-
body ground states, which cannot be derived from the aforementioned properties. We use local
reversibility to distinguish between states enjoying microscopic and macroscopic quantum
phenomena. To demonstrate the potential of our approach, we prove specific properties of ground
states, which are relevant both to critical and non-critical theories.

1. Introduction

Gapped ground states define quantum phases of matter at zero temperature. Even though they occupy a tiny
fraction of the possible many-body Hilbert space, these states manifest a rich and diverse structure. Standard
examples are states with local order-parameter such as paramagnetic and ferromagnetic ground states, the
superfluid and insulator ones in bosonic and fermionic many-body systems, etc. Other instances, such as
quantum Hall and quantum spin liquids, can arise because of more subtle orders that can be established in the
system. A central goal of condensed matter theory is to understand their structure and how it relates to the
physics of different phases [1, 2]. A natural approach to this problem is to find the constraints that these states
satisfy, which set them apart from generic many-body states [3]. Such analysis can serve for the understanding of
which type of entanglement that ground states can indeed harbour. To this aim, it is important to understand
aspects of locality in these states. We ask: ‘to what extent can such states be described by a collection of local degrees of
freedom, which are only loosely correlated with each other?’

Rigorous tools to tackle this question are scarce, even though various properties have been known in
empirical ways (see [4]). An example is provided by the exponential decay of correlations, also known as
exponential clustering: it has been proved that gapped ground states on a lattice have a finite correlation length,
beyond which the correlations between spatially separated observables decay exponentially [5-7]. More
recently, other quantitative tools have been devised, which characterize the ground state’s locality by looking at
its entanglement structure [8, 9]. A notable example is area law of the entanglement entropy [8], which states that
the entanglement entropy of a region with respect to the rest of the lattice should scale like the boundary area of
the region rather than its volume. It is expected to hold for all gapped ground states on a lattice, but has only been

©2017 IOP Publishing Ltd
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Figure 1. Schematic picture of the local reversibility (LR). We disturb a quantum state |¢)) by an operator I, which is supported in a
subsystem L. We then try to recover the state I} |¢)) by the use of a g-local operator R. If the state |1)) is a product state, we can recover
the original state by an operator Rwith g = O (\/m ); then, ‘locally reversible state’ is defined as the class of states which have the same
property as product state in terms of the non-locality of the reverse operator. The entanglement properties of LR states are expected to
be highly restricted since entanglement cannot be recovered by local operations once it has been broken.

rigorously proved in one spatial dimension (1D) by Hastings [10] (see [11-15] for further results). Hastings’
celebrated result yields a complete characterization of 1D gapped ground states as matrix product states (MPSs)
[16], which, to alarge extent, provides a full understanding of the 1D case [17].

Unfortunately, in higher spatial dimensions our understanding of the problem is still very much limited. Not
only thata proof for the area law is lacking, but it is also unclear how an area law would imply an efficient
representation of the ground state [ 18]. Moreover, when the system has long-range interactions, or itis hosted in
alattice with a large dimensionality (like an expander graph [19]), locality properties of the ground state are even
more illusive: exponential decay of correlations no longer holds (since all particles are essentially close to each
other), and in general, area law become meaningless as surface areas become as large as volumes. For such
systems, very well studied in the Hamiltonian complexity field, spatial distance might no longer a good figure of
merit for identifying entanglement [20-22]. As we will shortly show, an alternative approach is to study
entanglement and locality by analyzing the collective properties of a subsystem with respect to the number of
local degrees of freedom it contains rather than the distance between them.

In this paper, we introduce a new constraint on a many-body gapped ground states which complements
some of the shortcomings of the existing approaches. We call it local reversibility. It is based on the intuition that
macroscopic-scale entanglement cannot be recovered by any local operation once it has been broken. Therefore,
states which allow this sort of local recovery, necessarily contain a ’small amount of macroscopic superposition’.
Here, we observe that we use the term locality in a broader meaning than the usual spatial locality.

We will show that such local reversibility holds for all unique gapped ground states of local Hamiltonians,
including systems with long-range interactions or a diverging lattice dimensionality (for which the existing
approaches to the locality properties, like the exponential decay of correlation, do not apply). We therefore
believe that it exposes fundamental features of gapped ground states that cannot be captured by existing
properties. To demonstrate its potential, we study specific problems in many-body physics. We work out
rigorous bounds for the quantum fluctuations of locally reversible states. This, in turn, implies new constraints
on the critical exponents and rigorous bounds on the quality of the mean-field ansatz, which is often used to treat
complicated quantum many-body systems. An important outcome of our approach is an effective way to
identify quantum macroscopic superposition.

2. Local reversibility

To motivate our approach, we begin with a heuristic discussion (figure 1). Consider a state |1)) that is defined
over Nlocalized spins, each with a d-dimensional Hilbert space, and let I'; be an operator acting on a spin subset
L; the total system is given by L | L¢ with L¢ the complement of L. Applying I to |¢)), we can potentially disrupt
the entanglement between L and L€, even when I} |t} has a constant overlap with |¢). It is useful to think of |1))
as a superposition of several states [¢)) = [¢;) + |,) + ---and of I asa projector that ‘kills’ some (but not all)
of these states. Intuitively, if |¢/) contains some ‘global entanglement’ on the scale of | L| spins, we may only be
able to reconstruct |¢)) by acting on I} |)) with (at least) an operator that acts non-trivially on the same portion L
of the system (i.e., it would be an | L|-local operator). However, when |¢) contains mostly short-range
entanglement (SRE), we might be able to return to |1)) by using an operator of a much smaller support. How
much smaller should that support be for a slightly entangled state? Specifically, as we shall see shortly, the
minimal size of support that is needed to reconstruct a product state is O(y/|L| ). This indicates that states that

can be reversed by operators of O(y/|L| ) support constitute a class of states with a small amount of
entanglement. In the following, we refer to such a class as locally reversible states.
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We now put the discussion above on a formal ground. We first defines the notion of g-local operator, which
may be often called a ‘few-body operator:’

Definition 2.1 (q-local). Given an integer g > 0,a q-local operator is an operator of the form O := 37y, ., ox;
where each oy is an operator supported on a finite subset of spins X = {1}, #,..., x|} of cardinality |X|. The ox
operators are not necessarily sitting next to each other on the lattice.

We formulate the reversibility property in terms of such operators ox.
Definition 2.2 (Local reversibility). We say that a state |¢)) is locally reversible (LR) if there exists a function f (x)

that decays faster than any power law, such that for every subset of spins L and an operator I} defined on it, and
for everyinteger g > 0, there exists a g-local operator R such that

. T3] q
[RTLl) — 1) < |<wlFLIw>If( T ] ¢h)

where ||--+|| is the operator norm.

Three remarks are in order. (i) Both the shape and the size of L are left completely general. In particular, we
can take L to be the entire system (|L| = N). (ii) In some cases, it will make sense to only consider operators R
that respect certain symmetries. We will later use this restricted definition of local reversibility for states with
symmetry protected topological order (SPTO) [23]. The last remark is on the status of function f(x) in (1).
Despite f(x) need to be a superpolynomially decaying function in 2.2, the statement (1) itself can be proved for a
fixed generic f(x). In this sense, the statement is non-asymptotic and valid for finite systems. In order (1) to be
effective in putting bounds on the state in a meaningful way, however, f(x) need to be specific and non-trivial
(see our main theorem 3.1 for an example of f (x)); such a feature will be thoroughly exploited in the rest of the
paper.

We claim that LR states show a specific degree of locality, while non-LR states correspond to states with non-
local features due to global entanglement. This assertion can be explained by the following two lemmas
characterizing the entanglement structure of LR states.

The first lemma refers to the so-called macroscopicity of the states. Namely, we will demonstrate how non-
LR states correspond to states with macroscopic superposition.

Let us consider states of the type [1)) = at,) + 5|1p) and discuss the possibility that |¢,) and |¢),) are
macroscopically distinct (meaning that a collection of local operators exists to [¢,) < [1)p)). Then:

Lemma 2.3. Let |1)) be a state which satisfies (1) for a fixed function f (x). Then, for any decomposition
1) = Pilv) + (L= P)IY) = aly) + Bliby) with P} = Py, we have

Olba) = Ithy) + 16),

where O is a q-local operator and ||8|[* = (6]6) < |a20"'f (q//IL]). When |1)) is a LR state, f (x) decays
superpolynomially and only a difference of O(\/m ) exists between the two states |1),) and |1)p).

The proofis provided in the appendix A.
By contraposition of the lemma, any quantum state such that we can find a bipartition Py for which two

states |¢/;,) and |1);) are macroscopically distinct over a /|L| spatial scale, is non-LR; for example, the GHZ state

over n particles, |1)) = %(IO -+ 0), + |1 --- 1),)isnotLRsince |0 --- 0),, |1 --- 1), areclearly

macroscopically distinct over the scale of n — 1, and we may write [¢)) = Pi|¢)) + (I — Pp)|¢) with
Py =10 -~ 0)(0 --- 0[,. As we show later, this simple lemma also shows that degenerate topologically ordered
states are not LR.

The second lemma shows that fluctuations in an LR state are strongly suppressed. Indeed, consider an LR
state 1)) together with a subset of spins L, and let A; be an additive operator of the form A; := 3~,_; a;. Here,
each a;is an Hermitian operator with ||a;|| < 1, which acts only on the ith spin. Since the a; operators are
commuting with each other, they can be viewed as classical random variables whose joint probability
distribution is given by the underlying state |¢)). The following lemma shows that their sum resembles a sum of
independent random variables: its probability distribution is strongly concentrated around its mean with a width

of O(JIL]).

Lemma 2.4. Let Hé Land TI2 _ be the projectors onto the eigenspaces of Ay with eigenvalues <x and >x respectively,
and let m be the median of Ay with respect to 1)) satisfying (1) in the sense that (Y|112,,|¢) > 1/2 and
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(Y|, |Y) > 1/2. Then, for any positive h the following inequality holds:

I, )| < Zf(Wzl]—Ll_l]- @

With a fixed function f (x). An equivalent statement is valid for | T12,, _ |1} ||

The proofis given by choosing P, = I12,, inlemma 2.3. After a short algebra, we get
[T, hl) || < 181|112, ,OLI2 || + 2f (q/M) with O g-local, where we use the facts
laf = (Y2, 1) > 1/2and [T, 4lv)]| = [T, 41¥)]| /8. To finish the proof we will show that
114, ,012,,|| = 0for q < h/2.This follows from the fact that A; is a sum of (commuting) 1-local operators
of norm 1, and therefore every g-local operator can take an eigenvector |a) of A; with eigenvalue ato a
superposition of eigenvectors 3 ¢,/|a’y with |a’ — a| < 2q. Thus, choosing g = [h/2] — 1proves the lemma.
An immediate consequence of lemma 2.4 with the assumption that f(x) is a super polynomially decaying
function, is that the fluctuations of every additive operator Ay, which is defined on the entire systems (L] = N)
must satisfy

((AAD?) = (YIALIY) — (YIALIY)* < OWN). 3)

We point out that the well-known notion of macroscopicity measured by the Fisher information [24, 25] is
implied by the lemmas 2.3 and 2.4. This feature emerges clearly from the following reasoning. The Fisher
information of a pure state |1/) with respect to an operator A is given by F(¢), A) = 4((AA)?)[25].In[25] the
authors suggest to define the ‘effective macroscopic size’ of a state as Negr (1) := maxs F (1), A)/(4N), where the
maximization is over all extensive operators A := . a; asin (3). States showing maximal quantum
macroscopicity, such as the GHZ state, have Nz = O(IN), whereas states with no quantum macroscopicity
have N = O(1). Inequality (3) therefore implies that LR states have N = O(1). Equivalently, states with
N = O(NP)for p > 0 arenecessarily non-LR.

On the other hand, the converse is not true: there are states with Nz = (O(1) that are also non-LR. For
instance, as we shall see, degenerate topologically ordered states turn out non-LR, but still satisfy the
inequality (2), namely N, = O(1). Thereby, LR provides us a more stringent characterization of the
macroscopic superposition encoded in a many-body state.

3. Reversibility of ground states

We now introduce our main tool for identifying LR states. The following theorem states that unique gapped
ground states of local Hamiltonians are LR. It holds for a very wide class of quantum systems that are described
by k-local Hamiltonians of the form

IX|<k X:X3i

where gis a constant of O(1). Note that k is not necessarily equal to q from the definition of the operator R above.
Also note that we implicitly assume that the spins sit on a lattice, but we make no direct use of the lattice structure
or its dimensionality. Instead, we use the second condition in (4), meaning that the total strength of all
interactions in which the ith spin participates is bounded by a constant of O(1). This definition of H captures a
very wide class of quantum systems: with short-range interactions such as the the XY model, the Heisenberg
model [26] and the AKLT model [27], as well as models with long-range interactions such as the Lipkin-
Meshcov-Glick model [28]. Typically, we have k = 2 (i.e., two-body interaction), but several exceptions exist
such as the 1D cluster-Ising model [29] (k = 3), the toric code model on a square lattice [30] (k = 4) and the
string-net model on a honeycomb lattice [31] (k = 12). We denote the ground state of Hby |(2), and fix its energy
tobe Eq = 0. Therest of the energies are denotedby 0 = Ey < E; < E; < ---. Finally, welet 6E := E; — Eqbe
the spectral gap just above the ground state. With this notation at hand, our main theorem is given as follows.

Theorem 3.1. With the above notations, for every spin subset L and every operator 1} defined on it, and for any
positive integer q, there exists a q-local operator R that satisfies

|RTLIQ) — |Q)] < Me%no/i’ (5)
[(QITLI)]
whereng == |q/k|and
2F,
= 1+ - E. = glL| + 8gkn,. (6)

Inequality (5), together with the definitions of ny and &, implies that
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Figure 2. Schematic picture of the proof. After applying the operator I to the ground state |2), the energies at most of order O(|L|)
are excited (blue curve). We then filter out the excited states by an approximate boxcar function in the range [6E, 2E. + 6E] (red
curve). Although the function rapidly increases for x > 2E, + 6E, this can be cancelled by the exponential decay of the energy

excitation.

Table 1. Locally versus non-locally reversible states.

LR Non-LR

GHZ state

States with large fluctuation

Degenerate, topologically ordered ground states
Degenerate, SPTO states (Symmetry-restricted non-LR)

Product state
Bounded-degree graph states
Short-range entangled state

[RILIQ) — 1) < %e’o(% 8E/ILD), and therefore |Q2) is LR when §E = O(1). Hence the existence of a
L

spectral gap places strong restrictions on structure of the ground states for very wide class of Hamiltonians. We
note that the theorem requires no assumption on a spectral gap or the size of |L| and N; hence, the theorem is not

asymptotic and applicable for arbitrary ground states in finite systems.

The full proof of theorem 3.1 is given in appendix B. Here we summarize its main ideas. Using recent results
from [32], we conclude that after applying the operator I} to the ground state |(2), we get a state which consists
mainly of excitations with energies of at most O(|L|). Beyond that scale, the weight of the excitations decays
exponentially. This is shown schematically by the blue curve in figure 2. Then following ideas from a recent new
proofofthe 1D arealaw [12], we construct the operator R by approximating the ground-state projector using a
polynomial of H. This polynomial is essentially a scaled version of the Chebyshev polynomial (red curve in
figure 2), chosen such that it approximately behaves as a boxcar function in the range [6E, 2E, + OE], thereby
suppressing the majority of excitations in I7|2). Crucially, even though it rapidly increases for x > 2E, + JE,
this blowup is cancelled by the exponential decay of the high-energy excitation.

4. Examples of locally versus non-locally reversible states

Let us now apply lemmas 2.3 and 2.4 and theorem 3.1 to several exemplary states emerging in different contexts.
The list of states is summarized in table 1. In particular, we will demonstrate how local reversibility implies the
absence of macroscopic superposition. We begin with LR states.

L. Product states. A product state [1) = [¢1) @ [¢2) ® -+ ®|¢bn) is LR because it is the unique ground state
of the local Hamiltonian H = Zfil(l — ) (¥hi] ® Tieqr)- As H is made of commuting projectors, its spectral
gap is necessarily 6E = 1.

2. Graph states with bounded degree. These states are defined on a graph in which each node has at most O(1)
neighboring nodes [33, 34]. The graph state is a non-degenerate gapped ground states of a Hamiltonian which is
the summation of the following commuting stabilizers [35] {g; W &E=0;® (o*?1 0'72 aix_ ), where

(85> 8/1 = Ofor Vi, i’, {o*, ¢, 07} are the Pauli matrices and {}y, j,, ..., } are nodes which connect to the
node i. Byassumption, k; = O(1), and hence the Hamiltonian is O(1)-local. By the commutativity of its terms,
we conclude that it has a spectral gap E = (1), and so by theorem 3.1 such graph states are LR.

3. SRE states. The third example are states that can be obtained by a constant-depth quantum circuit acting
on a product state. In the literature they are often dubbed as ‘trivial states’ [36, 37], or ‘short-range-entanglement
(SRE) states’ [2]. A constant-depth quantum circuit is a unitary operator that can be written as a product of

k = O(1) unitary operators U = U, --- U, where each unitary Uj is given as a product of unitary operators
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U = U, Uy, U, withnon-overlapping support of O(1). To see why these are LR states, we write

[1)) = Ul¢), where Uis the constant-depth circuit, and |¢) = |¢;) ® |¢,) ® ---isaproduct state. Then itis easy
to see that for any operator O with a support of O(1), UOU~ ! has also an O(1) support, and therefore if His a
local Hamiltonian for which |¢) is the unique ground state (see the first example), then H' = UHU !isalsoa
local Hamiltonian. Furthermore, H’ has the same spectrum as H, and so it is gapped with the unique ground
state, which is exactly |¢)). By theorem 3.1 this state is LR.

We note that not all LR states are also SRE states, or, equivalently, long-range entanglement (LRE) does not
necessarily imply non-LR. For example, Kitaev’s toric code [30] on a sphere is a commuting local Hamiltonian
and has a non-degenerate ground state with an O(1) gap, and therefore by theorem 3.1 itis LR. Nevertheless, it
cannot be generated by a constant depth circuit working on a product state, and is therefore not an SRE state
[38]. This point is also explained in appendix C.

We now turn to non-LR states. We will use lemmas 2.3 and 2.4 to identify such states.

5. ‘Schridinger Cat’ like states. States like the GHZ are not LR by lemma 2.3.

6. States with Fisher information of O(NFP) with p > 1. As we already mentioned, this result comes directly
from lemma 2.4. Also here, a quintessential example of this class is the GHZ state [25], which has the scaling with
p = 2.Moreover, the ground states at critical point are typically non-LR since they have
p =1+ @2 — n — z)/D (see appendix E), where zis the dynamical critical exponent, 7 is the anomalous
critical exponent, and D is the dimension of the system. For example, the critical point of the 1D transverse Ising
model hasz = 1and n = 1/4, whichyields p = 7/4.

7. States with degenerate topological order. While the local fluctuations in lemma 2.4 (as well as the Fisher
information) cannot detect a locally hidden order such as the topological order, we can use lemma 2.3 to see that
states with a degenerate topological order are not LR. We demonstrate this point using Kitaev’s toric code model
onatorus [30]with /n x /7 sites. The idea is that by taking L to be a non-trivial loop in the torus of size /71,
there exists an operator T; that takes one ground state |(2;) to another ground state |€2,), 1.e., [$2,) = T;|€);). The
properties of the topological order guarantee that for any observable O that is supported on less than /7 sites
(the size of a Wilson loop), (]O|€%) = (£2,]0|9Q,) and (€4]O|€2,) = 0. Therefore, we may invoke lemma 2.3
with P := (I — T;)/2,suchthat|Q) = P|Qy) + (I — P)|Y) = a|Qy) + B|Q_), where
Q1) = % (1€2)) £ |£2,)). Itis easy to verify from the above properties that |2, ), |€2_) are macroscopically

distinct over a scale of O(n'/4) (they are in fact distinct over a scale of /1, i.e., the size of L), and therefore by
lemma 2.3, these degenerate ground states are not LR.

We remark that non-degenerate topological order (e.g., in the toric code on the surface) results LR (from
theorem 3.1). In this context, we observe that, despite the topological entropy is non-vanishing for both
degenerate and non-degenerate topologically ordered ground states, the two cases are clearly distinct in terms of
the irreducible multiparty correlation (the issue has been recently addressed in [39-41]; see also appendix C):
Being our approach able to detect a ‘fine structure’ in the nature of the multipartite correlations, LR tells
degenerate topological order apart from non-degenerate topological order.

8. States with a degenerate SPTO. The same arguments showing that degenerate topologically ordered states are
not LR can be applied to the case of degenerate SPTO. Such states show topological order only to a restricted set of
operators defining a certain symmetry G [23]. They cannot be adiabatically connected to a product state using only
operators from G, and in that restricted sense they are not SRE (see the following for the definition). An important
example of states with SPTO can be obtained from graph state’s Hamiltonian on an open lattice, where one
removes the boundary stabilizers. This removal introduces degeneracy to the groundspace. Much like the case of
Kitaev’s toric code, we can also show here that the resulting ground states are non-LR as long as we restrict the
operator R to satisfy the symmetry of the graph Hamiltonian without the boundary stabilizers. We refer to these
states as symmetry restricted non-LR states. We present an example of such states for 1D case [42] in the appendix D.

5. Fluctuations in locally reversible states

Theorem 3.1, together with lemma 2.4 provides a remarkable insight into the structure of unique ground states’.
For any such ground state |€2), and for any additive operator A, = ¥, a; defined on a spin subset L,

(TI2,,, W) || < e a"VOE/ILl with ¢, a constant of O(1) (with m as defined in lemma 2.4). This implies that
[{(AL) — m| = O(|L|/8E), where (A;) = (Q|AL|Q?) is the expectation of A in the ground state, and therefore

TI Al || < el VOB, @)

¢, being a constant depending on the Hamiltonian’s parameters k and g. Taking A; to be an order parameter (i.e.,
the magnetization in L), we arrive at the conclusion that the deviations of any order parameter from its expectation

We notice that because theorem 3.1 is not asymptotic, the results in this section can be applied to arbitrary system size.

6
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are exponentially suppressed in unique gapped ground states. It is interesting to contrast this inequality with the
corresponding statistics of a product state. In such a case, Ay can be viewed as a sum of independent random
variables, and by the Hoeffding’s inequality [43], ||TI4 a+nl | < e O/ILD 1n this sense, unique gapped
ground states enjoy a weaker, yet still non-trivial, notion of local independence.

It is also worth noting that this independence cannot be (at least directly) deduced from the exponential
decay of correlation of gapped ground states [6, 7], since it can be applied to sets of observables that may sit very
close to each other on the lattice. Moreover, we can apply it to systems with long-range interactions, such as the
Lipkin—-Meshcov—Glick model [28] and systems defined on the expander graphs [19], in which the maximal
distance between any two spins is O(1) and O(log N), respectively. We remark that inequality (7) can be
extended to generic few-body operators [44]: A = 37y, g withg = O(D); finally we can derive a similar
bound for low-lying energy states, i.e., not necessarily the exact ground state (T.K.,I.A.,,L.A.and V. V.,
manuscript in preparation).

A simple consequence of inequality (7) is a trade-off relationship between the spectral gap and the
fluctuation AA; = ((QAF|Q) — (Q]AL|Q)?)!/2 of A in the ground state:

OE - (AA;)? < const - |L],. 8)

This has two interesting implications:

1. Bounds on the critical exponents. As noted above, theorem 3.1 does not assume the spectral gap of O(1) and
therefore can be applied to arbitrary ground states. Below, we apply it to quantum critical points to obtain a
general inequality for critical exponents.

Let us consider the critical regime, 6E — 0. Define A; = YN | a; with La total system and {a;}}Y | order
parameters (e.g. magnetization). We then introduce the critical exponents z, 1), yand vas in [45]; zis the
dynamical critical exponent, 7 is the anomalous critical exponent, yis the susceptibility critical exponent and v/ is
the correlation length exponent. By applying the finite-scaling ansatz [45] to (8), we can obtain

z>1-1-71, )
2 2v

where the second equality comes from the Fisher equality 2 — 1 = ~/v. We remark that (9) holds for very
general settings both for homogeneous and disordered critical systems (see [46] for a non-trivial example where
our inequality can be applied). Incidentally, we note that (8) gives non-trivial bounds for the critical Lipkin—
Meshcov—Glick model, a system with long-range interactions [28, 47]. The details of this calculation are given in
appendix E

2. Validity of mean-field approximations. Under the assumption of inequality (8) for ground states, we can
estimate the validity of the mean-field approximation. Just as the first implication, the full details are given in
appendix F. The idea is that since the operators A; in (8) are arbitrary (as long as they are additive on L), we can
use them to probe the two-spin reduced density matrix p;; and its relation with its mean-field approximation
p; ® p;. Specifically, it can be shown that for every spin subset L and an arbitrary spin i outside of it,

Z”Pl] - n9® pj” < const - /|L|/dE. (10)

jelL

This implies that on average, for each spin j € L, [|p; — p; ® p;[| < O / JIL|OE).If our system is defined by a
nearest-neighbor two-body Hamiltonian on a regular grid with coordination number Z (the number of
neighbors of each spin), then taking L to be the set of neighbors (L| = Z), one immediately obtains a bound on
the quality of the mean-field approximation for the energy density for V i:

1
= (hihve —
Z i

1 1
_Z<hij>exact < const - —

Z JZOE®

where the sum is taken over the spins adjacent to i. We therefore obtain a quantitative bound on how the error of
the mean-field approximation decreases as the lattice dimension (on which the coordination number depends)
goes to infinity. This result is consistent with the folklore knowledge in condensed-matter physics that the mean-
field becomes exact in infinite dimension. Recently, similar results have been obtained in different manners by
Brandio etal[48] and Osterloh et al [49]. In [48], the setup is more general (i.e., the system is not assumed to be
gapped) but the error estimation is weaker than ours, scalingas O(Z~'/3): in [49], the error estimation is as good
as ours, O(Z~'/2), but under the additional assumptions of having a regular, isotropic, and bipartite lattice of
%—spins.
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6. Summary and open questions

In this work, we introduced a new notion of locality in quantum states, the local reversibility, which is defined in
terms of the type of local operations that are needed to reverse the action of perturbations to the state.

We proved that all unique ground states of gapped local Hamiltonians are locally reversible (theorem 3.1),
and, on the other hand, we showed how local reversibility implies a suppression of quantum fluctuations
(lemma 2.4). Together, these two results provide new insights into the structure of unique ground states of
gapped local-Hamiltonians: (i) alow Fisher information, which is an indication for the lack of quantum
macroscopicity in these states; (ii) a novel inequality for the critical exponents in these systems; (iii) a quantitative
analysis of the mean-field approximation; and finally, (iv) since an adiabatic (local unitary) evolution of product
states is locally reversible, our result clearly implies that all the gapped quantum phases of matter, disordered or
with local order parameter (Landau symmetry breaking quantum phases), are reversible. In contrast, degenerate
topological phases or the symmetry protected topological phases, are not reversible. We note that LR can detect
the difference between degenerate and non-degenerate topological order. Indeed, it was discovered that,
although both with non-vanishing topological entropy they have very different irreducible multipartite
correlation (see paragraph 8 of section 4 and the appendix C). In this context, we observe that LR can be further
restricted (with a similar logic we pursued in this article to deal with symmetry protected topological phases) to
improve and refine the characterisation of the ground state. Such a strategy might lead to catch properties of the
state originating from the geometry of its ambient space.

Our work provides an instrumental view for several research directions.

Based on the bounds on the fluctuations we found, we might argue that, fluctuations in gapped ground state
obey a Gaussian statistics (as they do in non-interacting theories). A recent proof of the Berry—Esseen theorem for
the quantum case by Brandao et al [50] hints that this might be the case. A natural approach to this would be to
tighten our main theorem, replacing the exponential decay in the rhs of inequality (5) by a Gaussian.

Another intriguing direction to pursue is to incorporate LR, or one of its consequences, such as lemma 2.4 or
inequality (8), explicitly or implicitly—in the construction of tensor networks in higher dimension (e.g.,
Projected entangled pair state, or PEPS [16]). By construction, these states satisfy the area-law, but we now know
that they should also satisfy local reversibility. This will speed up the contraction of such tensor networks, which
is the main bottleneck in the variational algorithms [51-54]. A goal of paramount importance in this context is
to prove that PEPS are faithful representations of gapped ground states. A good place to start studying this
question is in the 1D world. We know that MPS can describe both LR and non-LR states (i.e., GHZ). The natural
problem is then to pinpoint what is needed for an MPS to describe an LR state.

Proving the area-law conjecture for gapped systems in 2D and beyond remains a challenge. It would be
interesting to see if the additional structure of local reversibility of these states can assist in such proofs, or at least
provide new insights regarding this important conjecture. As a specific route, we suggest to harness the LR in
addition to the clustering, to improve the upper bound by Brandio and Horodecki [14].

Finally, it would be interesting to understand if local reversibility could somehow be used to characterize
unique gapped ground states. In other words, is local reversibility also a sufficient condition for unique gapped
ground states? Strictly speaking, this is incorrect, as there are LR states which are not gapped ground states. For
example, the state [000 --- 0) + € (N)|111 --- 1) where ¢ (V) decays faster than any polynomial is trivially LR,
but can never be a unique gapped ground state of k-local Hamiltonians aslongas k < N /2 (see [55]).
Nevertheless, we may still ask if, in some sense, every LR state can be approximated by a unique gapped ground
state. If this is not the case, it would be interesting to understand which are these LR states that cannot be even
approximated by gapped ground states.

Generalising our approach to mixed states and devising experimental protocols to measure local reversibility
are important future challenge.
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Appendix A. Proof of lemma 2.3

Assume that |¢)) satisfies inequality (1). Then for every integer g > 0, there exists a g-local operator R such that
RP) = ) -+ 16), where [§'|P < 7 @/VILD) < [ 5f (a/ VIED). Therefore,

V1B Y] |
Blw) =TY) — Pilh) = (R = DPLY) — |¢')
=aR = Dlth) — 16').

Bydenoting O = a(R — I)/Band |6) = —37!6"), wehave |¢py,) = Ole,) + |6), where
1617 = 18" /18] < ﬁf(q/ﬂ).Thiscompletestheproofoflemma2.3.

Appendix B. Proof of theorem 3.1

B.1. Outline
The proof of theorem 3.1 is rather technical, and therefore we first sketch it here, giving the full details in the
following section.

Multiplying inequality (5) by | (Q2|T3|€2) |, and writing for brevity R := (Q|I};|Q2) R, we obtain

[(R = 192) () - T < 6]|T; [|e=2m/<. (B1)

So for the state to be LR, we need to find a R whose action on I} |(2) approximates the action of the ground state
projector ) (Q2] on it. In addition, in order to satisfy the premise of the theorem, it has to be a g-local operator.
To this aim, we look for a low-degree polynomial Fx(x) and write R == F (H). Specifically, choosing a
polynomial of degree n := |q/k] guarantees that it will contain at most g-local terms, since, by definition, each
term in His k-local.

To understand the restrictions on Fr(x) that inequality (B1) poses, it is convenient to work in the energy
basis {|E) }: expanding I7|2) = > ¢ (E)|E), we want (i) Fr (0) = 1(recall that have set E; = 0), and (ii)
(ZE> splc (E) - Fr(E) |2)1/2 < 6]|Ty|[e~?"/¢. This is achieved using two ideas, which are demonstrated in
figure 2.

The first idea is that the expansion of I} |€?) is dominated by energies of at most O(|L|); beyond that scale, ¢
(E) is exponentially decaying. This is a direct corollary of theorem 2.1 in [32], which for our case implies:

Corollary B.1 (from theorem 2.1 in [32]). Let Hg ¢ be the projector into the eigenspace of H with energies greater
than or equalto E. Then

ST (EYP = |IELLIQ) [P < ||Ty|[PeE-26ILD/4gk, (B2)
E'>E

In [32], this theorem was proved under the more restricted condition that every particle participates in at most g
interactions of norm 1, but this can be easily relaxed to the current condition, given in definition (4).

Thebound in (B2) implies that our polynomial should mainly ‘kill’ the energy excitations of T;|{2) in the
range [0E, O(|L|)]. Following [12], we let Fr(x) be the 114 th order Chebyshev polynomial [56], scaled such that
x:[—1, 1] +— [6E, 2E. + 6E]and Fz(0) = 1. Asdiscussed in the following section, this polynomial fluctuates
between fe~2"/¢ in the range [SE, 2E. + SE], and then diverges like O((2x/E,)™). Itis our choice of E. in
theorem 3.1 which guarantees that this divergence is cancelled by the exponential decay of corollary B.1. After a

rather straightforward calculation, one can show that total contributions of the energy segments [0E, 2E. + 6E]
and [2E, + SE, oo)to||[(R — |Q2)(Q]) - [7|2)| is exponentially small.

B.2. Full proof
Following the proof’s sketch in the previous section of the main text of the paper, we start from inequality (B2).
Our goal is to find a polynomial Fg(x) such that the action of the operator R := Fy (H) on the state I;|(2)
approximates the action of the ground state projector |2) (2| on it. As His a k-local operator, choosing
no := |q/k] guarantees that R is a g-local operator.

Working in the eigenbasis of H, we expand I7|Q?) = Y, ¢ (E)|E), and as Fr(H) is diagonal in this basis,

[Fr(H) — Q) (QNTLQ) = (Fr(0) — De(0)IQ) + > Fr(E)c(B)|E).

E>6E

Therefore, for inequality (12) to hold, it is sufficient that

Fr(0) =1 (B3)
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1/2
( > lc(E)Fr <E>|2) < 6| Ty [le2m/%. (B4)
E>6E

As noted in the outline of the proof in the previous section, to prove these properties we use two ideas. The first is
that the weight of the high energy excitations in I} |€2) decays exponentially, as shown in corollary B.1 of

section B.1. The second is to take Fx(x) to be a scaled version of the 1y th order Chebyshev polynomial. Let us
start from the second idea. The nth order Chebyshev polynomial [56] of the first kind is given by

(x + Vx* — )”—l—(x—\/x — )”

T (x) =

(B5)

Equivalently, for x € [—1, 1]itis givenby T, (x) = cos(n arccos(x)), and for |x| > 1by
T, (x) = cosh(n arccosh(x)). What makes the Chebyshev polynomial so useful to our purpose are the properties
that are summarized in the following lemma, whose proof is given in section B.2.1:

Lemma B.2.
T, ()| <1, for |x| < 1 (B6)
1
|7, ()| < E(ZIxI)" for x| = 1 (B7)
1 |x| -1
[T, ()| = Eexp(Zn I ), for |x| > 1. (B8)
Setting
2E,
&= 1+ SE and E = g|L| + 8gkn,, (B9)

we define Fp(x) to be the polynomial

Fr(x) = (B10)

In other words, we defined it to be the nyth order Chebyshev polynomial, scaled such that
x: [—1, 1] — [OE, 2E, + 6E]and F(0) = 1. Clearly, this definition satisfies equation (B3). Let us see why it
also satisfies inequality (B4).

We begin by applying lemma B.2 to the definition of Fr(x), which implies that for 6E < x < 2E, + JE,

|Fr(x)] < 2e72m0/%, (B11)
and for x > 2E, + 6E,

p— 11(]
[Fr(x)] < (ZinzéE _ 2) e—2n0/¢, (B12)
C

For brevity, we define the low and high energy ranges I ow := [OE, 2E. + 0E)and Iy; := [2E. 4+ E, 00). Then
using the triangle inequality, we split the sum in the lhs of (B4)

1/2 1/2 1/2
(Z |C(E)FR(E)|2) < { > |C(E)FR(E)|2] + { > |C(E)FR(E)|2] )

E>GE E€liow E€ly

and bound each term separately. The low-energy term is bounded by

1/2

2e2"o/5( > |c(E)|2] < 2e 20/ TL|Q) || < 2| T [le~2m/s, (B13)
E€how

which follows from inequality (B11) and the fact that 3>y [c(E)[* < Yplc(E)* = |TLIQ) |

To finish the proof, we will show that the high energies term is upper bounded by 4/| T} |[e=2"/<. To this aim,
wewrite Iyy = I U L U L U ...,where [; :== [2E; + 0E + (j — 1)1, 2E. + 0E + jn) and njis a positive
constant which will be set afterward. Using the triangle inequality once more, we get

Ecly j=1\E€l;

12 1/2
[Z |C(E)FR(E)|2] < Z[Z|C(E)FR(E)|2] .

10
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Clearly, for each I; segment

1/2 1/2
[Zlc(E)FRw)P) <m6a1>_<|FR(x>|[Z|c<E>|2] :

E€l; E€l;
As |Fg (x)| monotonically increases for x > 2E. + OE (which follows from the fact that the Chebyshev
polynomial is monotonic for x > 1), it follows that
max|Fg (x)| < |Fr(2E; + OE + jn)|.

XEIJ‘

To bound the other term, we use corollary B.1, which gives us

1/2 1/2
[ZIC(E) Iz] < { > |c(E)|2] < || Ty [|e? @B+ SE+Gi=Dn=2¢ILD),

Ecl; E>2E+6E+(j—1)n

where we have defined

A= ——, (B14)

Together, this gives us

1/2
[ZlC(E)FR(E) Iz] < |[Tefle - |Fr Ec + OE + jip)| e M@t oEtin=2elth,
EGIj

The final step is to show that for x > 2E, + 6E,
|Fr(x)] - e Ax=28ILD L e=2m0/8 . o= Ax=2ILD/2 (B15)

(see section B.2.2 for a proof), which leads to

1/2
[ZlC(E)FR(E)lz] < HFL”e72n0/§e}\n . e~ MNQE+6E+jn—6g|L])/2,
EGIJ‘

Summingoverall j > 1, then gives us

172 -
[ Z |c(E) g (E)|2 < HFLHe’Z""/E . e~ AQEASE-2%ILD/2 | oA Ze*j”’\/z.
Eely im1
Using the definition of E, in equation (B9), we find that e = @E+0E=2ILD/2 — e=A(16gkn, +6E)/2 1 and

calculating the geometrical sum we get ey | e TN = eMi/2 / (1 — e *1/2), which can be minimized to 4 by
choosing i such that e/ = 2. All together, we therefore get

1/2
( > |C(E)FR(E)|2] < 4| ||le2nm/8, (B16)

E€y

which completes the proof.

B.2.1. Proof of lemma B.2

Proof. Inequality (B6) follows directly from the identity T, (x) = cos(n arccos(x)), which is valid for |x| < 1.
For the other inequalities, first note that T, (—x) = (—1)"T,,(x), which implies | T,,(x)| = | T, (|x])|, and soitis
sufficient to prove inequalities (B7) and (B8) for x > 1.

To prove inequality (B7), consider the general inequality

2x — )" +y" < (207, (B17)

which isvalid forany x > land 0 < y < 1(theinequality can be proved by differentiating
2x)" — ((2x — y)* + y™) withrespect to x, and noting for x > 1and 0 < y < litisamonotonically
increasing function of x, and its minimum value 0, which is obtained for x = 1 and y = 0). Choosing
y = x — Jx? — 1, thelhs of inequality (B17) becomes 2T, (x), which proves (B7).

For inequality (B8), weset t := arccosh(x), and then by the identity T, (x) = cosh(n arccosh(x)), we
conclude that for x > 1,

T, (x) = cosh(nt) = %(e’“ +e M) > le”t.

\]

11
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To finish the proof, we need to show thatfor x > 1,1 > 2,/ i :L : . This follows from the fact that
t/2 > tanh(t/2), and the trigonometric identity tanh(¢/2) = | % .

B.2.2. Derivation of the inequality (B15). From inequality (B12), we have

— "o
|Fr(x)| < em/&(M _ 2) ,

E.

for x > 2E, + &E. To prove inequality (B15), we will show that [(2x — 26E)/E, — 2] e *~6ILD/2 < 1 for
x = 2E, + OE, or, equivalently, that its logarithm
G(x) = —%(x — 6glL) + nolog(M — 2)

c

is negative. This follows from the facts that
GQE. + 6E) = —2ng — % + nplog2 < 0,

and forevery x > 2E, + 6E,
dG(x) _ A 4 no < A A A
2

2o + 7 <
E. 2 2 4 AL

o

dx 2  x—E —6E &

Appendix C. Difference between degenerate and non-degenerate topological orders

In the case of the toric code model, we find that the LR depends on the topology of the ambient manifold: LR
holds on a sphere but is violated on non-simply connected geometries (implying a non-trivial ground-
manifold). Itis well-known, however, that the topological entanglement entropy is non-vanishing for toric code
model ground states living in lattice with any topology [57, 58]. Indeed, the difference between the two kind of
ground states can be resolved in terms of the irreducible multiparty correlation.

The notion of irreducible multipartite correlation has been first introduced in [59] to characterize the
multipartite correlations in a quantum state. It was noted recently that such notion is equivalent to the
topological entanglement entropy if the state has zero-correlation length [40]. As explained in [39, 41], we have
two kinds of multipartite correlation, which we refer to as ‘effective multiparty correlations’, distinct from
‘inherent multipartite correlations.” The topological entanglement entropy cannot distinguish them. We have:

(i) The degenerate topological order, as that one of the toric code on a torus, has genuine multiparty correlation
of the ‘inherent’ type involving O(I) spins (I: the system length).

(ii) The non-degenerate topological order, as the toric code on the sphere, has low degree of inherent multiparty
correlations involving O(1) spins, but have the ‘effective’ type involving O(I) spins.

In other words, a non-vanishing topological entanglement entropy in non-degenerate topological order
arises just because of such multiparty low-degree correlations. There, we have no high-degree multiparty
correlations if we look at the total system; in contrast, multiparty correlations of O(I) can be effectively induced
by tracing out some finite suregions (see figure C1 ) [41]. Such a conditional many-body correlations can appear
in short-range entangled state [60, 61] or even in classical models [62].

In this way, we can see qualitative difference between the degenerate and the non-degenerate topological
orders in terms of the irreducible multiparty correlation, which results in LR of the surface code and non-LR of
the toric code. Being our approach able to detect such ‘fine structure’ in the nature of the multipartite
correlations, the LR tells degenerate topological order apart from non-degenerate topological order.

Appendix D. Symmetry-restricted local reversibility

Symmetry restricted LR states (SRL) can be introduced along very similar lines used in section 2. Let us consider
agiven Hamiltonian H enjoying a global symmetry G; let |1)) be the ground state of H. We say that the state |¢) is
SLRiff the property (1) holds with a g-local operator R enjoying the same symmetry group of the

Hamiltonian: [R, G] = 0.

12



10P Publishing

Quantum Sci. Technol. 2 (2017) 015005 T Kuwabhara et al

System length : [
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L C
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Figure C1. Multipartite correlations in the surface code. In the ground states of the Kitaev model on sphere, it has no multi-party
correlation (or contains only low-degree of correlations), but collective properties of the low-degree of correlations induce multi-
party correlation when we look at reduced region of the system, say L¢. Indeed, if we split the region L into A, Band C, we obtain non-
trivial value of the topological entanglement entropy.

Here we present an example of states which are not SLR. Cluster states provide an example of SPTO. The 1D
cluster states [63] are the ground states of the Hamiltonian

L

He = ZU?AU?U?H’ (D1)
i=1

which enjoys a global symmetry Z, x Z, [42]. With the boundary conditions o5 = 07, = I, the ground space

of Hcis unique with a spectral gap. For 0§ = o7, = 0, in contrast, the ground space is four-fold degenerate

because the two stabilizers (outof L) 050 03 and 07 _ 07 07, can be fixed at will [42]. Let

{|1€24), & = 0, 1, 2, 3} be spanning the ground state manifold. Due to the SPTO of the system, it follows that

the ground states |{2,,) cannot be distinguished by any local operator ox in Z, X Zj:

(Qulox|Qa) = (Qplox|s), and  (Q]ox|Qs) = 0. (D2)

with |X| < ¢N (c = O(1)). Using these conditions, the symmetry-restricted non-LR of |€2,,) follows from the
same arguments that were used in the proof of the non-LR of the toric code.

Appendix E. Critical exponents

Here, we derive inequality (9) for the critical exponents z, 7, yand v under the scaling ansatz (E2) [45, 64]. Recall
that we are considering a local Hamiltonian system at T = 0 which is driven towards critically, and let

A = Y, a;, where g; are single particle operators that correspond to a local order parameter (e.g., spin localized
at site i leading to the magnetization along a given axes). Our starting point is inequality (8), namely

OE - (AA)? < const - N. (E1)

We first define the variance (AA;)? which depends on time as (AA;)? := ((A(t) — (A)) - ((A — (A)),

where A (t) = e H!AeF*, The variance (AA,)? reduces to the summation of the correlation functions:
N N
(AA)? = D (ai(Daj) — (ai)(aj) = > Cij(0),
ij=1 iji=1

where a; (t) == e Hig;elf fori = 1, 2, ...N. Note that (AA,_y)? isequal to (AA)? = (A?) — (A)?.Inthe
following, we denote C; ;(t) = C(r, t) under the assumption of the translation symmetry.

Now, we adopt the following scaling ansatz [45]:

$(q, w; &) = & "D (g€, w&), (E2)

where £ is the correlation length and S(g, w; &) is the spatial-temporal Fourier component of C (r, t), namely
S(q, w; &) = C(r, tye i@rtendrds. E3
@ w6 =[ [ ct e r (E3)

We also define S(g; &) as
1 o0

S(q; &) = — S(q, w; &)dw. E4
@O =1 [ s@uod (E4)

We can see that the static fluctuation (AA,_()? isequal to NS(q = 0; &) by expanding S(q = 0; &).
We then obtain the scaling of S(q = 0; &) oc €272 by taking the scaling (E2) for S(g, w; &), and hence we
have (AA;—¢)?/N o< £27-7172. Wealso have the scaling of the energy gap as 6E, oc £2 [45] by the use of the
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dynamical critical exponent z. Ata critical point, where the correlation length is as large as the system length, the
inequality (E1) reduces to
—z<-2-n-2 (E5)

in the infinite volume limit (N — o). This reduces to the inequality (9) in the main manuscript.

We close the section applying inequality (8) to a system with long-range interactions: the Lipkin-Meshcov-
Glick model Hyyig = — %Ziq(crf o + yo! a]y-) + SN ho?with |y < 1. Atthe critical point A = ||, we
have the scaling [47] of §E o N~1/3 and (AM,)? o< N*/3, where M, is the magnetization in the x direction,
M, = XN, oF. Thus, the spectral gap and the fluctuation can give the non-trivial sharp upper bounds to each
other.

Appendix F. The quality of the mean-field approximation

Let |€2) be the unique ground state of a gapped local Hamiltonian, and let Pij» P p; beits two-particles and one-
particles reduced density matrices. We want to estimate the error of the mean-field approximation
p;j — p; @ p; by proving inequality (10) in the main text. For simplicity, we seti = 1 and show that

Yollon; — o1 © pjll < const - /|LI/SE. (F1)

jeL

First, note that we can always find a set of d” projectors { P{"} onto the spin i = 1 that satisfy

dZ
le,j - Pj” < Z||P1(m)(,01,j - ® pj)Pl(m)H’ (¥F2)
m=1

where d is the local spin dimension. For example, in the case of spin-1/2 systems (d = 2), we can take
PV = 01) (01, P = [1) (], PY = [+1) {1l PY = | =) (il with [41) == (105) % [1))//2. Indeed,
defining bp, ; = p;; — p; ® pj we get
H‘5P1,j|| < <01|5P1,j|01>|| + ||<11|5P1,j|11>|| + ||<01|5P1,j|11> + <11|5P1,j|01>||
(0u16p 001 + [{ulbpy | + [[{(+1l6py 1 +1) = (=1ldpy il =1 )l
(

<IKOép 100 + [[{Ll8py 1|+ {11811+ + [[(=1ldpy 1 =1 ) -

The proof for higher d follows the same lines.
Summing inequality (F2) overall j € L gives

dZ
Yollow = o pill < S DCIPM (o — oy @ p) P
jeL m=1jeL

To prove inequality (F1), we will show an upper bound of ZjeLHPl('”) (prj— P ® pj)Pf’“) || for arbitrary m.
Defining pg."’) = Tr(P™ P P{™), where Tr;(---) is the partial trace over the ith spin, we get
P (pyj =y ® p)P™ = P @ (o — (QAUP™IQ) - p).

Clearly, | P™ @ (pg"’) — (QPM™|Q) - ) = ||,0§.’”) —(QPM™|Q) - p;||- Moreover, there always exists a rank-
1 projector P}’”) such that

1P = {QUP™IQ) - py]| = 5™ - Tr [Py (" — (QUP™IQ) - p],
where s](m) = sign{ Tr [P;m)(pg’") — (QIP™Q) - pp)1}. Therefore,
1P oy — oy @ p)P(™|| = 5™ - Tr[P{™ (o1 — (QIP™IQ) - p)]
= s [(QIEMPIIQ) — (QIPMIR) - (QIPI)].
We now define the additive operator

(m) . (m) | p(m)
A = Zsj Pi™.
el

Then from the above calculation,

SR oy — oy @ p) PP = (QUPIPA™ Q) — (QIPIMIQ) - (QJA™]Q).

jelL
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But
(QUPAMIQ) — (QUP™|Q) - (QUA™ |Q) = (UP™ - [A™ Q) — (QAA™|Q)|2)]
<[PPI - A1) — (1A 19) [D)]],
and as ||[AT|Q) — (QIA™ Q) |Q)|| = AA"™), we conclude that
SR (o — oy @ pp P < AA™ < const - ([|L|/SE.

jeL
Here, the last inequality comes from the inequality (8) in the main text, which applies in this case since A" isan
additive operator on L. Combining this with inequality (F2) completes the proof.

F.1. Optimality of the bound
When 6E = O(1), inequality (F1) reduces to

Yl — 1@ pyll < const - JIL. (F3)

jeL
We can ensure that this upper bound is qualitatively optimal by considering the state

%|01>|0203 - On) + %|11>|W2,...,N>, (F4)

where |W,, ) is the W state for the spins 2, 3, ..., N. We note that this state satisfies inequality
(AA)? < O(|L)) [24], which is equivalent to the inequality (8) in the case of 6E = O(1). Interestingly, the state
in (F4) also gives the upper limit of the monogamy inequality of the entanglement [65].
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