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Abstract
The low-temperature physics of quantummany-body systems is largely governed by the structure of
their ground states.Minimizing the energy of local interactions, ground states often reflect strong
properties of locality such as the area law for entanglement entropy and the exponential decay of
correlations between spatially separated observables. Here, we present a novel characterization of
quantum states, whichwe call ‘local reversibility’. It characterizes the type of operations that are needed
to reverse the action of a general disturbance on the state.We prove that unique ground states of
gapped localHamiltonian are locally reversible. This way, we identify newuniversal features ofmany-
body ground states, which cannot be derived from the aforementioned properties.We use local
reversibility to distinguish between states enjoyingmicroscopic andmacroscopic quantum
phenomena. To demonstrate the potential of our approach, we prove specific properties of ground
states, which are relevant both to critical and non-critical theories.

1. Introduction

Gapped ground states define quantumphases ofmatter at zero temperature. Even though they occupy a tiny
fraction of the possiblemany-bodyHilbert space, these statesmanifest a rich and diverse structure. Standard
examples are states with local order-parameter such as paramagnetic and ferromagnetic ground states, the
superfluid and insulator ones in bosonic and fermionicmany-body systems, etc. Other instances, such as
quantumHall and quantum spin liquids, can arise because ofmore subtle orders that can be established in the
system. A central goal of condensedmatter theory is to understand their structure and how it relates to the
physics of different phases [1, 2]. A natural approach to this problem is tofind the constraints that these states
satisfy, which set them apart from genericmany-body states [3]. Such analysis can serve for the understanding of
which type of entanglement that ground states can indeed harbour. To this aim, it is important to understand
aspects of locality in these states.We ask: ‘to what extent can such states be described by a collection of local degrees of
freedom, which are only loosely correlated with each other?’

Rigorous tools to tackle this question are scarce, even though various properties have been known in
empirical ways (see [4]). An example is provided by the exponential decay of correlations, also known as
exponential clustering: it has been proved that gapped ground states on a lattice have afinite correlation length,
beyondwhich the correlations between spatially separated observables decay exponentially [5–7].More
recently, other quantitative tools have been devised, which characterize the ground state’s locality by looking at
its entanglement structure [8, 9]. A notable example is area law of the entanglement entropy [8], which states that
the entanglement entropy of a regionwith respect to the rest of the lattice should scale like the boundary area of
the region rather than its volume. It is expected to hold for all gapped ground states on a lattice, but has only been
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rigorously proved in one spatial dimension (1D) byHastings [10] (see [11–15] for further results). Hastings’
celebrated result yields a complete characterization of 1D gapped ground states asmatrix product states (MPSs)
[16], which, to a large extent, provides a full understanding of the 1D case [17].

Unfortunately, in higher spatial dimensions our understanding of the problem is still verymuch limited. Not
only that a proof for the area law is lacking, but it is also unclear how an area lawwould imply an efficient
representation of the ground state [18].Moreover, when the systemhas long-range interactions, or it is hosted in
a lattice with a large dimensionality (like an expander graph [19]), locality properties of the ground state are even
more illusive: exponential decay of correlations no longer holds (since all particles are essentially close to each
other), and in general, area law becomemeaningless as surface areas become as large as volumes. For such
systems, verywell studied in theHamiltonian complexity field, spatial distancemight no longer a good figure of
merit for identifying entanglement [20–22]. Aswewill shortly show, an alternative approach is to study
entanglement and locality by analyzing the collective properties of a subsystemwith respect to the number of
local degrees of freedom it contains rather than the distance between them.

In this paper, we introduce a new constraint on amany-body gapped ground states which complements
some of the shortcomings of the existing approaches.We call it local reversibility. It is based on the intuition that
macroscopic-scale entanglement cannot be recovered by any local operation once it has been broken. Therefore,
states which allow this sort of local recovery, necessarily contain a ʼsmall amount ofmacroscopic superposition’.
Here, we observe that we use the term locality in a broadermeaning than the usual spatial locality.

Wewill show that such local reversibility holds for all unique gapped ground states of localHamiltonians,
including systemswith long-range interactions or a diverging lattice dimensionality (for which the existing
approaches to the locality properties, like the exponential decay of correlation, do not apply).We therefore
believe that it exposes fundamental features of gapped ground states that cannot be captured by existing
properties. To demonstrate its potential, we study specific problems inmany-body physics.Wework out
rigorous bounds for the quantum fluctuations of locally reversible states. This, in turn, implies new constraints
on the critical exponents and rigorous bounds on the quality of themean-field ansatz, which is often used to treat
complicated quantummany-body systems. An important outcome of our approach is an effective way to
identify quantummacroscopic superposition.

2. Local reversibility

Tomotivate our approach, we beginwith a heuristic discussion (figure 1). Consider a state ∣yñ that is defined
overN localized spins, eachwith a d-dimensional Hilbert space, and let GL be an operator acting on a spin subset
L; the total system is given by ÈL Lc with Lc the complement of L. Applying GL to ∣yñ, we can potentially disrupt
the entanglement between L and Lc, evenwhen ∣yG ñL has a constant overlapwith ∣yñ. It is useful to think of ∣yñ
as a superposition of several states ∣ ∣ ∣ y y yñ = ñ + ñ +1 2 and of GL as a projector that ‘kills’ some (but not all)
of these states. Intuitively, if ∣yñcontains some ‘global entanglement’ on the scale of ∣ ∣L spins, wemay only be
able to reconstruct ∣yñby acting on ∣yG ñL with (at least) an operator that acts non-trivially on the same portion L
of the system (i.e., it would be an ∣ ∣L -local operator). However, when ∣yñcontainsmostly short-range
entanglement (SRE), wemight be able to return to ∣yñby using an operator of amuch smaller support. How
much smaller should that support be for a slightly entangled state? Specifically, as we shall see shortly, the
minimal size of support that is needed to reconstruct a product state is ( ∣ ∣ ) L . This indicates that states that

can be reversed by operators of ( ∣ ∣ ) L support constitute a class of states with a small amount of
entanglement. In the following, we refer to such a class as locally reversible states.

Figure 1. Schematic picture of the local reversibility (LR).We disturb a quantum state ∣yñby an operator GL, which is supported in a
subsystem L.We then try to recover the state ∣yG ñL by the use of a q-local operatorR. If the state ∣yñ is a product state, we can recover
the original state by an operatorRwith ( ∣ ∣ )=q L ; then, ‘locally reversible state’ is defined as the class of states which have the same
property as product state in terms of the non-locality of the reverse operator. The entanglement properties of LR states are expected to
be highly restricted since entanglement cannot be recovered by local operations once it has been broken.
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Wenowput the discussion above on a formal ground.Wefirst defines the notion of q-local operator, which
may be often called a ‘few-body operator:’

Definition 2.1 (q-local).Given an integer >q 0, a q-local operator is an operator of the form ≔ åO oX q X ,
where each oX is an operator supported on afinite subset of spins { }= ¼X i i i, , , X1 2 of cardinality ∣ ∣X . The oX

operators are not necessarily sitting next to each other on the lattice.

We formulate the reversibility property in terms of such operators oX.

Definition 2.2 (Local reversibility).We say that a state ∣yñ is locally reversible (LR) if there exists a function ( )f x
that decays faster than any power law, such that for every subset of spins L and an operator GL defined on it, and
for every integer >q 0, there exists a q-local operator R such that

∣ ∣
∣ ∣ ∣ ∣ ∣ ∣

( ) 
 y y
y y

G ñ - ñ
G

á G ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R f

q

L
, 1L

L

L

where is the operator norm.

Three remarks are in order. (i)Both the shape and the size of L are left completely general. In particular, we
can take L to be the entire system (∣ ∣ =L N ). (ii) In some cases, it willmake sense to only consider operatorsR
that respect certain symmetries.Wewill later use this restricted definition of local reversibility for states with
symmetry protected topological order (SPTO) [23]. The last remark is on the status of function f (x) in (1).
Despite f (x)need to be a superpolynomially decaying function in 2.2, the statement (1) itself can be proved for a
fixed generic f (x). In this sense, the statement is non-asymptotic and valid forfinite systems. In order (1) to be
effective in putting bounds on the state in ameaningful way, however, f (x)need to be specific and non-trivial
(see ourmain theorem 3.1 for an example of f (x)); such a feature will be thoroughly exploited in the rest of the
paper.

We claim that LR states show a specific degree of locality, while non-LR states correspond to states with non-
local features due to global entanglement. This assertion can be explained by the following two lemmas
characterizing the entanglement structure of LR states.

Thefirst lemma refers to the so-calledmacroscopicity of the states. Namely, wewill demonstrate hownon-
LR states correspond to states withmacroscopic superposition.

Let us consider states of the type ∣ ∣ ∣y a y b yñ = ñ + ña b and discuss the possibility that ∣y ña and ∣y ñb are
macroscopically distinct (meaning that a collection of local operators exists to ∣ ∣y yñ « ña b ). Then:

Lemma2.3. Let ∣yñbe a state which satisfies(1) for a fixed function ( )f x . Then, for any decomposition
∣ ∣ ( )∣ ≔ ∣ ∣y y y a y b yñ = ñ + - ñ ñ + ñP PL L a b with =P PL L

2 , we have

∣ ∣ ∣y y dñ = ñ + ñO ,a b

where O is a q-local operator and ≔ ∣ ∣ ∣ ( ∣ ∣ )  d d d a bá ñ - f q L2 2 1 .When ∣yñ is a LR state, ( )f x decays

superpolynomially and only a difference of ( ∣ ∣ ) L exists between the two states ∣y ña and ∣y ñb .

The proof is provided in the appendix A.
By contraposition of the lemma, any quantum state such that we can find a bipartition PL for which two

states ∣y ña and ∣y ñb aremacroscopically distinct over a ∣ ∣L spatial scale, is non-LR; for example, theGHZ state

over n particles, ∣ (∣ ∣ ) yñ = ñ + ñ0 0 1 1n n
1

2
is not LR since ∣ ∣ ñ ñ0 0 , 1 1n n are clearly

macroscopically distinct over the scale of -n 1, andwemaywrite ∣ ∣ ( )∣y y yñ = ñ + - ñP PL L with
≔ ∣ ∣ ñáP 0 0 0 0L n. Aswe show later, this simple lemma also shows that degenerate topologically ordered

states are not LR.
The second lemma shows thatfluctuations in an LR state are strongly suppressed. Indeed, consider an LR

state ∣yñ togetherwith a subset of spins L, and letAL be an additive operator of the form ≔ å ÎA aL i L i. Here,
each ai is anHermitian operator with  a 1i , which acts only on the ith spin. Since the ai operators are
commutingwith each other, they can be viewed as classical randomvariables whose joint probability
distribution is given by the underlying state ∣yñ. The following lemma shows that their sum resembles a sumof
independent random variables: its probability distribution is strongly concentrated around itsmeanwith awidth
of ( ∣ ∣ ) L .

Lemma2.4. Let P x
A and P>x

A be the projectors onto the eigenspaces of AL with eigenvaluesx and>x respectively,

and let m be themedian of AL with respect to ∣yñ satisfying (1) in the sense that ∣ ∣ y yá P ñ 1 2m
A and
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∣ ∣ y yá P ñ 1 2m
A . Then, for any positive h the following inequality holds:

∣ ⌈ ⌉
∣ ∣

( )   yP ñ
-

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f

h

L
2

2 1
. 2m h

A

With a fixed function ( )f x . An equivalent statement is valid for ∣  yP ñ-m h
A .

The proof is given by choosing = PPL m
A in lemma 2.3. After a short algebra, we get

∣ ∣ ∣· ( ∣ ∣ )     y bP ñ P P ++ + O f q L2m h
A

m h
A

m
A withOq-local, wherewe use the facts

∣ ∣ ∣ ∣ a y y= á P ñ 1 2m
A2 and ∣ ∣    y y bP ñ = P ñ+ +m h

A
b m h

A . Tofinish the proof wewill show that

  P P =+ O 0m h
A

m
A for <q h 2. This follows from the fact thatAL is a sumof (commuting) 1-local operators

of norm1, and therefore every q-local operator can take an eigenvector ∣ ña ofALwith eigenvalue a to a
superposition of eigenvectors ∣å ¢ñ¢c aa with ∣ ∣ ¢ -a a q2 . Thus, choosing ⌈ ⌉= -q h 2 1proves the lemma.

An immediate consequence of lemma 2.4with the assumption that f (x) is a super polynomially decaying
function, is that thefluctuations of every additive operatorAL, which is defined on the entire systems (∣ ∣ =L N )
must satisfy

( ) ≔ ∣ ∣ ∣ ∣ ( ) ( )y y y yá D ñ á ñ - á ñA A A N . 3L L L
2 2 2

Wepoint out that thewell-knownnotion ofmacroscopicitymeasured by the Fisher information [24, 25] is
implied by the lemmas 2.3 and 2.4. This feature emerges clearly from the following reasoning. The Fisher
information of a pure state ∣yñwith respect to an operatorA is given by ( ) ( ) y = á D ñA A, 4 2 [25]. In [25] the
authors suggest to define the ‘effectivemacroscopic size’ of a state as ( ) ≔ ( ) ( )y yN A Nmax , 4Aeff , where the
maximization is over all extensive operators ≔ åA ai i as in (3). States showingmaximal quantum
macroscopicity, such as theGHZ state, have ( )=N Neff , whereas states with no quantummacroscopicity
have ( )=N 1eff . Inequality(3) therefore implies that LR states have ( )=N 1eff . Equivalently, states with

( )=N N p
eff for >p 0 are necessarily non-LR.
On the other hand, the converse is not true: there are states with ( )=N 1eff that are also non-LR. For

instance, as we shall see, degenerate topologically ordered states turn out non-LR, but still satisfy the
inequality(2), namely ( )=N 1eff . Thereby, LR provides us amore stringent characterization of the
macroscopic superposition encoded in amany-body state.

3. Reversibility of ground states

Wenow introduce ourmain tool for identifying LR states. The following theorem states that unique gapped
ground states of localHamiltonians are LR. It holds for a verywide class of quantum systems that are described
by k-localHamiltonians of the form

( )
∣ ∣

  
 
å å= "H h h g iwith , 4
X k

X
X X i

X
:

where g is a constant of ( ) 1 . Note that k is not necessarily equal to q from the definition of the operatorR above.
Also note thatwe implicitly assume that the spins sit on a lattice, butwemake no direct use of the lattice structure
or its dimensionality. Instead, we use the second condition in (4), meaning that the total strength of all
interactions inwhich the ith spin participates is bounded by a constant of ( ) 1 . This definition ofH captures a
verywide class of quantum systems: with short-range interactions such as the theXYmodel, theHeisenberg
model [26] and theAKLTmodel [27], as well asmodels with long-range interactions such as the Lipkin-
Meshcov-Glickmodel [28]. Typically, we have k=2 (i.e., two-body interaction), but several exceptions exist
such as the 1D cluster-Isingmodel [29] (k= 3), the toric codemodel on a square lattice [30] (k= 4) and the
string-netmodel on a honeycomb lattice [31] (k= 12).We denote the ground state ofH by ∣Wñ, andfix its energy
to be =E 00 . The rest of the energies are denoted by  = <E E E0 0 1 2 . Finally, we let ≔d -E E E1 0 be
the spectral gap just above the ground state.With this notation at hand, ourmain theorem is given as follows.

Theorem3.1.With the above notations, for every spin subset L and every operator GL defined on it, and for any
positive integer q, there exists a q-local operator R that satisfies

∣ ∣
∣ ∣ ∣ ∣

( ) 
 G Wñ - Wñ
G

áW G Wñ
x-R

6
e , 5L

L

L

n2 0

where ≔ ⌊ ⌋n q k0 and

≔ ∣ ∣ ( )x
d

+ = +
E

E
E g L gkn1

2
, 8 . 6c

c 0

Inequality(5), together with the definitions of n0 and ξ, implies that
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∣ ∣
∣ ∣ ∣ ∣

( )    G Wñ - Wñ dG
áW G Wñ

-R eL
q E L6 L

L
, and therefore ∣Wñ is LRwhen ( )d =E 1 . Hence the existence of a

spectral gap places strong restrictions on structure of the ground states for verywide class ofHamiltonians.We
note that the theorem requires no assumption on a spectral gap or the size of ∣ ∣L andN; hence, the theorem is not
asymptotic and applicable for arbitrary ground states infinite systems.

The full proof of theorem 3.1 is given in appendix B.Herewe summarize itsmain ideas. Using recent results
from [32], we conclude that after applying the operator GL to the ground state ∣Wñ, we get a state which consists
mainly of excitations with energies of atmost (∣ ∣) L . Beyond that scale, theweight of the excitations decays
exponentially. This is shown schematically by the blue curve in figure 2. Then following ideas from a recent new
proof of the 1D area law [12], we construct the operatorR by approximating the ground-state projector using a
polynomial ofH. This polynomial is essentially a scaled version of theChebyshev polynomial (red curve in
figure 2), chosen such that it approximately behaves as a boxcar function in the range [ ]d d+E E E, 2 c , thereby
suppressing themajority of excitations in ∣G WñL . Crucially, even though it rapidly increases for  d+x E E2 c ,
this blowup is cancelled by the exponential decay of the high-energy excitation.

4. Examples of locally versus non-locally reversible states

Let us now apply lemmas 2.3 and 2.4 and theorem 3.1 to several exemplary states emerging in different contexts.
The list of states is summarized in table 1. In particular, wewill demonstrate how local reversibility implies the
absence ofmacroscopic superposition.We beginwith LR states.

1. Product states.Aproduct state ∣ ∣ ∣ ∣y y y yñ = ñ Ä ñ Ä Ä ñN1 2 is LR because it is the unique ground state

of the localHamiltonian ( ∣ ∣ ) y y= å - ñá Ä=H i
N

i i1 rest . AsH ismade of commuting projectors, its spectral
gap is necessarily d =E 1.

2.Graph states with bounded degree.These states are defined on a graph inwhich each node has atmost ( ) 1
neighboring nodes [33, 34]. The graph state is a non-degenerate gapped ground states of aHamiltonianwhich is
the summation of the following commuting stabilizers [35] { }=gi i

N
1 : ( )s s s s= Äg ,i i

x
j
z

j
z

j
z

ki1 2
where

[ ] =¢g g, 0i i for " ¢i i, , { }s s s, ,x y z are the Paulimatrices and { }¼j j j, , , k1 2 i
are nodes which connect to the

nodei. By assumption, ( )=k 1i , and hence theHamiltonian is ( ) 1 -local. By the commutativity of its terms,
we conclude that it has a spectral gap ( )d =E 1 , and so by theorem 3.1 such graph states are LR.

3. SRE states.The third example are states that can be obtained by a constant-depth quantum circuit acting
on a product state. In the literature they are often dubbed as ‘trivial states’ [36, 37], or ‘short-range-entanglement
(SRE) states’ [2]. A constant-depth quantum circuit is a unitary operator that can bewritten as a product of

( )=k 1 unitary operators =U U Uk1 where each unitaryUi is given as a product of unitary operators

Figure 2. Schematic picture of the proof. After applying the operator GL to the ground state ∣Wñ, the energies atmost of order (∣ ∣) L
are excited (blue curve).We thenfilter out the excited states by an approximate boxcar function in the range [ ]d d+E E E, 2 c (red
curve). Although the function rapidly increases for  d+x E E2 c , this can be cancelled by the exponential decay of the energy
excitation.

Table 1. Locally versus non-locally reversible states.

LR Non-LR

Product state GHZ state

Bounded-degree graph states States with large fluctuation

Short-range entangled state Degenerate, topologically ordered ground states

Degenerate, SPTO states (Symmetry-restricted non-LR)

5
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· =U U U Ui i i i n,1 ,2 , i
with non-overlapping support of ( ) 1 . To seewhy these are LR states, wewrite

∣ ∣y fñ = ñU , whereU is the constant-depth circuit, and ∣ ∣ ∣ f f fñ = ñ Ä ñ Ä1 2 is a product state. Then it is easy
to see that for any operatorOwith a support of ( ) 1 , -UOU 1has also an ( ) 1 support, and therefore ifH is a
localHamiltonian forwhich ∣fñ is the unique ground state (see thefirst example), then ¢ = -H UHU 1 is also a
localHamiltonian. Furthermore, ¢H has the same spectrum asH, and so it is gappedwith the unique ground
state, which is exactly ∣yñ. By theorem 3.1 this state is LR.

Wenote that not all LR states are also SRE states, or, equivalently, long-range entanglement (LRE)does not
necessarily imply non-LR. For example, Kitaev’s toric code [30] on a sphere is a commuting localHamiltonian
and has a non-degenerate ground state with an ( ) 1 gap, and therefore by theorem 3.1 it is LR.Nevertheless, it
cannot be generated by a constant depth circuit working on a product state, and is therefore not an SRE state
[38]. This point is also explained in appendix C.

Wenow turn to non-LR states.Wewill use lemmas 2.3 and 2.4 to identify such states.
5. ‘Schrödinger Cat’ like states. States like theGHZare not LR by lemma 2.3.
6. States with Fisher information of ( ) N p with >p 1. Aswe alreadymentioned, this result comes directly

from lemma 2.4. Also here, a quintessential example of this class is theGHZ state [25], which has the scalingwith
p=2.Moreover, the ground states at critical point are typically non-LR since they have

( )h= + - -p z D1 2 (see appendix E), where z is the dynamical critical exponent, η is the anomalous
critical exponent, andD is the dimension of the system. For example, the critical point of the 1D transverse Ising
model has z=1 and h = 1 4, which yields =p 7 4.

7. States with degenerate topological order.While the localfluctuations in lemma 2.4 (as well as the Fisher
information) cannot detect a locally hidden order such as the topological order, we can use lemma 2.3 to see that
states with a degenerate topological order are not LR.We demonstrate this point using Kitaev’s toric codemodel
on a torus [30]with ´n n sites. The idea is that by taking L to be a non-trivial loop in the torus of size n ,
there exists an operatorTL that takes one ground state ∣W ñ1 to another ground state ∣W ñ2 , i.e., ∣ ∣W ñ = W ñTL2 1 . The
properties of the topological order guarantee that for any observableO that is supported on less than n sites
(the size of aWilson loop), ∣ ∣ ∣ ∣áW W ñ = áW W ñO O1 1 2 2 and ∣ ∣áW W ñ =O 01 2 . Therefore, wemay invoke lemma 2.3
with ≔ ( ) -P T 2L L , such that ∣ ∣ ( )∣ ≔ ∣ ∣ a bW ñ = W ñ + - W ñ W ñ + W ñ+ -P PL L1 1 1 , where

∣ (∣ ∣ )W ñ = W ñ  W ñ
1

2 1 2 . It is easy to verify from the above properties that ∣ ∣W ñ W ñ+ -, aremacroscopically

distinct over a scale of ( ) n1 4 (they are in fact distinct over a scale of n , i.e., the size of L), and therefore by
lemma 2.3, these degenerate ground states are not LR.

We remark that non-degenerate topological order (e.g., in the toric code on the surface) results LR (from
theorem3.1). In this context, we observe that, despite the topological entropy is non-vanishing for both
degenerate and non-degenerate topologically ordered ground states, the two cases are clearly distinct in terms of
the irreduciblemultiparty correlation (the issue has been recently addressed in [39–41]; see also appendix C):
Being our approach able to detect a ‘fine structure’ in the nature of themultipartite correlations, LR tells
degenerate topological order apart fromnon-degenerate topological order.

8. Stateswith a degenerate SPTO.The same arguments showing that degenerate topologically ordered states are
not LR can be applied to the case of degenerate SPTO. Such states show topological order only to a restricted set of
operators defining a certain symmetryG [23]. They cannot be adiabatically connected to a product state using only
operators fromG, and in that restricted sense they arenot SRE (see the following for thedefinition). An important
exampleof stateswith SPTOcan beobtained fromgraph state’sHamiltonian onanopen lattice, where one
removes the boundary stabilizers. This removal introduces degeneracy to the groundspace.Much like the case of
Kitaev’s toric code, we can also showhere that the resulting ground states are non-LRas long aswe restrict the
operatorR to satisfy the symmetry of the graphHamiltonianwithout theboundary stabilizers.We refer to these
states as symmetry restricted non-LR states.Wepresent an example of such states for 1Dcase [42] in the appendixD.

5. Fluctuations in locally reversible states

Theorem3.1, togetherwith lemma 2.4 provides a remarkable insight into the structure of unique ground states7.
For any such ground state ∣Wñ, and for any additive operator = å ÎA aL i L i defined on a spin subset L,

∣  P Wñ d
+

-e ,m h
A c h E L1 with c1 a constant of ( ) 1 (withm as defined in lemma 2.4). This implies that

∣ ∣ (∣ ∣ ) dá ñ - =A m L EL , where ∣ ∣á ñ = áW WñA AL L is the expectation ofAL in the ground state, and therefore

∣ ( )∣ ∣  P Wñ d
á ñ+

-e , 7A h
A c h E L

L
2

c2 being a constant depending on theHamiltonian’s parameters k and g. TakingAL to be an order parameter (i.e.,
themagnetization in L), we arrive at the conclusion that the deviations of any order parameter from its expectation

7
Wenotice that because theorem3.1 is not asymptotic, the results in this section can be applied to arbitrary system size.
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are exponentially suppressed in unique gapped ground states. It is interesting to contrast this inequality with the
corresponding statistics of a product state. In such a case,AL can be viewed as a sumof independent random
variables, and by theHoeffding’s inequality [43], ∣ ( )   yP ñá +

-eA h
A h L

L

2
. In this sense, unique gapped

ground states enjoy aweaker, yet still non-trivial, notion of local independence.
It is alsoworth noting that this independence cannot be (at least directly)deduced from the exponential

decay of correlation of gapped ground states [6, 7], since it can be applied to sets of observables thatmay sit very
close to each other on the lattice.Moreover, we can apply it to systemswith long-range interactions, such as the
Lipkin–Meshcov–Glickmodel [28] and systems defined on the expander graphs [19], inwhich themaximal
distance between any two spins is ( ) 1 and ( ) Nlog , respectively.We remark that inequality(7) can be
extended to generic few-body operators [44]: = åA aX q X with ( )=q 1 ; finally we can derive a similar

bound for low-lying energy states, i.e., not necessarily the exact ground state (T.K., I.A., L.A. andV.V.,
manuscript in preparation).

A simple consequence of inequality(7) is a trade-off relationship between the spectral gap and the
fluctuation ≔ ( ∣ ∣ ∣ ∣ )D áW Wñ - áW WñA A AL L L

2 2 1 2 ofA in the ground state:

· ( ) · ∣ ∣ ( )d DE A Lconst ,. 8L
2

This has two interesting implications:
1.Bounds on the critical exponents.As noted above, theorem3.1 does not assume the spectral gap of ( ) 1 and

therefore can be applied to arbitrary ground states. Below,we apply it to quantum critical points to obtain a
general inequality for critical exponents.

Let us consider the critical regime, d E 0. Define = å =A aL i
N

i1 with L a total system and { }=ai i
N

1order
parameters (e.g.magnetization).We then introduce the critical exponents z, η, γ and ν as in [45]; z is the
dynamical critical exponent, η is the anomalous critical exponent, γ is the susceptibility critical exponent and ν is
the correlation length exponent. By applying the finite-scaling ansatz [45] to(8), we can obtain

( ) h g
n

- =z 1
2 2

, 9

where the second equality comes from the Fisher equality h g n- =2 .We remark that (9)holds for very
general settings both for homogeneous and disordered critical systems (see [46] for a non-trivial example where
our inequality can be applied). Incidentally, we note that(8) gives non-trivial bounds for the critical Lipkin–
Meshcov–Glickmodel, a systemwith long-range interactions [28, 47]. The details of this calculation are given in
appendix E

2.Validity ofmean-field approximations.Under the assumption of inequality(8) for ground states, we can
estimate the validity of themean-field approximation. Just as the first implication, the full details are given in
appendix F. The idea is that since the operatorsAL in (8) are arbitrary (as long as they are additive on L), we can
use them to probe the two-spin reduced densitymatrix rij and its relationwith itsmean-field approximation

r rÄi j. Specifically, it can be shown that for every spin subset L and an arbitrary spin i outside of it,

· ∣ ∣ ( )  å r r r d- Ä
Î

L Econst . 10
j L

ij i j

This implies that on average, for each spin Îj L, ( ∣ ∣ )  r r r d- Ä L E1ij i j . If our system is defined by a
nearest-neighbor two-bodyHamiltonian on a regular gridwith coordination numberZ (the number of
neighbors of each spin), then taking L to be the set of neighbors (∣ ∣ =L Z ), one immediately obtains a bound on
the quality of themean-field approximation for the energy density for " i:

·å å
d

á ñ - á ñ
á ñ á ñZ

h
Z

h
Z E

1 1
const

1
,

i j
ij

i j
ij

,
MF

,
exact

where the sum is taken over the spins adjacent to i.We therefore obtain a quantitative bound on how the error of
themean-field approximation decreases as the lattice dimension (onwhich the coordination number depends)
goes to infinity. This result is consistent with the folklore knowledge in condensed-matter physics that themean-
field becomes exact in infinite dimension. Recently, similar results have been obtained in differentmanners by
Brandãoet al [48] andOsterlohet al [49]. In [48], the setup ismore general (i.e., the system is not assumed to be
gapped) but the error estimation is weaker than ours, scaling as ( ) -Z 1 3 : in [49], the error estimation is as good
as ours, ( ) -Z 1 2 , but under the additional assumptions of having a regular, isotropic, and bipartite lattice of
1

2
-spins.
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6. Summary and open questions

In this work, we introduced a newnotion of locality in quantum states, the local reversibility, which is defined in
terms of the type of local operations that are needed to reverse the action of perturbations to the state.

We proved that all unique ground states of gapped localHamiltonians are locally reversible (theorem3.1),
and, on the other hand, we showed how local reversibility implies a suppression of quantumfluctuations
(lemma 2.4). Together, these two results provide new insights into the structure of unique ground states of
gapped local-Hamiltonians: (i) a low Fisher information, which is an indication for the lack of quantum
macroscopicity in these states; (ii) a novel inequality for the critical exponents in these systems; (iii) a quantitative
analysis of themean-field approximation; andfinally, (iv) since an adiabatic (local unitary) evolution of product
states is locally reversible, our result clearly implies that all the gapped quantumphases ofmatter, disordered or
with local order parameter (Landau symmetry breaking quantumphases), are reversible. In contrast, degenerate
topological phases or the symmetry protected topological phases, are not reversible.We note that LR can detect
the difference between degenerate and non-degenerate topological order. Indeed, it was discovered that,
although bothwith non-vanishing topological entropy they have very different irreduciblemultipartite
correlation (see paragraph 8 of section 4 and the appendix C). In this context, we observe that LR can be further
restricted (with a similar logic we pursued in this article to deal with symmetry protected topological phases) to
improve and refine the characterisation of the ground state. Such a strategymight lead to catch properties of the
state originating from the geometry of its ambient space.

Ourwork provides an instrumental view for several research directions.
Based on the bounds on thefluctuationswe found, wemight argue that,fluctuations in gapped ground state

obey aGaussian statistics (as they do in non-interacting theories). A recent proof of the Berry–Esseen theorem for
the quantum case by Brandão etal [50] hints that thismight be the case. A natural approach to this would be to
tighten ourmain theorem, replacing the exponential decay in the rhs of inequality(5) by aGaussian.

Another intriguing direction to pursue is to incorporate LR, or one of its consequences, such as lemma 2.4 or
inequality (8), explicitly or implicitly—in the construction of tensor networks in higher dimension (e.g.,
Projected entangled pair state, or PEPS [16]). By construction, these states satisfy the area-law, butwe nowknow
that they should also satisfy local reversibility. This will speed up the contraction of such tensor networks, which
is themain bottleneck in the variational algorithms [51–54]. A goal of paramount importance in this context is
to prove that PEPS are faithful representations of gapped ground states. A good place to start studying this
question is in the 1Dworld.We know thatMPS can describe both LR and non-LR states (i.e., GHZ). The natural
problem is then to pinpoint what is needed for anMPS to describe an LR state.

Proving the area-law conjecture for gapped systems in 2D and beyond remains a challenge. It would be
interesting to see if the additional structure of local reversibility of these states can assist in such proofs, or at least
provide new insights regarding this important conjecture. As a specific route, we suggest to harness the LR in
addition to the clustering, to improve the upper bound byBrandão andHorodecki [14].

Finally, it would be interesting to understand if local reversibility could somehowbe used to characterize
unique gapped ground states. In otherwords, is local reversibility also a sufficient condition for unique gapped
ground states? Strictly speaking, this is incorrect, as there are LR states which are not gapped ground states. For
example, the state ∣ ( )∣ ñ + ñN000 0 111 1 where ( ) N decays faster than any polynomial is trivially LR,
but can never be a unique gapped ground state of k-localHamiltonians as long as k N 2 (see [55]).
Nevertheless, wemay still ask if, in some sense, every LR state can be approximated by a unique gapped ground
state. If this is not the case, it would be interesting to understandwhich are these LR states that cannot be even
approximated by gapped ground states.

Generalising our approach tomixed states and devising experimental protocols tomeasure local reversibility
are important future challenge.
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AppendixA. Proof of lemma 2.3

Assume that ∣yñ satisfies inequality(1). Then for every integer >q 0, there exists a q-local operatorR such that

∣ ∣ ∣y y dñ = ñ + ¢ñRPL , where ( ∣ ∣ ) ( ∣ ∣ )
∣ ∣ ∣ ∣ ∣ ∣

    d¢
y y aá ñ

f q L f q L
P

P
2 1L

L
2 . Therefore,

∣ ∣ ∣ ( ) ∣ ∣
( )∣ ∣

 


b y y y y d
a y d

ñ = ñ - ñ = - ñ - ¢ñ
= - ñ - ¢ñ

P R P

R .
b L L

a

By denoting ( )a b= -O R and ∣ ∣d b dñ = - ¢ñ-1 , we have ∣ ∣ ∣y y dñ = ñ + ñOb a , where

∣ ∣ ( ∣ ∣ )
∣ ∣

    d d b= ¢
a b

f q L2 2 1
2 . This completes the proof of lemma 2.3.

Appendix B. Proof of theorem3.1

B.1.Outline
The proof of theorem3.1 is rather technical, and therefore wefirst sketch it here, giving the full details in the
following section.

Multiplying inequality(5) by ∣ ∣ ∣ ∣áW G WñL , andwriting for brevity ˜ ≔ ∣ ∣áW G WñR RL , we obtain

( ˜ ∣ ∣) · ∣ ( )   - WñáW G Wñ G x-R 6 e . B1L L
n2 0

So for the state to be LR,we need tofind a R̃ whose action on ∣G WñL approximates the action of the ground state
projector ∣ ∣WñáW on it. In addition, in order to satisfy the premise of the theorem, it has to be a q-local operator.
To this aim, we look for a low-degree polynomial FR(x) andwrite ˜ ≔ ( )R F HR . Specifically, choosing a
polynomial of degree ≔ ⌊ ⌋n q k0 guarantees that it will contain atmost q-local terms, since, by definition, each
term inH is k-local.

To understand the restrictions on FR(x) that inequality(B1) poses, it is convenient towork in the energy
basis {∣ }ñE : expanding ∣ ( )∣G Wñ = å ñc E EL E , wewant (i) ( ) =F 0 1R (recall that have set =E 00 ), and (ii)

( )∣ ( ) · ( )∣  å Gd
x-c E F E 6 eE E R L

n2 1 2 2 0 . This is achieved using two ideas, which are demonstrated in

figure 2.
Thefirst idea is that the expansion of ∣G WñL is dominated by energies of atmost (∣ ∣) L ; beyond that scale, c

(E) is exponentially decaying. This is a direct corollary of theorem 2.1 in [32], which for our case implies:

Corollary B.1 (from theorem2.1 in [32]). Let P E
H be the projector into the eigenspace of H with energies greater

than or equal to E. Then

∣ ( )∣ ∣ ( )( ∣ ∣)   


å ¢ = P G Wñ G
¢

- -c E e . B2
E E

E
H

L L
E g L gk2 2 2 2 4

In [32], this theoremwas proved under themore restricted condition that every particle participates in atmost g
interactions of norm1, but this can be easily relaxed to the current condition, given in definition(4).

The bound in(B2) implies that our polynomial shouldmainly ‘kill’ the energy excitations of ∣G WñL in the
range [ (∣ ∣)]dE L, . Following [12], we let FR(x) be the n0 th order Chebyshev polynomial [56], scaled such that

[ ] [ ] d d- +x E E E: 1, 1 , 2 c and ( ) =F 0 1R . As discussed in the following section, this polynomialfluctuates
between x-e n2 0 in the range [ ]d d+E E E, 2 c , and then diverges like (( ) ) x E2 c

n0 . It is our choice ofEc in
theorem3.1which guarantees that this divergence is cancelled by the exponential decay of corollary B.1. After a
rather straightforward calculation, one can show that total contributions of the energy segments [ ]d d+E E E, 2 c

and [ )d+ ¥E E2 ,c to ( ˜ ∣ ∣) · ∣ - WñáW G WñR L is exponentially small.

B.2. Full proof
Following the proof’s sketch in the previous section of themain text of the paper, we start from inequality (B2).
Our goal is tofind a polynomial FR(x) such that the action of the operator ˜ ≔ ( )R F HR on the state ∣G WñL

approximates the action of the ground state projector ∣ ∣WñáW on it. AsH is a k-local operator, choosing
≔ ⌊ ⌋n q k0 guarantees that R̃ is a q-local operator.
Working in the eigenbasis ofH, we expand ∣ ( )∣G Wñ = å ñc E EL E , and as FR(H) is diagonal in this basis,

[ ( ) ∣ ∣] ∣ ( ( ) ) ( )∣ ( ) ( )∣

å- WñáW G Wñ = - Wñ + ñ

d
F H F c F E c E E0 1 0 .R L R

E E
R

Therefore, for inequality (12) to hold, it is sufficient that

( ) ( )=F 0 1 B3R
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∣ ( ) ( )∣ ( ) å G
d

x

>

-
⎛
⎝⎜

⎞
⎠⎟c E F E 6 e . B4

E E
R L

n2

1 2

2 0

As noted in the outline of the proof in the previous section, to prove these properties we use two ideas. The first is
that theweight of the high energy excitations in ∣G WñL decays exponentially, as shown in corollary B.1 of
section B.1. The second is to take FR(x) to be a scaled version of the n0’th order Chebyshev polynomial. Let us
start from the second idea. The nth order Chebyshev polynomial [56] of thefirst kind is given by

( ) ≔ ( ) ( ) ( )+ - + - -
T x

x x x x1 1

2
. B5n

n n2 2

Equivalently, for [ ]Î -x 1, 1 it is given by ( ) ( ( ))=T x n xcos arccosn , and for ∣ ∣ >x 1by
( ) ( ( ))=T x n xcosh arccoshn .Whatmakes theChebyshev polynomial so useful to our purpose are the properties

that are summarized in the following lemma, whose proof is given in section B.2.1:

LemmaB.2.

∣ ( )∣ ∣ ∣ ( ) T x for x1, 1 B6n

∣ ( )∣ ( ∣ ∣) ∣ ∣ ( ) T x x for x
1

2
2 , 1 B7n

n

( )∣ ( )∣ ∣ ∣ ( )∣ ∣
∣ ∣

 -
+

T x n for x
1

2
exp 2 , 1. B8n

x

x

1

1

Setting

≔ ≔ ∣ ∣ ( )x
d

+ +
E

E
E g L gkn1

2
, and 8 , B9c

c 0

wedefine FR(x) to be the polynomial

( )
( )( ) ≔ ( )

-

-

d

d

-

-
F x

T

T

1

1
. B10R

n
x E

E

n
E

E

c

c

0

0

In otherwords, we defined it to be the n0th order Chebyshev polynomial, scaled such that
[ ] [ ] d d- +x E E E: 1, 1 , 2 c and ( ) =F 0 1R . Clearly, this definition satisfies equation (B3). Let us seewhy it

also satisfies inequality(B4).
We begin by applying lemmaB.2 to the definition of FR(x), which implies that for  d d+E x E E2 c ,

∣ ( )∣ ( ) x-F x 2e , B11R
n2 0

and for  d+x E E2 c ,

∣ ( )∣ ( ) d-
- x-

⎛
⎝⎜

⎞
⎠⎟F x

x E

E

2 2
2 e . B12R

c

n
n2

0

0

For brevity, we define the low and high energy ranges ≔ [ )d d+I E E E, 2 cLOW and ≔ [ )d+ ¥I E E2 ,cHI . Then
using the triangle inequality, we split the sum in the lhs of (B4)

∣ ( ) ( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣å å å+
d> Î Î

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E c E F E c E F E ,

E E
R

E I
R

E I
R

2

1 2

2

1 2

2

1 2

LOW HI

and bound each term separately. The low-energy term is bounded by

∣ ( )∣ ∣ ( )    å G Wñ Gx x x-

Î

- -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E2e 2e 2 e , B13n

E I

n
L L

n2 2

1 2

2 20

LOW

0 0

which follows from inequality(B11) and the fact that ∣ ( )∣ ∣ ( )∣ ∣ å å = G WñÎ c E c EE I E L
2 2 2

LOW
.

Tofinish the proof, wewill show that the high energies term is upper bounded by  G x-4 eL
n2 0 . To this aim,

wewrite È È È= ¼I I I IHI 1 2 3 , where ≔ [ ( ) )d h d h+ + - + +I E E j E E j2 1 , 2j c c and η is a positive
constant whichwill be set afterward. Using the triangle inequality oncemore, we get

∣ ( ) ( )∣ ∣ ( ) ( )∣å å å
Î =

¥

Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E c E F E .

E I
R

j E I
R

2

1 2

1

2

1 2

jHI
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Clearly, for each Ij segment

∣ ( ) ( )∣ ∣ ( )∣ ∣ ( )∣å å
Î Î Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E F x c Emax .

E I
R

x I
R

E I

2

1 2

2

1 2

j
j

j

As ∣ ( )∣F xR monotonically increases for  d+x E E2 c (which follows from the fact that the Chebyshev
polynomial ismonotonic for x 1), it follows that

∣ ( )∣ ∣ ( )∣ d h+ +
Î

F x F E E jmax 2 .
x I

R R c
j

To bound the other term,we use corollary B.1, which gives us

∣ ( )∣ ∣ ( )∣
( )

( ( ) ∣ ∣))  


å å G
d h

l d h

Î + + -

- + + - -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E c E e ,

E I E E E j
L

E E j g L2

1 2

2 1

2

1 2

2 1 2

j c

c

wherewe have defined

≔ ( )l
gk

1

4
. B14

Together, this gives us

∣ ( ) ( )∣ · ∣ ( )∣ ( ∣ ∣) å d hG + +lh l d h

Î

- + + -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E F E E je 2 e .

E I
R L R c

E E j g L2

1 2

2 2

j

c

Thefinal step is to show that for  d+x E E2 c ,

∣ ( )∣ · · ( )( ∣ ∣) ( ∣ ∣)l x l- - - - -F x e e e B15R
x g L n x g L2 2 2 20

(see section B.2.2 for a proof), which leads to

∣ ( ) ( )∣ · ( ∣ ∣) å G x lh l d h

Î

- - + + -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E e e e .

E I
R L

n E E j g L2

1 2

2 2 6 2

j

c0

Summing over all j 1, then gives us

∣ ( ) ( )∣ · ·( ∣ ∣) å åG x l d lh hl

Î

- - + -

=

¥
-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E e e e e .

E I
R L

n E E g L

j

j2

1 2

2 2 2 2

1

2c

HI

0

Using the definition ofEc in equation (B9), we find that ( ) ( ) =l d l d- + - - +e e 1E E g L gkn E2 2 2 16 2c 0 , and
calculating the geometrical sumwe get ( )å = -lh hl lh lh

=
¥ - -e e e 1 ej

j
1

2 2 2 , which can beminimized to 4 by

choosing η such that =lhe 22 . All together, we therefore get

∣ ( ) ( )∣ ( ) å G x

Î

-
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c E F E 4 e , B16

E I
R L

n2

1 2

2

HI

0

which completes the proof.

B.2.1. Proof of lemmaB.2

Proof. Inequality(B6) follows directly from the identity ( ) ( ( ))=T x n xcos arccosn , which is valid for ∣ ∣ x 1.
For the other inequalities,first note that ( ) ( ) ( )- = -T x T x1n

n
n , which implies ∣ ( )∣ ∣ (∣ ∣)∣=T x T xn n , and so it is

sufficient to prove inequalities(B7) and (B8) for >x 1.
To prove inequality(B7), consider the general inequality

( ) ( ) ( )- +x y y x2 2 , B17n n n

which is valid for any x 1 and  y0 1 (the inequality can be proved by differentiating
( ) (( ) )- - +x x y y2 2n n n with respect to x, and noting for x 1 and  y0 1 it is amonotonically
increasing function of x, and itsminimumvalue 0, which is obtained for x=1 and y=0). Choosing
= - -y x x 12 , the lhs of inequality (B17) becomes ( )T x2 n , which proves (B7).
For inequality(B8), we set ≔ ( )t xarccosh , and then by the identity ( ) ( ( ))=T x n xcosh arccoshn , we

conclude that for >x 1,

( ) ( ) ( ) = = + -T x ntcosh
1

2
e e

1

2
e .n

nt nt nt
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Tofinish the proof, we need to show that for >x 1,  -
+

t 2 x

x

1

1
. This follows from the fact that

( )t t2 tanh 2 , and the trigonometric identity ( ) ( )
( )

= -
+

ttanh 2 t

t

cosh 1

cosh 1
.

+

B.2.2. Derivation of the inequality(B15). From inequality(B12), we have

∣ ( )∣  d-
-x-

⎛
⎝⎜

⎞
⎠⎟F x

x E

E
e

2 2
2 ,R

n

c

n
2 0

0

for  d+x E E2 c . To prove inequality(B15), wewill show that [( ) ] ( ) d- - l- -x E E2 2 2 e 1c
n x g L6 20 for

 d+x E E2 c , or, equivalently, that its logarithm

( ) ≔ ( ∣ ∣)l d
- - +

-
-

⎛
⎝⎜

⎞
⎠⎟G x x g L n

x E

E2
6 log

2 2
2

c
0

is negative. This follows from the facts that

( )d
ld

+ = - - + <G E E n
E

n2 2
2

log 2 0,c 0 0

and for every  d+x E E2 c ,

( )
∣ ∣l

d
l l l

= - +
- -

- + = - +
+

<
l

G x

x

n

x E E

n

E

d

d 2 2 2 2
0.

c c
g L

n

0 0
3

0

AppendixC.Difference between degenerate andnon-degenerate topological orders

In the case of the toric codemodel, wefind that the LRdepends on the topology of the ambientmanifold: LR
holds on a sphere but is violated on non-simply connected geometries (implying a non-trivial ground-
manifold). It is well-known, however, that the topological entanglement entropy is non-vanishing for toric code
model ground states living in lattice with any topology [57, 58]. Indeed, the difference between the two kind of
ground states can be resolved in terms of the irreduciblemultiparty correlation.

The notion of irreduciblemultipartite correlation has been first introduced in [59] to characterize the
multipartite correlations in a quantum state. It was noted recently that such notion is equivalent to the
topological entanglement entropy if the state has zero-correlation length [40]. As explained in [39, 41], we have
two kinds ofmultipartite correlation, whichwe refer to as ‘effectivemultiparty correlations’, distinct from
‘inherentmultipartite correlations.’The topological entanglement entropy cannot distinguish them.Wehave:

(i) The degenerate topological order, as that one of the toric code on a torus, has genuinemultiparty correlation
of the ‘inherent’ type involving ( ) l spins (l: the system length).

(ii) The non-degenerate topological order, as the toric code on the sphere, has lowdegree of inherentmultiparty
correlations involving ( ) 1 spins, but have the ‘effective’ type involving ( ) l spins.

In other words, a non-vanishing topological entanglement entropy in non-degenerate topological order
arises just because of suchmultiparty low-degree correlations. There, we have no high-degreemultiparty
correlations if we look at the total system; in contrast,multiparty correlations of ( ) l can be effectively induced
by tracing out some finite suregions (seefigureC1 ) [41]. Such a conditionalmany-body correlations can appear
in short-range entangled state [60, 61] or even in classicalmodels [62].

In this way, we can see qualitative difference between the degenerate and the non-degenerate topological
orders in terms of the irreduciblemultiparty correlation, which results in LRof the surface code and non-LR of
the toric code. Being our approach able to detect such ‘fine structure’ in the nature of themultipartite
correlations, the LR tells degenerate topological order apart fromnon-degenerate topological order.

AppendixD. Symmetry-restricted local reversibility

Symmetry restricted LR states (SRL) can be introduced along very similar lines used in section 2. Let us consider
a givenHamiltonianH enjoying a global symmetryG; let ∣yñbe the ground state ofH.We say that the state ∣yñ is
SLR iff the property (1) holds with a q-local operatorR enjoying the same symmetry group of the
Hamiltonian: [ ] =R G, 0.
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Herewe present an example of states which are not SLR. Cluster states provide an example of SPTO. The 1D
cluster states [63] are the ground states of theHamiltonian

( )ås s s=
=

- +H , D1C
i

L

i
x

i
z

i
x

1
1 1

which enjoys a global symmetry ´Z Z2 2 [42].With the boundary conditions s s= =+
x

L
x

0 1 , the ground space
ofHC is uniquewith a spectral gap. For s s= =+ 0x

L
x

0 1 , in contrast, the ground space is four-fold degenerate
because the two stabilizers (out of L) s s sx z x

0 1 2 and s s s- +L
x

L
z

L
x

1 1 can befixed at will [42]. Let
{∣ }aW ñ =a , 0, 1, 2, 3 be spanning the ground statemanifold. Due to the SPTOof the system, it follows that
the ground states ∣W ña cannot be distinguished by any local operator oX in ´Z Z2 2:

∣ ∣ ∣ ∣ ∣ ∣ ( )áW W ñ = áW W ñ áW W ñ =a a b b a bo o o, and 0. D2X X X

with ∣ ∣ X cN ( ( )=c 1 ). Using these conditions, the symmetry-restricted non-LR of ∣W ña follows from the
same arguments thatwere used in the proof of the non-LR of the toric code.

Appendix E. Critical exponents

Here, we derive inequality(9) for the critical exponents z, η, γ and ν under the scaling ansatz(E2) [45, 64]. Recall
that we are considering a localHamiltonian system atT=0which is driven towards critically, and let

= åA ai i, where ai are single particle operators that correspond to a local order parameter (e.g., spin localized
at site i leading to themagnetization along a given axes). Our starting point is inequality(8), namely

· ( ) · ( )d DE A Nconst . E12

Wefirst define the variance ( )DAt
2 which depends on time as ( ) ≔ ( ( ) ) · ( )D á - á ñ á - á ñ ñA A t A A At

2 ,
where ( ) = -A t Ae eHt Hti i . The variance ( )DAt

2 reduces to the summation of the correlation functions:

( ) ( ) ≔ ( )å åD = á ñ - á ñá ñ
= =

A a t a a a C t ,t
i j

N

i j i j
i j

N

i j
2

, 1 , 1
,

where ( ) ≔ -a t ae ei
Ht

i
Hti i for = ¼i N1, 2, . Note that ( )D =At 0

2 is equal to ( )D = á ñ - á ñA A A2 2 2. In the
following, we denote ( ) ( )= rC t C t,i j, under the assumption of the translation symmetry.

Now,we adopt the following scaling ansatz [45]:

( ) ( ) ( )w x x x wx= h-q qS D, ; , , E2z2

where ξ is the correlation length and ( )w xqS , ; is the spatial-temporal Fourier component of ( )rC t, , namely

( ) ( ) ( )( · )ò òw x = w- +q r rS C t t, ; , e d d . E3
r

q r

t

ti

Wealso define ( )xqS ; as

( ) ( ) ( )òx
p

w x w=
-¥

¥
q qS S;

1

2
, ; d . E4

Wecan see that the staticfluctuation ( )D =At 0
2 is equal to ( )x=qNS 0; by expanding ( )x=qS 0; .

We then obtain the scaling of ( )x x= µ h- -qS 0; z2 by taking the scaling(E2) for ( )w xqS , ; , and hencewe
have ( ) xD µ h

=
- -A Nt

z
0

2 2 .We also have the scaling of the energy gap as d xµ -E z
0 [45] by the use of the

FigureC1.Multipartite correlations in the surface code. In the ground states of the Kitaevmodel on sphere, it has nomulti-party
correlation (or contains only low-degree of correlations), but collective properties of the low-degree of correlations inducemulti-
party correlationwhenwe look at reduced region of the system, say Lc. Indeed, if we split the region Lc intoA,B andC, we obtain non-
trivial value of the topological entanglement entropy.
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dynamical critical exponentz. At a critical point, where the correlation length is as large as the system length, the
inequality(E1) reduces to

( ) ( ) h- - - -z z2 E5

in the infinite volume limit (  ¥N ). This reduces to the inequality(9) in themainmanuscript.
We close the section applying inequality(8) to a systemwith long-range interactions: the Lipkin-Meshcov-

Glickmodel ( )s s gs s s= - å + + ål
< =H h

N i j i
x

j
x

i
y

j
y

i
N

i
x

LMG 1 with ∣ ∣ g 1. At the critical point ∣ ∣l = h , we

have the scaling [47] of d µ -E N 1 3 and ( )D µM Nx
2 4 3, whereMx is themagnetization in the x direction,

s= å =Mx i
N

i
x

1 . Thus, the spectral gap and the fluctuation can give the non-trivial sharp upper bounds to each
other.

Appendix F. The quality of themean-field approximation

Let ∣Wñbe the unique ground state of a gapped localHamiltonian, and let r r r, ,ij i j be its two-particles and one-
particles reduced densitymatrices.Wewant to estimate the error of themean-field approximation
r r r Äij i j by proving inequality(10) in themain text. For simplicity, we set i=1 and show that

· ∣ ∣ ( )  å r r r d- Ä
Î

L Econst . F1
j L

j j1, 1

First, note that we can alwaysfind a set of d2 projectors { }( )P m
1 onto the spin i=1 that satisfy

( ) ( )( ) ( )    år r r r r r- Ä - Ä
=

P P , F2j j
m

d
m

j j
m

1, 1
1

1 1, 1 1

2

where d is the local spin dimension. For example, in the case of spin-1/2 systems (d= 2), we can take
∣ ∣( ) = ñáP 0 01

1
1 1 , ∣ ∣( ) = ñáP 1 11

2
1 1 , ∣ ∣( ) = + ñá+P1

3
1 1 , ∣ ∣( ) = - ñá-P1

4
1 1 , with ∣ ≔ (∣ ∣ ) ñ ñ  ñ0 1 21 1 1 . Indeed,

defining ≔dr r r r- Äj j j1, 1, 1 , we get

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

       

     

       





dr dr dr dr dr

dr dr dr dr

dr dr dr dr

á ñ + á ñ + á ñ + á ñ

= á ñ + á ñ + á+ + ñ - á- - ñ

á ñ + á ñ + á+ + ñ + á- - ñ

0 0 1 1 0 1 1 0

0 0 1 1

0 0 1 1 .

j j j j j

j j j j

j j j j

1, 1 1, 1 1 1, 1 1 1, 1 1 1, 1

1 1, 1 1 1, 1 1 1, 1 1 1, 1

1 1, 1 1 1, 1 1 1, 1 1 1, 1

The proof for higher d follows the same lines.
Summing inequality(F2) over all Îj L gives

( )( ) ( )   å åår r r r r r- Ä - Ä
Î = Î

P P .
j L

j j
m

d

j L

m
j j

m
1, 1

1
1 1, 1 1

2

Toprove inequality(F1), wewill show an upper bound of ( )( ) ( ) r r rå - ÄÎ P Pj L
m

j j
m

1 1, 1 1 for arbitrarym.

Defining ≔ ( )( ) ( ) ( )r rP PTrj
m m

j
m

1 1 1, 1 , where ( )Tri is the partial trace over the ith spin, we get

( ) ( ∣ ∣ · )( ) ( ) ( ) ( ) ( )r r r r r- Ä = Ä - áW WñP P P P .m
j j

m m
j
m m

j1 1, 1 1 1 1

Clearly, ( ∣ ∣ · ) ∣ ∣ ·( ) ( ) ( ) ( ) ( )   r r r rÄ - áW Wñ = - áW WñP P Pm
j
m m

j j
m m

j1 1 1 .Moreover, there always exists a rank-

1 projector ( )Pj
m such that

∣ ∣ · · [ ( ∣ ∣ · )]( ) ( ) ( ) ( ) ( ) ( ) r r r r- áW Wñ = - áW WñP s P PTr ,j
m m

j j
m

j
m

j
m m

j1 1

where ≔ { [ ( ∣ ∣ · )]}( ) ( ) ( ) ( )r r- áW Wñs P Psign Trj
m

j
m

j
m m

j1 . Therefore,

( ) · [ ( ∣ ∣ · )]

· [ ∣ ∣ ∣ ∣ · ∣ ∣ ]

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

 r r r r r- Ä = - áW Wñ

= áW Wñ - áW Wñ áW Wñ

P P s P P

s P P P P

Tr

.

m
j j

m
j
m

j
m

j
m m

j

j
m m

j
m m

j
m

1 1, 1 1 1

1 1

Wenowdefine the additive operator

≔ ·( ) ( ) ( )å
Î

A s P .m

j L
j
m

j
m

Then from the above calculation,

( ) ∣ ∣ ∣ ∣ · ∣ ∣( ) ( ) ( ) ( ) ( ) ( ) å r r r- Ä = áW Wñ - áW Wñ áW Wñ
Î

P P P A P A .
j L

m
j j

m m m m m
1 1, 1 1 1 1
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But

∣ ∣ ∣ ∣ · ∣ ∣ ∣ · [ ∣ ∣ ∣ ∣ ]
∣ · ∣ ∣ ∣ ∣

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )   
áW Wñ - áW Wñ áW Wñ= áW Wñ - áW Wñ Wñ

Wñ Wñ - áW Wñ Wñ

P A P A P A A

P A A ,

m m m m m m m

m m m

1 1 1

1

and as ∣ ∣ ∣ ∣( ) ( ) ( ) Wñ - áW Wñ Wñ = DA A Am m m , we conclude that

( ) · ∣ ∣( ) ( ) ( )   å r r r d- Ä D
Î

P P A L Econst .
j L

m
j j

m m
1 1, 1 1

Here, the last inequality comes from the inequality(8) in themain text, which applies in this case since ( )A m is an
additive operator on L. Combining this with inequality(F2) completes the proof.

F.1.Optimality of the bound
When ( )d =E 1 , inequality(F1) reduces to

· ∣ ∣ ( )  å r r r- Ä
Î

Lconst . F3
j L

j j1, 1

Wecan ensure that this upper bound is qualitatively optimal by considering the state

∣ ∣ ∣ ∣ ( )ñ ñ + ñ ñ¼
1

2
0 0 0 0

1

2
1 W , F4N N1 2 3 1 2, ,

where ∣ ñ¼W N2, , is theW state for the spins ¼ N2, 3, , .We note that this state satisfies inequality
( ) (∣ ∣)DA L2 [24], which is equivalent to the inequality(8) in the case of ( )d =E 1 . Interestingly, the state
in(F4) also gives the upper limit of themonogamy inequality of the entanglement [65].
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