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Abstract: Oxidative/nitrosative stress and mitochondrial dysfunction is a hallmark of amyotrophic
lateral sclerosis (ALS), an invariably fatal progressive neurodegenerative disease. Here, as an
exploratory arm of a phase II clinical trial (EudraCT Number 2017-005065-47), we used high perfor-
mance liquid chromatography(HPLC) to investigate changes in the metabolic profiles of serum from
ALS patients treated weekly for 4 weeks with a repeated sub-cutaneous dose of 1 mg/kg of a propri-
etary low molecular weight dextran sulphate, called ILB®. A significant normalization of the serum
levels of several key metabolites was observed over the treatment period, including N-acetylaspartate
(NAA), oxypurines, biomarkers of oxidative/nitrosative stress and antioxidants. An improved serum
metabolic profile was accompanied by significant amelioration of the patients’ clinical conditions,
indicating a response to ILB® treatment that appears to be mediated by improvement of tissue bioen-
ergetics, decrease of oxidative/nitrosative stress and attenuation of (neuro)inflammatory processes.

Keywords: amyotrophic lateral sclerosis; low molecular weight-dextran sulphate; serum biomarkers;
energy metabolism; mitochondrial dysfunction; N-acetylaspartate; amino acids; oxidative/nitrosative
stress; antioxidants; HPLC

1. Introduction

Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) is the most
common type of motor neuron disease. It is invariably a fatal disease, affecting most
populations of motor neurons. The most important degeneration of neuronal cells occurs

J. Pers. Med. 2021, 11, 794. https://doi.org/10.3390/jpm11080794 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-1639-0966
https://orcid.org/0000-0003-3525-9955
https://orcid.org/0000-0001-8743-0895
https://orcid.org/0000-0002-5917-7279
https://doi.org/10.3390/jpm11080794
https://doi.org/10.3390/jpm11080794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11080794
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11080794?type=check_update&version=1


J. Pers. Med. 2021, 11, 794 2 of 15

in motor neurons in the spinal cord, brain stem and brain. The disease begins focally in the
central nervous system and then spreads relentlessly [1]. The clinical diagnosis, defined by
progressive signs and symptoms of upper and lower motor neuron dysfunction, is con-
firmed by clinical findings, electromyography, blood and cerebrospinal fluid (CSF) analysis.
Although the disease is heterogeneous, most patients die of respiratory muscle weak-
ness less than 3–5 years from symptom-onset. Like other age-related neurodegenerative
diseases, ALS has genetic, metabolic and environmental triggers.

As yet, there is no cure for ALS, and management is focused on a combination of
neuroprotective medication, multidisciplinary clinics and respiratory support. To date,
there is one medication (riluzole (Rilutek®), approved originally in the USA in 1995) with
anti-glutamatergic properties that prolongs survival, although the effect is limited typically
to a few months of additional survival in ALS [2]. Numerous trials have so far been unable
to identify any agent that reverses or even halts symptoms. Researchers now aim to slow
disease progression by targeting known pathophysiological pathways or genetic defects.

The deranged neuronal function that is associated with the oxidative/nitrosative
stress and mitochondrial dysfunction that characterizes the pathophysiological progress of
neurodegenerative conditions such as ALS [3] is reflected by changes in related metabolites
in blood. When measured, these metabolites can be used as biomarkers of tissue function
and, therefore, of disease progression and/or patient response to treatment [4].

The proprietary low molecular weight dextran sulphate (LMW-DS) under investiga-
tion in this study is a novel patented formulation of a modified glycosaminoglycan called
ILB® (Tikomed AB, Viken, Sweden), which exerts neurotrophic effects through the release
and modulation of growth factors including HGF [5] and has been shown to restore brain
energy metabolism in the injured brain after severe traumatic brain injury in rats [6].

Here, we report that repeated ILB® administration over four weeks leads to a signifi-
cant attenuation of the levels of key serum metabolites related to neural damage, oxida-
tive/nitrosative stress and mitochondrial derangement in a cohort of patients with ALS
who had participated in the clinical trial entitled ‘A single-center, open single-arm study on
the safety, tolerability and efficacy of subcutaneously administered ILB® in patients with
amyotrophic lateral sclerosis’; trial registration: EudraCT Number 2017-005065-47. The
primary outcomes of this clinical trial are reported elsewhere [7].

2. Materials and Methods
2.1. Trial Oversight

The clinical trial was a phase IIa, single-center, open label, single-arm proof of concept
study of 13 heterogeneous patients with ALS of intermediate disease severity, with safety
and tolerability of subcutaneously (s.c.) administered ILB® as the primary endpoints. The
study (EudraCT number 2017-005065-47) was conducted at the Sahlgrenska University Hos-
pital, Gothenburg, Sweden. The trial was overseen and approved by the Ethics Committee
of the University of Gothenburg and by the Swedish Medical Products Agency (reference
number 21,788). The trial was sponsored by Tikomed AB, who had no influence on the
conduct of the trial and was not involved in data collection or analysis. The study protocol
is described in Supplementary Table S1, and the verbal and written information provided
to the patients were in accordance with the Declaration of Helsinki. The underpinning data
that support the findings in this study are available from the EU Clinical Trials Register [8].

2.2. Patients and Controls

Thirteen patients of either sex with a definite diagnosis of sporadic or genetic forms
of ALS and either slow or rapid progression were recruited into the ILB® clinical trial at
the Sahlgrenska University Hospital. The male:female ratio was 10:3, mean age ± SD was
56.5 ± 13.3 years and mean ALSFRS-R score ± SD at screening was 36.3 ± 6.7. Individuals
were included in the drug trial after giving informed written consent after the diagnosis of
ALS was confirmed as definite according to the El Escorial criteria, if there was no other
major degenerative or inflammatory disease and if there was a ventilatory capacity of no
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less than 65% of normal predicted Forced Vital Capacity (FVC) at screening. Patients had
to be free of riluzole or lamotrogine for a minimum of 28 days for inclusion in the trial. Full
details of the inclusion/exclusion criteria are described in Supplementary Table S1 and
elsewhere [8].

A group of 163 age and sex matched healthy subjects (58 ± 14 years, 111 males
and 52 females), recruited during the last three years at the Catholic University of Rome
among the personnel who underwent the annual health check-up, were used as controls.
Written informed consent was obtained from each participant according to the Declaration
of Helsinki.

2.3. Clinical Assessment of Patients with ALS Using the ALSFRS-R

Disease progression during the clinical trial was assessed at each visit using ALSFRS-R
scores, a physician-generated validated assessment of the patient’s degree of functional
impairment, which was evaluated serially to assess objectively any impact of treatment on
the progression of disease [9]. The ALSFRS-R included questions and observations that
allowed the patient’s level of functional impairment in performing 12 aspects of physical
function, including speech, salivation, swallowing, handwriting, cutting food, climbing
stairs, turning in bed, walking, dressing and hygiene, difficulty in breathing, shortness of
breath while lying down and breathing insufficiency. Tasks were rated on a five-point scale
from 0 = cannot do, to 4 = normal ability. Individual item scores were summed to produce
a reported score of between 0 = worst and 48 = best.

2.4. Investigational Medicinal Product (IMP), Dosing and Administration

The active pharmaceutical ingredient of the IMP was an LMW-DS having a mean
molecular weight of 5 kDa containing molecules spanning approximately 3–8 kDa with
on average 20% sulphation. ILB® is a unique and distinct LMW-DS formulation whose
structure, formulation, synthesis and structure has been previously described in a published
patent document (publication number: WO 2016/076780—New dextran sulphate). ILB®

was provided by Tikomed AB in 10 mL vials containing a solution of 20 mg/mL ILB® in
9 mg/mL NaCl. A single batch of drug was used throughout the study (batch #8059701).
ILB® was injected s.c. on alternating sides of the abdomen by the clinical personnel at the
Sahlgrenska University Hospital. Five injections of 1 mg/kg, with a weekly dosing interval,
were administered in total over 29 days. The exact dose administered depended on the
patient’s body weight immediately prior to the first ILB® administration.

2.5. Serum Sampling

Blood samples were taken for metabolic biomarker analysis immediately prior to
the first ILB® injection at day 0 (pre-treatment: Pre) and again at day 36 (one week post-
treatment: Post). Peripheral venous blood samples were collected from both patients and
controls after at least 15 min of complete rest, using the standard tourniquet procedure,
from the antecubital vein into a single VACUETTE® polypropylene tube containing serum
separator and clot activator (Greiner-Bio One GmbH, Kremsmunster, Austria). After 30 min
at room temperature, blood withdrawals were centrifuged at 1890× g for 10 min and the
resulting serum samples saved at temperatures not higher than −20 ◦C until analysis.

2.6. List of ALS Patient Samples, Sample Processing and Analyses

The laboratory received, processed and analyzed serum samples from the patients with
ALS (coded as reported in Table 1) in blind. A progressive number, from 1 to 26 was given
to each sample. After all analyses were completed, each serum sample was designated
either as Day 0 (pre-treatment) or Day 36 (post-treatment), with the final ILB® treatment
administered on Day 29.
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Table 1. Coding of the serum samples.

Sample Number Subject Number and Sampling Time

1 Subject 101, Day 0
2 Subject 101, Day 36
3 Subject 102, Day 0
4 Subject 10, Day 36
5 Subject 103, Day 0
6 Subject 103, Day 36
7 Subject 104, Day 0
8 Subject 104, Day 36
9 Subject 105, Day 0

10 Subject 105, Day 36
11 Subject 106, Day 0
12 Subject 106, Day 36
13 Subject 107, Day 0
14 Subject 107, Day 36
15 Subject 108, Day 0
16 Subject 108, Day 36
17 Subject 109, Day 0
18 Subject 109, Day 36
19 Subject 110, Day 0
20 Subject 110, Day 36
21 Subject 111, Day 0
22 Subject 111, Day 36
23 Subject 112, Day 0
24 Subject 112, Day 36
25 Subject 113, Day 0
26 Subject 113, Day 36

An aliquot of each serum sample (500 µL) from either controls or patients with ALS
was supplemented with 1.0 mL of HPLC-grade acetonitrile, vortexed for 60 s, centrifuged at
20,690× g for 15 min at 4 ◦C to precipitate proteins [10,11]. Supernatants were washed with
large volumes of HPLC-grade chloroform to remove acetonitrile, centrifuged and the upper
aqueous phases were transferred to different tubes, clearly labeled to identify the sample
and stored at −80 ◦C until analyzed to determine different water-soluble compounds.

A second aliquot of 300 µL of each serum sample was protected from light and then
processed to extract fat-soluble vitamins and antioxidants, using a method described in
detail elsewhere [12]. Briefly, samples were supplemented with 1 mL of HPLC-grade
acetonitrile, vortexed vigorously for 60 s and incubated at 37 ◦C for 1 h in a water bath
under agitation, to maximize extraction of lipid soluble compounds. Samples were then
centrifuged at 20,690× g for 15 min at 4 ◦C to remove precipitated proteins and the
clarified supernatants stored at −80 ◦C until the HPLC analysis of fat-soluble vitamins
and antioxidants.

In the aqueous phase of deproteinized serum samples, creatinine, uracil, β-pseudouridine,
cytidine, hypoxhantine, xanthine, uric acid, uridine, inosine, guanosine, orotic acid, mal-
ondialdehyde (MDA), nitrite, nitrate, N-acetylaspartate (NAA) were separated and quan-
tified by direct HPLC methods, with no sample derivatization [10,11,13]. Additionally,
aspartate (ASP), glutamate (GLU), asparagine (ASN), serine (SER), glutamine (GLN), his-
tidine (HIS), glycine (GLY), threonine (THR), citrulline (CITR), arginine (ARG), alanine
(ALA), taurine (TAU), Υ-aminobutyrate (GABA), tyrosine (TYR), S-adenosylhomocysteine
(SAH), L-cystathionine (L-CYSTAT), valine (VAL), methionine (MET), tryptophan (TRP),
phenylalanine (PHE), isoleucine (ILE), leucine (LEU), ornithine (ORN), lysine (LYS) were
separated and quantified by HPLC using pre-column derivatization with orthophtalalde-
hyde (OPA) [14].

The following fat-soluble vitamins and antioxidants in deproteinized serum samples
were separated and quantified by HPLC according to a method set up in our laboratory [12]:
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all trans-retinoic acid, all trans-retinol (vitamin A), α-tocopherol (vitamin E), Υ-tocopherol,
coenzyme Q10, astaxanthin, phytoene, lutein, zeaxanthin, trans-β-apo-8′-carotenal, β-
cryptoxanthin, lycopene, α-carotene, β-carotene, violaxanthin, 25-hydroxycholecalciferol
(vitamin D3).

All HPLC analyses were carried out using a Surveyor HPLC apparatus (Thermo Fisher
Scientific, Rodano, Milan, Italy) equipped with a highly sensitive 5 cm light-path flow
cell diode array UV detector, setup for acquisition between 200 and 550 nm wavelengths.
Water-soluble compounds, free amino acids and amino group containing compounds
were loaded (100 and 25 µL, respectively) onto a Hypersil C-18, 250 × 4.6 mm, 5 µm
particle size column (Thermo Fisher Scientific, Rodano, Milan, Italy), while fat-soluble
compounds (200 µL) were loaded onto a Hypersil Gold C-18, 200 × 4.6 mm, 5 µm particle
size column (Thermo Fisher Scientific, Rodano, Milan, Italy). Both columns used were
provided with their own guard columns. Data acquisition and analysis were performed
using the ChromQuest® software package provided by the HPLC manufacturer. Quan-
tification of uracil, β-pseudouridine, cytidine, hypoxhantine, xanthine, uric acid, uridine,
inosine, guanosine, orotic acid, malondialdehyde (MDA) was carried out at 260 nm wave-
length [10,11,13]. Creatinine was quantified at 234 nm, whilst NAA, nitrite and nitrate were
quantified at 206 nm wavelength [10,11,13]. OPA-amino acids and amino group-containing
compound derivatives were quantified at 338 nm [14]. Lastly, fat-soluble vitamins and
antioxidants were quantified at wavelengths between 260 and 500 nm [12].

To verify reproducibility of chromatographic runs, a mixture containing proper ultra-
pure standards with known concentrations was analyzed every other five serum samples.

Additionally, in all protein-free serum samples the concentration of lactate was deter-
mined spectrophotometrically using the method described by Artiss et al. [15].

2.7. Statistics

Comparison of the pre- and post-treatment subgroups was performed by the two-
tailed Student’s t-test for paired samples. The comparison of each subgroup with the group
of control healthy subjects was carried out by the one-way analysis of variance (ANOVA),
followed by the Dunnett’s post-hoc test. Differences with p < 0.05 were considered statisti-
cally significant.

3. Results
3.1. Raw Data

Supplementary Tables S2–S4 report the raw data, means, standard deviations and
p-values (significant results of the Student’s t-test are marked in red) of the circulating
concentrations of metabolites found in patients with ALS. Only those compounds resulting
in statistically significant differences on the pre-post ILB® administration comparison
(hypoxanthine, xanthine, uric acid, MDA, nitrite, nitrate, N-acetylaspartate, nitrite + nitrate
and sum of oxypurines, Table S2; citrulline, alanine and ornithine/citrulline ratio, Table S3;
α-tocopherol and γ-tocopherol, Table S4) are indicated. Similarly, Table S5 reports the
serum levels of the aforementioned compounds recorded in the group of 163 age and sex
matched healthy controls.

3.2. ILB® Improves Patients’ Clinical Conditions and Decreases Neuronal Damage and Energy
Metabolism Impairment

Data summarized in Table 2 show the effects of ILB® treatment on the clinical parame-
ters used for assessing symptom progression of ALS. At the end of the ILB® administration
period, a +8.6% increase in ALSFRS-R was observed (p < 0.001 compared to pre-treatment).
Interestingly, at the time of blood withdrawal for the biochemical analyses of selected
circulating metabolites (i.e., one week after the end of ILB® treatment), clinical symptoms
of patients with ALS displayed a further improvement leading to a final +13.3% overall
increase in ALSFRS-R (p < 0.002 compared to pre-treatment).
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Table 2. Change in ALS patient functional rating over the ILB® treatment period assessed by ALSFRS-R.

Day ALSFRS-R ± SD

0 (Pre-treatment) 36.1 ± 6.7
29 (Final treatment) 39.2 ± 6.3 *
36 (Post-treatment) 40.9 ± 6.9 **

* Significantly different compared to day 0, p < 0.001. ** Significantly different compared to day 0, p < 0.002.

Figure 1 illustrates the changes in the circulating concentrations of NAA (a), uric acid
(b) and sum of oxypurines (hypoxanthine + xanthine + uric acid) (c) recorded in patients
with ALS before and after ILB® administration. ILB® treatment produced a significant
reduction in ALS-related neuronal damage, as clearly evidenced by the 41.7% decrease
(p < 0.05 compared to pre-treatment) of the serum levels of the neuron specific compound
NAA. At the same time, ILB®-treated patients had decreased serum concentrations of uric
acid (the final product of adenine nucleotide degradation) and the sum of oxypurines,
suggesting an ILB®-induced amelioration of cell energy metabolism. It is worth under-
lining that, when compared with the group of healthy controls, patients with ALS, either
before or after treatment, had significantly different values in any of the aforementioned
compounds (p < 0.001).
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Figure 1. Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum concentrations of the
neuronal specific metabolite N-acetylaspartate (NAA, (a)) and of indices of energy metabolism impairment (uric acid,
(b) and sum of oxypurines (c)) in 13 patients with ALS before (Pre) and after (Post) ILB® treatment. The values found in a
group of 163 healthy controls are also reported. (#): open circles are the values of metabolites in each subject enrolled in the
study. Means ± S.D. of NAA in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively,
0.037 ± 0.026, 0.223 ± 0.136 and 0.130 ± 0.084 µmol/L serum. Means ± S.D. of uric acid in controls, patients with ALS
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before (Pre) and after (Post) ILB® treatment were, respectively, 270.50 ± 57.90, 397.10 ± 70.32 and 371.40 ± 71.98 µmol/L
serum. Means ± S.D. of sum of oxypurines in controls, patients with ALS before (Pre) and after (Post) ILB® treatment
were, respectively, 276.80 ± 58.45, 407.60 ± 69.34 and 381.20 ± 72.38 µmol/L serum. * Significantly different from Controls,
p < 0.001. ** Significantly different from Pre, p < 0.05.

3.3. ILB® Decreases ALS-Related Oxidative/Nitrosative Stress

As shown in Figure 2, patients with ALS after ILB® treatment had significantly
lower circulating biomarkers of both reactive oxygen species-mediated lipid peroxida-
tion (a) (−33% in MDA values, p < 0.05) and of nitric oxide overproduction (b) (−10.2%
in circulating nitrite + nitrate, p < 0.05), suggesting beneficial effects of the drug upon the
mechanisms underlying insurgence of oxidative/nirosative stress. Notwithstanding the
treatment effects, when compared with the group of healthy controls, patients with ALS,
either before or after treatment, had significantly different values in both the aforemen-
tioned compounds (p < 0.001).
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alanine and citrulline, the administration of ILB® was able to restore serum values equal 
to those found in healthy control subjects. 

Figure 2. Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum
concentrations of lipid peroxidation end product (MDA, (a)) and stable compounds of nitric oxide
metabolism (nitrite + nitrate, (b)) in 13 patients with ALS before (Pre) and after (Post) ILB® treatment.
The values measured in a group of 163 healthy controls are also reported. (#) Open circles are
the values of metabolites in each subject enrolled in the study. Means ± S.D. of MDA in controls,
patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 0.066 ± 0.048,
0.190 ± 0.114 and 0.128 ± 0.046 µmol/L serum. Means ± S.D. of nitrite + nitrate in controls, patients
with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 30.90 ± 9.67, 53.98 ± 12.55
and 48.47 ± 12.25 µmol/L serum. * Significantly different from Controls, p < 0.001. ** Significantly
different from Pre, p < 0.05.
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3.4. ILB® Ameliorates ALS-Induced Changes of Serum Amino Acids

Of the 25 amino acids and amino group-containing compounds that were quantified
in serum samples of patients with ALS before and after ILB® administrations, significant
differences were found in the case of alanine (a) (−12.7%, p < 0.05), citrulline (b) (−21.2%,
p < 0.05) and the ornithine/citrulline ratio (c) (+44%, p < 0.05), indicating an effect on
muscular protein turnover and consistent with the significant decrease of nitric oxide
production and counteraction of nitrosative stress(Figure 3). It is important to note that,
in the case of alanine and citrulline, the administration of ILB® was able to restore serum
values equal to those found in healthy control subjects.
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acids related to muscular protein degradation (ALA, (a)) and to nitric oxide generation (CITR, (b) and ORN/CITR ratio, (c))
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and 374.70 ± 83.43 µmol/L serum. Means ± S.D. of CITR in controls, patients with ALS before (Pre) and after (Post) ILB®

treatment were, respectively, 18.82 ± 4.22, 23.59 ± 7.03 and 18.60 ± 5.10 µmol/L serum. Means ± S.D. of ORN/CITR in
controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 4.47 ± 1.78, 1.52 ± 0.68 and
2−19 ± 1.03. * Significantly different from Controls, p < 0.001. ** Significantly different from Pre, p < 0.05.

3.5. ILB® Improves the Pattern of Circulating Fat-Soluble Antioxidants

As shown in Figure 4, the group of 13 patients with ALS, one week after of drug
administration, had significantly higher serum values of the most important fat-soluble
antioxidant. In particular, serum levels of the two most abundant congeners of vitamin E
found in the European diet, i.e., α-tocopherol (a) and γ-tocopherol (b), increased by 21.5%
and 39.2% (p < 0.05), respectively, thus conferring a better protection to the unsaturated
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fatty acids of membrane phospho-lipids that are the main target of reactive oxygen species-
mediated lipid peroxidation. However, both compounds were significantly lower than the
values measured in healthy controls, either before or after drug administration (p < 0.001).
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Figure 4. Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum
concentrations of the main vitamin E congeners (α-tocopherol, (a) and γ-tocopherol, (b)) in patients
with ALS before (Pre) and after (Post) ILB® treatment. The values measured in a group of 163 healthy
controls are also reported. (#) Open circles are the values of metabolites in each subject enrolled in the
study. Means ± S.D. of α-tocopherol in controls, patients with ALS before (Pre) and after (Post) ILB®

treatment were, respectively, 25.03 ± 5.78, 9.35 ± 5.54 and 11.70 ± 8.50 µmol/L serum. Means ± S.D.
of γ-tocopherol in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were,
respectively, 1.05 ± 0.28, 0.497 ± 0.139 and 0.692 ± 0.367 µmol/L serum. * Significantly different
from Controls, p < 0.001. ** Significantly different from Pre, p < 0.05.

4. Discussion

The relevance of metabolic dysfunction to acute and chronic neurodegeneration has
clearly been established in the last decade [16,17]. ALS has also been included in the list of
chronic, progressive neurodegenerative disorders in which metabolic alterations, partic-
ularly those occurring to the so-called “central metabolism” [18,19], have been indicated
not only as biochemical signatures of the disease [20] but also as molecular mechanisms
connected to its pathogenesis and progression [21,22]. Hence, drug treatments capable of
improving ALS-induced metabolic dysfunctions are considered as potentially promising
therapies to be investigated in this still “orphan drug disease” [23,24]. Results reported
in the present clinical trial strongly suggest that ILB® administration produces metabolic
benefits that are translated into evident improvements in clinical outcome for patients
with ALS.
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When evaluating the results of the targeted metabolic analyses, in serum from
13 patients with ALS (before and one week after 29 days of ILB® administration), of
the 55 quantified compounds that are connected to energy metabolism, mitochondrial
function, oxidative/nitrosative stress, water- and fat-soluble antioxidant defenses, one of
the most remarkable differences occurred with the levels of NAA. In accordance with the
data of Simone et al. [25], we found that patients with ALS had nearly five-times higher
values of circulating NAA than those of control healthy subjects. Although NAA serum
levels after ILB® treatment were still 2.4 times higher than the values recorded in controls,
a 41.7% decrease compared to pre-treatment levels was detected. Previous clinical studies
have demonstrated that brain levels of NAA in patients with ALS are significantly lower
than those of healthy subjects [26–28] and correlates negatively with time of patients’ sur-
vival [29]. Furthermore, in a mouse model of selective motoneuronal loss, mimicking the
primary pathology associated with ALS, we have very recently found a dramatic depletion
of NAA in spinal cord extracts [30]. It has been shown that changes in cerebral NAA levels
under pathological conditions are not simply due to neuronal loss but may also occur
under conditions of mitochondrial dysfunction with consequent energy penalty [31–35].
Therefore, it is tempting to speculate that lower serum NAA concentrations in the cohort of
patients with ALS following ILB® administration was due to improved cerebral mitochon-
drial metabolism. This is supported by recent evidence showing that ILB® administration
dose-dependently restores brain energy metabolism and NAA concentrations following
severe traumatic brain injury in an animal model in vivo [6].

In accordance with this hypothesis, we found that patients with ALS after ILB®

treatment had decreased serum levels of both uric acid and sum of oxypurines (hypoxan-
thine + xanthine + uric acid). These compounds, particularly uric acid, represent the end
products of the adenine nucleotide degradation pathway occurring at a high rate under
conditions of impaired energy metabolism, i.e., when imbalance between ATP production
and consumption takes place [36,37]. Increased oxypurines have been observed during
coronary bypass surgery [38], following traumatic brain injury [39], in patients affected
by multiple sclerosis (correlating with disease progression, clinical subtype and neurora-
diological findings) [40,41], as well as under various experimental conditions of cellular
energy penalty [42–44] including those found in muscle tissue in an ALS-like murine
model of motoneuron ablation [30]. Recently, using 31P-magnetic resonance spectroscopy
for the quantification of energy-related metabolites in vivo, it has been found that patients
with ALS have evident mitochondrial dysfunction in both brain and muscle tissues [45].
Therefore, the increase in serum uric acid and sum of oxypurines evident in the patients
with ALS, compared to levels in healthy controls, may represent a biochemical signature
of impaired neuronal and muscle metabolism that can be attenuated successfully by the
treatment with ILB®.

Numerous pathological conditions characterized by protracted mitochondrial dys-
function are accompanied by increased production of reactive oxygen (ROS) and reactive
nitrogen species (RNS) triggering the insurgence of oxidative/nitrosative stress [46–49].
If for ROS overproduction mitochondrial malfunctioning is certainly imputed as the main
cause [50], in the case of excessive RNS formation the main origin is linked to overexpres-
sion of inducible nitric oxide synthase (iNOS) with a consequent high rate of nitric oxide
generation [51], often mediated by (neuro)inflammatory processes [52,53]. In preclinical
and clinical studies of ALS, clear evidence of ROS and RNS-mediated damages have previ-
ously been shown [54–57] accompanied by a decrease in brain and muscle concentrations
of reduced glutathione [58,59], i.e., one of the most important intracellular water-soluble
antioxidant and scavenger of excessive formation of nitric oxide and RNS [60]. In the cohort
of patients with ALS, we found that both MDA (quantified by direct HPLC method with no
derivatization) and the sum of nitrite + nitrate were, before treatment, significantly higher
than the values recorded in healthy controls. Although ILB® administration did not abol-
ish evidence of circulating oxidative/nitrosative stress associated with ALS, a significant
decrease in both parameters was evident one week after the 29 days period of drug treat-
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ment. Additionally, patients with ALS post ILB® treatment had significantly higher serum
levels of the main fat-soluble antioxidants (the α- and γ-congeners of tocopherol) that may
confer better protection to unsaturated fatty acids of biological membrane phospholipids
towards ROS-mediated lipid peroxidation It is worth underlining that ILB® displayed,
under different experimental conditions, remarkable anti-inflammatory activity [5] and
capacity to diminish oxidative/nitrosative stress [6].

The last beneficial effects of the ILB® administration to this cohort of patients with ALS
were changes in serum levels of ALA, CITR and the ORN/CITR ratio when compared with
the corresponding pre-treatment levels. In the pre-treatment samples, these parameters
were significantly different from those of controls (higher ALA and CITR, and lower
ORN/CITR ratio), suggesting higher degradation rate of muscular proteins (ALA) and
confirming higher nitric oxide production through higher activity of the iNOS enzymes
(CITR and ORN/CITR ratio). Previous data indicate various anomalies in the tissue and
serum levels of free amino acids [61–64], supporting the notion of a profound metabolic
derangement induced by ALS. The benefits of ILB® treatment on these parameters confirm
the data obtained with sum of nitrite + nitrate and suggest that the drug may affect
positively muscle metabolism perhaps either through its anti-inflammatory activities [5] or
through its capacity to induce an amelioration of energy-related metabolism and of amino
acid metabolism dysregulation under conditions of cell sufferance [6].

In conclusion, although obtained in a restricted number of patients (not allowing
to evaluate potential age and/or sex differences of the serum biochemical analyses) this
longitudinal study produced very encouraging results concerning the effects of ILB®

administration to patients suffering from ALS. As there are no current effective drug
treatments licensed for clinical use other than riluzole that has a very limited benefit, the
present findings indicate the utility of pharmacological interventions positively acting on
the ALS-induced metabolic changes, specifically on energy-related mitochondrial functions,
oxidative/nitrosative stress and amino acid metabolism. Results from further studies with
larger patient numbers are needed.
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