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We study a Rabi type Hamiltonian system in which a qubit and a d-level quantum system (qudit)
are coupled through a common resonator. In the weak and strong coupling limits the spectrum
is analysed through suitable perturbative schemes. The analysis show that the presence of the
multilevels of the qudit effectively enhance the qubit-qudit interaction. The ground state of the
strongly coupled system is a found of Greenberger-Horne-Zeilinger (GHZ) type. Therefore, despite
the qubit-qudit strong coupling, the nature of the specific tripartite entanglement of the GHZ
state suppress the bipartite entanglement. We analyze the system dynamics under quenching and
adiabatic switching of the qubit-resonator and qudit-resonator couplings. In the quench case, we
found that the non-abiabatic generations of photons in the resonator is enhanced by the number
of levels in the qudit. The adiabatic control represents a possible route for preparation of GHZ
states. Our analysis provides relevant information for future studies on coherent state transfer in
qubit-qudit systems.

I. INTRODUCTION

The quantum Rabi model (QRM) describes the inter-
action between a two-level system and a single quantized
harmonic oscillator mode. It is one of the most celebrated
models in atomic physics for light-matter interaction [1].
In quantum technology, Rabi-like models are widely em-
ployed to describe the effective physics emerging in a va-
riety of different contexts ranging from spintronics [2, 3]
to trapped ions [4], and from circuit quantum electro-
dynamics (cQED) [5] to atom-superconducting qubit hy-
brid schemes [6]. Despite its simple form, the Rabi model
was solved exactly only recently [7, 8]. The ground state
of the quantum Rabi model consists of a non-classical
highly entangled state of two-level system and bosonic
mode [7, 9]. In cQED, different regimes of interaction
between the two-level system and the bosonic field can
be explored. In particular, weak and strong coupling
regimes are routinely exploited for read-out and coherent
state transfer [10]. Recent research has demonstrated the
possibility of reaching the ultrastrong and deep strong
coupling regimes, too [11, 12].

Here, we formulate and study a Rabi-type minimal
model describing qubit-qudit interaction mediated by a
single mode quantum bosonic field. This type of models
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has emerged recently in several studies of specific systems
where atoms, solid state devices (such as superconduct-
ing or quantum dot qubits) are assembled together to
form hybrid quantum networks [6, 13–20]. In this con-
text, entangling quantum systems of heterogeneous na-
ture is sought intensively [21–23], as such hybrid entan-
gled states could become useful in converting quantum
information between different encodings [24].

We shall see that the physics of our model is particu-
larly interesting in the ultrastrong coupling regime [18,
25–28]. In particular, the ground state of the system
turns out to be defining a Greenberger-Horne-Zeilinger
(GHZ) entangled state. GHZ states present great signifi-
cance among all types of multipartite entanglement [29].
These states exhibit maximal correlations between three
or more quantum systems. GHZ states have been con-
sidered a key resource in fundamental physics since the
early stages of quantum information. They have also
been proven useful in various quantum technologies, in-
cluding quantum error-correcting codes [30] and quan-
tum metrology beyond the Heisenberg limit [31].

We point out that the generation of GHZ hybrid entan-
glement defines a challenging problem in quantum tech-
nology. In cQED, for example, GHZ hybrid entangle-
ment has been achieved by state-dependent phase shift
operations which involve complicated control and feed-
back sequences [23, 32]. In this context, exploration of
the ultrastrong coupling regime has been demonstrated
beneficial for GHZ state preparation [33, 34]. Indeed, our
scheme guarantees a straightforward preparation of hy-
brid GHZ states, as such state could appear in the ground
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state of the QRM at large coupling strength.
The article is organized as follows: in Sec. II, we intro-

duce a generalization of the quantum Rabi model to de-
scribe the qubit-qudit interaction through the resonator
bosonic field. We demonstrate, through an analytical
approach based on adiabatic approximation and pertur-
bative expansion that hybrid GHZ states constitute the
ground state solutions in the ultrastrong coupling limit.
In Sec. III, we study the bipartite entanglement between
the qubit and qudit mediated by the common resonator,
quantified by negativity [35]. We show that the presence
of the GHZ state induces an exponential suppression of
the negativity for large values of the coupling strengths.
Dynamical features are investigated in Sec. IV. In par-
ticular, we show the dynamics after quenching the cou-
pling strength, and propose adiabatic state preparation
schemes for the hybrid GHZ states. A short discussion of
the main results of the manuscript is presented in Sec. V.

II. THE QUBIT-QUDIT RABI MODEL

We investigate the physical system schematically pic-
tured in Fig. 1. The scheme features a qubit (two-level
quantum system) and a qudit (d-level quantum system)
individually coupled to a common quantum resonator de-
scribed by bosonic degrees of freedom. The Hamiltonian
reads (here, and in the rest of this manuscript, we work
in units ~ = 1)

Ĥ = ωâ†â− Ω1

2
σ̂z+Ω2Ĵ

z
d +[g1σ̂x+g2(Ĵ+

d + Ĵ−d )](â†+ â).

(1)
Here, σ̂x,y,z are the Pauli matrices for the qubit with

transition frequency Ω1, Ĵz,±d are the spin (d − 1)/2 op-

erators with level spacing Ω2, and â(â†) is the annihi-
lation (creation) operator for the bosonic field with fre-
quency ω. The coupling strengths g1,2 in Eq. (1) quantify
the vacuum-Rabi splittings. Employing a jargon that is
widely used in the literature, we will denote the qubit
and the qudit as “artificial atoms”. For d = 2, our model
is equivalent (up to a sign convention) to the two-qubit
quantum Rabi model [36–39]. In contrast to the sin-
gle qubit Rabi model, this generalized model is not inte-
grable for general parameter values [37, 38].

The eigenvalues and eigenstates of Ĥ can be readily
obtained numerically. Here, we devise analytical approx-
imation schemes both in the weak-coupling and in the
ultrastrong coupling regimes.

The weak coupling limit (g1, g2 � ω), in the presence
of strong qubit/qudit-resonator detuning (Ω1,Ω2 � ω),
can be treated by means of a Schrieffer-Wolff transforma-
tion [5, 40]. In particular, we apply the following unitary
transformation to the Hamiltonian Eq. (1):

V̂ = exp(Ŝ)

= exp[ε1(â†σ̂+ − âσ̂−) + ξ1(â†σ̂− − âσ̂+)

+ε2(â†Ĵ+
d − âĴ

−
d ) + ξ2(â†Ĵ−d − âĴ

+
d )] (2)

FIG. 1. Model schematics. The system is composed of a
qubit with level spacing Ω1, an harmonic oscillator (resonator)
with characteristic frequency ω, and a d-level quantum system
(qudit) with level spacing Ω2. The qubit and the qudit are
coupled to the resonator through the coupling constants g1,2.

where we choose

εi =
gi

ω − Ωi
=

gi
∆i
, (3)

ξi =
gi

ω + Ωi
=
gi
Σi
. (4)

In the weak coupling limit considered here εi, ξi � 1.
In particular, at the lowest order in the expansion, the
effective Hamiltonian Ĥeff = V̂ ĤV̂ † reads:

Ĥeff ' Ĥ0 −
1

2

[
[g1σ̂x + g2(Ĵ+

d + Ĵ−d )](â† + â), Ŝ
]

= ω̃â†â− Ω̃1

2
σ̂z + Ω̃2Ĵ

z
d − geff σ̂x(Ĵ+

d + Ĵ−d )

− 1

2
g2(ε2 + ξ2)

[
d2 − 1

2
− 2(Ĵzd )2 + (Ĵ+

d )2 + (Ĵ−d )2

]
− 1

2
g1(ε1 + ξ1) (5)

with renormalized frequencies [41]:

ω̃ = ω + g1(ε1 − ξ1)σ̂z + 2g2(ε2 − ξ2)Ĵzd (6)

Ω̃1 = Ω1 − g1(ε1 − ξ1) (7)

Ω̃2 = Ω2 − g2(ε2 − ξ2) (8)

and effective coupling geff = [g1(ε2 + ξ2) + g2(ε1 + ξ1)]/2.

In Eq. (5), Ĥ0 = ωâ†â − Ω1

2 σ̂z + Ω2Ĵ
z
d is the uncou-

pled Hamiltonian and [..., ...] denotes the commutator.
Within our approximation, the energy spectrum consists
of different manifolds characterized by a fixed value of
resonator photon number operator N̂ = â†â (the inter-
actions between different manifolds can be neglected due
to the large resonator frequency compared to other en-
ergy scales). For the qubit (d = 2), we have (Ĵ±2 )2 = 0,

(Ĵz2 )2 = 1/4, and the spectrum of the Hamiltonian in
Eq. (5) can be found by diagonalizing a 4 × 4 matrix
consisting of two 2 × 2 blocks. In the lowest manifold
(N = 0), the four eigenenergies are given by

Ed=2 = ±
√

1

4
(Ω̃1 ± Ω̃2)2 + g2

eff −
∑
i=1,2

1

2
gi(εi + ξi). (9)

In the general qudit case (d ≥ 3), the eigenenergies can
be obtained by computing the roots of the product of two
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FIG. 2. Hamiltonian energy spectrum with qudit dimensions d = 2, 3, 4. (a)-(f) Low energy spectrum vs coupling strength
g obtained through numerical diagonalization of the full Hamiltonian Eq. (1) (solid). The numerical results are compared to
the low coupling approximations (black dotted-dashed) of Eq. (9) (see also Appendix A for the qutrit and the ququart cases),
and d-order perturbation approximation Eq. (11) (see also Appendix C for the qutrit and the ququart cases) in the ultrastrong
coupling regime (red dashed), for g1 = g2 = g and (top panels) Ω1 = 0.15ω,Ω2 = 0.1ω, (bottom panels) Ω1 = 0.55ω,Ω2 = 0.5ω.

degree d characteristic polynomials of submatrices of di-
mension 2 × d. Simplified expression can be obtained
by neglecting the (Ĵ±d )2 terms in Eq. (5), and perform-
ing an approximation similar to the standard rotating
wave approximation σ̂x(Ĵ+

d + Ĵ−d ) ∼ σ̂+Ĵ
−
d + σ̂−Ĵ

+
d , valid

for Ω1 ∼ Ω2. The approximate results in the N = 0
subspace for the qutrit and the ququart are reported in
Appendix A.

In the ultrastrong coupling regime, the numerical re-
sults to be presented below are corroborated by an ana-
lytical approach combining the adiabatic approximation
in the displaced oscillator basis [42] and degenerate per-
turbation theory. More precisely, we first obtain the ex-
act spectrum of the reduced Hamiltonian

H̃ = ωâ†â+ g1σ̂x(â† + â) + g2(Ĵ+
d + Ĵ−d )(â† + â), (10)

neglecting the free Hamiltonian of the qubit and qudit
in the limit where Ω1,Ω2 � ω, and g1, g2

<∼ ω. Then,
these terms are restored within a perturbative expansion.
The eigenstates of H̃ are product states |σ m Nσ,m〉 =
|σ〉 ⊗ |m〉 ⊗ |Nσ,m〉. Here, σ =↑, ↓ are the eigenstates
of σ̂x with eigenvalues ±1, |m = 0, 1, . . . , d− 1〉 are the

eigenstates of the qudit operator (Ĵ+
d + Ĵ−d ) with eigen-

values λm = −(d − 1) + 2m, and |Nσ,m〉 are displaced
Fock states [36, 37, 42] (see Appendix B). The system
yields a two-fold degenerate ground state, obtained from
a displacement of the vacuum state in the resonator
{|↑,+, 0↑,+〉 , |↓,−, 0↓,−〉}, with energy E0 = −[g1 + (d−

1)g2]2/ω, where |+〉 (|−〉) is the eigenstate of the op-

erator (Ĵ+
d + Ĵ−d ) with the largest(lowest) eigenvalue,

i.e., d − 1(−d + 1). The corrections to the spectrum

of H̃ are then evaluated through perturbation theory in
Ĥ ′ = − 1

2Ω1σ̂z +Ω2Ĵ
z
d . The lowest (second) order correc-

tions to the energy are obtained as (see Appendix B and
Appendix C for a detailed derivation):

E± = E0 −
ω

16(d− 1)g1g2
Ω2

1e
−4g21/ω

2

− ω (d− 1)

16(d− 2)g2
2 + 16g1g2

Ω2
2e
−4g22/ω

2

± δd,2
ωΩ1Ω2

8(d− 1)g1g2
e−2[g21+(d−1)2g22 ]/ω2

(11)

where δi,j is the Kronecker delta [43]. Notably, the two-
fold degeneration of ground state is only resolved at d-
order perturbation theory in Ĥ ′, with a correction pro-
portional to Ω1Ωd−1

2 (see Appendix C). The correspond-
ing eigenstates read

|Ψ±〉 =
1

C
[| ↑,+, 0↑,+〉 ± | ↓,−, 0↓,−〉+∑

(σ,m)6=(↑,+),(↓,−)

Cσ,m(g1, g2) |σ,m, 0σ,m〉] (12)

where C is the normalization factor, and the functions

Cσ,m(g1, g2) ∝ e−g
2
1/ω

2

, e−g
2
2/ω

2

are exponentially sup-
pressed with the coupling strengths. As discussed above,
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the analytical expression in Eqs. (11)-(12) are expected
to hold in the regime where the free Hamiltonian terms of
the atoms are treated as perturbations to the interacting
system, i.e. Ω1,Ω2 � ω, g1, g2.

In Fig. 2, we display the low-energy spectrum of the
Hamiltonian in Eq. (1) as a function of the coupling
strength (with g1 = g2) for d = 2 (panels a,d), d = 3
(panels b,e), and d = 4 (panels c,f). For visualization
purposes, we plot the energy as a function of dg1 (with d
number of levels in the qudit), since the ground state en-
ergy for g1 = g2 scales as E0/ω ∼ −(dg1/ω)2 for large val-
ues of g1. The analytical expressions obtained in the low-
coupling limit (dotted-dashed) and through perturbation
theory in the ultrastrong coupling regime (dashed) are
compared with the solutions obtained through numerical
diagonalization (solid). In the low coupling regime, the
analytical expression of Eq. (9) gives a very accurate de-
scription of the spectrum for dg1

<∼ 0.4Ω (see Fig. 2a),
and Fig. 2d)). For the general qudit case, the expres-
sions obtained through RWA approximation reproduce
the numerical results in a less satisfactory way. Still,
they correctly reproduce the spectrum for dg1

<∼ 0.3Ω.
For Ω1 = 0.15ω,Ω2 = 0.1ω (top panels), an excellent

agreement between the strong coupling regime approx-
imations and numerical solutions arises for dg1, dg2

>∼
0.3ω. For higher Ω1 and Ω2 values (Ω1 = 0.55ω,Ω2 =
0.5ω, bottom panels), the adiabatic approximation
breaks down below dg1, dg2 ∼ 0.75ω (Fig. 2b).

With increasing coupling strength g1, g2, the higher or-
der correction terms in Eq. (12) are suppressed exponen-
tially, and the states |Ψ±〉 approach the GHZ-type states.

Note that the states |0↑,+〉 = D†( g1+(d−1)g2
ω )|0〉 and

|0↓,−〉 = D†(− g1+(d−1)g2
ω )|0〉 are coherent states with op-

posite displacement in the phase space, which are asymp-
totically orthogonal in the limit g1, g2 →∞. As a result,
the ground state under such large coupling assumption
can be approximated as:

|ΨGHZ〉 =
1√
2

(| ↑,+, 0↑,+〉 ± | ↓,−, 0↓,−〉). (13)

The validity of this approximation is investigated in
Fig. 3, where the fidelity between the GHZ state and the
ground state of the Hamiltonian obtained through nu-
merical diagonalization is plotted as a function of the cou-
pling strength g1 = g2. In this manuscript, we define the
fidelity between two pure states |φ〉 , |ψ〉 as F = | 〈φ|ψ〉 |.
In agreement with our perturbative calculation, the fi-
delity of the ground state with the GHZ state approaches
the unit value in the limit g1 � Ω1,Ω2.

III. NEGATIVITY

In our scheme, it is interesting to investigate the bi-
partite entanglement between the qubit and qudit. We
choose to compute negativity [35] as the measure of
entanglement. For a bipartite pure state |ϕ〉AB in a
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FIG. 3. Ground state vs GHZ state for g1 = g2 and different
qudit sizes d = 2, 3, 4 (top to bottom at g1 = 0). Fidelity
between the Hamiltonian ground state (obtained through nu-
merical diagonalization) and the GHZ state Eq. (13) as a func-
tion of the coupling strength for (a) Ω1 = 0.15ω,Ω2 = 0.1ω,
(b) Ω1 = 0.55ω,Ω2 = 0.5ω.

d⊗ d′(d ≤ d′) quantum system, the negativity is defined
as

N|ϕ〉AB
=

1

2
(‖|ϕ〉AB〈ϕ|TB‖1 − 1) (14)

where |ϕ〉AB〈ϕ|TB is the partial transpose of |ϕ〉AB〈ϕ|
and ‖·‖1 is the trace norm. To extract bipartite pair-wise
entanglement in a tripartite system, we use the reduced
density matrix of |ϕ〉ABC on subsystem A⊗B by tracing
over subsystem C: ρAB = trC |ϕ〉ABC〈ϕ|.

Figure 4 displays the density plot of the negativity as
a function of the coupling strengths g1, g2 in the qubit
(Fig. 4a), qutrit (Fig. 4b), ququart (Fig. 4c) cases, for
Ω1 = Ω2 = 0.1ω. Note that the negativity is clearly
symmetric under the exchange g1 ↔ g2 in the qubit case
(since Ω1 = Ω2), and it becomes gradually more asym-
metric by increasing the number of levels. The bipar-
tite entanglement between the two artificial atoms has
a nontrivial response to the coupling strengths between
subsystems. In particular the negativity is maximum for
intermediate values of the couplings, and it is strongly
suppressed at large couplings. The position of the max-
imum depends on the number of levels in the qudit and
reads: g1 = g2 ' 0.24ω (qubit), g1 ' 0.21ω, g2 ' 0.17ω
(qutrit), g1 ' 0.21ω, g2 ' 0.14ω (ququart).

For a better visualization, in Fig. 4d we consider cuts
of Figs. 4a-c at a fixed value of g2 = 0.2ω. The negativity
first rises to a maximum with increased coupling strength
g1, before decaying to zero exponentially (as we will dis-
cuss below). This phenomenon is reported in Ref. 44
where an approximate expression is derived to explain
the curve at weaker coupling. Here, we obtain an analyt-
ical expression for the decaying curve. In addition, our
approach demonstrates that the entanglement suppres-
sion is a consequence of the structure of the entanglement
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FIG. 4. Coupling dependence of the groundstate negativity between the qubit and the qudit. (a)-(c) Density plot of the
groundstate negativity as a function of g1 and g2 for the (a) qubit-qubit, (b) qubit-qutrit, (c) qubit-ququart cases. The plots
are obtained by numerical calculations for Ω1 = Ω2 = 0.1ω. (d) Cuts of the density plots for g2 = 0.2ω, indicated by the
dashed lines in panels (a)-(c). The results obtained through numerical calculations (solid) are compared with the approximate
expression of the negativity Eq. (16) (dashed), obtained in the ultrastrong coupling regime.

encoded in the ground state [see Eq. (13)]: the tripartite
GHZ state at large coupling limit(g1, g2 → ∞), hinders
the bipartite entanglement obtained after tracing out one
of the subsystems, that asymptotically vanishes. This
property of the GHZ states results in a counter-intuitive
implication: the strong coupling can destroy entangle-
ment between the two quantum systems connected by
the resonator.

Now we show that the approximate expression of the
ground state, i.e., the GHZ state of Eq. (13), leads to
an accurate prediction for the entanglement at large cou-
pling; we can easily calculate the negativity for those
states. Indeed, the corresponding reduced density ma-
trix ρ′ with resonator degree-of-freedom traced out is a
(2d× 2d) matrix and has only four non-zero matrix ele-
ments:

ρ′ =
1

2

 1 . . . K
...

. . .
...

K . . . 1

 , (15)

with K = exp{−2[g1 +(d−1)g2]2/ω2}. Therefore the an-
alytical expression for the negativity of the ground state
in Eq. (13) is

N =
1

2
|K| = 1

2
exp{−2[g1 + (d− 1)g2]2/ω2} (16)

These approximate expressions are displayed (dashed) in
Fig. 4. Note that the approximation describes very ac-
curately the exponential decay of the negativity at large
coupling.

We close the section by noting that the negativity mea-
sure is not a sufficient test of entanglement for systems
with dimensions beyond 2×3. Under such circumstances,
a state with zero negativity could possibly be a PPT or
“bound entangled” state, which is argued to be metro-
logically useful [45–47].

IV. DYNAMICS

In this section, we discuss the dynamical evolution of
the coupled system. We consider two complementary
cases: the quench dynamics starting from the non inter-
acting state and the adiabatic preparation of the GHZ
state.

A. Quench dynamics

We start by discussing the dynamics of the system un-
der non-adiabatic switching of the interaction. We con-
sider the system initially prepared in the ground state of
the uncoupled Hamiltonian Ĥ0, i.e. |ψ0〉 = |g 0 0〉. For
simplicity, we consider an instantaneous quench of the
coupling constant to the final values g1 = g2 = 0.3ω. In
this case, the time-evolved state reads

|ψ(t)〉 = e−iĤt|ψ0〉. (17)

Due to the non-adiabatic control, the state of the sys-
tem is different from the ground state of the interacting
Hamiltonian after the quench, and evolves in time.

Figures 5a-c display the time evolution of the fidelity
between the initial state |ψ0〉 and the time evolved state

|ψ(t)〉 = e−iĤt |ψ0〉 in the qubit, qutrit, and ququart
cases, respectively, for Ω1 = 0.12ω and Ω2 = 0.1ω. We
note that the dynamics of |ψ0〉 involves multiple frequen-
cies, and displays a clear dependence on the number of
levels of the qudit. An approximate description of the
evolution can be obtained by neglecting the free terms
of the atoms in the Hamiltonian. Namely, we set Ω1,2 =

0, and expand |ψ0〉 in the eigenstates basis of H̃ [see
Eq. (10)], i.e., |ψ0〉 =

∑
σmN 〈σmNσm|g 0 0〉 |σmNσm〉.
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FIG. 5. Fidelity dynamics after quenching the interaction strength. a)-b)-c) Fidelity between the initial state of the system and
the instantaneous state for qubit (a), qutrit (b) and ququart (c) cases. The initial state is the ground state of the uncoupled
system. The numerical expressions (solid) are compared to approximations (dashed) derived in the main text Eq. (18). d)-e)
-f) Fast fourier transform of the fidelity evolution for d) qubit, e) qutrit, f) ququart. Parameters are Ω1 = 0.12ω,Ω2 = 0.1ω,
and g1 = g2 = 0.3ω.

For the qubit case, we obtain

Fd=2 =
1

2

∣∣∣∣∣
+∞∑
N=0

e−iE↑+t| 〈N↑,+|0〉 |2 + e−iE↑−t| 〈N↑,−|0〉 |2
∣∣∣∣∣

(18)
where E↑± = ω(N − α2

±) and | 〈N↑,±|0〉 |2 =

e−α
2
±α2N
± /N !, with α± = (g1 ± g2)/ω. For the qutrit

and the ququart case the summation in Eq. (18) involves
d terms. Such approximated dynamics is displayed [48]
in Figs. 5a-c using dashed curves. We note that the ap-
proximate expressions capture the initial decrease in fi-
delity and the amplitude of its oscillations, as well as
the main frequency components of the evolution. We
carried out the frequency analysis of the dynamical re-
sponse through the fast Fourier transform of the curves
displayed in Figs. 5a-c [49]. The results are reported in
Figs. 5d-f. In the qubit case (d = 2, Fig. 5d), the an-
alytical expression of Eq. (18) approximately captures
the dominant frequency of the oscillation, with a small
shift towards smaller frequencies. For the qutrit (d = 3,
Fig. 5e) and the ququart (d = 4, Fig. 5f), the analyt-
ical expression gives a good estimation of the number
of harmonics in the time oscillations; the actual values
of the frequencies, instead, are obtained with less preci-
sion. The discrepancies arise because the approximated

analytical scheme neglects the free Hamiltonians of the
qubit and the qudit [the second and third terms in the
right hand side of Eq. (1)]

Figure 6 displays the time evolution of the expectation
values of σ̂z (panel a), Ĵzd (panel b), and the mean photon
number â†â (panel c) for the qubit, qutrit and ququart
cases. Consider first the qubit population 〈σ̂z(t)〉: in all
the three cases, the evolution is non-harmonic, and the
number of relevant frequencies increases by increasing the
number of levels in the qudit. In particular, for precise
modeling of the dynamic in this regime different Fock
number states must be included in the calculation and
neglecting the off-diagonal terms in the basis of H̃ would
provide a poor description of the physics (see the above
discussion).

Consider for instance, the time evolution of σ̂z in the
qubit case (blue curve in Fig. 6d). We can work within
the approximation exploited above for the strong cou-
pling regime. Namely, we approximate Ĥ with H̃ of
Eq. (10), and we write |ψ0〉 in the basis of H̃. By per-
forming the calculation, it is possible to derive a sim-
ple expression for 〈σ̂z〉 when g1 = g2 (as in the plot of
Fig. 6d), namely

〈σ̂z(t)〉 ∼
+∞∑
N=0

(4g2
1)N

N !
cos(4g2

1t/ω −Nωt). (19)
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FIG. 6. Operator dynamics after quenching the interaction strength. a)-b)-c) Dynamics of the expectation value of a) the qubit
population, b) qudit population and c) mean photon number. The dashed lines in panel a)-c) are given by Eqs. (19),(20). d)-
e)-f) Fast Fourier transform of the expectation value evolution for d) qubit population, e) qudit population, f) photon number
population. The curves are vertically offset by (d − 2)/2 for visualization purposes. Parameters are Ω1 = 0.12ω,Ω2 = 0.1ω,
and g1 = g2 = 0.3ω.

This approximate expression is displayed in Fig. 6a
(dashed). In agreement with the results displayed for the
fidelity in Fig. 5a, the approximation leading to Eq. (19)
gives good estimates for both the amplitude and the main
frequency of the oscillations. This is confirmed by the
Fourier analysis in Fig. 6d. Similar considerations apply
to the time evolution of the expectation value of 〈Ĵzd 〉.
Since the qubit system is symmetric under the exchange
1↔ 2, the approximated evolution Ĥ ∼ H̃ can be readily
obtained from Eq. (19); recalling that Ĵzd=2 = σ̂z/2, we

obtain 〈Ĵz(t)〉 ∼ −1/2
∑+∞
N=0

(4g21)N

N ! cos(4g2
1t/ω − Nωt)

[the minus sign comes from our sign convention in
Eq. (1)]. As a consequence, the Fourier transform of

〈Ĵzd=2(t)〉, shown in Fig. 6e, perfectly reproduces the one
displayed in Fig. 6d, up to a factor 2.

Notably, the dynamics of the mean photon number
〈â†â〉 is much more regular, as displayed in Fig. 6c; for
visualization purposes, the various curves are offset by
the quantity d−2. The plot clearly displays two relevant
features: i) there is a frequency mode which is indepen-
dent of the number of levels in the qudit; ii) the ampli-
tude of the oscillations increases with d. These features
can be discussed retaining the approximation Ĥ ∼ H̃. In
particular, by applying the Baker-Hausdorff expansion to

the operator eiH̃tâ†âe−iH̃t, we derive

〈ψ(t)|â†â|ψ(t)〉 = 4[g2
1 + (d− 1)g2

2 ] sin2(ωt/2). (20)

The validity of this approximation is investigated in
Fig. 6c (dashed curves). While we find a good agreement
for the qubit and the qutrit cases, the deviations are more
relevant for the ququart. This result is confirmed by the
Fourier transform of the curves, displayed in Fig. 6f; note
that the curves have a vertical offset of (d− 2)/2 for vi-
sualization purposes. As discussed above, all the curves
share a harmonic component with frequency ω, captured
by the adiabatic approximation Eq. (20). This mode rep-
resents the primary frequency component in the qubit
(d = 2, blue) and qutrit cases (d = 3, green). The sit-
uation is more complex for the ququart (d = 4, purple),
with several sidebands and an enhanced low-frequency
oscillation ∼ 0.1ω.

We conclude this section by stressing that the presence
of additional levels is beneficial to inducing non-adiabatic
photon generation in the ultrastrong coupling regime.

B. Adiabatic state preparation

In this section we demonstrate how the state in
Eq. (13) can be prepared with high fidelity by adiabatic
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evolution:

Ĥ(t) = [1− µ(t)] Ĥin + µ(t)Ĥ (21)

The initial state and the final state correspond to the
ground state of the Hamiltonians Ĥin = Ĥ(t = 0) and

Ĥ, respectively, and µ(t) is a function that goes from
0 to 1 when t goes from 0 to the final evolution time
tf ; µ(t) is chosen to be a linear function in our simula-
tions. Here we propose two simple schemes to prepare
the hybrid GHZ state: I. switch on the couplings at fixed
frequencies; II. change the frequencies at fixed couplings.
In both schemes, the final Hamiltonian Ĥ is set to be
the Hamiltonian of the qubit-resonator-qudit system in
Eq. (1).

I. In the first approach, the system is initialized with-
out coupling terms g1(t = 0) = g2(t = 0) = 0, i.e., Ĥin =

Ĥ0 = ωâ†â − Ω1

2 σ̂z + Ω2Ĵ
z
d . During the adiabatic evo-

lution, the coupling terms are gradually switched on to
the final value gf = 0.5ω, reading g1(t) = g2(t) = µ(t)gf ,
see the inset in Fig. 7a. The main panel of Fig. 7a dis-
plays the evolution of the fidelity between the instan-
taneous state of the system under the time-dependent
Hamiltonian Ĥ(t) and the expected GHZ state at the fi-
nal time, obtained by setting g1 = g2 = 0.5ω in Eq. (13).
The different curves corresponds to the qubit, qutrit
and ququart cases. In all the cases, the fidelity is min-
imum at t = 0 and grows monotonically with time,
reaching the unit value (within numerical accuracy) for
t = tf = 500/ω. Note that for a given time the fidelity is
maximum in the qubit case, and typically decreases by
increasing the number of levels in the qudit.

II. Here, we keep fixed the coupling terms g1, g2,
while tuning the characteristic frequencies of the artifi-
cial atoms. Specifically, the system is initialized to Ĥ0 =
ωâ†â−Ω′1σ̂z/2+Ω′2Ĵ

z
d+g1σ̂x(â†+â)+g2(Ĵ+

d +Ĵ−d )(â†+â),
with the initial transition frequencies satisfying Ω′1 � Ω1

and Ω′2 � Ω2. In the adiabatic preparation, the artificial
atoms frequencies Ω1(t),Ω2(t), are linearly reduced to the
final values Ω1 = Ω2 = 0.1ω (see the inset of Fig. 7b).
The corresponding evolution of the fidelity with the final
GHZ state is shown in Fig. 7b. As in the previous case,
the fidelity grows monotonically to 1 as time approaches
tf in all the cases. Notably, the presence of additional
levels in the qudit is displayed to be beneficial to the
process: for a given t > tf/2, the fidelity is larger in the
qutrit and ququart case with respect to the qubit case.

V. CONCLUSION

We formulated and studied a quantum Rabi type
model describing the interaction between a two-level and
a multi-level system mediated by a single mode bosonic
field (in quantum technology such bosonic field is real-
ized by a resonator). In the weak and in the strong cou-
pling limits, we devised two different analytical schemes.
In the weak-coupling limit, the effective Hamiltonian is
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FIG. 7. Adiabatic state preparation of the GHZ state in the
qubit, qutrit, and ququart cases. (a) Time evolution of the
fidelity between the instantaneous state and the hybrid GHZ
state in Eq.(13). The coupling terms g1, g2 are adiabatically
switched on at t = 0 and linearly increased to 0.5ω, as shown
in the inset. (b) State fidelity with the GHZ state vs time
in the adiabatic process where the atoms frequencies are lin-
early reduced from the initial value Ω1,Ω2 = 2ω to 0.1ω, as
displayed in the inset.

obtained through a suitable Schrieffer-Wolff transforma-
tion. Assuming the qudit degenerating in a two-level
system, the spectrum of the effective Hamiltonian has
been obtained exactly. In the strong coupling limit, the
ground state of the system is provided by a tripartite-
entangled state of the GHZ type. A known feature of the
GHZ states is that they do not allow bipartite entangle-
ment between the three partners. As a result, qubit and
qudit cannot be highly entangled, and the correlation be-
tween them drops exponentially with increasing coupling
in the ultrastrong coupling regime. Such analysis is cor-
roborated by the study of the negativity providing the
sufficient condition for the qubit-qudit entanglement.

We analyzed the system dynamics both under quench-
ing and adiabatic switching of the couplings between the
atoms and the resonator. The non-adiabatic nature of
the quantum quench leads to the generations of photons
in the resonator, with a magnified effect by increasing
the number of levels in the qudit. By this procedure,
the GHZ states can be adiabatically prepared with high
fidelity. Both the analysis of the spectrum and the dy-
namics indicate that the interaction is effectively mag-
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nified by the number of the levels of the qudit. The
study of the dynamics gives preliminary information on
the qubit-qudit coherent state transfer. Our work pro-
vides relevant information for applications in quantum
technology, particularly for hybrid quantum networks de-
sign [21, 22, 24, 50]. The proposed scheme for the GHZ
preparation may be implemented in cQED platforms,
where both ultrastrong and deep-strong coupling regimes
have been studied theoretically [51–53] and implemented
experimentally [11, 12, 54–56]. Very recently, the ul-
trastrong coupling regime has been reached in hybrid
semiconducting-superconducting technology [57], too.

The generalization of the Rabi model to the qudit sys-
tem can be applied to discuss superconducting circuits
based on transmon qubits. Indeed, the multi-level na-
ture of the energy spectrum cannot be ignored in these
elements due to the weak anharmonicity. These circuits
have been extensively investigated, even in combination
with semiconducting qubits [58]. On the theoretical side,
our scheme can be investigated in a more general setting.
A certainly interesting direction to go would be studying
the system dynamics in presence of dissipation [59].
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Appendix A: Low coupling spectrum

Here we report the low-coupling approximation of the
effective Hamiltonian Eq. (5), obtained by neglecting the

(Ĵ±d )2 terms, and performing a RWA-like approximation.
For the qutrit d = 3,

E0,1 = −1

2
g1(ε1 + ξ1)− g2(ε2 + ξ2)±

(
Ω̃1

2
− Ω̃2

)
(A1)

E2,3 = −1

2
g1(ε1 + ξ1)− 3

2
g2(ε2 + ξ2)− 1

2
Ω̃2

± 1

2

√[
Ω̃1 + Ω̃2 + g2(ε2 + ξ2)

]2
+ 8g2

eff (A2)

E4,5 = −1

2
g1(ε1 + ξ1)− 3

2
g2(ε2 + ξ2) +

1

2
Ω̃2

± 1

2

√[
Ω̃1 + Ω̃2 − g2(ε2 + ξ2)

]2
+ 8g2

eff (A3)

For the ququart d = 4,

E0,1 = −1

2
g1(ε1 + ξ1)− 3

2
g2(ε2 + ξ2)± 2

(
Ω̃1 − 3Ω̃2

)
E2,3 = −1

2
g1(ε1 + ξ1)− 7

2
g2(ε2 + ξ2)

± 1

2

√(
Ω̃1 + Ω̃2

)2

+ 16g2
eff (A4)

E4,5 = −1

2
g1(ε1 + ξ1)− 5

2
g2(ε2 + ξ2)− Ω̃2

± 1

2

√[
Ω̃1 + Ω̃2 − 2g2(ε2 + ξ2)

]2
+ 12g2

eff

E6,7 = −1

2
g1(ε1 + ξ1)− 5

2
g2(ε2 + ξ2) + Ω̃2

± 1

2

√[
Ω̃1 + Ω̃2 + 2g2(ε2 + ξ2)

]2
+ 12g2

eff (A5)

Appendix B: Adiabatic approximation

To diagonalize Eq. (1), we generalize the adiabatic ap-
proximation, which was first adopted in [42] to find so-
lution to the single spin quantum Rabi model. In the
adiabatic limit Ω1,Ω2 � ω, the Hamiltonian is approxi-
mated as:

H̃ = ωâ†â+ g1σ̂x(â† + â) + g2(Ĵ+
d + Ĵ−d )(â† + â) (B1)

where the free energy terms of the atoms have been
dropped from Eq. (1).

We consider eigenstates of H̃ in the form |σmNσ,m〉 =
|σ〉 ⊗ |m〉 ⊗ |Nσ,m〉 where σ =↑, ↓ are the eigenstates of
σ̂x with σ̂x|↑, ↓〉 = ±|↑, ↓〉, |m〉 are the eigenstates of

the qudit spin operator (Ĵ+
d + Ĵ−d ). Next we find the

eigenvalues of H̃:

H̃|σmNσ,m〉 = ENσm|σmNσ,m〉. (B2)

1. Qubit case

The eigenstates of (Ĵ+
2 + Ĵ−2 ) in the qubit basis |0, 1〉

reads |±〉 = 1√
2

(1, ±1)
T

with eigenvalues ±1. We can

derive a set of four eigenvalue equations for the resonator
eigenstates |Nσ,m〉:

[
â†â+

(g1 ± g2)

ω
(â† + â)

]
|N↑,±〉 =

EN↑,±
ω
|N↑,±〉,(B3)[

â†â− (g1 ± g2)

ω
(â† + â)

]
|N↓,±〉 =

EN↓,±
ω
|N↓,±〉 (B4)
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By completing the square:

[
(â† + α±)(â+ α±)

]
|N↑,±〉 =

(
EN↑,±
ω

+ α2
±

)
|N↑,±〉

(B5)[
(â† − α∓)(â− α∓)

]
|N↓,±〉 =

(
EN↓,±
ω

+ α2
∓

)
|N↓,±〉

(B6)

where we defined α± = (g1 ± g2)/ω. Taking ω, g1, g2 to
be real, the left-hand side can be rewritten in terms of
displacement operators D̂(α) = exp[α(â† − â)]:[
(â† + α±)(â+ α±)

]
|N↑,±〉 = D̂†(α±)â†âD̂(α±)|N↑,±〉[

(â† − α∓)(â− α∓)
]
|N↓,±〉 = D̂†(−α∓)â†âD̂(−α∓)|N↓,±〉

(B7)

The new eigenstates are displaced Fock number states:

|NN
↑,±〉 = D̂†

(
g1 ± g2

ω

)
|N〉 ≡ |N↑,±〉 (B8)

|NN
↓,±〉 = D̂†

(
−g1 ∓ g2

ω

)
|N〉 ≡ |N↓,±〉 (B9)

with eigenvalues

EN↑,+ = EN↓,− = ω

[
N − (g1 + g2)2

ω2

]
(B10)

EN↑,− = EN↓,+ = ω

[
N − (g1 − g2)2

ω2

]
(B11)

2. Qutrit case

The eigenstates |m〉 of the qutrit operator (Ĵ+
3 + Ĵ−3 )

with eigenvalues Em = 0,±2, can be already obtained
through diagonalization: |0〉 = 1

2 (−
√

2, 0,
√

2)T , |+〉 =
1
2 (1,

√
2, 1)T , |−〉 = 1

2 (1, −
√

2, 1)T in the qutrit number
basis {|0〉, |1〉, |2〉}.

The eigenstates |Nσ,m〉 satisfy the set of six eigenvalue
equations:

[
â†â± g1

ω
(â† + â)

]
|N↑↓,0〉 =

EN↑↓,0
ω
|N↑↓,0〉, (B12)[

â†â+
(g1 ± 2g2)

ω
(â† + â)

]
|N↑,±〉 =

EN↑,±
ω
|N↑,±〉

(B13)[
â†â− (g1 ± 2g2)

ω
(â† + â)

]
|N↓,±〉 =

EN↑,±
ω
|N↓,±〉

(B14)

Repeating the steps of the previous section, we obtain

the eigenstates:

|NN
↑↓,0〉 = D̂†

(
±g1

ω

)
|N〉 ≡ |N↑↓,0〉 (B15)

|NN
↑,±〉 = D̂†

(
g1 ± 2g2

ω

)
|N〉 ≡ |N↑,±〉 (B16)

|NN
↓,±〉 = D̂†

(
−g1 ∓ 2g2

ω

)
|N〉 ≡ |N↓,±〉 (B17)

with eigenvalues

EN↑↓,0 = ω

[
N − g2

1

ω2

]
(B18)

EN↑,+ = EN↓,− = ω

[
N − (g1 + 2g2)2

ω2

]
(B19)

EN↑,− = EN↓,+ = ω

[
N − (g1 − 2g2)2

ω2

]
(B20)

3. Ququart case

The eigenstates |m〉 of the ququart operator (Ĵ+
4 + Ĵ−4 )

are obtained as: |a〉 = 1
4 (−
√

2,
√

6, −
√

6,
√

2)T ,

|b〉 = 1
4 (
√

6, −
√

2, −
√

2,
√

6)T , |c〉 =
1
4 (−
√

6, −
√

2,
√

2,
√

6)T , |d〉 = 1
4 (
√

2,
√

6,
√

6,
√

2)T ,
with eigenvalues Ea,b,c,d = {−3,−1, 1, 3}.

Repeating the steps of the previous section, we obtain
the eigenstates:

|NN
↑,d〉 = D̂†

(
g1 + 3g2

ω

)
|N〉 (B21)

|NN
↓,a〉 = D̂†

(
−g1 + 3g2

ω

)
|N〉 (B22)

|NN
↑,c〉 = D̂†

(
g1 + g2

ω

)
|N〉 (B23)

|NN
↓,b〉 = D̂†

(
−g1 + g2

ω

)
|N〉 (B24)

|NN
↑,b〉 = D̂†

(
g1 − g2

ω

)
|N〉 (B25)

|NN
↓,c〉 = D̂†

(
−g1 − g2

ω

)
|N〉 (B26)

|NN
↑,a〉 = D̂†

(
g1 − 3g2

ω

)
|N〉 (B27)

|NN
↓,d〉 = D̂†

(
−g1 − 3g2

ω

)
|N〉 (B28)
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with eigenvalues

EN↑,d = EN↓,a = ω

[
N − (g1 + 3g2)2

ω2

]
(B29)

EN↑,c = EN↓,b = ω

[
N − (g1 + g2)2

ω2

]
(B30)

EN↑,b = EN↓,c = ω

[
N − (g1 − g2)2

ω2

]
(B31)

EN↑,a = EN↓,d = ω

[
N − (g1 − 3g2)2

ω2

]
. (B32)

4. Qudit case

The above explicit results for the eigenvalues and
eigenstates can be also obtain in the general qudit case
by applying two unitary transformations to the adiabatic
limit Hamiltonian in Eq. (B1). The transformations are
of the Lang-Firsov type [60]:

Û1 = e(g1/ω)σ̂x(â†−â), (B33)

Û2 = e(g2/ω)(Ĵ+
d +Ĵ−d )(â†−â). (B34)

The transformed Hamiltonian can be written as

H̃ = ωâ†â− ω
[g2

ω

(
Ĵ+
d + Ĵ−d

)
+
g1

ω
σ̂x

]2
. (B35)

The eigenvalues are found immediately from those of of
σ̂x, Ĵ+

d + Ĵ−d , and â†â, namely σ = ±1, m = −d, −d +
2, . . . , d−2, d, and N = 0, 1, . . ., respectively. The eigen-
states can be correspondingly given as |σ,m,N〉, where
after the unitary transformations the oscillator Fock state
is independent of the qubit and qudit state. In the origi-
nal basis, the eigenstates are found by applying to these
eigenstates the above unitary transformations which, af-
ter acting on eigenstates of σ̂x and Ĵ+

d +Ĵ−d , reduce to dis-
placement operators acting on the oscillator states, with
the displacement depending on σ and m.

Appendix C: Perturbation correction to the energy
and state

We are interested in resolving the degener-
acy in the subspace (denoted by D) spanned by
{| ↑,+, 0↑,+〉, | ↓,−, 0↓,−〉} with degenerate energy
E0
↑,+ = E0

↓,−.

The first order perturbation equation reads [61]:

Ĥ0|ψ(1)
n 〉+ Ĥ ′|ψ(0)

n 〉 = E(0)
n |ψ(1)

n 〉+ E(1)
n |ψ(0)

n 〉, (C1)

and first order energy correction:

E(1)
n = 〈ψ(0)

n |Ĥ ′|ψ(0)
n 〉. (C2)

As we show below, all the first order corrections are
zero. Since the energy degeneracy in the subspace of

interest D is not lifted by first order corrections, we need
to find another good basis that diagonalize a new matrix
M :

〈i|M̂ |j〉 =
∑
k 6∈D

〈i|Ĥ ′|k〉〈k|Ĥ ′|j〉
E

(0)
n − E(0)

k

(C3)

which turns out to be a 2 × 2 symmetric matrix, with
M00 = M11 and M01 = M10. Diagonalizing the matrix
M̂ , we obtain the new basis:

|ψ(0)
± 〉 =

1√
2

(| ↑, +, 0↑,+〉 ± | ↓, −, 0↓,−〉) . (C4)

The energy degeneracy in the subspace with lowest en-
ergy is lifted at the second order in perturbation theory.
Therefore, the degeneracy-lifted energies are given by

E± = E(0)
n + E(2)

n = E(0)
n +M00 ±M01 (C5)

The first order correction to the ground state are ob-
tained through the formula

|ψ(1)
± 〉 =

∑
m6∈D

〈m|Ĥ ′|ψ(0)
± 〉

E
(0)
n − E(0)

m

, (C6)

which produces the higher order terms in Eq. (12).

1. Qubit case

The Hamiltonian Ĥd=2 in the |σ, m, Nσ,m〉 basis
with row and column order |↑,+, 0↑,+〉, |↓,−, 0↓,−〉,
|↑,−, 0↑,−〉, |↓,+, 0↓,+〉, . . . reads:

Ĥd=2 = Ĥ0 + Ĥ ′

=


E0
↑,+ 0 0 0 . . .
0 E0

↓,− 0 0 . . .
0 0 E0

↑,− 0 . . .
0 0 0 E0

↓,+ . . .
...

...
...

...
...

+ (C7)


0 0 t u . . .
0 0 u t . . .
t u 0 0 . . .
u t 0 0 . . .
...

...
...

...
. . .


(C8)

where we have defined

t = −1

2
Ω2〈0↑,+|0↑,−〉, u = −1

2
Ω1〈0↑,+|0↓,+〉 (C9)

and used the symmetry of the coherent states overlaps,
which are real numbers in our case, reading

〈0↑,+|0↑,−〉 = 〈0↓,−|0↓,+〉 = exp(−2g2
2/ω

2)

〈0↑,+|0↓,+〉 = 〈0↓,−|0↑,−〉 = exp(−2g2
1/ω

2) (C10)
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Using Eq. (C3), we can compute the matrix elements
of M :

M00 = M11 = − ω

16g1g2
(Ω2

1e
−4g21/ω

2

+ Ω2
2e
−4g22/ω

2

)

(C11)

M01 = M10 =
ωΩ1Ω2

8g1g2
e−2(g21+g22)/ω2

, (C12)

and the second order energy corrections

E(2)
n = − ω2

16g1g2
(Ω2

1e
−4g21/ω

2

+ Ω2
2e
−4g22/ω

2

)

±ω
2Ω1Ω2

8g1g2
e−2(g21+g22)/ω2

(C13)

2. Qutrit case

We proceed as in the previous section and write Ĥd=3

in the ordered basis | ↑, 0, 0↑,0〉, | ↓, 0, 0↓,0〉, | ↑,+, 0↑,+〉,
| ↓,−, 0↓,−〉, | ↑,−, 0↑,−〉, | ↓,+, 0↓,+〉, . . .:

Ĥd=3 = Ĥ0 + Ĥ ′

=



E1 0 0 0 0 0 . . .
0 E1 0 0 0 0 . . .
0 0 E0 0 0 0 . . .
0 0 0 E0 0 0 . . .
0 0 0 0 E2 0 . . .
0 0 0 0 0 E2 . . .
...

...
...

...
...

...
. . .



+



0 u t 0 t 0 . . .
u 0 0 t 0 t . . .
t 0 0 0 0 u . . .
0 t 0 0 u 0 . . .
t 0 0 u 0 0 . . .
0 t u 0 0 0 . . .
...

...
...

...
...

...
. . .


(C14)

where we defined

E0 = E0
↑,+, E1 = E0

↑,0, E2 = E0
↑,−,

t = −
√

2

2
Ω2 exp(−2g2

2/ω
2), u = −1

2
Ω1 exp(−2g2

1/ω
2).

(C15)

The symmetric matrix M of Eq. (C3) reads:

M00 = M11 = − ωΩ2
1

32g1g2
e−4g21/ω

2

− ωΩ2
2

8(g2
2 + g1g2)

e−4g22/ω
2

M01 = M10 = 0. (C16)

Since the off-diagonal elements of the matrix M are zero,
the degeneration is not resolved at second order in per-
turbation theory, and we need to find higher order per-
turbative contributions from the Hamiltonian Eq. (C14).

We show here a simplified procedure to obtain the lowest
order correction which resolves the degeneracy, without
using the general expression, which is pretty involved.

The crucial observation is that the matrix can be ex-
actly diagonalized for t = 0, with three independent rota-
tions in the three subspaces (generated by the base vec-
tors) D1 = {|↑, 0, 0↑,0〉 , |↓, 0, 0↓,0〉}, D0 = {|↑,+, 0↑,+〉 ,
|↓,+, 0↓,+〉}, D2 = {|↓,−, 0↓,−〉 , |↑,−, 0↑,−〉}. More pre-
cisely, the D1 subspace is non-degenerate, with eigenval-
ues E1±u. On the other hand, the energy corrections in
the D0, D2 subspaces are of order u2, and the degen-
eration is not removed. More precisely, keeping only

leading orders in u, we have E0 → Ẽ0 = E0 + u2

E0−E2

and E2 → Ẽ2 = E2 + u2

E2−E0
. The ordered basis where

Ĥd=3(t = 0) is diagonal reads

1√
2

(|↑, 0, 0↑,0〉+ |↓, 0, 0↓,0〉),
1√
2

(|↑, 0, 0↑,0〉 − |↓, 0, 0↓,0〉),[
1− u2

2(E0 − E2)2

]
|↑,+, 0↑,+〉+

u

E0 − E2
|↑,−, 0↑,−〉 ,[

1− u2

2(E0 − E2)2

]
|↓,−, 0↓,−〉+

u

E0 − E2
|↓,+, 0↓,+〉 ,

u

E0 − E2
|↓,−, 0↓,−〉+

[
1− u2

2(E0 − E2)2

]
|↓,+, 0↓,+〉 ,

u

E0 − E2
|↑,+, 0↑,+〉+

[
1− u2

2(E0 − E2)2

]
|↑,−, 0↑,−〉 .

(C17)

Note that the ground state subspace with energy Ẽ0 dif-
fers from the product state basis only by terms of order
u.

Since the Hamiltonian can be exactly diagonalized
with t = 0, we can evaluate the leading contribution by
treating H ′ = Ĥd=3 − Ĥd=3(t = 0) as perturbation of

Ĥd=3(t = 0). Namely, we rewrite the Hamiltonian in the
previous basis, reading (keeping terms up to u2)

Ĥd=3 =



E1 + u 0 t+ t+ t− t− . . .
0 E1 − u t+ t− t− t+ . . .

t+ t+ Ẽ0 0 0 0 . . .

t+ t− 0 Ẽ0 0 0 . . .

t− t− 0 0 Ẽ2 0 . . .

t− t+ 0 0 0 Ẽ2 . . .
...

...
...

...
...

...
. . .


(C18)

where

t± =
−tu

E0 − E2
±
[
t√
2
− tu2

2
√

2(E0 − E2)2

]
. (C19)

Since t is not explicitly present in the diagonal of the
rotated matrix, the first order correction is zero. The
second order correction in t can be computed with de-
generate second order perturbation theory, giving a 2×2
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symmetric matrix M̃ , with

M̃00 = M̃11 =
t2

E0 − E1
+

2E0 − E1 − E2

(E0 − E2)(E0 − E1)3
t2u2

M̃01 = M̃10 =
3E0 − 2E1 − E2

(E0 − E1)2(E0 − E2)
t2u (C20)

This implies that the degeneration is lifted at the third
order in perturbation theory. The basis which diagonalize

the matrix M̃ differs from the GHZ state Eq. (13) only
by terms of order u, as discussed in the main text.

3. Ququart case

We write Ĥd=4 in the basis: | ↑, d, 0↑,d〉, | ↓, a, 0↓,a〉,
| ↑, c, 0↑,c〉, | ↓, b, 0↓,b〉, | ↑, b, 0↑,b〉, | ↓, c, 0↓,c〉, | ↑, a, 0↑,a〉,
| ↓, d, 0↓,d〉, . . .:

Ĥd=4 = Ĥ0 + Ĥ ′

=



E0 0 0 0 0 0 0 0 . . .
0 E0 0 0 0 0 0 0 . . .
0 0 E1 0 0 0 0 0 . . .
0 0 0 E1 0 0 0 0 . . .
0 0 0 0 E2 0 0 0 . . .
0 0 0 0 0 E2 0 0 . . .
0 0 0 0 0 0 E3 0 . . .
0 0 0 0 0 0 0 E3 . . .
...

...
...

...
...

...
...

...
. . .


+



0 0 t 0 0 0 0 u . . .
0 0 0 t 0 0 u 0 . . .
t 0 0 0 v u 0 0 . . .
0 t 0 0 u v 0 0 . . .
0 0 v u 0 0 t 0 . . .
0 0 u v 0 0 0 t . . .
0 u 0 0 t 0 0 0 . . .
u 0 0 0 0 t 0 0 . . .
...

...
...

...
...

...
...

...
. . .


(C21)

where we define:

E0 = E0
↑,d, E1 = E0

↑,c, E2 = E0
↑,b, E3 = E0

↑,a,

t =

√
3

2
Ω2e

− 2g22
ω2 , u = −1

2
Ω1e

− 2g21
ω2 , v = Ω2e

− 2g22
ω2

(C22)

The matrix elements of the symmetric matrix M are
given by:

M00 = M11 = − ωΩ2
1

48g1g2
e−

4g21
ω2 − 3ωΩ2

2

4(8g2
2 + 4g1g2)

e−
4g22
ω2

M01 = M10 = 0 (C23)

As in the qutrit case, the energy degeneration is not
lifted at second order in perturbation theory. The pro-
cedure for the determination of higher order corrections
discussed in the previous subsection can be generalized
to the ququart case.

We first consider the matrix (C21) for t = 0. The

matrix Ĥd=4(t = 0) is composed of two orthogonal sub-
spaces of dimension 4, which can be exactly diagonal-
ized. The first subspace D03, spanned by the vectors
{|↑, d, 0↑,d〉 , |↓, a, 0↓,a〉 , |↑, a, 0↑,a〉 , |↓, d, 0↓,d〉〉} is charac-
terized by two doubly-degenerate eigenvalues (here writ-

ten at leading orders in u, v) where E0 → Ẽ0 = E0 +

u2/(E0 − E3), E3 → Ẽ3 = E3 + u2/(E3 − E0). The
eigenvalues of the ortogonal subspace D12, spanned by
the vectors {|↑, c, 0↑,c〉 , |↓, b, 0↓,b〉 , |↑, b, 0↑,b〉 , |↓, c, 0↓,c〉},
are non degenerate and read E1 → Ẽ1,± = E1 + (u ±
v)2/(E1 − E2), E2 → Ẽ2,± = E2 − (u± v)2/(E1 − E2).

Then, we reintroduce the dependence on t through
perturbative expansion in the operator H ′ = Ĥd=4 −
Ĥd=4(t = 0). As in the qutrit case the first order correc-
tion in t is zero. The second order corrections in t are
computed again with degenerate second order perturba-
tion theory. The 2× 2 symmetric matrix M̃ reads

M̃00 = M̃11 =
t2

E0 − E1
+

t2v2

(E0 − E1)2(E0 − E2)
+

t2u2(2E0 − E1 − E3)(E0 + E2 − E1 − E3)

(E0 − E1)2(E0 − E2)(E0 − E3)2

M̃01 = M̃10 =
2(2E0 − E1 − E3)t2uv

(E0 − E1)2(E0 − E2)(E0 − E3)
. (C24)

Hence, the degeneration of the ground state is removed
at the fourth order in perturbation theory. With a sim-
ilar expansion in the basis which diagonalize the matrix
Ĥd=4(t = 0) (not shown here), one notes that the basis

which diagonalize the matrix M̃ differs from the GHZ
state Eq. (13) only by terms of order u, v, t.
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