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Abstract: This paper describes a particular use of the hybrid FEM-DBCI, for the computation of
low-frequency electromagnetic fields in open-boundary domains. Once the unbounded free space
enclosing the system has been truncated, the FEM is applied to the bounded domain thus obtained,
assuming an unknown Dirichlet condition on the truncation boundary. An integral equation is used
to express this boundary condition in which the integration surface is selected in the middle of the
most external layer of finite elements, very close to the truncation boundary, so that the integral
equation becomes quasi-singular. The method is described for the computation of electrostatic
fields in 3D and of eddy currents in 2D, but it is also applicable to the solution of other kinds of
electromagnetic problems. Comparisons are made with other methods, concluding that FEM-DBCI
is competitive with the well-known FEM-BEM and coordinate transformations for what concerns
accuracy and computing time.

Keywords: finite element method; integral equations; open-boundary problems; electrostatics; skin
effect; GMRES

1. Introduction

Computational electromagnetics (CEM) in industrial applications are continuously
growing due to the increasing performances of electronic computers and to the devel-
opment of several commercial codes based on the finite element method (FEM) [1,2], by
means of which complex geometries and materials can be dealt with.

However, serious difficulties appear when the device to be analyzed exhibits electro-
magnetic fields extending to infinity. Unfortunately, these fields are highly common in
several electromagnetic systems.

In order to apply FEM, the unlimited domain must be cut by means of a closed trun-
cation boundary ΓT. Once the interior bounded domain has been discretized by finite
elements, a boundary condition must be imposed on such a boundary, which should be
very close to the true one, which is clearly not known. The simplest way to overcome this
difficulty is to place ΓT far away from the system core and impose on it a homogeneous con-
dition, very often of the Dirichlet type. This approach exhibits poor accuracy-computational
effort ratios, especially in the optimized design of three-dimensional electromagnetic de-
vices.

For this reason, several specific methods have been devised to make the FEM able to
compute scalar and vector fields in unbounded domains in a more efficient way.

In almost all these methods, the unbounded domain is partitioned into two parts by
means of a cutting closed surface ΓT, in such a way that the interior domain is sufficiently
small and encloses the core of the system, whereas the unbounded exterior domain is
homogeneously constituted of free space.

The interior domain is analyzed by means of the FEM, whereas for the exterior one
several auxiliary methods have been devised in the literature, starting from the 1970s [3].
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The research is still continuing, especially toward methods appropriate to the design opti-
mization, which very often requires thousands of analyses and, therefore, short computing
times to be effective.

In the CEM scenario, these auxiliary methods vary notably from low frequency (LF)
to high frequency (HF) applications. For LF problems, we mention the coordinate transfor-
mations (CT) [4,5], infinite elements [6] and asymptotic boundary conditions (LF-ABC) [7],
whereas for HF problems we mention the absorbing boundary conditions (HF-ABC) [8,9],
and the perfectly matched layer (PML) [10].

All the methods mentioned above have the merit of leading to sparse algebraic
systems, but they have the disadvantage of requiring a connected and convex truncation
boundary. Then, these methods are not efficient when the system consists of several objects
distributed in space, since a large free space must be meshed.

In these cases, hybrid methods are more suitable. The term hybrid comes from the
fact that an integral equation (IE) is coupled with a partial differential equation (PDE) for
the interior domain. The PDE is numerically treated by means of the FEM, whereas the IE
is used to express the unknown boundary condition on the truncation surface ΓT, which
now can be constituted by several closed surfaces in such a way to minimize the meshing
of the free space (domain decomposition). These methods are collectively called FEM-IE.

By considering that the boundary conditions on ΓT can be of three types, namely
Dirichlet, Neumann and Robin, and that the surface ΓIE, support of the integral equa-
tion, may coincide or may not with ΓT, theoretically we can have six hybrid methods.
Table 1 reports some of these methods. Here again we observe two scenarios for LF and
HF problems. For LF problems, we mention the FEM-DBCI (Dirichlet boundary condi-
tion iteration) [11–16], the FEM-SDBCI (singular DBCI) [17,18] and the well-known FEM-
BEM [19,20], whereas for HF problems the FEM-MoM (Method of moments) [21], FEM-
RBCI (Robin boundary condition iteration) [22,23], the FEM SRBCI (singular RBCI) [24]
and the FEM-AABC (adaptive absorbing boundary condition) [25].

Table 1. Various FEM-IE methods.

Dirichet Neumann Robin

ΓT 6= ΓIE
FEM-DBCI

(LF) –
FEM-RBCI

FEM-AABC
(HF)

ΓT ≡ ΓIE
FEM-SDBCI

(LF)

FEM-BEM
FEM-MoM
(LF) (HF)

FEM-SRBCI
(HF)

The use of Dirichlet or Neumann conditions on ΓT for HF problems may give rise to
internal resonances [2], so that these boundary conditions are not recommended, even if
in particular cases the relative methods may work correctly. On the contrary, the use of a
suitable Robin boundary condition avoids completely the internal resonances, whatever
the frequency [22].

The BCI acronym to designate some of the hybrid methods in Table 1 comes from a
particular solving iterative procedure, devised by the authors and reported in Section 4
for readers’ convenience. Note that this procedure is fully applicable also to FEM-BEM
algebraic systems.

In this paper, we are focused on the FEM-DBCI method for LF problems. The trunca-
tion boundary ΓT is selected by the user in such a way to enclose all the conductors and
non-homogeneous objects and to truncate the unbounded free space around the system.
On this boundary, a Dirichlet condition is assumed and initially guessed in order to obtain
a first solution by means of standard FEM. An improvement of the Dirichlet condition on
ΓT can be obtained starting from this solution, by means of an integral equation, whose
support is another closed surface ΓIE, enclosing the system but strictly enclosed by ΓT. This
procedure is repeated iteratively until convergence is reached. A geometrically simple
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ΓIE is obtained in 3D as a set of triangular or quadrangular faces of internal tetrahedra or
bricks, respectively, or as set of segments which are sides of triangles or quadrangles in 2D.

This paper describes a particular use of the FEM-DBCI method in which the integration
surface is selected as constituted by patches connecting the middle points of the edges
leaving from the truncation boundary ΓT. In this way, the free space between ΓIE and
ΓT reduces to half a layer of finite elements and, due to the proximity of ΓIE and ΓT, the
integral equation becomes quasi-singular.

The paper is organized as follows: in Sections 2 and 3, the FEM-DBCI formulations are
described for an electrostatic problem in 3D and for a time-harmonic skin effect problem
in 2D, respectively. In Section 4, various algorithms to solve the hybrid global algebraic
system are outlined. In Sections 5 and 6, analytical and numerical examples are given,
respectively. The authors’ conclusions follow in Section 7.

2. The FEM-DBCI Method for Electrostatics

Consider an electrostatic system constituted by dielectric objects, charge distributions
and voltaged conductors embedded in free space, as shown in Figure 1. The conductor
potentials Vi, i = 1, .., NC, are relative to the zero potential at infinity.

Figure 1. Fictitious boundary enclosing an electrostatic system of voltaged conductors, non-
homogeneous dielectric objects and distributed sources.

In order to apply the FEM, a fictitious truncation boundary ΓT is introduced in such
a way to enclose all the conductors and non-homogeneous objects. Some lumped or
distributed charges may be left out. In the bounded domain D, the Poisson equation
holds [1]:

− ε0∇ · (εr∇v) = ρ (1)

where ε0 is the vacuum electric permittivity, εr is the relative permittivity, v is the electric
scalar potential and ρ is the charge density. An unknown Dirichlet condition is assumed
on ΓT.

By meshing the domain D by means of nodal finite elements and applying the FEM,
the following algebraic system is derived [11]:

Mv = k0 −MTvT (2)

where v and vT are the arrays of the nodal values of the potential v(x,y,z) at the internal
nodes and at the nodes lying on ΓT, respectively, M and MT are sparse matrices of coeffi-
cients depending on geometry and materials and k0 is the known term array due to the
conductor voltages and internal sources.

The Dirichlet condition on ΓT is expressed by means of the integral equation:

v(r) = vext(r) + ΓIE

(
v(r′)

∂G(r, r′)
∂n′

−G(r, r′)
∂v(r′)

∂n′

)
dS′ r ∈ ΓT (3)
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where vext is the potential due to the external sources, ΓIE is the closed surface which
connect the middle points of the edges leaving the nodes of ΓT, as shown in Figure 2, n′ is
the outward normal unit vector and G is the free-space Green’s function:

G(r, r′) =
1

4π|r− r′| (4)

Note that Equation (3) is valid if the space outside ΓIE consists of free-space only. In
numerical form, Equation (3) reads

vi = vext(ri) + ∑
k

∑
m

vm

(
ξ
(k)
im − η

(k)
im

)
(5)

where:

ξ
(k)
im =

x

Sk

αm(r′)
∂G(ri, r′)

∂n′
ds′ (6)

η
(k)
im =

x

Sk

∂αm(r′)
∂n′

G(ri, r′)dS′ (7)

where Sk is the k-th patch of ΓIE, αm is the shape function of the m-th node of the finite
element in which the patch lies, ri is the coordinate vector of the i-th node on ΓT and vi is
the potential value at this node. Note that the patches Sk, which constitute ΓIE, are triangles
and quadrangles for a tetrahedral mesh and quadrangles for bricks [26].

Figure 2. Truncation boundary ΓT and integration curve ΓIE (dashed line) in a mesh of triangular
finite elements of the second order.

Since the patch Sk is detached from ΓT, the integrals (6) and (7) are regular and can be
computed by means of the Gauss quadrature with varying accuracy. When the centre of
the integration patch Sk is far apart from the node ri on ΓT, one-point Gauss quadrature
is enough. When the centre of Sk is very close to ri, a large number of Gauss points are
needed. Denoting by L the length of the longest edge of Sk and by d the distance of its
centre from node ri on ΓT, for first-order tetrahedra a good trade-off between accuracy and
speed is the following: if L/d < 0.2 one-point Gauss is used; if 0.2 < L/d < 1.1, three or four
Gauss points are used for triangular or quadrangular patches, respectively; otherwise, six
or nine points are used. If ri is very near to Sk, analytical formulas may be also used [27].

In matrix form, Equation (5) read:

H vT = vext + G v (8)

where matrices H and G are dense. H is square by construction.
Equations (2) and (8) constitute the hybrid global algebraic system to be solved.
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3. The FEM-DBCI Method for Skin Effect

The system considered consists of a set of NC parallel straight conductors embedded
in free space. We denote by Sk (k = 1, ..., NC) their cross sections and by Ik the phasors of
the total currents, supposed to be time-harmonic of the same angular frequencyω. Each
conductor is homogeneous, with reluctivity νk and conductivity σk. The current densities
in these conductors are not known due to the skin and proximity effects.

Other conductors of small cross sections may exist carrying sinusoidal currents of the
same angular frequencyω, represented by the phasors Ik, k = NC+1, . . . , Ntot (it is assumed
that the sum of the currents of all the conductors be equal to zero). In these conductors
the skin-effect is negligible, so that the current density is known and equal to Ik/Sk. From
the point of view of the magnetic field, these conductors may or may not be homogeneous
with the free space.

Now we truncate the unbounded free space by means of a fictitious boundary ΓT,
which must include all the skin-effect conductors and also the inhomogeneous skin-effect
free ones. The skin-effect free conductors may be left outside ΓT if magnetically homoge-
neous with free space. In the following, they are referred to as external sources.

The magnetic vector potential A is parallel to the conductor direction and in the k-th
conductor satisfies the integro-differential equation [28]:

∇ · (νk∇A)− jωσkA + jωIk
1
Sk

x

Sk

A dS = − Ik
Sk

in Sk (9)

In the internal skin-effect free conductors, Equation (9) simplifies into the Poisson one,
obtained by setting σk = 0 in it. In free space, the potential satisfies the Laplace equation.

Meshing the bounded domain by means of nodal finite elements and assuming a
Dirichlet condition on ΓT, the following matrix equation is obtained [14]:

Ma = k0 −MTaT (10)

where a and aT are the arrays of the complex potential values of the magnetic vector
potential at the internal and boundary nodes, respectively, M is a square symmetric matrix
which depends on geometry and materials, k0 is the known term array due to the internal
source currents, and MT is a matrix of coefficients similar to M.

Arrays a and aT can be further related by means of the integral equation:

A(r) = Aext(r) +
∮

ΓIE

(
A(r′)

∂G(r, r′)
∂n′

−G(r, r′)
∂A(r′)

∂n′

)
ds′ r ∈ ΓT (11)

where Aext is the potential due to the external source currents, if any, ΓIE is the closed
broken line which connect the middle points of the element sides leaving the nodes of ΓT,
and G is the two-dimensional free-space Green’s function:

G(r, r
′
) = − 1

2π
ln
∣∣∣r− r

′
∣∣∣ (12)

In the numerical approximation, Equation (11) reads:

HaT = aext + Ga (13)

where H and G are dense matrices of geometrical coefficients and aext depends on the
external sources. Matrix H is square. Equations (10) and (13) constitute the global algebraic
system to be solved.
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4. Solution of the Global Algebraic System

In the FEM-DBCI methods described previously, the global algebraic systems have
the forms [

M MT
−G H

] [
x

xT

]
=

[
k0

kext

]
(14)

where M and MT are sparse matrices, H and G are dense matrices, x and xT are unknown
vectors relative to the FEM unknowns and to the truncation boundary condition unknowns,
respectively, and k0 and kext are known arrays. M and H are square.

System (14) can be solved by iteration. Starting from a first guess x(0)T for xT, the FEM
equation is solved for x(0); then, the integral equation is used to improve this guess. These
two steps are iterated. At the generic p-th iteration step:

Mx(p) = k0 −MTx(p)T (15)

Hx(p+1)
T = kext + Gx(p) (16)

By considering the symmetry and sparsity of matrix M, the algebraic system (15) is
conveniently solved by means of the conjugate gradient (CG) solver [29]. System (16) may
be solved by means of the LU factorization of matrix H, which, however, is performed only
once at the 0-th step.

The convergence behavior of this iterative procedure can be studied as follows. When
systems (15) and (16) are solved, we obtain:

x(p+1)
T = p0 + Px(p)T (17)

where:
p0 = H−1

(
kext + GM−1k0

)
(18)

P = −H−1GM−1MT (19)

The step matrix P determines the convergence of the iterative procedure. In fact, if
its spectral radius ρ is lower than 1, convergence is obtained to the true solution of the
unbounded problem whatever the initial guess x(0)T . In [30], it is shown that the condition
ρ < 1 is satisfied if the mean distance of ΓT from the conductors is greater than the mean
radius of the conductor system.

If relaxation is used, the step Equation (17) changes into:

x(p+1)
T = λp0 + [(1− λ)I + λP]x(p)T (20)

With a suitable value of the relaxation parameter λ, the iterative procedure converges
even when the non-relaxed procedure does not [31]. Unfortunately, only heuristic rules
have been derived for setting λ, so that this approach is not satisfactory.

By looking at the iterative algorithm more deeply, it is simple to realize that Equations
(17) and (20) can be seen as the iterative relations to solve the reduced algebraic systems:

(I− P)xT = p0 λ(I− P)xT = λp0 (21)

respectively, by means of Richardson’s method [29], which is a weak and possibly non-
converging solver.

In order to find a more efficient solver, we consider the reduced system:

A xT = b (22)

where:
b = kext + GM−1k0 (23)
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A = H + GM−1MT (24)

Obviously, due to the impossibility to obtain the inverse matrix M−1, matrix A and
vector b are not available directly. However, it is still possible to obtain b in a simple way
and to use matrix A to perform matrix-vector multiplications. In fact, vector b is obtained
as follows:

(1) Set a zero initial guess x(0)T = 0 for the Dirichlet condition on ΓT;
(2) Solve the FEM equation (by means of the CG) to find x(0) = M−1k0;
(3) Compute b = kext + Gx(0) = kext + GM−1k0.

In a similar way, matrix A can be used to multiply it by an array x(p)T :

(a) Given the array x(p)T ;

(b) Solve the FEM equation with k0 = 0 (by means of the CG) to find x(p) = −M−1MTx(p)T ;

(c) Compute Ax(p)T = Hx(p)T −Gx(p).

Then, we can solve system (22) by means of a variety of non-stationary CG-like solvers
for non-symmetric matrices [29]. Among these, GMRES [32] should be preferred, as it really
minimizes the number of matrix-by-vector multiplications, which are highly expensive in
this context. As it is well known, the greater drawbacks of GMRES are the CPU time and
the memory amount required to build and store the orthonormal base. However, in this
application of GMRES, these requirements are moderately low, since GMRES virtually acts
on a small system, whose unknowns are the potential values at the nodes of the truncation
boundary [33].

This virtual use of the GMRES is fully applicable also to the solution of FEM-BEM
algebraic systems, as described in [34].

5. An Analytical Example

This example is a very simple one: a perfectly conducting sphere voltaged at V0,
embedded in free space. The analytical solution is well known, but here numerical solutions
will be considered, based on the FEM-DBCI method.

In order to do this, a spherical truncation boundary is introduced at a distance d from
the conductor surface. By virtue of the radial symmetry, the analysis can be conveniently
led in the one-dimensional domain D = [R, R + d], where R is the radius of the spherical
conductor. In D, the Laplace equation holds:

1
r2

∂

∂r

(
r2 ∂v

∂r

)
= 0 (25)

with the relative boundary conditions.
The domain D is regularly meshed by means of N first-order segments of the same

length d/N; the total number of nodes is N+1; their abscissas are ri = R + id/N, i = 0, ..., N.
By virtue of the FEM-DBCI, the following system of algebraic equations is obtained:

FEM : −aivi−1 + (ai + ai+1) vi − ai+1vi+1 = 0 i = 1, . . . , N− 1 (26)

DBCI : vN = h (vN−1 − vN) (27)

subject to the Dirichlet boundary condition v(R) = v0 = V0.
The coefficients ai are given by:

ai =
1
3

(
r2

i−1 + ri−1ri + r2
i

)
i = 1, . . . , N (28)

whereas the coefficient h depends on the choice of ΓIE. By selecting ΓIE as the spherical
surface of radius

RIE = R + d− 1
2

d
N

(29)
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in the middle of the last segment, the coefficient h is given by:

h =
NR2

IE

(R + d)d
(30)

By solving the FEM-DBCI system (26)–(27), we get the potential value on the fictitious
boundary:

vN =
h

h + aNλN
V0 (31)

where:

λN =
N

∑
i=1

1
ai

(32)

In order to check the validity of the FEM-DBCI method, we define the error indicator:

ηN = 100
vN − v(rN)

v(rN)
(33)

where v(rN) is the exact value of the potential on the fictitious boundary:

v(rN) =
1

1 + δ
V0 (34)

where δ is the normalized distance of the truncation boundary from the conductor surface:

δ =
d
R

(35)

By substituting (31) and (34) in (33), the error indicator reads:

ηN = 100
δ− δN

1 + δN
(36)

where δN is a non-dimensional values given by:

δN =
aNλN

h
(37)

Since it is possible to show that

lim
N→∞

δN = δ (38)

we have also
lim

N→∞
ηN = 0 (39)

and the numerical solution vN tends to the exact one. This validates the proposed method.
To compare the accuracy of the FEM-DBCI with that of other methods, consider the

following FEM-BEM global algebraic system:

FEM : −aivi−1 + (ai + ai+1) vi − ai+1vi+1 = 0 i = 1, . . . , N− 1 (40)

− aNvN−1 + aNvN =
d
N
(R + d)2 qN (41)

BEM : vN = − (R + d) qN (42)
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where qN is the unknown value of the outward normal derivative of the potential on ΓT.
By solving the system (40)–(42) subject to the Dirichlet boundary condition v0 = V0, we
obtain the numerical solution for vN:

v
′
N =

1
1 + d

N (R + d) λN
V0 (43)

so that the error indicator is:

η
′
N = 100

v
′
N − v(rN)

v(rN)
= 100

δ− δ′N
1 + δ

′
N

(44)

where:
δ
′
N =

1
N

R2(1 + δ) δ λN (45)

In Figure 3, the behaviours of ηN and η
′
N for a fixed number of finite elements N = 10

are plotted as a function of δ. Good accuracies are obtained with both the methods, but
FEM-DBCI is a little bit more accurate than FEM-BEM. Analogous results are obtained by
increasing the number of finite elements. For higher values of N, the two lines tends to
coincide with the η = 0 line. Mathematically, this is exactly obtained for N→∞.

Figure 3. Behaviour of the error indicators of the FEM-DBCI and FEM-BEM methods for the analytical example of the
charged conducting sphere.

However, in general, FEM-DBCI is a little bit less accurate than FEM-BEM, but much
more fast since it works with a lower number of unknowns [35], the nodal values of the
normal derivative of the potential not being used in the first one. This characteristic will be
illustrated in the next section by means of a set of numerical examples.

6. Numerical Examples
6.1. Capacitance of a Strip Line

Consider the transmission line shown in Figure 4, where a conductor strip (width
w = 5 mm, negligible thickness) is separated from a ground plane by a dielectric sheet
(height h = 1.5 mm, width s = 15 mm, permittivity ε1 = 4.7ε0). The line is embedded in the
free-space of permittivity ε0. The strip conductor is voltaged at V0 = 1 V. Due to symmetry
reasons, the two-dimensional analysis can be restricted to half the system, by imposing
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a homogeneous Neumann boundary condition on the y-axis. The truncation boundary
is placed at a distance d = 0.05 mm from the conductor/dielectric, as shown in Figure 4.
The mesh is formed with 1057 second-order triangles and 2240 nodes. Only one layer of
204 finite elements is in free-space; 206 nodes lie on ΓT. The FEM-DBCI converges in six
GMRES iterations, with an end-iteration tolerance of 0.01 per cent. The contours of the
potential are shown in Figure 5. The capacitance per unit length is conveniently evaluated
by means of the cross-energy formula:

c =
2

V0

x

D

ε∇v · ∇w dxdy (46)

where w is an arbitrary function such that w = 1 on the strip and w = 0 on the ground plane
and on ΓT. This computation gives: c = 130.7 pF/m.

Figure 4. Microstrip line over a ground plane.

Figure 5. Contours of the electrical potential.

6.2. Two-Wire Transmission Line

The line considered is constituted by two circular wires of radius R whose centers are
separated by a distance of D = 2.4R. The wire potentials are V0/2 and −V0/2, so that the
analytical solution is [36]:

v∗(x, y) =
V0

4 cosh−1(D/2R)
ln

[
(x + a)2 + y2

(x− a)2 + y2

]
(47)

where:

a =

√
1
4

D2 − R2 (48)

and the capacitance per unit length is given by:

c =
πε0

cosh−1(D/2R)
(49)

For this line, Formula (49) gives c = 5.047850 ε0. The truncation boundary is selected as
two circumferences of radius 1.14R, concentric with the two wires. The air gap between the
conductors and the truncation boundary ΓT is d = 0.14R. Due to symmetry, the analysis can
be conveniently limited to the first quadrant only, by imposing homogeneous Neumann
and Dirichlet conditions on the x- and y-axis, respectively. Note that the y-axis is completely
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left outside the domain of analysis. The air gap is regularly meshed with four layers of
second-order triangular elements, for a total 724 elements and 1637 nodes. To improve
the accuracy of the numerical solution, curved elements are used at the conductor-air
interface. The integration curve ΓIE is selected in three different ways: (a) triangle sides
at a distance d/4 from the conductor; (b) segments internal to the 2nd layer of triangles
at a mean distance of 3d/8 from the conductor; (c) segments internal to the 4th layer of
triangles at a mean distance of 7d/8 from the conductor. Another analysis is performed
by means of the non-standard FEM-BEM described in [20]. The various algebraic systems
are solved with the GMRES schemes (restarting parameter m = 10). The following error
indicator is employed to measure the accuracy of the numerical solutions:

ζ = 100

√√√√s
D1

(v ∗ −v) 2dxdy
s

D1
(v∗) 2dxdy

(50)

where D1 is the analysis domain in the first quadrant. Table 2 summarizes the results
obtained by reporting the number of steps performed (with an end-iteration tolerance of
10−3 per cent for the GMRES and for the CG), the normalized CPU time for the solution of
the linear systems, the error indicators ζ and the normalized capacitances c/ε0, evaluated
by means of the cross-energy formula. We can see that all the FEM-DBCI solutions are less
accurate with respect to the FEM-BEM, but notably faster. Moreover, note the FEM-DBCI
(c) solution is practically accurate as the (b) one, and this means that we can reduce the
mesh to two layers only, by also reducing the relative CPU time.

Table 2. Comparison between various FEM-DBCI and FEM-BEM for the 2nd example.

Method GMRES Steps CPU Time Error Indicator
ζ

Capacitance
c/ε0

FEM-DBCI (a) 6 1.00 7.45 × 10−3 5.048423
FEM-DBCI (b) 6 1.02 6.71 × 10−3 5.047634
FEM-DBCI (c) 6 1.02 6.82 × 10−3 5.047570

FEM-BEM 8 2.01 2.19 × 10−3 5.047849

6.3. Capacitance of a Cube Conductor

The third example is relative to the computation of the capacitance C of a conductor
cube of edge size s, voltaged at V0 and embedded in free space. For this classical three-
dimensional electrostatic problem, a highly accurate estimate is known of the normalized
capacitance c = C/4πε0s: c = 0.6606780± 2.7× 10−7 [37]. The FEM-DBCI method is applied
by introducing a cube fictitious boundary ΓT, placed homologously to the conductor surface
at a distance d = s/8. This distance is justified by the need of spacing ΓT from the cube edges,
where the electrical field theoretically diverges. Thanks to symmetry, the analysis domain
is limited to the first octant only. The free-space gap between the two cubes is meshed
with 56,220 first-order tetrahedra with 11,948 nodes. Two estimates of the capacitance c are
obtained by means of the FEM-DBCI and FEM-BEM. The number of GMRES steps (with an
end-iteration tolerance of 10−2 per cent for the GMRES and 10−4 per cent for the CG), the
CPU times for the solution of the linear algebraic systems and the normalized capacitances
c are reported in Table 3. As before, FEM-DBCI exhibits an accuracy comparable with that
of the FEM-BEM, but FEM-DBCI requires much less computing time. The contours of the
potential are shown in Figure 6.



Mathematics 2021, 9, 1968 12 of 17

Table 3. Comparison between FEM-DBCI and FEM-BEM for the 3rd example.

Method GMRES Steps CPU Time (ms) Normalized
Capacitance

FEM-DBCI 4 161.7 0.662214
FEM-BEM 18 1421.9 0.661590

Figure 6. Contours of the potential around the cube conductor.

6.4. Skin Effect in a Two Wire Transmission Line

The transmission line is constituted by two conductors having circular cross-sections
of radius R = 5 mm. The distance between the two centers is D = 20 mm (see Figure 7). The
line carries two opposite sinusoidal currents of magnitude I = 1 A at frequency f = 1 kHz.
The two wires are made of copper with conductivity σ = 56 × 106 S/m. This example is
given to compare FEM-DBCI with other methods: FEM truncation, FEM-CT (Coordinate
Transformations) [4,5], and FEM-BEM.

Figure 7. Two-wire transmission line.

By selecting the Cartesian reference frame in Figure 7, the transmission line exhibits a
double symmetry with respect to the two axes, so that the various analyses can be restricted
to the first quadrant only, by imposing a homogeneous Neumann condition on the x-axis
and a homogeneous Dirichlet one on the y-axis.
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Since no analytical solution exists for this problem, in the following we assume that
the best solution be obtained by means of the FEM-CT method by employing a great radius
of the circular domain RCT = 6 R = 30 mm of the Kelvin transformation [4].

The interior domain is meshed with 370 triangular finite elements of the second order
(see Figure 8). A total of 128 elements lay in the conductor; 242 elements lay in air (64 of
which in the exterior air). The complex CG solver is used to solve the global algebraic
system with a CPU time of TS = 0.26 s on a small PC.

Figure 8. Finite element mesh in the interior and exterior regions in the FEM-CT analysis.

The FEM truncation method is then applied by means of a circular truncation boundary
Γ0 of radius R0, centered at the origin. On Γ0, a homogeneous Dirichlet condition is imposed.
The radius of this circle is increased until a satisfactory accuracy is obtained with respect to
the FEM-CT solution. To measure this accuracy, we use the following error indicator:

η = 100


s

C

∣∣∣A(T)(x, y)−A(x, y)
∣∣∣2dxdy

s
C |A(x, y)|2dxdy


1
2

(51)

where A and A(T) are the FEM-CT and truncation solutions, respectively, and C denotes
the conductor subdomain. Numerically, η is computed as:

η = 100

 ∑
k∈C

∑
n

∑
m

tnmRe
{
(A(T)

n −An) (A
(T)
m −Am)

∗}
∑

k∈C
∑
n

∑
m

tnmRe {AnA∗m}


1
2

(52)

where n and m are indices of nodes in the k-th finite element (belonging to the conductor),
star denotes conjugation and tnm is an entry of the metric matrix of the k-th element [1].
We found that by setting R0 = 30 R, the error indicator η decreases to 0.15% and the CPU
increases to 1.90 TS.

The system is also analyzed by means of FEM-BEM. The air-copper interface is used
as the truncation boundary. In the conductor, the mesh is formed with 128 second-order
triangular finite elements, exactly coinciding with those of the previous analyses. The
FEM-BEM system is solved by means of the GMRES solver, as explained in [15]. Solution
is achieved in four iterations, but the CPU time rises to 1.52 TS, while the error indicator η
decreases to 0.08%.

Finally, the FEM-DBCI method is applied by employing a circular truncation boundary
of radius RT = 6.0 mm. The air in between the conductor and the truncation boundary is
meshed by means of one layer of 32 triangular finite elements; the conductor is meshed as
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in the previous analyses. The resulting global algebraic system is solved by means of the
GMRES solver. The solution is reached in four iterations, with a CPU time of 1.14 TS; the
error indicator is 0.11%. Figure 9 reports the contours of the current density magnitude
inside the conductor.

Figure 9. Contours of the current density magnitude.

The results obtained show that FEM-DBCI is competitive with respect to the well-
known FEM-BEM and FEM-CT methods, both from the accuracy and CPU time points
of view. Moreover, note that the FEM-BEM and FEM-DBCI performances can increase
with respect to those of FEM-CT if the system analyzed consists of several conductors, the
distances between which are much greater than their diameters.

6.5. Skin Effect in a Non-Symmetric Transmission Line

The last example concerns a non-symmetric transmission line constituted by a couple
of conductors having different sections, as depicted in Figure 10. The geometrical data are:
left conductor Section 1 cm × 1 cm, right conductor Section 2 cm × 2 cm, distance between
their centres 2.3 cm. The conductors are made of copper (σ = 56 × 106 S/m), whereas
the surrounding medium is assumed to have zero conductivity and vacuum permeability.
The conductors carry two opposite time-harmonic currents I and −I of magnitude 1 A at
frequency f = 1 kHz.

Figure 10. Non-symmetric two-wire transmission line.

This example is selected to show that the FEM-DBCI method is fully applicable also
using a non-convex truncation boundary ΓT (see dashed line in Figure 10), which is consti-
tuted by a single curve placed at a distance of 1 mm from the conductor surfaces. Due to
symmetry reasons, the analysis is restricted to half the system, by imposing a homogeneous
Neumann condition on the x-axis. The resulting bounded domain is regularly discretized.
The mesh is constituted by 712 s-order triangles and 1483 nodes, of which 127 lie on ΓT.
Having set an end-iteration tolerance of 10−4 per cent, convergence is obtained with 13
GMRES iterations. Figures 11 and 12 show the contours of the real and imaginary parts of
the magnetic vector potential.
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Figure 11. Contours of the real part of the magnetic vector potential.

Figure 12. Contours of the imaginary part of the magnetic vector potential.

The solution obtained has been compared with the FEM-BEM one: a mean relative
error of about 1.14 per cent is pointed out in the conductors, but the CPU time increases of
about 55 per cent.

7. Conclusions

In this paper, a particular use of the hybrid FEM-DBCI method has been described for
the solution of a variety of open-boundary electromagnetic problems, such as electrostatic
and time-harmonic skin effect ones. In the proposed method, the surface of the integral
equation is selected in the middle of the more external layer of finite elements, very near to
the truncation boundary. This method leads to accurate numerical results similar to those
obtained with the FEM-BEM, but with lower computing times.

For this reason, we can conclude that FEM-DBCI appears to be more appropriate
for FEM analyses requiring short computing times, such as in the stochastic optimization
of electromagnetic devices. In these applications, generally, several thousands of FEM
analyses must be performed to reach satisfactory results [38,39]. On the contrary, FEM-BEM
appears more appropriate when high accuracies are required in a single computation.

However, all the hybrid methods suffer from the complexity of the integral equation,
which naturally is quadratic. Then, for real industry applications in 3D, it is important to
reduce this complexity at the price of adding further approximation to the basic integral
equation. In such a perspective, in addition to the well-known fast multipole method
(FMM) [40,41], recently the use of H- and H2-matrices seems to be highly promising [42].

The FEM-DBCI method and the non-standard FEM-BEM one used in this paper have
been implemented in ELFIN, a large FEM code developed by the authors for scientific
research [43].
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