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Abstract: This review article aims to address common research questions in hexapod robotics. How
can we build intelligent autonomous hexapod robots that can exploit their biomechanics, morphology,
and computational systems, to achieve autonomy, adaptability, and energy efficiency comparable
to small living creatures, such as insects? Are insects good models for building such intelligent
hexapod robots because they are the only animals with six legs? This review article is divided into
three main sections to address these questions, as well as to assist roboticists in identifying relevant
and future directions in the field of hexapod robotics over the next decade. After an introduction
in section (1), the sections will respectively cover the following three key areas: (2) biomechanics
focused on the design of smart legs; (3) locomotion control; and (4) high-level cognition control. These
interconnected and interdependent areas are all crucial to improving the level of performance of
hexapod robotics in terms of energy efficiency, terrain adaptability, autonomy, and operational range.
We will also discuss how the next generation of bioroboticists will be able to transfer knowledge from
biology to robotics and vice versa.

Keywords: hexapod; legged robotics; biomimicry; biomimetism; bionics; biorobotics

1. Introduction

Legged robots represent a unique opportunity to understand locomotion in the animal
kingdom [1,2]. Ever since robotics emerged in the 20th century, legged robots have aroused
enthusiasm and curiosity from both researchers and the general public. In addition to their
contributions to our understanding of locomotion, legged robots offer a great alternative
to their wheeled counterparts, showing better abilities to navigate uneven terrains. In-
deed, most animals have legs, allowing them to move, explore, and adapt to their direct
environment. Similarly, legged robots can operate on many types of surfaces, including
rough terrains, and also jump over obstacles, and climb structures. The following article
is focused on hexapod robots, i.e., robots equipped with six actuated legs. The choice
of hexapod design is strongly motivated by the need for insectoid robots to mimic the
animal model as far as possible, so that the results obtained from experiments can be
fairly compared to insects (locomotion, navigation, object manipulation, etc.) [3–5]. On the
other hand, and from a purely robotic perspective, hexapod robots represent an optimum
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compromise between overall stability and energy cost. With fewer legs, such as in bipedal
or quadrupedal robots, the locomotion pattern implies that whenever the robot is walking,
its stability decreases during the leg transfer phase: a bipedal robot will have to stay
stable with only one leg, and a quadrupedal robot is inherently unbalanced because of
the symmetry of the legs configuration. Alternatively, octopod robots are stable, but less
energy efficient. To summarize, hexapod robots offer different ranges of relatively stable
walking gaits, while optimizing energy cost.

This review article was written to address a common research question in the field
of hexapod robotics: what is the best way to build autonomous hexapod robots that can exploit
their biomechanics, morphology, and computational systems to achieve autonomy, adaptability,
and energy efficiency comparable to a small living creature, such as an insect? To help researchers
to find relevant directions over the next decade in the field of hexapod robotics, we will
divide this review in three main sections following the logic of Figure 1. These are: Section 2,
“Biomechanics in hexapod robotics”, which will be focused on the design of smart legs;
Section 3, “From biomechanics to locomotion” , which will be focused on insect and robot
locomotion control, ; and lastly Section 4, “From locomotion to cognition”, which will be
focused on planning body actions to reach complex goals. Figure 1 illustrates the links
between these three sections as they relate to the above main research question in italic,
which is quite complex. To address it, it requires to divide it into more specific research
questions about how we can transfer knowledge derived from biological agents to artificial
agents. In addition, according to the scaling factor between a biological agent (i.e., an insect)
and an artificial agent (i.e., a robot), the transferability of biologically-based knowledge
will be discussed from a robotic point of view, because there are occasions when such
transferabilities are unfortunately not relevant. As a result, we have deliberately limited
the current state-of-the-art as seen in Table 1 to provide an overview of hexapod robots
developed over the last 20 years in the range of 1–27 kg.

Figure 1. Overview of three main components underlying complex locomotion and cognition:
biomechanics, locomotion control, and high-level cognitive control. Left (right) shows examples of
the three components in insects (robots). (a) Left (right) is the insect central brain (high-level neural
cognitive control model). (b) Left (right) is the insect thoracic ganglia (modified from [6]) (robot
locomotion control model). (c) Left (right) is a biomechanical insect (robot) leg.

Section 2 aims to survey a significant quantity of studies reported in the literature
produced over the two last decades in legs, structure, and morphology in hexapod robotics.
The design of legged robots is a technical and technological challenge in many respects.
Since the very first robots were built in the late 1960s [7–11], an outstanding body of work
has been realized to improve both the mechatronic structure and the locomotion gait
towards auto-adaptability to the terrain. Nowadays, after barely more than 50 years of
research and development, the principles of robots are well mastered and leverage multiple
opportunities in terms of field implementation (for a review of hexapod robots up to 2010s,
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see [12,13]). Over the past ten years, the increasing use of 3D printing has significantly
boosted the development of brand new mechatronic designs for inexpensive hexapod
robots, which are easy, for academics and students, to build, duplicate, and fix. This section
will deal with passive materials, actuators, and force sensing in legs design to improve the
level of autonomy of hexapod robots over complex terrain allowing future hexapod robots
to maintain their speed over an extended period or range. Section 2 will be divided into
the following three subsections:

• Section 2.1. Robotic leg design;
• Section 2.2. From legs to robots;
• Section 2.3. Hexapod robots’ accessibility criteria for academics.

Table 1. Overview of the state-of-the-art hexapod robots developed over the last 20 years in the range 1∼27 kg. The size,
given in meters, corresponds to the largest dimension between width and height. DOF stands for Degrees Of Freedom for
the entire robot (note that this can include extra actuation for head control and body control). The speed represents the
maximum speed measured, in meters per second. The symbol “-” represents missing data.

Year Ref. Hexapod Size [m] Mass [kg] DOF Compliant Speed [m/s] Task

2021 [14] HAntR 0.50 2.9 24 ⨉ 0.43 Locomotion

2019 [15,16] MORF 0.60 4.2 18 ✓ 0.70 Locomotion

2019 [17] Daisy 1.10 21 18 ✓ 0.13 Locomotion

2019 [18,19] Drosophibot 0.80 1 18 ✓ 0.05 Locomotion

2019 [3,20] AntBot 0.45 2.3 18 ⨉ 0.90 Navigation

2019 [21] Corin 0.6 4.2 18 ⨉ 0.10 Locomotion

2018 [22] AmphiHex-II 0.51 14 6 ✓ 0.36 Locomotion

2018 [23] CRABOT 0.70 2.5 24 ⨉ 0.05 Locomotion

2017 [24,25] PhantomX AX 0.50 2.6 18 ⨉ 0.29 Locomotion

2017 [20,24] Hexabot 0.36 0.68 18 ⨉ 0.35 Navigation

2016 [26] Weaver 0.35 7 30 ⨉ 0.16 Locomotion

2016 [27] MX Phoenix 0.80 4.8 18 ⨉ 0.50 Locomotion

2015 [28] Phoenix 3DOF 0.37 1.3 18 ⨉ 0.25 Locomotion

2015 [29] HexaBull-1 0.53 3.4 18 ✓ - Locomotion

2015 [30,31] MantisBot 0.74 6.1 28 ⨉ - Navigation

2015 [32] Snake Monster 0.70 4.6 18 ✓ - Locomotion

2015 [33] BionicANT 0.15 0.105 18 ⨉ - Swarming

2014 [34–36] HECTOR 0.95 13 18 ✓ - Navigation

2014 [37,38] Messor II 0.30 2.5 18 ⨉ 0.09 Locomotion

2014 [39,40] LAURON V 0.90 42 24 ✓ - Navigation

2014 [41] CREX 1 27 24 ⨉ 0.17 Locomotion

2012 [42] Octavio 1 10.8 18 ⨉ - Locomotion

2011 [43] - 0.46 3 18 ✓ 0.03 Navigation

2011 [44,45] EduBot 0.36 3.3 6 ✓ 2.50 Locomotion

2010 [46] X-RHex 0.57 9.5 6 ⨉ 1.54 Locomotion

2008 [47] DLR-crawler 0.50 3.5 18 ✓ 0.20 Locomotion

2006 [48,49] AMOS-WD06 0.40 4.2 19 ⨉ 0.07 Locomotion

2006 [50,51] Gregor I 0.30 1.2 12 ⨉ 0.03 Locomotion

2005 [52,53] BILL-Ant-a 0.33 2.3 18 ⨉ 0.03 Locomotion

2001 [54] RHex 0.54 7 6 ✓ 0.55 Locomotion
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Section 3 focuses on the considerable amount of research over the last decades on
locomotion control in insects and hexapod robots. An insect’s central nervous system can
efficiently combine information from a variety of sensor modalities to achieve interlimb
and intralimb coordination, as well as control joint compliance for locomotion in complex
terrains and object manipulation. Understanding such a control system and implementing
it on a hexapod robot are still difficult tasks. To date, significant progress on the investiga-
tion of insect locomotion control and the development of hexapod locomotion control has
been made. In this context, Section 3 provides the key findings of insect locomotion control
and their translation to robot locomotion control (i.e., bio-inspired control). It also covers
conventional engineering-based control and advanced machine learning-based control
methods for hexapod locomotion generation. This is to update and guide our research
community with future research directions in locomotion control. Section 3 will be divided
into the following two subsections:

• Section 3.1. Insect locomotion control;
• Section 3.2. Robot locomotion control.

Section 4 explores a considerable amount of research produced over the last decades,
which has concentrated on unraveling the main features of the insect brain and deriving
the main guidelines for new approaches to high level behavior emergence in engineering.
Insects will be presented as creatures able to show complex behaviors in very small brains.
We then assume the possibility of the physical implementation of similar behaviors within
a currently existing hardware device. Of course, to perform such a task, a deep level
of knowledge about the loop linking the neural–functional–behavioral levels is needed.
As with higher brains, complex behaviors in insects typically arise from the coordinated
action of concurrent control systems, but the details of the neural mechanisms in charge of
each function, and how these are coordinated, still remain largely unknown in a lot of cases.
Therefore, Section 4 reviews some successful examples in which this task was performed,
identifying, in reference to specific tasks, the responsible neural sites, the neuro-engineered
models designed, and the final robotic structures showing the corresponding behaviors.
Of course, a huge amount of work still remains to be done, especially as regards our
capability to design suitable experimental setups leading to the explicit stimulation of other
interesting behaviors. Section 4 will be divided into the following three subsections:

• Section 4.1. The fly brain and cognition;
• Section 4.2. The insect brain structure;
• Section 4.3. Insect brain functional models, implementations and robotic experiments.

Section 5 will deal with lessons learned from this review, and a conclusion will be
drawn in Section 6 to give new lines of research and future directions in hexapod robotics
for the next 10 years.

2. Biomechanics in Hexapod Robotics

Biomechanics are at the heart of the biomimetic embodiment of a hexapod robot
(Figure 1a) because legs are constrained by mechanical stress when they are in contact with
the ground, and they have to follow various locomotion patterns dictated by the locomotion
control system (Figure 1b). Mechanical strength and execution fidelity of the pattern of
locomotion by adding force sensing to joints are the two key parameters in biomechanics.

Below we introduce the recent developments in hexapod robot design reported over
the last 20 years (Table 1), illustrating the outstanding achievements in size reduction, leg
compliance, and speed in hexapod robotics. From a purely biomechanical point of view,
three main research questions are explored in hexapod robotics:

• How can we improve the level of performance of hexapod robots in term of trav-
eled distance?

• Is the study of insects helpful in the design of highly efficient hexapod mobility?
• Are robotic legs as intelligent as insect legs over complex terrain?
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In Section 2.1, we introduce the variety of designs, morphology, actuation, cost of
transport, and force sensing in robotic legs. In Section 2.2, we present the various hexapod
robotic designs and the effect of the scaling factor on the level of performance. In Section 2.3,
we show those hexapod robots, which are available on the market or as open-source projects
for academics.

2.1. Robotic Leg Design
2.1.1. Design and Morphology

The design of an insect-like hexapod robot is, in itself, a complex task, requiring
compromises and the establishment of a balance between desired performance and true
feasibility limited by technical progress. Two main aspects define a hexapod robot leg: the
number of degrees of freedom (DOF) and the structure type. Each of these aspects are
selected and designed for the uses to which the robot will be put.

• Number of degrees of freedom (DOF): determines the operating space of the robot.
By increasing of DOFs, the robot can achieve more complex trajectories. The number
of DOFs also has a direct impact on robot characteristics, such as its autonomy, mass,
and cost. Therefore, the number of DOFs should not be neglected in the design process.
Currently, insect-inspired robotic legs are designed with between one and five DOFs
per leg.
With one DOF per leg, the robot’s maneuverability is highly limited. Depending
on both leg and control designs, a one DOF per leg robot can perform a straight
line walk [55] and also achieve simple rough terrain navigation if is equipped with
whegs [46,56,57], comprising elements of both wheels and legs. These whegs equipped
robots cannot really be considered as insect-like robots regarding their body structure.
Their development tends to target navigation tasks over locomotion studies.
With two DOFs per leg, a simplified hexapod robot can be built [58]. This choice
is a good compromise between energetic cost and mobility. However, this type of
robot walks mainly over flat terrains and can only perform curved leg trajectories,
generating body oscillations.
Previously, insect-based hexapod robots were built with three DOFs per leg (Table 1,
in which the trochanter segment joint is merged with the femur and each joint only
comprises one DOF, see Figure 2). Reflecting the standard insect leg model [59], this
type of leg permits roaming in a slightly rough or slopped terrain in addition to a flat
terrain walk.
More DOFs in leg morphology improve maneuverability and adaptation to challeng-
ing terrains [39,60]. Additional actuators help to adjust robot orientation according
to the slope in order to increase stability [26]. Experiments have shown that 4 or
5 joints per leg enable robots to cope with high gradient slopes in any orientation
(e.g., up to 50○ slopes, see [26,61], or up to 43○ slopes, see [14]). Unfortunately, these
improvements increase the level of complexity of control commands and the robot’s
price and weight (Table 2), they also concomitantly, reduce autonomy due to the high
power consumption of numerous actuators.
To sum up, from the large number of robots based on three-DOF legs, this appears
to be the right compromise to walk on a flat terrain. Despite the three DOFs per leg
trend, from a biological point of view, an insect possesses more than three joints with
one DOF per joint [62,63], allowing it to overcome large obstacles and cross sloped
and rough terrain (e.g., up to 54○ see [64]). More complex models based more closely
on insect leg kinematics are being developed [65]. Dung beetle like legs were built in
2018, the leg design was based on micro-CT scans of a real dung beetle [66]. A pair of
beetle-like legs comprising four DOFs, allowing both manipulation and transportation
was tested [66].
In 2017, a hexapod robot, called Cassino Hexapod III (∼3 kg), composed of hybrid
legs on a modular anthropomorphic architecture with omni-wheels, as feet at the
extremities, was designed and built [67]. Each hybrid leg was built with three DOFs
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with the third being dedicated to rotating the wheel at the tip of the leg. This kind of
hybrid locomotion is relevant for efficient rolling mobility on moderate terrain and
walking mobility on extreme terrain, such as non-terrestrial exploration [68]. Hybrid
locomotion by walking or by rolling allows hexapod robots to save energy, and this
hybrid locomotion is a combination of an engineering approach and a bio-inspired
approach. Hybrid locomotion has not been developed in this review, which is focused
on the biomimetic approach.

Figure 2. A standard hexapod robot 3-DOF leg, based the Cataglyphis fortis ant scale 1:30. Angle α

corresponds to the thorax-coxa joint position, angle β corresponds to coxa-femur joint (up to now,
robotic designs have often fused the trochanter-femur joint), and angle γ represents femur-tibia
position. Illustration: ©Camille Dégardin & Ilya Brodoline (2021).

• Structure type: this describes how leg joints are linked to each other. Two major
leg designs are used on inspect-inspired robots: serial multi-shaped legs or single
shape legs.
Serial multi-shaped legs are the most common structures encountered for locomotion
and navigation. By definition, an insect leg is composed of five segments (coxa,
trochanter, femur, tibia, and tarsus), arranged in a particular toggled zig-zag shape,
forming a sprawled posture, reducing and distributing the forces on every joint of
the leg [69,70]. However, in most robotic cases, this structure is simplified to three
segments per leg (coxa, femur, tibia) comprising three joints per leg, each one with
only one DOF (see previous point). In this arrangement, the trochanter segment
of the leg is merged with the femur, and the tarsus is generally removed. However,
the tarsus makes an important contribution to the insect’s walk, serving as an adhesive
pad [62,71] and allowing a better ground forces transmission with a passive spring
effect. Moreover, some insects (e.g., leafhoppers) possess particular tarsal structures
allowing them to jump from smooth surfaces [72]. Looking over the last decade of
hexapod robots, presented in Table 1, the tarsus is often neglected, even though it
represents more than 30% of the leg length [73]. Currently, few artificial tarsus designs
have been developed to efficiently walk on complex terrains [74].
Single shape legs are used on whegs robots, origami, and compliant joint robots.
The specifications of these types of robots, require the absence of most tiny mechanical
parts such as bearings, shafts, screws, and nuts, and involves a simplicity of manufac-
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turing, scale and cost reduction and, backlash and structural robustness improvements.
The development of single shape legs follows the advances in new materials and man-
ufacturing techniques such as multi-material 3D printing, which allows the building
of soft joint robots [75]. Particularly, the 3D printing of legs appears to be a good
way to develop and simplify standard joint designs by using properties of these new
materials, such as flexibility or heat deformation [76]. In this way, hexapod robot
legs are tending to become closer to real insect legs, in terms of relative dimensions
and mass. An important point to notice for insects, e.g., cockroaches, is that a leg
corresponds to approximately 2% of the body mass [77], allowing them low inertia,
high frequency strides during a walk. In comparison, insect-like robot legs represent
at least 10% of the overall mass (estimated for a 2 kg robot, from Table 1). Apart from
3D printing, some materials could take over from standard aluminum or molded
plastic legs, e.g., chitosan–fibroin material, inspired by insect cuticle structure [78].
Furthermore, some other original structures have been designed; they were mainly
developed when a specific animal behavior, such as jumping [79,80], is to be replicated
or to satisfy some sought after design specifications like posture changes [81].
At first glance, leg design is highly dependent on actuator technologies. However,
an impressive number of improvements are still possible through subtle structural
modifications, allowing huge performance improvements. Independently of the
structure type, observing the current state of the art in leg design, a question presents
itself: why are all the legs of a hexapod robots the same? Insect legs are different in
size (Figure 3, see [82]), and not built like robot legs, wherein the six are often identical,
except for a few robots mimicking insect morphology in detail (Drosophibot [18,19]
and MantisBot [30,31]). In response to this question and with the technologies now
available, in the 2020s, leg design is likely to become increasingly based on available
micro-CT scans of real insects (e.g., [66,83] dung beetles, [84] flies, or [65] ants) in
order to improve the level of complexity, fidelity, and bio-inspiration.

Figure 3. Scale, segments, and joints in ant Messor barbarus. Photographic credits: Hugo Merienne, Centre de Recherches sur
la Cognition Animale (CRCA UMR 5169), Toulouse, France. The relative scale of each segment (coxa, femur, tibia, tarsus)
w.r.t. the coxa leg of each leg (R1, R2, R3) comes from [73]. Adapted from [82] under CC-BY License, 2019.
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2.1.2. Cost of Transport

To compare the level of performance between robotic designs, the cost of transport
(CoT) is now a common adimensional metric (Equation (1)) used to evaluate any legged
robots [14,85–87].

CoT =
P̄

m ⋅ g ⋅ v̄
(1)

where P̄ is the mean power consumption, m is the robot weight, v̄ is the mean speed, and g
is the gravitational acceleration (g = 9.81 m⋅s−2). The CoT depends linearly on the weight
in log-log space with a negative slope [88–90] for both animals and robots. In the animal
kingdom, biologists evaluate the efficiency locomotion with the mass-specific energy per
unit distance (in J/(m⋅kg)), which can be defined by the gravitational acceleration-CoT
product. With such an approach, we can estimate the ant’s CoT ∼ 39, and also the CoT
of a 2–3 kg animal as close to ∼2. The current CoTs of hexapod robots weighting 2–3 kg
is similar those of animals (Table 2). As a result, we can conclude that the locomotion
efficiency of hexapod robots is currently no better than that of animals.

The CoT of hexapod robots is lower in tripod locomotion on a flat terrain [14]. A tetra-
pod or pentapod locomotion deteriorates the CoT value, likewise a sloping or rough terrain.
As a result, to compare hexapod platforms, they must be evaluated using the same task
and environmental conditions, here in tripod locomotion on a flat terrain and in a room
with the air temperature set at 25 °C (Table 2).

Table 2. Level of performance in terms of cost of transport (CoT) in hexapod robots walking in tripod locomotion over a flat
terrain. The speed is the maximum speed.

Robot Actuators #Actuators Mass (kg) Speed (m/s) CoT

Daisy X-series 18 21 0.13 3.7
X8-9 and X8-16

HAntR Dynamixel AX-12A 24 2.9 0.43 1.5

AntBot Dynamixel AX-18A 18 2.3 0.90 6.2

CRABOT Dynamixel AX-18A 24 2.5 0.05 -

Hexabot Dynamixel XL-320 18 0.93 0.35 -

Weaver Dynamixel 30 7 0.16 1.5–1.8
MX-64 and MX-106

EduBot DC motor 6 3.3 2.5 0.5–1.6

Messor II Dynamical RX-28 18 2.5 0.09 -

BionicANT Trimorphic piezo-ceramic 18 0.105 - -

2.1.3. Actuation of the Legs

Many actuator technologies can be used to control the joints between the leg seg-
ments: servomotors, brushless motors, or artificial muscles, which are under developments
in laboratories.

• Servomotors: the main issues with servomotors are their weight and energy efficiency.
A servomotor heats up easily until it surpasses its maximum operating temperature
of 70 °C, then it stops working. In addition, a servomotor is composed by definition,
of a motor with high ratio gearing used to make it as stiff as possible. In this sense,
such servo-based actuators differ significantly from biological actuators that may
have variable stiffness and adaptable compliance. One way to implement variable
stiffness is to use springs to make variable impedance actuators (VIA). As summa-
rized in [91], VIA actuators can be classified into three categories: spring pre-loaded
variation, transmission ratio changing and spring physical property alteration. VIA is
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certainly an approach of great interest for the design of future hexapod robots able to
dynamically change the stiffness of their joints.

• Brushless motors: recent developments in smart rotating actuators based on brushless
motors will permit the design of direct drive joints without gearing. The maximum
specific power of electric motors with permanent magnets is 300 W/kg, which is about
the same order as biological muscle [92]. Companies, such as HEBI Robotics [17] or
IQ Motion, have developed integrated rotating actuators for robotic applications and
for the development of mobile robots of various sizes. As the electronic driver and
angular sensor are integrated into the motor, it drastically simplifies the wiring and
complexity of the overall hardware architecture, which can be crucial when designing
robots like hexapods that require the control of 18 actuators.

• Artificial muscles: the design of future insect-inspired robots will certainly depend
on the availability of actuators able to mimic the functionalities of biological muscles.
Their properties of viscoelasticity and energy dissipation leading to high compliance
is the holy grail of insect-inspired actuators. Among the broad repertoire of new
artificial actuators for robots (see review by [93]), non-conventional actuators like
pneumatic artificial muscles (PAMs), shape memory alloys (SMAs), and electroactive
polymers (EAPs) are of great interest. One particular case is HASEL actuators, which
are composed of a series of pouches made of a flexible and inextensible shell that
is filled with a liquid dielectric. Electrodes cover a portion of each pouch so as to
progressively close when a voltage is applied thus squeezing the pouches to increase
their volume [94]. HASEL actuators can be implemented in different ways and can
feature a bandwidth as high as 126 Hz for the quadrant-donut HASEL and even a
specific energy twice as high as mammalian skeletal muscles for the planar HASEL
actuator [94]. HASEL actuators mimic the muscle-like performance of dielectric
actuators (DEAs), which can be highly effective for robotic applications. They can lift
more than 200 times their weight and have a peak specific power of 585 W/kg [95].
Moreover, it is worth noting that a toolkit has been developed to aid designs using
HASEL actuators [96]. In addition, electro-ribbon technology, with an ability of
lifting 1000 times its own weight and a contraction by 99.8% of its length, is also very
promising [97]. Finally, five-DOF soft dielectric elastomer actuators have been shown
to be very useful in the implementation of soft legged robots [98] which are able to
walk with an alternative tripod gait as fast as 52 mm/s for a 7 Hz actuation frequency.

2.1.4. Force Sensing in Robotic Legs

An overview of the state-of-the-art in force sensing for multi-legged walking robots is
available in this study [99], but where is the right location in a leg for sensing a mechanical
action: is it at the tip of the leg, within the leg structure, or directly in the joints?

• Leg tip/TARSE sensing: sensing at the end of the leg can be done by a tactile sensor,
a pressure sensor, a three-axis force/torque sensor [100], or a compliant force sensor
made with a spring [15,39]. Leg tip sensing can be easily implemented by adding
an attachment point to the leg tip without requiring any modification of the robot’s
structure. The cost of these tip sensors can be expensive depending on the chosen
technology, but recent research has developed low-cost designs [100]. Tip force sensing
is useful because it provides the robot with a terrain description. Force measurements
allow the robot to understand which of its legs are in contact with the ground, or to
evaluate the terrain slope, in order to both adjust its gait and plan its path [101].

• Force sensing in actuators: sensing coming from the state of actuators by current
measurement [26,29,37,43] or dedicated sensors in the joints. This category of sensors
simplifies the robot’s design, since the sensor is integrated within the actuator forming
a compact structure. The complexity of the estimation of forces from the currents
generated by the actuators is based on the robot’s leg model. To obtain an accurate
leg movement, the mathematical model should reflect the robot as closely as possible,
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and take account of any structural deformation under various loads since no material
is perfectly rigid.

• Legs with compliant structures: compliant mechanisms exploit the deformation
properties of the leg segments, deformations that could be a disadvantage in other legs.
Stiffer legs appear to narrow the region of stable gaits while preventing tripod contact
with the ground. However, compliant legs are more capable of absorbing energy even
if the leg touches down early, thus minimizing the severity of ground reaction on legs.
This solution had been developed for one-joint C-shaped legs [44,45,54]. Whegs do
not possess any force sensors on their legs. Compliant legs offer the possibility of
placing the force sensors along the segments (such as the femur or the tibia) [101,102].
This type of sensor placement mimics the force measurements in insects, as done by
campaniform sensilla mechanoreceptors [103,104].

Currently, three distinct groups of sensors exist and are implemented on board hexa-
pod robots. A force sensing in actuators may be chosen if no structural modification is
allowed. Alternatively, with a slight modification of the tarse, leg tip sensors provide the
required information for achieving accurate locomotion control over rough terrains. Lastly,
compliant legs permit the implementation of force sensing although this will increase the
complexity of the design.

2.2. From Legs to Robots
2.2.1. Body Morphology

Although hexapod robot leg morphology seems to be a similar, albeit simplified,
representation of insect morphology, the overall body structure of most of the common
robots is far from that of animals. Firstly, few robot designs feature a multi-segment
thorax. While this is present in robots such as HECTOR [34–36] or MantisBot [30,31],
the benefit of this type of design has still not been demonstrated. This only appears to
help during tight turns or high obstacle climbing [105]. Thus, the increase in weight and
energy consumption of this type of design, due to additional joints and body parts, justifies
the more general choice of single shape body morphology. The second point is another
aspect of body geometry. Various geometries are used in hexapod robot developments:
circular, hexagonal, rectangular, etc. The main difference between these geometries is the
necessity of performing a specific turning gait for the rectangular shape, whereas circular
or hexagonal bodies allow, through their symmetry, an omnidirectional walk (see the
review [13] for more details).

2.2.2. Scale Effect on Level of Performance

Insect-like robot design process aims to validate biological hypotheses in navigation
or locomotion, or to mimic behaviors and sensory systems (as shown in Table 1).The
scale should then be taken into account throughout the development process as this will
affect kinematic changes in robot locomotion and mechanics material [106]. Therefore,
the question of the scale’s influence is raised. How will the scale affect the performance
level? If a behavior is present in a small insect, is it possible to reproduce it at a given scale
of robot? To answer these questions, it is necessary to discuss the kinematic changes in
robot locomotion taking account of material mechanics and energetic aspects.

From the point of view of the material, the larger the robot is, the larger are going
to be the internal deformations of its segments. To compensate for deformations, larger
beams have to be used, so the weight of the leg segments and of the thorax are increased.
Moreover, the scale factor of the robot proportionally affects the step size. However, not
all kinematic parameters vary linearly with scale. From mechanical equations, some scale
factors have been set [107,108], giving a scaling effect on essential physical values like mass,
frequency, stiffness, damping, velocity, and power. Thus, a small size robot with a scale
close to that of an insect can possess a light structure, fine legs, and walk at a high frequency.
Conversely, for a large scale robot, higher mass and a slower frequency walk, due to inertia
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increase, are going to be observed. Higher actuator power will also be required, to set the
robot in motion, and this implies a manufacturing price increase.

As a brief conclusion, the development of large scale hexapod robots is not justified.
The advantages of working with a high scaling factor are their improvements in energetic
values and technological limits (see Table 2). Regarding power consumption, represented
by the CoT (see Section 2.1.2), the relationship between different scales of the same robot
morphology has not yet been precisely fixed [89,108]. Basically, the global trend shows that,
the more massive the hexapod, the lower its CoT; thus, it has a better walk efficiency. How-
ever, and by definition, the CoT does not take account of animal scale and its interaction
with environment. The high CoT in insects must be considered in terms of their lifestyle,
they do not need to save more energy when traveling. Accordingly, a robot’s size should
be selected according to the type of mission (environment relief, distance to travel, payload,
etc.), then corresponding to a given CoT value, roboticists should be able to compute the
ideal robot mass.

Moreover, there are difficulties in manufacturing reduced scale robots. For instance,
common methods of 3D printing have an average deviation error of 0.4 ± 0.2 mm [109],
which limits the size of printed mechanics. Batteries also have technological limits. Com-
monly used lithium batteries have a low energy density (around 150 Wh/kg) [110]. More-
over, battery cells have a high mass, difficult for a light robot. In the near future, the devel-
opment of new bio-inspired power sources should bridge this energetic gap, with a higher
energy density (298 Wh/kg [110]), and this would allow more compact robot designs [111].

2.3. Hexapod Robot Accessibility Criteria for Academics

Over the past 10 years, many new designs have been proposed to the general public.
These hexapod robots are generally available in do-it-yourself kit form, thus promoting oppor-
tunities for customization such as modifications in actuation and the addition of sensors to
enhance the robots’ locomotion skills. For instance, the small inexpensive hexapod robot Hexy,
produced by ArcBotics, features 18 DOFs achieved by means of Fitec servomotors (0.12 s per
60○), and is mainly intended for educational applications (Figure 4a). A leader in the market of
robot kits for the general public, Lynxmotion™offers a wide range of relatively small designs,
such as the Phoenix, which features 18 DOFs (Hitec HS-645 servomotors) with a maximum
speed of 25 cm/s (Figure 4b), or T-Hex for which the 24 DOFs allow more complex motion
(Figure 4d). Recently, EZ-Robot released Six, a fully 3D-printed hexapod robot endowed with
12 DOFs (Figure 4e). As with Hexy, this robot was released with educational purposes in mind,
allowing students to tackle complex tasks such as visual-based object tracking and artificial in-
telligence with machine learning applied to gait generation. The 18-DOF PhantomX AX Metal
Mark III hexapod robot (Figure 4c), developed by Interbotix Labs., offers promising dynamic
performance with a maximum speed measured at 80 cm/s. Generally, these robots could
be considered as inexpensive, with prices ranging from 250 to 3000 US dollars, but others
require a significant budget, such as the Daisy Hexapod Robot Kit from HEBI Robotics [17],
available from 83k US dollars (Figure 4f). The variations in price are almost exclusively the
result of the quality and number of servomotors used in their design. On average, hexapod
robots equipped with servos using only plastic gears are cheaper, but have a significantly
reduced lifespan compared to their metal counterparts. Although standard servomotors are
not optimized for such applications, they offer a quick solution for benchmarking new designs
of hexapod robots in academia. Open-source projects by private individuals have also been
reported. For instance, the MX Phoenix hexapod robot [27] and the MorpHex double hexapod
robot were developed by Kare Halvorsen, who was inspired by robotic projects from Jim Frye
(founder of Lynxmotion) and from Matt Dentons (Mantis project manager and founder of
Micro Magic Systems). MorpHex’s unusual design features two hexapod robots connected in
a top to tail fashion. Their legs are covered with spherical parts in such a way that when the
robot refolds, it forms a perfect sphere. This mechatronic design allows MorpHex to either
crawl or roll on almost any kind of terrain.
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Figure 4. Open-source hexapod robots and educational robots available in kit form. (A) Hexy (Credits: ArcBotics).
(B) Phoenix (Credits: Lynxmotion). (C) PhantomX (Credits: Interbotix Lab., Trossen Robotics). (D) T-Hex (Credits:
Lynxmotion). (E) Six (Credits: EZ-Robot). (F) HEBI Robotics’ 18-DoF Daisy Hexapod, built using HEBI’s X-Series actuation
hardware (Credits: ©HEBI Robotics 2021).

The aforementioned robots represent a unique set of opportunities for academia in
both research and education since they are relatively inexpensive and easy to obtain,
either in kit form or by replication based on open-source models. Fast customization for
adaptation to the experimental context is another important feature of these new products.
This recent trade has been intensified with the emergence of online sharing platforms such
as GitHub, Thingiverse, and Instructables. A wide range of open-source projects can be found
on these very popular platforms, supported by an extensive international community of
robotics designers, engineers, and researchers. The recent democratization of 3D printing
is also greatly contributing to the rise in open-source projects. Lastly, the development of
a unique framework for robot programming, i.e., robot operating system (ROS), ensures
the standardization of software developments, such as locomotion firmware for hexapod
gait generation.

3. From Biomechanics to Locomotion

In the previous sections of this article, the relevance of biomechanical aspects has been
mainly summarized in relation to actuation, robot leg, and morphology design (see Section 2).
Supplementing biomechanical developments, locomotion control (Figure 1) is an important
ingredient for interlimb and intralimb coordination as well as joint compliance (Figure 5).
Interlimb coordination concerns the relationship between the legs for generating gaits, while
intralimb coordination deals with the relationship between the joints within one leg for gener-
ating swing and stance, as well as adapting leg movements to deal with complex terrain [112].
Joint compliance can be beneficial for impact force absorption, payload compensation, distur-
bance rejection, and energy efficient locomotion [113,114].

In Section 3.1, we will introduce insect locomotion control for interlimb and intral-
imb coordination and joint compliance control. In Section 3.2, we will present different
robot locomotion control methods including bio-inspired, engineering-based, and machine
learning-based control. Finally, in Section 5.2, we will suggest some future directions in
locomotion control for hexapod robotics.
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Figure 5. (a) Overview of locomotion control involving interlimb coordination (coordination be-
tween legs), intralimb coordination (coordination between joints in a leg), and joint compliance (a
property of joint with variable stiffness). (b) Example of joint compliance generated by an adaptive
bio-inspired muscle model (modified from [115]). Using this model, a leg joint can behave like
dampers, struts, brakes, or springs (modified from [115]). (c) Example of intralimb coordination in
the swing and stance phases of the leg and different reflexes for walking on uneven terrain (modified
from [116–118]). (d) Example of interlimb coordination which results in different gaits (modified
from [119]). The main observed gaits from slow to fast [120] include: wave gait (only one leg lifts at
any given time (swing) while the remaining legs stay on the ground (stance), and the wave travels
from back to front), transition gait (front and back legs of the opposite side lift together at a given
time while the other legs stay on the ground), tetrapod gait (diagonal pairs of legs lift together at a
given time while at least four legs stay on the ground), and tripod gait (front and back legs of one
side and the middle leg of the opposite side lift together at a given time while the remaining three
legs stay on the ground). While the articles specify specific gaits, it is important to note that certain
insects (such as stick insects [121,122], cockroaches [123], and flies [124]) frequently change their gaits
depending on their locomotion speeds and situations [125].

3.1. Insect Locomotion Control

Insect locomotion control is based on neural mechanisms with a distributed control
architecture [126,127] located in the insect’s thoracic ganglia. It is known that there are
special neural circuits, called central pattern generators (CPGs) [128,129], with spiking and
non-spiking interneurons for generating basic rhythmic motor activities. Activity can still
continue even in the simultaneous absence of both afferent feedback and rhythmic inputs
from other neural circuits. Biological investigations reveal that each hemisegment has
independent CPG modules that regulate the motor neurons and muscles of the leg joints.
As described in [129], CPG non-spiking interneurons (NSI E4, NSI I4, and NSI5) contribute
to the generation of various leg movements. They can reset the phase and influence the
frequency of the rhythmic neuron activity in leg motor neurons [130]. Specifically, NSI E4
was observed to deactivate the stance phase and activate the swing phase while NSI I4 was
observed to induce searching movements [131].

Although CPGs are the basis of leg movement generation, sensory feedback is im-
portant for interlimb coordination and adaptation. For instance, joint movement signals
are used to coordinate joints and switch leg movement states from swing to stance and
vice versa. Furthermore, a combination of joint movement signals [132] and load sig-
nals [133] can entrain the CPG. This is known as entrainment. Studies on stick insects
and cockroaches have identified interlimb coordination where neural signals from a front
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leg can entrain the CPG controlling the middle leg. Sensory feedback to the CPG and
coordination for gait transition can occur at two levels: one is direct sensory input to the
central descending command of the CPG (high-level feedback) [134] and another is local
sensory feedback or reflexes which influence the CPG phase (low-level feedback) [135].
Typically, for interlimb coordination, it seems that slow-walking insects (e.g., stick insects)
rely more on sensory feedback [136] than on the central coupling between CPGs, while
fast-walking insects (e.g., cockroaches) rely more on centrally coupled CPG coordination
(for more details see [129]).

In addition to CPGs and sensory feedback, some biological investigations have shown
that forward models [137] also play an important role in insect locomotion control. The for-
ward model is the neural mechanism that transforms motor commands (efference copies)
into an expected sensory input in order to compare it to the actual incoming sensory feed-
back. It is used for state estimation or sensory prediction. This information can allow for
movement adaptation. In the stick insects Aretaon asperrimus, when ground contact is lost at
the end of the swing phase while climbing over extremely wide gaps, they immediately al-
ter their leg stepping pattern [138]. This would indicate that ground contact is expected on a
frequent basis. Other findings that support the concept of forward model predictions [116]
show that stick insect responses to barriers are influenced by an internal state during the
swing phase. In locusts [139] and fruit flies [140], they seem to have, when tested in flight
simulators, forward models that can predict changes in their sensory feedback and adap-
tively modify the motor control parameters to cope with these changes. Current animal
studies (mentioned above) indicate that CPGs, multimodal sensory feedback, and forward
models are used in insect locomotion control for interlimb and intralimb coordination,
movement adaptation, and joint compliance (all described below). The contributions of
these components, however, vary across species.

• Interlimb coordination: biological studies have revealed rules for interlimb coordi-
nation of insect locomotion. For instance, Wilson [119] proposed five rules. Rule
1: a wave of swing runs from hind (posterior) to front (anterior) legs. Rule 2: con-
tralateral legs of the same segment alternate in phase. Rule 3: protraction (swing)
time is constant. Rule 4: frequency varies (stance decreases as frequency increases).
Rule 5: the intervals between steps of the hind leg and middle leg and between the
middle leg and fore leg are constant, while the interval between the foreleg and hind
leg steps varies inversely with frequency. These rules have been translated to neural
mechanisms for hexapod locomotion control, which can generate various insect-like
gaits [141,142].
Subsequent research by Cruse et al. [116] introduced six rules for insect walking (called
WalkNet). The rules were derived from behavioral experiments with stick insects.
Rule 1: posterior swing inhibits start of anterior swing. Rule 2: start of posterior stance
excites anterior swing (posterior reaches a given anterior extreme position (AEP)).
The AEP is the anterior transition point from swing to stance in a forward walking ani-
mal. Rule 3: caudal positions of anterior stance excite start of posterior swing (anterior
reaches a given posterior extreme position (PEP)). The PEP is the posterior transition
point from stance to swing. Rule 4: end position of anterior stance influences end
position of posterior swing (called targeting). Rule 5: increased resistance increases
force and increased load prolongs stance phase. Rule 6: the information from the ante-
rior leg’s reflex stimulation is passed on to the posterior leg. Recently, Schilling and
Cruse [143] introduced the realization of these rules as an artificial neuronal network
with an antagonistic structure (called neuroWalknet controller). The controller can
generate diverse robot walking behaviors including different gait patterns emerging
from different velocities, curve negotiation, and backward walking.
In addition to the aforementioned rules for insect locomotion, a recent study from
Leung et al. [144] analyzed and identified four underlying rules for interlimb coor-
dination of dung beetle ball rolling gaits. Rule 1: front legs alternately step on the
ground. The rule describes the relationship between the two front legs in the gait.
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Rule 2: each middle leg steps similarly to its contralateral hind leg. The rule describes
the synchronization of the contralateral middle and hind legs. Rule 3: an ipsilateral
pair of middle and hind legs seldom lift together. Rule 4: a contralateral pair of middle
or hind legs rarely lift together. In principle, a pair of legs following the third and
fourth rules tend not to lift together. A partial implementation of the rules as modular
neural control with a CPG was performed and tested on a simulated dung beetle-like
robot [4]. The controller can generate four different robot behaviors including forward
walking, backward walking, level-ground ball rolling, and sloped-ground ball rolling.

• Intralimb coordination: In addition to the biological studies of the relationship be-
tween legs (interlimb coordination) in insects, some studies have further investigated
individual leg movements and adaptations during normal and rough terrain walking
in insects. The leg movements basically reflect intralimb coordination. For instance,
Pearson and Franklin [117] proposed locusts’ reflex strategies for leg movements
when walking over rough and complex terrain. As described by them, the strategies
include (1) rhythmic searching movements; (2) local searching movements; and (3)
elevator reflex.
Based on [117], the rhythmic searching movements are to search for a ground contact,
if the animal has not located it by the end of its swing phase. The searching movements
show rhythmic patterns including fast elevation and depression movements of the leg.
While searching, the animal also extends the search range from the body to explore
the supporting points around the leg, e.g., up to eight searching cycles. The searching
typically stops either when the animal stops walking, the leg gets stuck, or ground
contact is found. The local searching movements are small rhythmic leg movements
from point to point on a potential supporting ground. These movements occur either
at the beginning of a stance phase, after the rhythmic searching movements and/or
an elevator reflex (described below). The local searching movements are required
if the potential support surface is smooth where the leg action needs to push the
animal forward. The elevator reflex is a rapid elevation and extension of the leg to
step over an obstacle, followed by placing the leg where the obstacle can be used
as a support. The elevator reflex can be activated when the leg gets stuck during
the swing phase. It can also occur during searching movements. In rough terrain
walking experiments on locusts, the elevator reflex was mostly observed in the fore
and middle legs while the hind legs moved behind the animal. This makes it difficult
to distinguish between an elevator reflex and a passive pulling of the hind legs up
onto the obstacle while moving forward. Examples of the implementation of these
reflex strategies for adaptive hexapod robot locomotion on rough and complex terrain
can be seen at [118,142].

• Joint (mechanical) compliance: this is the interactive relationship between kinematic
changes and the resulting dynamics of joints [145]. One of its key components, stiff-
ness, refers to the ratio between joint torque and angle changes, which are related to
muscle activation. Compliance control of insect muscles is very important in facili-
tating adaptive and robust locomotion over natural terrain [146,147]. Computerized
(computational) muscle models can be used to enhance the understanding of neu-
romechanical control principles underlying insect locomotion [148]. The Hill muscle
is one of the most influential ‘seed’ models that has inspired many successors [149].
For instance, Proctor and Holmes built a neuromechanical model to study feedback
effects of perturbated insect locomotion [150], in which 24 neural oscillators and
48 pairs of Hill muscles were used. Guo et al. proposed a neuro–musculo–skeletal
model to reproduce gait pattern in virtual insects [151]. Naris et al. analyzed a
closed-loop neuromechanical simulation of insect joint control driven by a pair of Hill
muscles [152]. However, most of these studies were limited to numerical simulations,
because a greater number of parameters needed to be offline optimized based on
nonlinear differential equations. Therefore, they failed to account for intrinsically
delayed feedback in real insect locomotion dynamics. This failure may cause a misin-
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terpretation of the neuromechanical control principles in insect locomotion. Therefore,
questions remain open whose answers may decode insect muscle intelligence in
dynamic robust locomotion.

– Multifunctional muscles: insects exhibit different muscle functions in flying and
walking [153], which are characterized by the work loop technique [154]. These
functions may facilitate the decoding of muscle compliance in dynamic insect
locomotion. Interestingly, some preliminary results show that muscles act as
brakes and springs when their passive stiffness and damping are tuned in com-
putational simulations [155]. Tuning muscle stiffness and damping properties
based on the work-loop technique, can be a key to understanding and translat-
ing muscle intelligence between engineering applications and neuromechanical
models [115,156].

– Predictive muscle tuning: muscle compliance can be tuned in terms of sensory
feedback. However, this feedback is intrinsically subject to noise and delays
owing to high levels of dynamics of insect locomotion. Therefore, it may be
assumed that insects, and their robot counterparts use internal models to predict
sensory outputs for tuning insect muscle compliance [114].

– Engineering-inspired muscle intelligence: biological muscle control principles
have been borrowed to enhance robot designs and control for many years. This
research approach can be flipped, i.e., robots as tools for decoding muscle com-
pliance in insect locomotion [157]. For instance, an insect-like robot was used
to test a simplified muscle control hypothesis, i.e., proximodistal gradient [114].
It showed that this gradient reduces the number of controlled variables and
enhances walking stability. Engineering-inspired methods can close the research
loop of insect muscle intelligence, providing new hypotheses for biological ex-
periments on insect locomotion.

3.2. Robot Locomotion Control

While insect locomotion control (Figures 1b and 5) has been studied and thoroughly
investigated as described above, translation from biological investigation to robot imple-
mentation remains a challenge. To date, different locomotion control methods for interlimb
and intralimb coordination have been proposed (Figures 1b and 5). The key methods from
different domains include (i) bio-inspired control (e.g., pure CPG(s), pure reflexes, or their
combination) (Figure 6a); (ii) engineering-based control (e.g., kinematic and dynamic mod-
els) (Figure 6b); (iii) machine learning-based control (Figure 6c); and (iv) a combination of
these key methods. This review will focus on bio-inspired control while the other control
techniques will be briefly discussed.

Figure 6. Different control approaches to robot locomotion. (a) Bio-inspired control. The upper-inset
shows distributed decentralized CPGs with force feedback [158–160]. The middle inset shows the
Walknet-control (modified from [143,161]). The lower inset shows the CPG-based control and a simpli-
fied model with six oscillators for interlimb coordination (modified from [162,163]). (b) Engineering-
based control [66,164]. (c) Machine learning-based control [165,166].
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3.2.1. Bio-Inspired Control

One of the standard bio-inspired methods is CPG-based control where CPG rhythmic
signals are used to generate individual leg movements (intralimb coordination) and create
coordination between the legs (interlimb coordination) [167] (Figure 6a, upper and lower
insets). A number of CPGs have been explored for locomotion control from minimal to
maximal CPGs (i.e., all legs and joints controlled by a minimal single CPG [168], each
leg by one CPG [169,170] (six CPGs in total), or maximally each joint by one CPG [171]
(18 CPGs in total)). Various CPG models have been developed (Figure 7) from conceptual
biological CPG models based on a half-center oscillator [172], biophysical models using
Hodgkin–Huxley neurons [173], connectionist models using simplified neurons with vari-
ous activation functions [174–176] to abstract models using nonlinear coupled oscillators.
Note that here CPG(s) and oscillator(s) are used interchangeably through out this section.

Figure 7. Timeline of the development of various CPG models from 1914 to 2020.The key CPG
models include a half-center oscillator in 1914 [172], the Van der Pol oscillator in 1926 [177], the Mat-
suoka oscillator in 1985 [178], the Matsuoka oscillator with entrainment in 1991 [179], a biophysical
oscillator based on Hodgkin–Huxley neurons in 1992 [173], a connectionist oscillator based on
leaky-integrator neurons in 1993 [174], a connectionist oscillator based on a cellular neural network
(CNN) in 2000 [175], an SO2 neural oscillator in 2003 [176], an adaptive frequency oscillator (AFO)
in 2006 [180], a neural oscillator with magnitude adaptation in 2007 [49], an adaptive chaotic os-
cillator in 2010 [141], an oscillator with phase resetting [181], an oscillator with continuous phase
modulation [182], an oscillator with frequency adaptation through fast dynamical coupling (AFDC)
in 2017 [183], a neural oscillator with fast online-error based learning in 2019 [184], and a neural
oscillator with dynamical state forcing (DSF) in 2020 [185].

In principle, the CPG acts as an open loop control since it does not require sensory
feedback to generate its periodic patterns. Most of the CPG models can generate only
periodic patterns. To achieve a variety of complex patterns, including periodic and chaotic
ones for complex robot locomotion, Steingrube et al. [141] modified the SO2 oscillator to
become a chaotic CPG and applied a novel adaptive chaos control that exploits neural
dynamics embedded in the chaotic CPG and uses time delay feedback mechanisms to
control the dynamics. Although none of these abstract models require any external input
or sensory feedback to produce basic rhythmic activity, they do need sensory feedback to
adapt and tune their frequency, phase, and magnitude for efficient locomotion control to
deal with different situations. Thus, different feedback techniques have been developed
for frequency, shape, and phase adaptations.

For the frequency adaptation, typically, joint angle feedback and foot contact feedback
are used to entrain the frequency of an oscillator (entrainment [186]). If the oscillator gets
entrained by the feedback and adapts to it, even if only temporarily, i.e., the feedback only
has a short term effect, such an oscillator is considered as reactive [177,179]. In this case,
if the feedback is switched off the CPG system immediately returns to its intrinsic dynamics,
there is no memory of the input and no lasting change to the dynamics. To maintain the
effect of the feedback after the feedback has been removed, Righetti et al. [180] introduced
a frequency adaptation schema, which permanently modifies the intrinsic frequency of
an oscillator. An oscillator with this schema is considered to be an adaptive frequency
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oscillator (AFO). However, AFOs can suffer from significantly long adaptation times as
has been shown in many robotic applications. To obtain fast as well as precise adaptations,
Nachstedt et al. [183] proposed frequency adaptation through fast dynamical coupling
(AFDC). It is based on dynamically adapting the coupling strength of sensory feedback to
an oscillator. While the AFO and AFDC can automatically adapt the oscillator frequency
to match the frequency of an external periodic signal (i.e., robot joint angle feedback,
which can identify robot locomotion), they do not deal with the tracking error that may
occur between the actual robot’s motion and oscillator output. This could lead to the
loss of precision, unwanted movement, or energy-inefficient locomotion. To address this,
recently Thor and Manoonpong [184] proposed online error-based learning for frequency
adaptation of oscillators. The learning mechanism can reduce tracking and steady-state
errors as well as perform fast and stable learning. Frequency adaptation is basically used
for robot locomotion enhancement [16].

For the shape adaptation, a typical technique is to use additional premotor neuron
networks for shaping oscillator signals [49,187]. Different premotor neuron network models
have been proposed. For instance, feedforward neural networks with a hyperbolic tangent
activation function or a radial basis activation function were used to shape or translate
oscillator signals into complex locomotion patterns [49,188] for climbing over or avoiding
an obstacle [189,190]. To obtain motor memory for robust locomotion patterns, reservoir-
based recurrent neural networks were applied [191]. While the typical technique uses
various types of premotor networks and a learning method, recently Chuthong et al. [185]
proposed an alternative approach that exploits the entrainment-like dynamics for CPG
shape adaptation. This technique, called dynamical state forcing CPG (DSF-CPG), behaves
as a reactive CPG that can temporarily adapt the geometry/shape of the CPG signals
without using any learning or premotor networks. The DSF-CPG approach can promote
robot compliance, by changing the target dynamics according to external perturbations.

For the phase adaptation, typically ground reaction force (GRF) feedback is employed
to reset or continuously modulate the phase relationships between the oscillators. Two
standard mechanisms for phase adaptation, resulting in adaptive interlimb coordination
for self-organized robot locomotion, are phase resetting (PR) [181] and continuous phase
modulation (PM) [159,182] (Figure 6a, upper inset). PR uses discrete GRFs to intermittently
reset CPG phases while PM uses continuous GRFs to modulate CPG phases. A recent
comparative study of the two mechanisms can be seen at [192]. Based on the experimental
setup of the comparative study, PM shows slower but more stable phase convergence while
PR shows faster but less stable phase convergence. PM performs better than PR when the
robot is subjected to symmetrical GRF distributions while PR performs better than PM
when GRF distributions are asymmetrical.

In addition to the CPG-based control described above, reflex-based control (pure
reflexes), relying on sensory feedback, has also been widely used for robot locomotion
generation with adaptability to different situations [29,59,118,193–195]. The most well-
known reflex-based control is the Walknet control inspired by stick insect locomotion
(see above and Figure 6a, middle inset). Walknet control is realized by using an artificial
neural network (leg controller) for intralimb coordination and a coordination rule-based
state machine for interlimb coordination. It has been implemented as a decentralized
control architecture for hexapod robot locomotion [59,118] where six independent leg
controllers are employed, one for each leg. Each leg controller requires position and
velocity feedback of the joint angles of the leg as well as GRF and/or tactile contact
feedback of the leg on the ground and consists of subnetworks for swing and stance
leg movements. The subnetworks consist of a Stance-net, a Swing-net, and Target-nets.
The Stance-net controls the movement during a stance phase. The Swing-net controls the
movement during a swing phase. The Target-nets indicate the end position of the swing
movement (AEP) during forward and backward walking. An extension of the original
Walknet control has also been developed by adding motivation units for autonomously
selecting between different locomotion behaviors [196]. Walknet control can generate
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emergent gaits for forward or backward hexapod walking over uneven surfaces. It can also
allow for curve negotiation and leg amputations, and follow motion trajectories without
explicit pre-calculation. The most recent version of Walknet (neuroWalknet controller) can
be seen at [143]. Walknet control has also been modified (called Rollnet) for a ball rolling
gait of a dung beetle-like robot [195]. The gait combines backward walking of the front legs
and ball manipulation by the middle and hind legs.

While Walknet control shows impressive performance for versatile and adaptive robot
behavior generation (locomotion and object manipulation), it may lead to unstable robot
behavior or failure in cases of sensory failure. Therefore, a combination of CPG- and
reflex-based control has been actively investigated and various types of this combination
have been developed [142,197–203]. For instance, CPG-based control with a sensory event
mistiming detection method and reflexes was proposed [201]. The mistiming detection
method consists of a CPG for estimating the sensory phase, a radial basis function (RBF)
neuron for estimating the sensory event, and a leaky-integrate-and-fire neuron for detecting
the sensory mistiming and activating reflexes to avoid an obstacle and search for a foothold.
This control approach enables a hexapod robot to walk effectively over highly unstructured
terrain with cracks and a wet slippery surface. Adaptive neural locomotion control, consist-
ing of a CPG network with neuromodulation and local leg control mechanisms based on
sensory feedback (only foot contact) and adaptive neural forward models with efference
copies (copies of CPG signals), was developed [142]. This control approach enables a
hexapod robot to perform a multitude of different walking patterns, including insect-like
leg movements and gaits (Figure 8), with energy-efficient locomotion. It can deal with
changes in terrain, a loss of ground contact during the stance phase, stepping on or hitting
an obstacle during the swing phase, and leg amputations. This robot can still perform basic
locomotion even without the sensory feedback. Recently, an artificial hormone mechanism
(AHM) was applied to the adaptive neural locomotion control [202,203]. AHM, which
replicates the endocrine system, can continuously online adapt neural locomotion control
parameters (lifelong continuous adaptation) for walking on different complex terrains
(e.g., mesa terrain, ramp-up and -down terrains, rough terrain, terraced terrain, compliant
terrain with different softness levels, and loose terrain).

3.2.2. Engineering-Based Control

A conventional way of achieving intralimb coordination is to use inverse kinematics
(IK) requiring a robot kinematic model [66,164] (Figure 6b). In this approach, the trajectory
of the end of a foot (consisting of stance and swing phases) is designed and the IK translates
the trajectory into the robot joint angle. For the trajectory design, one simple way is to
use a straight or almost straight profile for the stance phase and an arch profile and swing
phase [159]. An alternative way is to record an animal leg trajectory during locomotion and
use it as the desired robot leg trajectory [66,126,204]. For instance, Cruse and Bartling [204]
recorded and analyzed the swing trajectory in different stick insect walking situations and
applied IK to calculate joint angles for robots. Ignasov et al. [66] introduced a complete
framework for generating complex insect-like leg movements. The methodology consists of
(1) tracking insect foot tip positions during walking; (2) simulating a bio-inspired robot with
IK implementation; (3) transferring to a real robot; (4) validating robot foot tip positions.
The insect foot tip positions and trajectories are recorded and analyzed frame by frame with
a video tracking tool (e.g., Tracker). These trajectories are then used as the desired target
positions which are converted into robot joint angles through IK for intralimb coordination.
Ignasov et al. applied this framework to generate complex dung beetle-like leg movements
during locomotion, dung ball manipulation, and dung ball transportation for a dung beetle
robot prototype.
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Figure 8. A variety of hexapod gaits with varying speeds generated by adaptive CPG-based neural
locomotion control (modified from [142]). The frequency of the CPG outputs can be changed by
modulating the synaptic connections of the CPG neurons with an extrinsic modulatory input MI.
When the modulatory input MI is set to 0.0, each leg steps in a wave on each side with overlap.
Stepping frequency increases as MI increases, and some legs step in pairs (see dashed enclosures).
This results in insect-like gaits (Figure 5d) and various intermixed gaits. The caterpillar gait is
characterized by the movement of two front, middle, or hind legs at the same time and the wave
travels from back to front. Under this control approach, a transition gait as shown in Figure 5d is
not found. For example, one can observe wave gaits with varying frequencies (MI = 0.01–0.04),
tetrapod gaits with varying frequencies (MI = 0.05–0.06), caterpillar gaits with varying frequencies
(MI = 0.07–0.10), and tripod gaits with varying frequencies (MI = 0.15–0.19). Legs are labeled as
numbers 1–3 from front to back, and the left and right sides are L and R, respectively. It is worth
noting that when MI is raised above 0.17, only two different gaits comparable to tripod gait (e.g.,
MI = 0.17) and caterpillar gait (e.g., MI = 0.10) appear.

For interlimb coordination, this can be done by pre-defining the phase relationship
between the legs for specific gaits. The basic setup will lead to certain locomotion patterns.
To achieve dynamic locomotion or adaptation to uneven terrains, additional posture control
mechanisms and environmental models are applied. For instance, the environmental model
is employed to identify the roughness property of the terrain and obstacle information
in such a way that the control system is able to plan and to adapt the foothold position,
robot posture, and leg trajectory. This method requires exteroceptive feedback to perceive
environmental information, such as that provided by a laser scanner sensor [205,206] and a
depth camera sensor [164,207,208]. Recently, advanced engineering control methods like
model predictive control and robot model abstraction-based control with planning, have
been applied to achieve locomotion adaptation. For instance, Hu et al. [209] introduced
a constrained model predictive controller for stabilization of non-periodic trajectories for
walking, by a hexapod robot, over irregular terrain. Buchanan et al. [207] proposed a
deformable bounding box abstraction of the hexapod robot model with mapping and plan-
ning strategies for hexapod locomotion control and body posture adaptation to navigate in
confined spaces.

Insect-like muscle (compliant) properties can be achieved by a variable admittance/
impedance control [210,211]. However, it is a challenge to simulate coordinated compliant
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joint motions in adaptive insect-like locomotion due to high system redundancy [212]. These
motions are achieved by integrating neural networks and muscle-like mechanisms [114,213].
To address this challenge, neuromechanical models have been developed to achieve coordi-
nated compliant joint control on insect-like robots [214]. Szczecinski et al. proposed a novel
way to tune a robot leg servomotor to exhibit insect muscle-like dynamics of equilibrium,
perturbed responses, and active motions [215]. Ribak highlighted muscle compliance func-
tions in insect and robot jumping [216]. He also provided potential insect-inspired solutions
to solve small robot jump control and stability challenges. For instance, they bypass the
power constraint of muscles by converting muscle work to elastic potential energy. Elastic
elements act as springs storing the muscle work performed before jumping. Huerta et al.
proposed an online muscle-like compliance adaptation control for robust 18-DOF insect robot
walking [113].

3.2.3. Machine Learning-Based Control

In addition to the bio-inspired and engineering-based control approaches mentioned
above, an alternative way to automatically generate robot gaits for walking on irregu-
lar terrains and dealing with complex situations (like leg damage) is to apply machine
learning (Figure 6c). To date, different machine learning techniques have been actively
explored for locomotion control. The techniques include (deep) reinforcement learning
(RL) [165,217], imitation learning [218], intelligent trial and error [219], and evolutionary
computation [166,220,221].

For instance, Hafner et al. [165] developed a reinforcement learning framework that
can learn locomotion behavior for different types of legged robots including hexapods.
This framework relies on a data-efficient, off-policy multi-task RL method and simple
reward functions. The learning time is approximately 5 h to obtain basic locomotion skills
by walking in different directions. Ting et al. [218] proposed an imitation learning method
that can train a “student” hexapod to imitate the walking behavior of an “expert” hexapod
by watching its leg movements. Cully et al. [219] proposed an intelligent trial-and-error
algorithm that allows a hexapod robot to automatically learn a behavior map consisting of
over 13,000 high-performing behaviors or gaits. The process required 20 million iterations
(roughly 2 weeks) on one multi-core computer to obtain the map. The robot can later use
the map to search for an appropriate locomotion behavior to compensate for unexpected
damage (like damaged, broken, and missing legs). Parker [220] used a cyclic genetic
algorithm (CGA) to evolve control programs for generating different gaits of fully capable
and damaged hexapod robots. Cully and Mouret [221] introduced the transferability-
based behavioral repertoire evolution algorithm (TBR-Evolution) that can find several
hundreds of simple locomotion controllers (one controller is for one possible walking
direction). The algorithm relies on novelty search with local competition (searching for
high performing and diverse solutions), and the transferability approach (integrating
simulation and real tests to develop the evolutionary controller of a real robot). This
approach enables a hexapod robot to learn to walk in every direction with a single run of
the evolutionary algorithm within 3000 iterations (2.5 h).

Several studies have used artificial neural networks with data-driven methods for learn-
ing locomotion [222]. For instance, Azayev et al. [222] proposed a scalable two-level architec-
ture for hexapod locomotion on complex terrain by using joint angle and binary foot contact
feedback and deep reinforcement learning. The control approach can enable a simulated
hexapod robot to navigate over ground, stairs, or through narrow pipes, etc. For fast complex
robot locomotion generation, some studies have demonstrated the use of a combination of
multiple control approaches where bio-inspired control and/or engineering-based control is
used to encode basic rhythmic pattern generation while machine learning is applied for opti-
mizing locomotion control parameters to achieve complex patterns (Figure 6). For instance,
Milicka et al. [223] combined a chaotic CPG with IK (Figure 6a,b). In this approach, the CPG
generates desired trajectories (foot-tip positions) while IK translates the foot-tip positions into
the joint angles to directly control the actuators of a hexapod robot. As a result, the robot can
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perform a variety of movements, such as spot turning and walking with various gaits (e.g.,
tripod, ripple (a type of tetrapod), low gear (alternating between swinging two legs and one),
and wave gaits). Chen et al. [224] used the same strategy combing a CPG with IK and addition-
ally introduced force feedback to deal with irregularity in rough terrain (Figure 6a,b). While a
combination of bio-inspired and engineering-based control can encode rhythmic patterns for a
variety of hexapod gait generation and terrain adaptation through sensory feedback, one chal-
lenge of using such an approach is control parameter tuning or optimization. To address this
issue, Fu et al. [225] proposed a combination of deep reinforcement learning with IK. The re-
inforcement learning method can automatically find motion planning policies for hexapod
robots moving on uneven piles of plum-blossom (Figure 6b,c). Schilling et al. [217] introduced
a biologically-inspired decentralized control architecture with deep reinforcement learning
for adaptive locomotion in a hexapod robot. The architecture consists of six neural control
modules, each of which controls one leg (Figure 6a,c). Thor et al. [188] presented a generic
locomotion control approach, which combines bio-inspired CPG and RBF-based premotor
neuron networks into a modular CPG-RBF neural control network (Figure 6a,c). This network
uses a neural basis to produce complex rhythmic trajectories for the joints of walking robots.
These trajectories are optimized using a probability-based black-box optimization (BBO)
method. The framework was applied to teach and control three different simulated legged
robots with varying morphologies including broken joints. Ouyang et al. [226] proposed
an adaptive locomotion control approach which combines bio-inspired, machine learning,
and engineering-based methods (Figure 6a–c). Specifically, they used a 3D two-layer CPG
network where the first CPG layer for interlimb coordination generates basic robot locomotion
patterns based on kinematics analysis. The second CPG layer is for intralimb coordination and
controls the robot’s limb movements to deal with environmental changes. An actor-critic rein-
forcement learning method with deep neural networks (DNNs) (known as Deep deterministic
policy gradient (DDPG) [227]) was employed to optimize the CPG control parameters of the
second layer for fast and stable hexapod locomotion with adaptability to different terrains
(flat, sand paper, soft sand, and 10 degree up-slope).

4. From Locomotion to Cognition

In the previous sections of the manuscript, the relevance of locomotion generation and
control aspects, mainly related to biomechanics (see Section 2) and neuron motor activity
(see Section 3), has been reviewed. Locomotion has the objective of making the body flexible
enough to face the environmental challenge of reaching specific destinations. In other
words, locomotion involves physical interaction with the environment realized through the
physical motion of the body towards satisfying specific needs. On the other hand, motion,
in general, is not separated from mental activity. It could be stated that any movement has
its origin from a mental state which, constrained by the environment, it’s own possibilities,
and by the internal motivational drives of the subject, designs, plans and provides the
suitable commands for the execution of the corresponding action. Cognition (Figure 1a)
involves non-physical (mental) interaction with the environment; once a certain mission
has been defined, cognition refers to the “capability of planning ahead” i.e, of defining,
from a high level, “what to do” and “how to do” in order to fulfill the mission [228]. This
represents the main driver for the locomotion system, except for those actions purely driven
by reflexes as also depicted in Figure 1. So, from this perspective, cognition is a brain
function involved in planning body actions to reach complex goals. Centuries of research
on mammals has tried to discover the details of how motion plans are conceived in the
brain cortex to generate and plan limbs actions. Although this research has led to a number
of important breakthroughs, especially in the neurorehabilitation field, we remain far from
mastering the details of such a complex structure as the mammal brain cortex.

So, from a true engineering perspective, it will be more rewarding, at least in the
near future, to work on those brain structures which are less difficult to study in detail,
but which, at the same time, are able to generate complex behaviors that could boost the
capabilities of current robotic structures. Within the animal kingdom, insects are the class
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of living beings most present in nature, thanks to their adaptation capability to extreme
environmental conditions and their brains whose structure efficiently manages to exploit
all of the body’s capabilities.

Only recently have insects been recognized to possess a “cognitive brain” struc-
ture [229]. In the interesting yet provocative work from Chittka [230], written in the
last decade, it is argued that even simple brains possess all the ingredients necessary for
most of the behaviors usually ascribed to larger and more evolved brains [231]. The idea
started to arise that insects are not only reflex-based automata. In fact, even looking at
simpler, non-social insects, they show, individually, such surprisingly complex behaviors
as numerosity [232], attention and categorization-like processes [233], delayed matching to
sample task (considered as the capability to learn the concept of sameness) [234], water
maze solution [235], and other capabilities that can be defined as “proto-cognitive”. These
are commonly considered as clear traits of high-level deliberative behaviors. The neural
structures responsible for these capabilities, in some cases, can be investigated and repro-
duced in detail because they are so much simpler than those of mammals, and with a
much lighter organization. To provide some examples, observational learning is among
the functions likely to be important in future robotic research: insects, like wood crickets,
are able to learn from the life-saving actions produced by other conspecifics when facing
predators [236]. This clear example demonstrates how precious the result of this form of
learning is, without it, survival would be impossible. It is well known that insects possess
high level learning, called operant conditioning, which makes them able to learn on the
basis of an expected outcome, under the guidance of a reward or punishment. This also
means that insects can develop an expectation about the outcome of their actions, which
can lead, in turn, to the planning of a specific behavior, or even a sequence of behaviors,
even in the absence of the stimuli associated with the outcome. This form of expectation
suggests lower and higher cognitive processes working together, and this has implications,
for instance, in navigation and waggle dance communication in honeybees.

To include further key examples, bees learn a sequence of landmarks as cues for
turns toward the feeder [237]. Thus, they develop expectations along a route associating
specific landmarks in specific places within the sequence to the food source location. Route
selection was also found to be time-dependent (e.g., morning or afternoon) [238]. Bees
also perform novel shortcuts between different locations within a previously explored
environment [239,240], but they also fly along shortcuts between a learned location and
a location communicated by the waggle dance of a hive mate, without references to
landmarks [241,242]. Observational learning even at a symbolic level is exemplified by
dance communication in bees. Another important characteristic in insects is their capability
to generalize, i.e., to flexibly respond when the animal is confronted with distorted versions
of the learned associations, due to noise and developmental changes. Essentially this
involves assessing the similarity between the presently perceived input and the previous
experience. This generalization property was found in different sensory modalities such as
olfaction [243], vision [244], and gustatory sense. Insects are also able to categorize, i.e., to
group different objects or events based on common features [245]. Another important trait
of insect cognitive capabilities, as introduced above, is “concept learning”, which relies
on relations between objects, such as “same as”, “different from” [234], “above/below”
and “to the left/right of” [246]. Insects are able to learn and also transfer the results of
such learning also to unknown objects which may sometimes be completely different from
those used for learning the relationships. More recently, bees were shown to process two
concepts simultaneously and combine them in a rule for subsequent choices. This implies
an even higher level of cognitive sophistication than dealing with one concept at a time.

The characteristics of functional/structural specialization of either side of the brain/
body (i.e., lateralization) involve a fascinating research activity carried out in different insect
species, such as locusts [247] and beetles [248]. In Romano et al. [248], a biomimetic animal
replica of a larger grain borer was developed to modulate the behavioral responses in
insect. The results demonstrated that beetle pushing behavior is a complex communication



Sensors 2021, 21, 7609 24 of 43

strategy where the information is mediated through the performed actions in terms of
number of acts and display duration. The desert locust is another well studied species
as demonstrated in [249] where the generation of adaptive responses, such as evasive
maneuvers was investigated in the presence of unpredictable events during a goal-oriented
behavior, followed by a reorientation and route correction. This behavior is strongly related
to selective attention in honeybees and flies where sensorial stimuli are opportunely gated
by the nervous system depending on their relevance [250]. Social learning is another
relevant characteristic ascribed to the cognitive repertoire of insect species such as ants,
bees and wasps. In [251], the capability of social wasps to learn the facial features of all
colony members was demonstrated with the aim of identifying the colony’s hierarchy as it
relates to fighting skills. Some forms of social learning, commonly considered as high-level
cognitive processes, are also reported in solitary insects species, such as crickets [252] or
fruit flies [253] and recently have been shown also using robotic trainers [254]. This further
outlines the added value in inspecting such forms of complex interaction capabilities in
simple brains, from the engineering perspective aiming at building an insect brain model.
Unfortunately, although these astonishing capabilities have been found in such tiny brains
as those of insects, so far, the vast majority of them has not yet been specifically linked to
the exact brain area which gives rise to such behaviors. For this reason, in the following
section, we will refer primarily to those behaviors explicitly referring to the identified brain
areas. This is mostly found in the case of Drosophila melanogaster.

4.1. The Fly Brain and Cognition

Among insects, Drosophila melanogaster, also known as the fruit fly, is considered as a
primary model organism, widely studied to understand the details of the emergence of
specific behavioral phenomena and draw rules that can be extended to higher organisms.
The fruit fly is a perfect candidate thanks to the low number of neurons present in the
central brain (105) as compared to other well-studied animals like the brown rat (2× 108)
and human (8.6 × 1010). Another important aspect is the possibility of creating mutants
using genetic tools based on the GAL4-UAS technique [255]: the acquired knowledge of
the Drosophila genome allows the manipulation of the nervous system of a fly to study
the structural and functional relationships between its neural structures and the different
behavioral capabilities.

To focus our work on the architecture where a clear picture of neural circuits, behavior
functionalities and experiments (e.g., either in simulation or using actual robotic systems)
was available, in the following section we will mainly deal with the Drosophila brain and
concentrate our attention on its behaviors related to walking.

Intact adult Drosophila are naturally able to fly, and do not demonstrate relevant
walking capabilities; but if their wings are clipped, a lot of experimental results have
testified to their capability of demonstrating adaptive locomotion skills. These have to be
learned from scratch, demonstrating the impressive flexibility of such a tiny brain to adapt
to a novel ecological niche.

In Section 4.2, we will introduce the insect brain architecture describing the neu-
roanatomical structure of two relevant neuropiles in the central brain. In Section 4.3, we
will introduce the state-of-the-art on biological experiments, functional models, and robotic
applications in relation to the neural structures involved. In Section 5.3, we will present
some future directions in insect-inspired robotic cognition.

4.2. The Insect Brain Structure

The Drosophila central brain includes two important neuropiles: the mushroom bodies
(MBs) mainly devoted to the adaptive termination of behaviors and responsible for olfactory
learning and multimodal integration, and the central complex (CX) responsible for the
initiation of behaviors and mainly involved in processing visual stimuli.

MBs are a paired structure present with similar forms in all insect species.
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The intrinsic neurons of the MBs are called Kenyon cells (there are about 2000 KCs
per hemisphere in the fruit fly) which receive predominantly olfactory input in the calyx
region. From there they project through the peduncle into different lobes (i.e., α − /β-
lobes, α′ − /β′-lobes and γ-lobe). The first identified function of the MBs corresponded to
olfactory learning and memory. Olfactory receptors mainly reside within the antennae
where olfactory receptor neurons (ORN) transfer the sensory information to the MBs to
build associative memories for odors.

Odor perception and processing are fundamental because flies identify food sources
and select sex partners through this sensory system. Although input from other sensory
modalities is anatomically not evident in Drosophila MBs, there are several experiments
showing the role of this center in tasks related to vision [256]. The bee brain, in turn, shows
the presence of gustatory, and mechanosensory inputs in the MBs [257]. The MBs can
therefore be ascribed as a multisensory integration system where mixed-modality signals
are collected together with negative and positive reinforcement information conveyed
by dopaminergic and octopaminergic neurons. The use of genetic tools has enabled the
identification of other relevant functionalities associated with the MBs: it has been shown
that mushroom-body-less flies have problems switching to a new type of behavior in the
presence of changes in the environment; MBs are also devoted to sleep control and they
form the basis of motor learning [258].

The CX neuropile resides in the middle of the MBs-paired structure and, in Drosophila,
can be divided into the following substructures: the protocerebral bridge (PB), the fan-
shaped body (FB), and the ellipsoid body (EB) (Figure 9) [259].

The PB is responsible for step-size control, selecting the proper speed, and direction of
motion as demonstrated in walking and gap-climbing scenarios. Experiments performed
using a flight simulator revealed that the FB in Drosophila is responsible for visual memory
functions, extracting visual features that can subsequently be associated with specific
behaviors. We can summarize the role of PB and FB as the centers responsible for answering
the questions: “where?” and “what?”. Finally, the EB plays a relevant role in orientation
memory and place learning. Its ring structure is able to identify the angular position of the
object of interest and participate in the path integration process.

Even if, in Drosophila, there is no explicit involvement of the MBs in such tasks as visual
learning, in higher complex structures, like ants and bees, MBs are definitely multimodal
structures, hosting both olfactory and preeminent visual stimuli [260].

A block-size model of the different neural centers and their interaction with the
sensing and actuation areas is reported in Figure 9. The sensory modalities taken into
consideration are vision, olfaction and touch. The role of the MBs and CX is indicated in
terms of processing the different sensory stimuli and enlightening the interactions among
the relevant neuropiles we have considered. The motor command circuits are placed within
the thoracic ganglia where local reflexes are also implemented. Rewarding and punishing
signals mediated by octopaminergic and dopaminergic neurons are used as a driver for the
learning processes.

4.3. Insect Brain Functional Models, Implementations and Robotic Experiments

From the analysis briefly outlined above, we can deduce that each of the two main
centers, MBs and CX, have individual functional roles, but there are complex tasks that
require the concurrent enrollment of both. In this subsection, these main functionalities
will be reviewed and shown via both computational models and experimental robotic
architectures. A summary of the state-of-the-art in the field is depicted in Table 3.
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Figure 9. Block-size model of the relevant sensory modalities and neural processing centers in a
Drosophila central brain. The insect’s compound eyes photo-receptors (PR) acquire visual stimuli
that are initially processed in the optical lobes, and transferred to the CX, and then the neuropile
responsible for visual orientation. Chemical-receptors (CR) located in the antennae are responsive
to olfactory stimuli whose neural response is transferred through the antennal lobes (AL), and
subsequently to the projection neurons (PN), and finally to the MBs. The olfactory and visual inputs
are here integrated with the other sensory modalities although their connecting paths are still not
evident. The lateral horn (LH) is an inhibitory center that is activated by the PN and the ventrolateral
protocerebrum (vlpr) to affect the MBs activity. Dopaminergic (DAN) and octopaminergic neurons
(OAN) provide reinforcement learning signals used by learning and memory systems. Tactile
stimuli, acquired by the mechanoreceptors (MR) located in the antennae, legs and halters, are locally
processed in the antennal mechanosensory and motor center (AMMC) and in the thoracic ganglia for
the generation of local reflexes where the CX is also concerned.

Table 3. State-of-the-art of the different insect functionalities and behaviors ascribed to the MBs and CX. The subscript associated
with each reference indicates the content of the corresponding work: analysis of insect neural circuits and associated behavioral
experiments (E), modeling of neural circuits and simulations (S), neural models applied in robotic experiments (R).

Insect Brain Areas Functionalities References

Mushroom bodies Olfactory learning [261]S, [262]E

Attention [263]E, [264]S

Expectation [265]ES, [266]S

Sameness [234]E [267]S

Sequence learning [268]SR [269]SR

Navigation and visual sequential memory [260]SR

Classification and decision making [270]S, [271]S

Central complex Navigation and detour paradigm [272]E, [273]S, [274]S

Goal-directed navigation [275]E [276]S

Spatial working memory in a water maze scenario [235]E

Body-size model [277]E, [35]S, [278]SR, [279]S

Mixed Navigation and landmark targeting behavior [280]S, [192]S

Motor-skill learning [231]E,[281]E, [282]S

MBs and CX contribution to aversive visual learning [283]E
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4.3.1. MB Models

Insects, with particular reference to bees and ants, are famous for homing behaviors:
they are able to memorize a visual route that allows them to come back to the nest, even after
navigation covering several hundred meters from home. In the study [260], the authors
propose that this ability can arise from the interconnections among KCs in MBs, which
could be in charge of encoding a spatiotemporal memory of visual motion while moving
along a spatial route. Here a fairly reproducible computational model, demonstrating such
behavior, is presented in detail. The model internally builds causal correlations among
subsequent visual events, thus creating a short sequence learning structure. The model
represents a simplified ant MB architecture employing a modified leaky integrate-and-fire
neuron model and the Spike-timing-dependent plasticity (STDP) learning rule [284]. The
neural response shown by the model matches the observed behavior in ant experiments.
The model was finally demonstrated in action, performing indoor navigation control in the
dual drive wheeled robot named TurtleBot Burger3 equipped with an event-based camera.
The model presented above has a lot of similarities to the one developed some years before
in [268,269], exploiting the deeper details known in the fly brain. In fact, the discovery of
axo-axonal connections within the MB peduncle allowed the modeling of the phenomenon
of sequence learning. It is a complex spatial temporal correlation task, where waves of
consecutive stimuli, consolidated via reinforcement signals, led to the formation of complex
sequences and sub-sequences of abstract stimuli. Different types of neuron structures and
learning schemes were adopted in the overall architecture: Izhikevich’s spiking neurons as
well as Morris–Lecar models, or STDP and Hebbian-like learning for the different layers.
The model was successfully tested on a differential drive robot trained in a reinforcement
environment. One added value of the developed structure is the capability of internal
simulation of the correlations learned during the experiments, which can explain the
phenomenon of overnight memory consolidation. In fact, the network is able to reproduce
the visual stimuli, simply as an effect of internal noise. These stimuli can create the
internal dynamics whose effect is to reinforce the previously learned sequences. Part of this
structure was subsequently found to act as a suitable neuromorphic model for classification
and decision control [270]. Starting from the experimental evidence as well as from the
known architecture of the fly brain, some additional behaviors were hypothesized to be
hosted, which were already found in more complex insects like bees or ants. In particular,
the role of extrinsic neurons connecting the lobe systems to the antennal lobe, paired with
Hebbian-like learning within the antennal lobe system, was computationally found to be
responsible for the elicitation of the attentional loop [264]. The model was tested in an
experimental arena involving a robot that was able to maintain a targeting behavior while
filtering out other distractors. As it developed, this model became able to learn what would
be considered as an expectation, i.e., the capability to predict the appearance of a given
(expected) input stimulus, if preceded by another (triggering) one [266].

Another relevant phenomenon that was found in flies is related to decision making
when facing visual dilemmas: once the fly learns that a given association color-shape is
rewarding, when faced with a dilemma caused by altering the color-shape arrangement
of rewarding and punishing visual stimuli, the intact insect has a clear preference for the
color. Once the color saturation goes below a certain threshold, flies suddenly decide to
choose the shape learned as rewarding. This is a clear trait in decision making, which
is experimentally ascribed to the MBs. A possible computational model was introduced
in [271].

The MB structure, as in the case of attention [264], was also found able to host high-
level behavior learning such us the so-called “delayed-match-to-sample task”, considered
as similar to the acquisition of the concept of sameness and difference [267].

4.3.2. CX Models

The CX of an insect participates in processing the temporal and spatial components of
sensory cues, and utilizes those cues in creating an internal representation of orientation



Sensors 2021, 21, 7609 28 of 43

and context, while also directing motor control. In addition to the fruit fly, the role of
the CX in controlling goal-directed navigation has been assessed in other insect species,
such us cockroaches [275], finding a lot of similarities with navigation in higher animals
(e.g., rats). In the study [275], an overview of current knowledge on the CX’s role in insect
navigation is performed. A deep study revealed that the apparent random path ending in
the finding of a dark shelter was indeed a targeting behavior toward the shelter. To prove
this, in the study [276], a computational model (called RAMBLER) was built after a series
of experimental campaigns. It efficiently models the insect’s motions, combining the classic
wall following behavior with the visual verification of the dark shelter and the probability
of adding other motions, such as turning back, whenever the shelter appeared behind the
insect. Although the model was obtained exclusively by using insect experiments, several
factors imply a direct responsibility of the CX in such tasks. For example, CX lesioned
roaches often make wrong turns, and also speed changes while walking are preceded by
an increased firing rate in CX neurons.

One of the main CX roles is to host visual and mechanosensory stimuli to learn such
characteristics as body size, i.e., the awareness of the peripersonal space. Genetically
identical flies, if fed abundantly, can grow up to 20% larger than normally fed ones.
If differently sized flies are about to engage in a fight, the smaller fly gives up without
fighting. Body size knowledge was discovered to have been learned during larval stages,
if flies are grown in well-lit environments. They learn the association step-stride versus
distance walked, creating a conceptual function describing “how big they are”. This
function was found to be resident in a sub part of the CX, known as the protocerebral
bridge. A computational model of this behavior was designed and implemented in a
simulated hexapod robot [35], and finally tested using a humanoid robotic platform [278].
This proves that computationally relevant models, drawn from insect structure, can also be
adopted for controlling different robotic bodies, not necessarily related to an insect-like
biomimetic structure.

To try to shed light on how the CX exploits sensory inputs to realize motor functions
associated with spatial navigation, in [285], a neural model was developed, based on known
connectivity within the CX with particular attention to the Ellipsoid Body (EB). The model
was based on continuous-time differential equations called leaky integrators, used to
simulate the mean-field activity of pools of neurons, and used the Monte Carlo method
for parameter estimation. The model was successfully tested by means of a kinematic
simulator. The same leaky integrator model was employed to generate robust ring attractor
dynamics [274], i.e., neuron structures, which responded to the position of external stimuli
and retained activity even in the absence of external stimuli. In that work the authors
hypothesized that the emergence of ring attractor activity in the EB is due to reciprocal
neuronal connections between EB and PB. Ring attractor networks were also modeled
using spiking neuron structures. These were found to be able to show spatial memory
formation exploiting the ring architecture of the EB [273].

4.3.3. Models Involving MB-CX Interaction

Some behaviors require, at least at the functional level, the participation of both
MBs and the CX. This is the case, for example, in navigation tasks that are efficiently
performed by insects using visual sensory feedback. Insects typically show innate curiosity
for landmarks, especially moving ones, towards which they are attracted. Such landmarks
can be used to elicit, after learning, specific directional steering maneuvers, which can
subsequently be understood to be part of a complex navigation task. While the neuronal
details of the concurrent existence of these two aspects of visual learning are not yet known,
a potential computational model was proposed in [280] based on the neuroanatomy of the
wood ant CX, typically involved in landmark targeting behavior. Here, a reward signal,
supposed to be provided either by the innate CX landmark attraction feature or by a long-
term visual memory, built into the ant MBs [260], was used to form a local vector memory
in the CX. The strategy was implemented using a simulated robot in a simple environment
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endowed with a single visual cue. The architecture matches the experimental results
coming from unilateral MB lesions in ants, which restore the innate targeting behavior.

In the study [192], to address insect navigation in a cluttered environment, the authors
speculated that specific strategies are needed to retrace familiar routes and return home.
These would need both the CX and MBs working together: MBs check whether the current
sensory stimulus is positive, while the CX steers the animal’s heading towards the reward-
ing stimulus. The model was found to reproduce behavioral data in realistic environments.

Another experiment, called detour, was performed to demonstrate the presence of
short-term visual memory in the fruit fly. The experiment verified that the fruit fly can show
short term redirection towards invisible targets after the introduction of a second landmark,
called a distractor [272]. This fact reinforces the idea that very similar behaviors, typically
found in higher animals, can be shown in simpler brains, which, from the engineering
perspective, can be more efficiently modeled.

As stated above, the CX is involved in spatial learning from visual cues as demon-
strated in Drosophila [235]. Of course, larger and better CX structures in bees were ascribed
possible roles in the spatial learning of color cues. Moreover, in the study [283], using a
combination of color learning with electric shock as punishment, an interplay between CX
and MBs was found by pharmacologically silencing these two centers. In particular, the CX
was found to be necessary for mediating the goal-directed behavioral response to learned
stimuli, while the MBs carried out the actual cue association.

As discussed above, wing-clipped flies have to learn from scratch how to efficiently
interact with the environment. Therefore, they must adapt their locomotion capabilities to
more complex situations. A joint study with neurogeneticians, supported by experimental
evidence, led to the conclusion that the fly, responding to a difficult climbing scenario,
started by making some attempts, and the most rewarding ones are retained and adopted to
build the right sequence of leg motions for fulfilling the climbing action. A corresponding
model, involving the concurrent activation of MBs and CX, was also developed [282].

5. Lessons Learned from This Review
5.1. Future Directions in Biomechanics

Emerging biomimetic leg design will be increasingly based on available micro-CT
scans of real insects in order to improve their level of complexity, fidelity, and bio-inspiration
in the 2020s. So far, none have been built with a structure similar to an ant exoskeleton.
This kind of structure gives ants the ability to load and transport up to 15 times their
own weight.

Many aspects of force sensing in insects could be applied to hexapod robotics, and these
will be particularly helpful in redesigning legs which incorporate force sensing. Moreover,
adding some compliancy to the leg structure at strategic locations could provide force
sensing, and significantly reduce the relative mass of legs in relation to the robot’s overall
weight. In insects, force measurement is done at the level of the campaniform sensilla [286].
The campaniform sensilla are mechanoreceptors providing local control of legs; some current
mechanical solutions mimic them by adding a slider and a spring per joint, but at the
expense of compactness and increased mass.

5.2. Future Directions in Locomotion Control

The present review on locomotion control shows that significant efforts have been
made to understand the principles of insect locomotion control and translate those prin-
ciples to robot locomotion control using different technical control methods such as bio-
inspired, engineering-based, machine learning-based, as well as these methods in varying
combinations. However, current robot performance is still far from that of insects. This
is due to generated complex behavior that results from emerging processes derived from
biomechanics (see Section 2), locomotion control (covered in Section 3), and high-level
cognitive control (see Section 4) as well as their dynamical interactions (Figure 1). Thus,
focusing on particular aspects can only achieve partial solutions. From this point of
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view, future research directions might endeavor to integrate all these components and
exploit their dynamical interactions. Such an integration can be viewed as a complete
embodied closed-loop system [287]. This will also shed light on a key research question:
how do low-level motor/locomotion control and high-level cognitive control mechanisms (brain),
a body (sensory-motor system), and an environment dynamically interact in real time to generate
motion intelligence?

While insects can intelligently exploit all their body parts (i.e., legs, thorax, and ab-
domen) for stable and versatile locomotion and object manipulation, most insect-like robots
use only their legs for locomotion and object manipulation. During walking and climbing,
a cockroach tries to keep its abdomen close to the ground (i.e., low center of mass) [288].
Ants can also exhibit a kind of “clutch” behavior with their legs and bodies, to try to avoid
being blown away by a gust of wind [289]. During dung ball rolling, a dung beetle uses a
part of its abdomen as another contact point to maintain stability [144]. From this point of
view, such strategies, which can be considered as whole body locomotion and object manip-
ulation, should also be realized for performance enhancement in insect-like robots [142,290].
As legged robots have been actively integrated into people’s daily production activities and
various service tasks (such as exploration, object transportation, inspection and mainte-
nance, search and rescue, and construction), fast lifelong continuous adaptation for resilient
and robust robot locomotion to deal with environments that change unexpectedly, and
physical damage over the course of a mission, is becoming increasingly important.

5.3. Future Directions in Insect-Inspired Robotic Cognition

From the review just presented, it clearly emerges that, over the last decade a huge
effort in the design of powerful targeted experimental setups has been able to describe
interesting behaviors in insects. These ranged from the simple associative learning skills
to surprisingly relevant behaviors that can definitely be considered proto-cognitive. De-
spite the relevance of these discoveries, engineers are still concentrating their efforts on
the design and implementation of single experiment tailored models, both at the com-
putational level and, sometimes at the robotic level. Although these steps are needed to
address the necessity and sufficiency of specific neural assemblies’ roles in the generation
of corresponding behaviors, both at the insect experimental level and on the robotic side,
the modeling strategy is stuck at a block sized level. As also reported in [291], the insect
brain is a prime site for the detailed study of the link between neuroanatomical geometries,
the corresponding function and the final behavioral outcomes, all the way from a wiring
diagram to the level of insect intelligence. One of the main open research questions regards
the possibility of studying the insect brain no longer as a block sized architecture, but view-
ing it from a holistic perspective, i.e., looking at the “whole”, instead of considering simply
a part of its composition. The pursuit of such a research line should result in greater
benefits across a variety of fields such as neuroscience, bio-medicine, artificial intelligence,
and robotics. Nowadays, a whole insect brain model is only partially achievable due to the
limited knowledge both at the level of experiments on single behaviors and on the study
of the brain as a whole. Indeed experimental data covers only a small part of the huge
dynamical neural activity responsible for a plethora of concurrent sensory motor activities.
The authors could justifiably claim that the constraints just cited, and the still inadequate
computational resources constitute the current limit, but these are likely to be overcome
by creating biologically realistic simulations of the entire insect nervous systems and this
should be possible within the next 20 years [291]. Moreover, the authors believe that a
possible “Rosetta Stone” would be to consider the role of emergence in such tiny brains.
Huge dimensional nonlinear dynamics can emerge simply by wiring non trained neural
assemblies together. This would be achieved through careful neural wiring developed by
extracting the connecting rules from the insect connectome. In addition, trainable read-out
maps could be used to extract the specific sub-dynamics from this neural lattice to create
ad-hoc associations with different behavioral needs. This could be realized concurrently.
This new line of research, drawn from psychology, is known as “neural reuse”: the same
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neural assembly can be exploited concurrently for different parallel tasks. Also, as outlined
in [292], the smaller the brain, the larger the need for neural reuse. Insect brains are
of a suitable size to try to investigate neural reuse in action, since in these small brains,
the relatively low number of neurons and mainly short-distance connections are candidate
elements for neural reuse, even if the circuits are composed of different brain areas. The
authors believe that the neural reuse paradigm will be the best route to take to explain
all the rich functionalities of insect brains, and could open the way to describing even
more complex combinations of non trivial behaviors that characterize the efficiency of
more sophisticated brain structures. In any case, even the replication of an insect brain on
an insectoid body would provide an added value for attaining true autonomy in future
advanced robotic structures.

Active research on insect cognitive capabilities could also be relevant to better un-
derstand the evolution of cognition in relation to the well-studied vertebrate field [293].
The next steps will include the definition of behavioral tests to measure cognition and the
identification of the relevant factors that contribute to the evolution of cognition.

The authors are convinced that a complete understanding of the insect brain will give
a considerable boost to both biological and robotic research, leading to the introduction of
a new generation of adaptive, resilient, robust, and efficient bio-inspired machines.

6. Conclusions

Over the last ten years, the booming use of 3D printing has significantly boosted the
development of brand new mechatronic designs for hexapod robots. So, what can we
expect from the next 10 years in hexapod robot design?

New emerging printable materials combined with multi-material 3D printers will
make it easy to design and to reproduce insect-based legs by using micro-CT scans of
real insects in order to reach their level of complexity. This will, not only lead to a better
understanding of how insects walk, but also to finding innovative leg structures incorpo-
rating smart force sensing by adding soft materials. Force sensing is a critical aspect in
locomotion control for complex terrain prediction and adaptation, adding both compliance
segments and actuators to the leg structure at strategic locations is the major issue for the
next decade. In insects, force measurement is done at the level of the campaniform sensilla
on their exoskeleton close to their joints, and not at the tip of their leg. Such an approach
in force sensing could significantly improve the level of compactness of future hexapod
robots. By means of such bio-inspired approaches to insect morphology coupled with
3D printing, leg structure based on exoskeleton design will be easy to prototype, to clone
for academics, and to repair. Such a bio-inspired exoskeleton could permit a significant
reduction in the legs’ weight, and therefore enhance the capacity of load transportation in
hexapod robots.

Locomotion control is also an important element in achieving intelligent behaviors
(e.g., adaptive locomotion, load/object transportation) in hexapod robots. It is a basic
mechanism to realize interlimb and intralimb coordination as well as joint compliance.
Biological findings reveal that there are at least three components (CPGs, sensory feedback,
and forward models) supporting the control. Thus, these components should be taken into
account when developing locomotion control for hexapod robots. CPGs basically act as
oscillators that produce basic rhythmic patterns for joint movements and gait generation
without sensory feedback (open-loop control). Sensory feedback, however, is important for
the frequency, shape, and phase adaptations of CPGs which result in adaptive locomotion
(closed-loop control). Furthermore, it also drives reflexes to allow for walking on difficult
terrains. Forward models complement the control in terms of sensory prediction or state
estimation for highly adaptability. While hexapod robotics has been mainly focused on
locomotion control, future research should be moved towards controlling a variety of robot
functions, approaching insect-like abilities such as object manipulation and transportation.
This can be accomplished by considering how to make use of the entire robot body (i.e.,
legs and trunk) as insects do. Machine learning methods can also be used as part of the
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locomotion control method to create resilient and robust robot functions that can adapt to
changing environments. Additionally, these methods, together with hexapod robots, can
be used to decode insect movement intelligence, e.g., muscle multifunctionality in adaptive
locomotion and object transportation.

As stated in the introduction, the details of the neural mechanisms in charge of each
brain function, and how these neural mechanisms are coordinated for the implementation
of complex tasks remain largely unknown in many cases. For this reason, a large number
of operative hypotheses often need to be formulated to allow the design of efficient compu-
tational models. This task would definitely be facilitated by close collaboration between
neurogenetics, computational neuroscience and robotics. The first, thanks to modern tools,
is able to create mutants by targeting specific neural areas, addressing the behavioral role
of specific neurons. The second would in turn design and build efficient computational,
neurally grounded models, and the last would then implement these models in working
robotic structures. Therefore, it is necessary to foster collaboration between these different
scientific fields to extract from biology the necessary information to be translated into
efficient deployable models and structures. At the other end, robotics offers the unique op-
portunity to see the computational insect brain models in action in mechatronic structures.
This can generate new ideas for insect experiments. Moreover, experience suggests that the
lack of suitable experimental setups has left a lot of insect behaviors undiscovered. In this
sense too, a close collaboration with engineers would be invaluable.

Insect brains are much simpler than vertebrate brains, and so can be accurately
modeled and reproduced. An insect brain could deliver, to an artificial body, capabilities of
adaptation and autonomy, which would be called “insectoid”: a robotic structure endowed
with an insect-inspired brain.

The cognitive architecture modeling the insect brain has been proven to be indepen-
dent of the particular robotic structure, although it co-evolves with the robot body by
adapting to the behavioral outcome compatible with that specific structure.
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Abbreviations
The following abbreviations are used in this manuscript:

AEP anterior extreme position
AFO adaptive frequency oscillator
AFDC adaptation through fast dynamical coupling
AHM artificial hormone mechanism
CoT cost of transport
CPG central pattern generator
CX central complex
DOF degree of freedom
EB ellipsoid body
FB fan-shaped body
GRF ground reaction force
KCs Kenyon cells
IK inverse kinematics
MBs mushroom bodies
PB protocerebral bridge
PEP posterior extreme position
PM phase modulation
PR phase resetting
STDP spike-timing-dependent plasticity
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