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Abstract: Uveal melanoma is the second most common melanoma and the most common intraocular
malignant tumour of the eye. Among various treatments currently studied, Sorafenib was also
proposed as a promising drug, often administered with other compounds in order to avoid resistance
mechanisms. Despite its promising cellular activities, the use of Sorafenib by oral administration is
limited by its severe side effects and the difficulty to reach the target. The encapsulation into drug
delivery systems represents an interesting strategy to overcome these limits. In this study, different
lipid nanoparticulate formulations were prepared and compared in order to select the most suitable
for the encapsulation of Sorafenib. In particular, two solid lipids (Softisan or Suppocire) at different
concentrations were used to produce solid lipid nanoparticles, demonstrating that higher amounts
were able to achieve smaller particle sizes, higher homogeneity, and longer physical stability. The
selected formulations, which demonstrated to be biocompatible on Statens Seruminstitut Rabbit
Cornea cells, were modified to improve their mucoadhesion, evaluating the effect of two monovalent
cationic lipids with two lipophilic chains. Sorafenib encapsulation allowed obtaining a sustained
and prolonged drug release, thus confirming the potential use of the developed strategy to topically
administer Sorafenib in the treatment of uveal melanoma.

Keywords: nanomedicine; drug repurposing; Softisan 100; uveal melanoma; mucoadhesion; eye
irritation test; ocular delivery

1. Introduction

Among the intraocular malignant tumours affecting the inner eye, the most common
in adults is uveal melanoma (UM) [1]. UM represents the second most common melanoma
after the cutaneous one—with a lifetime risk of 1 in 2500 and an incidence of 6 per million
per year—but the incidence and biological implications are different [2]. An important
risk factor is the presence of ocular lesions, while sunlight seems not to be involved in the
occurring of this condition, as it is prevalent in people living in northern Europe than in
the ones living in the South. Moreover, the pigmentation could have a protective function
since a risk factor is having a lightly coloured iris [3].

Characteristic of this melanoma is the great ability to metastasise (since the occurrence
of the primary tumour, metastasis appear in 5 years for 25% of patients and in 10 years for
34%), and the most affected organ is the liver (90%), with lungs and soft tissues following [4].
Mortality in the metastatic UM is about 50% in one year and it is greatly influenced by the
progression of liver involvement [5].
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Based on the experience with cutaneous melanomas, various systemic treatments have
been investigated also for uveal one and clinical trials demonstrated a modest efficacy [6].

Combinations of new drugs are currently studied to verify their suitability in the
treatment of UM; it is worth mentioning bortezomib in combination with celecoxib, pred-
nisone, temozolomide, dacarbazine, anti-angiogenic agents such as bevacizumab, sunitinib,
cetuximab, panitumumab, erlotinib, transtuzumab, or temsirolimus, MEK inhibitors or
ipilimumab [3].

In addition to the mentioned drugs analysed for UM, also Sorafenib (SRF) was pro-
posed, generally in combined treatment with paclitaxel, doxorubicin, and siRNA, in order
to overcome resistance mechanisms [1–3,7,8]. SRF is a small hydrophobic molecular in-
hibitor of several tyrosine protein kinases, which rapidly accelerates fibrosarcoma (RAF)
kinases. SRF was already approved for advanced renal cell carcinoma (RCC), hepatocellular
carcinoma (HCC), and advanced thyroid carcinoma [9]. SRF possesses the ability to inhibit
Raf kinases within the mitogen-activated protein kinase (MAPK) pathway, which mediates
cellular growth signals and is constitutively active in most UM tumours [7]. Additionally,
it acts on vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth
factor receptor (PDGFR), causing the inhibition of tumour angiogenesis [10]. In vitro, these
phenomena occur in a dose-dependent manner, showing good anti-tumoral properties:
tests on a xenograft model (with UM cell line 92.1) also demonstrated SRF capability of
inhibiting tumour growth and reducing metastases (33% without treatment vs. 60% with
Sorafenib) [3]. Recently, Santonocito et al. demonstrated that a new nanostructured mi-
croemulsions system carrying 0.3% Sorafenib, administered as an ophthalmic formulation,
is able to deliver effective amounts of Sorafenib to the retina, reducing proinflammatory
and proangiogenic mediators in reliable models of proliferative retinopathies [11].

Despite all the promising results, including phase II clinical trial with SRF monother-
apy in metastatic UM [8], its clinical use is limited due to its severe side effects (diarrhoea,
hand-foot skin reaction, alopecia, anorexia, weight loss, and abdominal pain [10]) conse-
quent to oral administration [12].

Furthermore, the potential application of SRF in the treatment of UM needs to face
the intrinsic difficulty of the target site, which is not easy to achieve in the case of poorly
water-soluble drugs [13]. In fact, reaching the eye, especially the inner part, is a challenge
both through topical and systemic administration. Topical administration is limited by
eye physiological barriers, such as the cornea, which limit the access of xenobiotics [14],
but also by some protection mechanisms, like blinking, tearing, and drainage, which
promote a quick clearance of the drug [15]. On the other hand, it is equally difficult to
make a drug reach the eye from the inside, due to the blood-aqueous barrier, which works
similarly to the blood-brain barrier, preventing drug diffusion from blood to retina, through
the intervention of uveal capillary endothelia and ciliary epithelia. Because of all these
mechanisms, the bioavailability of drugs in the eye is poor, with an absorbed dose less than
3–5% of that administered [15].

The drawbacks related to ocular treatments could be overcome through the encapsu-
lation of drugs into nano-sized carriers, which provide a prolonged and controlled release,
the possibility to reach the target site and a longer residence time enhancing corneal
permeation [16].

In order to exploit SRF potentiality, different nanoencapsulation strategies have been
investigated, including liquid crystalline, lipid, and polymeric nanoparticles [10], demon-
strating the possibility to protect SRF from inactivation with a considerable increase of its
water solubility. Among the different nanoparticles, lipid ones have been demonstrated
to be suitable for ocular delivery since they are highly biocompatible [14] and their lipid
components are able to interact with the outside lipid layer of the tear, promoting longer
retention thus acting as a depot [15]. Particularly, solid lipid nanoparticles (SLN), but
also nanostructured lipid carriers (NLC), represent promising strategies in ocular delivery
since they are able to incorporate a great amount of drug (up to 90%), sustain a prolonged
residence in the precorneal area and successfully encapsulate lipophilic molecules [13–15].
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The aim of this work was the development of SRF-SLN for the potential treatment of
UM. As a quali-quantitative preliminary study, two solid lipids—Softisan or Suppocire—
were analysed at different concentrations and the obtained systems were characterised
through Photon Correlation Spectroscopy (PCS) to determine their mean size (Zave),
polydispersity (PDI) and zeta potential (ZP); also, stability over time was exploited by
Turbiscan® AG Station. In vitro SLN cytocompatibility was assessed on Statens Seruminsti-
tut Rabbit Cornea (SIRC) cells using the Short Time Repeated Exposure (S.T.R.E.) protocol.
In order to assess the suitability of the system for topical delivery of SRF to the posterior
segment of the eye, mucoadhesive properties were evaluated on the selected SLN, opti-
mised by the addition of two different positively charged coating layers: the cationic lipids
didodecyldimethylammonium bromide (DDAB) or dioleoyl-trimethylammonium-propane
(DOTAP) chloride. The optimised formulation was selected for the delivery of SRF, whose
release profile was investigated.

2. Materials and Methods
2.1. Materials

Suppocire NB (C10–C18 Triglycerides) was obtained from Gattefossè and Softisan
100 (Hydrogenated Coco-Glycerides) was kindly provided by IOI Oleo (Hamburg, Ger-
many GmbH). Tegin O (Gliceryl Monooleate) was purchased from ACEF (Piacenza, Italy).
Didecyldimethylammonium bromide (DDAB), Tween® 80 (Polysorbate 80), N-[1-(2,3-
Dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP), Potassium phosphate
monobasic and Phosphate buffered saline were purchased from Sigma Aldrich Co (St.
Louis, MO, USA). Sorafenib tosylate (SRF) was supplied from Hetero Labs Limited (Talen-
gana, India). Sodium bicarbonate, all LC grade solvents used for high-performance liquid
chromatography (HPLC) and Millex® syringe filters (PP, PES, and PVDF pore size 0.22 µm,
33 mm) were purchased from Merck (Darmstadt, Germany). Regenerated cellulose mem-
branes (Spectra/Por CE; Mol. Wet. Cutoff 3000) were supplied by Spectrum (Los Angeles,
CA, USA).

Statens Seruminstitut Rabbit Cornea (SIRC) cells were obtained from LGC Standards
S.r.l. (Milan, Italy). Basal Medium Eagle (BME), gentamicin, penicillin-streptomycin,
L-glutamine (L-glu), Trypsin–EDTA, and Fetal Bovine Serum (FBS) were from Lonza
(Euroclone S.p.A., Milan, Italy). Reagent for MTT assay (3-(4,5-dimethilthiazol-2-yl)-2,5-
dipheniltetrazolium bromide), Mucin (mucin from porcine stomach type II), and sodium
chloride were purchased from Sigma-Aldrich S.r.l. (Milan, Italy). Dimethyl sulfoxide
(DMSO), calcium chloride dihydrate, and potassium chloride (of analytical grade) were
purchased from VWR Chemicals (Milan, Italy). Benzalkonium chloride (BAK) 50% was
obtained from Novo Nordisk Pharmatech A/S (Køge, De nmark).

2.2. Nanoparticles Preparation

A low-energy organic solvent-free phase inversion process (PIT method) was used
for the preparation of the unloaded and drug-loaded SLN [17]. Based on previous studies,
Tween 80 (6%, w/v) and Tegin O (3% w/v) were selected as surfactants in combination
with different amounts (5, 7, 8 or 9%, w/v) of Softisan (SLN A5, A7, A8, A9) or Suppocire
NB (SLN B5, B7, B8, B9), selected as solid lipids. SRF was added at different concentrations
(0.8 or 1.0%, w/v) to the melted oily phase to prepare a drug-loaded SLN. The aqueous and
the oil phases were separately heated until ~80 ◦C. The aqueous phase was added drop
by drop to the lipid phase, at constant temperature and stirring speed (~650 rpm). The
mixture was slowly cooled to room temperature under continuous stirring for 2 h. The
selected formulation was modified adding to the melted oily phase two different positively
charged lipids DOTAP or DDAB (0.15%, w/v), thus obtaining SLN A8-DP and A8-DB,
respectively. In order to purify the colloidal suspensions from the excess of surfactants
and non-encapsulated drug, SLN were centrifuged at 12,000 rpm for 1 h at 4 ◦C, using an
ultracentrifuge (SL16R Centrifuge, Thermo Scientific, Rodano, Italy) and the pellet was
redispersed in PBS.
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2.3. Photon Correlation Spectroscopy (PCS)

The mean particles diameter (Zave), polydispersity index (PDI), and zeta potential
(ZP) values of all prepared SLN were determined by Photon Correlation Spectroscopy
(PCS) using a Zetasizer Nano ZS90 (Malvern Instruments Ltd., Malvern, England), as
previously reported [17]. Samples (50 µL) were diluted in 1 mL of ultra-purified water
before measurements. Each formulation was prepared six times, and each measure is the
mean value of at least three measurements ± standard deviation (SD).

2.4. Sterilisation by Filtration

All samples were sterilised by filtration using three different types of hydrophilic
membranes of 0.22 µm pore diameter: polypropylene (PP), polyethersulfone (PES) and
polyvinylidene fluoride (PVDF) (Whatman, VWR Chemicals, Milan, Italy). SLN were
filtered and, when possible, the obtained sterile formulations were analysed by PCS to
verify particles diameter.

2.5. Osmolality and pH

Osmolality values of the prepared SLN were determined by an osmometer (Osmomat
3000, Gonotec, Berlin, Germany), previously calibrated with ultra-purified water and
physiological solution. A pH meter (Mettler Toledo, Milan, Italy) was used to measure the
pH values of the SLN.

2.6. Turbiscan® AG Station

A Turbiscan® Ageing Station (TAGS, Formulaction, L’Union, France) optical analyser
was used to investigate the physical stability of unloaded-SLN suspensions. The equipment
was composed of the ageing station, which allows the storage of samples in three thermo-
regulated blocks [18]. The detection was operated using a pulsed near-infrared light
source (λ = 880 nm), which sends information to two synchronous transmissions (T)
and backscattering (BS) detectors: in particular, T detector receives the light crossing the
sample at 180◦ from the incident beam, while the BS detector receives the light scattered
backwards by the sample at 45◦ from the incident beam. This detection system produces
1625 acquisitions for each measurement, since it scans the entire height of the sample
cell (65 mm longitude), acquiring T and BS each 40 µm. Using this instrument, it is
possible to evaluate the occurrence of instability phenomena, such as particles migration or
aggregation, in colloidal suspensions (liposomes, lipids, polymeric nanoparticles [18–20].
In this experiment, the cylindrical glass cell contained 20 mL of each unloaded formulation,
and the storage temperatures of the three blocks were 25, 40, and 60 ◦C. The stability of the
samples was measured through the analysis of the variation of transmission (∆T).

2.7. Cell Viability Studies

Cytocompatibility of SLN was evaluated in Statens Seruminstitut Rabbit Cornea
(SIRC) cells. SIRC cells were grown in a humidified 5% CO2 atmosphere at 37 ◦C in
a complete culture medium (CCM), made of BME containing 10% FBS, 100 U/mL of
penicillin-streptomycin, 10 mg/mL gentamicin, and 2 mM L-glutamine. Each well of a 96-
well tissue culture plate was seeded with 40,000 cells in 100 µL of CCM. Cells were allowed
to grow at 37 ◦C, 5% CO2 until subconfluence (70–90%), and then repeatedly exposed (6×)
for 10 min to 100 µL of 5 mg/mL test item solutions prepared using sterile culture medium
consisting of FBS-free BME. In detail, test items SLN A8, SLN B8, and SLN B9 were prepared
by ultracentrifugation and resuspended in a neutral isotonic PBS (300 mOsm/kg, pH 7.2).
A concentrated suspension of each nanostructured system was obtained and diluted in
FBS-free BME to be successively tested on cells at a final concentration of 5 mg/mL.

Cells were also exposed to the negative control (sterile culture medium consisting
of FBS-free BME, CTRL−) and positive control (0.01% BAK, CTRL+) for cytotoxicity
evaluation. All samples were tested in triplicates and on two different experiment days.
Treatments were removed after 10 min of exposure and all cells were re-fed with CCM.
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Before re-feeding, only wells included in the “wash” protocol were washed once with BME
(free of FBS, antibiotics, and L-glu). The same procedure was repeated six times at intervals
of 1.5 h [Short Time Repeated Exposure (S.T.R.E.)]. At the end of the repeated exposures,
cells were incubated in standard conditions, and 24 h later, the medium was removed and
replaced with 100 µL of MTT solution (0.2 mg MTT/mL of CCM). Following a 30 min
incubation, MTT formazan was extracted with 100 µL of 100% DMSO. The optical density
of the samples obtained (O.D.) was read at 570 nm in a microplate spectrophotometer
(SPECTRAFluor Plus, Tecan, Männedorf, Switzerland). Cell viability was calculated as a
percentage of the negative control.

2.8. Encapsulation Efficiency and In Vitro Drug Release

The amount of SRF encapsulated in the lipid matrix of SLN A8 was determined after
centrifugation of the sample. The pellet was diluted in tetrahydrofuran (THF) and vortexed
(Heidolph Reax 2000, VWR, Milan, Italy). The amount of SRF was directly determined by
using HPLC (see Section 2.9) without interference from the other formulation components.
The encapsulation efficiency (EE%) was calculated from the ratio between the amount
entrapped inside the nanoparticles and the total amount of drug used for their preparation
(Equation (1)).

EE% = (amount of entrapped drug/total amount of drug used) × 100 (1)

Franz-type diffusion cells were used to analyse SRF in vitro release from SLN. Firstly,
the moistening of the 0.75 cm2 regenerated cellulose membranes (Spectra/Por CE; Mol.
Weight Cut-off 3.5 kDa) was operated through the immersion in physiological solution
for 1 h at room temperature. Then, the receptor compartment of cells was filled with
4.5 mL of a mixture of the physiological solution and ethanol (50:50 v/v), thermostated
at 35 ± 2 ◦C, and constantly stirred at 600 rpm. Despite the lack of bio relevance, 50%
ethanol was mandatory to achieve SRF sink conditions in release studies, enabling its
solubility, detection, and quantification. In the donor compartment, 500 µL of SRF-SLN
was applied. Withdrawn extracted by receptor compartments (200 µL) were performed at
scheduled time intervals (0, 1, 2, 3, 4, 5, 6, 24, 48, 72 h) and replaced with an equal volume
of fresh receiving fluid equilibrated to 35 ◦C. This procedure was carried out at least three
times for each sample. Finally, SRF contents were measured using HPLC (as described in
Section 2.9).

2.9. High-Performance Liquid Chromatography (HPLC) Analyses

An Agilent model 1100 liquid chromatograph (Agilent, Santa Clara, CA, USA),
equipped with an autosampler Agilent model 1100 and Chemstation Agilent software for
data elaboration, and a reversed-phase C18 column (Luna 100, 5 µm, 150 × 4.6 mm
Phenomenex, Santa Clara, CA, USA) was used to perform high-performance liquid
chromatography-UV (HPLC-UV) analysis, to measure SRF contents. As a mobile phase, a
mixture of 20 mM of potassium dihydrogen-phosphate aqueous solution and acetonitrile
(35:65 v/v) was used, and the column flow rate was set at 1 mL/min. The detection of the
effluent was conducted at λ = 260 nm, showing a retention time of 8 min. This method was
verified according to International Conference on Harmonisation (ICH) guidelines (ICH
Q2 (R1) Validation of analytical procedures: text and methodology). A calibration curve
was produced analysing the absorption of known concentration of SRF in THF, and the
obtained linear regression value was: R2 = 0.99987. Known amounts of SRF were spiked
on SLN formulation and dissolved in THF, the absorption was determined for all solutions.
No interference of the other formulation components was observed.

2.10. Stability and Interaction of Nanoparticles in the Presence of Ocular Mucus Component
2.10.1. Physico-Chemical Evaluation

Optimisation of SLN A8 in terms of mucoadhesive properties was operated adding
0.15% w/v of DDAB (A8-DB) or DOTAP (A8-DP) to the lipid phase during nanoparticles
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preparation. The obtained formulations were incubated with mucin dispersion (1:1 v/v)
in simulated tear fluid (STF: NaCl 0.68 g, NaHCO3 0.22 g, CaCl2·2H2O 0.008 g, KCl 0.14
g, and distilled deionised water to 100 mL) at 35 ◦C, in order to analyse the stability and
interaction of nanoparticles with mucin. Mean size, PDI, and zeta potential (ZP) of the
nanoparticles/mucin dispersions were measured by Zetasizer NanoZS90 at scheduled
time intervals (0, 1, and 24 h).

2.10.2. Mucoadhesive Strength

Positively charged nanoparticles (A8-DB and A8-DP) were evaluated regarding their
mucoadhesive strength based on the interaction with the negatively charged mucin. Briefly,
equal volumes of mucin (0.1 w/v in STF) and nanoparticles were stirred for 15 min at room
temperature and incubated for 1 and 24 h at 35 ◦C, and then centrifuged at 13,000 rpm
(ThermoScientific™ SL16R, ThermoFisher Scientific, Waltham, MA, USA), for 1 h at 6 ◦C. A
UV-VIS spectrophotometer (UH5300 UV-Visible Double-Beam Spectrophotometer, Hitachi
Europe, Milan, Italy) was used to quantify the amount of free mucin in the supernatant
at 228 nm. The calibration curve for the quantitative evaluation of mucin was linear
in the following range: 1–0.06 mg/mL (R2 = 0.9891). The mucin-binding efficiency (%),
expressing the mucoadhesive strength of the nanoparticles, was calculated according to
Equation (2):

Mucin binding efficiency % = total amount of mucin−free amount of mucin
total amount of mucin × 100 (2)

2.11. Statistical Analysis

All data from PCS are reported as mean values ± SD. Differences, analysed by two-
sample hypothesis testing (t-test), using Origin Software (version 8.5.1), were considered
statistically significant for p < 0.05. Cell viability data were analysed in Prism 6 (Graph-
Pad Inc., La Jolla, CA, USA) by one-sample t-test (treatment vs. cut-off) assuming a
cut-off value for cytotoxicity of 50% as per ECVAM protocol DB-ALM n◦ 17: MTT Assay
(EURL ECVAM Database on Alternative Methods to Animal Experimentation. Avail-
able online: http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/
DBALM/LATEST/online/DBALM_docs/17_P_MTT%20Assay.pdf, accessed on 5 October
2021). For the statistical analysis of nanoparticles during stability study in mucin dis-
persion (STF), two-way ANOVA was performed. Multiple comparisons were performed
according to Sidak’s multiple comparisons test. Analyses were performed using Prism 8
(GraphPad Software, Inc., La Jolla, CA, USA, version 8.0.2, last accession date 19 October
2021), applying p < 0.05 as the minimum level of significance.

3. Results and Discussion
3.1. Physicochemical Characterisation

As reported in the literature, nanoparticle size strongly affects drug distribution and
residence time in the eye’s structure, with nanoparticles smaller than 200 nm usually
showing a burst release followed by a gradual release profile in vitro and a longer half-life,
compared to smaller nanoparticles characterised by a longer half-life and a sustained drug
release [21,22]. In order to obtain homogeneous small-sized SLN for potential ophthalmic
application, a preliminary quali-quantitative screening was developed on two different
solid lipids, Softisan (A) and Suppocire (B), at different concentrations (5, 7, 8, 9 % w/v). The
eco-friendly PIT method, reported in the literature as an easy method with a low impact on
the enviro nment [17], was used as a lab-scale preparation procedure. The obtained results
showed that the amount of the selected lipids strongly affected nanoparticles size. Notably,
none of the lipids used at 5 or 7% w/v produced well-structured SLN, since the lowest
concentration (5% w/v) produced particles with a high degree of heterogeneity in size (PDI
>> 0.2), probably due to an excess of surfactants, compared to the amount of the solid lipid
(Figure 1). The use of 7% w/v of lipid, in both cases, led to the formation of heterogeneous

http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/17_P_MTT%20Assay.pdf
http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/17_P_MTT%20Assay.pdf
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particles, characterised by the presence of different peaks of size distribution, as revealed
by the multiple peaks of intensity (Supplementary Figure S1).

Figure 1. Mean particle size (Z-Ave, ( nm)) and polydispersity index (PDI, (a.u.)) of SLN prepared
with different amounts of Softisan (A5, A7, A8, and A9) or Suppocire (B5, B7, B8, and B9). Each
measurement represents the mean value ± standard deviation (SD), n = 6.

Conversely, using higher amounts of Suppocire in SLN B8 and B9 (8 or 9% w/v)
induced a better organisation of the raw materials at the interface, with the formation of
smaller and more homogeneous particles, with a mean diameter below 200 nm (Figure 1).
A different behaviour was observed when using 9% w/v Softisan (SLN A9), whose very
bulky chemical structure led to the formation of larger nanoparticles with sizes greater than
300 nm, which is not suitable for the ophthalmic application [21–23]. Contrarily, SLN A8
showed homogeneous particles (PDI < 0.3) in the nanometer range (<100 nm), therefore
appropriate for the topical treatment of UM. Therefore, according to the acquired data,
SLN A5, A7, A9, B5, and B7 were excluded from further analysis while SLN A8, B8, and B9
were deeper characterised.

The obtained SLN showed pH values of around 6.5 ± 0.2 with an osmolality of
298 ± 0.10 mOsm/kg, without significant differences due to the type and amount of the
used lipid. Since the ocular tissue can tolerate a pH value ranging from 4 to 9, and the
osmolality of human tears is in the range of 280–300 mOsm/kg (although an osmolality
between 200 and 450 mOsm/kg can be tolerated); therefore, the produced SLN were
compatible with the tears film.

Since sterilisation is a mandatory prerequisite for all ophthalmic formulations, a
preliminary study was performed by filtration [24]. In order to select the most suitable
material for the lipid nanocarriers used in this study, the sterilisation was carried out using
syringe filters with three different types of membranes: polypropylene (PP), polyethylene
sulfone (PES), and polyvinylidene fluoride (PVDF), with average pore diameter equal
to 0.22 µm. The experimental results showed that PP and PES filters are not suitable for
the filtration of the SLN, as they retain the nanoparticles (data not shown) without the
possibility to obtain a filtrated suspension. The use of PVDF filters, on the other hand,
allowed the filtration of all SLN, regardless of the quali-quantitative composition of the
lipid matrix. From the results of PCS analysis before and after filtration, it is possible to
state that all systems maintain their initial characteristics unaltered (Table 1). Therefore,
the produced SLN can be easily sterilised using PVDF membrane filters, characterised by
great mechanical strength and dimensional stability (no deformation under weight), with
better chemical stability, almost 10 times higher compared to PP and PES filters [25–27].
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Table 1. Mean particles size (Z-Ave, ( nm)) and polydispersity index (PDI, (a.u.)) ± standard deviation
(SD) of SLN before and after filtration by PVDF membrane filters of 0.22 µm. Data reported are the
mean of six different experiments. * Significance for p > 0.05.

Filtration SLN Z-Ave ± S.D. ( nm) PDI ± S.D.

Not filtered
A8 96.63 ± 2.05 0.177 ± 0.020
B8 70.67 ± 2.08 0.126 ± 0.003
B9 123.5 ± 1.36 0.139 ± 0.012

Filtered (PVDF)
A8 95.53 ± 0.63 0.197 ± 0.080
B8 72.03 ± 0.46 0.178 ± 0.008 *
B9 117.18 ± 0.82 0.165 ± 0.020

The physical stability of SLN A8, B8, and B9, a mandatory requirement for their
potential industrial application [28], was investigated by Turbiscan® AGS storing samples at
room temperature (25 ± 2 ◦C) for 30 days (Figure 2). As shown in the graph of transmission
variations (∆T) reported in Figure 2a, SLN B8 showed important instability phenomena
related to particles aggregation, highlighted by ∆T variation in the middle of the graph
greater than 20%. Conversely, SLN A8 and SLN B9 showed a potential long-term physical
stability, as confirmed by the absence of transmission variation in sample A8, or by the
presence of insignificant transmission variation (∆T < 20%) in SLN B9. TSI values confirmed
the stability decreased in the following scale: A8 ≥ B9 >> B8 (Figure 2b).

Figure 2. (a) Transmission profiles (∆T) of SLN A8, B8 and B9 stored in Turbiscan® for 30 days at 25.0 ± 1.0 ◦C. Data are
reported as a function of time in the range 0–30 days of sample height (0 to 20 mm); (b) Destabilisation kinetics in terms
of evolution of Turbiscan® Stability Index (TSI) of samples stored in the instrument at 25.0 ± 1.0 ◦C for 30 days; (c) Mean
particle size (Z-Ave, [ nm]) and polydispersity index (PDI, [a.u.]) of SLN A8, B8 and B9 stored in Turbiscan® and measured
by PCS after 1, 2, 3 and 4 weeks. Each measurement represents the mean value ± standard deviation (SD), n = 6.

It is worth noting that the obtained stability results were in perfect agreement with PCS
measurements of samples stored in Turbiscan® and analysed at different time intervals (1, 2,
3, or 4 weeks). The obtained data confirmed that SLN B8 underwent significant instability
phenomena (p < 0.05) due to particle aggregation, whose size and PDI values increased



Pharmaceutics 2021, 13, 1956 9 of 16

already after 2 weeks of storage (Figure 2c, Supplementary Table S1). PCS analysis of
stored samples also confirmed that SLN A8 represents the ideal formulation, among those
prepared, since after 4 weeks of storage, at the 0.05 level of significance, the difference
between population means was not significantly different for mean size and PDI values
(Supplementary Table S1). The different behaviours of Suppocire and Softisan could be
attributed to their different chemical structure and properties. Suppocire NB is a mixture of
mono-, di-, and triglyceride esters of fatty acids (C10 to C18), with an intermediate melting
point (35–39 ◦C). It rapidly recrystallises in the cooling phase of SLN production, thus
determining the formation of smaller particles with harder solid core compared to the
hydrogenated coco-glycerides (Softisan 100), whose lower melting range (33.5–35.5 ◦C) is
probably responsible for the greater values of mean size at the highest concentration.

3.2. In Vitro Characterisation

In order to evaluate the potential ophthalmic application of the developed formu-
lations, the cytocompatibility profile of SLN A8, B8 and B9 was evaluated on the SIRC
cell line using the method described above (see Section 2.7). Experimental results showed
that BAK 0.01%, used as a positive control (CTRL+), induced significant cell mortality
by 80–90%, causing the permanent loss of cell viability regardless of the “wash” or “no
wash” condition (Figure 3). BAK was selected as CTRL+, considering that it is the major
preservative component currently used in eye drops at concentrations even higher than
0.01% (i.e., 0.02%) [29,30]. SLN B8 produced statistically significant cytotoxic effects both in
“wash” and “no wash” conditions, inducing cell mortality by 56 ± 1.09% and 78 ± 0.98%,
respectively (Figure 3). Conversely, SLN A8 and SLN B9 were found to cause no significant
effect in the “no wash” condition (Figure 3). Noteworthy, SLN B9, with particles of about
150 nm, showed a better cytocompatibility profile compared to smaller nanoparticles, as
reported in Figure 3.

Consistently, the same systems (i.e., SLN A8 and SLN B9) were found to be endowed
with particularly favourable profiles when tested in the “wash” protocol (Figure 3). Indeed,
SLN A8 prepared using Softisan showed a more favourable profile compared to Suppocire
NB, probably due to the lowest melting temperature of Softisan, which could provide a
softer and more flexible structure, that is more favourable in cell interactions [27]. It is
worth noting that the “wash” protocol should be considered the most predictive condition
of potential corneal cytotoxic effects arising from administration to the surface of the eye.
Indeed, concentrations of formulations/drug delivery systems on the corneal surface are
strongly affected by several factors, including dilution, blinking, and drainage, ultimately
affecting their overall pre-corneal retention time [31]. More importantly, SLN A8 and
B9 showed a promising cytocompatibility profile even when tested with the “no wash”
protocol, which is a very extreme testing condition that may prove to be inappropriate
for extrapolations to the ocular enviro nment posing issues of potential false positives for
cytotoxic effects.

Indeed, standard cytotoxicity protocols, DB-ALM Protocol n◦ 17, prescribe 24 h of
cell exposure to test items [32] and this exposure time is rather extreme if compared to eye
drops residence time on the human ocular surface of only a few minutes [31]. Certainly,
this approach is most likely overestimating true cytotoxic effects. Therefore, we developed
the Short Time Repeated Exposure (S.T.R.E.) test using SIRC cells as an alternative method
for assessing eye irritation merging notion from both the DB-ALM Protocol n◦ 17 and
the short-time exposure test by Takahashi et al. to better mimic the real situation after
administration of drugs to the ocular surface [33]. Thus, the protocol entails exposing
the target cells to test items for 5 min for a total of six repetitions, summing up to 30
min of total exposure in a 12 h interval. Hence, we have simulated both realistic corneal
residence times and repeated administration courses typically associated with ophthalmic
eye drops treatments.
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Figure 3. Cell viability of SIRC cells repeatedly exposed (6×) for 10 min with or without wash and
with a step of 1.5 h between the repeated exposures (Short Time Repeated Exposure (S.T.R.E.)) to
control formulations or delivery systems SLN B8, SLN B9, and SLN A8 diluted at 5 mg/mL. Dotted
line is placed at 50% representing the cut-off value to determine cytotoxicity potential according
to ECVAM protocol DB-ALM n◦ 17. Data represent the mean ± s.e.m. of three replicates for each
condition. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001. One sample t-test vs. cut-off 50%.

In order to improve the retention time after topical administration, SLN A8 was
optimized with the addition of a positively charged lipid, and the effect of two monovalent
cationic lipids with two lipophilic chains was investigated by mucoadhesive studies. In
particular, DOTAP was selected as an FDA-approved material and, in order to reduce the
cost of the final product, its effect was compared to that of DDAB, selected for its lowest
cost and ability to provide a coating layer on lipid nanoparticles [34,35].

The addition of DDAB (A8-DB) or DOTAP (A8-DP) as coating layer did not signifi-
cantly modify mean particles size and PDI values of the SLN A8 while, as expected, ZP
values turned from negative to highly positive values (+20 mV). The stability of colloidal
particles in biological fluids containing relevant levels of proteins is a crucial issue. Cur-
rently, it is broadly accepted that the size of the particles plays an important role in their
ability to interact with cells and in their transport through the mucus layer, such as that of
the ocular mucosa [36]. Surprisingly, despite the importance of the size, there are very few
articles on the stability of colloidal particles in biological fluids. For example, Tobìo et al.
showed that poly (lactic acid) nanoparticles aggregated significantly upon contact with sim-
ulated gastric fluids [37]. Similarly, it was observed that poly-ε-caprolactone nanocapsules
suffered an immediate aggregation process upon their incubation with lysomes [38].

In order to investigate nanoparticles behaviour after ophthalmic administration, ex-
periments were performed in presence of mucin, which is one of the main components
of the ocular mucus layer, dispersed in STF, thus investigating the effect of proteins and
ions on the stability and the mucoadhesive strength of nanoparticles intended for ocular
delivery. Experiments were performed comparing the effects of the two different coating
lipids (DDAB and DOTAP) to the uncoated negatively charged SLN A8.

As reported in Figure 4, statistically significant variations in particle mean size can
be observed for nanoparticles/mucin dispersions over time compared to the A8, A8-
DB, and A8-DP controls, with the following trend A8-DB > A8-DP > A8. This result
suggested that the main interaction was established between A8-DB and mucin at all time
points investigated, followed by A8-DP and as expected, the negatively charged SLN A8.
Looking carefully at these results, we can observe that the increase in particle mean size
for nanoparticles incubated in mucin dispersion is associated with PDI values ≤ 0.275
indicating the absence of aggregation and/or precipitation phenomena, thus revealing
good stability in a simulated biological fluid (STF with mucin).
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Figure 4. Nanoparticles mean size (Z-Ave, bars) and PDI (symbols) before (A8, A8-DB, A8-DP)
and after (A8-MUC; A8-DB-MUC; A8-DP-MUC) 1 and 24 h of incubation with mucin at 35 ◦C.
Significance was set as p > 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001; ns—not significant.

ZP measurement is a common method to investigate the mucoadhesive properties
of several biopolymers [39] and can be also used to evaluate the biophysical interactions
of lipid nanoparticles with mucin [40], which has a negative charge. For this reason, the
superficial charge of nanoparticles is an important parameter since repulsion between
nanoparticles and mucin occurs with negatively charged systems while there will be an
attraction to the negatively charged mucin and the positive particles [40]. Mucin has
a negative charge (approximately −7 mV), thus the positive surface charges of A8-DB
and A8-DP formulations are expected to strongly interact [41]. Accordingly, positive ZP
values of A8-DB and A8-DP were inverted to negative values after incubation with mucin
(Figure 5), suggesting that strong interactions between mucin and nanoparticles occurred,
thus confirming our previous results (Figure 4).

Figure 5. Nanoparticles zeta potential (ZP) before (A8, A8-DB, A8-DP) and after (A8-MUC; A8-DB-
MUC; A8-DP-MUC) 1 and 24 h of incubation with mucin at 35 ◦C. Significance was set as p > 0.05; * p
≤ 0.05; **** p ≤ 0.0001; ns—not significant.
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The electrostatic interaction is the most expectable mucoadhesive mechanism. The
decrease in ZP for both nanoparticles before and after incubation with mucin supports this
observation. The occurrence of ionic interactions caused a decrease in the ZP value because
mucin interacted with the positively charged surface layer of nanoparticles, neutralizing
the positive charges [42]. Contrarily, the ZP of SLN A8 remained almost unchanged in
the presence of mucin, or decreased furtherly and reached a relatively large negative
value as a result of weaker interactions [19] and the absence of bridging effect [16], since
no or low change (** p ≤ 0.01) in particle size was observed (Figure 5). Based on these
findings, the mucoadhesive strength of positively charged nanoparticles was furtherly
investigated. Both samples (A8-DB and A8-DP) exhibited relevant mucin-binding efficiency
concomitant with the conversion in the ZP values, as presented in Figure 5. The sample
A8-DB possessed the maximum mucin-binding efficiency (%) (99.2 ± 1.08%), compared to
A8-DP (61.5 ± 2.34%). These results highlighted a different ability of the two cationic lipids
to interact with mucin, with DDAB having greater mucoadhesive properties compared to
DOTAP. This effect could be related to their different chemical structure, also affecting their
physical state at room temperature (DDAB exists as gel while DOTAP as liquid crystalline):
both aliphatic chains of DDAB are saturated, unlike DOTAP, whose chains present a
double bond in the C9 position [43]. The mucoadhesive properties are correlated with the
ionic interaction between the monovalent cationic lipid and the negatively charged sialic
acid groups of eye mucin, with subsequent formation of non-covalent bonds [42]. Such
interaction promotes the ocular residence time and cellular uptake of nanoparticles, which
is essential for effective mucosal delivery of therapeutics, enhancing drug bioavailability,
through the increased rate of absorption, and drug targeting.

Based on the obtained results, considering the overall behaviour, SLN A8-DB was
selected for the encapsulation of SRF, a drug approved for the treatment of kidney cancer
and advanced liver cancer [44–50] that has been recently investigated for the potential
treatment of uveal melanoma and retinal neovascular diseases [2,3,7,8,11,51–53].

As shown in Table 2, the addition of 0.8 or 1.0 % w/v of SRF to A8 did not modify the
main properties of the SLN in terms of mean particle size and homogeneity.

Table 2. Mean particles size (Z-Ave, [ nm]) and polydispersity index (PDI, (a.u.)), pH, osmolality
(mOsm/Kg) and encapsulation efficiency (EE%) ± standard deviation (SD) of SLN A8 loaded with
0.8 or 1.0% w/v of Sorafenib (SRF). Each value is the average of six different replicates ± standard
deviation (SD).

SLN Z-Ave ± S.D.
( nm) PDI ± S.D. pH ± S.D.

Osmolality
(mOsm/Kg)

± S.D.
EE% ± S.D.

A8-SRF 0.8% 127.85 ± 1.50 0.215 ± 0.014 6.33 ± 0.85 308 ± 2 75.0 ± 2.1
A8-SRF 1% 150.12 ± 1.85 0.180 ± 0.013 6.25 ± 0.72 302 ± 3 74.5 ± 2.8

Both SRF-loaded nanosuspensions showed pH and osmolality values compatible with
the eye and high value of EE%, corresponding to 74.5 and 75% for A8-SRF 1% and A8-SRF
0.8%, respectively. This result is consistent with literature findings investigating SRF encap-
sulation into lipid nanoparticles for the treatment of liver cancer, with lower EE% values
found in our study probably related to the smallest size of SLN A8 nanoparticles [13,54–56].

The cumulative release rate was calculated according to the released SRF amount
compared to the total SRF amount. Figure 6 shows the release profile of SRF from SLN A8
loaded with 0.8 or 1.0 % w/v and SRF-suspension in vitro. Interestingly, SLN A8 at both
concentrations provided a controlled prolonged release of the encapsulated drug, with
less than 25% of SRF released after 72 h (Figure 6). The slow release may be attributed to
the good encapsulation and surface coating by the lipid layer [54,57]. These results are
encouraging for the potential ophthalmic application and in accordance with previous
findings not only related to lipid nanoparticles [58–60] but also reported for polymeric
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nanoparticles, which have been demonstrated to provide sustained release for up to 50
days when injected intravitreally in rabbits [61].

Figure 6. In vitro release profiles of Sorafenib (SRF) from SLN A8 loaded with 0.8% or 1.0% w/v,
compared to free drug suspension 1%, w/v (mean ± SD, n = 3).

4. Conclusions

The results obtained in our study demonstrated that SLN prepared using Softisan
as solid lipid represents a promising strategy for the topical delivery of Sorafenib in the
potential treatment of uveal melanoma due to the presence of small-sized nanoparticles,
characterised by stability over time, good cytocompatibility, and high mucoadhesive
properties. The developed strategy opens the perspective of the potential ophthalmic
treatment of a disease that, to date, is mainly treated with systemic therapies or specific
treatments directed to the liver, with a consequently positive impact on patient compliance.
However, further studies need to be developed to deepen the potentiality of SRF-loaded
SLN A8-DB, with particular attention on the possibility of obtaining a final freeze-dried
product to be investigated in terms of stability, in vitro release, in vitro biocompatibility on
SIRC, and effectiveness on a model of uveal melanoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13111956/s1, Figure S1: Intensity correlation functions of light scattered at
90◦ and hydrodynamic radius distribution by intensity of SLN prepared with different amount of
Softisan (A5, A7, A8 and A9) or Suppocire (B5, B7, B8 and B9), Table S1: Mean particles size (Z-Ave,
[ nm]) and polydispersity index (PDI, [a.u.]) ± standard deviation (SD) of unloaded SLN A8, B8 and
B9 stored in Turbiscan®at 25.0 ± 1.0 ◦C and analysed at different time intervals. Each value is the
average of six different replicates ± standard deviation (SD). * Significance for p < 0.05, compared to
the initial value.

Author Contributions: Conceptualisation, C.C. (Claudia Carbone); Data curation, A.B., V.P., C.Z.,
C.C. (Cinzia Cimino), A.P. and C.C. (Claudia Carbone); Funding acquisition, C.C. (Claudia Carbone);
Investigation, A.B., V.P., C.Z., C.C. (Cinzia Cimino) and A.P.; Methodology, C.C. (Claudia Carbone);
Writing—original draft, A.B., V.P., C.Z., C.C. (Cinzia Cimino), A.P., G.P., F.G., R.P. and C.C. (Claudia
Carbone); Writing—review and editing, G.P., F.G., R.P. and C.C. (Claudia Carbone). All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Research Funding for University of Catania under PIAno
di inCEntivi per la RIcerca di Ateneo 2020-2022-Linea di Intervento 3 “Starting Grant”, Project
CALLIOPE and by SIFI S.p.A. [Project PON 01_01434 (ReACT—Retinal Advanced Care Therapies)].

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/pharmaceutics13111956/s1
https://www.mdpi.com/article/10.3390/pharmaceutics13111956/s1


Pharmaceutics 2021, 13, 1956 14 of 16

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to Research Centre on Ocular Nanotechnology (NANO-
i) from the University of Catania for the technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buzzacco, D.M.; Abdel-Rahman, M.H.; Park, S.; Davidorf, F.; Olencki, T.; Cebulla, C.M. Long-Term Survivors with Metastatic

Uveal Melanoma. Open. Ophthalmol. J. 2012, 6, 49–53. [CrossRef] [PubMed]
2. Niederkorn, A.; Wackernagel, W.; Artl, M.; Schwantzer, G.; Aigner, B.; Richtig, E. Response of Patients with Metastatic Uveal

Melanoma to Combined Treatment with Fotemustine and Sorafenib. Acta Ophthalmol. 2014, 92, e696–e697. [CrossRef] [PubMed]
3. Velho, T.R.; Kapiteijn, E.; Jager, M.J. New Therapeutic Agents in Uveal Melanoma. Anticancer Res. 2012, 32, 2591–2598. [PubMed]
4. Collaborative Ocular Melanoma Study Group. Assessment of Metastatic Disease Status at Death in 435 Patients with Large

Choroidal Melanoma in the Collaborative Ocular Melanoma Study (Coms): Coms Report No. 15. Arch. Ophthalmol. 2001, 119,
670–676. [CrossRef]

5. Kujala, E.; Makitie, T.; Kivela, T. Very Long-Term Prognosis of Patients with Malignant Uveal Melanoma. Investig. Ophthalmol.
Vis. Sci. 2003, 44, 4651–4659. [CrossRef]

6. Augsburger, J.J.; Correa, Z.M.; Shaikh, A.H. Effectiveness of Treatments for Metastatic Uveal Melanoma. Am. J. Ophthalmol. 2009,
148, 119–127. [CrossRef]

7. Bhatia, S.; Moon, J.; Margolin, K.A.; Weber, J.S.; Lao, C.D.; Othus, M.; Aparicio, A.M.; Ribas, A.; Sondak, V.K. Phase Ii Trial of
Sorafenib in Combination with Carboplatin and Paclitaxel in Patients with Metastatic Uveal Melanoma: Swog S0512. PLoS ONE
2012, 7, e48787. [CrossRef]

8. Mouriaux, F.; Servois, V.; Parienti, J.J.; Lesimple, T.; Thyss, A.; Dutriaux, C.; Neidhart-Berard, E.M.; Penel, N.; Delcambre, C.;
Peyro Saint Paul, L.; et al. Sorafenib in Metastatic Uveal Melanoma: Efficacy, Toxicity and Health-Related Quality of Life in a
Multicentre Phase Ii Study. Br. J. Cancer 2016, 115, 20–24. [CrossRef]

9. Benizri, S.; Ferey, L.; Alies, B.; Mebarek, N.; Vacher, G.; Appavoo, A.; Staedel, C.; Gaudin, K.; Barthelemy, P. Nucleoside-Lipid-
Based Nanocarriers for Sorafenib Delivery. Nanoscale Res. Lett. 2018, 13, 17. [CrossRef]

10. Bondi, M.L.; Botto, C.; Amore, E.; Emma, M.R.; Augello, G.; Craparo, E.F.; Cervello, M. Lipid Nanocarriers Containing Sorafenib
Inhibit Colonies Formation in Human Hepatocarcinoma Cells. Int. J. Pharm. 2015, 493, 75–85. [CrossRef]

11. Santonocito, M.; Zappulla, C.; Viola, S.; La Rosa, L.R.; Solfato, E.; Abbate, I.; Tarallo, V.; Apicella, I.; Platania, C.B.M.; Maugeri, G.;
et al. Assessment of a New Nanostructured Microemulsion System for Ocular Delivery of Sorafenib to Posterior Segment of the
Eye. Int. J. Mol. Sci. 2021, 22, 4404. [CrossRef]

12. Mangana, J.; Levesque, M.P.; Karpova, M.B.; Dummer, R. Sorafenib in Melanoma. Expert Opin. Investig. Drugs 2012, 21, 557–568.
[CrossRef]

13. Grillone, A.; Riva, E.R.; Mondini, A.; Forte, C.; Calucci, L.; Innocenti, C.; de Julian Fernandez, C.; Cappello, V.; Gemmi, M.;
Moscato, S.; et al. Active Targeting of Sorafenib: Preparation, Characterization, and in Vitro Testing of Drug-Loaded Magnetic
Solid Lipid Nanoparticles. Adv. Healthc. Mater. 2015, 4, 1681–1690. [CrossRef]

14. Gonzalez-Fernandez, F.M.; Bianchera, A.; Gasco, P.; Nicoli, S.; Pescina, S. Lipid-Based Nanocarriers for Ophthalmic Administra-
tion: Towards Experimental Design Implementation. Pharmaceutics 2021, 13, 447. [CrossRef]

15. Sanchez-Lopez, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; Garcia, M.L. Lipid Nanoparticles (Sln, Nlc): Overcoming the
Anatomical and Physiological Barriers of the Eye—Part I—Barriers and Determining Factors in Ocular Delivery. Eur. J. Pharm.
Biopharm. 2017, 110, 70–75. [CrossRef]

16. Szilágyi, B.Á.; Mammadova, A.; Gyarmati, B.; Szilágyi, A. Mucoadhesive Interactions between Synthetic Polyaspartamides and
Porcine Gastric Mucin on the Colloid Size Scale. Colloids Surf. B Biointerfaces 2020, 194, 111219. [CrossRef]

17. Carbone, C.; Fuochi, V.; Zielinska, A.; Musumeci, T.; Souto, E.B.; Bonaccorso, A.; Puglia, C.; Petronio Petronio, G.; Furneri, P.M.
Dual-Drugs Delivery in Solid Lipid Nanoparticles for the Treatment of Candida Albicans Mycosis. Colloids Surf. B Biointerfaces
2020, 186, 110705. [CrossRef]

18. Carbone, C.; Caddeo, C.; Grimaudo, M.A.; Manno, D.E.; Serra, A.; Musumeci, T. Ferulic Acid-Nlc with Lavandula Essential Oil:
A Possible Strategy for Wound-Healing? Nanomaterials 2020, 10, 898. [CrossRef]

19. Bonaccorso, A.; Musumeci, T.; Carbone, C.; Vicari, L.; Lauro, M.R.; Puglisi, G. Revisiting the Role of Sucrose in Plga-Peg
Nanocarrier for Potential Intranasal Delivery. Pharm. Dev. Technol. 2018, 23, 265–274. [CrossRef]

20. Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernandez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A.M.; Manconi,
M. Stability, Biocompatibility and Antioxidant Activity of Peg-Modified Liposomes Containing Resveratrol. Int. J. Pharm. 2018,
538, 40–47. [CrossRef]

21. Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-Based Strategies for Treatment of Ocular Disease. Acta Pharm.
Sin. B 2017, 7, 281–291. [CrossRef] [PubMed]

22. Sakurai, E.; Ozeki, H.; Kunou, N.; Ogura, Y. Effect of Particle Size of Polymeric Nanospheres on Intravitreal Kinetics. Ophthalmic.
Res. 2001, 33, 31–36. [CrossRef] [PubMed]

http://doi.org/10.2174/1874364101206010049
http://www.ncbi.nlm.nih.gov/pubmed/22798969
http://doi.org/10.1111/aos.12432
http://www.ncbi.nlm.nih.gov/pubmed/24774993
http://www.ncbi.nlm.nih.gov/pubmed/22753717
http://doi.org/10.1001/archopht.119.5.670
http://doi.org/10.1167/iovs.03-0538
http://doi.org/10.1016/j.ajo.2009.01.023
http://doi.org/10.1371/journal.pone.0048787
http://doi.org/10.1038/bjc.2016.119
http://doi.org/10.1186/s11671-017-2420-2
http://doi.org/10.1016/j.ijpharm.2015.07.055
http://doi.org/10.3390/ijms22094404
http://doi.org/10.1517/13543784.2012.665872
http://doi.org/10.1002/adhm.201500235
http://doi.org/10.3390/pharmaceutics13040447
http://doi.org/10.1016/j.ejpb.2016.10.009
http://doi.org/10.1016/j.colsurfb.2020.111219
http://doi.org/10.1016/j.colsurfb.2019.110705
http://doi.org/10.3390/nano10050898
http://doi.org/10.1080/10837450.2017.1287731
http://doi.org/10.1016/j.ijpharm.2017.12.047
http://doi.org/10.1016/j.apsb.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/28540165
http://doi.org/10.1159/000055638
http://www.ncbi.nlm.nih.gov/pubmed/11114602


Pharmaceutics 2021, 13, 1956 15 of 16

23. Puglia, C.; Offerta, A.; Carbone, C.; Bonina, F.; Pignatello, R.; Puglisi, G. Lipid Nanocarriers (Lnc) and Their Applications in
Ocular Drug Delivery. Curr. Med. Chem. 2015, 22, 1589–1602. [CrossRef] [PubMed]

24. Souto, E.B.; Doktorovova, S.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L. Feasibility of Lipid Nanoparticles for Ocular Delivery
of Anti-Inflammatory Drugs. Curr. Eye Res. 2010, 35, 537–552. [CrossRef]

25. Lee, Y.J.; Kwon, J.; Shin, S.; Eun, Y.G.; Shin, J.H.; Lee, G.J. Optimization of Saliva Collection and Immunochromatographic
Detection of Salivary Pepsin for Point-of-Care Testing of Laryngopharyngeal Reflux. Sensors 2020, 20, 325. [CrossRef]

26. Kotsilkova, R.; Borovanska, I.; Todorov, P.; Ivanov, E.; Menseidov, D.; Chakraborty, S.; Bhattacharjee, C. Tensile and Surface
Mechanical Properties of Polyethersulphone (Pes) and Polyvinylidene Fluoride (Pvdf) Membranes. J. Theor. Appl. Mech. Bulg.
2018, 48, 85–99. [CrossRef]

27. Jeong, S.H.; Jang, J.H.; Cho, H.Y.; Lee, Y.B. Soft- and Hard-Lipid Nanoparticles: A Novel Approach to Lymphatic Drug Delivery.
Arch. Pharm. Res. 2018, 41, 797–814. [CrossRef]

28. Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine Scale-up Technologies: Feasibilities and Challenges. AAPS PharmSciTech 2014,
15, 1527–1534. [CrossRef]

29. Iwasawa, A.; Ayaki, M.; Niwano, Y. Cell viability score (CVS) as a good indicator of critical concentration of ben-zalkonium
chloride for toxicity in cultured ocular surface cell lines. Regul. Toxicol. Pharmacol. 2013, 66, 177–183. [CrossRef]

30. Freeman, P.D.; Kahook, M.Y. Preservatives in Topical Ophthalmic Medications: Historical and Clinical Perspectives. Exp. Rev.
Ophthalmol. 2009, 4, 59–64. [CrossRef]

31. Mikkelson, T.J.; Chrai, S.S.; Robinson, J.R. Altered Bioavailability of Drugs in the Eye Due to Drug-Protein Interaction. J. Pharm.
Sci. 1973, 62, 1648–1653. [CrossRef]

32. EURL ECVAM Database on Alternative Methods to Animal Experimentation. Available online: http://cidportal.jrc.ec.europa.
eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/17_P_MTT%20Assay.pdf (accessed on
5 October 2021).

33. Takahashi, Y.; Hayashi, K.; Abo, T.; Koike, M.; Sakaguchi, H.; Nishiyama, N. The Short Time Exposure (STE) test for predicting
eye irritation potential: Intra-laboratory reproducibility and correspondence to globally harmonized system (GHS) and EU eye
irritation classification for 109 chemicals. Toxicol. Vitr. 2011, 25, 1425–1434. [CrossRef]

34. Carbone, C.; Campisi, A.; Manno, D.; Serra, A.; Spatuzza, M.; Musumeci, T.; Bonfanti, R.; Puglisi, G. The Critical Role of
Didodecyldimethylammonium Bromide on Physico-Chemical, Technological and Biological Properties of Nlc. Colloids Surf. B
Biointerfaces 2014, 121, 1–10. [CrossRef]

35. Carbone, C.; Tomasello, B.; Ruozi, B.; Renis, M.; Puglisi, G. Preparation and Optimization of Pit Solid Lipid Nanoparticles Via
Statistical Factorial Design. Eur. J. Med. Chem. 2012, 49, 110–117. [CrossRef]

36. De Campos, A.M.; Diebold, Y.; Carvalho, E.L.; Sanchez, A.; Alonso, M.J. Chitosan Nanoparticles as New Ocular Drug Delivery
Systems: In Vitro Stability, In Vivo Fate, and Cellular Toxicity. Pharm. Res. 2004, 21, 803–810. [CrossRef]

37. Tobio, M.; Sanchez, A.; Vila, A.; Soriano, I.I.; Evora, C.; Vila-Jato, J.L.; Alonso, M.J. The Role of Peg on the Stability in Digestive
Fluids and in Vivo Fate of Peg-Pla Nanoparticles Following Oral Administration. Colloids Surf. B Biointerfaces 2000, 18, 315–323.
[CrossRef]

38. Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Effect of Lysozyme on the Stability of Polyester Nanocapsules and Nanoparticles: Stabiliza-
tion Approaches. Biomaterials 1997, 18, 1305–1310. [CrossRef]

39. Mendes, A.C.; Sevilla Moreno, J.; Hanif, M.; Douglas, T.E.L.; Chen, M.; Chronakis, I.S. Morphological, Mechanical and Mucoadhe-
sive Properties of Electrospun Chitosan/Phospholipid Hybrid Nanofibers. Int. J. Mol. Sci. 2018, 19, 2266. [CrossRef]

40. Alp, G.; Aydogan, N. Lipid-Based Mucus Penetrating Nanoparticles and Their Biophysical Interactions with Pulmonary Mucus
Layer. Eur. J. Pharm. Biopharm. 2020, 149, 45–57. [CrossRef]

41. Bonaccorso, A.; Cimino, C.; Manno, D.E.; Tomasello, B.; Serra, A.; Musumeci, T.; Puglisi, G.; Pignatello, R.; Carbone, C. Essential
oils loaded NLC for potential intranasal administration. Pharmaceutics 2021, 13, 1166. [CrossRef]

42. Cordeiro, S.S.B.; Martins, A.M.; Ribeiro, H.M.; Gonçalves, L.; Marto, J. Antioxidant-Loaded Mucoadhesive Nanoparticles for Eye
Drug Delivery: A New Strategy to Reduce Oxidative Stress. Processes 2021, 9, 379. [CrossRef]

43. Kubackova, J.; Holas, O.; Zbytovska, J.; Vranikova, B.; Zeng, G.; Pavek, P.; Mullertz, A. Oligonucleotide Delivery across the
Caco-2 Monolayer: The Design and Evaluation of Self-Emulsifying Drug Delivery Systems (Sedds). Pharmaceutics 2021, 13, 459.
[CrossRef] [PubMed]

44. Zhao, Z.B.; Long, J.; Zhao, Y.Y.; Yang, J.B.; Jiang, W.; Liu, Q.Z.; Yan, K.; Li, L.; Wang, Y.C.; Lian, Z.X. Adaptive Immune Cells Are
Necessary for the Enhanced Therapeutic Effect of Sorafenib-Loaded Nanoparticles. Biomater. Sci. 2018, 6, 893–900. [CrossRef]
[PubMed]

45. Vishwakarma, S.K.; Sharmila, P.; Bardia, A.; Chandrakala, L.; Raju, N.; Sravani, G.; Sastry, B.V.S.; Habeeb, M.A.; Khan, A.A.;
Dhayal, M. Use of Biocompatible Sorafenib-Gold Nanoconjugates for Reversal of Drug Resistance in Human Hepatoblatoma
Cells. Sci. Rep. 2017, 7, 8539. [CrossRef]

46. Tatsugami, K.; Oya, M.; Kabu, K.; Akaza, H. Evaluation of Efficacy and Safety of Sorafenib in Kidney Cancer Patients Aged 75
Years and Older: A Propensity Score-Matched Analysis. Br. J. Cancer 2018, 119, 241–247. [CrossRef]

47. Wu, L.; Zhou, J.; Zhou, W.; Huang, X.F.; Chen, Q.; Wang, W.; Zhai, L.; Li, S.; Tang, Z. Sorafenib Blocks the Activation of the
Hif-2alpha/Vegfa/Epha2 Pathway, and Inhibits the Rapid Growth of Residual Liver Cancer Following High-Intensity Focused
Ultrasound Therapy In Vivo. Pathol. Res. Pract. 2021, 220, 153270. [CrossRef]

http://doi.org/10.2174/0929867322666150209152259
http://www.ncbi.nlm.nih.gov/pubmed/25666802
http://doi.org/10.3109/02713681003760168
http://doi.org/10.3390/s20010325
http://doi.org/10.2478/jtam-2018-0018
http://doi.org/10.1007/s12272-018-1060-0
http://doi.org/10.1208/s12249-014-0177-9
http://doi.org/10.1016/j.yrtph.2013.03.014
http://doi.org/10.1586/17469899.4.1.59
http://doi.org/10.1002/jps.2600621014
http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/17_P_MTT%20Assay.pdf
http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/EURL-ECVAM/datasets/DBALM/LATEST/online/DBALM_docs/17_P_MTT%20Assay.pdf
http://doi.org/10.1016/j.tiv.2011.04.012
http://doi.org/10.1016/j.colsurfb.2014.05.024
http://doi.org/10.1016/j.ejmech.2012.01.001
http://doi.org/10.1023/B:PHAM.0000026432.75781.cb
http://doi.org/10.1016/S0927-7765(99)00157-5
http://doi.org/10.1016/S0142-9612(97)00061-6
http://doi.org/10.3390/ijms19082266
http://doi.org/10.1016/j.ejpb.2020.01.017
http://doi.org/10.3390/pharmaceutics13081166
http://doi.org/10.3390/pr9020379
http://doi.org/10.3390/pharmaceutics13040459
http://www.ncbi.nlm.nih.gov/pubmed/33800701
http://doi.org/10.1039/C8BM00106E
http://www.ncbi.nlm.nih.gov/pubmed/29512660
http://doi.org/10.1038/s41598-017-08878-y
http://doi.org/10.1038/s41416-018-0129-3
http://doi.org/10.1016/j.prp.2020.153270


Pharmaceutics 2021, 13, 1956 16 of 16

48. Ye, H.; Zhou, L.; Jin, H.; Chen, Y.; Cheng, D.; Jiang, Y. Sorafenib-Loaded Long-Circulating Nanoliposomes for Liver Cancer
Therapy. Biomed. Res. Int. 2020, 2020, 1351046. [CrossRef]

49. Rodriguez-Hernandez, M.A.; de la Cruz-Ojeda, P.; Gallego, P.; Navarro-Villaran, E.; Stankova, P.; Del Campo, J.A.; Kucera, O.;
Elkalaf, M.; Maseko, T.E.; Cervinkova, Z.; et al. Dose-Dependent Regulation of Mitochondrial Function and Cell Death Pathway
by Sorafenib in Liver Cancer Cells. Biochem. Pharmacol. 2020, 176, 113902. [CrossRef]

50. Ebadi, M.; Bullo, S.; Buskara, K.; Hussein, M.Z.; Fakurazi, S.; Pastorin, G. Release of a Liver Anticancer Drug, Sorafenib from Its
Pva/Ldh- and Peg/Ldh-Coated Iron Oxide Nanoparticles for Drug Delivery Applications. Sci. Rep. 2020, 10, 21521. [CrossRef]

51. Kernt, M.; Neubauer, A.S.; Liegl, R.G.; Hirneiss, C.; Alge, C.S.; Wolf, A.; Ulbig, M.W.; Kampik, A. Sorafenib Prevents Human
Retinal Pigment Epithelium Cells from Light-Induced Overexpression of Vegf, Pdgf and Plgf. Br. J. Ophthalmol. 2010, 94,
1533–1539. [CrossRef]

52. Kernt, M.; Liegl, R.G.; Rueping, J.; Neubauer, A.S.; Haritoglou, C.; Lackerbauer, C.A.; Eibl, K.H.; Ulbig, M.W.; Kampik, A.
Sorafenib Protects Human Optic Nerve Head Astrocytes from Light-Induced Overexpression of Vascular Endothelial Growth
Factor, Platelet-Derived Growth Factor, and Placenta Growth Factor. Growth Factors 2010, 28, 211–220. [CrossRef]

53. Kernt, M.; Staehler, M.; Stief, C.; Kampik, A.; Neubauer, A.S. Resolution of Macular Oedema in Occult Choroidal Neovasculariza-
tion under Oral Sorafenib Treatment. Acta. Ophthalmol. 2008, 86, 456–458. [CrossRef]

54. Tahir, N.; Madni, A.; Li, W.; Correia, A.; Khan, M.M.; Rahim, M.A.; Santos, H.A. Microfluidic Fabrication and Characterization of
Sorafenib-Loaded Lipid-Polymer Hybrid Nanoparticles for Controlled Drug Delivery. Int. J. Pharm. 2020, 581, 119275. [CrossRef]

55. Wang, Z.; Duan, X.; Lv, Y.; Zhao, Y. Low Density Lipoprotein Receptor (Ldlr)-Targeted Lipid Nanoparticles for the Delivery of
Sorafenib and Dihydroartemisinin in Liver Cancers. Life Sci. 2019, 239, 117013. [CrossRef]

56. Wang, H.; Wang, H.; Yang, W.; Yu, M.; Sun, S.; Xie, B. Improved Oral Bioavailability and Liver Targeting of Sorafenib Solid Lipid
Nanoparticles in Rats. AAPS Pharm. Sci. Tech. 2018, 19, 761–768. [CrossRef]

57. Herranz-Blanco, B.; Arriaga, L.R.; Makila, E.; Correia, A.; Shrestha, N.; Mirza, S.; Weitz, D.A.; Salonen, J.; Hirvonen, J.; Santos,
H.A. Microfluidic Assembly of Multistage Porous Silicon-Lipid Vesicles for Controlled Drug Release. Lab Chip 2014, 14, 1083–1086.
[CrossRef]

58. Li, H.; Liu, W.; Sorenson, C.M.; Sheibani, N.; Albert, D.M.; Senanayake, T.; Vinogradov, S.; Henkin, J.; Zhang, H.F. Sustaining
Intravitreal Residence with L-Arginine Peptide-Conjugated Nanocarriers. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5142–5150.
[CrossRef]

59. Fu, T.; Yi, J.; Lv, S.; Zhang, B. Ocular Amphotericin B Delivery by Chitosan-Modified Nanostructured Lipid Carriers for Fungal
Keratitis-Targeted Therapy. J. Liposome Res. 2017, 27, 228–233. [CrossRef]

60. Kumar, R.; Sinha, V.R. Lipid Nanocarrier: An Efficient Approach Towards Ocular Delivery of Hydrophilic Drug (Valacyclovir).
AAPS Pharm. Sci. Tech. 2017, 18, 884–894. [CrossRef]

61. Zhang, L.; Li, Y.; Zhang, C.; Wang, Y.; Song, C. Pharmacokinetics and Tolerance Study of Intravitreal Injection of Dexamethasone-
Loaded Nanoparticles in Rabbits. Int. J. Nanomed. 2009, 4, 175–183. [CrossRef]

http://doi.org/10.1155/2020/1351046
http://doi.org/10.1016/j.bcp.2020.113902
http://doi.org/10.1038/s41598-020-76504-5
http://doi.org/10.1136/bjo.2010.182162
http://doi.org/10.3109/08977191003604505
http://doi.org/10.1111/j.1600-0420.2007.01014.x
http://doi.org/10.1016/j.ijpharm.2020.119275
http://doi.org/10.1016/j.lfs.2019.117013
http://doi.org/10.1208/s12249-017-0901-3
http://doi.org/10.1039/C3LC51260F
http://doi.org/10.1167/iovs.17-22160
http://doi.org/10.1080/08982104.2016.1224899
http://doi.org/10.1208/s12249-016-0575-2
http://doi.org/10.2147/IJN.S6428

	Introduction 
	Materials and Methods 
	Materials 
	Nanoparticles Preparation 
	Photon Correlation Spectroscopy (PCS) 
	Sterilisation by Filtration 
	Osmolality and pH 
	Turbiscan® AG Station 
	Cell Viability Studies 
	Encapsulation Efficiency and In Vitro Drug Release 
	High-Performance Liquid Chromatography (HPLC) Analyses 
	Stability and Interaction of Nanoparticles in the Presence of Ocular Mucus Component 
	Physico-Chemical Evaluation 
	Mucoadhesive Strength 

	Statistical Analysis 

	Results and Discussion 
	Physicochemical Characterisation 
	In Vitro Characterisation 

	Conclusions 
	References

