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A B S T R A C T

Quantifying the potential influence of climate change on future landslide hazard requires methodologies that
allow to properly take into account nonstationarities in the hydro-meteorological causes.

In this paper we provide a methodology for estimating return period of landslide triggering under climate
change.

The methodology capitalizes on the combined use of a stochastic rainfall generator and a hydrological and
slope stability model. The stochastic rainfall generator takes into account the statistical dependency between
rainfall event duration and intensity through copulas. The hydrological model is based on an analytical solution
of a simplified version of the Richards vertical infiltration equation and slope stability is assessed by the infinite
slope model. The combined model enables to estimate landslide probability through Monte Carlo simulations.
Climate change is then introduced by perturbing the parameters of the rainfall stochastic generator based on
factors of change derived from the comparison of future scenarios and the baseline climate as simulated by
Regional climate models (RCMs). The Monte Carlo simulations are conducted sequentially on a future moving
time window, to derive a yearly series of future landslide triggering probability. This series is then used to
compute landslide return period by formulas suitable under nonstationary conditions.

An application to the landslide prone region of the Peloritani Mountains, Southern Italy, is carried out to
demonstrate the proposed approach. For the application, climate change projections of three RCMs of the MED-
CORDEX initiative are used, and a preliminary assessment of the impacts of intermediate- and high-emission
Representative concentration pathways (RCPs) 4.5 and 8.5 is carried out.

1. Introduction

Landslides are a natural phenomenon shaping the Earth’s surface
and a hazard globally provoking hundreds of deaths every year (Sidle
and Ochiai, 2006; Froude and Petley, 2018).

Landslide processes are typically nonstationary, at both intra-annual
(seasonality) and inter-annual time scales. Sidle and Ochiai (2006)
describe most of nonstationary processes of interest in the study of
landslides, which include reactivation processes, land use modifica-
tions, and climatic changes. The latter are expected to modify me-
teorological conditions and to have significant impacts on landslides
and other hydrological hazards (IPCC, 2014).

Since the late 1990s an increasing number of papers focused on the
assessment of the potential effects of climate change on landslide
phenomena, based on three distinct approaches (Gariano and Guzzetti,
2016, and references therein): modeling approaches, historical ana-
lyses, and identification of paleo-landslide evidences. The first consist
in assessing the impacts of climate change on a given phenomenon,
based on climate projections from Global circulation models (GCMs)

and derived downscaled climatic products. GCMs simulate the effects
on climate of emission scenarios defined by international programs
(Taylor et al., 2012), and better known as Representative concentration
pathways (RCPs) (briefly “scenarios” in the ensuing text). Regional
climate models (RCMs) provide higher resolution data (up to 10–20 km
or less), as a result of dynamical downscaling of GCM data having a
coarser resolution (250–600 km). Commonly, modeling approaches
couple these climate model simulations with empirical or physically
based models providing triggering conditions as a more or less explicit
function of climatic variables – mainly precipitation (Ciabatta et al.,
2016; Rianna et al., 2016; Gariano et al., 2017; Alvioli et al., 2018).

Climate change studies led to contrasting conclusions on whether an
increase or a decrease should be expected in landslide frequency in the
future (Crozier, 2010; Coe and Godt, 2012). The high level of un-
certainty is substantially confirmed by IPCC special report of
Seneviratne et al. (2012), which indicates a “variable level of con-
fidence” for an increase of landslide activity in the future, opening an
implicit request for further studies.

Notwithstanding an increasing literature focused on the assessment
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of climate change impacts on landslides, there is a lack of studies fo-
cusing on the possible changes on landslide return period, a widely-
used metric to express landslide hazard, useful in designing mitigation
infrastructures (Borga et al., 2002; D’Odorico et al., 2005; Rosso et al.,
2006; Simoni et al., 2008; Salciarini et al., 2008; Tarolli et al., 2011;
Peres and Cancelliere, 2016). The need to address this aim derives also
from the fact that the concept of return period has been recently re-
visited to take into account nonstationary processes (Salas and
Obeysekera, 2014; Obeysekera and Salas, 2016; Cancelliere, 2017),
which change the way return period is estimated, because landslide
probability varies in time. This paper aims at addressing this issue,
proposing a modeling approach for estimating return period of land-
slide triggering under a changing climate, taking into account the in-
duced nonstationarities in precipitation. To this aim, we use RCM
products within a Monte Carlo simulation approach (Peres and
Cancelliere, 2014; Peres and Cancelliere, 2016). The Monte Carlo si-
mulation scheme is herein based on the combined use of a stochastic
rainfall generator and a hydrological and slope stability model. A single
Monte Carlo simulation yields an estimate of landslide probability for a
given climate. By perturbing the stochastic rainfall model based on
RCM projections, a series of future landslide probabilities can be de-
rived. Perturbation is here based factor of changes of rainfall event
statistical properties (Kilsby et al., 2007; Anandhi et al., 2011; Fatichi
et al., 2011; Maraun et al., 2010; Teutschbein and Seibert, 2012; Ehret
et al., 2012). Finally, return period is computed, as a function of the
estimated future landslide probability series, according to nonsta-
tionary formulations provided by Salas and Obeysekera (2014).

The stochastic rainfall generator we devise takes into account of the
statistical dependence between rainfall event duration and intensity,
thanks to a copula approach. The hydrological and slope stability model
is based on the diffusive infiltration model introduced by Iverson
(2000) extended to a finite soil depth (Baum et al., 2002), and simpli-
fied to the computation of peak pressure head response to rainfall
events, allowing a more efficient application than other software im-
plementations (Baum et al., 2010; Alvioli and Baum, 2016) that con-
strain the user to compute the complete response to rainfall time-series.

An application of the methodology is carried out with reference to
the Peloritani mountains in Sicily, an area that has experienced several
landslides in the recent decades. The application exercise allows to test
the suitability of the methodology in real-world situations; the specific
results obtained also offer a preliminary assessment of the potential
impacts of climate change on landslide activity in this area. The ap-
plication is conduced for three different RCM products of the MED-
CORDEX initiative, so a measure of the spread related to RCM un-
certainties is also provided.

2. Methodology

2.1. Return period in a nonstationary context

Return period can be rigorously defined by introducing random
variate Y as the time at which a given critical event (slope instability, in
our case) occurs for the first time.

In the stationary case, probability of the phenomena is constant in
time, say equal to p0. It can be shown that the probability that a critical
event occurs for the first time at year y is given by the geometric dis-
tribution law (Mood et al., 1974):
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thus return period 0� , which can be defined as the mean number of
years that will take for the first occurrence of a critical event, is given
by the well-known formula (Chow et al., 1988):
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In the nonstationary case, critical event probability varies in time. If

we denote as py that probability at time y, it has been shown by Salas
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∏= − = … ∞
=

−

f y p p y( ) (1 ) with 1, 2, , ;y
t

y

t
1

1

(3)
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This equation can be generalized to compute return period at a
given time, by introducing an additional time variate, ν, which is the
time at which one desires to estimate return period:

∑ ∏= −
=

∞

+ −
=

−

+ −yp p(1 ).ν
y

ν y
t

y

ν t
1

1
1

1

1�

(5)

All formulas above require just the estimation of the landslide
probability series, which is here carried out via Monte Carlo simula-
tions.

2.2. Computation of landslide probability

In our approach each Monte Carlo simulation allows to compute
landslide probability for a given climate. As already mentioned, the
simulation consist in the combination a stochastic rainfall generator
and a physically based model, by which a long virtual synthetic series of
rainfall and landslide response can be obtained.

Let us denote with M the length of a Monte Carlo simulation in
(virtual) years. Provided that M is sufficiently large, landslide prob-
ability can be estimated frequentistically as:
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where
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In the Monte Carlo modeling we assume that a landslide occurs each
time the factor of safety FS for slope stability drops down to 1. Here we
work under the assumption of an infinite slope, for which:
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where ′ϕ is friction angle, ′c is soil cohesion, δ is terrain slope, =γ 9800w
N/m3 is the unit weight of water, γs the unit weight of soil, dLZ is soil
depth, ψ t d( , )p LZ is pressure head at the peak time tp measured from
rainfall event start (see Section 2.4) and at soil depth =Z dLZ . This is
equivalent to comparing peak pressure head with a critical value ψCR,
which is obtained by rearranging the above equation and letting =F 1S :
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Though more sophisticated and accurate three-dimensional slope
stability models have been recently proposed (Lehmann and Or, 2012;
Milledge et al., 2014; Bellugi et al., 2015; Reid et al., 2015), the infinite
slope stability analysis remains still reliable for a first-stage assessment
of landslide triggering hazard (Baum et al., 2010; Arnone et al., 2011;
Raia et al., 2014; Capparelli and Versace, 2014).

Pressure head needed to be compared with ψCR can be estimated
from any suitable hydrological model. Herein we use a model based on
the diffusive infiltration model proposed by Iverson (2000), extended
for a finite soil depth (Baum et al., 2002), and a linear reservoir drai-
nage model that acts within dry intervals (Peres and Cancelliere, 2014),
as described more in detail in Section 2.4. We proceed in a lumped
fashion, i.e. model the response of the area of interest by a single set of
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geomorphological, hydrological and geotechnical parameters, which
are globally representative of slopes subject to landslides in the area of
interest. To test the suitability of the lumped model in the given region
of interest, it is checked if it reproduces landslides occurrence dates in
the region for the period covered by the observed record (see Section
3). In this sense, this lumped approach is similar to empirical landslide-
triggering thresholds (Caine, 1980; Guzzetti et al., 2008; Greco et al.,
2013; Peruccacci et al., 2017; Peres et al., 2018), where a single re-
lationship is used to establish whether or not a given rainfall event will
trigger landslides in a region. Here, instead of using an empirical re-
lationship, we use a lumped approach that has a physically-based ra-
tionale, following recent perspectives on landslide research (Bogaard
and Greco, 2018).

The input to the hydrological model is provided by the stochastic
rainfall model, which is also able to take into account climatic changes.
Stochastic rainfall generators can be of a very wide degree of com-
plexity, and are mostly all suitable to take into account climate change
scenarios, as simulated by RCMs, by means of a factor of changes ap-
proach (Fatichi et al., 2011; Kilsby et al., 2007). For our purpose we
have devised a specific rainfall event sequences generator based on
copulas, described more in detail in Section 2.3. We just anticipate here
that respect to other stochastic models presented in the literature, the
one we propose here has the advantage to allow parameter adjustment
simply from the statistical moments of rainfall characteristics, namely
event duration T, total depth H and the no-rain time separating one
event from another (interarrival time) U. In a climate change context, a
control and a future period are distinguished. For the control period
both the historical RCM simulation and observed data may be available,
while only the former is for the future climate referred to year ν. If

C
RCM

� and ν
RCM

� are the statistical moments computed from RCM in
the control and future period, respectively, then the factor of change for
moment � is given by the ratio:

= ,ν
ν
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�
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The factor of change can be used to estimate the future value of the
moment ν� , by multiplication to the observed moment in the control
period C

OBS
� :

=ν C
OBS

ν� � � (11)

The moments obtained from Eq. (11) are then plugged into the
method of moments parameter estimators (MME), by which the cor-
rected parameters of the stochastic model for future periods are ob-
tained. In order to apply Eqs. (10) and (11) the spatial inconsistency
between RCM data and observations should be resolved, for instance by
interpolation. To this aim we have interpreted the RCM data as relative
to the center of the grid cells. Thus, the interpolation averages the RCM
data as a function of the distance of the grid cell centers to the ob-
servation point (rain gauge). This way to proceed preserves the tem-
poral structure of the observed rainfall time series.

Landslide return period for the control period, is obtained by Monte
Carlo simulation with the stochastic model calibrated on observed
rainfall data, and application of Eqs. (6), (7) and (2). RCMs provide
scenarios for the years 2005–2100. Within this period we define, on a
yearly-moving time window, sixty-one climatic periods thirty-years
long: first period =ν 1 corresponds to years 2011–2040, =ν 2 to years
2012–2041, and so on, until the last period 2061–2100 ( =ν 61) is
reached. Hence, for each future scenario landslide probability pν can be
computed, = …ν 1, 2, ,61. This series of probabilities is then plugged in
Eq. (5) to compute the return period sequence. For this purpose we
assume that for >ν 61, =p pν 61.

Fig. 1 summarizes the main steps and features of the proposed
methodology.

2.3. Stochastic point rainfall event generator based on copulas

Stochastic rainfall point models allow simulation of rainfall time
series at a given location (Salas, 1993). The resulting generated rainfall
sequences reproduce the statistical features of the observed series
which are significant for the problem at hand. The main advantage of
using a stochastic model is that synthetic series can have a virtually
unlimited length, allowing to estimate landslide probability based on
the frequentist definition – see Eqs. (6) and (7).

Here we devise a specific point stochastic model for the generation
of sequences of rectangular rainfall events with statistical dependence
between their total depth H and duration T, modeled through copula
functions (Nelsen, 2007). The importance to take into account such
dependence has been highlighted by different studies (e.g. De Michele
et al., 2003; Evin and Favre, 2008; Vernieuwe et al., 2015), and it is
desirable within landslide modeling, given the high number of studies
linking the occurrence of this phenomenon to event rainfall duration
and mean intensity (Sidle and Ochiai, 2006; Guzzetti et al., 2007;
Peruccacci et al., 2017).

Specifically, the model is structured as follows (see Fig. 2):

• Event duration T and rainfall depth H are generated by a suitable
bivariate model, to take into account their statistical dependence.
The bivariate model is built using copula functions, that allow al-
most unconstrained choice of marginal distributions, FT and FH , of
the two variables under investigation.

• Rainfall events are separated by dry intervals. These intervals are
generated according to a suitable continuous probability distribu-
tion FU .

In order to calibrate the model, given an observed time series,
rainfall events have to be isolated with some criterion. Here a part of
the rainfall time series is assumed to be a rainfall event when bounded
by zero-rain (dry) periods of at least Umin hours long. The same proce-
dure is applied to the RCM series as well. The choice ofUmin may depend
on the climatic features of the investigated area (Vessia et al., 2014;
Melillo et al., 2015; Melillo et al., 2018).

We then fit marginal distributions to the series of observed rainfall
events by using method-of-moments estimators (MME) of the dis-
tribution parameters. MME has the advantage to allow for easy ad-
justment of the stochastic model parameters, since change factors of
only few moments of the RCM-derived rainfall event series are needed.
The choice of marginal distributions can be guided by statistical hy-
pothesis testing (D’Agostino and Stephens, 1986).

We apply the factor of changes adjustment, for generation of rainfall
sequences in the climate change scenarios, only to the marginal dis-
tributions. The −H T dependence (copula) parameters are not adjusted
for the scenario periods. This has the advantage of model simplicity,
since, otherwise, with a changing dependence structure, the specific
parametric copulas suitable for the observational period may not be
valid for the future periods. Nevertheless, changing marginals induce by
themselves a modification of the −H T bivariate distribution. Even if
analytical goodness-of-fit tests are available in the literature (Genest
et al., 2009), a simple and reliable method to check the suitability of a
copula model is to compare the observed pairs with those randomly
generated from the fitted copula (Genest and Favre, 2007). This ap-
proach is followed in several studies (e.g. Gyasi-Agyei and Melching,
2012; Callau Poduje and Haberlandt, 2017), and in this work as well
(see Section 3.2).

2.4. Hydrological model of infiltration and drainage

The hydrological infiltration model we adopt is based on the model
presented by Iverson (2000) extended to the case of a finite soil depth
(Baum et al., 2002), and integrated with a water table recession model
to compute the initial conditions at each rainfall event as an implicit
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function of antecedent rainfall, as introduced in our previous work
(Peres and Cancelliere, 2014). The model which we briefly describe
below, is partially implemented within the TRIGRS software, from the
first version (Baum et al., 2002) to its updates (Baum et al., 2008;
Alvioli and Baum, 2016). We have coded in MATLAB an ad hoc sim-
plified implementation of this model. The simplification consists in the
direct computation of the peak pressure head response to precipitation

events, without calculation of the entire pressure head time history,
which in the case of uniform hyetographs, is not necessary to determine
whether or not a given event triggers a landslide. Thus this allows a
more efficient application than other implementations, because it
avoids operations unnecessary for the purpose of this paper, that cannot
be bypassed if the above cited programs are used.

The model conceptualizes the hillslope as a single-layered

Fig. 1. Schematic depicting main steps of the proposed methodology for estimating landslide return period based on RCMs and Monte Carlo simulations.

Fig. 2. Schematic of the stochastic rainfall model. A given series of precipitation (observed or from RCM simulations), is conceptualized as a sequence of rectangular
rainfall events, separated by dry intervals. Each event is characterized by its duration T and total depth H (or, equivalently, by its mean intensity =I H T/ ), as well as
the interarrival time from the preceding event >U Umin. Event duration and total depth are extracted from a bivariate distribution derived by copula modeling, while
an independent univariate distribution is used to generate interarrival times.
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permeable strata overlaying a perfectly impermeable bedrock (Fig. 3).
As rainfall infiltrates, a saturated area develops above the regolith-

bedrock interface, yielding an increase in pressure head, which nega-
tively affects slope stability, according to Eq. (8). Within this scheme,
pressure head is maximum at the base of the soil strata, which thus
coincides with the failure plane. Hence, the aim of the hydrological
model is to compute pressure head at the basal boundary ( =Z dLZ) and
its local peak (occurring at time tp from the beginning of any rainfall
event).

Total pressure head ψi that builds in response at the i-th rainfall
event is the sum of a transient ψ i1, and an initial component ψ i0, :

= +ψ ψ ψi i i1, 0, (12)

The first part is modeled as a function of rainfall duration T and
intensity I, while the initial pressure head for the i-th rainfall event
depends on antecedent rainfall events; specifically, it is taken as func-
tion of the dry time interval before the event and the peak total pressure
head of the preceding event −i( 1). The transient response is computed
from the simplified form of the Richards’ equation treated by Iverson
(2000), which basically assumes that, with respect to the infiltration
process, the unsaturated soil has the same hydrological properties of the
saturated one (tension-saturated soil). Under these hypothesis, event
pressure head component is given by (Baum et al., 2002, 2008):

= − −∗ ∗ ∗ ∗ψ d t d I
K

R t R t T( , ) [ ( ) ( )]LZ LZ
S

p p1 (13)

The response function R x( ) appearing in the above equation is given by
a series of integral complementary error functions ierfc:

∑= ⎛
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− ⎞
⎠=

∞

R x m
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( ) 2 ierfc 2 1 .
m 1 (14)

where

= − −x
π

x x xierfc( ) 1 exp( ) erfc( ).2
(15)

In the above equations, I and T are respectively rainfall event (mean)
intensity and duration, KS is the saturated hydraulic conductivity, D0 is
the soil saturated diffusivity, x is a dummy variate, and erfc is the
complementary error function (Abramowitz and Stegun, 1964). In ap-
plying Eq. (13), two constraints have to be considered: first, the ratio
I K/ S has to be truncated at 1 if greater, since KS represents, for the
model assumptions, the maximum possible value of the vertical in-
filtration rate; second, the so-called beta-line limitation that

⩽ψ d d δ( ) cosLZ LZ
2 applies, which is pressure head cannot exceed the

value corresponding to an hydrostatic profile with water table located
at the ground surface (Iverson, 2000). Dimensionless quantities in Eq.
(13) are defined as follows:

= = = =∗ ∗t t
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T T
T
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D

D D
δ
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,
D D

D
LZ
2
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The dimensionless peak time ∗tp, shown in Fig. 4 as a function of
dimensionless rainfall event duration ∗T , can be obtained from nu-
merical investigation of Eqs. (13) and (14) (cf. D’Odorico et al., 2005).

Initial pressure head is here computed by the following equation
(see Peres and Cancelliere, 2014):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

−ψ ψ u
τ

expi p i
i

M
0, , 1 (17)

where −ψp i, 1 is total pressure head at the peak time of tp of preceding
event −i 1, and ui denotes the dry interval preceding current event i
(see Fig. 2). The recession constant τM is here expressed as a function of
a topographic wetness index, soil saturated hydraulic conductivity KS,
and porosity taken as the difference between saturated and residual soil
water contents ( −θ θS R):

Fig. 3. Schematic of the hydrological model. Pressure head build-up during rainfall events, ψ1, is modeled as a 1-D vertical infiltration process; drainage occurring in
dry interarrivals is taken into account by a linear reservoir model, and determines porewater pressure at the beginning of each rainfall event (ψ0). The maximum
pressure head occurs at the base of soil layer. The factor of safety for slope stability is computed under the infinite slope hypothesis.
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= −τ A B θ θ
K δ

( / )( )
sinM

S R

S (18)

where A B/ is the specific upslope contributing area, i.e. the ratio be-
tween the upslope contributing area A and contour length B. A B/ can
be computed according to various flow direction algorithms. Here the
simple D8 method of O’Callaghan and Mark (1984) is used. Eq. (17) is a
recursive equation that implicitly links initial pressure head to ante-
cedent rainfall.

3. Application

3.1. Case study region: Peloritani mountains, Sicily, Italy

An application of the proposed methodology has been carried out

with reference to the Peloritani Mountains region located in
Northeastern Sicily, Italy, and represented in Fig. 5a. This highly
landslide prone area has experienced several regional shallow landslide
events; recent episodes are: 15 September 2006, 25 October 2007, 24
September 2009 and 1 October 2009 (see pictures in Fig. 5b–e). The
latter event has caused severe damage and fatalities (37 deaths and
thousands of evacuated people), and it has been described in several
studies (Aronica et al., 2012; Peres and Cancelliere, 2012, 2014; De
Guidi and Scudero, 2013; Lombardo et al., 2014; Cama et al., 2015;
Schilirò et al., 2015, 2016; Stancanelli et al., 2017).

Representative data for the Peloritani mountains are shown in
Table 1. The use of a single set of soil properties for the Peloritani
mountains area is an approximation, as these vary from point to point.
The values used here are within the range of those obtained from some
surveys in the area and have proven to be among the ones leading to a
reasonable reproduction of the spatial distribution of landslides oc-
curred on 1 October 2009 (Stancanelli et al., 2017). Spatial distribution
and uncertainty of soil characteristics can play a crucial role on the
model predictive ability (Anagnostopoulos et al., 2015), but modeling
their impact is beyond the scope of this paper.

For calibration (and validation) of the stochastic rainfall model in
the observational period, the hourly rainfall series of Fiumedinisi rain
gauge has been used – location is shown in Fig. 5a. The series covers the
period from 5 January 2002 to 23 February 2011 (about nine years).
This period can be considered to be homogeneous to the control period
(1971–2000), as several studies have shown the absence of significant
trends in rainfall records covering a long period (from late 1920s to
2013) for both extreme and daily rainfall (Bonaccorso et al., 2005;
Arnone et al., 2013; Bonaccorso and Aronica, 2016).

The following three RCM data sets of daily precipitation from the
MED-CORDEX project (www.med-cordex.eu), having a spatial resolu-
tion of 0.44° (about 50 km), have been considered: (a) CMCC:

Fig. 4. Dimensionless peak time of pressure head as a function of dimensionless
rainfall duration. The case of finite soil depth is compared to that of infinite (see
D’Odorico et al., 2005).

Fig. 5. Peloritani Mountains: (a) map of the area, showing elevation, main catchments, and location of the Fiumedinisi rain gauge; photographs of impacts of mass
movements that occurred recently: (b) 15 September 2006, (c) 25 October 2007, (d) 24 September 2009, and (e) 1 October 2009.

Table 1
Soil properties considered for application of the model to the Peloritani
mountains case-study area (after Stancanelli et al., 2017).

′ϕ ′c γs θS θR Ks D0 dLZ A B/ δ
°[ ] [kPa] [N m−3] [–] [–] [m s−1] −[m s ]2 1 [m] [m] °[ ]

39 4 19000 0.35 0.045 × −2 10 5 × −5 10 5 2 10 40
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developed at the Mediterranean centre for climate change (Italy), it is
based on CMCC-CCLM4-8-19 RCM applied to the CMCC-CM GCM; (b)
GUF: developed ad the Goethe university Frankfurt (Germany), it is
based on GUF-CCLM4-8-18 RCM applied to MPI-ESM-LR GCM; and (c)
LMD: developed at the Laboratoire de météorologie dynamique
(France), it is based on LMD-LMDZ4-NEMOMED8 RCM applied to the
IPSL-CM5A-MR GCM. Spatial linear interpolation has been performed
on the RCM data to derive the precipitation at the location of the
Fiumedinisi rain gauge, as anticipated on Section 2.2.

3.2. Rainfall model calibration

The stochastic model takes into account seasonality of rainfall event
characteristics, through separate calibrations for statistically homo-
geneous periods of the year, which have been identified based on the
mean and standard deviation of monthly rainfall (See Fig. 6). Based on
the plots, the following periods have been considered: (i) January –

April (JFMA), (ii) May – August (MJJA), and (iii) September – De-
cember (SOND).

The observed rainfall hourly series has been then pre-processed to
extract the rainfall events, which have been approximated as a con-
stant-intensity hyetograph (see Fig. 2). A minimum event separation
time interval =U 24min h has been chosen, following our previous stu-
dies (Peres and Cancelliere, 2014, 2016). Other researchers confirm the
suitability of this value, as it has been used in determining landslide
thresholds in Sicily (Caracciolo et al., 2017) and in Italy in general
(Brunetti et al., 2010).

Among several tested distributions (Exponential, Weibull,
Lognormal and Gamma), the Gamma resulted the most suitable for
event duration, while a two-parameter Lognormal was suitable for both
event depth and adjusted interarrival time ′ = −U U Umin. This last
distribution is equivalent to a three-parameter Lognormal distribution
with lower limit Umin (Matalas, 1963; Sangal and Biswas, 1970). Sepa-
rate marginals have been fitted to the sub-datasets of each season.
Formulas for parameter estimation by the MME for the specific mar-
ginal distributions used here are recalled for completeness in Appendix
A. Fig. 7 shows a good fitting of the chosen marginals distributions in a
Q-Q plot (comparison between observed and theoretical distribution-
based quantiles).

The goodness-of-fit was also assessed by the Anderson-Darling sta-
tistical test (e.g. Kottegoda and Rosso, 2008), whose results are shown
in Table 2, in terms of p-values, together with the estimated parameter
values. p-values are defined as the probability that the test statistic
could have been as extreme, or more extreme, than observed, if the null
hypothesis (H0: sample drawn from the fitted distribution) were true
(cf. Upton and Cook, 2008). As can be seen from the table, the null
hypothesis is not rejected with a level of significance greater than 5%
for all variables and seasons, with the exception of rainfall duration in
season MJJA for which the test is accepted with a 4% significance level.
However, such a lower degree of fit for the MJJA season has minor
consequences in assessing impacts of climate change on landslides, as in
this season it is very unlikely for landslides to occur.

For modeling the dependence between rainfall event duration and
total depth in each season, the best-fitting copula has been searched
among the elliptical (Gaussian and Student’st) and Archimedean
(Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, and BB8) families and the
90-, 180- and 270-degrees rotated versions, for a total of 32 copulas
(which also include the independence one). The VineCopula R-Software
has been used (Brechmann and Schepsmeier, 2013), which allows for
selection of the most suitable copula among various hypothesized ones,
based on Akaike Information Criteria (AIC) or Bayesian Information
Criteria (BIC) – some additional details are summarized in Appendix A.

The following copulas resulted as the most suitable: Gaussian
(JFMA), BB7 (MJJA), and survival Gumbel (SOND), for which essential
details are given in Appendix A. Fig. 8 shows the comparison between
observed and generated H T( , ) pairs, as well as the parameters of the

Fig. 6. Seasonal statistics of precipitation observed at Fiumedinisi rain gauge
(mean and standard deviation of monthly total precipitation).

Fig. 7. Graphical goodness-of-fit (Q-Q plots) of the chosen marginal distributions for rainfall event characteristics: duration T (Gamma), depth H (Lognormal), and
inter-arrival time ′U . Specific markers and colors are associated to each season (JFMA, MJJA, and SOND).
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fitted copulas. A good agreement can be seen, also in terms of the
duration-intensity pair.

3.3. Model testing

In Fig. 9 a validation of the stochastic rainfall model, based on the
comparison of observed and simulated yearly cumulative rainfall series
is shown. The similarity (in a statistical sense) between the observed
and simulated rainfall demonstrates the suitability of the stochastic
rainfall model.

The suitability of the landslide model has been tested by checking
its ability in spotting the dates of historical landslides when the ob-
served rainfall series is given in input to it. The model indicates all and
only the observed four landslides (Fig. 10), occurred on dates 15 Sep-
tember 2006, 25 October 2007, 24 September 2009 and 1 October
2009. We have also performed a sensitivity analysis relative to the
choice of Umin, varying its value to 6, 12, 24, and 48 h. Except for the
adopted value of 24 h, in all cases the test performed worse, in the sense

that some landslide dates where not correctly spotted, and the count of
critical pressure head exceedance was different from the number of
observed landslides. This further validates the choice of Umin = 24 h.

An additional validation test has been conducted to check if the
whole Monte Carlo modeling chain (rainfall plus hydrological and slope
stability model) produces acceptable results for the purposes under
study. To this aim, we have compared the number of landslides within
the record with those given by the modeling chain on periods of the
same length (9 years). This comparison cannot be done deterministi-
cally, because of sampling variability. Thus 30 simulations have been
carried out. As can be seen from the boxplot of the results of these
simulations, the model provides reasonable results, as a number of 4
landslides in nine years is within the interquartile range of the outcome
of Monte Carlo simulations (see Fig. 11).

Table 2
Univariate marginal distribution fit to rainfall characteristics for stochastic
generation of rainfall event sequences. The p-values are relative to the
Anderson-Darling goodness-of-fit test (null hypothesis H0: sample can be con-
sidered as draw from the distribution). Commonly a p-value> 0.05 is taken to
accept H0.

Variable Distribution Season β1 β2 p-value

Duration T Gamma(a θ, ) JFMA 0.80 34.11 0.22
=β a1 MJJA 0.50 22.00 0.04

=β θ2 SOND 0.77 30.44 0.32

Depth H Logn (μ σ, ) JFMA 2.43 1.05 0.50
=β μ1 MJJA 1.60 1.07 0.61

=β σ2 SOND 2.72 1.07 0.71

Interarrival ′U Logn (μ σ, ) JFMA 0.70 1.15 0.56
=β μ1 MJJA 2.18 0.93 0.68

=β σ2 SOND 0.58 1.03 0.80

Fig. 8. Bivariate modeling of rainfall event
duration and intensity by copula functions.
Figure compares observed pairs with those
generated randomly from the developed bi-
variate distribution. In the panels the copula
parametric type and estimated values of the
parameters are shown; each copula is re-
lative to one season. The good agreement
between observed and generated data de-
monstrates a good degree of fitting, and thus
the suitability of the chosen copulas.

Fig. 9. Comparison between observed (thick black) and generated (red) yearly
cumulative precipitation series. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Another point concerns the length of Monte Carlo simulations, that
has to be sufficiently large to provide probability estimations of ac-
ceptable uncertainty (below a given tolerance, say 5%). A general
overview of this problem is given in Kottegoda and Rosso (2008). Here
we conduct sample variability in estimating landslide probability for
the observed current climate (see Fig. 12). For every hypothetical value
of the simulation length,M, landslide probability has been computed 30
times using the stochastic model calibrated on the observed series,
operating a resampling from the generated events. This has enabled to
compute the relative error in estimating landslide probability for each
simulation length. More precisely, the relative error for a given simu-
lation length is in this context defined as the ratio between the standard
deviation and the mean of the landslide probability values obtained
from the 30 samples. We have chosen a value of =M 3000 as it cor-
responds to a relative error in estimating landslide probability that is
less than 5%.

4. Results and discussion

4.1. Changes in characteristics of rainfall events

Factors of changes for the moments of rainfall event characteristics
(T H, and U), used to compute the adjusted rainfall generator para-
meters for years 2040–2100, are shown in Fig. 13.

The following changes, grouped per variable, may be inferred from
the plots:

• Changes in duration T (Fig. 13a and b): In the RCP 4.5 scenario,
changes of mean duration of events are quite low, either in the
JFMA and the SOND season, while some significant changes are
indicated in the MJJA season by the LMD projections for the period
2040–2060. Changes of standard deviation follow a very similar
trajectory to those of the mean. In the RCP 8.5 scenario, changes are
more accentuated compared to those in the RCP 4.5, and, for the
JFMA and SOND seasons, projections indicate a slight decrease of
event duration, which tends to become increasingly significant as
the end of century is approached. However, these changes are quite
limited (factor of change not less than 0.8). Again, changes of the
standard deviation of rainfall event duration are similar, though
greater, that those of the mean. Relatively high changes are pro-
jected for the MJJA season – factors of change approaching 2 (LMD)
or 0.5 (GUF) – though these may have a low impact on landslide
triggering probability, for the quite low intensities and durations of
this season.

Fig. 10. Pressure head series obtained from observed rainfall data and the lumped hydrological model compared to the critical value. All and only the four events
that have triggered landslides in the past yield a computed pressure head exceeding the critical value.

Fig. 11. Comparison of the number of landslides given by each Monte Carlo
simulation with those observed in a period of the same length (9 years),
showing that the observed series is one possible realization of the fitted sto-
chastic model.
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Fig. 12. Relative error in landslide return period estimation as a function of the
simulation length.
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• Changes for rainfall event depth H (Fig. 13c and d): Relatively to the
RCP 4.5, factor of changes of mean rainfall event depth are com-
prised between 0.85 and 1.2 in the JFMA season, but centered
around the no change line, while in the SOND season changes are
more significant, with a prevailing indication of a decrease. Simi-
larly to duration, in the MJJA season projected changes are more
significant than in the other seasons (ranging from 0.7 to 1.5), but
are quite unstable. Changes of standard deviation are again more
significant than those of the mean, and prevalently indicate an in-
crease of variability for rainfall event depth in the JFMA season, and
an decrease in the SOND. For the RCP 8.5 scenario, changes are
qualitatively similar than the RCP 4.5, but the factor of changes are
in some cases more significant and unstable (cf. MJJA season).

• Changes in interarrival time ′U (Fig. 13e and f): models con-
cordantly indicate that the magnitude and variability of storm

interarrival will tend to increase with time. A clear upward trend is
predicted for the RCP 8.5 scenario, and factors of change can exceed
2 at the year 2100.

In general, with reference to rainfall duration and depth, the three
considered RCMs provide indications that differ significantly from one
to another, sometimes in opposite directions. On the other hand,
models agree in predicting an increase of storm interarrival times, both
in magnitude (mean) and variability (standard deviation), that becomes
more significant moving forward in time. Also, all models predict some
significant future changes of rainfall event depth mean and standard
deviation in the SOND season (prevalently a decrease of both), the one
where landslides have been more recurrent in the past (see Section 3.1).

Fig. 13. Factor of changes in the two RCP scenarios, for mean and standard deviation of rainfall event duration T (a, b), depth H (c, d), and interevent time U (e, f).
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4.2. Changes in pressure head components and landslide return period

The obtained factors of changes have enabled us to perform Monte
Carlo simulations for each future period. Fig. 14 shows the resulting
factors of changes for the mean of initial ψ0 and transient pressure head
ψ1 series (cf. Eq. (12)). As illustrated on Section 2.4, the first component
is indirectly related to antecedent precipitation (Crozier, 1999), while
the second is strictly dependent on the rainfall event intensity and
duration characteristics. In the RCP 4.5 scenario there is an overall
tendency for a decrease of initial pressure head. Only one RCM – the
CMCC – indicates a possible slight increase, in the period 2040 –2060,
with a factor of change not greater than 1.14. Also for the mean tran-
sient pressure head RCMs indicate prevalently a decrease. For the RCP
8.5 all RCM are concordant in indicating a negative trend of the
changes of initial pressure head mean, though they remain positive
until 2080 (LMD), ca 2090 (GUF), or on all the entire future period
considered (CMCC). Changes of the mean transient pressure head are in
this case very small, and can be deemed not significant (factor of
change in the range 0.88 – 1.13).

The series of changes in landslide probability and return period are
shown in Fig. 15.

For the RCP 4.5 scenario the models indicate in general a decrease
of the probability of landslide triggering. In particular, models GUF and
LMD show a decrease down to 1/4 respect to the baseline period. The
CMCC model indicates an increase in the period 2040–2065, which is
however quite small (less than 1.5). For the RCP 8.5 all three RCMs
indicate a decrease of landslide probability, which is higher than for the
previous scenario, being the factor of change<1/4 in periods
2040–2050 and 2060–2100 (LMD model).

Changes in the return period are smoother than those in landslide
probability, since Eq. (4) averages among the probabilities after any
year at which return period is referred to. Return period has the op-
posite meaning of probability. Thus for RCP 4.5 models prevalently
indicate a increase, with factors of change greater than 2 for the LMD

and GUF models, while for the CMCC a slight decrease (> 0.70) is
predicted in the initial period (2040–2060). For the RCP 8.5 the return
period is projected to possibly increase to a greater factor than for RCP
4.5, with the highest values in period 2085–2100, where return period
can be more than 3-times the current value (model LMD).

5. Conclusion

Estimation of landslide hazard is of key importance for land-use
planning, and preparatory for landslide mitigation. As climate change is
being claimed to potentially increase landslide activity, researchers and
practitioners are nowadays asked to quantitatively assess the induced
hazard changes. In our paper we have provided, tested and demon-
strated a modeling chain methodology that allows the computation of
future landslide return periods, taking into account of the non-
stationarities in rainfall event characteristics induced by climate
change. In particular, by sequential Monte Carlo simulations, the ap-
proach allows the estimation of the necessary sequence of landslide
probabilities to apply formulas proposed by Salas and Obeysekera
(2014) to compute return period under nonstationary climate condi-
tions.

The tests and the application exercise conducted with reference to
the Peloritani Mountains area, has demonstrated the capabilities of the
proposed modeling approach, allowing also for a preliminary assess-
ment of the possible future impacts of climate change on landslide
hazard. According to the ensemble of the three MED-CORDEX RCMs
considered, there will be a general tendency for a decrease of landslide
hazard in the area, with return periods that can increase up to a factor
of 2.5 or 3.5, respectively for RCP 4.5 and RCP 8.5. These results are a
consequence of the projected increase of the interarrival time between
rainfall events, combined with a prevalent decrease of rainfall event
duration and depth. Only one model (the CMCC) projects, in certain
periods, some slight increases of these rainfall event characteristics, and
thus a decrease of return periods. Nevertheless, the relatively high

Fig. 14. Factor of changes for the mean of initial and peak transient pressure head, relatively to scenarios RCP 4.5 and RCP 8.5.
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spread of the results due to climate modeling uncertainty, indicates the
need for further research to confirm the specific results here obtained
relatively to climate change impacts. This will be partially addressed in
further research oriented to the use of a wider ensemble of RCM pro-
ducts – such as those provided under the EURO-CORDEX initiative
(Jacob et al., 2014), as well as additional ones made available from the
MED-CORDEX – also taking into account of their reliability by ad-
vanced ensemble averaging techniques (Christensen et al., 2010;
Mascaro et al., 2018). Furthermore, the proposed approach is in prin-
ciple suitable for many other areas with similar climatic, hydrological
and geological conditions. The authors are willing to share the devel-
oped software tools with anyone interested to test the suitability of the

modeling approach to other areas.
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Appendix A. Marginal distributions and copula models

For sake of clarity, the adopted marginal distributions and the copula functions used are shown below, along with some details on parameter
estimation procedures.

The probability density function (pdf) of the Gamma distribution is:

= −−f x a θ
θ a

x x θ( ; , ) 1
Γ( )

exp( / )X a
a 1

(A.1)

where X is the considered random variable (in our case, one of the following: rainfall event duration T, depth H or event interarrival time U), and x a
specific value of X a; and θ are respectively the shape and the scale parameters, whose method-of-moments estimators (MME) are:
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Fig. 15. Factor of changes for the non-exceedance probability and return period of landslide triggering, relatively to scenarios RCP 4.5 and RCP 8.5.
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Basic modeling with copulas is introduced in Nelsen (2007) and Genest and Favre (2007), and software tools are available under the open-source
R statistical software (e.g. Brechmann and Schepsmeier, 2013).

The most suitable copulas for the stochastic rainfall model resulted to be (see Section 3.2): the Gaussian (season JFMA), the BB7 (MJJA), and the
survival Gumbel (SOND). The Gaussian copula belongs to the elliptical family, and is given by:

= − −C x x x x( , ) Φ (Φ ( ), Φ ( ))ρ1 2
1

1
1

2 (A.7)

where Φρ denotes the bivariate standard normal distribution function with correlation parameter − ⩽ ⩽ρ1 1 and −Φ 1 the inverse of the univariate
standard normal distribution function. The BB7 and the Gumbel copulas belong to the Archimedean family, defined as

= +−C x x φ φ x φ x( , ) ( ( ) ( )),1 2
[ 1]

1 2 (A.8)

where → ∞φ: [0, 1] [0, ] is a continuous strictly decreasing convex function such that φ (1) = 0 and −φ[ 1] is the pseudo-inverse
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The generator function ′φ defines specific copulas of this family, which, for the BB7 Copula (MJJA) and the Gumbel are respectively:

= − − − ⩾ >−φ η η ω ρ( ) (1 (1 ) ) 1 with 1, 0,ω ρ (A.10)

and

= − ⩾φ η η ω( ) ( log ) with 1.ω (A.11)

The Survival Gumbel copula is the Gumbel rotated by an angle of °180 , obtained as follows:

= + − + − −C x x C x x1 (1 , 1 ).180 1 2 1 2 (A.12)

Parameters are estimated by pseudo maximum likelihood estimators, for which the reader is referred to Brechmann and Schepsmeier (2013).
Notation

GCM global circulation model
RCM regional climate model
RCP representative concentration pathway
Y first time a critical event occurs (r.v.)
p0 probability of a given critical event
f y( ) mass probability function of Y

= p1/0 0� return period (stationary)
E Y( ) expectation of Y
py probability of a given critical event in year y (nonstationary)
t dummy index
ν future scenario year index

ν� return period at (future) year ν (nonstationary)
M virtual length in years of a Monte Carlo simulation
m virtual year of a Monte Carlo simulation
Im virtual landslide indicator function (Eq. (7))
FS factor of safety (slope stability)

′ϕ (effective) friction angle
′c (effective) cohesion

δ terrain slope, measured from the horizontal direction
γs soil unit weight
γw unit weight of water
dLZ soil depth (vertical)
tp event pressure head response peak time
Z vertical coordinate
ψ pressure head
ψCR critical pressure head

v� factor of change for year ν
� statistical moment
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T rainfall event duration
H rainfall event depth

=I H T/ rainfall event intensity

U rainfall event interarrival
Umin minimum interarrival time

′ = −U U Umin adjusted interarrival time
FT cumulative distribution function (cdf) for T
FH cdf for H
FU cdf for U
ψ1 transient component of pressure head
ψ0 initial component of pressure head
R response function
D0 saturated soil diffusivity

−ψp i, 1 total pressure head at the peak time of preceding event
ui dry interval preceding current event i
τM recession constant
θS saturated soil water content
θR residual soil water content
A upslope contributing area
B contour length
A B/ specific upslope contributing area (flow convergence)
fX probability density function of generic r.v. X
a θ, parameters of a Gamma distribution
x̄ sample mean
S2 sample variance
n sample size
μ σ, parameters of a Lognormal distribution
η dummy variate
C copula function
C180 180-degrees rotated copula
Φρ bivariate standard normal function with correlation parameter
φ copula characteristic function
x x( , )1 2 dummy two-dimensional variate

ω ρ, parameters of generator function (copula)
−Φ 1 inverse of the univariate standard normal distribution
̂μ estimate of μ
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