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Endocrinology of the Aging Prostate:
Current Concepts
Rossella Cannarella , Rosita A. Condorelli , Federica Barbagallo , Sandro La Vignera*
and Aldo E. Calogero

Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy

Benign prostate hyperplasia (BPH), one of the most common diseases in older men,
adversely affects quality-of-life due to the presence of low urinary tract symptoms (LUTS).
Numerous data support the presence of an association between BPH-related LUTS
(BPH-LUTS) and metabolic syndrome (MetS). Whether hormonal changes occurring in
MetS play a role in the pathogenesis of BPH-LUTS is a debated issue. Therefore, this
article aimed to systematically review the impact of hormonal changes that occur during
aging on the prostate, including the role of sex hormones, insulin-like growth factor 1,
thyroid hormones, and insulin. The possible explanatory mechanisms of the association
between BPH-LUTS and MetS are also discussed. In particular, the presence of a male
polycystic ovarian syndrome (PCOS)-equivalent may represent a possible hypothesis to
support this link. Male PCOS-equivalent has been defined as an endocrine syndrome with
a metabolic background, which predisposes to the development of type II diabetes
mellitus, cardiovascular diseases, prostate cancer, BPH and prostatitis in old age. Its early
identification would help prevent the onset of these long-term complications.

Keywords: low urinary tract symptoms, metabolic syndrome, aging, insulin, male PCOS-equivalent, benign
prostate hyperplasia
INTRODUCTION

Prostate diseases, usually diagnosed in the elderly, mainly include benign prostatic hyperplasia
(BPH) and prostate cancer (PCa). BPH is defined as an increased prostate volume, largely due to the
cellular proliferation occurring in the transition zone, namely the portion of the prostatic tissue that
surrounds the urethra. BPH is an age-dependent disease which can obstruct the prostatic urethra. Its
prevalence varies between 5% and 10% in men aged 40, but reaches 80% in men aged 70–80 (1). PCa
represents the second cause of mortality for oncologic diseases in Western countries (2). Although
ethnicity also influences the epidemiology of PCa (3), increasing age is a widely-accepted risk factor
for the development of this malignant tumor. Accordingly, it is more frequently diagnosed in aging
men, whereas it is quite uncommon before the age of 45 (4).

Hormonal changes occurring in aging may play a role in the pathogenesis of prostate diseases.
These include changes of sexual hormones, insulin-like growth factor 1 (IGF1), thyroid hormones,
cortisol and insulin. Importantly, hyperinsulinemia seems to impact on prostate tissue and is
associated with prostate inflammation and hyperplasia. However, the mechanisms of this
association are not well-recognized yet. This review aims to provide comprehensive and updated
n.org February 2021 | Volume 12 | Article 5540781
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insights into the endocrinology of the aging prostate, including
possible pathogenic mechanisms linking prostate to
endocrinological and metabolic health.
SEX HORMONES AND PROSTATE
IN AGING

Prostate diseases and androgen decline represent some of the
most common conditions in the aging male. Several large cross-
sectional studies have shown an approximate 1%–2% annual
decline in testosterone (T) levels in men during aging (5, 6). In
middle-age men, the combination of low T and hypogonadism-
related symptoms is known as “late-onset hypogonadism
(LOH).” LOH has an estimated prevalence of 2.1% (7), but it
reaches 15% when only biochemical criteria are used for its
diagnosis (8). However, the presence of various diseases plays a
crucial role in the decrease of T production during aging. These
include obesity, type 2 diabetes mellitus and metabolic syndrome
(MetS), which can also lead to an estrogen increase (9).
Considering the high prevalence of these diseases in elderly
men, it is important to understand the role of sex hormones,
and, therefore, of their age-related change, in the development
and the treatment for prostate disorders.
Androgens
Androgens and Prostate Physiology
Androgens are essential for the development and the growth of
the male genital system, including the prostate. The effects of
androgens on the prostate are mainly mediated by the androgen
receptor (AR), which is expressed in both prostatic stromal and
epithelial cells (10). T, produced by Leydig cells of the testes, is
the main circulating androgen in men and it is converted to its
more potent metabolite, the 5a-dihydro-testosterone (DHT) by
5a-reductase whose type 2 is the isoform mostly expressed in the
prostate tissue (11). Other androgens include adrenally-derived
dehydroepiandrosterone (DHEA), androstenedione and 5a-
androstenedione, which can be converted to sex steroids with
higher potency and act on the prostate.

During development, androgens stimulate differentiation and
proliferation of both the epithelial and the stromal
compartments of the gland (12). Prostate differentiation and
growth start at the 10–12th week of gestation (13). The increase
of T that occurs shortly after birth and then, in the period known
as “mini-puberty,” has a crucial role in prostate development
(13). After mini-puberty, T levels and prostate volume decrease
and prostate growth is quiescent until puberty (14). During
puberty, a second phase of prostate growth starts and the
prostate size increases from about 10 g at early puberty to
almost 20 g around the age of twenty (15). In middle age, a
third phase of prostate proliferation begins and continues up to
the elderly (15). However, this third phase is different from the
first two phases of prostate growth. First, the proliferation
involves only one of the three anatomical areas of the prostate,
Frontiers in Endocrinology | www.frontiersin.org 2
the transitional zone surrounding the urethra, while the entire
gland grows during the first two phases. Second, an age-related
decline in serum T levels begins in middle age. Therefore,
although androgens are responsible for prostate growth in the
first two phases, the role of androgens is the object of great debate
for middle-aged and elderly men (10). Indeed, a clear association
between higher circulating T levels and benign prostatic
hyperplasia (BPH) has never been demonstrated (16).
Androgens and Prostate Diseases
Androgens and Benign Prostate Hyperplasia
LUTS and BPH have long been considered a relative
contraindication to testosterone replacement therapy (TRT).
However, recent studies have contradicted the classic idea that
androgens inevitably stimulate prostate growth (17). According
to the saturation model, the prostate is sensitive to changes in
androgen levels when they occur in a severe low range, but this
sensitivity is lost for T levels corresponding to mild
hypogonadism or eugonadal. Indeed, prostate ARs become
saturated at relatively low T levels and thus, the gland becomes
unresponsive to further increases in T levels (18). Experimental
and clinical studies suggest that the saturation point for human
prostate tissue probably occurs in the very low range of T levels,
but a precise cutoff value has not been established; it could vary
among men (17). According to this model, the association
between T and prostate-specific antigen (PSA) is represented
by a sigmoid curve. T levels of 8 nmol/L corresponds to the
plateau value below which small changes in T levels cause greater
variations in PSA (19). As reported in recent reviews (12, 17),
studies evaluating the link between TRT and BPH/LUTS have
mostly shown that TRT does not have any effect on BPH
symptoms [measured by the International Prostate Symptom
Score (IPSS)] and occasionally the IPSS score may decrease (20–
22). A recent meta-analysis did not show a worsening of LUTS
severity in hypogonadal patients treated with T vs. placebo (23).
The safety of TRT in patients with severe LUTS remains to be
established and the presence of LUTS of moderate-intensity
(IPSS ≤19) is not a contraindication to TRT (23).

However, although current evidence suggests that higher T
levels are not involved in BPH development, T seems to have a
role in this pathogenic process by stimulating inflammation
within prostate tissue. Inflammation has a crucial role in the
pathogenesis of BPH and low, rather than high, T may stimulate
prostate inflammation (12). Nevertheless, an anti-inflammatory
effect of T in the prostate has also been described. In an
experimental study using human prostatic stromal cell
cultures, the treatment in-vitro with different pro-inflammatory
stimuli, such as tumor necrosis factor a (TNF-a) or
lipopolysaccharide (LPS), or co-culturing with activated CD4b
lymphocytes, significantly enhanced the secretion of several
cytokines and growth factors (24). The pre-treatment of BPH
stromal cells with DHT inhibited the secretion of several
inflammatory/growth factors and the proliferation of activated
CD4b lymphocytes in a dose-dependent manner (24). The
same authors developed a rabbit model of MetS, by feeding
New Zealand male rabbits with a high-fat diet (HFD) for
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12 weeks (25). Rabbits with MetS developed glucose intolerance,
dyslipidemia, hypertension, increased visceral fat accumulation,
hypogonadotropic hypogonadism, hyperestrogenism, and
prostate inflammation. TRT has been shown to protect rabbits
from prostatic hypoxia, fibrosis, and inflammation induced by
the high-fat diet that appears to play a role in the development
and even progression of BPH/LUTS (25). Interestingly, they
found that MetS severity was associated with an increase of AR
and estrogen receptor a (ERa), but not of estrogen receptor b
(ERb) gene expression within the prostate (10). This suggests
that the prostate could become more sensitive to sex hormone
changes that occur during MetS. Indeed, TRT not only corrects
the low T levels and the rise of estrogen levels which are typical of
MetS, but it also normalizes the majority of MetS-induced
prostate alterations (25).

Accordingly, in human BPH stromal cells, AR activation by
DHT inhibited TNFa, LPS, or CD4 (+) T cell-induced secretion
of inflammatory/growth factors, including interleukin (IL)-6, IL-
8, and basic fibroblast growth factor (bFGF), by blocking the
nuclear translocation of the nuclear factor kappa-B (NF- kB)
(24). Moreover, HFD prostates had increased phosphodiesterase
type 5 (PDE5) expression. This was associated with a higher
expression of cyclooxygenase 2 (COX2) and TNFa among
inflammatory genes and of TGFb, Rho-associated coiled-coil-
containing protein kinase 2 (ROCK2) and a spinal muscular
atrophy (aSMA) among those genes specifically involved in
fibrosis and myofibroblast activation. Interestingly, HFD-
induced PDE5 overexpression was counteracted by T treatment
(26). Therefore, recent evidence suggests that the treatment of
hypogonadism, which is frequently associated with MetS, not
only does not seem to be dangerous for prostate health, but could
even prevent the inflammatory process of this gland (12).

Even in inflammation of the prostate caused by Escherichia
coli, the most frequent bacterial infection due to the reflux of
infected urine into the prostate ducts (ascending urethral
infection), T seems to play a protective role. Ho and colleagues
have shown that T not only inhibits the invasion and
colonization of the uropathogenic Escherichia coli (UPEC), but
has also reduced the levels of pro-inflammatory cytokines (IL-1b,
IL-6, and IL- 8) induced by UPEC in a dose-dependent manner.
In particular, T plays an anti-inflammatory role in LPS-induced
prostate cell inflammation by down-regulating Janus kinases,
signal transducer and activator of transcription proteins (JAK/
STAT1) signaling pathway (JAK/STAT1) (27).

Androgens and Prostate Cancer
The concern that T promotes the development of PCa has been
the object of great debate since the discovery of PCa dependency
on androgen in the 1940s thanks to the pioneering studies of
Huggins and Hodges, who found that castration resulted in
regression of metastatic PCa (28). However, according to the
saturation model, androgen-dependency of prostate growth is
evident only in hypogonadism (18). Thus, the relationship
between T and the risk of PCa remains poorly understood.
Several studies have shown an increased risk of PCa in men
with hypogonadism (29). This hypothesis was firstly reported in
1996 by Morgentaler and colleagues, who found a higher
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prevalence of biopsy-detectable PCa in men with low total or
free testosterone levels (30) and it was supported by subsequent
studies (31–34). In contrast, studies assessing the relationship
between high endogenous T levels and the development of PCa
are less clear (29). However, there is evidence that previous T
levels may influence Gleason scores, clinical outcomes and
recurrence (29).

More controversial remains the safety of TRT in patients with
a history of PCa after treatment. T could cause the growth of
subclinical cancers that are frequently hidden in the prostate of
older men (35). Aside, metastases of PCa are hormone-
dependent, therefore T should not be administered to these
patients (35). However, some clinicians have suggested
considering TRT for patients with a history of organ-confined
PCa if they have undergone radical prostatectomy, have
undetectable PSA for at least two years and low-grade PCa
(Gleason score <7). The possible risks and benefits of TRT
should be discussed with the patient and TRT should be
followed up with appropriate monitoring by experienced
physicians (36).

Also, although adrenal androgens have weak androgenic
effects, 11-oxy-androgens of adrenal origin can be metabolized
in peripheral tissues to potent androgens which might have a role
in the development of PCa. Moreover, emerging evidence
suggests the role of microbiome components in the
development of PCa that are only beginning to be understood.
Recent studies have shown that gut bacteria are capable of
metabolizing C21 glucocorticoids to 11-oxygenated C19
androgens via an enzyme known as steroid-17,20-desmolase
(desAB) encoded by the desAB gene. A cortisol-inducible
operon (desABCD) was previously identified in Clostridium
scindens ATCC 35704 encoding enzyme involved in anaerobic
side-chain cleavage. This operon also encodes a transketolase
(desAB) which have steroid-17,20-desmolase activity (37).
Interestingly, the compounds cleaved by steroid-17,20-
desmolase, 11-ketoandrostenedione (11 KT), and 1,4-
androstadiene-3,11,17- trione (AT) were found to stimulate
proliferation of PCa cells (LNCaP), to a greater extent than
dihydrotestosterone. Further researches are needed to fully
understand the mechanism through which these compounds
stimulate cell proliferation and the potential clinical role in the
development and treatment of prostate cancer (38).
Estrogens and Prostate
Prostate is commonly considered a target of androgens, but also
estrogens can play an important role in prostate growth and
differentiation. In fact, both ERa and ERb are expressed in the
prostate. ERa is mainly located in the stromal cells and its
activation regulates the growth of both stromal and epithelial
prostatic cells via paracrine mediators like stromal bFGF,
epidermal growth factor (EGF), and IGF1 (39, 40). In contrast,
ERb is located in epithelial cells and their activation modulates
the estrogenic signals in the prostate (41).

17ß-Estradiol (E2) is considered the most potent estrogen in
men and it mainly originates from aromatization of T in fat
and muscle, whereas about 20% is secreted by Leydig cells (42).
February 2021 | Volume 12 | Article 554078
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In aging men, paralleling the decrease of T levels, the ratio of
estrogens to androgens shows an important increase (43). There
are several endogenous and exogenous estrogens which may play
an important role in prostate. Endogenous estrogens include
estrone (E1), which is considered to have minimal influence
within the prostate, and estriol (E3), the main estrogen of
pregnancy, which is present in minimal concentrations in men.
However, E2 can be a potent inducer of prostatic proliferation
(44). Local steroids with ER agonist activity include also 5a-
androstane-3b, 17b-diol (3bAdiol), and 7a-hydroxy-DHEA
(7HD). The effects of these sex steroids are not fully
understood but they seem to influence prostate hyperplasia (44).
Exogenous estrogens include therapeutic drugs, phytoestrogens,
and endocrine disruptors. ERs have a high affinity for
environmental estrogens such as bisphenol A (BPA), phthalates,
pesticides, etc. In rodent studies, developmental BPA, DES, or
E2 exposure affects prostate epigenome and thus causes increased
prostate susceptibility to dysplasia and hormonal carcinogenesis
with aging (45).

Estrogen hormone action in the prostate depends not only on
the types of estrogens but most of all, from the type of ER.
Specifically, ERa activation is associated with prostate
hyperplasia, inflammation, and dysplasia (46). However, the
main stimulation of inflammation in BPH by estrogens seem
to be mediated by the membrane ER G protein-coupled receptor
30 (GPR30) or G protein-coupled ER (GPER), which are also
expressed in prostate stromal cells (47). On the contrary, ERb
inhibits proliferation and its knockout results in prostate
hyperplasia (48). The prostatic hyperplasia observed in ERb
knockout mice is attributed to the unopposed action to ERa,
suggesting that the ratio ERa/ERb is an important factor in
estrogen-induced proliferation (44).

Estrogens and Benign Prostate Hyperplasia
Recent studies suggest that not only low T levels, but also an
increase of estrogens may favor BPH/LUTS progression (10).
Marmorston and colleagues first reported that the E2/T ratio in
24-h urinary collections was elevated in men with BPH
compared to normal controls (49). Other epidemiologic studies
have found an association between BPH and higher serum
estrogen levels or estrogen/androgen ratio (50, 51). As
previously reported, prostate inflammation could be amplified
and maintained by metabolic alteration occurring in conditions
such as MetS. Vignozzi and colleagues showed that HFD rabbits
had higher E2 to T ratio and lower urinary tract fibrosis, which
improved with TRT (25). Recent evidence has also shown that
leptin, a hormone produced by adipocytes, induces proliferative
effects in prostate cells. This effect may be partially mediated by
the direct effect of leptin on estrogen metabolism, as leptin
induces aromatase expression (52).

Therefore, ERa, as a key mediator, is also a potential
therapeutic target in BPH. The block of conversion of
androgens to estrogens by aromatase inhibitors seems to
prevent prostate hyperplasia (12). Similar to aromatase
inhibitors, selective estrogen receptor modulators (SERMs)
have shown anti-proliferative effects on prostate tissue (53).
Frontiers in Endocrinology | www.frontiersin.org 4
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Evidence suggests that ERa mediates the harmful effects of
estrogen not only promoting BPH/LUTS, but also prostate
carcinogenesis. In the early 1980s, Noble showed the estrogen-
dependence of PCa in a rat model (54). In aromatase knockout
(KO) mice, high T levels only lead to prostate hypertrophy and
hyperplasia, whereas high E2 and low T levels induced also
premalignant lesions (55). Indeed, prostatic intraepithelial
neoplasia does not occur in ERaKO mice and SERMs that
bind and inhibit ERa prevent PCa progression in mice and
men (56–58). Epidemiological studies have confirmed the role of
estrogens on PCa (59). African-American men, who have high
serum E2 levels, present an increased risk of developing PCa (60).
Indeed, ERa expression is significantly associated with high
Gleason score and poor survival in PCa patients (61), whereas
the expression of ERb seems decreased or lost in PCa samples
(62). Therefore, preclinical and clinical results suggest that ERb
agonists may be useful in PCa therapy, especially in the early
stage (59).

Since the discovery of estrogen dependence of PCa, numerous
clinical trials were conducted and molecular and functional
effects of antiestrogen treatment in PCa have been conducted.
Androgen deprivation therapy (ADT) is the first line of
treatment for PCa. Nonetheless, ADT frequently induces
resistance and PCa can progress toward an androgen-
independent form, known as castration-resistant PCa,
characterized by worse prognosis. For this reason, alternative
approaches to androgen ablation have been investigated to
prevent the progression of PCa. Currently, molecular networks
of estrogenic signaling via ERa, ERb, and GPR30 in PCa have
not been fully understood but new compounds, whose efficacy
has been successfully tested in preclinical and clinical models of
PC, opened the way for novel therapeutic strategies for treating
prostatic diseases (41, 59).

In conclusion, the above-mentioned evidence suggests a role
for age-related changes in sex hormones; in particular,
hypogonadism and the increase in estrogen levels related to
obesity play a pivotal role in the pathogenesis of age-related
prostatic diseases.
INSULIN-LIKE GROWTH FACTOR 1
AND PROSTATE

Several studies indicate that IGF1 declines with age (63).
Interestingly, IGF1 seems to have an important role in the
pathogenesis of metabolic syndrome. Indeed, several studies,
both in-vitro and in-vivo have shown the association between
low levels of IGF1 and altered lipid metabolism, cardiovascular
disease and diabetes (64). Nevertheless, increased levels of IGF1
have also been reported in patients with diabetes mellitus (65).

A large body of evidence shows that the growth hormone
(GH)- IGF1 endocrine axis has a pivotal role in the growth and
development of prostate in normal physiology as in pathological
conditions (66–69). IGF1 is secreted mainly by the liver under
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GH stimulation, but it is also expressed locally within the stromal
and epithelial cells of the prostate, where it can act in autocrine/
paracrine manner (70). The binding of IGF1 to the IGF1 receptor
(IGF1R) or the insulin receptor (IR) in the prostate gland,
activates the phosphoinositide 3-kinase (PI3K)/protein kinase
B (AKT) pathway and RAF/MAPK pathway, which promote cell
survival and proliferation (70).

Some studies have shown a greater prevalence of prostate
enlargement and BPH in patients with acromegaly (67, 69).
Kumar and colleagues documented structural changes in
acromegalic patients by prostatic biopsy (71). They found that
patients with acromegaly have higher IPSS, an increased rate of
prostate enlargement on rectal exploration and ultrasound,
higher PSA levels and obstructive pattern on uroflowmetry,
and structural prostate changes, regardless of their age, disease
activity, or gonadal status (71). These results suggest that the
hyper-activation of the GH/IGF1 axis plays an important role in
the pathogenesis of BPH in patients with acromegaly. This is
further supported by the decrease of prostate volume in patients
with inactive disease (for more than 24 months) (71).

Also, there is ample evidence that IGF1 and the signal
transduction network that it regulates have important roles in
the development of tumors (72). Epidemiological studies have
reported that high circulating levels of IGF1 are associated with
an increased risk of PCa, particularly advanced disease (70, 73).
Experimental studies have shown that the binding of IGF1 to
both the IGF1R and IR promotes mitogen signaling events,
increases cell proliferation and inhibits apoptosis (72). Both
IGF1R and IR are overexpressed in PCa tissue (74). Moreover,
the expression of the components of the GH, insulin, and IGF1
axes can be finely modulated in the prostate by environmental
factors such as the diet. As previously described, it was well
documented that obesity promotes structural changes in the
prostate (12). Prostate of obese mice presents altered mRNA
expression levels of GH receptor (GHR) and glucose transporter
4 (GLUT4) and an up-regulation in IGF-binding protein 3
(Igfbp3) expression, which might have pathophysiological
implications (75). Emerging evidence suggests a direct
regulation of IGF/insulin signaling to the transmembrane
serine protease 2 (TMPRSS2)/V-ETS avian erythroblastosis E26
oncogene homolog (ERG) gene fusion, one of the main somatic
events in PCa (76). It has been hypothesized that ERG-positive
tumors may be more sensitive to IGF/insulin signaling, which
could promote PCa progression (70). Furthermore, another
possible mechanism is the activation of AR. IGF1 signaling
stimulates ARs by attenuating forkhead box-containing protein
O subfamily (Foxo1) inhibition (77). Recent researches have
highlighted the involvement of not only IGF1 signaling but also
of GH itself. GH is responsible for the activation of transcription
5 (STAT5) protein which is involved in the development of
several tumors including PCa (78). GHRH antagonists have been
shown to decrease directly prostate volume without involving the
androgen pathway (79).

Neoplastic, cardiovascular and respiratory disorders are
common causes of mortality and morbidity in patients with
acromegaly. Nonetheless the higher prevalence of “prostate
Frontiers in Endocrinology | www.frontiersin.org 5
structural changes” and a possibly increased risk of PCa in
patients with acromegaly, no guidelines recommend screening
for prostatic disorders. Therefore, a prostatic evaluation may be
useful in the work-up of all male patients with acromegaly (71).
Actual evidence supports the possible involvement of GH/IGF1
in the pathogenesis of BPH and PCa also in the general
population and therapeutic agents targeting the IGF1R may be
beneficial in the treatment of prostate diseases.

Finally, the increase of IGF1 seems to play a role in the
pathogenesis of BPH and PCa, since it stimulates prostate cell
proliferation. Notably, this hormone usually declines with age,
although metabolic abnormalities and acromegaly leads to IGF1
increase. Therefore, IGF1 levels should be assessed in patients
with prostatic diseases, when diabetes (or other metabolic
alterations) or acromegalic features concomitantly occur.
THYROID HORMONES AND PROSTATE

Thyroid hormones (THs) are involved in cellular growth,
metabolism and differentiation. Their effects are mainly
mediated by triiodothyronine (T3) that, by binding the nuclear
TH receptors (TRs), activates TH response elements (TREs) in
the promoter of TH target genes. However, non-classical or non-
genomic effects of TH have also been described (80).

The prevalence of thyroid dysfunction increases in the elderly.
Recent data from observational studies suggest that serum thyroid-
stimulating hormone (TSH) levels increase in older people. The US
National Health and Nutritional Examination Survey (NHANES)
III study showed that serum TSH concentrations, as well as serum
thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies,
increased with age in both men and women (81). Hyperthyroidism
is less common than hypothyroidism in the elderly and mainly
caused by autonomously functioning thyroid nodules (82).

TRs are strongly expressed in the human prostate (83) and
several studies have investigated the role of THs in the development
of prostate diseases. Epidemiological studies have found that men
with BPH or PCa have significantly increased serum T3 levels
compared with euthyroid men (84, 85). Accordingly, Eldhose and
colleagues found significantly increased levels of free T3 (FT3) and
free thyroxine (FT4) and decreased levels of TSH in patients with
BPH compared with controls. They also found that FT3 correlated
positively and TSH negatively with prostate volume (86). It has also
been shown that patients with hypothyroidism have a decreased risk
of developing PCa compared to euthyroid men (87). A recent meta-
analysis has shown that hyperthyroidism was associated with higher
risks of PCa (pooled risk ratio: 1.35, 95%CI: 1.05-1.74) compared
with euthyroidism (88). Experimental studies have shown that THs
increase PCa cell proliferation in-vitro (89). Specifically, Hsieh and
Juang found that T3 can enhance LNCaP cell proliferation and that
this effect is cell-specific. LNCaP cells are androgen-sensitive and
well-differentiated cells, derived from metastatic lymph nodes of a
PCa patient (90). Other studies also indicated that T3 has an
important role in the regulation of growth and differentiation of
LNCaP cells and PSA expression (91–93). Specifically, a direct effect
of T3 on PSA expression was described. Zhu and Young identified a
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functional TRE in the PSA promoter region, suggesting that T3
regulates PSA expression at the transcription level (93). Also, it has
been described that T3 upregulates the proliferation of LNCaP cells
through downregulation of the B-cell translocation gene 2 (BTG2), a
gene involved in cell-cycle regulation, through the TRE pathway
(94). Experimental studies have also shown that THs promote
carcinogenesis by inducing angiogenesis (95). Non-classical
mechanisms of THs may be also responsible for the effects on the
prostate. The binding of TH to plasma membrane receptor integrin
avb3 might activate various pro-carcinogenic pathways, including
protein inhibitor 3 kinases (PI-3 K) and mitogen activated-protein
kinases 1/2 (MAPK 1/2), thereby increasing cell proliferation and
angiogenesis (80).

In conclusion, although a relationship between TH and prostate
seems clear, the exact mechanisms by which they act need to be
further investigated and targeting TH actions might become an
alternative adjuvant therapy against PCa proliferation. Due to the
age-related rise in TSH levels and the negative correlation between
serum TSH levels and prostate volume (81), the role of this
hormone in the pathogenesis of prostate diseases in the aging
male seems unlikely.
ROLE OF INSULIN IN
PROSTATE DISEASES

Insulin, Metabolic Syndrome, and Benign
Prostate Hyperplasia
BPH is considered an age-dependent disease, whose etiology is
currently poorly understood. Several studies address to insulin-
resistance and hyperinsulinemia, which are components of MetS, a
role in the pathogenesis of BPH and LUTS. Accordingly,
hyperinsulinemia has been shown to enhance prostatic epithelial
cell proliferation in-vitro (96) and, conversely, hypoinsulinemia
decreases prostate volume (97). In line with these findings,
patients with serum insulin levels >13 mU/l have a greater
prostate volume and annual BPH growth rate compared with
those with insulin levels <7 mU/l (98).

Data from the second Nord-Trondelag Health Study, carried out
in 21,694 patients, revealed a significantly higher risk for LUTS in
patients with diabetes mellitus than in non-diabetic men (99). Also,
the risk for developing LUTS has been esteemed twice in patients
with diabetes compared with non-diabetic men (100). Accordingly,
insulin-resistance is an independent predictor of severe LUTS
development (101). This may be attributed to the autonomic
nervous system hyperactivity, mainly involving the a-adrenergic
pathway, which is closely associated with hyperinsulinemia and is
involved in the pathogenesis of LUTS (102).

A recent retrospective study carried out in about 900 patients
reported that, after correction for age, insulin levels and insulin-
resistance are significantly associated with prostate volume.
Interestingly, MetS predicted BPH/LUTS clinical progression
(103), thus pointing to the additional role of MetS, other than
insulin, in BPH/LUTS. A systematic review with meta-analysis
performed on 8,476 participants, including 5,554 (30.1%) with
Frontiers in Endocrinology | www.frontiersin.org 6
and 12,922 (69.9%) without MetS showed a significantly higher
prostate volume in patients compared to controls (104).

The National Cholesterol Education Program adult treatment
panel III (2005 revision) defines MetS as the presence of three or
more criteria among the following: i) abdominal obesity (waist
circumference >102 cm), ii) hypertriglyceridemia (>150 mg/dl) or
medications, iii) low high-density lipoprotein (HDL) cholesterol
(<40 mg/dl) or medications, iv) hypertension (>130/85 mmHg) or
medication, v) high fasting glucose (>110 mg/dl) or medication
(105). The evidence supports an association between BPH and each
of the MetS components (102).

In greater detail, a BMI >35 Kg/m2 has been associated with a
3.5-fold higher risk of developing an increased prostate volume
(>40 ml) (106) and with a 1.2-fold higher risk of developing
LUTS compared to those with a BMI <25 kg/m2 (107). Data
obtained in 21,694 patients have confirmed these findings by
showing that BMI is a predictor for LUTS development (99).
Other reports also support such conclusions (100, 108).

Notably, dyslipidemia is also associated with BPH. Patients
with lower HDL cholesterol show increased prostate volume and
a higher annual BPH growth rate compared with higher HDL
cholesterol values (109). Also, patients with BPH have higher
total and low-density lipoprotein (LDL) cholesterol than those
without BPH (110) and an association between LDL cholesterol
and BPH has been already shown (111). Also, among patients
with diabetes, those with the highest LDL cholesterol levels have
a 4-fold higher risk of developing BPH (111). These findings
suggest that dyslipidemia strongly associates with BPH in the
presence of other signs of MetS.

Results from 2,372 patients enrolled in the Third National
Health and Nutrition Examination Survey (NHANES III)
provide a role for the association between hypertension and
LUTS-BPH. Particularly, those with a positive anamnesis for
hypertension have increased odds for LUTS compared to those
with no hypertension (112). These findings have been largely
confirmed also elsewhere (100). Moreover, patients with
hypertension showed larger prostate volume and a higher
annual BPH growth rate compared with controls (109).

In addition to mechanisms closely associated to
hyperinsulinemia, the impairment of nitric oxide (NO) and NO
synthase (NOS) activity, the Rho kinase system, the pro-
inflammatory status and the abnormality of sexual hormones
seems also to be involved in BPH/LUTS pathogenesis in patients
with MetS (102, 113). However, the hypothesis of the existence of a
male polycystic ovary syndrome (PCOS) equivalent may represent
an additional pathogenic mechanism deserving of consideration
(please see Male PCOS Equivalent Exists: A New Syndrome)?.
Insulin and Prostate Cancer
Several lines of experimental evidence have pointed to the role of
insulin in the enhancement of prostate carcinogenesis, particularly
in advanced PCa. More in detail, androgens are known to induce
epithelial differentiation in prostate cells (114). Androgen
deprivation therapy (ADT), usually prescribed in patients with
advanced PCa, leads to cellular de-differentiation and trans-
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differentiation (114–116). Under such conditions, hyperinsulinemia, a
common side effect of ADT, enhances PCa cell plasticity, thus
increasing tumor migration and invasiveness, by upregulating the
Forkhead Box Protein C2 (FOXC2) transcription factor (117).
Furthermore, PCa cell lines have an increased ratio of pyruvate
dehydrogenase flux to citrate synthase flux following exposure to
insulin, which correlates with an insulin dose-dependent increase in
cell division (118). This experimental evidence suggests that ADT-
induced hyperinsulinemia may likely impact on cancer progression
and metastasis.

In line with these in-vitro findings, hyperinsulinemia has been
associated with a greater PCa mortality (119–122) and treatment
failure (122). A retrospective study evaluating the effects of MetS
on the time to develop tumor progression in patients with PCa
and ADT reported a significantly shorter time to PSA
progression (16 vs. 36 months) and a trend toward a shorter
overall survival (36.5 vs. 46.7 months) when MetS is present
compared with those who do not have it (122). Some Authors
have even proposed to define PCa as a component of MetS, since
hyperisulinemia prospectively is a risk factor for PCa deaths
(119). A long-term survival analysis performed on 2,546 patients
who developed PCa, found that patients with weight excess and
high C-peptide levels have a four-fold higher risk of mortality
compared with those with a BMI <25 kg/m2 and low C-peptide
levels, independently of other clinical predictors (120).

Supporting these data, the IR is expressed in PCa cells and,
interestingly, its expression increases with the Gleason score (74,
123) and ADT (124).

Despite such findings, whether treatment with metformin or
other insulin-sensitizing drugs may play a role in PCa therapy is still
a matter of debate. An in-vitro study reported that GSK1838705A, a
potent insulin-like growth factor-1 receptor (IGF1R)/IR inhibitor, is
capable of decreasing docetaxel-resistant PCa cell viability and
migration, as well as in-vivo tumor growth. Therefore, a role for
this drug for the treatment of advanced resistant PCa has been
postulated (125). Also, by blocking IGF1R, metformin has been
reported to significantly inhibit PCa cell proliferation, migration and
invasiveness, suggesting a role in PCa treatment (126). Furthermore,
tyrphostin NT157, which inhibits the insulin receptor substrates 1
and 2 (IRS1 and IRS2), was shown to decrease proliferation and
increase apoptosis of PCa cell lines (127).

On these premises, a population-based study carried out in a
cohort of 1,001 patients with PCa and 942 controls showed a
lower PCa prevalence in patients using metformin compared
with non-users. Also, it showed an inverse relationship between
PCa risk and metformin length of treatment, intensity of use and
cumulative dosage (128). Similarly, a population-based study on
24,723 case-control pairs found a lower PCa risk in men using
antidiabetic medication (129). Other evidence supports a
beneficial effect of metformin in lowering PCa incidence and
overall survival (130–132).

In conclusion, despite the evidence on the possible role of
antidiabetic drugs as adjuvant therapy in patients with PCa,
particularly in those on ADT, is growing, there is still insufficient
data from randomized trials to suggest their use in the clinical
practice (133).
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MALE PCOS EQUIVALENT EXISTS:
A NEW SYNDROME?

PCOS is a very common endocrine disorder in women of
reproductive age, with a prevalence of 6-15% (134). A genetic
background and environmental factors are involved in its
etiology. Despite PCOS diagnostic criteria mainly include
hyperandrogenism, oligo-ovulation, or anovulation and
polycystic ovaries (135), the role of metabolic dysfunction in
the pathogenesis of this syndrome is widely accepted. Indeed, up
to 75% of patients with PCOS are insulin-resistant and some are
hyperinsulinemic (135). Accordingly, the presence of polycystic
ovaries, which gave the name to the syndrome, is only one of the
many downstream clinical manifestations of PCOS and it is not
the pivotal pathogenic factor leading to the development of this
syndrome (136, 137).

Since a genetic background has been observed in PCOS, this
hereditary predisposition can be potentially inherited by the male
sibling of the affected patients. Interestingly, the brothers and the
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ABLE 1 | Biochemical and clinical parameters in male relatives of women with
olycystic ovarian syndrome, in young and elderly men with early androgenetic
lopecia (146).

arameter Male
relatives of
women with

PCOS

Men with
early-onset
androgenetic

alopecia

Clinical
findings in
elderly men
with AGA

erum free testosterone levels – ↑ –

erum SHBG levels – ↓ –

ree testosterone index – ↑ –

erum LH levels – ↑ –

erum FSH levels – ↓ –

H/FSH ratio – ↑ –

H and FSH response to GnRH
nalog

↑ – –

erum AMH levels ↑ – –

erum DHEAS levels ↑ ↑ –

erum 17a hydroxy-
rogesterone

– ↑ –

erum adiponectin levels ↑ – –

erum glucose levels – ↑ –

erum insulin levels ↑ ↑ ↑
isk for insulin-resistance ↑ ↑ –

erum cholesterol levels ↑ ↑ –

isk for metabolic syndrome – ↑ ↑
isk for type II diabetes mellitus – – ↑
isk for endothelial dysfunction ↑ – –

lood pressure ↑ ↑ ↑
erum aldosterone levels – – ↑
erum fibrinogen levels – – ↑
isk for atheromatous plaques – – ↑
isk for ischemic heart disease – – ↑
isk for benign prostate
yperplasia

– – ↑

isk for prostate cancer – – ↑
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, increased; ↓, decreased; -, non-reported.
GA, androgenetic alopecia; AMH, anti-Müllerian hormone; DHEAS, dehydroepiandrosterone
ulfate; FSH, follicle-stimulating hormone; GnRH, gonadotropin-realizing hormone; LH,
teinizing hormone; SHBG, sex hormone binding globulin.
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relatives of women with PCOS have a high prevalence of hormonal
and metabolic abnormalities (138–140). They also show a greater
prevalence of early-onset androgenetic alopecia (AGA) (141), which
has been suggested as a clinical sign of the male PCOS equivalent
(142–144). The occurrence of hormonal and metabolic
abnormalities in men with early-onset AGA (younger than 35
years) has been reported (145, 146) (Table 1). A meta-analytic
study performed in 1009 unrelated men found increased luteotropic
hormone (LH) and dehydroepiandrosterone (DHEAS), decreased
sex hormone-binding globulin (SHBG), a downward trend for FSH
and an upward trend for the LH/FSH ratio in patients with early-
onset AGA compared with controls. This hormonal pattern
somewhat resembles that found in female PCOS. The same meta-
analysis showed a significant increase in insulin levels and HOMA
index, total and LDL cholesterol and triglycerides in patients vs.
controls, already before the age of 35 (147).

Large cohort studies in older men with early-onset AGA have
clearly shown a higher prevalence of type II diabetes mellitus
(148) and a greater risk for cardiovascular disease (CVD) (149).
Thus, AGA has been suggested as an independent predictor of
mortality for diabetes mellitus and CVD (150). Curiously, these
men have also a higher prevalence of prostate diseases, such as
BPH (151–155), PCa (156), and prostatitis (157), which are
known to be influenced by the metabolic status. In this view,
prostate diseases may be seen as long-term complications of the
male PCOS equivalent syndrome (Table 2) (146). This concept
supports the association between metabolic abnormalities and
prostate diseases in the elderly. The acknowledgment and timely
diagnosis of this syndrome may be of great utility to early
identify and treat metabolic disorders in men, preventing the
Frontiers in Endocrinology | www.frontiersin.org 8
long-term complications, including diabetes, CVD and
prostate diseases.
CONCLUSION

In conclusion, the receptors for sex hormones, IGF1, THs and
insulin expressed in the prostate cells indicate the close
relationship between the prostate and hormones (Figure 1).
Also, serum levels of these hormones vary with aging and are
influenced by several comorbidities such as gonadal dysfunction,
thyroid disease, obesity, MetS, insulin-resistance and diabetes
mellitus. In particular, the evidence attributes a role in the
pathogenesis of prostate inflammation, BPH and PCa to the
age-related change in T levels as well as the increase in obesity-
TABLE 2 | Age-related features of the male polycystic ovarian syndrome (PCOS)
equivalent.

Age

<35 years Clinical signs of hyperandrogenism (early-onset AGA, acne or
hypertrichosis)
PCOS-like hormonal pattern (e.g., increased DHEAS, 17a-OH-
progesterone, FAI, LH/FSH, decreased FSH)
Metabolic abnormalities (insulin-resistance, low SHBG levels,
hyperglycemia, hyperinsulinemia), and/or a trend towards higher
BMI values
A familiar history positive for PCOS

Elderly men Diabetes mellitus, cardiovascular diseases, benign prostatic
hyperplasia, prostatitis, prostate cancer
FIGURE 1 | Hormonal effects in the prostatic tissue. By binding to the androgen receptor (AR), testosterone (T) stimulates cell differentiation in prenatal life.
According to the saturation model, it induces cell proliferation when its serum levels are in the hypogonadal range (<8 nmol/l). Thyroid hormones (THs) enhance
prostate cell proliferation and angiogenesis, triggering the TH receptor (THR). Insulin-like growth factor 1 (IGF1) and insulin induce cell proliferation by interacting with
their receptors (IGF1R and IR, respectively). Finally, estrogens can trigger the estrogen receptor a (ERa) that stimulates cell hyperplasia, inflammation, and dysplasia,
or the estrogen receptor b (ERb) that hinders cell proliferation.
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related estrogen levels. Furthermore, the increase in IGF1, which
occurs in diabetic or acromegalic patients, leads to the
proliferation of prostate cells. In contrast, the age-related decline
in serum TSH levels is unlikely to be involved in the pathogenesis
of prostate disease. Finally, metabolic abnormalities can lead to
insulin (but also to IGF1 and E2)-mediated prostate inflammation
and hyperplasia. This justifies the importance of endocrine
counseling in patients with prostate diseases, which primarily
allows the identification of endocrine or metabolic comorbidities
responsible for an increased cardiovascular risk. Further research
is needed to confirm the existence of a male-PCOS equivalent.
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