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Abstract: Skin cancer represents the most common type of cancer among Caucasians and presents in
two main forms: melanoma and non-melanoma skin cancer (NMSC). NMSC is an umbrella term,
under which basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and Merkel cell carcinoma
(MCC) are found along with the pre-neoplastic lesions, Bowen disease (BD) and actinic keratosis (AK).
Due to the mild nature of the majority of NMSC cases, research regarding their biology has attracted
much less attention. Nonetheless, NMSC can bear unfavorable characteristics for the patient, such as
invasiveness, local recurrence and distant metastases. In addition, late diagnosis is relatively common
for a number of cases of NMSC due to the inability to recognize such cases. Recognizing the need for
clinically and economically efficient modes of diagnosis, staging, and prognosis, the present review
discusses the main etiological and pathological features of NMSC as well as the new and promising
molecular biomarkers available including telomere length (TL), telomerase activity (TA), CpG island
methylation (CIM), histone methylation and acetylation, microRNAs (miRNAs), and micronuclei
frequency (MNf). The evaluation of all these aspects is important for the correct management of
NMSC; therefore, the current review aims to assist future studies interested in exploring the diagnostic
and prognostic potential of molecular biomarkers for these entities.

Keywords: non-melanoma skin cancer; basal cell carcinoma; squamous cell carcinoma; Merkel cell
carcinoma; telomeres; telomerase; epigenetics; miRNA

1. Introduction

Skin cancer is currently the most common type of cancer among Caucasians [1]. It is estimated
that approximately 1 in 5 Americans will develop skin cancer at some point in their lives by the age of
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70 [2]. Unfortunately, in spite of immense efforts being made in public health awareness and primary
prevention campaigns, a steady increase in skin cancer rates is observed [3–5]. In fact, non-melanoma
skin cancer (NMSC) is the most common type with a relative incidence increase of up to 10% per annum,
with 2–3 million new cases each year globally [6]. Skin cancer includes several distinct subtypes which
can be divided in two main categories, malignant melanoma, and NMSC, with the latter being further
divided into basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), Bowen disease
(BD), actinic keratosis (AK), and Merkel cell carcinoma (MCC) each of which has a different biological
behavior, etiology, and prognosis [6]. From these five distinct entities, BCC, SCC, and MCC stand out,
given their potential to invade into deeper layers and metastasize [7,8].

BD is in nature an in situ SCC, while AK is a precancerous lesion acting as precursor to SCC.
Even though they both exhibit a close association with SCC, they present different histopathological
findings [8]. BCCs are more benign lesions having an almost absent metastatic potential, whereas SCCs
exhibit a metastatic risk between 0.1–13.7% [9]. Given the fact that the global population is aging, an
increase in the associated morbidity and local recurrence rates is to be expected. This in hand creates
a great burden on national healthcare systems and economies. Accounting for 70–80% of all skin
cancer cases, BCC is ranked among the most common types of cancer [10]. However, given the benign
nature of BCCs and the ease of treatment in a doctors’ office, the majority of cases are not recorded in
most national cancer registries [11]. BCC preferentially arises from stem cells within hair follicles and
mechanosensory niches [12]. Generally, BCC is a slow-growing tumor which rarely gives rise to distant
metastases. However, if left untreated, it can grow invasively, destroying underlying tissues. It has
been shown that patients with BCC face a 10-fold risk of developing another BCC compared to the
general population [13]. Nonetheless, given its benign character, no long-term follow-up is required
following a complete resection of the primary tumor [14]. SCC is the second most frequent type of
skin cancer [3]. As already mentioned, SCC usually occurs on sun-exposed areas of the skin, such as
the head, face, earlobe, lips, or torso. Nonetheless, it can also arise from the surrounding skin of the
anus and genitalia, or even from skin with chronic inflammation, such as a scar or chronic wound [15].
If left untreated, an in situ SCC (AK or BD) may evolve into an invasive SCC with a great risk of
metastasizing or relapsing [16].

MCC is a rare type of NMSC arising from Merkel cells. Epidemiological findings have identified UV
radiation, old age, male sex, and Caucasian descent as strong risk factors contributing to the surprising
increase in incidence rates by 95% between 2000 and 2013 [17]. In cases with immunosuppression
in particular, an aggressive form is exhibited with mortality rates exceeding 30% [18–21]. However,
the pathophysiology of MCC development is not yet fully understood. Under poorly understood
circumstances, Merkel cells produce the neuroendocrine lesion termed MCC. From its early discovery
in 1972 by Toker [22], MCC has changed several names some of which are “cutaneous neuroendocrine
carcinoma”, “cutaneous trabecular carcinoma”, and “small cell primary cutaneous carcinoma” [23].
Various mechanisms have been suggested to induce Merkel cell carcinogenesis. such as cellular
senescence, immunosuppression, and the potential oncogenic pathways induced by UV exposure
(UV-specific mutations in the p53 gene) [24]. Recently, Feng et al. found that a novel type of polyoma
virus may attribute to MCC formation [25], highlighting the increased complexity of this entity. Being a
multifactorial disease, NMSC remains a challenge for clinicians and researchers, not only to understand
its biological behavior, but also to develop better tailored and personalized treatment plans [26].
Fortunately, as proven from various national cancer registries, the majority of NMSC cases exhibit an
excellent 5-year survival rate ranging from 100% for BCC to 95% for SCC [27,28] with local recurrence
rates being <5% [29,30]. It is clear that the early diagnosis of primary and relapsed tumors in addition
to carefully tailored treatments will be greatly assisted from the introduction of appropriate biomarker
panels into everyday clinical practice. Thus, the present brief review aims not only to introduce the
clinical significance of using biomarkers for NMSC, but also to pinpoint novel biomarkers worthy
of further research. From the great number of molecular biomarkers under research, we choose to
present those which are most likely to be introduced into everyday clinical practice in the near future,
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such as the miRNAs, and those which according to the current literature are most promising candidates
requiring further investigation.

2. Etiology

According to the current knowledge on NMSC development, a constellation of factors are
found to be implicated such as environmental exposure to UV light (regions closer to the equator
suffer from higher rates of NMSC) [5,31], radiotherapy [32], viral infections (mostly β-HPV) [3],
immunosuppression (based primarily upon the increased incidence exhibited in organ transplant
recipients and the twofold higher incidence rate among HIV+ patients where SCCs is positively
correlated with immunosuppression) [33,34], and genetic predisposition [35].

2.1. Ultraviolet (UV) Light

UV light exposure has been found to result in DNA mutations by inducing covalent bonding
between adjacent pyrimidines (from UVB) and the formation of reactive oxygen species (from UVA) [36].
In detail, NMSCs formation has been positively associated to recreational UV light exposure with 2.5-
and 1.5-fold increase in the risk of developing SCC and BCC, respectively [37]. Moreover, prolonged
sunlight exposure during childhood and adolescence has been found to be responsible for BCCs,
while chronic UV exposure is SCC formation in more advanced ages [1]. Notably, UV light may have a
carcinogenic effect via immunosuppression. In detail, it has been described that a cellular modulation
of immune cells is evoked, as evidenced by the concomitant depletion of Langerhans cells from the
epidermis, altered antigen presentation in the lymph nodes, a shift towards Th2 responses and the
development of tumor antigen-specific T regulatory cells, resulting in blocked immune surveillance
and tumor outgrowth [38–40].

2.2. Genetic Background

Genetic predisposition is neither present nor uniform across all NMSCs. Most BCCs lack any
pre-existing genetic background while SCCs may arise from a genetically predisposed clonal cell
growth. Genetic damage accumulates, leading first to precursor lesions of AK or BD and subsequently
to SCC [6] allowing even for multifocal development of SCCs (field cancerization) [41,42]. Several
tumor suppressor genes and proto-oncogenes have been found to be implicated in BCC pathogenesis,
such as components of the Sonic Hedgehog pathway (PTCH1 and SMO), the TP53 tumor suppressor
gene, and members of the RAS family. In fact, it seems that the improper activation of the Sonic
Hedgehog pathway is the key component pathway in BCC carcinogenesis [43,44]. SCCs are also driven
by several mutated genes [45]. In detail, several mutations of the tyrosine kinase receptors (epidermal
growth factor receptor-EGFR and fibroblast growth factor receptors—FGFRs) [46], certain cell cycle
regulatory genes (TP53-the most common somatic mutation, CDKN2A/RB1, CCDN1, and MYC) [47,48],
the RAS/MAPK and PI3K signaling pathways [46], genomic loci implicated in squamous cell fate
determination (TP63, SOX2, and NRF2) [49–51], and squamous differentiation network (Notch and
Fat1) [52,53] have been found.

2.3. Infectious Agents

An increasing body of evidence highlights the oncogenic potential of certain viruses such as the
HPV, EBV, and the recently discovered Merkel Cell Polyomavirus (MCPyV) for NMSCs. HPV produces
the E6 and E7 oncoproteins which have the potential to integrate into the hosts’ keratinocytes
genome [54,55]. It is worth noting that HPV-positive NMSC presents a more benign clinical behavior
than HPV-negative NMSC. Even though the reason behind this remains undetermined, it may be due to
the fact that the majority of the HPV-positive NMSCs tend to express wild-type TP53. On the counterpart,
the majority of the HPV-negative cases exhibit mutated TP53 with or without accompanying mutations
in other genomic loci [45]. On the contrary, EBV-induced carcinogenesis results from a multistep
process, where the effect from a chronic EBV infection augments the results driven from genetic
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and epigenetic (methylation of several genomic sites and modulators) changes in the keratinocytes’
genome [56]. In 2008, Feng et al. identified the MCPyV [25]. Ever since, epidemiological studies using
serological tests have estimated that 60% to 80% of the population is infected with MCPyV [57,58].
Interestingly, the majority of MCC cases (approximately 75%) are linked to MCPyV infection [59–61].
Even though p53 is considered to be a hallmark for NMSCs, Sihto et al. demonstrated that the
upregulation of p53 is not a mandatory step for Merkel cell carcinogenesis. In fact, they found p53 to
be overexpressed only in 7% of the MCPyV-positive MCC samples suggesting that MCPyV-associated
carcinogenesis does not rely on the p53 pathway [62]. Based on the current literature, the proposed
mode of MCPyV-induced carcinogenesis relies on at least two critical steps; integration of viral DNA
into the cells’ genome and loss of its ability to replicate due to accumulated mutations. Following
these two steps, the virus produces two main carcinogenic proteins; large T-antigen (LTAg) and small
t-antigen (STAg) [62–65]. It has been shown that LTAg specifically binds to tumor suppressor proteins,
including p53 (TP53) and members of the Rb family (RB1, RBL1, and RBL2) [66–68].

3. Current Molecular Biomarkers for NMSC

3.1. Telomere Length (TL)

Telomeres are repetitive nucleotide sequences (5′-TTAGGG-3′) added on the ends of eukaryotic
chromosomes by an enzyme, the telomerase. Combined with specific proteins, telomeres form
complexes guarding chromosomic ends from degradation induced by repetitive cell divisions [69]
and oxidative stress [70] (Figure 1). Telomerase is an enzyme complex consisting of the catalytic
subunit, the human telomerase reverse transcriptase (hTERT) and an RNA template-hTR (human
telomere RNA), the telomerase RNA component (TERC), which serves as a template for directing the
appropriate telomeric sequences onto the 3′ end of a telomeric primer [71]. Given the well-established
knowledge that shorter telomeres contribute to cellular senescence [72], both tTL and telomerase
activity (TA) have been the subject of research on cancer-related biomarkers. In fact, an increasing
body of evidence supports the potential of both serving as diagnostic and prognostic biomarkers for
various cancers [73,74]. The underlying hypothesis is that when cellular senescence is combined with
excessive environmental burden (for instance UV exposure), the cell may be led to apoptosis. Thus,
in theory, it would be reasonable to expect neoplastic cells to possess longer telomeres. On the contrary
though, shorter telomeres would render cellular DNA prone to mutations due to replication errors,
leading to chromosomal instability and subsequent chromosomal aberrations and therefore, cancer [75].
Nonetheless, from what has been found, it seems that both scenarios may be true for the pathogenesis
of NMSC [76], which could be the reason why such a great heterogeneity has been found in association
studies [77].

Using Q-FISH for the determination of TL in neoplastic epidermal cells, Yamada-Hishida et al.
found that TL was decreased in BD and AK (both had relatively close TL) in relation to BCC and SCC,
suggesting that TL estimation in NMSC reflects its biological behavior, such as the metastatic and
invasive potential. Moreover, the authors suggested that SCC precursor lesions exhibit a different TL
from those of SCC [78]. On the contrary, Wainwright et al. examined BCC and TL in relation to normal
skin and reported that telomeres from BCC samples had a variable range of TL (out of the 20 samples
they examined 13, had an increased mean TL, while 7 had a shorter TL) [79]. A possible explanation
for this variability may be the sampling variability. In other words, the fact that when testing TL from
neoplastic cells, one has to bear in mind that cells at one point will differ from those at another despite
their relative distance. A solution to this problem was indicated by Han et al., who presented that TL
in peripheral blood lymphocytes (PBLs) can be indicative of the skin neoplastic burden and can thus be
used as a biomarker. Of note, they found that there was no clear association between TL and the risk of
SCC development. By contrast, a shorter telomere length was shown to be associated with an increased
risk of BCC [80]. Another study supporting these results was published by Anic et al., who evaluated
the relative risk of NMSC development in relation to TL in PBLs. They found that longer telomeres
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were negatively-associated with BCC and SCC formation (particularly in males), regardless of age [81].
In contrast to the above-mentioned studies, Liang et al. In an equally large series of NMSC cases,
reported that there was no association between TL in PBLs and the risk of developing NMSC [82].
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Figure 1. Graphic representation of the underlying pathophysiology of NMSC formation. Carcinogenic
mechanisms located in the nuclear apartment involve telomere shortening, histone condensation,
inactivation of tumor-suppressor promoters by miRNA and/or methylation. Carcinogenic mechanisms
located in the cytosol involve inactivation of mRNAs by miRNAs. Me: methylation.

A rather interesting finding reporting the potential use of TL as a promising indicator of the
underlying genetic background giving rise to SCC and the rest of the NMSC was published in the
study by Leukfe et al. In detail, they presented that TL distribution is able to differentiate between
two types of genetically distinct skin SCCs. The first type exhibits a short/homogeneous TL profile,
while the other one a long/heterogeneous TL profile. According to the authors, these findings point out
the possibility of two co-existing carcinogenic mechanisms. The first scenario suggests an epidermal
stem cell that from some point exhibited accelerated telomere loss which was then passed to his
daughter-cells. On the contrary, in the second scenario, which may be the case for the majority of
skin SCC cases, a multifocal carcinogenic process occurs with variable proliferation rates at each site,
which in hand give rise to variable TLs. In addition, this scenario may explain the profound genetic
heterogeneity seen among cancer cells even from the same lesion [76]. This is also important for the
determination of the high-risk precursor lesions whose TL resembles that of SCC. Recognizing such
lesions would be important for the application of closer monitoring protocols, given that they are more
likely to metastasize or recur.

3.2. Telomerase Activity (TA)

As mentioned above, telomerase is composed of two subunits: The catalytic subunit named
human telomerase reverse transcriptase (hTERT) and the telomerase RNA component (TERC) for
the de novo synthesis of telomeric DNA sequences. The TERT gene, located on the chromosomal
area 5p15.33, is the primary regulator of TA via its core promoter region and numerous binding sites
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which all together serve as transcription regulators. In fact, the main regulatory checkpoint of TA is
at its transcription [44]. However, following the genes’ pathway upstream, it can be seen that TERT
expression is regulated by a number of transcription factors, including c-Myc, Mad1, estrogen receptor,
progesterone receptor, AP-1, NF-kB, Rb/E2F factors, CEBP-alpha, and CEBP-beta [83,84] with the
Wnt/beta-catenin pathway and the KLF4 being promising candidates as well [85,86]. Of note, it has
been shown that TA decreases at the late stages of in utero life, while during ex utero life, it is almost
diminished, namely in adult somatic cells [84]. However, an increasing body of evidence supports
the notion that most types of cancer cells, among which are skin cancer cells, exhibit an increased TA,
mainly due to TERT promoter mutations [87]. Surprisingly, it has also been described that mutations
of the TERT gene are of paramount importance for cancer cells derived from tissues with low rates
of cellular regeneration [88]. Studying the various TA profiles in skin cancer, Parris I reported that
patients with skin cancer exhibited a higher TA than the healthy controls, regardless of the type of
cancer. Moreover, a difference in TA was witnessed between the various subtypes of NMSC. In detail,
TA was increased in the majority of BD, AK and BCC cases, whereas only in a small number of SCC
patients (25%, 3/12). Another interesting finding was the gradual increase in TA in pre-cancerous
lesions (42% of AK and BD cases, 11/26) to confirmed cancers (77% of the BCC patients, 10/13) [89].
On the contrary, Boldrini et al. examined a small series of SCCs and BCCs found that SCCs exhibited a
higher TA than BCCs, while a close association between hTERT expression and TA was also found.
That is of utmost importance, given the relative simplicity of RT-PCR in contrast to TRAP-ELISA,
which is the test mostly used for the determination of TA [90]. In a series of 66 patients with NMSC
(32 with BCC and 34 with SCC), Griewank et al. found that approximately 50% of both groups had
TERT promoter mutations accompanied by significant UV damage in their DNA, with no statistically
significant association found with clinicopathologic parameters [91]. In accordance with these findings,
Scott et al. reported that TERT promoter mutations were present in 18/23 sporadic BCCs (78%), 13/19
BCCs with nevoid basal cell carcinoma syndrome (68%), 13/26 SCCs (50%), and 1/11 BDs (9%) from a
total of 18, 4, 19, and 11 patients, respectively, while being absent in their control group [92]. A finding
that has to be noted is that each lesion bears its own genetic fingerprint. That is of utmost importance
in cases with multiple lesions where an error in a sampling test should be avoided.

3.3. Epigenetic Modifications

Eukaryotic cells may be subsequent to heritable and non-heritable genomic alterations. Heritable
genomic alterations that are not produced by changes in the genomic DNA sequence are summarized as
epigenetics [93]. Epigenetic modifications include DNA methylation of the C-5 position of the cytosine
ring within the promoter’s CpG island, histone methylation and acetylation, and miRNA-mediated
gene regulations. Separately and combined, these alterations regulate the chromatin formation and
packaging and thus regulate gene transcription by modifying their accessibility [94]. It is accepted
that epigenetic modifications reflect the environmental burden of an organism through its exposure to
various toxicants and carcinogens [95].

3.3.1. CpG Island Methylation (CIM)

DNA methylation is one the most important regulatory mechanisms for gene expression. In normal
cells, it assures the proper regulation of gene expression and stable gene silencing. This is achieved
through the recruitment of DNA methyltransferases (DNMTs) in order to introduce methyl groups in
cytosine within CpG dinucleotides by creating covalent bonds between them. In fact, CpG dinucleotides
may appear in large clusters known as CpG islands (Figure 1). Intense research in cancer biology has
identified global genomic hypomethylation as one of the leading factors for genomic instability and
oncogene activation, whereas a number of tumor suppressor genes are silenced due to hypermethylated
CpG islands [96], while global hypomethylation of lamina-associated domains (LAD) may be another
aspect of the deregulated methylome [97]. In cutaneous melanoma, it was demonstrated that
promoter hypomethylation and intragenic hypermethylation of specific genes are associated with
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tumor aggressiveness due to the alteration of extracellular matrix components and the upregulation of
matrix metalloproteinases [98–100]. This highlights the clinical potential of deregulated methylation
status as a hallmark for carcinogenesis, allowing the recognition of various methylation patterns
as biomarkers for diagnosis and prognosis [101] (Table 1). Methylation studies focusing on cSCC,
have demonstrated various patterns. For instance, numerous promoters have been found to be
hypermethylated, among which are the cell cycle regulator CDKN2A [102], cadherin CDH1 [103,104]
and CDH13 [105], transcription factor FOXE1 [106], modulators of Wnt signaling SFRPs [107] and
FRZB [108], positive regulators of apoptosis ASC [109], G0S2 [110], DAPK1 [111], and miRNA-204 [112],
as well as the hypomethylation of the DSS1 gene [113]. Hervás-Marín et al. compared low-risk and
high-risk SCC and succeeded in identifying specific modifications of the methylation status using
genome-wide DNA methylation profiling. In detail, they demonstrated a differential methylation
status between the two pathological stages, with low-risk SCCs being hypomethylated and high-risk
SCCs hypermethylated. According to the authors, this finding may suggest a sequential approach of
SCC formation, where UV-exposure leads to hypomethylation and thus foretells the premalignant
and low-risk stages of cSCC, while advanced stages of SCC present a hypermethylated status [101].
As regards the evaluation of the methylation status of BCC, Goldberg et al. presented the FHIT
promoter to be hypomethylated [114], while Heitzer et al. found the hypermethylated PTCH promoter
only in a small number of cases [115]. Darr et al. examined metastatic BCCs and SCCs compared to
their non-metastatic counterparts. They found that both metastatic entities exhibited a differential
methylation status from the non-metastatic ones with pronounced global hypomethylation, as well
as at tumor suppressor genes and PRC2 target genes. Moreover, MYCL2 was specifically found
to be demethylated in metastatic cases. Of note, the authors highlighted the resemblance between
the methylation pattern of metastatic BCC and cSCC regardless of the metastatic capacity [108].
Greenberg et al., studying a series of MCCs, demonstrated that the tumor suppressor p14-ARK was
hypermethylated [116]. Moreover, hypermethylated promoters have also been found in DUSP2,
CDKN2A, and members of the RASSF family [117]. The concomitant analysis of overexpressed
proteins derived from methylated genes and hallmark mutations of skin cancers through high-sensitive
molecular techniques is representing a promising strategy for the early diagnosis of tumors and to
define the prognosis of patients [118].

Table 1. NMSC-related genomic loci, their methylation status, and their effect on cellular level.

Gene Target Methylation Status Type of NMSC Cellular Effect Reference

CDKN2A Hypermethylated SCC Cell cycle deregulation Brown et al. [102]

CDH1 Hypermethylated SCC Cellular environment
deregulation

Chiles et al. [103]
Murao et al. [104]

CDH13 Hypermethylated SCC Cellular environment
deregulation Takeuchi et al. [105]

FOXE1 Hypermethylated SCC Modulator of
Wnt signaling Venza et al. [106]

SFRPs Hypermethylated SCC Modulator of
Wnt signaling Liang et al. [107]

FRZB Hypermethylated SCC Modulator of
Wnt signaling Darr et al. [108]

ASC Hypermethylated SCC Deregulation
of apoptosis Meier et al. [109]

G0S2 Hypermethylated SCC Deregulation
of apoptosis Nobeyama et al. [110]

DAPK1 Hypermethylated SCC Deregulation
of apoptosis Li et al. [111]
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Table 1. Cont.

Gene Target Methylation Status Type of NMSC Cellular Effect Reference

miRNA-204 Hypermethylated SCC Deregulation
of apoptosis Toll et al. [112]

DSS1 Hypomethylation SCC
Deregulated

post-translational
protein modification

Venza et al. [113]

Global DNA Hypomethylation SCC (benign) Restricted
genomic silencing

Hervás-Marín et al. [101]
Global DNA Hypermethylation SCC (aggressive) Extensive

genomic silencing

FHIT promoter Hypomethylated BCC Replication stress and
DNA damage Goldberg et al. [114]

PTCH promoter Hypermethylated BCC
(small number of cases)

Deactivation of tumor
suppressor genes Heitzer et al. [115]

MYCL2 Hypomethylated BCC (metastatic) Activation of
proto-oncogene Darr et al. [108]

p14-ARK Hypermethylated MCC Deactivation of tumor
suppressor genes Greenberg et al. [116]

DUSP2,
CDKN2A promoter Hypermethylated MCC Deactivation of tumor

suppressor genes Harms et al. [117]

3.3.2. Histone Methylation and Acetylation

Histones are a family of five basic proteins (H1/H5, H2A, H2B, H3, and H4) whose role is to react
with DNA strands in the nucleus assisting its dense packaging into chromatin and chromosomes.
Histones H2A, H2B, H3, and H4 form a reel of dimers (the octameric nucleosome core) around which
DNA is wrapped, while histones H1/H5 link nucleosomes together, allowing for an even higher degree
of density (Figure 1). A key feature of histones is the presence of the N-terminal tail regions, which are
rich in lysine residues. The histone tails can undergo extensive modifications, including methylation,
acetylation, phosphorylation, sumoylation, and uquitinylation [119,120]. However, acetylation and
methylation are the most well-studied aspects of histone modification, particularly in the setting of
cancer. The acetylation and deacetylation of lysine residues modifies the net positive charge (decreasing
or increasing it accordingly). Furthermore, the introduction of acetyl-groups induces a decreased
affinity between histones and DNA, allowing for various transcription factors to reach regulatory areas
such as gene promoters, while deacetylation has the opposite effect on gene expression by increasing
the affinity between DNA and the histone complex [116]. Histone acetylation and deacetylation are
catalyzed by the specific enzymes, histone acetyltransferases (HATs) and histone deacetyltransferases
(HDACs), respectively. Histones are mainly methylated on the lysine and arginine residues of
H3 and H4 tails [93]. The introduction of methyl-groups increases the hydrophobicity of histone
proteins, inducing their tighter packing and thus inhibiting DNA transcription. Notably, it has been
described that the restoration of normal histone density (reduction of DNA methylation and increase
of histone acetylation) allows for the reactivation of the silenced tumor suppressor genes Cip1/p21
and p16 [121]. Rao et al. investigated the activation status of EZH2 (a histone methyltransferase of
the polycomb repressive complex 2) and its related proteins in the context of aggressive BCCs. EZH2
is closely associated with the Sonic Hedgehog pathway [122]. According to their findings, EZH2
was upregulated (as in other studies [123]), allowing for a stratification between pathological stages.
On the contrary, upregulated H3K27me3 and 5hmC were positively associated with a more benign
phenotype. Finally, the authors were able to discriminate BCCs from non-malignant epidermal cells
through the upregulated levels NSD2, MOF, H3K27me3, and 5hmC [124]. Harms et al. investigated
a series of MCCs and found that EZH2 was deregulated, inducing gene silencing via histone H3
lysine 27 trimethylation and was thus associated with unfavorable characteristics, such as disease
progression and a poorer prognosis [117,125]. However, even though histone methylation/acetylation
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has been extensively investigated in melanoma [116,126], research on NMSCs is limited. Indeed, it was
recently demonstrated that the methylation of H3K4 is associated with the neoplastic transformation
of melanocytes that evolve into cutaneous melanoma [127]. These results suggest that the epigenetic
modification of histones’ methylation status could represent a promising epigenetic therapy for
melanoma and other tumors [126].

3.3.3. MicroRNAs (miRNAs or miRs)

miRNAs are small single-stranded non-coding RNAs of 18–25 nucleotides length. Their discovery
in 1993 from two research groups working on Caenorhabditis elegans proved to be a milestone of what
is now considered a true breakthrough in molecular biology [128,129]. However, for a number of
years, the properties miRNAs remained poorly understood. Surprisingly, miRNA production is a
refined, multi-step process, where specific DNA transcripts produce primary miRNAs (pri-miRNAs),
which are processed into precursor miRNAs (pre-miRNAs) and then into mature miRNAs. Mature
miRNAs have the potential to target specific mRNAs, leading to their degradation or inhibiting
their translation into proteins. This is possible either through an interaction with the 3′-untranslated
region (3′ UTR) of the target mRNA (in which case its expression is inhibited) [130] or through
binding with other regions, such as the 5′-untranslated region (5′ UTR), coding sequence and gene
promoters [131]. Of note however, miRNAs are able to regulate not only protein translation, but also
gene expression. In detail, miRNAs have been found to be able to positively regulate gene expression
under certain conditions [132]. This is possible as miRNAs are able to move through different cellular
compartments [133] (Figure 1). However, miRNAs are not restricted to the cytosol. A number of studies
have demonstrated the presence of miRNAs in the extracellular compartment, both in a free state and
packed in various carriers, such as high density lipoprotein particles, apoptotic bodies, and others [134].
Indeed, in addition to their small size and hairpin-loop structure, they are unreachable to the various
free RNases, allowing them to maintain their structural integrity [135]. Thus, isolating them from a
variety of clinical specimens is possible. Lastly, it has been well established that miRNAs are actively
secreted by a variety of cancer cells into the circulation [73]. However, each type of cancer expresses
different miRNAs; thus, in this manner, each type of cancer creates its own molecular profile. This is
of utmost importance when considering miRNAs as biomarkers for monitoring cellular activity and
the genomic/proteomic status. Even though miRNAs can be isolated both from tissue samples and
from biological fluids (serum, plasma, and urine), circulating miRNAs are the first choice in the clinical
setting. This is due to the fact that tissue miRNA sampling is an invasive technic lacking the ability
to provide reproducible results regardless of the operator and area of sampling [136]. At present,
several studies have identified sets of miRNAs specific for different tumors, including lung cancer,
mesothelioma, bladder cancer, colorectal cancer, glioblastoma multiforme, oral cancer, uveal melanoma,
hematological malignancies, etc. [137–144].

Regarding NMSCs, owing to the dominance of BCCs among all other tumor types, numerous
studies have focused on the identification of potential miRNA markers. Sand et al. used next-generation
sequencing of the basal cell carcinoma miRNome and succeeded in identifying a number of upregulated
miRNAs, of which the 10 most increased were hsa-miR-223-3p, hsa-miR-197-3p, hsa-miR-342-3p,
hsa-miR-505-3p, hsa-miR-204-5p, hsa-miR-941, hsa-miR-145-5p, hsa-miR-301b-3p, hsa-miR-452-5p,
and hsa-miR-191-5p [145]. Yi et al. found that miR-203, a specifically expressed miRNA in the
epidermis [146], is consistently downregulated in cases of BCC. Moreover, they proved that c-JUN
suppressed miR-203, while miR-203 also targeted c-JUN, creating an inhibitory loop. In addition,
miR-203 was further suppressed by the synergistic oncogenic activity of the Sonic Hedgehog and EGFR
pathways. It is rather interesting that various studies have identified c-JUN as a potent oncogene,
mediating its action downstream of the Sonic Hedgehog pathway [147]. Thus, a simultaneous activation
of the Sonic Hedgehog and EGFR pathways, in addition to a potential crosstalk between them may
result in BCC formation. Given the inhibitory effect of miR-203 c-JUN, researchers have investigated
the therapeutic potential of miR-203 administration. Indeed, high levels of miR-203 have been shown
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to result in a decreased c-JUN and p63 expression, indicating the effective suppression of target
genes [148]. Hu et al. examined 86 patients with BCC in order to explore the association between
the expression level of miR-34a in serum and the clinical prognosis. According to their findings,
patients with BCC exhibited lower miR-34a levels compared to healthy controls. Data analysis further
revealed that miR-34a was upregulated in cases with a larger tumor diameter, the absence of lymph
node infiltration and non-invasive disease. Moreover, miR-34a was positively associated with various
survival parameters, such as median progression-free survival, median overall survival, and the overall
survival rate. However, no association was found with pathological staging or the primary site. On the
contrary, cases with a profound downregulation of miR-34a presented a poor prognosis [149].

In SCC, numerous miRNAs have been found to be dysregulated. Some of these (namely miR-21,
miR-205, miR-365, miR-31, miR-135b, miR-424, miR-320, miR-222, miR-15a, miR-142, and miR-186)
have been shown to possess carcinogenic properties by targeting key genetic modulators, such as the
PTEN, PDCD4, GRHL3, HOXA9, and RhoBTB genes or the AKT/mTOR pathway [150,151]. There is
sufficient evidence to indicate that these genes are involved in crucial carcinogenic steps, such as tumor
growth, invasion, migration, the maintenance of stem cell properties and the evasion of apoptosis [151].
On the contrary, there is a wide panel of carcinoprotective miRNAs (miR-20a, miR-203, miR-181a,
miR-125b, miR-34a, miR-148a, miR-214, miR-124, miR-204, and miR-199a), which have been found to
regulate genes, such as HMGB1, SIRT6, MMPs, MAP kinases, KRAS, LIMK1, c-MYC, SHP2, CD44,
BCAM, FZD6, DDR1, and ERKs. The potential action is described to be via the regulation of the
cell cycle, epithelial–mesenchymal transition, and stemness, while they have also been found to
promote cellular apoptosis and senescence [152]. A number of studies have evaluated the association of
various miRNAs with clinocopathological features. miR-205 has exhibited an association with various
pathological features of a poor prognosis, such as desmoplasia, perineural invasion and infiltrative
patterns, while clinically it has been linked to local recurrence [153,154]. Recently, Gong et al. described
that miR-221 also has carcinogenic properties. This is achieved as miR-221 has been found to interact
with PTEN, which is a key oncogene. Notably, the authors pinpointed the potential development
of anti-miR-221 antibodies, assisting both diagnosis and treatment [155]. On the contrary, miR-203
expression was shown to be associated with a favorable prognosis, as it was primarily found in
well-differentiated zones only and rarely in the invasion front [153]. Zhang et al. found that SCC
patients with low miR-20a levels exhibited a significantly poorer overall survival than those with
a high miR-20a expression. Moreover, miR-20a expression was closely associated with the TNM
stage, as it was proven that a low level of miR-20a expression was more frequently exhibited in
tumors with an advanced TNM stage [156]. Several studies have also examined the expression profiles
of various miRNAs in MCC. Ning et al. used next-generation sequencing of small RNA libraries
on tissue samples and identified the MCC miRNome. In total, eight miRNAs were overexpressed
(miR-502-3p, miR-9, miR-7, miR-340, miR-182, miR-190b, miR-873, and miR-183) and three miRNAs
were suppressed (miR-3170, miR-125b, and miR-374c) in contrast to other forms of NMSCs. In situ
hybridization further proved that miR-182 was abundant within cancer cells. The concomitant
evaluation of the expression profiles of four miRNAs (miR-182, miR-183, miR-190b, and miR-340) in
the MCPyV-negative cell line, MCC13, proved that they were downregulated. Thus, they proposed
the possible diagnostic use of this miRNA panel in cases of MCPyV-positive MCC [157]. Veija et al.
compared the miRNAome between MCPyV-positive and MCPyV-negative MCCs. According to
their findings, miR-30a, miR-34a, miR-142-3p, and miR-1539 were overexpressed (2.5 to 5 times) in
MCPyV-positive MCCs, while miR-181d exhibited a 3.5-fold higher expression in MCPyV-negative
MCCs [158]. Renwick et al. used miRNA FISH in formalin-fixed paraffin-embedded tissues and
succeeded in correctly discerning BCC from MCC, based on the overexpression of miR-205 and miR-375,
respectively [159]. An important finding also derived from the study by Moens et al. who evaluated the
secretion of various miRNAs in exosomes using RT-PCR. They succeeded in identifying the presence
of miR-30a, miR-125b, miR-183, miR-190b, and miR-375 in exosomes [160]. This finding highlights
the clinical potential of circulating miRNAs as biomarkers for MCC. In this context, the analysis of



J. Clin. Med. 2020, 9, 2868 11 of 22

circulating tumor DNA and circulating miRNAs has been translated into clinical practice to predict the
clinical-pathological features of tumors thus ameliorating the diagnostic and therapeutic strategies
available for cancer patients [161]. However, solid evidence for the clinical relevance of extracellular
miRNAs is still lacking. Moreover, despite the fact that numerous studies emerge daily, enriching
the MCC-related miRNA panel, only a few of these have compared the expression profiles between
malignant and non-malignant Merkel cells, and even fewer have tested the clinical or pathological
relevance of these profiles [160,162]. miRNAs are recognized also as important biomarkers for the
management of cutaneous melanoma. In this context, several studies have identified sets of miRNAs
strictly associated to the development and progression of melanoma. In particular, Tao and colleagues
(2019) have identified five miRNAs (miR-25, miR-204, miR-211, miR-510, and miR-513c) associated with
survival of melanoma patients [163]. In the same manner, Hanniford et al. have identified a 4-miRNA
signature (miR-150–5p, miR-15b-5p, miR-16–5p, and miR-374b-3p) predictive for the development of
melanoma brain metastases [164]. Notably, some miRNAs, in particular the miR-510, are associated
with both melanoma clinical features. A summary of the various miRNA expressions patterns and
their clinical significance for NMSCs is presented in Table 2.

Table 2. Deregulated microRNA expression profiles and their clinical relevance for NMSC.

miRNA Expression Status Type of NMSC Possible Significance Reference

hsa-miR-223-3p,

Upregulated BCC Diagnosis Sand et al. [145]

hsa-miR-197-3p,
hsa-miR-342-3p,
hsa-miR-505-3p,
hsa-miR-204-5p,

hsa-miR-941,
hsa-miR-145-5p,

hsa-miR-301b-3p,
hsa-miR-452-5p,
hsa-miR-191-5p,

miR203 Downregulated BCC Diagnosis, Therapy Yi et al. [146]

miR-34a Downregulated BCC Prognosis Hu et al. [149]

miR-21,

Upregulated SCC Diagnosis Mizrahi et al. [150],
Yu et al. [151]

miR-205,
miR-365,
miR-31,

miR-135b,
miR-424,
miR-320,
miR-222
miR-15a,
miR-142
miR-186

miR-20a,

Downregulated SCC Diagnosis García-Sancha et al. [152]

miR-203,
miR-181a,

miR-125b, miR-34a,
miR-148a, miR-214,

miR-124,
miR-204,
miR-199a

miR-205 Upregulated SCC Diagnosis, Prognosis Cañueto et al. [153],
Stojadinovic et al. [154]

miR-221 Upregulated SCC Diagnosis, therapy Gong et al. [155]

miR-203 varied SCC Prognosis Cañueto et al. [153]

miR-20a Varied SCC Prognosis Zhang et al. [156]
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Table 2. Cont.

miRNA Expression Status Type of NMSC Possible Significance Reference

miR-502-3p,

Upregulated

MCC Diagnosis Ning et al. [157]

miR-9,
miR-7,

miR-340
miR-182,

miR-190b,
miR-873,
miR-183

miR-3170,
DownregulatedmiR-125b,

miR-374c

miR-182,
Downregulated in

MCPyV-negative cell line
miR-183,

miR-190b,
miR-340

miR-30a

Upregulated
MCPyV-positive

MCCs Diagnosis Veija et al. [158]

miR-190b,
miR-142-3p,

miR-1539

miR-181d MCPyV-negative
MCCs

miR-375 Upregulated MCC Diagnosis Renwick et al. [159]

miR-30a,

Upregulated MCC Diagnosis Moens group [160]
miR-125b,
miR-183,
miR-190b
miR-375

4. Biomarkers under Evaluation

Micronuclei Frequency (MNf)

Micronuclei (MN), or Howell–Jolly bodies, are small cytoplasmic formations unsheathed in a
nuclear envelope. In nature, they represent acentric chromatid/chromosome fragments (as a result of
DNA damage) or whole chromatids/chromosomes (due to mitotic spindle failure, kinetochore damage,
centromeric DNA hypomethylation and defects in the cell cycle control system) that are not included
in the nucleus during telophase. Instead, they form small DNA-containing structures that are just a
fraction of the size of the nucleus [165,166]. A large number of studies have indicated the promising
potential of MN frequency (MNf) as a biomarker for diagnostic, prognostic and predictive use in
various types of cancer, among which are those of the lung, bladder, and colorectal cancer [167,168].
However, both melanoma and NMSC have not been extensively studied with regards to their MNf
status. Nonetheless, there is evidence that in premalignant cell lines (for example keratinocytes), MNf
is higher than in normal skin lines [169], while chromosomal aberrations due to UVA and UVB skin
exposure also result in an increased MNf [170,171]. Taking all these findings into consideration, it can
be hypothesized that MNf as part of a wider panel of biomarkers, can be used not only for the diagnosis
of NMSC, but also for a close and convenient monitoring for the early detection of tumor regression
or progression.

5. Conclusions

NMSC is the most common type of cancer worldwide, representing an immense burden for both
patients and healthcare systems. However, if diagnosed in an early stage, a great number of these cases
will probably have a definitive care. Moreover, the vast majority of NMSC cases have well-studied
causative factors, allowing for the establishment of screening protocols meant for high-risk groups.
On the contrary, it is suggested that the macroscopic examination of the skin largely fails to assist
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secondary prevention improvement. Thus, the introduction of more sensitive and specific modes of
diagnosis is required. The present review aimed to systematically suggest that molecular biomarkers
are able to achieve this goal. In fact, molecular biomarkers seem to be promising candidates, not only for
early detection, but also for the achievement of the corner stone of effective care which is personalized
medicine. Despite the fact that NMSCs are distinct entities, they have been proven to share some
common features to a certain extent. The hypermethylated E-cadherin (CDH1) promoter and the
deregulated expression profile of miR-203 are some of the BCC/SCC shared biomarkers. However,
as presented above, even if current literature suggests the possible clinical significance of various
molecular targets (micronuclei frequency, extracellular miRNAs, histone methylation/acetylation) solid
evidence on this topic is still missing. This highlights the need for further validation first through
in vivo and then through large cohort studies where panels of sensitive and specific biomarkers
will be evaluated both for their ability to detect and for their availability to foretell the prognosis.
Unfortunately, a great disadvantage of NMSC biomarkers is the inability to specifically locate a lesion
that has not made itself clinically/macroscopically evident yet. Thus, research for biomarkers has to
create panels that will be not only disease-sensitive/specific but also site-sensitive/specific and therefore
being able to discern between different body regions or between skin and mucous membrane cancers.
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Abbreviations

NMSC non-melanoma skin cancer
BCC basal cell carcinoma
SCC squamous cell carcinoma
MCC Merkel cell carcinoma
BD Bowen’s Disease
AK Actinic Keratosis
UV Ultraviolet
β-HPV β-Human papilloma virus
UVB ultraviolet B
UVA Ultraviolet A
EGFR epidermal growth factor receptor
FGFR fibroblast growth factor receptors
EBV Epstein–Barr virus
MCPyV Merkel Cell Polyomavirus
LTAg large T-antigen
STAg small t-antigen
TL Telomere length
hTERT human telomerase reverse transcriptase
hTR human telomere RNA
TERC telomerase RNA component
TA telomerase activity
PBL peripheral blood lymphocytes
CIM CpG island methylation
DNMTs DNA methyltransferases
LAD lamina-associated domains
HATs acetyltransferases
HDACs histone deacetyltransferases
pri-miRNAs primary miRNAs
pre-miRNAs precursor miRNAs
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3′ UTR 3′-untranslated region
5′ UTR 5′-untranslated region
MN Micronuclei
MNf Micronuclei frequency
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