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Abstract
Financial performance evaluation is intimately linked to risk measurement method-
ologies. There exists a well-developed literature on axiomatic and operational
characterization of measures of performance. Hinged on the duality between coherent
risk measures and reward associated with investment strategies, we investigate repre-
sentation of acceptability indices of performance using expectile-based risk measures
that recently attracted a lot of attention inside the financial and actuarial community.
We propose two purely expectile-based performance ratios other than the classical
gain-loss ratio and the Omega ratio. We complement our analysis with elicitability of
expectile-based acceptability indices and their conditional version accounting for new
information flow.

Keywords Acceptability indices · Expectile-based coherent risk measures ·
Elicitability · Conditional performance measure

JEL Classification C02 · C21 · C65 · G11 · G17 · G20

1 Introduction

Mostly used in practice to quantify market risk, value-at-risk at probability level
α ∈ (0, 1) is the α-quantile of the profit/loss (P&L henceafter) distribution corre-
sponding to a single asset or a portfolio, see for example the Basel Committee on
Banking Supervision (2006). But it is a well-documented fact that value-at-risk is not
subadditive in general and hence it is not a coherent risk measure. Moreover it does not
account for the size of losses beyond the threshold α, because quantiles hardly depend
upon the frequency of tail losses and not on their values. On one hand, coherence is
a good theoretical property satisfied instead by expected shortfall, see Artzner et al.
(1999), that also accounts for extreme losses in the tail of the P&L distribution, as
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recognized by the recent market risk framework of the Basel Committee on Banking
Supervision (2019). On the other hand from the regulatory and statistical point of view,
methodologies for testing the accuracy of a risk model are essential then value-at-risk
is preferred. Expected shortfall requires a huge amount of data for accurate estimation,
in fact it is not elicitable as pointed out for example by Gneiting (2011). A standard
risk measure that is coherent and appropriate for backtesting is the mean, but it cannot
capture tail risk. Expectiles have been receiving increasing attention as risk measures
in mathematical finance and actuarial science since the contribution of Kuan et al.
(2009). In fact expectiles are both coherent for a threshold level range and elicitable
risk measures, see Bellini et al. (2014) and the references therein. From a statistical
point of view, expectiles are the least square analogue of quantiles, both being M-
functionals1 with asymmetric convex loss function, but the latter are not coherent as
risk measures. There are other advantages of using expectiles as coherent risk mea-
sures: they rely on tail expectations rather than tail probabilities, thus they are sensitive
to extreme losses (in contrast to quantiles) and may lead to more prudent and reactive
risk management: altering the shape of extreme losses does impact the expectiles in
contrast to value-at-risk. In addition, expectiles avoid the use of regularity conditions
on the underlying distribution of losses. For a detailed account of all these aspects in
connection with the problem of estimation of expectiles see for example Daouia et al.
(2018) andDaouia et al. (2021).Moreover, numerical evidence found in Bellini and Di
Bernardino (2017) is in favor of expectiles as a reasonable alternative to value-at-risk
or expected shortfall, especially when using them in portfolio management based on
the gain-loss ratio.
Evaluating the performance of a financial trade is a crucial point for making informed
choices among alternative investments. A popular guideline suggests that rational
analysts and investors should select their portfolio according to a reward/risk criterion
acting as a performance measure. Performance measurement is also a device to judge
the quality of the value-added service provided by fund managers, when processing
information not reflected by market prices. Needless to say, the classical Sharpe ratio
is the prototypal of performance measures. Other indices have been proposed over
the past four decades based on criticisms about the Sharpe ratio, concerning distribu-
tional assumptions needed for its compatibility with the mean-variance approach to
portfolio selection, or the lack of consistency with arbitrage principles. Thus Bernardo
and Ledoit (2000) proposed the alternative gain-loss ratio, beside Cherny and Madan
(2009) elaborates on this and provides an axiomatic approach to frame performance
indices meant to measure the largest nonnegative level at which the risk of loss is still
acceptable. Following their approach, for a risky position X modelled by a bounded
random variable, its index of acceptability is characterized as a performance measure
satisfying four axioms: (increasing) monotonicity, quasi-concavity, scale invariance
and Fatou property (see Sect. 3 below). Moreover, Cherny and Madan (2009) pointed
out that such an index corresponds to a continuum of degrees of acceptability based on
a system of acceptable bounded trades X , and Cherny and Madan (2009, Theorem 1)

1 Recall that given a loss function g(x, s) which is Borel on R × R an M-functional T (FX ), related to a
cumulative distribution function FX of a random variable X , is the solution of

∫
g(x, T (FX ))dFX (x) =

mins∈�

∫
g(x, s)dFX (x). Here � is an open subset of R representing the parameter set. This is a general-

ization of maximum likelihood estimates.
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provides its representation through an associated system of scenarios that support the
dual representation of corresponding coherent risks in such a way their expectations
are positive accordingly. This is because a system of acceptable trades can be equiv-
alently defined in term of an increasing family of coherent risk measures for which
acceptability is typically given by their nonnegativity.
The contribution of this article is structured as follows. First, we propose expectile-
based performance measures as special cases of acceptability indices introduced by
Cherny and Madan (2009) but which generalize the gain-loss ratio and the Omega
ratio used in the finance industry, see Bellini et al. (2018) and the references therein.
We characterize acceptability indices of performance using the dual representation
of expectiles as coherent risk measures as studied in Bellini et al. (2014). To this
end we additionally give a representation of performance measures for position mod-
elled as random variables with finite expectation. Our expectile-based performance
measure leads to a more general risk-adjusted return on capital (RAROC) other than
the gain-loss ratio or the Omega ratio, where the coherent risk measure is the expec-
tile itself or the expectile-based analogue to the expected shortfall, as proposed by
Daouia et al. (2020) and Daouia et al. (2021). Second, given the law-invariance of our
expectile-based performancemeasurewe also provide the correspondingKusuoka rep-
resentation. Moreover, we analyze the elicitability of the proposed performance index
and highlight some practical aspects of choosing competing point forecasts. Third, we
provide a conditional characterization of expectile-based performance indices when-
ever the coherent riskmeasure used is the conditional expectile as introduced byBellini
et al. (2018) as a generalization of the conditional mean.

The outline of this article is as follows. Section 2 anticipates the definition of
expectile-based performance ratio and highlights the advantage of using it from an
economic point of view. Section 3 sets up the definition and properties of acceptability
indices for financial positionswithfinite expectation, thendelivers the representationof
coherent acceptability indices. Section 4 presents a quick review of expectiles together
with their use as coherent risk measure, and provides the representation of expectile-
based acceptability indices. Section 5 provides two main examples of expectile-based
performance ratios. Moreover, the connection of expectile-based acceptability indices
with the Omega ratio as well as the gain-loss ratio is highlighted. Section 6 is on
elicitability of the expectile-based acceptability index. Section 7 develops a conditional
version of expectile-based acceptability indices. Section 8 contains some concluding
remarks.

2 Motivation of the paper

The framework we introduce later in this article is based on the well-understood
concept of acceptability index of performance due to Cherny and Madan (2009).
Originally developed for positions2 X ∈ L∞, given an indexed family (ρx )x∈R+ of
coherent risk measures increasing in x we say that a position is acceptable at the level

2 Loosely speaking, the space L∞ contains bounded random variables.
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x ≥ 0 if and only its financial performance can be measured as

sup{x ∈ R+|ρx (X) ≤ 0}. (1)

This establishes a natural duality between coherent risk measures and performance
measures. As showed by Cherny and Madan (2009), using the dual representation of
each ρx (X) one can obtain different acceptability indices of performance. In fact for
every x ≥ 0 the acceptability condition ρx (X) ≤ 0 is equivalently characterized by a
system of acceptable tradesAx := {X ∈ L∞ | α(X) ≥ x} and the supremum in (1) can
be taken over {x ∈ R+ | X ∈ Ax }. Observe that ρx (X) = infϕ∈Sx E(ϕX) and for each
x ≥ 0 we have Sx as a set of scenarios, i.e. the class of all Radon–Nikodym derivatives
ϕ = dQ

dP of probability measures Q equivalent to the physical probability measure P.
Choosing ρx as the negative of expectiles (see Sect. 4 for a formal definition) with the
appropriate probability level and applying the definition of acceptability systems of
X in term of the best gain-loss ratio we get

sup

{

x ∈ R+
∣
∣
∣
E(X+)

E(X−)
≥ x

}

= E(X+)

E(X−)
.

Therefore, for bounded X this yields the trivial representation of expectile-based per-
formancemeasure as the gain-loss ratio itself: this is not surprising since the connection
between expectiles and gain-loss ratios is already known in the literature. Our first goal
is to define an expectile-based performance indexwith domain L1 to account for poten-
tial extreme losses possibly given by heavy-tailed distributions.We keep the axiomatic
approach of Cherny and Madan (2009) with appropriate modifications to account for
the new domain, but as a novel approach we will make use of the dual representation
of expectiles as analyzed in Bellini et al. (2014). This gives us the advantage to deduce
acceptability indices other than gain-loss or Omega ratios.

Remark 1 For the mapping α : L∞ → R+ ∪ {+∞} =: [0,+∞] given in Cherny
and Madan (2009, Theorem 1) we adopt in our article a different name (see Sect. 3)
to avoid confusion with the standard symbol used to identify the probability level for
value-at-risk.

Anticipating a little our main examples of expectile-based performance ratio3 that will
be given in Sect. 5, we propose the following main alternative to the gain-loss ratio:

E(X)

−eα(X)
,

where−eα(X) is the expectile riskmeasure at probability levelα, for whichwe usually
choose the interval (0, 1

2 ], see Sect. 4 for further details. To appreciate the advantage
of using this performance ratio instead of the gain-loss ratio from an economic point
of view, we recall the needed asset pricing framework. Jaschke and Küchler (2001)

3 There is also a slight abuse of notation since we report α ∈ (0, 1) as the probability level that will be
denoted by α(x), see Sects. 4 and 5.
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establish a one-to-one correspondence among the partial ordering defined on the set
of traded positions X (interpreted from the decision theory perspective as a preference
relation), sets of acceptable positions, valuation bounds (actually good-deal bounds),
coherent risk measures and price systems. Indeed, Bernardo and Ledoit (2000) intro-
duced the gain-loss ratio as an alternative to the Sharpe ratio whose exacerbated high
values yield a portfolio regarded as a quasi-arbitrage, namely a good-deal as studied
also in Cochrane and Saa-Requejo (2001). This given raise to asset pricing theory
based on no-good deals that postulates to restrict the Sharpe ratio and the correspond-
ing pricing kernels. Therefore, denoting K the set of (non-trivial) portfolio gains in
a two-period economy and for a general probability space, the best gain-loss ratio is
always attained

sup
X∈K,X �=0

E(X+)

E(X−)
= max

X∈K,X �=0

E(X+)

E(X−)
= min

Z∈[c,C]
ess supZ

ess infZ
< +∞,

for a bounded and bounded away from zero state-price density Z with constants
c,C > 0, see Bernardo and Ledoit (2000). This result is correct only for finite sam-
ple spaces �, in fact Biagini and Pinar (2013) showed the best gain-loss ratio is a
poor performance measure in a quite general continuous-time model, after providing
a refined dual representation on gain-loss free markets based on utility maximization
of terminal wealth. Specifically, they assumed a filtered probability space satisfy-
ing the usual conditions and over which a semimartingale S = (S1t , . . . , S

n
t )t∈[0,T ]

representing the underlying price processes only satisfies supt∈[0,T ] |Sit | ∈ L1, for
any i = 1, . . . , n: in this way K becomes the set of financial positions K repli-
cable at zero cost through an admissible (predictable and bounded) self-financing
trading strategy π = (π1

t , . . . , πn
t )t∈[0,T ], i.e. K equals the stochastic integral

(π ·S)T := ∑n
i=1 π i

0S
i
0+

∑n
i=1

∫ T
0 π i

t dS
i
t , a terminal gain over the time horizon [0, T ].

The main result Biagini and Pinar (2013, Theorem 2.4) yields the finiteness of the best
gain-loss ratio supX∈K,X �=0

E(X+)
E(X−)

< +∞ if and only if the set of equivalentmartingale
measures is nonempty and the corresponding pricing kernels Z are Radon–Nikodým
derivatives bounded and bounded away from zero, provided that the above market is
gain-loss free.4 Based on this characterization, the best gain-loss ratio is likely to be
infinite5 and then the underlying market is not gain-loss free even if it should be arbi-
trage free, see Biagini and Pinar (2013, Example 2.7) where a Black–Scholes market is

assumed with typical unbounded (unique) price kernel Z = e− μ−r
σ

WT −(
μ−r
σ

)2
T
2 , where

r is the risk-free rate and μ−r
σ

is the market price of risk with a standard Brownian
motionW = (Wt )t∈[0,T ] defined over theP-augmentation of its natural filtration. In the
setting of the same example, let Kε := IAε − cε where I{•} is the indicator of the event
Aε = {Z < ε} of having a very small state-price density Z for 0 < ε < 1. Assuming
a zero risk-free rate r = 0, one considers IAε as a cash-or-nothing digital call option

on the stock price ST = S0e(μ− 1
2 σ 2)T+σWT with very large strike price provided that

ε → 0. By the market completeness, Kε is a trading gain where cε = E(ZIAε ) is the

4 The precise concept is λ gain-loss free, see Biagini and Pinar (2013, Definition 2.2).
5 Moreover, it could be finite but with no supremum, see Biagini and Pinar (2013, Example 2.8).
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replicating cost of the option that satisfies cε < ε pε < 1 and pε being the probability
P(Aε), since cε < E(εIAε ). The gain-loss ratio is

E(K+
ε )

E(K−
ε )

= (1 − cε)pε

cε(1 − pε)
>

1

ε
− pε,

which goes to +∞ as ε → 0. On the other hand, our proposed ratio

E(Kε)

−eα(Kε)
= pε − cε

−eα(Kε)

is finite because clearly 0 < pε − cε < +∞ which implies Kε ∈ L1 and by Bellini
et al. (2014, Proposition 8) it also holds −eα(Kε) < +∞ for every α ∈ (0, 1

2 ]. The
same conclusion is valid (with minor modifications) in the case of a cash-or-nothing
digital put option IBε where Bε = {Z > ε} and very small strike price when ε → 0:
one takes bε = E(ZIBε ) with

qε

ε
< bε < 1 and P(Bε) = qε ; the gain is now IBε − bε

as well as its opposite Kε , and the gain-loss ratio is bounded below by 1−qε

ε
so that

it goes again to +∞ as ε → 0. In a complete arbitrage-free market with unbounded
price kernels, our expectile-based performance measure assigns a finite value to gains
such as Kε while the gain-loss ratio requires a state-pricing density bounded above and
bounded away from zero, thus a further advantage of our proposal is that it involves a
more flexible performance measurement approach compatible with no-arbitrage asset
pricing theory.

Remark 2 Dybvig and Ingersoll (1982) showed that in the CAPM framework arbitrage
do exists also with bounded Sharpe ratios. On the other hand, only a bounded gain-loss
ratio implies absence of arbitrage and onemust impose both narrowed no-arbitrage and
no-good deal bounds also in incomplete markets. While the gain-loss ratio is attractive
from the perspective of determining price bounds for a specified asset pricing model
or to measure funds’ performance with respect to benchmark state-price densities, it
suffers from the curse of infinity in many standard models.

3 Acceptability indices on L1

We review the definition of a coherent risk measure. Let X ⊂ L0 be a linear space
of financial positions containing the constants where L0 := L0(�,F , P) is the
equivalence class of all random variables over a common atomless probability space
(�,F , P). Throughout this article we work with random variables X ∈ L1, where
L1 := L1(�,F , P) is the equivalence class of random variables with finite first
moment modelling financial positions with respect to a fixed final date. The reason
why we choose the space L1 is mainly due to the findings in Filipović and Svindland
(2012).Moreover, if X is a portfolio, then the restriction to L1 is not a problem from the
management perspective, as empirical evidence shows losses have finite first moment.
From now on all equalities, inequalities and convergence concepts concerning random
variables are understood in the P-a.s. sense, i.e. with probability one. Among different
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sign conventions for X we assume it represents P&Lwith losses being in the left-tail of
the underlying distribution. Then, a mapping ρ : X → R is a monetary risk measure
if:

• It is increasing monotone, for any X ,Y ∈ X such that X ≤ Y implies ρ(X) ≥
ρ(Y );

• It is cash additive, any choice m ∈ R implies ρ(X + m) = ρ(X) − m.

If in addition ρ is

• Positive homogeneous, ρ(λX) = λρ(X) for all λ ≥ 0 and,
• Subadditive, for any X ,Y ∈ X it holds ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

then it is a coherent risk measure and a convex mapping too. The financial meaning of
the above conditions is well understood. Working with positions X ∈ L1 requires to
restate the essential properties of acceptability indices of performance. We consider
acceptable P&L’s at a level x ∈ R+ forming a convex superlevel set

Ax :=
{
X ∈ L1

∣
∣ PERF(X) ≥ x

}
, (2)

which is a natural requirement for any performance measure and in particular for
PERF ≡ aι given in the next definition.

Definition 1 A mapping aι : L1 → [0,+∞] is an acceptability index if it satisfies
the following four properties.

• Quasi-concavity for any pair X ,Y ∈ L1 and for every λ ∈ [0, 1] such that
aι(X) ≥ x and aι(Y ) ≥ x one has

aι(λX + (1 − λ)Y ) ≥ x . (3)

• Monotonicity for any X ,Y ∈ L1

X ≤ Y �⇒ aι(X) ≤ aι(Y ). (4)

• Scale invariance for every λ > 0 and X ∈ L1

aι(λX) = aι(X). (5)

• Upper semi-continuity given a sequence (Xn)n∈N ⊂ L1 converging to X ∈ L1

in the L1-norm, ‖Xn − X‖1 → 0, we have

lim sup
n→∞

aι(Xn) ≤ aι(X), (6)

which implies aι(X) ≥ x provided that aι(Xn) ≥ x for every n ∈ N and x ∈ R+.
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Quasi-concavity is equivalent to the convexity of anyAx , yielding a diversifiedposition
performs as well as its components. Acceptable positions are valuedmonotonically: aι
is an increasing mapping and Y is at least as acceptable as X provided that the latter is
dominated by the former. By scale invariance any acceptance setAx is a convex cone:
the level of acceptance remains the same whenever we scale the financial positions.
Eventually, the acceptability functional is required to be ‖ ‖1-upper semi-continuous
and as byproduct the acceptance set Ax is norm-closed in L1 for a fixed x ∈ R+.

Remark 3 In Definition 1 there are two differences with respect to the original defini-
tion of acceptability indices given by Cherny and Madan (2009), namely the domain
of aι is now L1 and the Fatou property is replaced by the upper semi-continuity of aι
in the norm topology (fourth axiom above).

Now we come to the basic representation of acceptability indices on L1. To this end
we provide two lemmas which we will use in the proof of the sufficiency part of
Proposition 1 below. Let us define

ρx (X) := inf
{
m ∈ R

∣
∣ aι(X + m) ≥ x

}
, for every x ∈ R+, X ∈ L1, (7)

and take the infimum over m ∈ R of both sets
{
m ∈ R

∣
∣ aι(X + m) ≥ y

} ⊂ {
m ∈

R
∣
∣ aι(X + m) ≥ x

}
, for any 0 < x ≤ y. Thus, x �→ ρx (X) increases for fixed

X ∈ L1. Any mapping in this increasing family can be represented by acceptability
indices as is established in Lemma 1 below.We refer to coherent risk measures defined
on L1 that are ‖ ‖1-lower semicontinuous, i.e.

lim inf
n→+∞ ρx (Xn) ≥ ρx (X), for any (Xn)n∈N ⊂ L1 s.t. ‖Xn − X‖1 → 0.

Lemma 1 Let ρx (X) be defined as in (7), for any x ∈ R+ and X ∈ L1, by an
acceptability index aι. Then ρx (X) is a coherent risk measure on L1.

Proof For m ∈ R and x ∈ R+ condition aι(X + m) ≥ x is equivalent to X + m ∈
Ax ⊂ L1 and we have that X ≤ Y together with X ∈ Ax implies Y ∈ Ax . We check
monotonicity. Take x ∈ R+ and select X ,Y ∈ L1 such that X ≥ Y By monotonicity
of aι we have

aι(Y + m) ≤ aι(X + m), for every m ∈ R.

Thus we deduce
{
m ∈ R

∣
∣ aι(X + m) ≥ x

} ⊃ {
m ∈ R

∣
∣ aι(Y + m) ≥ x

}
, and taking

the infimum of both sets we get

ρx (X) := inf
{
m ∈ R

∣
∣ aι(X + m) ≥ x

} ≤ {
m ∈ R

∣
∣ aι(Y + m) ≥ x

} := ρx (Y ).

To show positive homogeneity, it suffices to call for the scale invariance of aι.Next, we
show subadditivity. Takem1,m2 ∈ R such that aι(X +m1) ≥ x and aι(Y +m2) ≥ x,

123



Performance measurement with expectiles

for every X ,Y ∈ L1 and x ∈ R+. By quasi-concavity of aι, for any λ ∈ [0, 1] we
have

aι(λX + λm1 + (1 − λ)Y + (1 − λ)m2) ≥ x,

at the same acceptability level x . Choosing λ = 1
2 and using again scale invariance of

the acceptability index entails

aι(X + Y + (m1 + m2)) ≥ x .

Therefore, the scalarm1+m2 belongs to the set
{
m ∈ R

∣
∣ aι(X+Y +m) ≥ x

}
and it is

greater than or equal to the infimum over the same set, which in turn is just ρx (X +Y ).

This inequality holds true for allm1 and allm2 belonging to
{
m ∈ R

∣
∣ aι(X+m) ≥ x

}

and to
{
m ∈ R

∣
∣ aι(Y +m) ≥ x

}
, respectively. As a consequence, taking the infimum

with respect to m1 and then with respect to m2 we get

ρx (X) + ρx (Y ) ≥ ρx (X + Y ).

To show cash invariance, we exhibit the following for every x ∈ R+ and X ∈ L1 :

ρx (X + c) := inf{m ∈ R | aι(X + c + m) ≥ x}
= inf{m ∈ R | aι(X + (c + m)) ≥ x}
= inf{c + m ∈ R | aι(X + (c + m)) ≥ x} − c

= inf{r ∈ R | aι(X + r) ≥ x} − c

=: ρx (X) − c.

To check the lower semicontinuity of ρx in the ‖ ‖1-norm it suffices to take ε >

lim infn→+∞ ρx (Xn) and (if necessary) passing to a subsequence to get Xn + ε ∈
Ax for all n ∈ N. Thus, aι(Xn + ε) ≥ x and using the upper semi-continuity of
the acceptability index we also have aι(X + ε) ≥ x, i.e. ρx (Xn) ≤ ε, and by the
arbitrariness of ε it holds lim infn→+∞ ρx (Xn) ≥ ρx (X).Abyproduct,ρx is a coherent
risk measure on L1. ��
Remark 4 The finiteness of ‖ ‖1-lower semicontinuous coherent risk measures on
L1 is equivalent to the ‖ ‖1-continuity, see for example Rüschendorf (2013, Section
7.2.2).

We can represent acceptability indices in terms of an increasing family of coherent
risk measures on L1.

Lemma 2 Let (ρx )x∈R+ be a family of coherent risk measures on L1 increasing in x.
Then, the mapping aι : L1 → [0,+∞] defined as

aι(X) := sup
{
x ∈ R+

∣
∣ ρx (X) ≤ 0

}
(8)

is an acceptability index of performance (we assume sup∅ = 0).
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Proof Let x ≥ 0, then by monotonicity of the risk measures ρx in x we have

ρx (X) ≤ ρx (Y ), for all X ,Y ∈ L1 such that X ≥ Y .

For any x0 ∈ {
x ∈ R+

∣
∣ ρx (X) ≤ 0

}
we also have ρx0(X) ≤ 0, which together with

the monotonicity entails ρx0(X) ≤ ρx0(Y ) ≤ 0, for all X ≥ Y . As a consequence the
set inclusion

{
x ∈ R+

∣
∣ ρx (X) ≤ 0

} ⊃ {
x ∈ R+

∣
∣ ρx (Y ) ≤ 0

}

holds, and taking the supremum of both sides monotonicity of aι is proved. To check
quasi-concavity of aι, we first pick X ,Y ∈ L1 such that aι(X) ≥ x0 and aι(Y ) ≥ x0
whenever x0 ∈ (0,+∞). By definition (8) together with monotonicity of ρx we have
ρx (X) ≤ ρx0(X) ≤ 0 and ρx (Y ) ≤ ρx0(Y ) ≤ 0, for all x < x0. This combined with
the positive homogeneity of ρx yields

ρx (λX) = λρx (X) ≤ 0, ρx ((1 − λ)Y ) = (1 − λ)ρx (Y ) ≤ 0,

for every λ ∈ [0, 1]. Moreover, by subadditivity of ρx and again for every x < x0 we
additionally have

ρx (λX + (1 − λ)Y ) ≤ 0

which entails sup
{
x ∈ R+

∣
∣ ρx (λX + (1 − λ)Y ) ≤ 0

} ≥ x0. Eventually, this com-
bined with definition (8) yields aι(λX + (1−λ)Y ) ≥ x0 and quasi-concavity follows.
Scale invariance of aι follows immediately from the positive homogeneity of ρx .

Finally take (Xn)n∈N ⊂ L1 such that ‖Xn − X‖1 → 0 and aι(Xn) ≥ x for every
n ∈ N, x ∈ R+. Now, since coherent risk measures on L1 are continuous and then
lower semicontinuous (this follows from, for instance,Ruszczyński andShapiro (2006,
Proposition 3.1), as byproduct we have ‖ρx (Xn)−ρx (X)‖1 → 0 and then ρx (X) ≤ 0
because ρx (Xn) ≤ 0 which implies aι(X) ≥ x . ��
Proposition 1 A mapping aι : L1 → [0,+∞] is an acceptability index if and only
if there exists a family of sets of scenarios (Sx )x∈R+ increasing in x such that the
representation

aι(X) = sup

{

x ∈ R+
∣
∣
∣ inf

ϕ∈Sx

E(ϕX) ≥ 0

}

(9)

holds, where inf ∅ = ∞ and sup∅ = 0.

Proof (Necessity) Let aι be given by (9). Firstly, we check property 1 of Definition 1.
Pick X ,Y ∈ L1 with aι(X) ≥ z and aι(Y ) ≥ z for z ∈ R+. For any y < z we
can find a representation set Sy ⊂ Sz such that the two inequalities together with the
supremum in (9) entail E(ϕX) ≥ 0 and E(ϕY ) ≥ 0 for the corresponding scenario
ϕ ∈ Sy . Taking the convex combination Z = λX + (1 − λ)Y , for any λ ∈ [0, 1],
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and considering min{X ,Y } ≤ Z ≤ max{X ,Y } we have E(ϕZ) ≥ 0 too, and the
quasi-concavity follows by enlarging the representation set, taking the infimum of
the expectations and finally taking the supremum with respect to x ∈ R+. Secondly,
consider the sets

A =
{

x ∈ R+
∣
∣
∣ inf
ϕ∈Sx

E(ϕX) ≥ 0

}

and B =
{

x ∈ R+
∣
∣
∣ inf
ϕ∈Sx

E(ϕY ) ≥ 0

}

.

Now for X ,Y ∈ L1 such that X ≤ Y , pick x0 ∈ A and observe that 0 ≤ E(ϕX) ≤
E(ϕY ) whenever ϕ ∈ Sx0 which implies x0 ∈ B. On the other hand, for any y0 ∈ B
and using the same inequality between expectations for ϕ ∈ Sy0 we can consider
Y = 0 which implies E(ϕX) < 0 yielding y0 /∈ B. We conclude that A ⊂ B and
passing to the supremum property 2 is proved. Property 3 is an easy consequence of
linearity of E( · ). To check that aι is upper-semi continuous in the L1-norm, pick a
sequence (Xn)n∈N ⊂ L1 with Xn ∈ Ax each n ∈ N for a fixed x ∈ R+. Clearly
aι(Xn) ≥ x . Assume further ‖Xn − X‖1 → 0. Then whatever the choice of y < x
is, for any ϕ ∈ Sy and any n ∈ N we have E(ϕXn) ≥ 0 and by the L1-convergence
E(ϕX) ≥ 0 too. As a consequence, aι(X) ≥ x, then after passing to the supremum
we have that Ax is ‖ ‖1-closed and the mapping aι is then upper-semi continuous.
(Sufficiency). Let’s assume aι is an acceptability index. Then let

ρx (X) := inf {m ∈ R | X + m ∈ Ax }

with Ax = {X ∈ L1 | aι(X) ≥ x} for x ∈ R+. Since X + m ∈ Ax is equivalent to
aι(X) ≥ x, by Lemma 1 each ρx (X) is a coherent risk measure of X and moreover
x �→ ρx (X) is increasing in x . SinceAx ⊂ L1+ is a ‖ ‖1-closed convex cone, its polar
(Ax )

◦ = {X ∈ L∞ | E(XY ) ≥ 0, ∀X ∈ Ax } ⊂ L∞+ is a σ(L∞, L1)-closed convex
cone. A basis for this cone is Sx , i.e. (Ax )

◦ = ∪λ≥0λSx . By the Bipolar theorem (see
for example Delbaen (2012)) we get

((Ax )
◦)◦ = Ax =

{
X ∈ L1 | E(XY ) ≥ 0, for every Y ∈ Sx

}
, with Y = ϕ.

Observe that Ay ⊂ Ax is equivalent to (Ax )
◦ ⊂ (Ay)

◦, for 0 < x < y. Thus, X lies
in some Ax0 so that ρx0(X) ≤ 0. This is in turn equivalent to aι(X) ≥ x, which by
Lemma 2 implies the desired representation (9) of the acceptability index by passing
to inf

ϕ∈Sx

E(ϕX). ��

4 Representation of expectile-based acceptability indices

Given a financial position X ∈ L1, the definition of expectile at a probability level
α ∈ (0, 1) originally due to Newey and Powell (1987) is

eα(X) = argmin
m∈R

{E (�(X − m) − �(X))}, (10)
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also called the α-expectile of X . Here � is the asymmetric quadratic loss function
defined as

�(x) := |α − I{x≤0}|x2,

thus one could see that expectiles are asymmetric generalization of the mean and also
quadratic versions of the usual quantiles. The corresponding first order condition

α E (X − eα(X))+ − (1 − α)E (X − eα(X))− = 0 (11)

entails eα(X) as the unique minimizer, where as usual X+ = max{0, X} is the positive
part and X− = max{0,−X} is the negative part of a random variable.6 Indeed, the
function

fx (m) := α (x − m) I{x≥0} + (1 − α) (x − m) I{x<0} (12)

is such that (after taking expectation) for X ∈ L1 the first order condition for the
unique minimizer in Eq. (11) is given with derivativem �→ −2 fX (m), which implies
fX (m) = 0. Now, by Krätschmer and Zähle (2017, Lemma A.1) the mapping m �→
fX (m) is real-valued, continuous and strictly decreasing, thus the α-expectile of a
position X with finite expectation can be characterized by its inverse function as
follows:

m = f −1
X ( fX (m)) = f −1

X (0), with m = eα(X).

The above defines a mapping eα : L1 → R whose negative −eα(X) is by Krätschmer
and Zähle (2017, Proposition A.2) together with Bellini et al. (2014, Proposition 7(c))
a coherent risk measure for α ∈ (0, 1

2 ] ensures subadditivity, and which is continuous
in the L1-norm ‖ ‖1 (this is especially due to Cheridito and Li (2009, Theorem 4.1)).
The dual representation we use in this article is given by

e1−α(−X) = max
ϕ∈Sα

(−E(ϕX)) , if α ∈ (0, 1
2 ], (13)

where the underlying set of scenarios is

Sα =
{
ϕ ∈ L∞

∣
∣
∣ ϕ > 0, E(ϕ) = 1, ess supϕ

ess infϕ ≤ 1−α
α

}
, (14)

see Bellini et al. (2014, Proposition 8). Now, by Bellini et al. (2014, Proposition 7(c))
it holds −eα(X) = e1−α(−X) thus we may reformulate representation (13) for a
position X ∈ L1 being acceptable:

6 Recall that L1 is a Banach latticewith respect to the cone L1+, i.e. for all X , Y ∈ L1 we havemax{X , Y } ∈
L1 and |X | ≤ |Y | implies ‖X‖1 ≤ ‖Y‖1.
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− eα(X) = max
ϕ∈Sα

(−E(ϕX)) ≤ 0 ⇐⇒ − min
ϕ∈Sα

E(ϕX) ≤ 0

⇐⇒
eα(X) = min

ϕ∈Sα

E(ϕX) ≥ 0. (15)

Remark 5 For every α ∈ (0, 1
2 ] the set of scenarios Sα is σ(L∞, L1)-compact and

σ(L∞, L1)-closed-convex in L∞. As usual we write {X ∈ L1 | ρ(X) ≤ 0} for the
corresponding acceptance set which turns out to be a ‖ ‖1-closed convex cone in L1.

In Sect. 4 we use the duality pair (L1, L∞) with L1 endowed with the ‖ ‖1-topology
and L∞ endowed with the σ(L∞, L1)-topology.

We call −eα(X) the α-expectile risk measure of the position X whose relevant
properties are summarized in the following lemma for ease of reference, see Newey
and Powell (1987) and Bellini et al. (2014).

Lemma 3 Let X ∈ L1 be the terminal value of a traded position. Then:

(a) −eα(X + h) = −eα(X) − h, for each h ∈ R,
(b) −eα(λX) = −λeα(X), for every λ > 0,
(c) X ≤ Y implies −eα(X) ≥ −eα(Y ), for any Y ∈ L1,
(d) −eα(X + Y ) ≤ −eα(X) − eα(Y ), for α ∈ (0, 1

2 ] and every Y ∈ L1,
(e) −eα(X) is strictly decreasing and continuous with respect to α ∈ (0, 1).

Remark 6 (Financial Interpretation) Since for a position X ∈ L1 we can write

α = E
(
(X − eα(X))−

)

E (|X − eα(X)|) , for all α ∈ (0, 1),

the financial interpretation of expectiles, that especially holds for the α-expectile risk
measure of Lemma 3,7 is nowadays more clear: the index of prudentiality α is the ratio
of expected margin shortfall to the total cost of capital requirement given by eα; the
greater the expectile, the smaller the expected loss resulting in a smaller α. Indeed,
lower values of the probability level represent more risk aversion. This interpretation
is originally due to Kuan et al. (2009) and relies on eα(X) being a location parameter
for the distribution of X such that the average distance of X below the expectile equals
the fraction α of the total distance. Therefore, while quantiles are only sensitive to
the ordering of the X ’s values,8 expectiles depend on the whole distribution, then α

associated to an expectile changes with the distribution.

Given this definition of expectile risk measure, we prove the analogous of Cherny
and Madan (2009, Theorem 1) characterizing acceptability indices aι(X). The main
idea of the original representation is that any acceptability index is linked to an increas-
ing one-parameter family of sets of scenario (Sx )x∈R+ supporting the corresponding
coherent risk measure ρx , thus the value aι(X) yields the largest level of acceptability
x such that X is valued positively under each scenario from the associated level x .

7 Some authors call it expectile value-at-risk (EVaR), see for example Bellini and Di Bernardino (2017).
8 Namely, the ordered statistics of a sample from the X ’s distribution.
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Corollary 1 A mapping aι : L1 → [0,+∞] is an expectile-based acceptability index
if and only if there exists a family of sets of scenarios (Sα(x))x∈R+ increasing in x such
that the representation

aι(X) = sup

{

x ∈ R+
∣
∣
∣ min

ϕ∈Sα(x)

E(ϕX) ≥ 0

}

(16)

holds, where inf ∅ = ∞ and sup∅ = 0.

Proof We apply Proposition 1 identifying coherent risk measures ρx = −eα(x) with
α(x) = 1

1+x . Indeed for α(x) ∈ (0, 1
2 ] we have α(x) → 0 provided x → ∞ so that

−eα(x) increases in x . The sets of scenarios are identified with those given by (14)
with the appropriate re-labelingα ≡ α(x). Under these conditions eachα(x)-expectile
riskmeasure can be represented as the uniqueminimizer minϕ∈Sα(x) E(ϕX). Moreover,
expectiles are proved to be Lipschitz continuouswith respect to theWasserstainmetric

dp(FX , FY ) = inf
{
E(|X − Y |p) ∣

∣ X ∼ FX and Y ∼ FY
}
, for p ≥ 1

where FX (x) = P(X ≤ x) and similarly for Y . Thus lower semicontinuity of α(x)-
expectile risk measures is guaranteed and we are done. ��

Observe that Lipschitz continuity of expectiles with respect to the ‖ ‖1-norm is
proved in Krätschmer and Zähle (2017, Proposition A.2), but it can also be deduced
by Bellini et al. (2018, Theorem 2.3(e)) using the trivial sigma-algebra {∅,�}, see
Sect. 7.

Remark 7 In the Proof of Corollary 1 the used re-labeling α = 1
1+x yields

minϕ∈S 1
1+x

E(ϕX) ≥ minϕ∈S 1
1+y

E(ϕX) for x < y since for the corresponding

expectile-based coherent risk measures we have −e 1
1+x

(X) ≤ −e 1
1+y

(X). Indeed

α-expectiles are strictly increasing in α. All this is equivalent to have a nested family
of sets of scenarios S 1

1+x
⊂ S 1

1+y
.

5 Main examples of expectile-based performancemeasures

WithCorollary 1 inmindweare able to characterize those expectile-basedperformance
indices other than the gain-loss ratio, for positions X ∈ L1. In particular, we are
interested in finding the appropriate scenarios used in representation (16) such that
the corresponding acceptability index is a new performance ratio. By Corollary 1
acceptability at level x ∈ R+ of a position in term of risk and reward does correspond
to a positive expectation E(ϕX) under each scenario ϕ ∈ Sα(x). Now, define

RAROC(X) :=
{

E(X)
−eα(x)(X)

, if E(X) > 0

0, otherwise.
(17)
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By convention we let RAROC(X) = +∞ if the coherent α(x)-expectile risk measure
is ≤ 0. We have the following chain of equivalences:

RAROC(X) ≥ x ⇐⇒ E(X)

−eα(x)(X)
≥ x

⇐⇒ E(X) ≥ −x min
ϕ∈Sα(x)

E(ϕX)

⇐⇒ 1

1 + x
E(X) + x

1 + x
min

ϕ∈Sα(x)

E(ϕX) ≥ 0

⇐⇒ min
ϕ∈Sα(x)

{
1

1 + x
E(X) + x

1 + x
E(ϕX)

}

≥ 0

⇐⇒ min
ϕ∈Sα(x)

E(ϕ̃X) ≥ 0.

To see why the fifth equivalence holds let us use the Change of Variable formula to
rewrite 1

1+x E(X) + x
1+x E(ϕX) as

∫

�

1

1 + x
XdP +

∫

�

x

1 + x
ϕXdP,

where the Radon–Nikodým Theorem provides each scenario ϕ = dQ
dP as the density

of some probability measure Q equivalent to P. As byproduct the above becomes

∫

�

Xd

(
1

1 + x
P + x

1 + x
Q

)

=
∫

�

XdQ̃ =
∫

�

X ϕ̃dP,

with density ϕ̃ = dQ̃
dP belonging to Sα(x). In fact any set of scenarios is a σ(L∞, L1)-

closed convex cone, hence any of its element can be given as a Radon–Nikodým
derivative corresponding to some convex combination 1

1+x P + x
1+xQ. The second

equivalence is obvious when minϕ∈Sα(x) E(ϕX) < 0. If minϕ∈Sα(x) E(ϕX) ≥ 0 then
by our convention RAROC(X) = +∞ so the inequality on the left-hand side is again
satisfied with E(ϕX) ≥ 0 thanks to ϕ ∈ Sα(x), and this implies the inequality on the
right-hand side is satisfied too. As a consequence, (Sα(x))x∈R+ supports the repre-
sentation of RAROC(X) = aι(X) as required by Corollary 1, provided that for every
acceptability level x ∈ R+ we let Sα(x) = ∩y>xSα(y), see Cherny and Madan (2009,
Lemma 1).
Another expectile-based coherent risk measure recently proposed by Daouia et al.
(2020, 2021) is the analogue of expected shortfall, namely the average expectile
coherent risk measure defined as

− 1

α

∫ α

0
et (X)dt, α ∈ (0, 1

2 ]. (18)

Since in the current article we treat positions X ∈ L1 modelling P&L’s and what
matter for risk measurement is the left-tail of the X ’s distribution, Eq. (18) resembles
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the original one 1
1−α

∫ 1
α
et (X)dt withα ∈ [ 12 , 1)where X is typically a randomvariable

whose values are the negative of P&L’s with extreme losses correspond to a level α

close to one. Coherence of the average expectile coherent risk measure is proved in
Daouia et al. (2020) and easily transfers to our resembled version (18). This enable us
to propose a second example of expectile-based acceptability index of performance
as follows. We claim that the ratio of expectation to (18) is:

RAROC(X) ≥ x ⇐⇒ E(X)

− 1
α(x)

∫ α(x)
0 et (X)dt

≥ x

⇐⇒ 1

α(x)

∫ α(x)

0
E(X)dt ≥ −x

1

α(x)

∫ α(x)

0
et (X)dt

⇐⇒ 1

α(x)

∫ α(x)

0

[
E(X) + x et (X)

]
dt ≥ 0

⇐⇒ E(X) + x et (X) ≥ 0

⇐⇒ 1

1 + x
E(X) + x

1 + x
et (X) ≥ 0.

From the last equivalence and the dual representation of et (X), the same reasoning
used in building RAROC(X) = E(X)

−eα(x)(X)
as an expectile-based acceptability index now

confirm our claim. Observe that t ∈ range(α(x)) but we do not need integration by
substitution. Indeed by Corollary 1 the second expectile-based coherent risk measure
must be indexed by acceptability levels x ∈ R+.

5.1 Point estimators of expectile-based performancemeasures

To make statistical inference of our expectile-based RAROC, we consider the fol-
lowing procedure of non-parametric point estimation. First, from a random sample
X1, . . . , Xn let X(1), . . . , X(n) be the corresponding nth order statistics. The empiri-
cal counterpart of the probability level α ∈ (0, 1

2 ] is

α̃i = i X(i) − ∑i
k=1 X(k)

∑i
k=1 |X(k) − X(i)|

, i = 1, . . . , n. (19)

Second, the empirical α̃i -expectile is ẽα,n = X(i) if and only ifα = α̃i for i = 1, . . . , n
with α̃0 = 0 and α̃n = 1. In fact, its expression is

ẽα,n = (1 − α)
∑i

k=1 X(k) + α
∑n

k=i+1 X(k)

(1 − α)i + α(n − i)
, (20)

and ẽα,n ∈ [X(i), X(i+1)). Since the empirical expectile is nondecreasing in α and
α̃i ≤ α̃i+1 one get

ẽα,n ∈ [X(i), X(i+1)) ⇐⇒ α ∈ [α̃i , α̃i+1),
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see Holzmann and Klar (2016). To emphasize the dependence on rank i we rewrite
ẽα,n(i). As byproduct, to compute the nonparametric estimator

R̃AROCn := n−1 ∑n
i=1 Xi

−ẽα,n(i)
(21)

we suggest to:

(1) Compute recursively each empirical level α̃i for i = 1, . . . , n;
(2) Identify the interval [α̃i , α̃i+1);
(3) Go back to the corresponding [X(i), X(i+1)) and find the right −ẽα,n(i).

The last step can be done by interpolation. When the population RAROC is defined in
term of the average expectile coherent risk measure (18) we need to compute all ẽα,n(i)

in the left-tail of the empirical distribution. Therefore, we suggest to consider all the
levels α̃k ≤ α for k = 1, . . . , i yet provided by step (1) above where i is related to
the interval found in step (2). Then, one repeat step (3) to get [X(k), X(k+1)) and then
the corresponding empirical expectiles ẽα,n(k). Eventually one compute the average

−i−1α
∑�iα�

k=1 ẽα,n(k) which now replaces the denominator in R̃AROCn . Here � · � is the
floor function.

By our main assumption X ∈ L1 and the well-known stylized facts about the
behavior of financial return series, is reasonably to consider the class of heavy-tailed
distributions corresponding to the maximum domain of attraction of the Fréchet fam-
ily. We recall that Extreme Value Theory is developed around limiting distribution
functions of properly normalized maxima of i.i.d. X1, . . . , Xn . Distributional prop-
erties of max1≤i≤n{Xi } = X(n) are easily transferred to min1≤i≤n{Xi } = X(1), the
latter pertaining the current context where we work with P&L’s (especially when they
represent returns). Hence, we can refer to some asymptotic results of high expec-
tiles without worry of our chosen sign convention about X . In particular, Bellini et al.
(2014) showed that assuming X with heavy-tailed distribution in the Fréchetmaximum
domain of attraction (and then having a Paretian right-tail) it holds eα(X) < qα(X),
where qα(X) = inf{x ∈ R | FX (x) ≥ α} is the α-quantile of the distribution function
FX (x) = P(X ≤ x), provided the tail index of the Fréchet distribution is greater than
2 and α ∈ (ᾱ, 1) with ᾱ < 1. Passing to the negative we have

VaRα(X) = −qα(X) < −eα(X), α ∈ (0, ᾱ) (22)

and the expectile-based coherent risk measure is less conservative than value-at-risk.
As a result, the performance ratio E(X)

VaRα(X)
is greater than our RAROC-type E(X)

−eα(X)
,

meaning more prudent performance evaluation. The same remains true when compar-
ing the RAROC-types E(X)

1
α

∫ α
0 VaRt (X)dt

and E(X)

− 1
α

∫ α
0 et (X)dt

, by simply taking the integrated

version of (22). Recall that 1
α

∫ α

0 VaRt (X)dt is the classical expected shortfall.
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5.2 The omega ratio connection

As pointed out inDelbaen (2013) andBellini andDiBernardino (2017), the acceptance
set for the α-expectile of a position X ∈ L1 as a coherent risk measure is

A−eα =
{

X

∣
∣
∣
∣
E(X+)

E(X−)
≥ 1 − α

α

}

, for every α ∈ (0, 1
2 ], (23)

namely the acceptability of a position is given for a sufficiently high gain-loss ratio.
This entails a natural link between risk and performance measures. Recall that the
Omega ratio of X ∈ L1 with respect to a benchmark t ∈ R is defined as

ΩX (t) := E
(
(X − t)+

)

E
(
(X − t)−

) , (24)

see also Remillard (2013, Section 4.4.4) for a reference at a textbook level. Since
the first order condition defining expectiles can be written as ΩX (eα(X)) = 1−α

α
, see

Bellini et al. (2018) and the references therein, there is a one-to-one relation between
expectiles and Omega ratios:

eα(X) = Ω−1
X ( 1−α

α
), and ΩX (t) = 1 − e−1

t (X)

e−1
t (X)

.

The Omega ratio is a widespread performance measure and the gain-loss ratio is a
special case for a benchmark t = 0. The advantage of its relation with expectiles is
that besides the typical usage in performance measurement and especially in ranking
investment funds, ordering all expectiles (in the sense of Bellini et al. (2018, Definition
6)) is equivalent to ordering all the Omega ratios (see Bellini et al. (2018, Theorem
8)) for all possible values of t . This can obviously help investors in making their risky
decisions independently of the chosen benchmark in order to get the best reward.

Using the appropriate labeling α ≡ α(x) as in Sect. 4, Corollary 1, the accep-
tance set (23) can be equivalently given using the nonnegativity condition concerning
expectations and expectiles. Since α(x) = 1

1+x if and only if x = 1−α
α

, we write for

α(x) ∈ (0, 1
2 ]

X − eα(x)(X) = X + min
ϕ∈Sα(x)

E(ϕX).

Now, observe that α(x) �→ −eα(x)(X) is continuous and strictly increasing in x ∈ R+
provided α(x) → 0 and x → ∞. Together with the increasing family of sets of
scenarios (Sα(x))x∈R+ the acceptability X ∈ A−eα(x) associated to a suitable level of
performance is given by

E
((

X + minϕ∈Sα(x) E(ϕX)
)+)

E
((

X + minϕ∈Sα(x) E(ϕX)
)−) ≥ x . (25)
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Hence we have the following:

Corollary 2 A mapping aι : L1 → [0,+∞] is an expectile-based acceptability index
if and only if there exists a family (Sα(x))x∈R+ increasing in x such that the equivalent
representation

aι(X) = sup
{
x ∈ R+

∣
∣
∣ condition (25) is fulfilled

}
(26)

holds, where inf ∅ = ∞ and sup∅ = 0.

Clearly, Eq. (25) can be rewritten as

E
((

X − e 1
1+x

(X)
)+)

E
((

X − e 1
1+x

(X)
)−) ≥ x ⇐⇒ e 1

1+x
(X) ≥ 0. (27)

To go back to the gain-loss ratio we find the right choice of scenarios, see Cherny
andMadan (2009) where E(X) is now replaced by E(X+). First, the special case ΩX (0)
gives the following acceptability index of performance

GLR(X) :=
{

E(X+)
E(X−)

, if E(X+) > 0
0, otherwise.

Each set of scenarios Sα(x) is for every x ∈ R+ given by those ϕ satisfying condi-
tions stated in Eq. (14) and in addition E(ϕX) ≥ 0 for any X ∈ L1 with aι(X) ≥ x .
A modification of Cherny and Madan (2009, Lemma 1) yields each set of scenarios
in the family (Sα(x))x∈R+ as Sα(x) = ∩y>x Sα(y). Therefore, there exists a constant
κ ∈ R+ such that any scenario can be represented as

ϕ = κ(I{X>0} + Y ) ∈ Sα(x) for 0 ≤ Y ≤ x .

The constant κ guarantees that E(κ(I{X>0} + Y )) = 1, i.e. κ = 1
P(X>0)+E(Y )

.

With all this in mind and calling for acceptability sets (1), it is easy to verify that
minϕ∈Sα(x) E(ϕX) ≥ 0 is equivalent to min0≤Y≤x E((I{X>0} + Y )X) ≥ 0 and the min-
imum is attained at Y � = xI{X≤0}. Thus we have the following chain of equivalences

min
ϕ∈Sα(x)

E(ϕX) ≥ 0 ⇐⇒ E
(
I{X>0} + xI{X≤0}

) ≥ 0

⇐⇒ E(X+) ≥ xE(X−)

⇐⇒ GLR(X) ≥ x .

The last equivalence entails aι(X) = GLR(X), given the chosen set of scenarios Sα(x).
The optimum in the representation (26) is far from the too tolerant risk attitude given
by e 1

2
(X) = E(X), for α = 1

2 or x = 1. Anyway, by Corollary 2 and inequality (27)
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the acceptability of the trade X at the level x corresponds to the greatest nonnegative
α-expectile with more risk aversion produced by a greater Sα(x), since by Delbaen
(2012, Example 5) any expectile can be regarded as the von Neumann-Morgenstern
utility function

u(x) = axI{x≥0} + bxI{x≤0}

definedonRwith 0 < a ≤ b for the concavity.Also, taking the supremumover x ∈ R+
of the left-hand expression in (27) implies that aι(X) is dominated by the Omega ratio
ΩX (e 1

1+x
(X)) < +∞, or it is just equal to the Omega ratio for t = e 1

1+x
(X) and

x < +∞.

Remark 8 For X ,Y ∈ L1, let us assume E(ψ(X)) ≤ E(ψ(Y )) meaning the usual
stochastic order for all increasing functionsψ. This is equivalent to the expectile order
X ≤e Y defined as eα(X) ≤ eα(Y ) for allα ∈ (0, 1), seeBellini et al. (2018,Definition
6). Let x1 be the optimum in the representation of aι(X) given by Corollary 2 and
take t1 = e 1

1+x1
(X). Thus, ΩX (t1) ≤ ΩY (t1) since the expectile order is equivalent to

the pointwise ordering of Omega ratios, see Bellini et al. (2018, Theorem 8). Writing
x2 for the optimum in representation of aι(Y ) given by Corollary 2, we have t2 =
e 1
1+x2

(Y ) < e 1
1+x1

(Y ) since the expectile is strictly decreasing in x ∈ R+. Now we

have two possibilities:

(i) 0 ≤ t1 ≤ t2 and consequently ΩY (t1) ≥ ΩY (t2) by the monotonicity of Omega
ratios with respect to t, see Bellini et al. (2018, Theorem 2);

(ii) t1 ≥ t2 ≥ 0 and ΩX (t1) ≤ ΩY (t1) ≤ ΩY (t2).

Only in the case (ii) the expectile order would imply aι(X) ≤ aι(Y ), and taking
the negative of the corresponding expectiles −t1 ≤ −t2 ≤ 0 this corresponds to
the situation when a riskier trade Y in term of the expectile risk measure need more
compensation for its reward, or equivalently a trade Y preferred to a trade X in the
usual stochastic order have a higher performance.

6 Further properties of expectile-based indices of performance

Most of the risk measures proposed by academics and used in practice are law-
invariant, that is the numerical value of the risk measure is only affected by the
probability distribution of the underlying financial position. They are indeed special
cases of statistical functionals T (F) defined on a proper set of probability distribu-
tionsM overRwith cumulative distribution functions F . To fit in the current context,
we assume F belongs to the class of all cumulative distribution functions D1 on R

with finite first moment
∫ |x |dF(x) < +∞. Throughout this section we let eα(F) for

X ∼ F . We give a direct representation of the proposed expectile-based acceptability
index in term of the probability distribution of the financial position to assess. Fol-
lowing Delbaen (2012) and in particular Delbaen (2013, Theorem 7) we reformulate
Corollary 1 by means of the Kusuoka representation of the α-expectile as a coherent,
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law-invariant risk measure:

− eα(F) = inf
ν∈Mα

∫

[0,1]
−Uc(F)ν(dc), (28)

where Mα is a weak�-closed convex set of probability measures on (0, 1] such that

∫

(0,1]
1

u
ν(du) ≤ 1 − α

α
ν({1}), for α ∈ (0, 1

2 ].

The integrand in the above representation is nothing but the negative of the expected
shortfall,

Uc(F) = 1

c

∫ c

0
qc(F)dc, for c ∈ (0, 1],

where qc(F) = inf {m ∈ R | F(m) ≥ c} is the c-quantile of F . Therefore representa-
tion (16) becomes:

aι(F) = sup

{

x ∈ R+
∣
∣
∣
∣ inf

ν∈Mx

∫

[0,1]
Uc(F)ν(dc) ≥ 0

}

, (29)

for an acceptable position X ∼ F . Now (Mx )x∈R+ is an x-increasing family of sets
of scenarios based on probability measures on [0, 1], supporting the representation of
each −e 1

1+x
(F), where as in Sect. 5.2 we let α = 1

1+x . The law-invariance of any

such coherent expectile-based risk measure transfers to the acceptability index aι(F).
There is also a Kusuoka representation using densities. By Delbaen (2013, Theorem
2), a direct application of Fubini’s theorem entails expectiles associated to x ∈ R+
given by

e 1
1+x

(F) = inf

{∫ 1

0
qc(F) f ′(1 − c)dc

∣
∣
∣
∣ f ∈ Fx

}

, (30)

where Fx is a convex set of convex (distortion) functions f : [0, 1] → [0, 1] such
that f (0) = 0, f (1) = 1 and additionally f ′(1)

f ′(0) ≤ x . Notice that the density y �→
f ′(y) = ∫ 1

1−y
1
α
ν(dα) is nondecreasing, therefore 1 ≤ f ′(1)

f ′(0) ≤ x . Taking the negative
of expectiles given in (30) for a position X ∼ F yields acceptability at the level
x ∈ R+ provided that the infimum in the above representation is nonnegative. In fact
we have the following:

Corollary 3 A mapping aι : L1 → [0,+∞] is an expectile-based acceptability index
if and only if there exists a family (Fx )x∈R+ ⊂ C[0, 1] increasing in x such that

aι(F) = sup

{

x ∈ R+
∣
∣
∣
∣ e 1

1+x
(F) ≥ 0

}

(31)

where inf ∅ = ∞ and sup∅ = 0.
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Proof It suffices to note that Fx is a (convex) compact (in the topology of uniform
convergence) set and the infimum in (30) is attained at f̄ ∈ Fx with

∫ 1
0 qc(F) f̄ ′(1 −

c)dc ≥ 0. Then for 0 < x < y we have by construction Fx ⊂ Fy which yields the
desired result. ��

6.1 Elicitability of expectile-based performance indices

Elicitability of statistical functionals, and then of law-invariant risk measures, allows
the assessment and comparison of competing point forecasts by means of an error
measure called scoring functionwhich is the analogue of the loss function in statistical
decision theory. This implies for risk measures the possibility to perform backtesting
through the average score

S̄ = 1

n

n∑

i=1

S(Ti , Xi ), (32)

where Ti are point estimates of the statistical functional for given realizations Xi of a
random sample with population X ∼ F . We assume scoring functions S : R × R →
(0,+∞) as defined in Bellini and Bignozzi (2015, Definition 3.1). In fact, whenever
a statistical functional T (F) is elicitable then, modulo some technical conditions, it
can be represented as a minimizer

T (F) = argminz∈R
∫

S(z, x)dF(x), for every F

where the cumulative distribution functions belong to a class D such that for μ ∈ M
we have F(x) = μ(−∞, x]. The above integral is nothing but the expected score
E(S(z, X)) based on the original probability measure P, for example we can consider
μ = P ◦ X−1. A statistical functional is not elicitable if is its level sets {T = t}
are not convex for all t ∈ R, see for example Delbaen et al. (2016). In our setting,
the elicitability is relative to the class M or equivalently D. Since the negative of
expectiles are law-invariant and elicitable by Bellini and Bignozzi (2015, Theorem
4,4(b)), our aim is to show that also aι(F) is elicitable9 too with respect to the class
D1.

Corollary 4 The law-invariant acceptability index aι(F) with representation (31) is
elicitable relative to the class D1.

Proof First, observe that x �→ e 1
1+x

(F) for fixed F ∈ D1 is continuous in x ∈ R+ and

thus its range is the interval [b,+∞) for some b ∈ R+. Consider the correspondence
� : [b,+∞) → 2R+×R defined by

�(w) = [0, x] ×
{
e 1
1+s

(F)
∣
∣ 0 ≤ s ≤ x

}
,

9 In what follows we do not need to assume this class corresponds to the set of all probability measures on
R with compact support.
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for w = e 1
1+x

(F). We take its restriction to the range of �, namely

�̃ = �|�([b,+∞)), where �([0,+∞)) := ∪w∈[b,+∞)�(w).

We further consider a second map g : �([b,+∞)) → [0,+∞] defined by

g(�̃(w)) = sup
{
s ∈ [0, x] ∣

∣ e 1
1+s

(F) ≥ 0
}

.

Because the expectile is strictly decreasing in x ∈ R+, we have that

w �= w′ ⇐⇒ e 1
1+x

(F) �= e 1
1+x ′

(F) �⇒ �̃(w) �= �̃(w′)

and the composition h = g ◦ �̃ is a 1-to-1 mapping between the range [0,+∞)

of the expectile and the half line [0,+∞]. By Gneiting (2011, Theorem 2.6) as a
version of Osband’s revelation principleOsband (1985, p. 9) we additionally have that
h(e 1

1+x
(F)) is elicitable for every x ∈ R+ as the expectile is yet elicitable. Finally,

taking

lim
x→+∞ h

(
e 1
1+x

(F)
)

= aι(F)

and applying again the above results yields the acceptability index as an elicitable
statistical functional for F ∈ D1. ��

When the performance index is just the Omega ratio with benchmark t = e 1
1+x

(F)

(see Sect. 5.2, Eq. (27)) we can recover the scoring function strictly consistent with
aι(F) in the case E((X − t)−) �= 0 by Gneiting (2011, Theorem 3.2(b),(c)) which is
of the form

S(z, x) = s(x) (φ(x) − φ(z)) − φ′(z) (r(x) − z s(x)) + φ′(x) (r(x) − x s(x)) ,

where φ is a convex function with first derivative φ′ and

r(x) = max{0, x − t}, s(x) = max{0, t − x}

are such that r , s : R → (0,+∞). This only requires that E((X − t)+), E((X − t)−)

and moreover E((X − t)+ φ′(X − t)), E((X − t)− φ(X − t)), E(X (X − t)− φ′(X − t))
are all finite which is the case since X − t ∈ L1.

Corollary 4 above can be rephrased as follows: the expectile-based acceptability
indices aι(X) for a traded position with terminal value X ∈ L1 are elicitable. Consider
for example the expectile-based performance ratio aι(X) = E(X)

−eα(X)
introduced in

Sect. 5. Clearly, it is a statistical functional10 and its estimation depends on past
observations of asset prices and/or returns. As a possible point estimatorwe considered

10 Formally it would be correctly set as aι(F) = E(F)
−eα(F)

.
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the nonparametric statistics θ̂n := R̃AROCn given in Eq. (21), in fact other estimators
θ̂n such as11 maximum likelihood should be considered and this opens the question
of how to choose among them, given a sample X1, . . . , Xn drawn from X ∼ F .
The discrepancy between aι(X) and θ̂n qualifies as estimation error and is intimately
linked with the problem of forecasting, well known in financial econometrics. Now,
theoretical elicitability of aι(X)means that we can assign a (strictly consistent) scoring
function12 such that

E(X)
−eα(X)

= argminz∈RE(Saι(z, X)), (33)

where Saι(z, X) is the score of our acceptability index. Applying the one-to-one
division mapping g(u, v) = u

v
to the range of the bi-variate statistical functional13

T(X) := (E(X),−eα(X)), byGneiting (2011, Theorem4) or Fissler and Ziegel (2016,
Proposition 4.2(ii)) we get

Saι(z, X) = S(g−1(z), X),

i.e. the scoring function of our performance ratio is that of T(X) before g(u, v) acts.
Then it can be written as the sum of the two separate scores of E(X) and −eα(X)

respectively,

Saι(z, X) := S1(u, X) + S2(v, X)
︸ ︷︷ ︸

=S(g−1(z),X)

= (X − u)2
︸ ︷︷ ︸
expectation

+α((X − v)+)2 + (1 − α)((X − v)−)2
︸ ︷︷ ︸

expectile

, (34)

because T(X) is a 2-elicitable functional, in the sense of Fissler and Ziegel (2016,
Definition 2.1), with elicitable components.14 The sample counterpart of the expected
score in (33), the so called empirical score, is

S̄n = 1

n

n∑

t=1

Saι(zt , xt ), (35)

namely the estimated average score where the ex-ante forecast of the acceptability
index15 is zt = ut

vt
, the ratio of the ex-ante forecast ut of the mean to that of the

expectile-based risk measure vt , while xt are ex-post realizations of a time series

11 Observe that θ̂n is equivalent to the estimator aι(X1, . . . , Xn).
12 This is similar to the risk function of statistical decision theory, i.e. L(aι(X), θ̂n), for example the L p

loss L(x, y) = |x − y|p .
13 We have u = E(X) and v = −eα(X), for −eα(X) �= 0.
14 It is well known that also the expectation is elicitable.
15 In defining the scoring function, we, without loss of generality, assume the observation domain for xt
and the action domain for zt coincide and both are subsets of R.
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(Xt )t∈N of periodic returns. More extensively, we have

Saι(zt , xt ) =
{

(xt − Et )2 + α(xt + eα,t )
2, if xt > −eα,t

(xt − Et )2 + (1 − α)(xt + eα,t )
2, if xt ≤ −eα,t ,

(36)

by identifying ut = Et with an estimate of the expected return and vt = −eα,t with an
estimate of the corresponding expectile-based risk measure at a level α ∈ (0, 1

2 ]. Thus
for competing estimation procedures we can asses the elicitation of aι(X) by ranking
the corresponding empirical score (35), employing Eq. (36), and then choosing that
with the lowest value. For example, we can refer to the forecast selection examples
in Bellini and Di Bernardino (2017) where the competing estimation procedures are
the standard Normal, the historical, and two alternative GARCH(1,1) models with
Normal and with Student-t innovations, for a dataset of n = 3818 daily log-returns of
the S&P500 Index; the author set α = 0.00145 in order to get −eα(X) = VaR0.01(X).
This approach can be easily adapted to the current framework by applying the afore-
mentioned estimation procedures also to Et other than−eα,t . Indeed, one can consider
additionally estimators for −eα(X) such as the weighted version of the empirical
expectile in Daouia et al. (2021, equation (11)) which is in turn based on their defi-
nition of expectHill estimator of α, see Daouia et al. (2021, equation (8)). The entire
procedure above can be also applied to the performance ratio E(X)

− 1
α

∫ α
0 es (X)ds

, for which

further estimation procedures can be selected out of those employed in Bellini and
Di Bernardino (2017), for example one can take the extrapolated estimator of the
expectile-based risk measure − 1

α

∫ α

0 es(X)ds given in Daouia et al. (2021, equation
(16)).

7 Conditional expectile-based performance index

In this sectionwe develop a conditional representation of expectile-based acceptability
indices.Wewrite L p(F ) for the space of all positions X with finite pth-momentwhich
are measurable with respect to the initial information set F . To account for new
information and update the performance measurement we introduce a sub-σ -algebra
G ⊂ F and also consider positions in the smaller space L1(G ). Recall that we in the
rest of this section all inequalities, equalities, convergence concepts and statements
about solution of equations applied to random variables are meant to hold P-a.s. if not
stated otherwise. A conditional acceptability index is a mapping aι(· |G ) : L1(F ) →
L1(G ) satisfying the following conditions, where X ,Y ∈ L1(F ) and W ∈ L1(G ) is
a nonnegative random variable:

1. Conditional quasi-concavity, aι(�X + (1 − �)Y |G ) ≥ W for any � ∈ L∞(G )

such that � ≥ 0 and every W ;
2. Monotonicity, X ≤ Y �⇒ aι(X |G ) ≤ aι(Y |G );
3. Conditional scale invariance, aι(�X |G ) = aι(X |G ) for any � ∈ L∞(G ) such

that � ≥ 0;
4. Continuity property, for any sequence (Xn)n∈N ⊂ L1(F ) such that Xn ↑ X ∈

L1(F ), implies aι(X |G ) ≥ W provided that aι(Xn |G ) ≥ W for every n ∈ N.
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To establish a representation of conditional expectile-based acceptability indices
we need a modified version of conditional expectiles originally defined by Bellini et
al. (2018, Definition 2). For the sake of completeness we list below this definition
together with the essential properties.

Definition 2 Given X ∈ L1(F ) and α ∈ (0, 1), its conditional α-expectile is the
unique solution Z ∈ L1(G ) of the equation

E
(
α(X − Z)+ − (1 − α)(X − Z)− |G ) = 0.

Existence and uniqueness of Z = eα(X |G ) is guaranteed by Bellini et al.
(2018, Theorem 2.2). Conditional expectiles as coherent risk measures ρ(X |G ) =
−eα(X |G ) for α ≤ 1

2 satisfy:16

1. Conditional cash invariance, ρ(X+H |G ) = ρ(X |G )−H , for any H ∈ L1(G );
2. Monotonicity, X ≤ Y implies ρ(X |G ) ≥ ρ(Y |G );
3. Conditional positive homogeneity, ρ(�X |G ) = �ρ(X |G ) for � ∈ L1(G );
4. Subadditivity, ρ(X + Y |G ) ≤ ρ(X |G ) + ρ(Y |G ).

To provide the analogous of Lemma 2 in Sect. 3, we introduce a slightly different
definition of conditional expectiles.

Definition 3 Given X ∈ L1(F ) and a random level A ∈ L1(G ) such that they form a
random vector (A, X) : � → R × (0, 1), the randomized conditional A-expectile is
the solution Z ∈ L1(G ) of the equation

E
(
A(X − Z)+ − (1 − A)(X − Z)− |G ) = 0. (37)

Essentially, the α-parameter of conditional expectile as given in Definition 2 is now
a positive random variable in the conditional expected loss of Eq. (37). This can be
interpreted as a riskmeasurement approach leading to capital requirement for a position
X to asses that minimizes both risk overestimation and underestimation, conditioned
on new informationG which also implies updating of the randomized probability level
of occurrence A, see Moresco et al. (2019). We provide a short proof that the above
version of conditional expectile exists as the unique solution of Eq. (37).

Lemma 4 Let X ∈ L1(F ) and A ∈ L1(G ) such that A(ω) ∈ (0, 1) for every ω ∈ �.

There exists a unique solution Z� ∈ L1(G ) of Eq. (37).

Proof Let F(a, x, ω) be a version of P(A ≤ a, X ≤ x |G ). Rewrite the conditional
expectation in (37) as

∫
[
a(x − z)+(1 − a)(x − z)−

]
dF(a, x, ω) = 0,

16 This condition as usual ensures subadditivity, as after a change in sign conditional expectiles belongs to
the family of conditional shortfall with concave loss function, see Weber (2006), and are conditional risk
measures as introduced by Detlefsen and Scandolo (2005).
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which has a unique solution given by Z�(ω). The G -measurability of Z� is showed
as in the proof of Bellini et al. (2018, Theorem 2.2) but using the regular conditional
distribution function F(a, x, ω). To show that Z� has finite first moment as a G -
measurable randomvariable,weproceed as in the proof ofBellini et al. (2018,Theorem
2.2) simply by considering

E(Z� |G ) = Z� ≤ E(X |G ),

with E
(

I{A≤ 1
2 }A(X − Z�)

∣
∣
∣
∣G

)

= E
(

I{A≤ 1
2 }(1 − A)(X − Z�)

∣
∣
∣
∣G

)

, and analo-

gously on {A ≥ 1
2 }. ��

Now, our randomized version of the conditional expectile is

Z� = eA(X |G ), with A(ω) ∈ (0, 1) for all ω ∈ �, (38)

satisfying properties 1 to 4 of the original conditional expectile in Definition 2. This
can be obtained by observing that

eA(X |G ) = ess inf
{
Z ∈ L1(G )

∣
∣ expectation in (37) ≤ 0

}
, (39)

which can be easily deduced by equation (9) in Bellini et al. (2018, Theorem 2.2.)
and its proof. The aforementioned properties are then transferred from those of the
conditional shortfall risk measures introduced by Weber (2006), if in addition one
considers {A ≤ 1

2 } for the subadditivity. Nevertheless, we need two further properties
of eA(X |G ) :
5. A1 ≤ A2 �⇒ eA1(X |G ) ≤ eA2(X |G ), with the reverse inequality holding by a

change in sign;
6. Continuity from below, Xn ↑ X for a sequence (Xn)n∈N ⊂ L1(F ), implies

eA(Xn |G ) ↑ eA(X |G ), which becomes continuity from above taking the nega-
tives.

Property 5 is an easy generalization of the analogous monotonicity property of con-
ditional shortfall risk measures, with respect to the parameter α. Property 6 can be
easily deduced by Bellini et al. (2018, Theorem 2.3(d)). We call

ρW (X |G ) := −e 1
1+W

(X |G ), on {A ≤ 1
2 }, (40)

the randomized conditional expectile risk measure of the position X , where for the
sake of consistency with the unconditional representation in Proposition 1 we have

W (ω) = 1 − A(ω)

A(ω)
≥ 0, for every ω ∈ �. (41)

Note that

{
ω ∈ �

∣
∣W (ω) is nondecreasing

} = {
ω ∈ �

∣
∣ A(ω) is nonincreasing

}
. (42)
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Lemma 5 Let (ρW (X |G ))W∈L1(G ) be an increasing family of randomized conditional
expectile risk measure for X ∈ L1. Then, the mapping aι(· |G ) : L1(F ) → L1(G )

defined by

aι(X |G ) := ess sup
{
W ∈ B

∣
∣ ρW (X |G ) ≤ 0

}

where B = {A ∈ L1(G ) | A ≤ 1
2 } (43)

is a conditional acceptability index of performance (we assume ess sup∅ = 0).

Although the obvious similarity between this lemma and Lemma 2, we present the
proof to account for the randomization effect. Recall the all equalities and inequalities
are valid P-a.s.

Proof Let B = {A ∈ L1(G ) | A ≤ 1
2 } and recall Eqs. (40), (41). By the monotonicity

of randomized conditional expectile risk measures we have for every X ,Y ∈ L1(F )

with X ≥ Y that ρW (X |G ) ≤ ρW (Y |G ). Thus

W0 ∈
{
W ∈ L1(G )

∣
∣
∣ ρW (X |G ) ≤ 0

}

implies ρW0(X |G ) ≤ 0 which together with monotonicity also entails ρW0(X |G ) ≤
ρW0(Y |G ) ≤ 0. Using (42) we consequently have

{
W ∈ B

∣
∣ ρW (X |G ) ≤ 0

} ⊃ {
W ∈ B

∣
∣ ρW (Y |G ) ≤ 0

}
,

then taking the essential supremum of both sets yields aι(X |G ) ≥ aι(Y |G ). For
the quasi-concavity of aι(· |G ) we consider two random trades X ,Y ∈ L1 such that
aι(X |G ) and aι(Y |G ) are both≥ W0 for a givenW0 ≥ 0 satisfying (41) and (42). For
allW ∈ B such thatW ≤ W0, combiningmonotonicity of the randomized conditional
expectile risk measures with definition (43) we have ρW (X |G ) ≤ ρW0(X |G ) ≤ 0
and ρW (Y |G ) ≤ ρW0(Y |G ) ≤ 0. An appeal to the conditional positive homogeneity
of ρW (· |G ) now entails

ρW (�X |G ) = �ρW (X |G ) ≤ 0

and

ρW ((1 − �)Y |G ) = (1 − �)ρW (Y |G ) ≤ 0,

for every random variable 0 ≤ � ≤ 1. Moreover, by subadditivity of ρW (· |G ) we
have

ρW (�X + (1 − �)Y |G ) ≤ 0

for everyW < W0 and it follows ess sup
{
W ∈ B

∣
∣ ρW (�X + (1 − �)Y |G ) ≤ 0

} ≥
W0. As a by-product, definition (43) yields aι(�X + (1 − �)Y |G ) ≥ W0 and
quasi-concavity is proved. Conditional scale invariance of aι(· |G ) follows on B
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by conditional positive homogeneity of ρW (· |G ). To show the continuity, pick a
sequence (Xn)n∈N ⊂ L1(F ) such that Xn ↑ X and assume aι(Xn |G ) ≥ W for
every n ∈ N and W ∈ B. Since randomized conditional expectile risk measures
are continuous from above, ρW (Xn |G ) ↓ ρW (X |G ) so that ρW (X |G ) ≤ 0, pro-
vided that ρW (Xn |G ) ≤ 0 and this combined with monotonicity of the conditional
acceptability index eventually implies aι(X |G ) ≥ W as desired. ��

As we have seen in the unconditional case, it is also possible to recover random-
ized conditional expectile risk measures by conditional acceptability indices. This is
guaranteed by the following.

Lemma 6 Let B = {A ∈ L1(G ) | A ≤ 1
2 } and define

ρW (X |G ) := ess inf
{
M ∈ L1(G )

∣
∣ aι(X + M |G ) ≥ W

}
,

for every W ∈ B, (44)

where A andW are related byEq. (41)andaι(· |G ) is a conditional acceptability index.
Then, ρW (X |G ) satisfies properties 1–4 of Definition 2 together with subsequent
properties 5,6.

Proof Assume B as above. First, we check that the mapping W �→ ρW (· |G ) defined
in (44) is increasing [recall Eq. (40)]. It suffices considering 0 ≤ W1 ≤ W2 and taking
the essential infimum of both sets
{
M ∈ L1(G )

∣
∣ aι(X + M |G ) ≥ W2

}
⊂

{
M ∈ L1(G )

∣
∣ aι(X + M |G ) ≥ W1

}
.

To show conditional cash invariance, monotonicity, conditional positive homogeneity
and subadditivity we proceed as in the Proof of Lemma 2, provided that all scalars
x,m, λ, c are replaced byW , M,�,C ∈ L1(G ),where in addition� is a nonnegative
random variable, and the infimum is replaced by the essential infimum. To check the
continuity from above of randomized conditional expectile risk measures, it suffices
to proceed as in the last part of the Proof of Lemma 2 by replacing the scalar ε with
the random variable M ∈ L1(G ) and considering the continuity of aι(· |G ). ��

Eventually, by Lemmas 5 and 6 together with Bellini et al. (2018, Theorem 2.4)
and its proof we have our proposed conditional version of the unconditional set of
scenarios (14) in Sect. 4:

Corollary 5 Let B be defined as in Lemma 5. The conditional expectile-based accept-
ability index can be represented as

aι(X |G ) = ess sup
{
W ∈ B

∣
∣ essminϕ∈SW E(ϕX |G ) ≥ 0

}
, (45)

where

SW =
{

ϕ ∈ L∞(F )

∣
∣
∣
∣ ϕ > 0, E(ϕ |G ) = 1,

ess sup(ϕ |G )

ess inf(ϕ |G )
≤ W

}
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is such that 0 ≤ W1 ≤ W2 implies SW1 ⊂ SW2 .

The last condition in the definition of SW makes use of the conditional supremum
ess sup(ϕ |G ) of each scenario, see Bellini et al. (2018) and the references therein.
It is worth noting that choosing the trivial sigma-algebra G = {∅,�}, all the above
representation results yield the unconditional representation of acceptability indices
based on expectile risk measures up to replacing the continuity properties of aι(· |G )

and ρW (· |G ) by the original continuity properties in Sect. 3.

8 Conclusions

Given the recent increasing attention to the use of expectiles as coherent riskmeasures,
we investigate their link to performance measurement beyond the classical gain-loss
and Omega ratios. Hinged on the concept of acceptability indices of performance, we
are able to drive the dual representation of expectile-based coherent risk measures to
the construction of two new expectile-based performance ratios. Given the elicitability
of the proposed expectile-based performancemeasures proved in Sect. 6.1, we suggest
a proper scoring function that can easily implemented in practical forecast selection
problems. Moreover, we generalize the notion of conditional expectiles and give one
more representation of such performance measures when new information arrives and
the probability level implicit in the piecewise loss function giving expectiles is updated
accordingly.

Acknowledgements The authors are grateful to one anonymous Referee for its helpful suggestions and
critical comments, that help us to improve the presentation of the paper.

Funding There is no funding.

Data Availability The manuscript does not treat data and numerical examples.

Code Availability No software or custom code is used in the manuscript.

Declarations

Conflicts of interest The corresponding author states that there is no conflict of interest.

Ethical statement Themanuscript is not submitted to other journals. Themanuscript has not been published
elsewhere. Based on thewell-developed framework ofAcceptability Indices of Performance, themanuscript
does provides a novel application using expectiles as coherent risk measures. Thus, it elaborates on this
and provides additional new characterizations of expectile-based performance measures. The contribution
presented is the author’s own.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Performance measurement with expectiles

References

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: CoherentMeasures of Risk.Math. Fin. 9(3), 203–228 (1999)
Basel Committee on Banking Supervision, In: International Convergence Of Capital Measurement and

Capital Standars: A Revised Framework, Bank of International Settlements (2006)
Basel Committee on Banking Supervision, Minimum Capital Requirements for Market Risk, Bank of

International Settlements (2019)
Bellini, F., Klar, B., Müller, A., Rosazza Gianin, E.: Generalized quantiles as risk measures. Insur. Math

Econom. 54, 41–48 (2014)
Bellini, F., Bignozzi, V.: On elicitable risk measures. Quant. Finan. 15, 725–733 (2015)
Bellini, F., Di Bernardino, E.: Risk management with expectiles. The Europ. J. of Fin. 23(6), 487–506

(2017)
Bellini, F., Bignozzi, V., Puccetti, G.: Conditional expectiles, time consistency andmixture convexity. Insur.

Math Econom. 82, 117–123 (2018)
Bellini, F., Klar, B., Müller, A.: Expectiles, omega ratios and stochastic ordering. Methodol. Comput. Appl.

Probab. 20, 855–873 (2018)
Bernardo, A., Ledoit, O.: Gain, loss, and asset pricing. J. Political Econ. 108, 144–172 (2000)
Biagini, S., Pinar, M.Ç.: The best gain-loss ratio is a poor performance measure SIAM. J. Financial Math.

4(1), 228–242 (2013)
Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Fin. 19, 189–214 (2009)
Cherny, A., Madan, D.: New measures for performance evaluation. Rev. Financial Stud. 22(7), 2571–2606

(2009)
Cochrane, J.H., Saa-Requejo, J.: Beyond arbitrage: good-deal asset price bounds in incomplete markets. J.

Political Econom. 108(1), 79–119 (2001)
Daouia, A., Girard, S., Stupfler, G.: Estimation of tail risk based on extreme expectiles. J. R. Statist. Soc. B

80(2), 263–292 (2018)
Daouia, A., Girard, S., Stupfler, G.: Tail expectile process and risk assessment. Bernoulli 26, 531–556

(2020)
Daouia, A., Girard, S., Stupfler, G.: ExpectHill estimation, extreme risk and heavy tails. J. Econom. 221,

97–117 (2021)
Delbaen, F.: Monetary Utility Functions. Osaka University CSFI Lecture Notes Series 3, Osaka University

Press, Osaka (2012)
Delbaen, F.: A Remark on the Structure of Expectiles. Preprint, (2013) arXiv:1307.5881 [v1]
Delbaen, F., Bellini, F., Bignozzi, V., Ziegel, J.F.: Risk measures with the CxLS property. Finance Stoch.

20(2), 433–453 (2016)
Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stoch. 9(4), 539–561

(2005)
Dybvig, P.H., Ingersoll, J.E.:Mean-variance theory in completemarkets. Jour. Busin. 55(2), 233–251 (1982)
Holzmann, H., Klar, B.: Expectile Asymptotics. Electron. J. Stat. 10, 2355–2371 (2016)
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