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A B S T R A C T

The pairwise winning indices, computed in the Stochastic Multicriteria Acceptability Analysis, give the
probability with which an alternative is preferred to another. They are computed taking into account all
the instances of the assumed preference model compatible with the preference information provided by
the Decision Maker mainly, but not exclusively, in terms of pairwise preference comparisons of reference
alternatives. In this paper we present a new scoring method assigning a value to each alternative summarizing
the results of the pairwise winning indices. Several procedures of this type have been provided in literature.
However, our method, expressing the score in terms of a representative additive value function, permits to
disaggregate the overall evaluation of each alternative in the sum of contributions of considered criteria.
This permits not only to rank the alternatives but also to explain the reasons for which an alternative
obtains its evaluation and, consequently, fills a certain ranking position. We also present a probabilistic model
underlying our methodology. This probabilistic model is based on a simple piecewise linear approximation of
the cumulative normal distribution, which allows the use of linear programming. To prove the efficiency of the
method in representing the preferences of the Decision Maker, we performed an extensive set of simulations
varying the number of alternatives and criteria. The results of the simulations, analyzed from a statistical point
of view, prove the reliability of our procedure. The applicability of the method to decision making problems
is explained by means of a case study related to the evaluation of financial funds.
1. Introduction

Given a set of alternatives 𝐴 = {𝑎, 𝑏,…} evaluated on a coherent
family of criteria (Roy, 1996) 𝐺 = {𝑔1,… , 𝑔𝑚}, choice, ranking and
sorting are the typical decision problems handled through Multiple
Criteria Decision Making (MCDM) methods (Greco et al., 2016; Keeney
and Raiffa, 1976). In this paper we are interested in ranking decision
problems in which alternatives have to be ordered from the best to the
worst taking into account the preferences of the Decision Maker (DM).2

Several methods aiming to produce such a ranking have been pro-
posed in literature and they mainly differ (i) with respect to the
form the DM’s preference information are articulated and, (ii) in the
procedures used to get the final ranking. With respect to the first point
we distinguish between direct and indirect preference information.
In case of direct preference information, the DM is asked to provide
directly values of the parameters involved in the decision model used to
produce the ranking, while, in case of indirect preference information,

∗ Corresponding author.
E-mail addresses: s.arcidiacono@unict.it (S.G. Arcidiacono), salvatore.corrente@unict.it (S. Corrente), salgreco@unict.it (S. Greco).

1 All authors have worked equally for all the parts of the paper.
2 We agree that different actors can participate in a decision aiding process, such as decision maker, analyst, experts, stakeholders and so on. This distinction is

for sure important in a fruitful development of the decision process (see e.g. chapter 2 in Roy (1996)). However, in this paper, we consider a specific methodology
and for the sake of clarity we believe that it is better to abstract from the different types of actors participating to the decision process. In this perspective we
prefer to consider the simplest case in which there is a single decision maker.

the DM is asked to provide some information in terms of preference
comparison between alternatives or comparison of criteria with respect
to their importance; this information is then used to infer parame-
ters of the assumed preference model so that the application of the
model with the inferred parameters restores the preferences expressed
by the DM. To figure out the difference between direct and indirect
preference information, consider a decision problem in which there
are two criteria 𝑔1 and 𝑔2 providing evaluations in the interval [0,1].
Let us also assume that we want to represent the DM’s preference
assigning to each alternative 𝑎 an overall evaluation 𝑈 (𝑎) in terms
of an overall value function formulated as a weighted sum, that is,
𝑈 (𝑎) = 𝑤1 ⋅𝑔1(𝑎)+𝑤2 ⋅𝑔2(𝑎), with 𝑤1, 𝑤2 ⩾ 0 and 𝑤1+𝑤2 = 1. In case of
a direct preference information, the DM is asked to provide the values
of 𝑤1 and 𝑤2. For example, the DM could say that 𝑤1 = 0.2, 𝑤2 = 0.8. In
case of an indirect preference, the DM could be asked to say if between
two alternatives 𝑎 and 𝑏, with 𝑔1(𝑎) = 0.5, 𝑔2(𝑎) = 0.6, 𝑔1(𝑏) = 0.4 and
𝑔2(𝑏) = 0.9, he/she prefers one of the two or if they are indifferent. If
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the DM is answering that the two alternatives are indifferent, we would
conclude that

𝑈 (𝑎) = 𝑈 (𝑏) ⇔ 𝑤1 ⋅ 𝑔1(𝑎) +𝑤2 ⋅ 𝑔2(𝑎)

= 𝑤1 ⋅ 𝑔2(𝑏) +𝑤2 ⋅ 𝑔2(𝑏) ⇔ 𝑤1 ⋅ 0.5 +𝑤2 ⋅ 0.6 = 𝑤1 ⋅ 0.4 +𝑤2 ⋅ 0.9

rom which 0.1 ⋅ 𝑤1 = 0.3 ⋅ 𝑤2 and, consequently, 𝑤1 = 0.75 and
2 = 0.25.

If, instead, the DM says that 𝑎 is preferred to 𝑏, then we have to
conclude that

𝑈 (𝑎) > 𝑈 (𝑏) ⇔ 𝑤1 ⋅ 𝑔1(𝑎) +𝑤2 ⋅ 𝑔2(𝑎)

> 𝑤1 ⋅ 𝑔2(𝑏) +𝑤2 ⋅ 𝑔2(𝑏) ⇔ 𝑤1 ⋅ 0.5 +𝑤2 ⋅ 0.6 > 𝑤1 ⋅ 0.4 +𝑤2 ⋅ 0.9

from which we get 0.1 ⋅ 𝑤1 > 0.3 ⋅ 𝑤2 ⇔ 0.1 ⋅ 𝑤1 > 0.3 ⋅ (1 − 𝑤1) ⇔

0.4 ⋅ 𝑤1 > 0.3 and, consequently, 𝑤1 > 0.75 and 𝑤2 < 0.25. Conversely,
f the DM says that 𝑏 is preferred to 𝑎, we would get that 𝑤1 < 0.75 and
2 > 0.25.

In general, the indirect preference information should be favorite
ecause of the lower cognitive effort asked to the DM in providing
t. The approach applying this way of asking preferences to the DM
s known as preference disaggregation or ordinal regression (Jacquet-
agreze and Siskos, 1982, 2001).

As explained above, in preference disaggregation one aims to infer
n instance of the assumed preference model compatible with the
references provided by the DM. However, many of these instances can
xist. Even if all of them give the same recommendation on the com-
arison of alternatives on which the DM expressed his/her preferences,
hey can provide different recommendations comparing other alter-
atives. For such a reason, giving a recommendation using only one
f these instances can be considered arbitrary to some extent. Robust
rdinal Regression (ROR) (Corrente et al., 2013; Greco et al., 2008)
nd Stochastic Multicriteria Acceptability Analysis (SMAA) (Lahdelma
t al., 1998; Pelissari et al., 2020) are two families of MCDM methods
iming to provide robust recommendations on the problem at hand.
ndeed, they take into account all the instances of the preference model
ompatible with the preference information given by the DM. On the
ne hand, ROR builds necessary and possible preference relations for
hich 𝑎 is necessarily preferred to 𝑏 iff 𝑎 is at least as good as 𝑏 for
ll compatible models, while 𝑎 is possibly preferred to 𝑏 iff 𝑎 is at least
s good as 𝑏 for at least one compatible model. On the other hand,
MAA gives recommendations in statistical terms producing mainly two
ndices: (i) the Rank Acceptability Index, 𝑏𝑘(𝑎), being the probability
ith which an alternative 𝑎 fills the position 𝑘 in the final ranking, (ii)

he Pairwise Winning Index (PWI), 𝑝(𝑎, 𝑏), being the probability with
hich 𝑎 is at least as good as 𝑏. In this paper we are interested in

he SMAA methodology and, in particular, in the aggregation of the
WIs to get a complete ranking of the alternatives under consideration.
everal methods have been proposed in literature to deal with this
roblem. In the following, without any ambition to be exhaustive, we
hall review some of them. The first methods appear in social choice
heory (Arrow et al., 2010). For example, Dodgson (1876) proposes a
anking method such that best ranked alternatives are the closest to be
ondorcet winner (Condorcet, 1785). This is the alternative 𝑎 ∈ 𝐴 (if it
xists) such that, with respect to any other alternative 𝑏 ∈ 𝐴 there is a
ajority of compatible value functions for which 𝑎 is at least as good

s 𝑏 (that is, the alternatives 𝑎 ∈ 𝐴 for which 𝑝(𝑎, 𝑏) > 0.5 for all 𝑏 ∈ 𝐴).
nother very well-known ranking algorithm relating social choice with
robability values 𝑝(𝑎, 𝑏) is the Simpson procedure (Simpson, 1969). It
anks alternatives in 𝐴 assigning to each 𝑎 ∈ 𝐴 a score being its minimal
(𝑎, 𝑏) over all 𝑏 in 𝐴. In the perspective of applying some social choice
anking procedure to PWIs, Kadziński and Michalski (2016) present
ine methods summarizing the PWIs by sum, min and max operators.
n a more computational oriented approach, Vetschera (2017) presents
ifferent ranking methods based on the solution of specific Mixed
2

nteger Linear Programming (MILP) problems. c
Even if, as observed above, several methods have been proposed in
he past to build a complete ranking of the alternatives summarizing the
nformation provided by the PWIs, none of them provides any easily
nderstandable explanation of this ranking. We then aim to fill this
ap proposing a method that, on the basis of the PWIs supplied by the
MAA methodology gives a ranking of the considered alternatives and
xplains it through an additive value function. In this way, differently
rom the other methods proposed up to now in literature to obtain a
inal ranking from the PWIs of SMAA, the DM gets also a scoring for the
onsidered alternatives. Moreover, using the value function provided
y our procedure, he/she can investigate on the reasons for which an
lternative gets a certain ranking position. Indeed, since the ranking is
rovided by means of an additive value function, the DM can look at
he contribution given by each criterion to the global value permitting
o identify criteria being weak and strong points for the considered
lternatives. From a methodological point of view, as it will be clear
ater, the computation of the additive value function involves only to
olve an LP problem.

Let us also observe that, in line with what has been proposed for
OR in Kadziński et al. (2012b), the value function provided by our
ethod can be seen as representative of the many value functions

ompatible with the preferences expressed by the DM. Therefore, our
pproach can be interpreted also as a procedure to construct a rep-
esentative value function for SMAA methodology. We also present a
robabilistic model permitting to interpret the scores as mean values
f probabilistic distributions of the overall evaluations that can be
ssigned to the considered alternatives. In particular, we assume that
he probability distributions of alternative evaluations have indepen-
ent normal distributions with a common standard deviation 𝜎. To
andle these probability distributions through linear programming, we
ntroduce a simple piecewise linear approximation of the cumulative
ormal distribution, which we believe has an independent interest that
oes beyond the specific method we propose.

From a preference learning perspective (Fürnkranz and Hüllermeier,
010), we proved the efficiency of our method not only in explaining
he preferences of the DM but also in predicting his/her comprehensive
references starting from some available information. To do this, we
erformed an extensive set of simulations considering different num-
ers of alternatives (𝑛) and criteria (𝑚). For each (𝑛, 𝑚) configuration,
e assumed the existence of an artificial DM. Its preferences, obtained

hrough a value function that is unknown to the method we use to
roduce the representative value function, have to be discovered on
he basis of some pairwise comparisons of alternatives it provided. To
valuate the performances of our method with respect to this objective,
e compute the Kendall-Tau correlation coefficient (Kendall, 1938)
etween the ranking of the alternatives produced by the artificial DM
nd the one given by our procedure. We compared our method to
ther sixteen methods known in literature aiming to summarize the
nformation contained in the PWIs. The results prove that there is not a
ethod being the best for each (𝑛, 𝑚) configuration and the difference

n terms of Kendall-Tau between the values obtained by our proposal
nd those obtained by the best method in each configuration is not
tatistically significant with respect to a Kolmogorov–Smirnov test with
% significance level (Massey, 1951). This proves that our method is
ood not only for its capacity to explain the preferences of the DM but
lso to learn preferences with reliable results.

Finally, to show how the method can support decision making in
real world problem, we applied it to a financial context in which

even funds have to be overall evaluated taking into account their
erformances on five criteria.

The paper is structured as follows. In the next section, we present
he new method as well as some extensions; a comprehensive compari-
on between our proposal and other methods presented in literature to
eal with the same problem is performed in Section 3, while the method
s applied to a real world financial problem in Section 4; finally, some

onclusions and further directions of research are given in Section 5.
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2. Giving a score to the alternatives on the basis of the Pairwise
Winning Indices

2.1. Methodological background

In the following, we shall briefly recall the main concepts of the
preference disaggregation and SMAA.

2.1.1. Additive value functions and indirect preference information
Without loss of generality, let us assume that all criteria are of the

gain type (the greater the evaluation of an alternative 𝑎 ∈ 𝐴 on criterion
𝑔𝑗 ∈ 𝐺, the more 𝑎 is preferred on 𝑔𝑗). 𝑔𝑗 (𝑎) denotes the evaluation of
𝑎 on 𝑔𝑗 . Let us also suppose that the model assumed to represent the
preferences of the DM is an additive value function 𝑈 ∶ 𝐴 → [0, 1] of
he following type

(𝑎) = 𝑈
(

𝑔1(𝑎),… , 𝑔𝑚(𝑎)
)

=
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑔𝑗 (𝑎)
)

. (1)

In Eq. (1), 𝑢𝑗 ∶ 𝑋𝑗 → [0, 1], for all 𝑔𝑗 ∈ 𝐺, is the marginal value function
elated to 𝑔𝑗 , while 𝑋𝑗 =

{

𝑥0𝑗 ,… , 𝑥
𝑛𝑗
𝑗

}

is the set of evaluations taken

y alternatives in 𝐴 on 𝑔𝑗 such that 𝑥𝑘𝑗 < 𝑥𝑘+1𝑗 for all 𝑘 = 0,… , 𝑛𝑗 − 1.
Moreover, 𝑢𝑗 is non-decreasing in 𝑋𝑗 for all 𝑔𝑗 ∈ 𝐺.

To build an additive value function, the marginal value functions
should be defined. Under the preference disaggregation approach, this
is done by taking into account some preference information provided by
the DM in terms of comparisons between alternatives of the following
type:

• 𝑎 is preferred to 𝑏 (denoted by 𝑎 ≻𝐷𝑀 𝑏) translated into the
constraint 𝑈 (𝑎) > 𝑈 (𝑏),

• 𝑎 is at least as good as 𝑏 (𝑎 ≿𝐷𝑀 𝑏) translated into the constraint
𝑈 (𝑎) ⩾ 𝑈 (𝑏),

• 𝑎 is indifferent to 𝑏 (𝑎 ∼𝐷𝑀 𝑏) translated into the constraint
𝑈 (𝑎) = 𝑈 (𝑏).3

2.1.2. Checking for the existence of a compatible value function
A compatible value function is an additive value function of type (1)

compatible with the preferences provided by the DM and, therefore,
satisfying the following set of constraints:

𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑘𝑗
)

, where 𝑥𝑘𝑗 ∈ 𝑋𝑗 ∶ 𝑥𝑘𝑗 = 𝑔𝑗 (𝑎), ∀𝑔𝑗 ∈ 𝐺,∀𝑎 ∈ 𝐴,

𝑈 (𝑎) > 𝑈 (𝑏), iff 𝑎 ≻𝐷𝑀 𝑏,

𝑈 (𝑎) ⩾ 𝑈 (𝑏), iff 𝑎 ≿𝐷𝑀 𝑏,

𝑈 (𝑎) = 𝑈 (𝑏), if 𝑎 ∼𝐷𝑀 𝑏,

𝑢𝑗
(

𝑥𝑘+1𝑗

)

⩾ 𝑢𝑗
(

𝑥𝑘𝑗
)

, ∀𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗 − 1,

𝑢𝑗
(

𝑥0𝑗
)

= 0, ∀𝑔𝑗 ∈ 𝐺,
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑛𝑗𝑗
)

= 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝐸𝐷𝑀

To check for the existence of at least one compatible value function
one needs to solve the following LP problem in the unknown variables

3 The indifference between alternatives 𝑎 and 𝑏 can also be translated into
a different constraint using an auxiliary threshold as described in Branke et al.
(2017). However, the way the indifference relation is translated does not affect
the following description and, for this reason, we shall assume that 𝑎 ∼𝐷𝑀 𝑏
iff 𝑈 (𝑎) = 𝑈 (𝑏).
3

𝑢𝑗 (𝑥𝑘𝑗 ), 𝑔𝑗 ∈ 𝐺, 𝑘 = 1,… , 𝑛𝑗 , and 𝜀,

𝜀∗ = max 𝜀 subject to

𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑘𝑗
)

, where 𝑥𝑘𝑗 ∈ 𝑋𝑗 ∶ 𝑥𝑘𝑗 = 𝑔𝑗 (𝑎), ∀𝑔𝑗 ∈ 𝐺,∀𝑎 ∈ 𝐴,

𝑈 (𝑎) ⩾ 𝑈 (𝑏) + 𝜀, iff 𝑎 ≻𝐷𝑀 𝑏,

𝑈 (𝑎) ⩾ 𝑈 (𝑏), iff 𝑎 ≿𝐷𝑀 𝑏,

𝑈 (𝑎) = 𝑈 (𝑏), if 𝑎 ∼𝐷𝑀 𝑏,

𝑢𝑗
(

𝑥𝑘+1𝑗

)

⩾ 𝑢𝑗
(

𝑥𝑘𝑗
)

, ∀𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗 − 1,

𝑢𝑗
(

𝑥0𝑗
)

= 0, ∀𝑔𝑗 ∈ 𝐺,
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑛𝑗𝑗
)

= 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝐸𝐷𝑀 ′

where 𝜀 is an auxiliary variable used to convert the strict inequalities
(𝑈 (𝑎) > 𝑈 (𝑏)) in weak ones (𝑈 (𝑎) ⩾ 𝑈 (𝑏) + 𝜀). If 𝐸𝐷𝑀 ′ is feasible and
𝜀∗ > 0, then, there exists at least one compatible value function. We
shall call such a function the Most Discriminant Value Function. In the
opposite case (𝐸𝐷𝑀 ′ is infeasible or 𝜀∗ ⩽ 0), then, it does not exist any
compatible value function and the causes can be investigated by means
of the methods presented in Mousseau et al. (2003).

2.1.3. The SMAA methodology
Let us assume that 𝐸𝐷𝑀 ′ is feasible and 𝜀∗ > 0. Therefore, there

exists at least one compatible value function. In this case, in general, as
already observed in the introduction, infinitely many compatible value
functions exist. The SMAA methodology aims to give a recommendation
on the problem at hand by taking into account a well distributed
sampling of them. Since the constraints in 𝐸𝐷𝑀 ′ define a convex set of
parameters, some compatible value functions can be sampled by using,
for example, the Hit-And-Run (HAR) algorithm (Smith, 1984; Tervonen
et al., 2013; Van Valkenhoef et al., 2014). Let us denote by  the set of
sampled compatible value functions. Each value function in  will give
a certain recommendation on each pair of alternatives (𝑎, 𝑏) ∈ 𝐴 × 𝐴.
For this reason, for each (𝑎, 𝑏) ∈ 𝐴 × 𝐴, two different subsets of  can
e defined:

𝑎≻𝑏 = {𝑈 ∈  ∶ 𝑈 (𝑎) > 𝑈 (𝑏)}; 𝑎∼𝑏 = {𝑈 ∈  ∶ 𝑈 (𝑎) = 𝑈 (𝑏)}. (2)

or each (𝑎, 𝑏) ∈ 𝐴×𝐴, the PWI of the pair (𝑎, 𝑏), denoted by 𝑝(𝑎, 𝑏), can
hen be computed in the following way:

(𝑎, 𝑏) =
|𝑎≻𝑏| +

1
2 |𝑎∼𝑏|

| |

. (3)

Let us observe that other definitions of the PWI have been provided in
literature. For example, in Kadziński and Michalski (2016), 𝑝(𝑎, 𝑏) =
|𝑎≿𝑏|

| |

where 𝑎≿𝑏 = {𝑈 ∈  ∶ 𝑈 (𝑎) ⩾ 𝑈 (𝑏)} and, therefore,
|

|

|

𝑎≿𝑏
|

|

|

= |

|

𝑎≻𝑏
|

|

+ |

|

𝑎∼𝑏
|

|

, while in Vetschera (2017) 𝑝(𝑎, 𝑏) = |𝑎≻𝑏|

| |

.
In the following, without loss of generality, we shall consider the PWI
defined in Eq. (3).

2.2. Proposed methodology

The idea under the construction of a compatible value function able
to represent in the best way the PWIs is the following:

‘‘Given 𝑎, 𝑏 ∈ 𝐴, if 𝑝(𝑎, 𝑏) ⩾ 0.5, that is, for at least 50% of the sampled
compatible value functions 𝑎 is at least as good as 𝑏, then, the greater
𝑝(𝑎, 𝑏), the larger should be the difference between the utilities of 𝑎 and
𝑏’’.

Given in different terms, we aim to build a compatible value func-
tion 𝑈 such that the difference 𝑈 (𝑎) − 𝑈 (𝑏) increases with 𝑝(𝑎, 𝑏).
Formally, this requirement is translated into the following constraint:
if 𝑝(𝑎, 𝑏) ⩾ 0.5, then 𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 (𝑝(𝑎, 𝑏) − 0.5) (4)
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where 𝜂 ∈ R+.
Let us observe that if 𝜂 > 0, the constraint (4) perfectly repre-

ents the eventual preferences provided by the DM on some pairs of
lternatives. Indeed,

• if 𝑎 ≿𝐷𝑀 𝑏, then 𝑝(𝑎, 𝑏) ⩾ 0.5 and, therefore, 𝑈 (𝑎) − 𝑈 (𝑏) ⩾
𝜂 ⋅ (𝑝(𝑎, 𝑏) − 0.5) ⩾ 0, from which it follows that 𝑈 (𝑎) ⩾ 𝑈 (𝑏),

• if 𝑎 ≻𝐷𝑀 𝑏, then 𝑝(𝑎, 𝑏) = 1 and, therefore, 𝑈 (𝑎)−𝑈 (𝑏) ⩾ 0.5 ⋅𝜂 > 0
from which it follows that 𝑈 (𝑎) > 𝑈 (𝑏),

• if 𝑎 ∼𝐷𝑀 𝑏, then 𝑝(𝑎, 𝑏) = 0.5 = 𝑝(𝑏, 𝑎) and, therefore, on the one
hand, 𝑈 (𝑎) −𝑈 (𝑏) ⩾ 0 and, on the other hand, 𝑈 (𝑏) −𝑈 (𝑎) ⩾ 0, so
that we get 𝑈 (𝑎) = 𝑈 (𝑏).

2.2.1. Checking for a compatible scoring function
To check for an additive value function having all the characteristics

mentioned above (we shall call it compatible scoring function), the
following LP problem, denoted by 𝐿𝑃0, should be solved:

𝜂∗ = max 𝜂, subject to,

𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑘𝑗
)

, where 𝑥𝑘𝑗 ∈ 𝑋𝑗 ∶ 𝑥𝑘𝑗 = 𝑔𝑗 (𝑎), ∀𝑔𝑗 ∈ 𝐺,∀𝑎 ∈ 𝐴,

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 ⋅ (𝑝(𝑎, 𝑏) − 0.5) , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5,

𝑢𝑗
(

𝑥𝑘+1𝑗

)

⩾ 𝑢𝑗
(

𝑥𝑘𝑗
)

, ∀𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗 − 1,

𝑢𝑗
(

𝑥0𝑗
)

= 0, ∀𝑔𝑗 ∈ 𝐺,
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑛𝑗𝑗
)

= 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

𝐸𝑆𝐹

If 𝐸𝑆𝐹 is feasible and 𝜂∗ > 0, then there is at least one compatible
scoring function. In the opposite case (𝐸𝑆𝐹 is infeasible or 𝜂∗ ⩽ 0), then
there is not any compatible value function satisfying all the constraints
in 𝐸𝑆𝐹 with a positive value of 𝜂. The causes of this infeasibility could
be detected by using one of the approaches proposed in Mousseau et al.
(2003). In the first case (𝐸𝑆𝐹 is feasible and 𝜂∗ > 0), the compatible
scoring function obtained by solving 𝐿𝑃0 can then be used to assign a
value to each alternative in 𝐴 producing, therefore, a complete ranking
of the alternatives at hand. Observe that the value assigned to the
alternatives can be considered a score obtained taking into account
the whole set of compatible value functions that have been sampled to
compute the PWIs. In this perspective the obtained compatible scoring
function can be seen as a representative value function (Kadziński et al.,
2012a) built on the basis of the principle ‘‘one for all, all for one’’.
Indeed, on the one hand, all compatible value functions concur to
define the value function 𝑈 corresponding to 𝜂∗, while, on the other
hand, 𝑈 represents the whole set of the compatible value functions.

Let us observe that even if 𝐸𝑆𝐹 is feasible but 𝜂∗ ⩽ 0, the compatible
scoring function obtained solving 𝐿𝑃0 can be used to assign a value to
each alternative and, then, ranking completely all alternatives under
consideration. In this case, there will be at least one pair of alternatives
(𝑎, 𝑏) ∈ 𝐴×𝐴 for which 𝑝(𝑎, 𝑏) ⩾ 0.5 and nevertheless 𝑈 (𝑎) < 𝑈 (𝑏). How-
ever, maximizing 𝜂, that is, in this case, minimizing its absolute value
since it is negative, the optimization problem gives a value function 𝑈
which minimizes the deviation from the preferences represented by the
PWIs.

2.2.2. A probabilistic model underlying the proposed methodology
In this section we present a probabilistic model supporting the

proposed methodology. We assume that each alternative 𝑎 has an
overall value 𝑈 (𝑎) being a random variable normally distributed with
mean 𝑈 (𝑎) and standard deviation 𝜎 being equal for all alternatives.
We assume also that the random variables 𝑈 (𝑎), 𝑎 ∈ 𝐴, are independent.
Under these hypotheses, for all 𝑎, 𝑏 ∈ 𝐴, the random variable 𝑈 (𝑎)−𝑈 (𝑏)
4

has a normal distribution with mean 𝑈 (𝑎)−𝑈 (𝑏) and standard deviation
√

2𝜎. Therefore, considering the cumulative normal distribution, the
robability that 𝑎 is preferred to 𝑏 is given by

(𝑎, 𝑏) = 𝑃𝑟𝑜𝑏(𝑈 (𝑎) − 𝑈 (𝑏) > 0) = 1
√

2𝜋 ∫

+∞

− 𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

𝑒−𝑡
2∕2 𝑑𝑡

and, for the symmetry of the normal distribution,

𝑃 (𝑎, 𝑏) = 𝑃𝑟𝑜𝑏(𝑈 (𝑎) − 𝑈 (𝑏) > 0) = 1
√

2𝜋 ∫

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

−∞
𝑒−𝑡

2∕2 𝑑𝑡.

Of course, this formulation of the probability of preference of 𝑎 over
𝑏 cannot be treated using linear programming. We then reformulate
the probability 𝑃 (𝑎, 𝑏) approximating for 𝑥 ⩾ 0 the cumulative nor-

al distribution 𝛷(𝑥) = 1
√

2𝜋
∫ 𝑥
−∞ 𝑒−𝑡2∕2 𝑑𝑡 with the function 𝛷̂(𝑥) =

𝑖𝑛
{

1
2 + 𝜆𝑥, 1

}

.

Considering the values taken by 𝛷(𝑥) and 𝛷̂(𝑥) for 𝑥 = 0.5, 0.501,
.502,… , 1, we computed the value of the parameter 𝜆 minimizing the
aximum error |𝛷(𝑥) − 𝛷̂(𝑥)|. This value is 𝜆̂ = 0.301. In correspon-
ence of 𝜆 = 𝜆̂, the maximum error, the average absolute error and the
verage quadratic error take a value of 0.048, 0.030 and 0.033, respec-
ively. In simple words, we can say that taking 𝜆 = 0.301, approximating
(𝑥) by 𝛷̂(𝑥) we get an average error of around 3% with a maximum

rror not greater than 5%. Considering the natural imprecision and
ariability of human preferences, this error seems acceptable for the
ype of quantity represented by the probability 𝑃 (𝑎, 𝑏).

Approximating 𝑃 (𝑎, 𝑏) = 𝛷
(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

with 𝑃 (𝑎, 𝑏) = 𝛷̂
(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

nd considering 𝜆 = 𝜆̂, we have that

̂ (𝑎, 𝑏) = 𝑚𝑖𝑛

{

1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
, 1

}

.

The following result holds.

Proposition 2.1. For 𝑈 (𝑎) ⩾ 𝑈 (𝑏),

𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏) ⇔ 1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑎, 𝑏).

Proof. First, let us prove that 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏) implies 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾

𝑝(𝑎, 𝑏). Two cases are possible:

• 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
< 1: in this case, 𝑃 (𝑎, 𝑏) = 1

2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎
, so that

𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏) implies 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 𝑝(𝑎, 𝑏);

• 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 1: in this case, 𝑃 (𝑎, 𝑏) = 1 ⩾ 𝑝(𝑎, 𝑏), and, then,

1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 𝑝(𝑎, 𝑏).

et us prove now that 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 𝑝(𝑎, 𝑏) implies 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏).

e have two cases:

• if 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
< 1, then 𝑃 (𝑎, 𝑏) = 1

2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎
, so that,

1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 𝑝(𝑎, 𝑏) implies 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏);

• if 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 1, then 1

2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎
⩾ 𝑃 (𝑎, 𝑏) = 1 ⩾ 𝑝(𝑎, 𝑏). □

Observing that

1 + 𝜆̂
𝑈 (𝑎) − 𝑈 (𝑏)

√
⩾ 𝑝(𝑎, 𝑏) ⇔ 𝑈 (𝑎) − 𝑈 (𝑏) ⩾

√

2𝜎
(𝑝(𝑎, 𝑏) − 0.5),
2 2𝜎 𝜆̂
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in case 𝜂∗ ⩾ 0, we can reformulate problem 𝐿𝑃0 as follows

𝜎∗ = max 𝜎, subject to,

𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑘𝑗
)

, where 𝑥𝑘𝑗 ∈ 𝑋𝑗 ∶ 𝑥𝑘𝑗 = 𝑔𝑗 (𝑎), ∀𝑔𝑗 ∈ 𝐺,∀𝑎 ∈ 𝐴,

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 ⋅ (𝑝(𝑎, 𝑏) − 0.5) , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5,

𝑢𝑗
(

𝑥𝑘+1𝑗

)

⩾ 𝑢𝑗
(

𝑥𝑘𝑗
)

, ∀𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗 − 1,

𝑢𝑗
(

𝑥0𝑗
)

= 0, ∀𝑔𝑗 ∈ 𝐺,

𝜂 =
√

2𝜎
𝜆̂

,
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥
𝑛𝑗
𝑗

)

= 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Taking into consideration above Proposition 2.1, the constraint 𝜂 =
√

2𝜎
𝜆̂

permits to reformulate the constraints

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 ⋅ (𝑝(𝑎, 𝑏) − 0.5) , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5

as

𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏), ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5.

In view of this, the problem 𝐿𝑃0 gives the compatible value function
𝑈 maximizing the standard deviation 𝜎 for which, for all 𝑎, 𝑏 such that
𝑝(𝑎, 𝑏) ⩾ 0.5, the estimated probability 𝑃 (𝑎, 𝑏) is not smaller than the ob-
served probability 𝑝(𝑎, 𝑏). Remembering that 𝑃 (𝑎, 𝑏) is a non-increasing
function of 𝜎, maximizing 𝜎 under the condition that 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑎, 𝑏)
amounts to minimize the maximal absolute error |𝑃 (𝑎, 𝑏) − 𝑝(𝑎, 𝑏)| for
all 𝑎, 𝑏 for which 𝑝(𝑎, 𝑏) ⩾ 0.5, that is to find the minimal 𝜀 such that
for all 𝑎, 𝑏 for which 𝑝(𝑎, 𝑏) ⩾ 0.5, |𝑃 (𝑎, 𝑏) − 𝑝(𝑎, 𝑏)| ⩽ 𝜀. In simple
words, maximizing 𝜎 permits to identify the compatible value function
𝑈 related to the probability values 𝑃 (𝑎, 𝑏) that best approximates the
pairwise winning indices 𝑝(𝑎, 𝑏).

If the solution of problem 𝐿𝑃0 gives 𝜂∗ < 0, of course the constraint
𝜂 =

√

2𝜎
𝜆̂

is no more acceptable, because we would have 𝜎 < 0

which is absurd. In this case, we can replace the constraint 𝜂 =
√

2𝜎
𝜆̂

with the constraint −𝜂 =
√

2𝜎
𝜆̂

. Moreover, we can approximate the
cumulative normal distribution 𝛷(𝑥) for 𝑥 ⩽ 0 with the function 𝛷̂(𝑥) =
𝑚𝑎𝑥

{

1
2 + 𝜆𝑥, 0

}

. This minimizes the maximum error with respect to
𝛷(𝑥) again for 𝜆 = 𝜆̂ = 0.301 with the same maximum error, average
absolute error and average quadratic error taken by 𝛷̂(𝑥) for 𝑥 ⩾ 0.
Using 𝛷̂(𝑥) for 𝑥 ⩽ 0, we can approximate 𝑃 (𝑎, 𝑏) = 𝛷

(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

with

𝑃 (𝑎, 𝑏) = 𝛷̂
(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

also in case 𝑈 (𝑎)−𝑈 (𝑏) ⩽ 0. Let us observe that

putting together the definition of 𝛷̂(𝑥) for 𝑥 ⩽ 0 and 𝑥 ⩾ 0, we get

𝛷̂(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑥 ⩽ − 1
2𝜆̂
,

1
2 + 𝜆̂𝑥 if − 1

2𝜆̂
< 𝑥 < 1

2𝜆̂
,

1 if 𝑥 ⩾ 1
2𝜆̂

(5)

which corresponds to a uniform distribution having the probability
density function

𝑓 (𝑥) =

{

𝜆̂ if − 1
2𝜆̂

⩽ 𝑥 ⩽ 1
2𝜆̂

0 otherwise.

Fig. 1 compares the cumulative normal distribution 𝛷(𝑥) and its
approximation 𝛷̂(𝑥) (see Eq. (5)) by their graphs.

Taking into account the constraint −𝜂 =
√

2𝜎
𝜆̂

and that 𝑝(𝑎, 𝑏) +
𝑝(𝑏, 𝑎) = 1, from the constraint

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 ⋅ 𝑝(𝑎, 𝑏) − 0.5 , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5
5

( )
Fig. 1. Approximation of the cumulative normal distribution by means of the function
defined by Eq. (5).

we get

1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑏, 𝑎), ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5.

Proposition 2.2. For all 𝑎, 𝑏 ∈ 𝐴,

𝑃 (𝑎, 𝑏) + 𝑃 (𝑏, 𝑎) = 1.

Proof. Three cases are possible:

• 𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎
⩽ − 1

2𝜆̂
: in this case 𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

= 0 and,

as 𝑈 (𝑏)−𝑈 (𝑎)
√

2𝜎
⩾ 1

2𝜆̂
, 𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑏)−𝑈 (𝑎)
√

2𝜎

)

= 1, so that 𝑃 (𝑎, 𝑏) +

𝑃 (𝑏, 𝑎) = 1;
• − 1

2𝜆̂
< 𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
< 1

2𝜆̂
: in this case 𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

=
1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
and, as also − 1

2𝜆̂
< 𝑈 (𝑏)−𝑈 (𝑎)

√

2𝜎
< 1

2𝜆̂
, 𝑃 (𝑏, 𝑎) =

𝛷̂
(

𝑈 (𝑏)−𝑈 (𝑎)
√

2𝜎

)

= 1
2 + 𝜆̂𝑈 (𝑏)−𝑈 (𝑎)

√

2𝜎
, so that 𝑃 (𝑎, 𝑏) + 𝑃 (𝑏, 𝑎) = 1;

• 𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎
⩾ 1

2𝜆̂
: in this case 𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

= 1 and, as

𝑈 (𝑏)−𝑈 (𝑎)
√

2𝜎
⩽ − 1

2𝜆̂
, 𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑏)−𝑈 (𝑎)
√

2𝜎

)

= 0, so that 𝑃 (𝑎, 𝑏) +

𝑃 (𝑏, 𝑎) = 1. □

Proposition 2.3. For all 𝑎, 𝑏 ∈ 𝐴,

1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑏, 𝑎) ⇒ [𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑏, 𝑎) and 𝑃 (𝑏, 𝑎) ⩽ 𝑝(𝑎, 𝑏)].

Proof. Three cases are possible:

• 𝑈 (𝑎) ⩾ 𝑈 (𝑏) and 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
⩾ 1: in this case, we have

𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎

)

= 1 ⩾ 𝑝(𝑏, 𝑎);

• 𝑈 (𝑎) ⩾ 𝑈 (𝑏) and 1
2 + 𝜆̂𝑈 (𝑎)−𝑈 (𝑏)

√

2𝜎
< 1: in this case, we have

𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎

)

= 1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑏, 𝑎);

• 𝑈 (𝑎) < 𝑈 (𝑏): in this case, since

1 + 𝜆̂
𝑈 (𝑎) − 𝑈 (𝑏)

√
⩾ 𝑝(𝑏, 𝑎) ⩾ 0
2 2𝜎
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we have

𝑃 (𝑎, 𝑏) = 𝛷̂

(

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎

)

= 1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑏, 𝑎).

Consequently, we get
1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑏, 𝑎) ⇒ 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑏, 𝑎).

Remembering that 𝑃 (𝑎, 𝑏)+𝑃 (𝑏, 𝑎) = 1 (by Proposition 2.2) and 𝑝(𝑎, 𝑏)+
𝑝(𝑏, 𝑎) = 1, we get that 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑏, 𝑎) is equivalent to 𝑃 (𝑏, 𝑎) ⩽ 𝑝(𝑎, 𝑏)
and, consequently, we obtain also
1
2
+ 𝜆̂

𝑈 (𝑎) − 𝑈 (𝑏)
√

2𝜎
⩾ 𝑝(𝑏, 𝑎) ⇒ 𝑃 (𝑏, 𝑎) ⩽ 𝑝(𝑎, 𝑏). □

Taking into account all the above considerations, in case 𝜂∗ < 0,
𝑃0 problem can be reformulated as follows

𝜎∗ = min 𝜎, subject to,

𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥𝑘𝑗
)

, where 𝑥𝑘𝑗 ∈ 𝑋𝑗 ∶ 𝑥𝑘𝑗 = 𝑔𝑗 (𝑎), ∀𝑔𝑗 ∈ 𝐺,∀𝑎 ∈ 𝐴,

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 ⋅ (𝑝(𝑎, 𝑏) − 0.5) , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5,

𝑢𝑗
(

𝑥𝑘+1𝑗

)

⩾ 𝑢𝑗
(

𝑥𝑘𝑗
)

, ∀𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗 − 1,

𝑢𝑗
(

𝑥0𝑗
)

= 0, ∀𝑔𝑗 ∈ 𝐺,

𝜂 = −
√

2𝜎
𝜆̂

,
𝑚
∑

𝑗=1
𝑢𝑗

(

𝑥
𝑛𝑗
𝑗

)

= 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

In particular, the constraints

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 ⋅ (𝑝(𝑎, 𝑏) − 0.5) , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5

can be interpreted as follows: for all (𝑎, 𝑏) ∈ 𝐴×𝐴 for which 𝑝(𝑎, 𝑏) ⩾ 0.5

• 𝑃 (𝑎, 𝑏) ⩾ 0.5 if 𝑈 (𝑎) ⩾ 𝑈 (𝑏), because 𝑃 (𝑎, 𝑏) = 𝛷̂
(

𝑈 (𝑎)−𝑈 (𝑏)
√

2𝜎

)

⩾
0.5,

• 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑏, 𝑎) if 𝑈 (𝑎) ⩽ 𝑈 (𝑏), due to Proposition 2.3.

In case 𝑝(𝑎, 𝑏) ⩾ 0.5 but 𝑈 (𝑎) ⩽ 𝑈 (𝑏), condition 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑏, 𝑎) says
that in a certain form the estimated probabilities 𝑃 (⋅, ⋅) continues to
represent the preferences conveyed by the pairwise comparison indices
𝑝(⋅, ⋅). Indeed, even if 𝑃 (𝑎, 𝑏) < 0.5 while 𝑝(𝑎, 𝑏) ⩾ 0.5, 𝑃 (𝑎, 𝑏) ⩾ 𝑝(𝑏, 𝑎)
implies 𝑃 (𝑏, 𝑎) ⩽ 𝑝(𝑎, 𝑏). Consequently, if the DM determines his/her
final preferences taking into consideration the estimated probability
𝑃 (𝑏, 𝑎) > 0.5 (for which it is more probable that 𝑏 is preferred to 𝑎)
and the observed probability 𝑝(𝑎, 𝑏) > 0.5 (for which it is more probable
that 𝑎 is preferred to 𝑏), 𝑝(𝑎, 𝑏) > 0.5 should prevail over 𝑃 (𝑏, 𝑎) > 0.5,
ecause 𝑃 (𝑏, 𝑎) is not greater than 𝑝(𝑎, 𝑏).

.3. Some extensions of the scoring method

Let us assume that 𝐸𝑆𝐹 is feasible and 𝜂∗ > 0. This means that at
east one compatible scoring function exists. However, many of them
ould exist. Let us denote by  𝑆𝐹 the set of additive value functions
atisfying all constraints in 𝐸𝑆𝐹 with 𝜂 = 𝜂∗, that is, all value functions
aximally discriminating between the alternatives (𝑎, 𝑏) ∈ 𝐴 × 𝐴 on

he basis of the corresponding PWIs. From now on, we shall call such
unctions maximally discriminant compatible scoring functions. As already
bserved in the introduction, the previous scoring procedures based on
WIs compute a value for each alternative just to obtain a complete
anking of them. However, in some methods, this number has not a
articular meaning and, therefore, it can be completely useless for
he DM. In our approach, the complete ranking of the alternatives
nder examination is produced on the basis of the construction of a
ompatible scoring function. This function, on the one hand, assigns a
6

core to each alternative and, on the other hand, explains the reasons
or which an alternative has received a particular ranking position.
his explanation is provided defining the contribution of each crite-
ion 𝑔𝑗 ∈ 𝐺 to the overall evaluation through the values taken by
he corresponding marginal value function 𝑢𝑗 . For this reason, from
he explainability point of view (see e.g. Arrieta et al., 2020), it is
mportant checking if among the maximally discriminant compatible
coring functions in  𝑆𝐹 , there exists at least one having one of the
ollowing characteristics: (𝑖) all criteria 𝑔𝑗 ∈ 𝐺 give a contribution to
he compatible scoring function 𝑈 ; (𝑖𝑖) for each 𝑔𝑗 ∈ 𝐺 the marginal
alue function 𝑢𝑗 is strictly monotone in 𝑋𝑗 .

.3.1. Maximally discriminant compatible scoring functions with non-null
ontribution of all criteria

In this case, one is looking for a maximally discriminant compatible
coring function 𝑈 ∈  𝑆𝐹 such that 𝑢𝑗

(

𝑥
𝑛𝑗
𝑗

)

> 0 for each 𝑔𝑗 ∈ 𝐺.

ndeed, in an additive value function, 𝑢𝑗
(

𝑥
𝑛𝑗
𝑗

)

can be considered, in
ome way, as the ‘‘importance’’ of criterion 𝑔𝑗 being the marginal value
ssigned to the greatest performance on 𝑔𝑗 (that is 𝑥𝑛𝑗𝑗 ) by the marginal
alue function 𝑢𝑗 (Jacquet-Lagreze and Siskos, 1982). To this aim, the
ollowing LP problem, denoted by 𝐿𝑃1, has to be solved:

ℎ∗ = max ℎ, subject to,

𝜂 = 𝜂∗,

𝑢𝑗
(

𝑥
𝑛𝑗
𝑗

)

⩾ ℎ, ∀𝑔𝑗 ∈ 𝐺,

𝐸𝑆𝐹 .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝐸𝑆𝐹
𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟

f 𝐸𝑆𝐹
𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 is feasible and ℎ∗ > 0, then, there is at least one maximally

iscriminant compatible scoring function 𝑈 ∈  𝑆𝐹 in which all criteria
ontribute to 𝑈 . In the opposite case, in all maximally discriminant
ompatible scoring functions, 𝑢𝑗

(

𝑥
𝑛𝑗
𝑗

)

= 0 for at least one 𝑔𝑗 ∈ 𝐺
and, therefore, 𝑔𝑗 is not contributing to the global value assigned to
the alternatives by 𝑈 . Let us denote by  𝑆𝐹

𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 the subset of  𝑆𝐹

omposed of all maximally discriminant compatible scoring functions
n which all criteria contribute to the global value of each alternative.

.3.2. Strictly monotone maximally discriminant compatible scoring func-
ions

In this case, one is looking for a maximally discriminant compatible
coring function 𝑈 ∈  𝑆𝐹 where, for each 𝑔𝑗 ∈ 𝐺, 𝑢𝑗

(

𝑥𝑘𝑗
)

<

𝑗

(

𝑥𝑘+1𝑗

)

for all 𝑘 = 0,… , 𝑛𝑗 − 1. To check for the existence of a max-

mally discriminant compatible scoring function having the mentioned
haracteristic, one has to solve the following LP problem denoted by
𝑃2:

𝛾∗ = max 𝛾, subject to,

𝜂 = 𝜂∗,

𝑢𝑗
(

𝑥𝑘+1𝑗

)

⩾ 𝑢𝑗
(

𝑥𝑘𝑗
)

+ 𝛾, ∀𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗 − 1,

𝐸𝑆𝐹 .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝐸𝑆𝐹
𝐴𝑙𝑙𝐼𝑛𝑐

If 𝐸𝑆𝐹
𝐴𝑙𝑙𝐼𝑛𝑐 is feasible and 𝛾∗ > 0, then there exists at least one maxi-

mally discriminant compatible scoring function in  𝑆𝐹 for which all
marginal value functions are increasing, while, this is not the case if
𝐸𝑆𝐹
𝐴𝑙𝑙𝐼𝑛𝑐 is infeasible or 𝛾∗ ⩽ 0. Let us denote by  𝑆𝐹

𝐴𝑙𝑙𝐼𝑛𝑐 the subset
of  𝑆𝐹 composed of the maximally discriminant compatible scoring
functions with 𝜂 = 𝜂∗ such that all marginal value functions are
increasing.

Note 2.1.  𝑆𝐹
𝐴𝑙𝑙𝐼𝑛𝑐 ⊆  𝑆𝐹

𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 and, therefore, if  𝑆𝐹
𝐴𝑙𝑙𝐼𝑛𝑐 ≠ ∅ then

 𝑆𝐹
𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 ≠ ∅, while the opposite is not true. This means that the
existence of a maximally discriminant compatible scoring function in
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which all marginal functions contribute to the global value of an
alternative does not imply the existence of a maximally discriminant
compatible scoring function in which all marginal value functions are
increasing.

2.3.3. Specific classes of maximally discriminant compatible scoring func-
tions

As already underlined above, the sets  𝑆𝐹 ,  𝑆𝐹
𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 or  𝑆𝐹

𝐴𝑙𝑙𝐼𝑛𝑐
ould be composed of more than one maximally discriminant com-
atible scoring function. Each of them assigns a different value to
ach alternative. Therefore, taking into consideration robustness con-
erns (Roy, 2010), could be interesting to consider a well-distributed
ample of maximally discriminant compatible scoring functions. In
he following, we shall describe in detail how to compute such a
ell-distributed sample of maximally discriminant compatible scoring

unctions in  𝑆𝐹 . The same procedure can be easily adapted to com-
ute a well-distributed sample of maximally discriminant compatible
coring functions in  𝑆𝐹

𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 or  𝑆𝐹
𝐴𝑙𝑙𝐼𝑛𝑐 .

Before going ahead, let us observe that an additive value function
, as the one in Eq. (1), is uniquely defined by the marginal values

ssigned to the evaluations 𝑥𝑘𝑗 from marginal value functions 𝑢𝑗 , that is,

𝑗

(

𝑥𝑘𝑗
)

for all 𝑔𝑗 ∈ 𝐺 and for all 𝑘 = 0,… , 𝑛𝑗 . For the sake of simplicity,

enoting by 𝑢𝑘𝑗 the values 𝑢𝑗
(

𝑥𝑘𝑗
)

, an additive value function 𝑈 can also

e represented by the vector 𝑈 =
[

𝑢𝑘𝑗
]

𝑔𝑗∈𝐺
𝑘=0,…,𝑛𝑗

.

Let us assume that  𝑆𝐹 ≠ ∅ and that 𝑈1 =
[

𝑢𝑘,1𝑗

]

is the maxi-

ally discriminant compatible scoring function obtained solving 𝐿𝑃0.
nother maximally discriminant compatible scoring function 𝑈 ∈  𝑆𝐹

s different from 𝑈1 iff 𝑢𝑘𝑗 ≠ 𝑢𝑘,1𝑗 (being equivalent to ‘‘𝑢𝑘𝑗 > 𝑢𝑘,1𝑗 or
𝑘
𝑗 < 𝑢𝑘,1𝑗 ’’) for at least one criterion 𝑔𝑗 ∈ 𝐺 and for at least one
∈ {0,… , 𝑛𝑗}. Therefore, the existence of a maximally discriminant

ompatible scoring function, ‘‘sufficiently’’ different from 𝑈1, can be
hecked by solving the following MILP problem that we shall denote
y 𝑀𝐼𝐿𝑃 − 1:

𝛿∗2 = max 𝛿 subject to,

𝜂 = 𝜂∗,

𝐸𝑆𝐹 ,

𝛿 ⩾ 𝛿𝑚𝑖𝑛,

𝑢𝑘𝑗 ⩾ 𝑢𝑘,1𝑗 + 𝛿 −𝑀𝑦𝑘,1𝑗,1 , 𝑘 = 0,… , 𝑛𝑗 ,

𝑢𝑘𝑗 + 𝛿 ⩽ 𝑢𝑘,1𝑗 +𝑀𝑦𝑘,1𝑗,2 , 𝑘 = 0,… , 𝑛𝑗 ,

𝑦𝑘,1𝑗,1 , 𝑦
𝑘,1
𝑗,2 ∈ {0, 1},

𝑚
∑

𝑗=1

𝑛𝑗
∑

𝑘=0

[

𝑦𝑘,1𝑗,1 + 𝑦𝑘,1𝑗,2

]

⩽ 2 ⋅
∑

𝑔𝑗∈𝐺

(

𝑛𝑗 + 1
)

− 1.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

𝐸1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

n the constraints above we have that:

• 𝑀 is a big positive number;
• 𝛿 is the minimal difference between the marginal value attached

to 𝑥𝑘𝑗 (where 𝑔𝑗 ∈ 𝐺 and 𝑘 = 0,… , 𝑛𝑗) by the maximally
discriminant compatible scoring functions 𝑈1 and 𝑈 that needs
to be maximized to ensure a sufficient difference of 𝑈1 from 𝑈 .
To ensure that this difference is not too low, we fix a lower bound
for this variable being 𝛿𝑚𝑖𝑛.4 Of course, the choice of 𝛿𝑚𝑖𝑛 will
influence the computation of the other maximally discriminant
compatible scoring functions obtained in addition to 𝑈1 in the
well-diversified sample we are looking for;

4 For example, in the case study presented in Section 4, we fix 𝛿 = 0.1.
7

𝑚𝑖𝑛
• 𝑢𝑘𝑗 ⩾ 𝑢𝑘,1𝑗 + 𝛿 − 𝑀𝑦𝑘,1𝑗,1 translates the constraint 𝑢𝑘𝑗 > 𝑢𝑘,1𝑗 . In
particular, if 𝑦𝑘,1𝑗,1 = 0, then the constraint is reduced to 𝑢𝑘𝑗 ⩾ 𝑢𝑘,1𝑗 +𝛿
and, therefore, 𝑢𝑘𝑗 > 𝑢𝑘,1𝑗 ;

• 𝑢𝑘𝑗 + 𝛿 ⩽ 𝑢𝑘,1𝑗 + 𝑀𝑦𝑘,1𝑗,2 translates the constraint 𝑢𝑘𝑗 < 𝑢𝑘,1𝑗 . In
particular, if 𝑦𝑘,1𝑗,2 = 0, then the constraint is reduced to 𝑢𝑘𝑗 +𝛿 ⩽ 𝑢𝑘,1𝑗
and, therefore, 𝑢𝑘𝑗 < 𝑢𝑘,1𝑗 ;

• the constraint
𝑚
∑

𝑗=1

𝑛𝑗
∑

𝑘=0

[

𝑦𝑘,1𝑗,1 + 𝑦𝑘,1𝑗,2

]

⩽ 2 ⋅
∑

𝑔𝑗∈𝐺

(

𝑛𝑗 + 1
)

− 1 is used

to impose that at least one binary variable is equal to 0 and,
consequently, at least one 𝑢𝑘𝑗 is such that 𝑢𝑘𝑗 ≠ 𝑢𝑘,1𝑗 . Indeed, each
maximally discriminant compatible scoring function is defined by
𝑛𝑗+1 values for each 𝑔𝑗 ∈ 𝐺 and, therefore, by

∑

𝑔𝑗∈𝐺

(

𝑛𝑗 + 1
)

values.

Solving 𝑀𝐼𝐿𝑃 − 1, two cases can occur:

case (1) 𝑀𝐼𝐿𝑃 −1 is feasible: there is at least one maximally discrim-
inant compatible scoring function in  𝑆𝐹 different from 𝑈1 and
the marginal values 𝑢𝑘𝑗 obtained solving 𝑀𝐼𝐿𝑃 − 1 define such
a function. We shall denote by 𝑈2 =

[

𝑢𝑘,2𝑗

]

the marginal values

defining the new maximally discriminant compatible scoring
function;

case (2) 𝑀𝐼𝐿𝑃 − 1 is infeasible: the maximally discriminant com-
patible scoring function obtained solving 𝐿𝑃0 is unique. There-
fore, considering 𝛿𝑚𝑖𝑛, the well-diversified sample of maximally
discriminant compatible scoring functions we are looking for
contains only 𝑈1. Of course, this is true for the fixed value 𝛿𝑚𝑖𝑛
because reducing the value of 𝛿𝑚𝑖𝑛 could bring to the discovery
of other maximally discriminant compatible scoring functions
sufficiently different from 𝑈1 in the well-diversified sample we
are looking for.

In case (1) one can proceed in a iterative way to find a sample of
well distributed maximally discriminant compatible scoring functions
in  𝑆𝐹 with the considered 𝛿𝑚𝑖𝑛 value. Let us assume that 𝑡 functions
𝑈 𝑟 =

[

𝑢𝑘,𝑟𝑗

]

, 𝑟 = 1,… , 𝑡, in  𝑆𝐹 have already been computed; the

(𝑡 + 1)th function 𝑈 =
[

𝑢𝑘𝑗
]

in  𝑆𝐹 , if it exists, is obtained solving the
following problem denoted by 𝑀𝐼𝐿𝑃 − 𝑡,

𝛿∗𝑡+1 = max 𝛿 subject to,

𝜂 = 𝜂∗,
𝐸𝑆𝐹 ,
𝛿 ⩾ 𝛿𝑚𝑖𝑛,
𝐸1 ∪ 𝐸2 ∪⋯ ∪ 𝐸𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

where 𝐸𝑟, 𝑟 = 1,… , 𝑡, is the following set of constraints

𝑢𝑘𝑗 ⩾ 𝑢𝑘,𝑟𝑗 + 𝛿 −𝑀𝑦𝑘,𝑟𝑗,1,

𝑢𝑘𝑗 + 𝛿 ⩽ 𝑢𝑘,𝑟𝑗 +𝑀𝑦𝑘,𝑟𝑗,2,

𝑦𝑘,𝑟𝑗,1, 𝑦
𝑘,𝑟
𝑗,2 ∈ {0, 1},

𝑚
∑

𝑗=1

𝑛𝑗
∑

𝑘=0

[

𝑦𝑘,𝑟𝑗,1 + 𝑦𝑘,𝑟𝑗,2

]

⩽ 2 ⋅
∑

𝑔𝑗∈𝐺

(

𝑛𝑗 + 1
)

− 1.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

𝐸𝑟

Let us observe that constraints in 𝐸𝑟 avoid that function 𝑈 is the same
as 𝑈 𝑟, 𝑟 = 1,… , 𝑡.

If 𝑀𝐼𝐿𝑃 − 𝑡 is infeasible, then, there are only 𝑡 maximally discrim-
inant compatible scoring functions, that is, 𝑈1,… , 𝑈 𝑡. In the opposite
case (𝑀𝐼𝐿𝑃 − 𝑡 is feasible), the function 𝑈 =

[

𝑢𝑘𝑗
]

obtained solving
the MILP problem is the (𝑡 + 1)th maximally discriminant compatible
scoring function, that is, 𝑈 = 𝑈 𝑡+1.

Let us conclude this section observing that the sample of maximally
discriminant compatible scoring functions obtained, can be used, if nec-

essary, as a starting point for a more detailed exploration going beyond
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the value functions in the sample. In fact, each convex combination 𝑈
f maximally discriminant compatible scoring functions 𝑈1,… , 𝑈 𝑡, that
s,

𝑈 = 𝜆1𝑈
1 +⋯ + 𝜆𝑡𝑈

𝑡, with 𝜆𝑟 ⩾ 0, for all 𝑟 ∈ {1,… , 𝑡},

and
𝑡

∑

𝑟=1
𝜆𝑟 = 1,

is, in turn, another maximally discriminant compatible scoring func-
tion. Indeed, as 𝑈1,… , 𝑈 𝑡 satisfy constraints from 𝐸𝑆𝐹 ∪ {𝜂 = 𝜂∗},
also their convex combination 𝑈 satisfies the same constraints. This

eans that starting from the obtained sample of maximally discrim-
nant compatible scoring functions, others can be easily and mean-
ngfully obtained. Let us observe that all of them provide the same
lternatives ranking since they have to satisfy the same constraints
n 𝐸𝑆𝐹 . However, this ranking can be explained in different ways
ince the contribution of each criterion changes from one maximally
iscriminant compatible scoring function in the sample to another.
n this perspective, different value functions supply different inter-
retations to the score. Of course, among the different explanations
rovided by the different value functions, there can be someone which
s more convincing or more acceptable for the DM. In this respect, the
ontribution in terms of decision aiding supplied by the plurality of
alue functions has to be seen in terms of possibility for the DM to
elect the interpretation that is more convenient for him/her. This is of
undamental importance in a constructive approach of decision aiding
n which concepts, models, procedures and results are considered as
uitable tools for developing convictions (Roy, 1993).

. Comparison with other scoring methods based on PWIs

In this section we test our scoring procedure with respect to its ca-
acity to predict preferences on the basis of some comparisons provided
y the DM. In this perspective, our procedure will be compared with
ther sixteen methods. They represent the state of the art in literature to
btain a ranking on the basis of the knowledge of the PWIs represented
n the matrix 𝑃𝑊𝑀 = [𝑝(𝑎, 𝑏)]. First of all, let us briefly review the

sixteen methods with which we shall compare our scoring procedure.
The first three methods (Vetschera, 2017) aim to define a complete
order (that is a complete, asymmetric and transitive binary relation)
that optimally represents the PWIs. In particular the complete order
on 𝐴 is represented by the 0–1 variables 𝑦𝑎𝑏, 𝑎, 𝑏 ∈ 𝐴, such that if
𝑦𝑎𝑏 = 1, then 𝑎 is preferred to 𝑏, while this not the case if 𝑦𝑎𝑏 = 0.
The properties of completeness and asymmetry are ensured by the
constraints 𝑦𝑎,𝑏 + 𝑦𝑏,𝑎 = 1, 𝑎, 𝑏 ∈ 𝐴, 𝑎 ≠ 𝑏. The transitivity is instead
obtained through the constraints 𝑦𝑎,𝑏 ⩾ 𝑦𝑎,𝑐 +𝑦𝑐,𝑏−1.5, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴
with 𝑐 ∈ 𝐴 ⧵ {𝑎, 𝑏}. Considering three different goodness indicators, the
three following methods 𝐌𝟏,𝐌𝟐 and 𝐌𝟑 are then obtained.

𝐌𝟏 ∶

max
∑

(𝑎,𝑏)∈𝐴×𝐴,
𝑎≠𝑏

𝑝(𝑎, 𝑏)𝑦𝑎𝑏, subject to

𝑦𝑎𝑏 + 𝑦𝑏𝑎 = 1,
𝑦𝑎𝑏 ⩾ 𝑦𝑎𝑐 + 𝑦𝑐𝑏 − 1.5, ∀𝑐 ∈ 𝐴 ⧵ {𝑎, 𝑏},
𝑦𝑎𝑏 ∈ {0, 1}

⎫

⎪

⎬

⎪

⎭

∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴, 𝑎 ≠ 𝑏

𝐌𝟐 ∶

max
∑

(𝑎,𝑏)∈𝐴×𝐴,
𝑎≠𝑏

log (𝑝(𝑎, 𝑏)) 𝑦𝑎𝑏, subject to

𝑦𝑎𝑏 + 𝑦𝑏𝑎 = 1,
𝑦𝑎𝑏 ⩾ 𝑦𝑎𝑐 + 𝑦𝑐𝑏 − 1.5, ∀𝑐 ∈ 𝐴 ⧵ {𝑎, 𝑏},
𝑦 ∈ {0, 1}

⎫

⎪

⎬

⎪

∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴, 𝑎 ≠ 𝑏
8

𝑎𝑏
⎭

e

𝐌𝟑 ∶

max 𝑓𝑀𝑀

𝑓𝑀𝑀 ⩽ 𝑝(𝑎, 𝑏) + (1 − 𝑦𝑎𝑏),
𝑦𝑎𝑏 + 𝑦𝑏𝑎 = 1,
𝑦𝑎𝑏 ⩾ 𝑦𝑎𝑐 + 𝑦𝑐𝑏 − 1.5, ∀𝑐 ∈ 𝐴 ⧵ {𝑎, 𝑏},
𝑦𝑎𝑏 ∈ {0, 1}.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴, 𝑎 ≠ 𝑏

The following methods 𝐌𝟒 − 𝐌𝟏𝟔 rank the alternatives from 𝐴
according to the increasing order of the values assigned to alternatives
𝑎 from 𝐴 by the following ranking functions:

𝐌𝟒 ∶ The positive outranking index:

𝑃𝑜𝑠𝑂𝐼(𝑎, 𝐴, 𝑃𝑊𝑀) = 1
|𝐴| − 1

∑

𝑏∈𝐴⧵{𝑎}∶
𝑝(𝑎,𝑏)⩾0.5

𝑝(𝑎, 𝑏);

𝟓 ∶ Max in favor :

𝑀𝐹 (𝑎, 𝐴, 𝑃𝑊𝑀) = max
𝑏∈𝐴⧵{𝑎}

𝑝(𝑎, 𝑏);

𝟔 ∶ Min in favor5:

𝑚𝐹 (𝑎, 𝐴, 𝑃𝑊𝑀) = min
𝑏∈𝐴⧵{𝑎}

𝑝(𝑎, 𝑏);

𝟕 ∶ Sum in favor :

𝑆𝐹 (𝑎, 𝐴, 𝑃𝑊𝑀) =
∑

𝑏∈𝐴⧵{𝑎}
𝑝(𝑎, 𝑏);

𝟖 ∶ Max against :

𝑀𝐴(𝑎, 𝐴, 𝑃𝑊𝑀) = − max
𝑏∈𝐴⧵{𝑎}

𝑝(𝑏, 𝑎);

𝟗 ∶ Min against :

𝑚𝐴(𝑎, 𝐴, 𝑃𝑊𝑀) = − min
𝑏∈𝐴⧵{𝑎}

𝑝(𝑏, 𝑎);

𝟏𝟎 ∶ Sum against :

𝑆𝐴(𝑎, 𝐴, 𝑃𝑊𝑀) = −
∑

𝑏∈𝐴⧵{𝑎}
𝑝(𝑏, 𝑎);

𝟏𝟏 ∶ Max difference:

𝑀𝐷(𝑎, 𝐴, 𝑃𝑊𝑀) = max
𝑏∈𝐴⧵{𝑎}

[𝑝(𝑎, 𝑏) − 𝑝(𝑏, 𝑎)] ;

𝟏𝟐 ∶ Min difference:

𝑚𝐷(𝑎, 𝐴, 𝑃𝑊𝑀) = min
𝑏∈𝐴⧵{𝑎}

[𝑝(𝑎, 𝑏) − 𝑝(𝑏, 𝑎)] ;

𝟏𝟑 ∶ Sum of differences:

𝑆𝐷(𝑎, 𝐴, 𝑃𝑊𝑀) =
∑

𝑏∈𝐴⧵{𝑎}
[𝑝(𝑎, 𝑏) − 𝑝(𝑏, 𝑎)] ;

𝟏𝟒 ∶ Copeland score:

𝐶𝑜𝑝(𝑎, 𝐴, 𝑃𝑊𝑀) =
∑

𝑏∈𝐴
𝑏≠𝑎

𝑟𝑎𝑏, where 𝑟𝑎𝑏 =
{

1, if 𝑝(𝑎, 𝑏) ⩾ 0.5
−1, otherwise.

5 The function is also known as Simpson score as presented in Leskinen
t al. (2006).
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𝐌𝟏𝟓 ∶ Most Discriminant Score: It is the score assigned to alternatives in
𝐴 by the most discriminant among the value functions compati-
ble with the preferences given by the DM. From a computational
point of view it is obtained solving the following LP problem

max 𝜀, subject to 𝐸𝐷𝑀 ′

that has been presented in Section 2.1.2. Of course, the most
discriminant value function is of the same type of the value
function used to represent the preferences given by the DM
(weighted sum or general additive value function in our con-
text)6;

𝐌𝟏𝟔 ∶ Barycenter Score: It is the score assigned to alternatives in 𝐴 by
the barycenter of the set of sampled value functions compatible
with the preferences given by the DM. From a computational
point of view it is obtained averaging, component by com-
ponent, all the sampled value functions compatible with the
preferences given by the DM and on the basis of which the
PWIs have been computed (see Section 2.1.3). For example,
let us suppose that the sampled value functions are weighted
sums represented by the weight vectors (𝑤𝑡

1,… , 𝑤𝑡
𝑚), with 𝑡 =

1,… , | |, with  being the set of sampled value functions.
Then, the barycenter of  is a weighted sum represented by
the weight vector

(

𝑤𝑏
1,… , 𝑤𝑏

𝑚
)

where 𝑤𝑏
𝑗 = 1

| |

∑

| |

𝑡=1 𝑤
𝑡
𝑗 for all

𝑗 = 1,… , 𝑚.

ethods 𝐌𝟓 - 𝐌𝟏𝟑 have been presented in Kadziński and Michalski
2016), while methods 𝐌4 and 𝐌14 are reported in Leskinen et al.
2006).

All methods presented above, as well as our scoring procedure,
roduce a complete ranking of the alternatives at hand. Therefore, in
he following, we shall denote by 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌 the ranking obtained by
he method 𝐌 with 𝐌 ∈ {𝐌𝟏,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆}. On the one
and, 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 is the scoring procedure based on the solution of the
𝑃0 problem presented in Section 2.2 and aiming to summarize the
WIs by an additive value function (see Eq. (1)). On the other hand,
𝐜𝐏𝐫𝑊𝑆 is the scoring procedure based on the solution of the same 𝐿𝑃0
roblem but in which PWIs are summarized by a weighted sum, that

s, 𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑤𝑗 ⋅ 𝑔𝑗 (𝑎). In this case, the scoring function is obtained

olving 𝐿𝑃0 but replacing 𝐸𝑆𝐹 with the following set of constraints:

𝑈 (𝑎) =
𝑚
∑

𝑗=1
𝑤𝑗 ⋅ 𝑔𝑗 (𝑎), ∀𝑎 ∈ 𝐴,

𝑈 (𝑎) − 𝑈 (𝑏) ⩾ 𝜂 (𝑝(𝑎, 𝑏) − 0.5) , ∀(𝑎, 𝑏) ∈ 𝐴 × 𝐴 ∶ 𝑝(𝑎, 𝑏) ⩾ 0.5,
𝑤𝑗 ⩾ 0, ∀𝑗 = 1,… , 𝑚,
𝑚
∑

𝑗=1
𝑤𝑗 = 1.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

𝐸𝑆𝐹
𝑊 𝑆

s observed in the previous section, let us observe that the number of

arameters defining an additive value function is
𝑚
∑

𝑗=1

(

𝑛𝑗 + 1
)

(one for

ach criterion and for each possible performance on the same criterion),
hile, the number of parameters defining a weighted sum is 𝑚 (only

one for each criterion).

3.1. Simulations details

In order to compare 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 and 𝐒𝐜𝐏𝐫𝑊𝑆 with the sixteen meth-
ds 𝐌𝟏 − 𝐌𝟏𝟔 reviewed above, we shall perform an extensive set of
imulations considering different decision problems. In each simulation

6 In fact, there could exist more than one value function satisfying the set
f constraints 𝐸𝐷𝑀 ′ with 𝜀 = 𝜀∗. In the following, for the sake of simplicity,
e consider only the first solution supplied by the solver.
9

we assume the existence of an ‘‘artificial’’ DM whose preferences are
represented by a random generated value function. This value function
will rank order 𝑛 alternatives evaluated on 𝑚 criteria where 𝑛 ∈
{6, 9, 12, 15} and 𝑚 ∈ {3, 5, 7}. To provide more robust conclusions
(see Dede et al. (2022, 2016) and Zio and Pedroni (2012)), for each
(𝑛, 𝑚) ∈ {6, 9, 12, 15} × {3, 5, 7}, 10,000 independent runs will be done.
Algorithm 1 presents the steps that have to be performed in each of the
considered runs. These steps are described in the following lines:

1: A performance matrix 𝑃𝑀 =
[

𝑝𝑚𝑖𝑗
]

𝑖=1,…,𝑛
𝑗=1,…,𝑚

composed of 𝑛 rows and

𝑚 columns is built. The 𝑖th row of the matrix
(

𝑝𝑚𝑖1,… , 𝑝𝑚𝑖𝑚
)

is a vector of 𝑚 values taken randomly in a uniform way in
the [0, 1] interval. They represent the evaluations of alternative
𝑎𝑖 ∈ 𝐴 on criteria 𝑔𝑗 ∈ 𝐺, that is, 𝑝𝑚𝑖𝑗 = 𝑔𝑗 (𝑎𝑖). Moreover, the
performance matrix is built so that the alternatives (having as
evaluations the values in the rows of the performance matrix)
are non-dominated7;

2: Let us assume that the artificial DM’s value function is a weighted
sum such that for each alternative 𝑎𝑖 ∈ 𝐴

𝑊 𝑆𝑖 = 𝑊𝑆(𝑝𝑚𝑖1,… , 𝑝𝑚𝑖𝑚) = 𝑤1𝑝𝑚𝑖1 +⋯ +𝑤𝑚𝑝𝑚𝑖𝑚 =
𝑚
∑

𝑗=1
𝑤𝑗𝑝𝑚𝑖𝑗

where 𝑤𝑗 ⩾ 0 for all 𝑗 = 1,… , 𝑚 and
𝑚
∑

𝑗=1
𝑤𝑗 = 1. To simulate

the DM’s value function, we then sample 𝑚 non-negative values
𝑤𝐷𝑀

1 ,… , 𝑤𝐷𝑀
𝑚 such that their sum is 1 following the procedure

proposed by Rubinstein (1982);8

3: Apply the artificial DM’s value function defined by the vector
(

𝑤𝐷𝑀
1 ,… , 𝑤𝐷𝑀

𝑚
)

to compute the weighted sum of each alter-
native. On the basis of the values assigned to all alternatives
compute their ranking and denote it by 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌;

4: The artificial DM’s preference information is provided using the pro-
cedure proposed in Vetschera (2017): we sample an alternative
𝑎𝑖 ∈ 𝐴 and, then, we compare 𝑎𝑖 with all the other alternatives
𝑎𝑖1 , that is, 𝑎𝑖1 ∈ 𝐴 ⧵ {𝑎𝑖}. If 𝑊𝑆𝑖 > 𝑊 𝑆𝑖1 , then 𝑎𝑖 ≻𝐷𝑀 𝑎𝑖1 ;
if 𝑊𝑆𝑖 < 𝑊 𝑆𝑖1 then 𝑎𝑖1 ≻𝐷𝑀 𝑎𝑖; finally, if 𝑊𝑆𝑖 = 𝑊𝑆𝑖1 , then
𝑎𝑖 ∼𝐷𝑀 𝑎𝑖1 ;

5: Sample 10,000 value functions compatible with the preferences
provided by the artificial DM. In this case, we assume that a
compatible value function is identified by a vector of weights
(𝑤1,… , 𝑤𝑚) so that the following set of constraints is satisfied:

𝑤1𝑝𝑚𝑖1 +⋯ +𝑤𝑚𝑝𝑚𝑖𝑚 ⩾ 𝑤1𝑝𝑚𝑖11 +⋯ +𝑤𝑚𝑝𝑚𝑖1𝑚 + 𝜀, if 𝑎𝑖 ≻𝐷𝑀 𝑎𝑖1 ,

𝑤1𝑝𝑚𝑖1 +⋯ +𝑤𝑚𝑝𝑚𝑖𝑚 = 𝑤1𝑝𝑚𝑖11 +⋯ +𝑤𝑚𝑝𝑚𝑖1𝑚, if 𝑎𝑖 ∼𝐷𝑀 𝑎𝑖1 ,

𝑤𝑗 ⩾ 0, for all 𝑗 = 1,… , 𝑚,
𝑚
∑

𝑗=1
𝑤𝑗 = 1,

𝜀 > 0.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

𝐸𝐷𝑀
𝑊𝑆

Since the artificial DM’s value function is a weighted sum and
the value function used to approximate its preferences is a
weighted sum as well, there exists at least one compatible value
function. Therefore, we can sample 10,000 compatible value
functions (for example using the HAR method) from the space
defined by the constraints in 𝐸𝐷𝑀

𝑊𝑆 . Denoting by  the set of

7 For each 𝑎𝑖1 , 𝑎𝑖2 ∈ 𝐴, ∃𝑔𝑗1 , 𝑔𝑗2 ∈ 𝐺 such that 𝑝𝑚𝑖1𝑗1 > 𝑝𝑚𝑖2𝑗1 and 𝑝𝑚𝑖2𝑗2 <
𝑚𝑖2𝑗2 .

8 Take randomly 𝑚−1 values 𝑣1,… , 𝑣𝑚−1 in the interval [0, 1] and reorder the
alues in the set

{

0, 𝑣1,… , 𝑣𝑚−1, 1
}

in a non-decreasing way so that 0 = 𝑣(0) ⩽
𝑣 ⩽ 𝑣 ⩽ ⋯ ⩽ 𝑣 ⩽ 𝑣 = 1. For each 𝑗 = 1,… , 𝑚, put 𝑤 = 𝑣 − 𝑣 .
(1) (2) (𝑚−1) (𝑚) 𝑗 (𝑗) (𝑗−1)
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6

7

8

Algorithm 1 Single run steps
repeat

1: Generate a performance matrix of 𝑛 alternatives and 𝑚 criteria
2: Build the DM’s value function
3: Compute the ranking of alternatives at hand by using the artificial DM’s value function and denote it by 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌
4: Elicit the artificial DM’s preferences
5: Sample 10,000 value functions compatible with the artificial DM’s preferences and compute the PWIs
6: Apply method 𝐌 with 𝐌 ∈ {𝐌𝟏,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆} to get the ranking of the alternatives at hand and denote this ranking by
𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌
7: Compute the Kendall-Tau correlation coefficient between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌 for all 𝐌 ∈ {𝐌𝟏,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆}

until 10,000 runs have not been performed
8: Compute statistics on the obtained results
Table 1
Average (over 10,000 independent runs) Kendall-Tau correlation coefficient between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌.

(𝑛, 𝑚)

(6,3) (6,5) (6,7) (9,3) (9,5) (9,7) (12,3) (12,5) (12,7) (15,3) (15,5) (15,7)

𝐌1 0.8447 0.7990 0.7791 0.8542 0.7944 0.7642 0.8661 0.8060 0.7700 0.8758 0.8170 0.7787
𝐌2 0.8447 0.7990 0.7791 0.8542 0.7944 0.7642 0.8660 0.8061 0.7700 0.8759 0.8169 0.7786
𝐌3 0.8447 0.7990 0.7791 0.8542 0.7944 0.7642 0.8661 0.8059 0.7701 0.8759 0.8169 0.7786
𝐌4 0.8446 0.7988 0.7790 0.8540 0.7945 0.7643 0.8662 0.8060 0.7701 0.8758 0.8171 0.7788
𝐌5 − 𝐌9 − 𝐌11 0.6262 0.6567 0.6599 0.5360 0.5918 0.6123 0.4768 0.5461 0.5762 0.4323 0.5084 0.5466
𝐌6 − 𝐌8 − 𝐌12 0.6457 0.6590 0.6634 0.5699 0.5973 0.6094 0.5142 0.5558 0.5729 0.4752 0.5167 0.5411
𝐌7 − 𝐌10 − 𝐌13 0.8431 0.7977 0.7789 0.8526 0.7941 0.7640 0.8654 0.8058 0.7698 0.8748 0.8168 0.7792
𝐌14 0.8447 0.7992 0.7796 0.8544 0.7950 0.7648 0.8664 0.8065 0.7708 0.8762 0.8175 0.7796
𝐌15 0.8202 0.7745 0.7592 0.8260 0.7708 0.7438 0.8401 0.7830 0.7493 0.8508 0.7936 0.7561
𝐌16 0.8450 0.7993 0.7797 0.8543 0.7946 0.7641 0.8670 0.8067 0.7705 0.8767 0.8176 0.7795
𝐒𝐜𝐏𝐫𝑊𝑆 0.8447 0.7982 0.7780 0.8542 0.7943 0.7627 0.8661 0.8059 0.7693 0.8759 0.8169 0.7787
𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 0.8438 0.7958 0.7753 0.8505 0.7881 0.7533 0.8606 0.7937 0.7542 0.8678 0.8040 0.7606

𝑑𝑒𝑣
(

𝐒𝐜𝐏𝐫𝑊𝑆
)

0.0406% 0.1324% 0.2259% 0.0251% 0.0890% 0.2743% 0.0991% 0.1010% 0.1980% 0.0855% 0.0795% 0.1204%
𝑑𝑒𝑣

(

𝐒𝐜𝐏𝐫𝐴𝑉 𝐹
)

0.1512% 0.4342% 0.5653% 0.4556% 0.8784% 1.5122% 0.7394% 1.6157% 2.1538% 1.0056% 1.6621% 2.4427%
s

F
f

𝑝
o

P
𝑃

P

sampled compatible value functions we have | | = 10,000.
Computing the sets 𝑎≻𝑏 and 𝑎∼𝑏 for each (𝑎, 𝑏) ∈ 𝐴 × 𝐴 with
𝑎 ≠ 𝑏 as in Eq. (2), we then can compute the PWIs 𝑝(𝑎, 𝑏) as
defined in Eq. (3);

: Apply the sixteen methods presented above as well as the scoring
procedure we are proposing to compute the alternatives’ ranking
𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌 with 𝐌 ∈ {𝐌1,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆};

: For each 𝐌 ∈ {𝐌1,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆} compute the
Kendall-Tau (Kendall, 1938) between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌,
denoted as 𝜏(𝐌,𝐃𝐌). This value ranges in [−1, 1] and the
greater the value, the more correlated are the two rankings. In
particular, a Kendall-Tau equal to 1 implies perfect correlation
between the two rankings, while, a Kendall-Tau equal to −1
implies inverse correlation between them;

: For each 𝐌 ∈ {𝐌1,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆} we compute the av-
erage Kendall-Tau between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌 over the
10,000 performed independent runs. We denote it as 𝜏(𝐌,𝐃𝐌).
Moreover, we perform two different versions of the 2-sample
Kolmogorov–Smirnov test (Massey, 1951) between each pair of
methods at the 5% significance level. In the first version (see
Table 2), we test the null hypothesis of equality between the
cumulative distribution functions of the Kendall-Tau coefficients
of two methods, say 𝐹1 and 𝐹2, versus the alternative hypothesis
that the cumulative distribution functions are different. In the
second version (see Table 3), we test the null hypothesis that 𝐹1
is greater than or equal to 𝐹2 versus the alternative hypothesis
that 𝐹1 is smaller than 𝐹2, meaning that the method related to
𝐹1 is better than the one related to 𝐹2.

For each (𝑛, 𝑚) configuration, we highlight ‘‘the best method’’ be-
tween 𝐌1, …, 𝐌16, 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 , 𝐒𝐜𝐏𝐫𝑊𝑆 in terms of their capability of
replying 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 . This is the one having the maximum average
10

𝐷𝑀
Kendall-Tau, that is, the method 𝐌 ∈ {𝐌1,… ,𝐌16,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆}
uch that

𝜏
(

𝐌,𝐃𝐌
)

= 𝜏𝑀𝑎𝑥 = max
𝐌∈{𝐌1 ,…,𝐌16 ,𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐒𝐜𝐏𝐫𝑊𝑆}

{𝜏 (𝐌,𝐃𝐌)}.

or example, looking at the data in Table 1, 𝐌16 is the best method
or the (6, 3) configuration since the average Kendall-Tau coefficient

between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐌16
and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐷𝑀 is 0.8450.

As one can see from the data in the table, there is not any method
being the best in all configurations. More in detail, 𝐌16 (based on the
barycenter of the set of sampled value functions) is the best method in
seven out of the twelve configurations, while 𝐌14 is the best method in
the remaining five configurations. Let us observe that, because 𝑝(𝑎, 𝑏)+
(𝑏, 𝑎) = 1 for all 𝑎, 𝑏 ∈ 𝐴, it is easy to prove the equivalence of some
f considered scoring procedures.

roposition 3.1. Given a set of alternatives 𝐴 and the PWIs matrix
𝑊𝑀 the following holds:

1. 𝐌5, 𝐌9 and 𝐌11 provide the same ranking of alternatives from 𝐴,
2. 𝐌6, 𝐌8 and 𝐌12 provide the same ranking of alternatives from 𝐴,
3. 𝐌7, 𝐌10 and 𝐌13 provide the same ranking of alternatives from 𝐴.

roof. For all 𝑎 ∈ 𝐴 ∶

1. (𝐌5) 𝑀𝐹 (𝑎, 𝐴, 𝑃𝑊𝑀) = max
𝑏∈𝐴⧵{𝑎}

𝑝(𝑎, 𝑏) = max
𝑏∈𝐴⧵{𝑎}

[1 − 𝑝(𝑏, 𝑎)] = 1 − min
𝑏∈𝐴⧵{𝑎}

𝑝(𝑏, 𝑎) = 1 + 𝑚𝐴(𝑎, 𝐴, 𝑃𝑊𝑀) (𝐌9)
(𝐌11) 𝑀𝐷(𝑎, 𝐴, 𝑃𝑊𝑀) = max

𝑏∈𝐴⧵{𝑎}
[𝑝(𝑎, 𝑏) − 𝑝(𝑏, 𝑎)] =

max
𝑏∈𝐴⧵{𝑎}

[1 − 2𝑝(𝑏, 𝑎)] = 1 − 2 min
𝑏∈𝐴⧵{𝑎}

𝑝(𝑏, 𝑎) = 1+ 2 ⋅𝑚𝐴(𝑎, 𝐴, 𝑃𝑊𝑀)

(𝐌9),
2. (𝐌6) 𝑚𝐹 (𝑎, 𝐴, 𝑃𝑊𝑀) = min

𝑏∈𝐴⧵{𝑎}
𝑝(𝑎, 𝑏) = min

𝑏∈𝐴⧵{𝑎}
[1 − 𝑝(𝑏, 𝑎)] = 1 − max 𝑝(𝑏, 𝑎) = 1 +𝑀𝐴(𝑎, 𝐴, 𝑃𝑊𝑀) (𝐌8)
𝑏∈𝐴⧵{𝑎}
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𝑑

T
[
𝐒
𝜏

Table 2
First version of the 2-sample Kolmogorov–Smirnov test at 5% significance level.
ℎ/𝑝-value (𝑛, 𝑚)

(6,3) (6,5) (6,7) (9,3) (9,5) (9,7) (12,3) (12,5) (12,7) (15,3) (15,5) (15,7)

𝐒𝐜𝐏𝐫𝑊𝑆 −𝐌 0/0.9992 0/0.9999 0/0.9999 0/1 0/0.9999 0/0.9779 0/0.9994 0/0.9985 0/0.9975 0/1 0/0.9975 0/0.9948
𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 −𝐌 0/0.9992 0/0.9985 0/0.9967 0/0.9975 0/0.7091 0/0.1966 0/0.2351 1/0.0210 1/0.0015 0/0.1483 1/0.0022 1/0
(𝐌12) 𝑚𝐷(𝑎, 𝐴, 𝑃𝑊𝑀) = min
𝑏∈𝐴⧵{𝑎}

[𝑝(𝑎, 𝑏) − 𝑝(𝑏, 𝑎)] =
min

𝑏∈𝐴⧵{𝑎}
[1 − 2𝑝(𝑏, 𝑎)] = 1−2 max

𝑏∈𝐴⧵{𝑎}
𝑝(𝑏, 𝑎) = 1+2 ⋅𝑀𝐴(𝑎, 𝐴, 𝑃𝑊𝑀)

(𝐌8),
3. (𝐌7) 𝑆𝐹 (𝑎, 𝐴, 𝑃𝑊𝑀) =

∑

𝑏∈𝐴⧵{𝑎}
𝑝(𝑎, 𝑏) =

∑

𝑏∈𝐴⧵{𝑎}
[1 − 𝑝(𝑏, 𝑎)] =

|𝐴| − 1 −
∑

𝑏∈𝐴⧵{𝑎}
𝑝(𝑏, 𝑎) = |𝐴| − 1 + 𝑆𝐴(𝑎, 𝐴, 𝑃𝑊𝑀) (𝐌10)

(𝐌13) 𝑆𝐷(𝑎, 𝐴, 𝑃𝑊𝑀) =
∑

𝑏∈𝐴⧵{𝑎}
[𝑝(𝑎, 𝑏) − 𝑝(𝑏, 𝑎)] =

∑

𝑏∈𝐴⧵{𝑎}

[1 − 2𝑝(𝑏, 𝑎)] = |𝐴|−1−2
∑

𝑏∈𝐴⧵{𝑎}
𝑝(𝑏, 𝑎) = |𝐴|−1+2⋅𝑆𝐴(𝑎, 𝐴, 𝑃𝑊𝑀)

(𝐌10). □

In consequence of Proposition 3.1, in Table 1, we grouped the data
corresponding to these three triplets of methods.

To have an estimate of how 𝐒𝐜𝐏𝐫𝑊𝑆 and 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 behave with
respect to the best method 𝐌 in each configuration, we computed their
deviation from it. This is a ‘‘normalized distance’’ of 𝜏(𝐒𝐜𝐏𝐫𝑊𝑆 ,𝐃𝐌)
and 𝜏(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐃𝐌) from 𝜏𝑀𝑎𝑥 obtained as follows:

𝑑𝑒𝑣(𝐒𝐜𝐏𝐫𝑊𝑆 ) =
𝜏(𝐒𝐜𝐏𝐫𝑊𝑆 ,𝐃𝐌) − 𝜏𝑀𝑎𝑥

𝜏𝑀𝑎𝑥
and

𝑒𝑣(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ) =
𝜏(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐃𝐌) − 𝜏𝑀𝑎𝑥

𝜏𝑀𝑎𝑥
. (6)

he data in Table 1 underline that this error is in the interval
0.0406%, 0.2743%] for 𝐒𝐜𝐏𝐫𝑊𝑆 and in the interval [0.1512%, 2.4427%] for
𝐜𝐏𝐫𝐴𝑉 𝐹 . To check if the difference between the distributions of values
(𝐒𝐜𝐏𝐫𝑊𝑆 ,𝐃𝐌) and 𝜏(𝐌,𝐃𝐌) and, analogously, between the distri-

butions of values 𝜏(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐃𝐌) and 𝜏(𝐌,𝐃𝐌) are significant from
the statistical point of view, we performed the 2-sample Kolmogorov–
Smirnov test with 5% significance level. In Table 2, we report the
𝑝-value and the indicator ℎ ∈ {0, 1} of the performed test for the null
hypothesis that the cumulative distribution functions of the Kendall-
Tau coefficients are equal (ℎ = 0 means that the null hypothesis is not
rejected, while, ℎ = 1 means the opposite).

Looking at Table 2, one can observe the following:

• For all (𝑛, 𝑚) configurations, the difference between the distribu-
tions of values 𝜏(𝐒𝐜𝐏𝐫𝑊𝑆 ,𝐃𝐌) and 𝜏(𝐌,𝐃𝐌) is not significant
from the statistical point of view. This means that even if our
scoring procedure is not the best in any configuration, it obtains
an approximation of the DM’s ranking of the alternatives at hand
at least as good as the one produced by the best method 𝐌;

• For all (𝑛, 𝑚) configurations apart from (12, 5), (12, 7), (15, 5) and
(15, 7) the difference between the distributions of values
𝜏(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐃𝐌) and 𝜏(𝐌,𝐃𝐌) is not significant from the statis-
tical point of view. In particular, the difference between them
for the configuration (12,5) is also not significant if the test is
done at the 2% significance level. In these four configurations,
we checked the alternative hypothesis that one of the cumulative
distribution functions is smaller than the other. The results are
shown in Table 3 (ℎ = 1 means that the null hypothesis is rejected
in favor of the alternative hypothesis, while, ℎ = 0 means the
opposite)
One can see that, on the one hand, for configurations (12, 5) and
(15, 5), the cumulative distribution function corresponding to 𝐌16
is smaller than the cumulative distribution function correspond-
ing to 𝐒𝐜𝐏𝐫 (𝐌 is therefore better than 𝐒𝐜𝐏𝐫 ), while, on
11

𝐴𝑉 𝐹 16 𝐴𝑉 𝐹
the other hand, for configurations (12, 7) and (15, 7), the cumula-
tive distribution function corresponding to 𝐌14 is smaller than the
cumulative distribution function corresponding to 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 (𝐌14
is therefore better than 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ).

We would like to conclude this section by commenting the statistical
tests in the following way:

1. Even if 𝐒𝐜𝐏𝐫𝑊𝑆 is not the best method for any (𝑛, 𝑚) con-
figuration, the difference between the cumulative distribution
functions of values 𝜏(𝐒𝐜𝐏𝐫𝑊𝑆 ,𝐃𝐌) and 𝜏(𝐌,𝐃𝐌) is not sig-
nificant from the statistical point of view. Moreover, even if
𝐒𝐜𝐏𝐫𝑊𝑆 , 𝐌14 and 𝐌16 are able to produce a ranking of the alter-
natives under consideration summarizing the PWIs, our method
presents an added value with respect to any of them. First of
all, 𝐒𝐜𝐏𝐫𝑊𝑆 produces a ranking based on the score assigned to
each alternative by a weighted sum which is able to explain the
contribution given by each criterion to the overall evaluation of
each alternative. This is not the case for 𝐌14 where the score
assigned to each alternative 𝑎 is equal to the difference between
the number of alternatives in 𝐴 to which 𝑎 is at least as good
in at least 50% of the cases and the number of alternatives to
which 𝑎 is at least as good in less than 50% of the cases. With
respect to 𝐌16, the added value of our method is due to the
consideration of the whole set of value functions compatible
with the preferences given by the DM and not only one of them.
Indeed, the ranking produced by 𝐌16 is finally related to only
one specific compatible value function, even if, in some form,
this value function depends on all the compatible value functions
because it is the barycenter of all them (or, more precisely, from
a computational point of view, of all the compatible value func-
tions in the considered sample). Instead, through 𝐒𝐜𝐏𝐫𝑊𝑆 one
constructs a value function that represents the ranking orders of
all the compatible value functions as summarized by the PWIs,
which is something more than simply selecting one among the
many compatible value functions;

2. The difference between the distributions of values
𝜏(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ,𝐃𝐌) and 𝜏(𝐌,𝐃𝐌) is not statistically significant in
eight of the twelve considered configurations. Moreover, in
the four configurations in which the difference is significant
from the statistical point of view, the error of 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐒𝐜𝐏𝐫𝐴𝑉 𝐹
with respect to the best method, that is, 𝑑𝑒𝑣(𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ), varies
between 1.6157% (for configuration (12, 5)) and 2.4427% (for
configuration (15, 7)), which seems quite acceptable. Therefore,
we can conclude that 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐒𝐜𝐏𝐫𝐴𝑉 𝐹

gives, in any case, a good
approximation of 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐷𝑀 . Furthermore, as already observed
for 𝐒𝐜𝐏𝐫𝑊𝑆 in the previous item, differently from 𝐌14 and 𝐌16,
𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 is able to explain the ranking obtained by each alter-
native. The non optimal performance of 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 with respect
to 𝐒𝐜𝐏𝐫𝑊𝑆 is due to the larger number of parameters that need
to be estimated (35 in 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 vs. 5 in 𝐒𝐜𝐏𝐫𝑊𝑆 ). The lack in
the performance of 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 is nevertheless counterbalanced by
its more detailed and analytic capacity to explain the ranking
of alternatives. Indeed, while 𝐒𝐜𝐏𝐫𝑊𝑆 assigns to each criterion
a weight that holds for all values taken by the criterion itself,
𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 assigns a specific marginal value to each performance
of the criterion. As will be shown in the next section, this can

give more insight into the problem at hand and, therefore, can
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Table 3
Second version of the 2-sample Kolmogorov–Smirnov test at 5% significance level.

(12,5) (12,7) (15,5) (15,7)

ℎ/𝑝-value 𝐌16 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ℎ/𝑝-value 𝐌14 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ℎ/𝑝-value 𝐌16 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 ℎ/𝑝-value 𝐌14 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹

𝐌16 1/0.0105 𝐌14 1/0.0008 𝐌16 1/0.0011 𝐌14 1/0
𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 0/1 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 0/1 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 0/0.9975 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 0/1
Table 4
Evaluation of the 7 funds on the five considered criteria.

𝑔1(⋅) 𝑔2(⋅) 𝑔3(⋅) 𝑔4(⋅) 𝑔5(⋅)

𝑎1 Allianz Multipartner Multi20 0.0403 0,0010 −0.0155 −0.0030 −0,0010
𝑎2 Amundi Bilanciato Euro C 0.0257 0.0004 −0.0103 −0.0014 −0.0008
𝑎3 Arca Te - Titoli Esteri 0.0322 0.0009 −0.0133 −0.0022 −0.0011
𝑎4 Bancoposta Mix 2 A Cap 0.0193 0.0003 −0.0080 −0.0011 −0.0006
𝑎5 Etica Rendita Bilanciata I 0.0334 0.0005 −0.0150 −0.0009 −0.0013
𝑎6 Eurizon Pir Italia 30 I 0.0219 0.0003 −0.0088 −0.0011 −0.0007
𝑎7 Pramerica Global Multiasset 30 −0.0018 0.0000 0.0007 −0.0010 0.0006

be beneficial for the DM in terms of a better understanding of
the considered decision problem.

4. Case study

In this section, we shall apply the method described in Section 2
showing its main characteristics. For this reason, we shall consider a
financial problem in which the returns of seven funds are evaluated
with respect to five performance measures (for a standard survey on
performance measures see, for example, Amenc and Le Sourd (2005)
and Bacon (2012)). The considered funds belong to the sub-class of
the balanced bond funds which may invest in stocks a proportion
of their assets between 10% and 50%. The historical data used to
estimate the relevant statistics are the daily logarithmic return of the
interval between the 01/01/2018–01/01/2021 (784 data points). The
considered performance measures are:

• 𝑔1: the Sharpe Ratio (SR; Sharpe, 1998b), defined as the ratio
between the expected return and the standard deviation. It is
often chosen by practitioners to rank managed portfolios and
belongs to the class of reward-to-variability measures;

• 𝑔2: the Treynor Ratio (TR; Scholz and Wilkens, 2005), defined
as the ratio between the expected return and the systematic risk
sensitivity with respect to a benchmark (here we consider the
MSCI World index Bacmann and Scholz, 2003). It assumes the
form of a reward-to-variability measure but it derives from the
Capital Asset Pricing Model (CAPM) portfolio theory;

• 𝑔3: the Average Value-at-Risk Ratio (AVaRR; Rockafellar and
Uryasev, 2000), defined as a relative performance measure of
the same class of SR and TR. It looks at the average amount of
potential losses suffered by the portfolio manager;

• 𝑔4: the Jensen Alpha (JA; Jensen, 1968), derived from the CAPM
theory, defined as the excess return of a fund over the theoretical
benchmark (MSCI World index);

• 𝑔5: the Morningstar Risk-Adjusted Return (MRAR; Sharpe, 1998a),
derived within the Expected Utility theory, defined as the annu-
alized geometric average of the returns.

The evaluations of the alternatives on the considered criteria are
given in Table 4.

The evaluations of the considered alternatives on the criteria at
hand will be aggregated by the weighted sum (7)

𝑊𝑆(𝑎) = 𝑊𝑆
(

𝑔1(𝑎),… , 𝑔𝑚(𝑎)
)

=
𝑚
∑

𝑗=1
𝑤𝑗 ⋅ 𝑔𝑗 (𝑎) (7)

where 𝑤𝑗 are the weights of criteria 𝑔𝑗 and they are such that 𝑤𝑗 ⩾ 0

for all 𝑔𝑗 ∈ 𝐺 and
𝑚
∑

𝑤𝑗 = 1.
12

𝑗=1
Table 5
Normalized values of the 7 funds on the five considered criteria.

𝑔1(⋅) 𝑔2(⋅) 𝑔3(⋅) 𝑔4(⋅) 𝑔5(⋅)

𝑎1 Allianz Multipartner Multi20 0.6940 0.7349 0.3370 0.1917 0.4171
𝑎2 Amundi Bilanciato Euro C 0.5157 0.4869 0.4924 0.5268 0.4651
𝑎3 Arca Te - Titoli Esteri 0.5943 0.6939 0.4013 0.3492 0.3923
𝑎4 Bancoposta Mix 2 A Cap 0.4370 0.3980 0.5596 0.5880 0.5381
𝑎5 Etica Rendita Bilanciata I 0.6102 0.4950 0.3522 0.6333 0.3455
𝑎6 Eurizon Pir Italia 30 I 0.4694 0.4342 0.5357 0.5926 0.4933
𝑎7 Pramerica Global Multiasset 30 0.1793 0.2571 0.8219 0.6184 0.8487

Table 6
Pairwise winning indices of the considered funds.
𝑝(⋅, ⋅) 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7
𝑎1 0.50 0.4166 0.4261 0.4082 0.5237 0.4070 0.3673
𝑎2 0.5834 0.50 0.5928 0.4074 0.5577 0.3673 0.3681
𝑎3 0.5739 0.4072 0.50 0.4050 0.5482 0.3969 0.3729
𝑎4 0.5918 0.5926 0.5950 0.50 0.5595 0.4570 0.3586
𝑎5 0.4763 0.4423 0.4519 0.4405 0.50 0.4145 0.3933
𝑎6 0.5930 0.6327 0.6031 0.5431 0.5855 0.50 0.3816
𝑎7 0.6327 0.6319 0.6271 0.6414 0.6067 0.6184 0.50

However, the use of a weighted sum implies that the evaluations
are expressed on the same scale. For such a reason, before applying the
weighted sum, we used a standardization technique proposed in Greco
et al. (2018) transforming the evaluation of each 𝑎 ∈ 𝐴 on 𝑔𝑗 ∈ 𝐺, that
is 𝑔𝑗 (𝑎), into the standardized value 𝑔𝑗 (𝑎) as follows:

𝑔𝑗 (𝑎) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑔𝑗 (𝑎) ⩽ 𝑀𝑗 − 3𝑠𝑗 ,

0.5 +
𝑔𝑧𝑗 (𝑎)

6 if 𝑀𝑗 − 3𝑠𝑗 < 𝑔𝑗 (𝑎) < 𝑀𝑗 + 3𝑠𝑗 ,
1 if 𝑔𝑗 (𝑎) ⩾ 𝑀𝑗 + 𝑠𝑗

if 𝑔𝑗 has an increasing direction of preference or

𝑔𝑗 (𝑎) =

⎧

⎪

⎨

⎪

⎩

0 if 𝑔𝑗 (𝑎) ⩾ 𝑀𝑗 + 3𝑠𝑗 ,

0.5 −
𝑔𝑧𝑗 (𝑎)

6 if 𝑀𝑗 − 3𝑠𝑗 < 𝑔𝑗 (𝑎) < 𝑀𝑗 + 3𝑠𝑗 ,
1 if 𝑔𝑗 (𝑎) ⩽ 𝑀𝑗 − 𝑠𝑗

if 𝑔𝑗 has a decreasing direction of preference. In both cases, 𝑀𝑗 =

1
|𝐴|

∑

𝑎∈𝐴
𝑔𝑗 (𝑎), 𝑠𝑗 =

√

√

√

√

∑

𝑎∈𝐴
(𝑔𝑗 (𝑎) −𝑀𝑗 )2

|𝐴| , and 𝑔𝑧𝑗 (𝑎) = 𝑔𝑗 (𝑎)−𝑀𝑗
𝑠𝑗

. With

this procedure, observing that the five considered criteria have an
increasing direction of preference, the values in Table 4 are transformed
in those given in Table 5.

For the sake of simplicity let us assume that there is not any
preference information provided by the DM (see the next section for
a sensitivity analysis on the number of preferences given by the DM)
and, consequently, the space from which the compatible models (the
weighted sum in our case) have to be sampled is the following:

𝑊 = {(𝑤1,… , 𝑤5) ∈ R5 ∶ 𝑤𝑗 ⩾ 0, ∀𝑗 = 1,… , 5, and
5
∑

𝑗=1
𝑤𝑗 = 1}. (8)

Sampling 100,000 weight vectors
(

𝑤1,… , 𝑤5
)

from the space 𝑊
and computing the value assigned by the weighted sum to the seven
funds for each of the 100,000 weight vectors, we obtain the PWIs
shown in Table 6 being the basis of our scoring procedure.

Following the notation introduced in Section 2, since on each
criterion all alternatives have different evaluations, 𝑛 = 6, for all
𝑗
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Fig. 2. Marginal value functions for criteria AVaRR, JA and MRAR obtained solving 𝐿𝑃0.
Table 7
The additive value function obtained solving the 𝐿𝑃0 problem.

SR (𝑔1) TR (𝑔2) AVaRR (𝑔3) JA (𝑔4) MRAR (𝑔5)

𝑥01 = 0.1793 𝑢0,11 = 0 𝑥02 = 0.2571 𝑢0,12 = 0 𝑥03 = 0.337 𝑢0,13 = 0 𝑥04 = 0.1917 𝑢0,14 = 0 𝑥05 = 0.3455 𝑢0,15 = 0

𝑥11 = 0.437 𝑢1,11 = 0 𝑥12 = 0.398 𝑢1,12 = 0 𝑥13 = 0.3522 𝑢1,13 = 0 𝑥14 = 0.3492 𝑢1,14 = 0 𝑥15 = 0.3923 𝑢1,15 = 0

𝑥21 = 0.4694 𝑢2,11 = 0 𝑥22 = 0.4342 𝑢2,12 = 0 𝑥23 = 0.4013 𝑢2,13 = 0.2885 𝑥24 = 0.5268 𝑢2,14 = 0 𝑥25 = 0.4171 𝑢2,15 = 0.137

𝑥31 = 0.5157 𝑢3,11 = 0 𝑥32 = 0.4869 𝑢3,12 = 0 𝑥33 = 0.4924 𝑢3,13 = 0.2885 𝑥34 = 0.588 𝑢3,14 = 0 𝑥35 = 0.4651 𝑢3,15 = 0.1904

𝑥41 = 0.5943 𝑢4,11 = 0 𝑥42 = 0.495 𝑢4,12 = 0 𝑥43 = 0.5357 𝑢4,13 = 0.2885 𝑥44 = 0.5926 𝑢4,14 = 0.0883 𝑥45 = 0.4933 𝑢4,15 = 0.3803

𝑥51 = 0.6102 𝑢5,11 = 0 𝑥52 = 0.6939 𝑢5,12 = 0 𝑥53 = 0.5596 𝑢5,13 = 0.2885 𝑥54 = 0.6184 𝑢5,14 = 0.0883 𝑥55 = 0.5381 𝑢5,15 = 0.3803

𝑥61 = 0.694 𝑢6,11 = 0 𝑥62 = 0.7349 𝑢6,12 = 0 𝑥63 = 0.8219 𝑢6,13 = 0.2885 𝑥64 = 0.6333 𝑢6,14 = 0.0883 𝑥65 = 0.8487 𝑢6,15 = 0.6232
Table 8
Global utility of the seven funds applying the maximally discriminant compatible
scoring function 𝑈 1 obtained solving 𝐿𝑃0.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7
𝑈 1(⋅) 0.137 0.4789 0.2885 0.6688 0.0883 0.7571 1

𝑗 = 1,… , 5. Consequently, an additive value function is defined by five
marginal value functions 𝑢𝑗 (⋅) assigning the seven different evaluations
𝑢𝑘𝑗 = 𝑢𝑗

(

𝑥𝑘𝑗
)

, 𝑘 = 0,… , 6. In this way, with a slight abuse of notation,
the value function 𝑈 can be identified by the vector of marginal values
𝑢𝑘𝑗 assigned by it, that is, 𝑈 =

[

𝑢𝑘𝑗
]

𝑗=1,…,5
𝑘=0,…,6

.

Solving the 𝐿𝑃0 problem presented in Section 2.2.1, we find that
𝐸𝑆𝐹 is feasible and 𝜂∗ = 2.0513. Therefore, at least one compatible
scoring function exists and the one obtained solving 𝐿𝑃0, denoted by
𝑈1, is given in Table 7, while the respective marginal value functions
are shown in Fig. 2.

As one can see from the table, the greatest values on criteria SR
and TR have a null marginal value meaning that the obtained max-
imally discriminant compatible scoring function does not assign any
‘‘importance’’ to these criteria. Consequently, they do not contribute
to the global value obtained by each alternative. Going to the other
three criteria, on the one hand, the greatest maximal shares correspond
to MRAR (0.6232), followed by AVaRR (0.2885), while, on the other
hand, the least maximal share is due to JA (0.0833). Looking at the
changes in the marginal values, they are different for the three criteria.
In particular, the greatest variation is observed for MRAR in passing
from 0.5381 (𝑢5(0.5381) = 0.3803) to 0.8487 (𝑢5(0.8487) = 0.6232).
Going to AVaRR and JA, the corresponding marginal value functions
present only a single change in passing, on the one hand, from 0.3522
(𝑢3(0.3522) = 0) to 0.4013 (𝑢3(0.4013) = 0.2885) and, on the other hand,
in passing from 0.588 (𝑢4(0.588) = 0) to 0.5926 (𝑢4(0.5926) = 0.0883).
This means that changes in the performances on these two criteria
affect very marginally the global value of the considered funds.

The maximally discriminant compatible scoring function obtained
solving 𝐿𝑃0 and shown in Table 7 assigns a unique value to each fund
as shown in Table 8. The ranking of the considered funds on the basis
of this function is the following:

𝑎 ≻ 𝑎 ≻ 𝑎 ≻ 𝑎 ≻ 𝑎 ≻ 𝑎 ≻ 𝑎 .
13

7 6 4 2 3 1 5
Fig. 3. Global value assigned to each fund by the scoring function obtained solving
𝐿𝑃0 and shown in Table 7.

To better explain why each fund fills a certain position in the
provided ranking we examine the global score assigned to them. In
particular, we examine the contribution given to this global value by
the criteria under consideration as shown in Fig. 3. For example, even
if AVaRR and JA contribute in the same way to the global value of 𝑎6
and 𝑎7, the better global value obtained by 𝑎7 can be explained by its
better performance on MRAR (𝑔5(𝑎7) = 0.8487 and 𝑔5(𝑎6) = 0.4933)
to which corresponds a difference in the marginal value of 0.2429
(𝑢5(0.8487)−𝑢5(0.4933) = 0.6232−0.3803 = 0.2429). Analogously, even if
𝑎5 is better than 𝑎1 on AVaRR and JA, this is not enough to compensate
the greater value obtained by 𝑎1 on MRAR. Indeed, for both funds
only one criterion gives a marginal contribution to their global value
(MRAR for 𝑎1 and JA for 𝑎5) since all the other performances on the
remaining criteria are associated with a null marginal value. However,
the marginal value given by MRAR to 𝑎1 (0.137) is greater than the one
given by JA to 𝑎5 (0.0833) that presents the greatest performance on
this criterion (0.6333). Analogous considerations can be done for the
funds put in the middle of the obtained ranking, that is, 𝑎2, 𝑎3 and 𝑎4.

4.1. Sets of diversified maximally discriminant compatible scoring functions

As already described above, solving the 𝐿𝑃0 problem we found
that  𝑆𝐹 ≠ ∅ since 𝜂∗ > 0 and, therefore, there exists at least one
compatible scoring function able to summarize the information of the
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Fig. 4. Marginal value functions for criteria AVaRR and MRAR for five maximally discriminant compatible value functions being the most distant among them.
PWIs shown in Table 6. Moreover, we observed that for the function 𝑈1

obtained solving the LP problem and shown in Table 7, only the last
three criteria (AVaRR, JA and MRAR) are giving a contribution to the
global value of each fund while the marginal value attached to the best
performances on SR and TR, that is 0.694 and 0.7349, respectively, is
zero. For this reason, following the procedure shown in Section 2, one
can wonder if there is a maximally discriminant compatible scoring
function such that all criteria give a contribution to the global value
of the funds at hand. Solving 𝐿𝑃1, we find that 𝐸𝑆𝐹

𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 is feasible and
ℎ∗ = 0. This means that each function in  𝑆𝐹 is such that at least one
marginal value function gives a null contribution to the global value
assigned to the alternatives and, consequently,  𝑆𝐹

𝐴𝑙𝑙𝐶𝑜𝑛𝑡𝑟 = ∅. Because
of the Note 2.1, we find that also  𝑆𝐹

𝐴𝑙𝑙𝐼𝑛𝑐 = ∅ and, therefore, there is
not any maximally discriminant compatible scoring function such that
all marginal value functions are monotone in their domain.

Since  𝑆𝐹 ≠ ∅, one can wonder if there exists another maximally
discriminant compatible scoring function ‘‘sufficiently’’ different from
𝑈1. For this reason, we iteratively solved the MILP problems described
in Section 2.3.3 considering 𝛿𝑚𝑖𝑛 = 0.1. In this way, in addition to the
function found solving 𝐿𝑃0, we get a sample of twenty well-diversified
maximally discriminant compatible scoring functions. An interesting
aspect is that for all these functions, the marginal value corresponding
to the greatest performance on criteria SR and TR is zero meaning that
both criteria have a null impact on the global value of the alternatives.
Moreover, the marginal value function for criterion JA is the same for
the twenty functions and, in particular, is the one shown in Fig. 2(b).
Consequently, the twenty considered maximally discriminant compat-
ible scoring functions in the sample, together with the one obtained
solving 𝐿𝑃0, differ only for the marginal value functions of AVaRR
and MRAR. For this reason, in Fig. 4 we have shown the marginal
value functions with respect to these two criteria for 𝐿𝑃0 and other
four ‘‘most distant functions’’ among the other twenty obtained by the
procedure described in Section 2.3. The four functions are chosen in
the following way. Let us denote by  the set composed of the twenty
maximally discriminant compatible scoring functions in the sample and
by 𝑈1 the function obtained solving 𝐿𝑃0. At first, let us select the
maximally discriminant compatible scoring function in  being the
farthest from 𝑈1, that is 𝑈2 ∈  such that 𝑑(𝑈2, 𝑈1) = max

𝑈∈
𝑑(𝑈,𝑈1),

where 𝑑(𝑈,𝑈1) =

√

√

√

√

5
∑

𝑗=1

6
∑

𝑘=0

[

𝑢𝑗
(

𝑥𝑘𝑗
)

− 𝑢1𝑗
(

𝑥𝑘𝑗
)]2

, that is, the Euclidean

vector-to-vector distance between 𝑈 and 𝑈1. Let us denote by 
the set composed of the chosen functions up to now, that is,  =
{𝑈1, 𝑈2}. After that, let us add to  the function 𝑈𝑘 ∈  presenting
the maximum min𝑈∈{𝑑(𝑈𝑘, 𝑈 )}, that is, the function presenting the
maximal minimal distance from the functions that have already been
included in  . The procedure continues then iteratively until | | = 5.

Looking at the marginal value functions corresponding to AVaRR
(Fig. 4(a)) and MRAR (Fig. 4(b)), one can observe that the five con-
sidered maximally discriminant compatible scoring functions are quite
14
Table 9
Vectors of weights representing the user’s value functions.

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

𝐰1 0.2 0.2 0.2 0.2 0.2
𝐰2 0.4567 0.2567 0.1567 0.09 0.04
𝐰3 0.2567 0.1567 0.09 0.04 0.4567
𝐰4 0.1567 0.09 0.04 0.4567 0.2567
𝐰5 0.09 0.04 0.4567 0.2567 0.1567
𝐰6 0.04 0.4567 0.2567 0.1567 0.09

different with respect to the importance assigned to two mentioned
criteria, that is, to the marginal value assigned to the greatest perfor-
mance on the considered criterion. For example, in 𝑈2 and 𝑈4, the two
marginal value functions contribute in a completely different way to
the global value of the seven alternatives. On the one hand, AVaRR
slightly contributes to 𝑈4 since, for this function, 𝑢43(0.8219) = 0.1515,
while it has a very great importance in 𝑈2 since 𝑢23(0.8219) = 0.7747.
On the other hand, the opposite behavior can be observed for 𝑈2 and
𝑈4 for criterion MRAR. Indeed, this criterion slightly contributes to
the global value of the alternatives in 𝑈2 since 𝑢25(0.8487) = 0.1369,
while it contributes in a considerable way in 𝑈4 since 𝑢45(0.8487) =
0.7601. This sheds light on the importance of taking into account not
only one maximally discriminant compatible scoring function but all
the maximally discriminant compatible scoring functions in the well
distributed sample obtained through the iterative procedure described
in Section 2.3.3.

4.2. Sensitivity analysis with respect to preference information

In this section we shall study how the scoring procedure is sensible
to the amount of preference information provided by the DM (Dede
et al., 2011, 2021; Puppo et al., 2021; Zio and Pedroni, 2012). To
this aim, we considered the same problem presented in Section 4. We
assume the existence of an artificial DM which ranks the seven alter-
natives at hand. The preferences of the artificial DM are represented
by a weighted sum and we considered the six different weight vectors
shown in Table 9.

The six weight vectors in the Table are well-distributed in the
polyhedron 𝑊 . Apart from 𝐰1 weighting equally the five criteria,
following Paelinck (1974) (see also Corrente et al., 2014), 𝐰1,… ,𝐰5,
are the barycenters of the following subsets of 𝑊 , respectively:

𝑊2 = {(𝑤1,… , 𝑤5) ∈ 𝑊 ∶ 𝑤1 ⩾ 𝑤2 ⩾ 𝑤3 ⩾ 𝑤4 ⩾ 𝑤5}

𝑊3 = {(𝑤1,… , 𝑤5) ∈ 𝑊 ∶ 𝑤5 ⩾ 𝑤1 ⩾ 𝑤2 ⩾ 𝑤3 ⩾ 𝑤4}

𝑊4 = {(𝑤1,… , 𝑤5) ∈ 𝑊 ∶ 𝑤4 ⩾ 𝑤5 ⩾ 𝑤1 ⩾ 𝑤2 ⩾ 𝑤3}

𝑊5 = {(𝑤1,… , 𝑤5) ∈ 𝑊 ∶ 𝑤3 ⩾ 𝑤4 ⩾ 𝑤5 ⩾ 𝑤1 ⩾ 𝑤2}

𝑊 = {(𝑤 ,… , 𝑤 ) ∈ 𝑊 ∶ 𝑤 ⩾ 𝑤 ⩾ 𝑤 ⩾ 𝑤 ⩾ 𝑤 }
6 1 5 2 3 4 5 1
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Algorithm 2 Steps in the sensitivity analysis
For each artificial DM’s value function represented by the weight vector 𝐰𝑗 , 𝑗 = 1,… , 6, compute the ranking of alternatives at hand by using
the artificial DM’s value function and denote it by 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌
repeat

1: Elicit artificial DM’s preference information in terms of 𝑘 pairwise comparisons of alternatives, with 𝑘 = 1,… , 6,
2: Sample 𝑠 value functions compatible with the artificial DM’s preference information and compute the PWIs
3: Apply 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 to get the ranking of the alternatives at hand and denote this ranking by 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐒𝐜𝐏𝐫𝐴𝑉 𝐹
4: Compute the Kendall-Tau correlation coefficient between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐃𝐌 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐒𝐜𝐏𝐫𝐴𝑉 𝐹

until 𝑡 runs have not been performed
5: Compute statistics on the obtained results
For each of the considered weight vectors, we evaluate how the
ecommendations obtained by 𝑆𝑐𝑃 𝑟𝐴𝑉 𝐹 change with the number of

pairwise comparisons provided by the DM. Algorithm 2 presents the
steps that have to be performed for each weight vector.

These steps are described in the following lines:

1: Artificial DM’s preferences are expressed by pairwise comparisons
of alternatives. 𝑘 = 1 means that the DM provides one pairwise
comparison; 𝑘 = 2 means that the DM provides two pairwise
comparisons and so on; the maximum value we assume for 𝑘 is
6 since 𝑛 − 1 is the minimum number of pairwise comparisons
sufficient to define a complete ranking of the 𝑛 alternatives,9

2: To avoid to sample every time a different set of value functions com-
patible with the 𝑘 pairwise comparisons, we use the following
procedure: (i) at first, 1,000,000 value functions are sampled
from the space 𝑊 defined in Eq. (8). Let us denote the set
composed of these functions by  ; (ii) we choose in  only
the value functions compatible with the 𝑘 pairwise comparisons
elicited in step 2:. Let us denote the set composed of these value
functions by 𝑘. The PWIs are then computed on the basis of
the value functions in 𝑘,

3: 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 described in Section 2.2.1 is applied. The computed value
function is a general additive value function as in Eq. (1). This
value function is then used to rank the alternatives at hand. The
obtained ranking is denoted by 𝑅𝑎𝑛𝑘𝐒𝐜𝐏𝐫𝐴𝑉 𝐹

,

4: The Kendall-Tau coefficient between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐷𝑀 and 𝑅𝑎𝑛𝑘𝐒𝐜𝐏𝐫𝐴𝑉 𝐹
is then computed.

Let us observe that the number of runs 𝑡 that has been done for each
value of 𝑘 is

(21
𝑘

)

. Indeed, considering 7 alternatives it is possible to
perform

(7
2

)

= 21 pairwise comparisons between the alternatives under
consideration. Therefore, the number of ways 𝑘 pairs can be chosen
from the 21 considered is

(21
𝑘

)

. This means that for 𝑘 = 1, we perform 21
different runs, every time, considering one of the twenty one possible
pairs; for 𝑘 = 2, we perform

(21
2

)

= 210 different runs, and so on, until
for 𝑘 = 6, we perform

(21
6

)

= 54,264 different runs considering, every
time, six different pairwise comparisons among the possible twenty
one. In Table 10 we report, for each 𝑘 and for each DM’s value function,
the average Kendall-Tau coefficient over the 𝑡 =

(21
𝑘

)

considered runs
between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐷𝑀 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐒𝐜𝐏𝐫𝐴𝑉 𝐹

.
As one can see from the values in the Table, for each of the six

considered DM’s value functions, the average Kendall-Tau coefficient
increases with 𝑘. Even in cases 𝐰3 and 𝐰6 in which the average Kendall-
Tau coefficient for 𝑘 = 1 is quite low,10 increasing the number of

9 It is enough asking the DM to compare the preferred alternative with the
econd preferred one; to compare the second preferred to the third preferred,
nd so on, until the (𝑛 − 1)th preferred is compared to the 𝑛th.
10 This means that, one pairwise comparison is not enough to restore the
M’s alternatives ranking.
15
Table 10
Average Kendall-Tau coefficient between 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐷𝑀 and 𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐒𝐜𝐏𝐫𝐴𝑉 𝐹

.

# pairs 𝐰1 𝐰2 𝐰3 𝐰4 𝐰5 𝐰6

1 0.7732 0.8685 0.1474 0.6780 0.9410 0.1565
2 0.8463 0.9814 0.3887 0.7760 0.9651 0.3633
3 0.8595 0.9933 0.5631 0.7963 0.9727 0.5797
4 0.8722 0.9971 0.6667 0.8079 0.9782 0.7096
5 0.8828 0.9988 0.7318 0.8189 0.9832 0.7998
6 0.8916 0.9996 0.7759 0.8303 0.9854 0.8418

pairwise comparisons implies an increasing of the average Kendall-Tau
coefficient. This shows that the capacity of 𝐒𝐜𝐏𝐫𝐴𝑉 𝐹 to reply the DM’s
ranking increases with the number of provided pairwise comparisons.

5. Conclusions

In this paper we have proposed a new scoring procedure. The
procedure assigns a value to each alternative under consideration sum-
marizing the Pairwise Winning Indices (PWIs) provided by the Stochas-
tic Multicriteria Acceptability Analysis (SMAA; Lahdelma et al., 1998;
Pelissari et al., 2020). The method builds an additive value function
compatible with the PWIs that assigns a score to each alternative and
that, for this reason, is called compatible scoring function. The idea
under the proposal is that the difference between the scores assigned
to two alternatives 𝑎 and 𝑏 by the compatible scoring function should
be proportional to the difference 𝑝(𝑎, 𝑏) − 0.5, that is, to the excess
over 0.5 of the probability with which 𝑎 is considered at least as good
as 𝑏. Consequently, the greater 𝑝(𝑎, 𝑏), the larger the difference of the
scores attributed to 𝑎 and 𝑏. The compatible scoring function is obtained
solving a simple LP problem. In case more than one compatible scoring
function maximally discriminating among the alternatives exists, we
show an iterative procedure aiming to find a well-diversified sample of
them. Moreover, some LP problems are presented to discover, among
the maximally discriminant compatible scoring functions, some of them
presenting particular characteristics: (i) functions for which all criteria
contribute to the global score assigned to the alternatives from the built
function, or (ii) functions for which the marginal value functions are
strictly monotone.

Several other methods summarizing the information contained in
the PWIs have been proposed in literature before. However, differently
from our proposal, they aim only to rank order all alternatives from the
best to the worst. Instead, our proposal has the advantage that the score
assigned to each alternative is based on the construction of an additive
value function. Through its marginal value functions, it allows the
DM to get some explanations on the reasons for which an alternative
fills a given position and obtains its specific score. In particular, the
ranking position and the score of each alternative can be explained in
terms of the contributions given by each criterion to the global value
assigned to the considered alternative. This is a great advance from
the decision aiding point of view since the scoring function we are
proposing answers to the explainability concerns being nowadays very
relevant for any decision aiding method (see, e.g. Arrieta et al., 2020).
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To justify the proposed scoring procedure, we presented also a
probabilistic model based on the assumption that the values that can
be assigned to each alternative have a normal distribution with the
assigned score as mean and with a common standard deviation. To
take into account this distribution in the linear programming model
defined to assign the score, we proposed a simple piecewise linear
approximation of the cumulative normal distribution, which we believe
has an independent interest that goes beyond the proposed method.
Moreover, to prove that the new proposal, beyond explaining the rank
position and the score of the alternatives, is efficient in predicting the
preferences of the DM, we performed a large set of computational
experiments. We compared our scoring procedure to other sixteen
methods that have been proposed in literature and that represent the
state of the art in this field. We simulated an artificial DM in problems
composed of 𝑛 alternatives and 𝑚 criteria trying to replicate the ranking
produced by the artificial DM itself. We considered 6, 9, 12 and 15
alternatives and 3, 5 and 7 criteria. For robustness reasons, for each
(𝑛, 𝑚) configuration, we performed 10,000 independent runs applying
the sixteen mentioned methods and our scoring procedure. To check
how efficient the methods are in replicating the ranking of the artificial
DM, we computed the Kendall-Tau between the preference ranking
of the artificial DM and the ranking produced by each considered
method. These Kendall-Tau values are then averaged over the 10,000
independent runs.

The results show that even if our proposal is not getting the best
value (the maximum average Kendall-Tau) for any of the considered
configurations, the ‘‘deviation’’ from the best average Kendall-Tau
value is always lower than 2.5%. To check if the difference between the
Kendall-Tau values of our proposal and the ones of the best method for
each (𝑛, 𝑚) configuration is significant from the statistical point of view,
we performed a Kolmogorov–Smirnov test with 5% significance level.
The test shows that in the considered configurations the difference
is never statistically significant with very few exceptions. This means
that our scoring procedure is able to reproduce the preferences of
the artificial DM and, at the same time, differently from all the other
methods, it is able to give an explanation of the reasons giving to the
alternatives a certain rank position.

Finally, we have shown how to apply the new scoring procedure to
a financial problem in which seven funds are evaluated with respect
to five different criteria underlying the potentialities of the proposed
method in explaining how the criteria contribute to the global value
assigned to the alternatives. Moreover, we checked how the recom-
mendations given by our scoring procedure are sensible to the number
of preferences introduced by the DM. Assuming the existence of an
artificial DM, we have shown that the similarity between the ranking
produced by our scoring procedure and the one produced by the artifi-
cial DM increases in average with the number of pairwise comparisons
produced by his/her.

As further directions of research we plan to apply the new proposal
to some real world decision problems to which SMAA has been applied
and for which a final ranking of the alternatives under consideration
has to be produced. Moreover, how to extend the scoring procedure to
summarize the PWIs obtained in a problem presenting a hierarchical
structure of criteria (see, for example, Corrente et al., 2017) deserves
to be investigated.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors wish to acknowledge the support of the Ministero
dell’Istruzione, dell’Universitá e della Ricerca (MIUR) - PRIN 2017,
project ‘‘Multiple Criteria Decision Analysis and Multiple Criteria Deci-
16

sion Theory’’, grant 2017CY2NCA. Moreover, Salvatore Corrente wishes
to acknowledge the support of the STARTING GRANT of the University
of Catania.

References

Amenc, N., Le Sourd, V., 2005. Portfolio Theory and Performance Analysis. John Wiley
& Sons.

Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,
García, S., Gil-López, S., Molina, D., Benjamins, R., et al., 2020. Explainable
Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Inf. Fusion 58, 82–115.

Arrow, K., Sen, A., Suzumura, K., 2010. Handbook of Social Choice and Welfare, Vol.
2. Elsevier.

Bacmann, J., Scholz, S., 2003. Alternative performance measures for hedge funds. AIMA
J. 1 (1), 1–9.

Bacon, C., 2012. Practical Risk-Adjusted Performance Measurement. John Wiley & Sons.
Branke, J., Corrente, S., Greco, S., Gutjahr, W., 2017. Efficient pairwise preference

elicitation allowing for indifference. Comput. Oper. Res. 88, 175–186.
Condorcet, J.-M., 1785. Essai sur l’Application de l’Analyse á la Probabibité des

Décisions Rendues á la Pluralitédes Voix. Imprimerie Royale, Paris.
Corrente, S., Figueira, J., Greco, S., 2014. The SMAA-PROMETHEE method. European

J. Oper. Res. 239 (2), 514–522.
Corrente, S., Figueira, J., Greco, S., Słowiński, R., 2017. A robust ranking method

extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and
stochastic analysis. Omega 73, 1–17.

Corrente, S., Greco, S., Kadziński, M., Słowiński, R., 2013. Robust Ordinal Regression
in preference learning and ranking. Mach. Learn. 93, 381–422.

Dede, G., Kamalakis, T., Anagnostopoulos, D., 2022. A framework of incorporating
confidence levels to deal with uncertainty in pairwise comparisons. CEJOR Cent.
Eur. J. Oper. Res. 30 (3), 1051–1069.

Dede, G., Kamalakis, T., Sphicopoulos, T., 2016. Theoretical estimation of the proba-
bility of weight rank reversal in pairwise comparisons. European J. Oper. Res. 252
(2), 587–600.

Dede, G., Kamalakis, T., Varoutas, D., 2011. Evaluation of optical wireless technologies
in home networking: An analytical hierarchy process approach. J. Opt. Commun.
Netw. 3 (11), 850–859.

Dede, G., Mitropoulou, P., Nikolaidou, M., Kamalakis, T., Michalakelis, C., 2021. Safety
requirements for symbiotic human–robot collaboration systems in smart factories: a
pairwise comparison approach to explore requirements dependencies. Requir. Eng.
26 (1), 115–141.

Dodgson, C., 1876. A Method of Taking Votes on More than Two Issues. Clarendon
Press, Oxford.

Fürnkranz, J., Hüllermeier, E. (Eds.), 2010. Preference Learning. Springer, Berlin.
Greco, S., Ehrgott, M., Figueira, J., 2016. Multiple Criteria Decision Analysis: State of

the Art Surveys. Springer, Berlin.
Greco, S., Ishizaka, A., Matarazzo, B., Torrisi, G., 2018. Stochastic multi-attribute

acceptability analysis (SMAA): an application to the ranking of Italian regions.
Reg. Stud. 52 (4), 585–600.

Greco, S., Mousseau, V., Słowiński, R., 2008. Ordinal regression revisited: multiple
criteria ranking using a set of additive value functions. European J. Oper. Res. 191
(2), 416–436.

Jacquet-Lagreze, E., Siskos, Y., 1982. Assessing a set of additive utility functions for
multicriteria decision-making, the UTA method. European J. Oper. Res. 10 (2),
151–164.

Jacquet-Lagreze, E., Siskos, Y., 2001. Preference disaggregation: 20 years of MCDA
experience. European J. Oper. Res. 130 (2), 233–245.

Jensen, M., 1968. The performance of mutual funds in the period 1945–1964. J. Finance
23 (2), 389–416.

Kadziński, M., Greco, S., Słowiński, R., 2012a. Selection of a representative set of
parameters for robust ordinal regression outranking methods. Comput. Oper. Res.
39 (11), 2500–2519.

Kadziński, M., Greco, S., Słowiński, R., 2012b. Selection of a representative value
function in robust multiple criteria ranking and choice. Eur. J. Oper. Res. 217
(3), 541–553.

Kadziński, M., Michalski, M., 2016. Scoring procedures for multiple criteria decision
aiding with robust and stochastic ordinal regression. Comput. Oper. Res. 71, 54–70.

Keeney, R., Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. J. Wiley, New York.

Kendall, M., 1938. A new measure of rank correlation. Biometrika 30 (1/2), 81–93.
Lahdelma, R., Hokkanen, J., Salminen, P., 1998. SMAA - Stochastic multiobjective

acceptability analysis. European J. Oper. Res. 106 (1), 137–143.
Leskinen, P., Viitanen, J., Kangas, A., Kangas, J., 2006. Alternatives to incorporate

uncertainty and risk attitude in multicriteria evaluation of forest plans. For. Sci.
52 (3), 304–312.

Massey, Jr., F., 1951. The Kolmogorov-Smirnov test for goodness of fit. J. Amer. Statist.
Assoc. 46 (253), 68–78.

Mousseau, V., Figueira, J., Dias, L., Gomes da Silva, C., Climaco, J., 2003. Resolving
inconsistencies among constraints on the parameters of an MCDA model. European

J. Oper. Res. 147 (1), 72–93.

http://refhub.elsevier.com/S0305-0548(23)00132-6/sb1
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb1
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb1
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb2
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb3
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb3
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb3
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb4
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb4
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb4
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb5
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb6
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb6
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb6
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb7
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb7
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb7
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb8
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb8
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb8
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb9
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb9
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb9
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb9
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb9
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb10
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb10
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb10
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb11
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb11
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb11
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb11
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb11
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb12
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb12
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb12
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb12
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb12
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb13
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb13
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb13
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb13
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb13
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb14
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb15
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb15
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb15
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb16
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb17
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb17
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb17
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb18
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb18
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb18
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb18
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb18
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb19
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb19
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb19
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb19
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb19
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb20
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb20
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb20
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb20
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb20
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb21
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb21
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb21
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb22
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb22
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb22
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb23
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb23
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb23
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb23
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb23
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb24
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb24
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb24
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb24
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb24
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb25
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb25
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb25
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb26
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb26
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb26
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb27
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb28
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb28
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb28
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb29
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb29
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb29
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb29
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb29
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb30
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb30
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb30
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb31
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb31
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb31
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb31
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb31


Computers and Operations Research 157 (2023) 106268S.G. Arcidiacono et al.
Paelinck, J., 1974. Qualitative multiple criteria analysis, environmental protection and
multiregional development. Pap. Reg. Sci. Assoc. 36, 59–74.

Pelissari, R., Oliveira, M., Ben Amor, S., Kandakoglu, A., Helleno, A., 2020. SMAA
methods and their applications: a literature review and future research directions.
Ann. Oper. Res. 293, 433–493.

Puppo, L., Pedroni, N., Bersano, A., Di Maio, F., Bertani, C., Zio, E., 2021. Failure
identification in a nuclear passive safety system by Monte Carlo simulation with
adaptive Kriging. Nucl. Eng. Des. 380, 111308.

Rockafellar, R., Uryasev, S., 2000. Optimization of conditional value-at-risk. J. Risk 2,
21–42.

Roy, B., 1993. Decision science or decision-aid science? European J. Oper. Res. 66 (2),
184–203.

Roy, B., 1996. Multicriteria Methodology for Decision Aiding. Kluwer Academic
Publishers, Dordrecht.

Roy, B., 2010. Robustness in operational research and decision aiding: A multi-faceted
issue. European J. Oper. Res. 200 (3), 629–638.

Rubinstein, R., 1982. Generating random vectors uniformly distributed inside and on
the surface of different regions. European J. Oper. Res. 10 (2), 205–209.

Scholz, H., Wilkens, M., 2005. Investor-specific performance measurement: A
justification of Sharpe Ratio and Treynor Ratio. Int. J. Finance 17 (4), 3671.
17
Sharpe, W., 1998a. Morningstar’s risk-adjusted ratings. Financ. Anal. J. 54 (4), 21–33.
Sharpe, W., 1998b. The Sharpe ratio. In: Streetwise–The Best of the Journal of Portfolio

Management. pp. 169–185.
Simpson, P., 1969. On defining areas of voter choice: Professor Tullock on stable voting.

Q. J. Econ. 83 (3), 478–490.
Smith, R., 1984. Efficient Monte Carlo procedures for generating points uniformly

distributed over bounded regions. Oper. Res. 32, 1296–1308.
Tervonen, T., Van Valkenhoef, G., Bastürk, N., Postmus, D., 2013. Hit-And-Run enables

efficient weight generation for simulation-based multiple criteria decision analysis.
European J. Oper. Res. 224, 552–559.

Van Valkenhoef, G., Tervonen, T., Postmus, D., 2014. Notes on ‘‘Hit-And-Run enables
efficient weight generation for simulation-based multiple criteria decision analysis’’.
European J. Oper. Res. 239, 865–867.

Vetschera, R., 2017. Deriving rankings from incomplete preference information: A
comparison of different approaches. European J. Oper. Res. 258, 244–253.

Zio, E., Pedroni, N., 2012. Monte Carlo simulation-based sensitivity analysis of the
model of a thermal-hydraulic passive system. Reliab. Eng. Syst. Saf. 107, 90–106.

http://refhub.elsevier.com/S0305-0548(23)00132-6/sb32
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb32
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb32
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb33
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb33
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb33
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb33
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb33
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb34
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb34
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb34
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb34
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb34
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb35
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb35
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb35
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb36
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb36
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb36
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb37
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb37
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb37
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb38
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb38
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb38
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb39
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb39
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb39
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb40
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb40
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb40
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb41
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb42
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb42
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb42
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb43
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb43
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb43
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb44
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb44
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb44
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb45
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb45
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb45
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb45
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb45
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb46
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb46
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb46
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb46
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb46
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb47
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb47
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb47
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb48
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb48
http://refhub.elsevier.com/S0305-0548(23)00132-6/sb48

	Scoring from pairwise winning indices
	Introduction
	Giving a score to the alternatives on the basis of the Pairwise Winning Indices
	Methodological Background
	Additive value functions and indirect preference information
	Checking for the existence of a compatible value function
	The SMAA methodology

	Proposed methodology
	Checking for a compatible scoring function
	A probabilistic model underlying the proposed methodology

	Some extensions of the scoring method
	Maximally discriminant compatible scoring functions with non-null contribution of all criteria
	Strictly monotone maximally discriminant compatible scoring functions
	Specific classes of maximally discriminant compatible scoring functions


	Comparison with other scoring methods based on PWIs
	Simulations details

	Case study
	Sets of diversified maximally discriminant compatible scoring functions
	Sensitivity analysis with respect to preference information

	Conclusions
	Data availability
	Acknowledgments
	References


