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Chapter 1 
 
 
 
 

Introduction 
 
 
 

 
Every day humans have to face with different kinds of diseases; from the most common one, the u, 

to others more dangerous for our lives, like the EBOLA virus or the AIDS that  ll us with dread. 

For hundreds of years researchers tried to understand and predict the spread of epidemics by using 

mathematics  [1],  [2]. The  spread  of  the  epidemic  through  a  population  can  be  explosive  or  can 

remain in a steady state over long time periods. The way the illness propagates not only depends 

on  the  disease  parameters  but  also  on  the  structure  of  the  network  of  the  populations.  For  this 

reason,  different  network  structures  were  modeled  in  order  to  study  the  spread  of  epidemic  [3]. 

Some  of  those  are:  the  homogeneous  mixing,  in  which  individuals  can  interact  with  others  in  a 

random way, the contact network models in which the path of virus propagation among individuals 

is  settled  by  their  social  interactions,  the  multi-scale  models,  in  which  the  whole  population  is 

divided into sub-populations cou-pled by the movement of agents and inside each sub-population 

the homogeneous mixing is considered. 

 
 
This thesis focuses on two different aspects of the epidemic spreading: the  rst one is to  nd a low-

dimensional  representation  of  a  large  epidemic  dataset  by  using  a  dimensionality  reduction 

algorithm,  the  second  one  is  to    nd  a  numerical  computation  of  the  epidemic  threshold  by 

considering a mobile-agent based model. Regarding the  rst topic, the di-mensionality reduction 

method  considered  was  the  isometric  features  mapping  (ISOMAP),  a  nonlinear  dimensionality 

reduction method that overcomes the limitations provided by other methods attempting to reduce 

the order of the representation and gives the possibil- 
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ity  to  recognize  the  macroscopic  behaviour  of  the  epidemics  thanks  to  the  low  dimensional 

embedding  provided.  This  low-dimensional  description  of  epidemic  spreading  is  expected  to 

improve our understanding of the role of individual response on the outbreak dynamics, inform the 

selection  of  meaningful  global  observables,  and,  possibly,  aid  in  the  design  of  con-trol  and 

quarantine procedures. Hence, in other words, the questions that this thesis wants to answer about 

this problem are: \What ISOMAP is able to do for epidemic description?", 
 
\There exists a relationship among embedded points and the process parameters?" , \What we can 

expect from the obtained representation?". 
 
Concerning  the  second  issue,  the  main  idea  was  to    nd  a  link  between  epidemic  spreading 

(obtained by simulating a mobile-agent based model with time-varying interactions) and the time-

varying network of interactions. Thus, the non-trivial problem is to understand if it is possible to 

estimate the epidemic threshold from the time-varying network properties. To this aim, the method 

used in this thesis is based on the percolation theory; this approach was already used in order to 

associate  the  epidemic  threshold  to  the  percolation  threshold  but  considering  an  activity-driven 

network (often used to study epidemic spreading models [4], [5]) or a static network. Here instead 

it is faced the case of mobile agents models. 
 
The  work  in  this  thesis  is  organized  in  the  following  way:    rst  of  all  in  chapter  1  there  is  an 

overview  on  complex  networks  and  on  epidemic  models  with  a  focus  on  Susceptible-Infected-

Recovered  (SIR)  model,  these  two  items  are  the  main  thread  of  this  thesis  for  the  two  aspects 

investigated; in chapter 2 an introduction on meta-populations model and the rationale behind the 

ISOMAP algorithm are explained and then all the results obtained are presented. In chapter 3 an 

introduction  on  percolation  theory  is  given,  followed  by  the  approach  used  to  determine  the 

epidemic threshold and the main results. 
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1.1 Complex networks 
 
A complex network is composed by a large amount of units, dynamical or not, interconnected each 

other. Our world is full of networks, just few examples are neural networks, highways or subways 

systems, telecommunications networks, social interacting species or the World Wide Web. Thanks 

to graph theory, a branch of discrete mathematics, it is possible to analyze and capture the global 

properties of these systems [6]. The birth of graph theory dates back to 1736, when the 

mathematician Leonhard Euler found analytical results for solving the K•onigsberg bridge problem 

(the issue was to  nd a way to make a round trip in such a way to cross each of the bridges of the 

city just once). From that  moment, a deep interest on graph theory attracted many scientists, an 

interest that was renewed by the discovery of small-world and scale-free networks in more recent 

years. There exist many network models in literature, in particular the most commonly used are the 

Erd•os  and  R  enyi  random  graph  (Fig.  1.1),  scale  free  networks  (Fig.  1.2),  and  small  world 

networks (Fig. 1.3). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1:  A random network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2:  A scale-free network 
 
 
 
In a network, nodes (or vertices, or points) represent the dynamical units and links (or edges, 
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Figure 1.3:  A small world network 

 
 
 
or lines) are the connections between them. From a mathematical point of view a graph 
 
G(I; ϵ) is an ordered couple of two sets, the  st one is the set of the nodes I = f1; 2; :::; Ng while 

the second is the set of the links  ϵ(i; j) j i; j 2 I [6]. To describe a graph, it is possible to use a 

matrix representation: the adjacency matrix, in fact, allows to completely represent the topology of 

a graph. It is a N N square matrix where N is the number of vertices, the term a ij(i; j = 1; :::; N) of 

the matrix is equal to 1 if nodes i and j are connected, 0 otherwise. In addition, also the incidence 

matrix can be used: it is a N K matrix whose term b ik is equal to 1 when the link k connects node i 

with  another  point,  and  zero  otherwise.  Up  to  now  we  have  focused  only  on  networks  with 

bidirectional links, but the structure of a graph can be undirected (Fig. 1.4), directed (Fig. 1.5) or 

weighted (Fig. 1.6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4:  An undirected graph 
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Figure 1.5:  A directed graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.6:  A weighted graph 

 
 
 
To measure and characterize the topology of networks some basic quantities are used: the degree 

of the node is the number of connections with the other nodes, the degree distribution 
 
P (k) is the fraction of nodes in the graph having degree k. Examples of degree distributions are a 

Poisson distribution (Fig. 1.7(a)), observed in the Erd•os and R enyi Random graph, or a power 

law tail (Fig. 1.7(b)), appearing in scale free networks. Other degree distributions are of interest, 

for  instance,  the  joint  distribution  of  in-  and  out-  degrees  for  directed  networks,  the  cumulative 

distribution function or the excess degree distribution. 
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(a) (b) 

 
Figure  1.7:  (a)  Bell  curve  distribution  of  node  linkages,  (b)  Power  law  distribution  of  node 
linkages 
 
 
 
Another important parameter that  must be introduced is  the  mean degree < k > of the network 

that, for random graph, is given by: 

 

< k >= e <k> < k >k 
(1.1)  

k!    

 

it is a particular case (with n = 1) of the nth moments of the distribution: 

 
∑ 

< kn >= knP (k) (1.2)  
n 

 
The  difference  between  Erd•os  and  R  enyi  random  graphs  and  scale  free  networks  is  that  the 

former represents a disordered set of arrangement of links between different nodes while the latter 

is characterised by the coexistence of few nodes, called hubs, that are linked to a large number of 

nodes. 
 
Hence,  random  graph  are,  by  de  nition,  uncorrelated  graphs  since  the  edges  are  connected  to 

vertices regardless of their degree. 
 
However,  most of the real networks cannot be described by ER  graphs due to the fact that real 

networks exhibit a power law shaped degree distribution P (k) Ak , with exponents varying in the 

range 2 < < 3, an average degree < k > well de ned, and the variance 

2 =< k2 > < k >2 strongly in uenced by the second moment of the distribution: 
 

< k2 >= 
∫ 

k
max 

k2P (k)   kmax
3 

 

k
min (1.3) 

As a consequence, such networks have been named scale-free networks because power laws 
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have the property of having the same functional form at all scales. In fact, power laws are the only 

functional form f(x) that remains unchanged, apart from a multiplicative factor, under a rescaling 

of the independent variable x, being the only solution to the equation f( x) =  f(x). 
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1.2 Models of epidemic spreading 
 
The  modeling  of  disease  spreading  has  a  long  history  [3],  [7],  [8],  and  helps  scientists  to  un-

derstand  how  the  epidemic  occurs  and  to  evaluate  strategies  to  prevent  it.  There  exist  many 

approaches  to  epidemiology  like  statistical  physics,  theory  of  phase  transitions,  and  critical 

phenomena  [9]  and,  of  course,  the  study  of  complex  networks  (See  Sec.  1.1)  facilitates  the 

modeling  of  epidemic.  The  main  idea  under  this  modeling  approach  is  that  every  infected 

individual could transmit the disease to all its neighbors at each time step spreading the epidemic, 

meaning that the propagation is driven by a reaction process. 
 
On  the  basis  of  the  characteristic  of  the  epidemic,  many  models  were  carried  out;  some  of  the 

earliest mathematical models were developed in 1927 by Kermack and McKendrick. These models 

were based on a constant population (meaning that no birth and no death were con-sidered) whose 

individuals could only be healthy, immune or sick. This has led to compart-ment models, where 

the population is divided into groups with a different stage of the disease. The classical and mainly 

used models in literature are the Susceptible-Infected (SI) model, Susceptible-Infected-Recovered 

(SIR) [7] model, the Susceptible-Infected-Susceptible (SIS) model, the Susceptible-Exposed 

(individuals who had a contact with an infected one, but are not themselves infectious)-Infected-

Recovered  (SEIR)  model  and  the  Susceptible-Infected-Recovered-Susceptible  (SIRS)  model.  In 

particular, in this thesis the SIR model was adopted in simulations. This because it is one of the 

models that better represents the reality and allows to have clearer pictures to be included in our 

simulations. 
 
Suppose that the population can be divided in three classes: the susceptible S(t) who are ca-pable 

to contract the disease at time  t, the infected  I(t) who catched the disease and are able to infect 

other individuals at time  t, and the recovered R(t) who have had the disease and are immune to 

infection at time t. In Fig. 1.8 a schematic diagram of the model is presented. 

 
 
 
 
 

 
Figure 1.8:  Diagram of a SIR model. 

 
 
 
Under the assumption of a constant population it is clear that N = S(t) + I(t) + R(t), more- 
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over,  under  the  assumption  of  mean-  eld  approximation  (i.e.  individuals  are  well  mixed  and 

interact randomly each other) and by applying the law of mass action, it is possible to write the 

deterministic equations of the SIR model: 

 

 
dS(t) =  S(t)I(t); 

dt 
 
 

dI(t) 
=  S(t)I(t)   I(t); (1.4) dt 

 

 
dR(t) =  I(t) dt 

 

where is the probability of a susceptible agent to become infected and is the recovery rate (i.e. 1 is 

the  average  time  in  which  an  individual  is  infected).  The  equations  can  be  linearized  under  the 

assumption that I(t) ≃ 0, valid at the early stage of the epidemic: 

 
dI(t) ≃ ()I(t); (1.5) dt 

 
whose solution is: 
 

 

I(t) = I(0)e(    )t; (1.6) 

 
Eq. (1.6) represents the evolution of the process meaning that the number of infected indi-viduals 

grows  exponentially  if  >  0  (i.e.  >  1)  .  Now  it  is  possible  to  introduce  a  key  concept  for  the 

epidemic spreading: the epidemic threshold given by the ratio between 
 

and  ,  called  the  basic  reproductive  ratio.  This  relationship  means  that  if  a  single  infected 

individual generates on average more than one secondary infection, an infective agent can cause an 

outbreak [10]. 
 
The  epidemic  process  is  strictly  linked  with  the  topology  of  the  network  used.  In  literature,  a 

breadth of results was presented by considering static networks (i.e. the network connections are  

xed  in  time);  certainly,  as  they  are  widely  interesting  and  helpful,  they  lack  of  reality.  For  this 

reason,  this  thesis  mainly  focuses  on  time-varying  networks  that  are  networks  whose  topology 

changes in time. The drivers of the variation of the networks could be different, for instance, it can 

be driven by the epidemic process itself [11], [12] or, like the networks 
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used in this work, it can be driven by agent's spatial motion [13], [14], [15]. The latter relies on the 

fact that individuals are able to move randomly on a plane allowed to perform long distance jumps 

and are only able to interact with agents falling within a given interaction radius apart from them. 

 
In  our  model,  individuals  move  in  square  space  with  periodic  boundary  conditions  at  a    xed 

velocity vi; positions and orientations of each agent i are ruled by: 

 

i(t) =  i(t) 
(1.7) 

ci(t + 1) = ci(t) + vi(t) 
 

where i(t)  are  independently  random  variables  2  [    ;  ].  Moreover,  agents  jump  randomly  in  the 

plane  with  a  probability  pj.  By  introducing  this  probability  in  Eq.  (1.7),  and  by  considering  c 

divided in its two component x and y, the equations of the motion are written as: 

 
 
 

i( ) = i( ) xi( + 

1) = (1 yi( + 1) 

= (1 

 
 
 
 
 
 

mi( ))  x( )  v  cos( i( )) + L  mi( )  ri 
(1.8) 

 

mi( ))  y( )  v  sin( i( )) + L  mi( )  ri  
 
where  mi(  )  is  equal  to  1  or  0  respectively  if  the  agent  is  allowed  or  not  to  jump  at  time  :  we 

considered a variable M i( ) given by the difference between a random number bounded by 0 and 1 

and  pj(  )  and  we  supposed  that  if  Mi(  )  <  0  then  mi(  )  =  1  while  if  Mi(  )  <  0  then  mi(  )  =  0; 

moreover, L is the length of a side of the square and ri is a random number between 0 and 1. 

 
 

It is worth noticing that for large values of p j the behavior of the system is the same of using high 

values of vi and this is the case corresponding to the mean- eld interaction. 
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Chapter 2 
 
 
 
 

Dimensionality reduction in 
 
 

epidemic spreading models 
 
 
 
 
 

2.1 Motivation 
 
Dimensionality reduction methods were often used by scientist to study complex systems in order 

to simplify the process of identifying intrinsic parameters. Low dimensional repre-sentations are in 

fact proposed in many  elds of study, like, for instance, synchronization of networks of coupled 

oscillators [16], [17]. Up to now, in epidemiology, many models were proposed [3], [7]; in these 

models a set of differential equations is used to describe the evo-lution dynamics of populations 

divided into different groups according to the disease status of the individuals. However, the link 

between  these  models  and  the  microscopic  dynamics  at  the  individual  level  has  not  been  fully 

unveiled and is subject of current investigation [18], [19]. Dimensionality reduction methods could 

help to reveal macroscopic quantities and to understand microscopic behaviors. In literature, the 

two main linear dimensionality reduction techniques are the principal component analysis (PCA) 

[20] and multi-dimensional scaling (MDS) [21]. The  rst method is a statistical procedure whose 

aim is to reduce the number of original variables by converting, through a linear transformation, a 

set  of  possibly  correlated  variables  into  a  set  of  linearly  uncorrelated  variables  called  principal 

components; the  rst principal component has the largest variance, the second component has the 

sec- 
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ond greatest variance and so on. In this way, a low-dimensional embedding of data points that best 

preserves their variance is obtained. The second technique aims to obtain a n-dimensional spatial 

con guration in which each point represents the initial object and the Euclidian distances among 

points correspond to the similarities of the objects: similar ob-jects are represented by points that 

are close to each other, dissimilar objects by points that are far apart. The  nal dimensionality given 

by the algorithm must be an a-priori choice, hence, if it is decided that  n = 2, the output of the 

algorithm will be a two-dimensional plot that best preserves the interpoint euclidian distances. 

 
 
Those  two  methods  are  simple  to  implement  and  efficient  for  linear  systems  but  they  fail  in 

recognizing  some  nonlinear  structures  in  the  data,  a  typical  example  is  the  swiss  roll  exam-ple 

[22]. In order to overcome limits of these techniques, another dimensionality reduction method has 

been proposed in [22]. It is the isometric feature mapping (ISOMAP), used to study nonlinear high 

dimensional data and to compute a quasi-isometric low-dimensional embedding of a set of high-

dimensional points. ISOMAP aims at preserving the intrinsic, possibly nonlinear, geometry of data 

by applying MDS on the geodesic distances over the manifold rather than on Euclidean distances. 

Hence, ISOMAP returns a low dimensional embedding and a residual variance (i.e. a measure of 

the approximation error) that allows the identi cation of a small set of key variables, which may be 

interpreted  as  global  observ-ables.  In  literature  it  was  applied  to  different  case  studies  like  ow 

analysis [23], coordination and fragmentation of self-propelled particle systems [24], [25], image 

processing [26], inves-tigation of collective behavior [27], sensor networks [28], and 

neuroimaging data [29]. 
 
In this thesis, ISOMAP is applied to epidemic data in order to  derive a low-dimensional 

description  of  the  process.  In  particular,  data  consist  of  numerical  simulations  of  spatial,  agent-

based epidemic  models  implementing a  SIR process (see  Sec. 1.2). An agent based  model  with 

discrete  time  and  continuous  space  is  considered.  Two  different  mobility  schemes  were  used  in 

order to describe time-varying interactions. The  rst is the same described in Sec. 1.2: the mobile 

agents epidemic model (MAEM), in which agents are allowed to move on a planar  square space 

and potential epidemic contacts occur only between individuals that are at a mutual distance less 

than  a  threshold  value.  The  second  is  a  meta-population  model  (MPM),  where,  at  each  time 

instant, each agent is geographically located on one continent of the world and can interact only 

with the individuals at a distance less than 
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a threshold value. Individuals can also travel to another continent with a given diffusion 

probability. The two models are detailed in section 2.3. 

 
 

2.2 Meta-population systems 
 
Population dynamics are characterized by spatial and temporal heterogeneous properties, in order 

to help in describing such dynamics, the meta-population theory is generally used. The main idea 

under this theory is to deal with fragmented habitats and each of those habitat is independent and 

has  its  own  number  of  individuals  and  dynamic,  moreover  individuals  can  move  through  these 

habitats. In 1969 the term  \meta population" was used for the  rst time by the ecologist Richard 

Levins who described through a single differential equation (i.e. the Levins model) the dynamic of 

insect  pests  in  agricultural    eld  [30].  Clearly,  while  each  single  territory  has  uctuations  in 

population  size  due  to  random  demographic  events,  the  whole  meta-population  system  remains 

stable  because  of  immigrants  from  one  population  to  another.  One  more  application  of  meta-

population  models  was the one in  marine realm [31]. Moreover, meta-population  models play a 

key role in system's evolution [32], [33]. The meta-population model  ts really well with epidemic 

spreading, in fact, by imaging families, villages, towns, regions, etc., like social units connected 

through individual mobility, it is possible to model the epidemic dynamics of spatially structured 

populations; hence, they were very used to study epidemic spreading [34], [35]. 

 
 
 
 

2.3 Mobility schemes: MAEM and MPM 
 
MAEM. There are N individuals moving as random walkers on a square of size L L, initially placed 

in random positions. Positions and velocities of individuals are respectively indicated as r i(t) and 

vi(t) ( i(t) cos i; i(t) sin i), where i = 1; :::; N, and t is the discrete-time variable. The speed of each 

agent is constant and common to the entire population, that is, 
 

i(t)  =  8t;  i.  Positions  and  headings  of  the  agents  are  updated  according  to  Eq.(1.7)  and,  as 

explained in Sec.1.2, each agent has a probability to become infected and a probability to become 

recovered. A susceptible agent i may become infected with per-contact probability 
 
if an infected agent j is located within a circle of radius R whose center corresponds to 
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the agent's position. An infected agent will eventually recover with a rate , and will be inde nitely 

immune.  This  means  that,  at  the  population  level,  these  models  produce  the  same  macroscopic 

behavior as the compartmental SIR process [13]. 
 
MPM. It is a meta-population model, where the space is divided into six regions that schematically 

represent  the  six  world  continents.  Each  region  contains  a  number  of  agents,  representing  the 

continent  population.  Within  each  continent,  agents  occupy  a    xed  po-sition.  Initially,  the  total 

population is uniformly distributed in random positions over all the six continents and the seed of 

the epidemic is located in one continent only. At each time step, agents in each continent move to 

a randomly chosen continent with probability p, or they maintain their position with probability 1 

p.  When  an  agent  moves  to  another  continent,  it  is  placed  in  a  random  position.  Within  each 

continent, agents maintain  xed positions and interact with agents located within a circle of radius 

R. State transitions of the epidemic model are determined as in the MAEM. 

 
 
 
 

2.4 The ISOMAP algorithm 
 

The dataset utilized by ISOMAP consists of n points of dimension d, namely Z = fz ig
n

i=1 
 
Rd. The aim of the dimensionality reduction algorithm is to  nd a corresponding dataset Y =  
fyig

n
i=1 Rd, embedded in an invariant manifold, and possibly with a lower dimensionality 

 
d ≪ d. ISOMAP consists of four steps [22]. 
 

1. Construction of a neighbor graph G = fV; Eg to approximate the embedding manifold. 
 
The graph is constructed so that its  vertices  V  match the data points  z i  with  i = 1; : : : ; n. To 

construct the graph edges E,  rst the Euclidean distances d Z(zi; zj) between all pairs of data points 

in the original space are computed. Then, according to this metric, the  k-closest data points to z i 

with i = 1; : : : ; n are determined. Two vertices v i and v j are connected by an edge, if z j is one of 

the k-nearest neighbors of zi. Finally, a weighted representation of 
 
G is given in the form of a matrix M n 2 Rn n with Mn(i; j) = dZ(zi; zj) if (vi; vj) 2 E, and Mn(i; j) = 

1 otherwise. 

2.  Computation  of  the  graph  geodesic  matrix  DM  that  approximates  the  geodesics  of  the 

manifold. An approximation of the manifold geodesic distances is obtained using M n to compute 

the shortest weighted path length between each pair (v i; vj), and storing the 
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computation into a matrix DM 2 Rn  n. 
 

3. Approximation  of  the  manifold  distance  by  k-nearest  neighbor  distance.  The  matrix  DM 

calculated in step 2 is used to approximate the manifold geodesic distances between any pair (z i; 

zj) with the graph distances between v i and v j. The accuracy of the approximation depends on the 

data density. If k is too large or the data density too low, a poor representa-tion of the manifold 

may  be  obtained,  since  neighboring  points  may  be  located  on  separate  manifold  branches.  The 

selection of a value for k is typically performed in a heuristic way [36]. 

 
 

4. Computation of the projective variables y i applying MDS on the matrix D M . Pairs of input 

and candidate embeddings are collected in a matrix of dissimilarities, to which classical MDS [21] 

is applied to  nd the dimensionality that minimize the distance in the embedded manifold. 

 
The outputs of ISOMAP are the transformed data points on the embedding manifold and 

 
the vector of residual variances that provides a measure of the error of the approximation. 
 
From this vector, one can determine the dimensionality d of the embedding space where Z is 

reasonably approximated. In our computation, such a dimensionality is selected as the 
 
minimum value of d such that the residual variance is less than 0.1. 
 

 

2.5 Numerical results 
 
In both investigated  models,  the input dataset is composed by the pixels of images obtained by 

simulating  each  process  by  varying  one  parameter  and  keeping  constant  the  others  (num-ber  of 

agents, speed, density, size of the domain, recovery rate, and infection radius). More-over, in our 

simulations, we have found a window for k where ISOMAP yields consistent embedding 

manifolds; the minimum value of k in such window is k = 10 in MAEM and k = 25 in MPM. 

 
 
MAEM. In this case, four different values of were considered: 0:3, 0:5, 0:7, 0:9. This means that a 

range of epidemic spreading was simulated and each simulation differs in both duration and size of 

the  outbreak.  In  each  simulation  the  initial  number  of  infected  agents  is  the  2%  of  the  whole 

population and, for each value of the other parameters were  xed as follows: the number of agents 

N = 1000, the speed v = 0:1, the population density 
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(a) (b) 

 
 
 
 
 
 
 

(c) (d) 
 
 
 
 
 
 
 

(e) (f) 
 
Figure 2.1: Snapshots of the evolution of the epidemic spreading for MAEM with N = 1000, r = 1, 
= 0:05, and = 0:2: (a) t = 1; (b) t = 96; (c) t = 216; (d) t = 456; (e) t = 969; and (f) t = 1176. 
 
 
 

√ 
= 1, size of the square L = r= , infection radius = 1 and recovery probability = 0:2. 
 
Simulations were executed till the epidemic disappear and data have been sampled every  ve time 

steps; by choosing a greater number of sampling, results don't change. Each image is a gray-scale 

image composed by 402 509 pixels and it is associated  with a single time  step of the epidemic 

spreading.  Black  dots  represent  infected  individuals  at  their  location  in  the  domain,  whereas 

positions of susceptible and recovered individuals are not plotted. The input given to ISOMAP is a 

414 204618 matrix, due to a collection of 414 images, each one composed by 402 509 = 204618 

pixels, moreover, images are randomly mixed so that the time order is not preserved. An example 

of images used as input to ISOMAP is shown in Fig. 2.1. 

 
 
As we can observe, due to the initial conditions, the epidemics starts in the top left corner of the 

image  (Fig.  2.1(a)),  then  spreads  all  over  the  plane,  reaching  the  maximum  number  of  infected 

agents (Fig. 2.1(c)) till it disappears (Fig. 2.1(f)). 
 
As explained in Sec. 2.4, ISOMAP computes the residual variance in order to determine the 
 

  
embedding dimensionality d. In Fig. 2.2 the residual variance versus d is shown from which 
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it is clear that the  rst value of d at which the residual variance is less than 0:1 is 3. This means that 

data can be mapped in a three-dimensional embedding as in Fig. 2.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2:  Residual variance versus manifold dimensionality for the MAEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Three-dimensional embedding recovered by ISOMAP for MAEM. To facilitate data 
interpretation, different colors are associated with data generated for different values of . 
 
 
 
 
In Fig. 2.3 it is possible to recognize that the embedding clearly differentiates each value of , by 

mapping data obtained with different values of in a different section of the embedding. Moreover, 

the topological structure is the same for every value of , it is a closed curve 
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whose points represent raw data sampled at instants close in time. Points situated at the origin of 

the  three-dimensional  embedding  represent  the  start  and  the  end  of  the  epidemic  process  while 

points that are far apart the center depict images in which the epidemic is growing. 

 
MPM. Here, a meta-population model, as discussed in Sec. 2.2, is considered. Differing from the 

previous model, the set of input data is generating by varying the diffusion rate p, instead of , and 

keeping  xed all the other parameters. Increasing the value of p, the epidemic initially evolves in 

one continent and, then, after reaching the global invasion threshold p c, spreads all over the world. 

In Fig. 2.4, the global invasion threshold is numerically computed; it is the result of the average of 

5 simulations and the code is the same used for the production of raw data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.4: Number of recovered individuals versus the diffusion rate 

 
 
 

From  Fig.  2.4,  it  is  possible  to  see  that  pc ≃  2  10 4  and  the  input  dataset  was  constructed  by 

including values of p above and below the global invasion threshold: p = f0; 1:5 10 4; 2:5  
10 4; 5 10 3g. Similar to the MAEM model, for each value of p and each time step, the state of all 

the agents is coded into an image. Simulations have been executed until the epidemic disappears 

and data have been sampled every two time steps. Each image has the background color in white if 

it  is  a  continent,  while  it  is  gray  if  the  area  is  the  ocean.  The  whole  dataset  used  as  input  to 

ISOMAP consists of 696 vectors z i 2 R d with i = 1; : : : ; 696 and d = 480 641 = 307680. The 

other parameters of the model have been set to: N = 1200, 
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(a) (b) 
 
 
 
 
 
 

 
(c) (d) 

 
 
 
 
 
 

 
(e) (f) 

 
Figure 2.5: Snapshots of the evolution of the epidemic spreading for MPM with N = 1200, r = 1, = 
0:02, = 0:02 and p = 0:005 (above the global invasion threshold): (a) t = 0;  
(b) t = 28; (c) t = 60; (d) t = 90; (e) t = 200; and (f) t = 410. 
 
 
 
r  = 1, = 0:02, and = 0:02. An example  of  input dataset is shown in Fig. 2.5  where  the seed of 

epidemic is located in North America (Fig. 2.5(a)), then the epidemic begins to diffuse  in other 

countries until it reaches a signi cant fraction of population (Fig. 2.5(c)-(d)) and then decreases and 

disappears (Fig. 2.5(f)). 
 
As for the MAEM model, also in this case the residual variance becomes less than 0:1 when 
 
the  embedding  dimensionality  d  is  equal  to  3  (Fig.  2.6);  thus,  it  is  possible  to  embed  data  in  a 

three-dimensional space. 
 
In Fig. 2.7, the three-dimensional embedding is reported together with snapshots of the epidemic 

evolution.  Also  in  this  case  there  is  a  clear  separation  of  data  that  belong  to  different  epidemic 

process, each one given by a different value of p; moreover, the color of each curve changes with 

respect to time, from lighter color to darkest one. 
 
In the center of the embedding, points represent images with a reduced number of infected agents, 

while as they depart from the centre the number of infected agents increase. This is shown in Fig. 

2.8 that exhibits the relationship between the distance R of the embedding points from the origin 

and the number of infected agents NI (t), associated with the data 
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Figure 2.6:  Residual variance versus manifold dimensionality for the MPM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.7: Three-dimensional embedding recovered by ISOMAP for MPM. The insets show time 
stamps  of  the  epidemic  evolution  in  correspondence  to  selected  points  of  the  embedding.  To 
facilitate data interpretation, different colors are associated with data generated for different values 
of p. 
 
 
 
points in the original space. 
 
For example, in the case of the curve obtained for p = 0:005, considering the path through 
 
the time-ordered points labeled as B, C, D, and E, the distance R  rst grows with N I (points 
 
B and C - early stage of the epidemic outbreak) and then decreases (points D and E - second 
 
and third stage of the outbreak) as NI decreases. However, the value of R depends both on 
 
the number of infected agents and on their distribution over the plane. In fact, similar values 
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Figure 2.8:  R vs. NI for MPM. 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
 
 
 
 
 
 

 
(c) (d) 

 
Figure 2.9:  Snapshots of a simulation of the MPM model with p = 0:005 at different times:  
(b) t = 13; (c) t = 46; (d) t = 122; and (e) t = 300. Panels (b), (c), (d), and (e) correspond to the 
points B, C, D, and E in Fig. 2.8. 
 

 

of NI , obtained at different stages of the outbreak, are associated with different values of 
 
R, as the spatial distribution of the infected agents (illustrated in panels (b)-(e) of Fig. 2.9) 
 
evolves in time. 
 
This can be observed by taking in to account the center of gravity of the epidemic. In fact, 
 
by computing it, it is possible to see that, for the same value of the number of infected 
 
agents, the center of gravity assumes different values. Of course, for small values of p, the 
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values of the center of gravity computed for the same number of infected agents are similar, while 

for large p, the values of the center of gravity obtained for the same values of N I are very different; 

this is also con rmed by the fact that from a small value of p to a large one, the amplitude of the 

closed  curves  in  Fig.  2.8  increases.  First  of  all,  consider  the  case  in  which  p  =  0,  so  just  one 

continent remains infected, and the reference system considered is the one like in Fig. 2.10. As can 

be shown in Fig. 2.11, the values of the center of gravity are closed each other and the range of 

variation of the center of gravity, for the same number of infected individuals is really small (i.e. 

between  190  and  210);  on  the  other  hand,  if  the  case  in  which  p  =  0:005  (Fig.  2.12)  and  the 

epidemic spreads in all the continents is considered, the variation of the center of gravity for the 

same values of N I becomes bigger as shown in Fig. 2.13 (i.e. between 200 and 500). This is due to 

the fact that, while in the  rst case the epidemic spreads just in North America and so there is a 

concentration of the epidemic just in the upper left part of the plane, the center of gravity remains 

more or less stable, in the the other case the epidemic spreads all over the world and, during the 

time period, even if it is possible to have the same number of infected agent, the center of gravity 

would be different depending on the position of the infected agent in the whole plane and not in a 

restricted part of it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.10:  Snapshot of the MPM model at p = 0 with the reference system 
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Figure 2.11: The number of infected agents NI versus the center of gravity in the case of p = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.12:  Snapshot of the MPM model at p = 0:005 with the reference system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.13: The number of infected agents NI versus the center of gravity in the case of p = 0:005 
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Hence, ISOMAP reconstruct the time ordering of data, even if initial conditions changes. In fact, 

Figs. 2.14 - 2.17 are the residual variance and the three-dimensional embedding for the MAEM 

and MPM models obtained by changing initial conditions (i.e. by changing the position of the 20% 

of  the  initially  infected  agents).  As  it  is  shown,  even  if  the  orientations  of  the  closed  curves 

changes, the topology remains the same. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.14: Residual variance for the MAEM model obtained by changing initial conditions 
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Figure 2.15: The three-dimensional embedding for the MAEM model obtained by changing initial 
conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.16:  Residual variance for the MPM model obtained by changing initial conditions 
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Figure 2.17: The three-dimensional embedding for the MPM model obtained by changing initial 
conditions 
 
 
 
Moreover, to prove the robustness of this method, other simulations were carried out by changing 

the values of and for both the MAEM and the MPM models. Firstly, simu-lations for the MAEM 

model were computed by  xing = 0:7, and, as it is possible to see from Fig. 2.18 and Fig. 2.20, also 

in these cases a three-dimensional embedding is capable to map the data. In fact, the embedding 

obtained  by  changing  and  by  considering  k  =  15,  has  the  same  structure  of  the  previous  one 

obtained by changing . In Fig. 2.19 and 

Fig. 2.21 the embedding is depicted, the values of used were 3 10 3, 5 10 3, 7 10 3 
 
and 9 10 3  while the  values  of adopted  were 0:5, 1, 1:5, 2. In both cases, ISOMAP recovers a 

closed curve for each epidemic process. 
 
For  the  MPM  model,  p  = 0:005  is  settled  and,  by  considering  k  =  20,  in  Figs.  2.22  -  2.25  the 

residual variance and the three-dimensional embedding are depicted by considering the 
 

change of  and  respectively. In these cases, the values of  used were 8 10 
3, 2  10 2, 

5   10 2 and 8   10 2 and the values of   adopted were 0:4, 0:8, 1:3, 1; 7. Hence, the  
capability of ISOMAP to distinguish among different data coming from distinct epidemic 

simulation is proved also by changing different epidemic parameters. 

 
 
 
 
 
 
 
 
 
30 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.18:  Residual variance versus manifold dimensionality for the MAEM by changing  
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.19: Three-dimensional embedding recovered by ISOMAP for MAEM. To facilitate data 
interpretation, different colors are associated with data generated for different values of . 
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Figure 2.20:  Residual variance versus manifold dimensionality for the MAEM by changing  
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.21: Three-dimensional embedding recovered by ISOMAP for MAEM. To facilitate data 
interpretation, different colors are associated with data generated for different values of . 
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Figure 2.22:  Residual variance versus manifold dimensionality for the MPM by changing . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  2.23:  Three-dimensional  embedding  recovered  by  ISOMAP  for  MPM.  To  facilitate  data 
interpretation, different colors are associated with data generated for different values of . 
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Figure 2.24:  Residual variance versus manifold dimensionality for the MPM by changing  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  2.25:  Three-dimensional  embedding  recovered  by  ISOMAP  for  MPM.  To  facilitate  data 
interpretation, different colors are associated with data generated for different values of . 
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In summary, by applying ISOMAP it is possible to obtain a low-dimensional repre-sentation of 

epidemic outbreaks  without  a priori knowledge of the system behavior. By considering  that the 

only one information given to ISOMAP is the position of infected in-dividuals depicted on images, 

ISOMAP  is  able  to  identify  as  many  topological  structures  as  the  number  of  different  epidemic 

processes in the dataset, moreover it sorts in time the data initially given in a random way; this 

means that ISOMAP can be used to differentiate epidemic outbreaks. The approach was applied to 

two models and for both ISOMAP  nds a three{dimensional embedding meaning that more than 

one macroscopic variable is nec-essary to describe the system dynamics. The interpretation of the 

embedding coordinates in terms of macroscopic quantities of the outbreak evolution is of extreme 

interest,  but  far  from  trivial.  Nevertheless,  a  relationship  between  those  coordinates  and  the 

number of in-fected individuals, which is however differentially in uenced by the spatial 

distribution of the outbreak, is observed. 

 
 
These  representations  can  improve  our  understanding  of  the  role  of  individual  response  on  the 

outbreak dynamics, enable the rapid prediction of epidemic spreading in low-dimensional 

representations,  and  inform  new  control  and  quarantine  procedures  to  contain  the  spreading  by 

interfering with individual behavior. 
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Chapter 3 
 
 
 
 

A numerical approach to 
 
 

estimate epidemic threshold in 
 
 

time-varying networks 
 
 
 

 
As  explained  in  Sec.  1.2,  the  epidemic  threshold  is  the  value  of  the  parameters  above  that  the 

infection spreads and becomes persistent. It is strictly linked with the topology of the network, and 

it  is  a  key  point  for  the  study  of  the  dynamical  behaviour  of  the  system.  In  literature,  the 

computation of outbreak threshold was widely studied by considering different network topologies 

[38], dynamical behaviours [39] and disparate methods. Among the existing methods to compute 

the epidemic threshold we mention: the heterogeneous mean  eld [44], the generating function [38] 

or the approach based on weighted networks [40], in which it is supposed that the probability of 

disease transmission is strongly in uenced by the intensity of the contact. The aim of this part of 

the thesis is to  nd a numerical method to estimate the epidemic threshold from the properties of 

the time-varying network representing the interaction in our model of mobile agents. To do this, 

we consider an approach based on percolation theory. This theory was widely applied to different 

topics like physics, chemistry, epidemiology, material science, complex networks; moreover, up to 

now, in the  eld of time-varying networks, it was only used to map epidemic processes on active-

driven networks [41]. 
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3.1 Percolation theory 
 
In nature it is possible to  nd  many percolation phenomena like, for instance, forest  res, liquid 

propagation, or also human behaviours; for this reason percolation theory and its critical 

phenomena have a long history in literature, the  rst study of percolation dates back around 1950, 

when Broadent and Hammersley made a model that is able to describe the motion of a uid through 

a  porous medium.  The  simplest  version  of  percolation  theory  is the  one  in which  a  two-

dimensional  lattice  is  considered.  It  can  be  viewed  as  a  graph  with  edges  connecting  neighbor 

nodes; all the edges are independent of each other and they can be  open with a probability P or 

closed with probability 1 P . The question that now arises is: \Which is the probability that there 

exists an open path from the origin of the lattice to the exterior of the square? "; to answer this 

question, Broadent and Hammersley considered the links of the lattice like channels in which uids 

or gas could pass if the channel was wide enough (i.e. an open edge) and not if the channel was too 

narrow (i.e. a closed edge). The probability for a uid to move from the center of the square to the 

borders is the percolation probability denoted by (P ). Of course (0) = 0 since all edges are closed 

and (1) = 1 due to the fact that all links are open. By de ning an open cluster C(v) of the vertex v as 

the set of points connected to v by an open path, Broadent and Hammersley also de ned a critical 

probability pc that divided the situation in which all open clusters are  nite (when p < p c) to the 

one  in  which  there  is  a  unique  in  nite  cluster  (when  p  >  pc).  Statistical  physics  principles  and 

graph theory are used by this theory to evaluate changes in the structure of a complex network. 

 
 

 
One  of  the  main  reasons  which  led  scientists  to  investigate  percolation  models  was  the  link 

between epidemic spreading and percolation [37]. To better understand the main concept behind 

this part of the thesis, an overview on the application on percolation theory on static networks here 

is presented. 
 
By considering a SIR process and, by supposing that the network is static (see Sec. 1.1) assume 

that each vertex is an agent and links (whose number depends on the degree dis-tribution) among 

nodes  predispose  those  individuals  to  disease-causing  contact,  but  do  not  guarantee  it  [38]  (i.e 

there is no homogeneous mixing). This means that the maximum size of the outbreak will be the 

size of the network itself. In order to describe percolation in ran- 
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dom  networks  the  generating  function  approach  [42]  can  be  used.  Under  the  assumption  of  a 

degree uncorrelated network, it is necessary to consider the degree distribution generating function 

G0(z): 

 
∑ 

G0(z) = Pt(k)zk (3.1)  
k 

 
It encapsulates all the information about degree distribution and it is easy to work with because of 

two main aspects:  rstly, given m vertices, the sum of the degree of those vertices is given by the 

mth power of its generating function G 0(z), secondly, the mean degree of a node in the network 

can be computed as: 

 

< k >= G0
′(1) (3.2) 

 

Moreover, the excess degree distribution (at time t) generating function G 1(z) is also de ned. It is 

the distribution of the degrees of vertices reached by following a randomly chosen edge: 

 

G1(z) = 
G0

′(z) 
(3.3) G′ (z) 

 1   

 
Preparatory  to  understand  the  link  between  percolation  and  epidemic  is  the  computation  of  the 

generating  function  and  the  excess  generating  function  of  the  distribution  of  the  sizes  s  of  the 

epidemic outbreaks on the network. Hence, by de ning this distribution as P s(T ), where T is the 

transmissibility  (which  can  be  viewed  also  as  the  distribution  of  sizes  of  clusters  of  vertices 

connected  together  by  occupied  edges  in  the  corresponding  percolation  model),  the  generating 

function of this distribution is computed as: 

 
1  
∑s  

H0(z; T ) =    Ps(T )zs (3.4) 
=0  

 

It is possible to de ne the excess generating function H 1(z; T ), by making some consid-erations:  

rstly,  the  cluster  reached  by  following  an  edge  may  be  a  single  vertex  with  no  occupied  edges 

attached to it, other than the one along which we passed in order to reach it; secondly, the cluster 

reached  by  following  an  edge  may  be  a  single  vertex  attached  to  any  number  m  1  of  occupied 

edges other than the one we reached it by, each leading to another cluster whose size distribution is 

also generated by H1. This means that there are no loops 
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in the cluster and the structure is entirely tree-like. Hence, after some computations, it is possible 

rewrite Eq.(3.4) in function of H1(z; T ) as follows: 

 
 

H1(z; T ) = zG1(H1(z; T ); T ) (3.5) 
 
 
 

H0(z; T ) = zG0(H1(z; T ); T ) (3.6) 

 
It  is  worth  noticing  that  in  the  case  of  100%  of  transmissibility  (i.e.  T  =  1),  these  equations 

corresponds to the generating function for component size in random graphs with arbitrary degree 

distributions [42]. 
 
Thanks  to  Eq.(3.5),  Eq.(3.6)  and  Eq.(3.2)  it  is  possible  to  write  a  closed  form  equation  for  the 

mean outbreak size: 

 
 

< s >= H0
′(1; T ) = 1 + G0

′(1; T )H1
′(1; T ) (3.7) 

 
after some calculations, the mean outbreak size is given by: 

 

< s >= 1 + 
T G0

′(1)  
(3.8) 1  T G′ (1) 

 1    
 
From Eq. (3.8) it is possible to notice that it diverges when T G ′

1(1) = 1 meaning that the epidemic 

starts  to  spread  in  an  extensive  fraction  of  the  graph.  Hence,  it  is  possible  to    nd  the  transition 

point, or the percolation threshold, Tc that is given by: 

 

Tc = 
1  

(3.9) 
    

G′ (1) 
 1    

 
and it means that for T > T c the epidemic outbreak occurs and, from the percolation theory point 

of view, the giant component comes (i.e. the system percolates). 
 
By  considering  u  the  probability  that  a  randomly  chosen  node  is  not  connected  to  the  giant 

component, the size of the giant component S, is given by 

 

S = 1  G0(u) (3.10) 

Moreover, u satis es the self-consistent equation u = G1(u) and the birth of the giant 
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component can arise by keeping in mind that the physical solution u < 1 can only take place when 

G′
1(1) > 1 which leads, after some computation, to the Molloy-Reed criterion: 

 
< k2 >t 

> 2; (3.11) 
< k >t    

where < k n > t= 
∑

k knPt(k) is the n th moment of the degree distribution at time  t. This criterion 

clearly suggests that percolation is directly related to the structural properties of graphs and means 

that most nodes of the network must be connected to at least two other nodes in order to have a 

giant component. Furthermore, it is valid for any degree distribu-tion. 

 
 
In literature percolation theory was also applied for the computation of the epidemic thresh-olds on 

activity driven networks by using integrated networks [41]. Here, percolation de-scribes a phase 

transition process whose critical point divided the case in which the network is not disconnected 

from case in which the network is connected. In particular, as depicted in Fig. 3.1, the percolation 

theory supposes that, at a given instant time T , a temporal network can be represented by a single 

network snapshot and, by integrating  more and  more of these snapshots, the integrated network 

will grow, until at some time T p, in which it becomes a giant component (i.e. it percolates). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1: Snapshots of a network at the initial instant T = 0, T = 1 and the  nal integrated one, at 
T = Tp. 
 
 
 
Hence, by using this approach, the study in [41] reveals that the percolation threshold coincides 

with the epidemic threshold, meaning that: 
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T
p 
=

 
;
 

(3.12) 

 
where, Tp is the time instant in which the system percolates. This is possible by considering that 

the epidemic process can be viewed as the equivalent of a creation of a link between an infected 

agent and a susceptible one, meaning that, the birth of a  nite cluster of recovered individuals could 

be considered like the creation of the giant component. 
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3.2 The numerical approach 
 
As discussed in Sec. 3.1, in [41] activity driven networks are considered. Here, the idea is to apply 

the  same  percolation-based  approach  adopted  to  a  time-varying  network  of  mobile  agents.  The 

time-varying network whose dynamic is described by Eq. (1.8) and Eq. (1.4) with the possibility 

for  agents  to  perform  long  distance  jumps,  is  considered  in  this  thesis.  We  start  from  some 

considerations:  rst of all, the computation of both the epidemic threshold and the giant component 

will be numerical, hence, the idea is to compute the value of the percolation threshold and, then, on 

the  basis  of  the  value  obtained,  set  the  epidemic  parameters  in  order  to  compare  the  numerical 

epidemic  threshold  with  that  given  by  the  application  of  the  percolation  theory.  Therefore,  by 

assuming  the  number  of  agents  N,  the  radius  R  and  the  simulation  time  T    xed,  the  variable 

parameters for the computation of the giant component are the velocity v at which the agents move 

and the density of the population; by varying these two components the value of both percolation 

time and epidemic threshold change. As explained before, epidemic threshold is also in uenced by 

the  probability  to  become  recovered  .  So,  once  the  percolation  time  is  computed,  taken  into 

account that the range of varies from 0 to 1, it is necessary to choose in order to be able to clearly 

show the epidemic outbreak. As it is demonstrated in [13], also the effect of the agents motion has 

an  impact  on  the  epidemic  threshold.  By  moving  from  pj  =  0  to  pj  =  1  the  epidemic  threshold 

decreases and, as our results con rm, also the percolation time decreases. 

 
 

 
However, it is necessary to  nd a trade off for the following two main aspects:  rstly, it is necessary 

to choose v in a manner that allows to have plain visibility of the birth of the giant component and 

the epidemic threshold, in other words, agents should not move very fast because in this way the 

giant component immediately arises but, at the same time, they should move fast enough in order 

to let the epidemic spread all over the agents reaching a steady state; secondly, and v must be set 

so as to avoid to  nd the values of the epidemic thresholds for p j = 0 and p j = 1 too close in such a 

way to have the possibility to explore intermediate values of p j. This is due to the fact that, even if, 

by  setting  appropriate  parameters,  it  is  possible  to    nd  very  different  values  of  Tp  for  the  two 

extreme values of pj, the values of result very close each other. 
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3.3 Simulations set up 
 
Epidemic simulations. The number of agents N is set to 2000. Agents spread with a density 

√ 
on a plane with length L = N with periodic boundary conditions, the interaction radius 
 
R is  xed at 1. At the  rst time step the position of each agent is initialized in a random point inside 

the plane and, just for simplicity, the 10% of the population is considered being infected. Then, at 

each time step t, agents are able to interact only if they fall within the interaction radius  R. This 

means  that  the  probability  of  a  susceptible  agent  to  become  infected  depends  on  the  number  of 

infected agents whose distance (computed by using the formula of the distance on a torus) from 

the  susceptible  agent  is  less  than  R.  Moreover,  at  each  time  step  agents  move  according  to 

Eq.(1.8). 
 
In Fig. 3.2 a ow chart of the simulations used to compute the epidemic threshold is repre-sented. 

Moreover, results are obtained by considering an average of 10 simulations. 
 
Giant component simulations. As for the epidemic case, the way agents move on the plane is the 

same as in Eq. (1.8); a link between walkers appears if their distance is less than R. At each time 

stamp the size of the giant component is computed by considering the aggregation of all the links 

created at each step. Fig. 3.3 illustrates the ow chart of the simulations for the calculation of the 

threshold for the onset of the giant component. Moreover, results are obtained by considering an 

average of 10 simulations. 
 
Simulations results with p j = 0 and p j = 1 were carried out respectively, for the giant component 

and epidemic spreading, by considering v = 5, = 0:011. 
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Figure 3.2:  Flow chart for simulations made to compute the epidemic threshold 
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Figure 3.3:  Flow chart for giant component simulations 
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Table 3.1: Computation of the Molloy-Reed formula: the  rst column represents time in-stant, the 
second column is the second moment of the degree distribution, the third is the mean degree and 
the fourth is the ratio between the previous two used for the Molloy-Reed criterion in the case of p j 
= 0 
 

T < k2 > < k > <k2> 
   <k> 

1 0.053 0.051 1.039 
    

2 0.114 0.108 1.056 
    

3 0.171 0,154 1,11 
    

4 0.247 0.21 1.176 
    

5 0.322 0.262 1.229 
    

6 0.379 0.298 1.272 
    

7 0.45 0.342 1.316 
    

8 0.526 0.387 1.359 
    

9 0.622 0.44 1.414 
    

10 0.714 0.487 1.466 
    

11 0.809 0.538 1.504 
    

12 0.921 0.591 1.558 
    

13 1.029 0.635 1.62 
    

14 1.113 0.671 1.659 
    

15 1.225 0.722 1.697 
    

16 1.317 0.761 1.731 
    

17 1.473 0.823 1.79 
    

18 1.583 0.866 1.828 
    

19 1.717 0.911 1.885 
    

20 1.862 0.961 1.938 
    

21 2.019 1.014 1.991 
    

22 2.174 1.065 2.041 
23 2.333 1.109 2.104 

    

24 2.48 1.152 2.153 
    

 

pj = 0. 
 

In this situation, agents are not able to jump in the plane but continue moving following 
 

Eq.(1.8) with m = 0. As it is possible to see in Figs. 3.4 and 3.5, especially from Fig. 
 

3.5(b), the birth of the giant component occurs for T p 22. This can be also seen in Tab. 3.1, 

in which all the values involved in the computation of the formula for the 
 

Molloy-Reed criterion are reported. In Fig. 3.6 instead, the number of recovered agents with 

respect to is depicted, obtained by doing an average over 5 runs. The value of 
 

for which the epidemic arises is about 0:25. Thus, considering that = 0:011, it is possible 

to  nd that the temporal percolation threshold coincides with the epidemic one. 
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Figure 3.4:  Size of the giant component versus time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

 
Figure 3.5: (a) Ratio between the 2nd moment of the degree distribution and the mean degree for p j 
= 0 versus time (Molloy-Reed criterion) (b) Zoom of  gure (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6:  Number of recovered agents with respect to 
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Figure 3.7:  Size of the giant component versus time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) (b) 

 
Figure 3.8: (a) Ratio between the 2nd moment of the degree distribution and the mean degree for 
pj = 1 versus time (Molloy-Reed criterion) (b) Zoom of  gure (a) 
 

 

pj = 1. 
 

In this case agents are able to move randomly in the plane and, also in this case, as can 
 

be seen from Fig. 3.7, the percolation threshold and the epidemic one match. In fact, 
 

here,  in  Fig.  3.8,  Tp  19  and,  by  considering  that  in  Fig.  3.9  the  epidemic  spreads  at  0:2, 

taking into account that = 0:011, the two thresholds coincide. 
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Figure 3.9:  Number of recovered agents with respect to 
 
 
 
In  order  to  measure  the  differences  in  the  two  situations,  it  is  interesting  to  analyse  both  cases 

together as in Fig. 3.10, Fig. 3.11, Fig. 3.12. From these  gures it is possible to see that it is not so 

simple  to  distinguish  the  two  epidemic  thresholds  due  to  the  fact  that  also  the  percolation 

thresholds are close to each other. For this reason, in order to better explore all the cases between 

pj = 0 and pj = 1, other parameters could be used. 

 
To overcome the limit given by the two neighboring threshold values, the time interval ∆t = 1 

was divided in small slots of time  t, that determines the time-varying network. It means that, at 

each time step ∆t the orientation of agents k is  xed and at each time step 
 
 t  the  value  of  the  giant  component  is  computed.  However,  there  is  a  drawback:  in  this  way 

undesired  contacts  among  individuals  were  introduced,  causing  an  alteration  of  the  epidemic 

outbreak. 
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Figure 3.10:  Size of the giant component for p j = 0 and pj = 1 versus time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.11: Ratio between the 2nd moment of the degree distribution and the mean degree for pj = 0 
and pj = 1 versus time (Molloy-Reed criterion) 
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Figure 3.12:  Number of recovered individuals for pj = 0 and pj = 1 versus 
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Chapter 4 
 
 
 
 

Conclusions 
 
 
 

 
In this thesis two different problems were faced, both regarding the epidemic spreading pro-cess. 

 

 
Fist of all, it was demonstrated that by using the ISOMAP algorithm it is possible to derive a low 

dimensional representation of a large amount of data describing an epidemic process on spatially 

distributed individuals. Images depicting the position of infected individuals were used as row data 

without a temporal ordering for feeding the algorithm. ISOMAP, for each of the different epidemic 

process,  successfully  identi  es  a  different  topological  struc-ture,  meaning  that  it  can  be  used  to 

differentiate epidemic outbreaks. Moreover, it was also proven that the algorithm is able to clearly 

identify  different  epidemic  processes  even  if  initial  conditions  change  or  the  main  epidemic 

parameters  (i.e.  ,  ,  )  vary.  Usually,  the  only  global  observable  of  the  epidemic  outbreak  is 

considered  the  number  of  individuals  in  one  compartment;  instead,  this  topological  analysis 

reveals that more than one macroscopic variable is necessary to describe the system dynamics. The 

interpretation  of  the  embedding  coordinates  in  terms  of  macroscopic  quantities  of  the  outbreak 

evolution  is  of  extreme  inter-est,  but  far  from  trivial.  There  is  a  relationship  between  those 

coordinates and the number of infected individuals, which is however differentially in uenced by 

the spatial distribution of the outbreak. This was proven also by analyzing the center of gravity of 

the epidemic. These  ndings support the feasibility of using ISOMAP to inform low-dimensional 

repre-sentations of epidemic outbreaks from raw data, without  a priori knowledge of the system 

behavior. 
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Then, another result given by this work is that, by applying the percolation theory, it is possible to 

evaluate numerically the epidemic threshold from the time-varying network prop-erties. In 

particular,  this  was  proved  for  the  limit  values  of  p j  but  is  expected  to  hold  also  the  other 

intermediate values. 
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