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Approximation of differential 
operators

1. Introduction

In the numerical approximation of elliptic differential equations, by using specialized 
approximation techniques, we obtain large structured matrices whose analysis provides 
information on the stability of the method. Here we provide spectral and norm estimates 
for matrix-sequences arising from the approximation of the Laplacian via ad hoc finite 
differences that is from the Coco–Russo method [7].

The analysis involves several tools from matrix theory and in particular from the 
setting of Toeplitz operators and Generalized Locally Toeplitz (GLT) matrix-sequences. 
Several numerical experiments are conducted, which confirm the theoretical findings.

The paper is organized as follows. Subsection 1.1 contains a motivation and a descrip-
tion of the Coco–Russo method, together with a brief account on the related literature. 
Subsection 1.2 contains the definition of the used matrix norms and the necessary tools 
from the Toeplitz technology, while Section 2 contains the matrix formulation in 1D in 
the language of Toeplitz structures, the analysis of the norm estimates in 1D, together 
with related numerical experiments and a preliminary discussion on the spectral features 
of the involved matrix-sequences. Section 3 contains more details on the 2D method, on 
its matrix formulation, on the basic tools of the GLT theory, and on spectral results of 
distributional type in 1D and in 2D. Numerical examples in 2D for variable coefficients 
and non-rectangular domains are presented in connection with the GLT theory, while a 
discussion on the more challenging case of the norm estimates in 2D is also provided. A 
conclusion section ends the paper with a mention to a few open problems.

1.1. Method description and motivation

The design of numerical methods to solve Partial Differential Equations (PDE) on 
complex-shaped domains is obtaining an increasing interest in the scientific community. 
One of the bottlenecks of modern computer simulations is the modeling of physical pro-
cesses around 3D complex-shaped objects through PDE. Finite Element Methods (FEM) 
are well-established approaches to solve PDE and supported by rigorous theoretical anal-
ysis developed in the last decades to prove the convergence and accuracy order of the 
method when the grid size approaches zero.

However, some critical limitations are commonly associated in literature with FEM, 
especially when applied to curved boundaries. In particular, the generation of elements to 
conform highly varying curvatures of the boundary might become cumbersome, especially 
if the domain changes its shape over time. Also, the design of a balanced partition of 
the mesh for parallel FEM is unhandy. For these reasons, approaches based on Finite 
Difference Methods (FDM) where the domain is immersed into a fixed grid are increasing 
their popularity in literature, since they do not require any mesh generation effort and 
at the same time allow for a natural design of parallel solvers.
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Fig. 1. Discretization of the 1D domain. Full black circles are the interior grid points, while the full square is 
the ghost point. Boundary values are indicated with stars. Linear extrapolation is used to define the ghost 
value u0 from u1 and the left boundary value ga.

On the other hand, FDM are commonly based on heuristic approaches and conver-
gence and stability analysis are not sufficiently developed in literature, especially for the 
case of curved boundaries.

The Immersed Boundary Method proposed by Peskin in [17] and further developed 
by LeVeque and Li in [14] is a pioneer approach based on FDM for general domains 
immersed on fixed grids.

A more recent approach is the Ghost-Fluid Method proposed by Fedkiw et al. in [8]
and further extended to higher accuracy by Gibou et al. in [11,12], where the values on 
grid nodes just outside the domain (ghost points) are obtained by accurate extrapolations 
of the boundary condition from inside values.

In [7], the authors present a highly efficient and accurate ghost-point method to solve 
a Poisson equation on a complex-shaped domain, modeled by a level-set function. Several 
numerical tests were presented to confirm the accuracy order and the efficiency of the 
multigrid solver. However, a theoretical analysis was missing. The method has been 
extended to several applications, such as compressible fluids in moving domains [5] or 
volcanology [6].

In this paper we present a technique to prove the stability of the Coco–Russo 
method [7] and the convergence to the predicted order of accuracy.

We start from the 1D problem. Consider the elliptic boundary-value problem:

−Δu = f on Ω = (a, b), (1)

u(a) = ga, u(b) = gb, (2)

and a one-dimensional uniform grid Gh = {x0, x1, . . . , xn+1} with a constant spatial step 
h = xi − xi−1, for i = 1, . . . , n + 1. Then, xi = x0 + i h. Let x0 < a < x1 and xn+1 = b

(see Fig. 1).
The elliptic equation −Δu = f is discretized by central differences on xi for 

i = 1, . . . , n and the boundary condition on x = b = xn+1 is included in the inter-
nal discretization (this is the so called eliminated boundary condition approach):

−ui−1 + 2ui − ui+1 = fi for i = 1, . . . , n− 1, (3)

h2
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2un − un−1

h2 = fn + gb
h2 . (4)

The boundary condition on x = a is approximated by q(a) = ga, where q(x) is the 
polynomial of degree s − 1 that interpolates u on the grid points u0, u1, . . . , us−1. We 
call s the stencil size for the boundary condition on x = a.

The discretization of the boundary condition can be represented as:

s−1∑
i=0

ciui = ga. (5)

For s = 2 we have

ϑu0 + (1 − ϑ)u1 = ga, (6)

where ϑ = (x1 − a)/h. The grid point x0 is called ghost point and u0 is the ghost value.
Although we can follow a similar technique for the boundary condition on x = a to the 

one that we adopted for x = b (i.e. we can solve (6) for u0 and substitute its value into 
the internal equation for x1), we keep a non-eliminated boundary condition approach in 
order to develop a theoretical analysis that can be straightforwardly extended to higher 
dimensional cases, where the eliminated approach is impractical.

The discretized problem is then a linear system Ahuh = fh where Ah ∈ R(n+1)×(n+1):

Ahuh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϑ 1 − ϑ 0 . . . . . . 0
− 1

h2
2
h2 − 1

h2 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 − 1

h2
2
h2 − 1

h2

0 0 . . . 0 − 1
h2

2
h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0
u1
...
...

un−1
un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ga
f1
f2
...

fn−1
fn + gb

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= fh, (7)

where h = (b − x0)/(n + 1).

1.2. Matrix theoretic notations, Toeplitz structures, and related tools

For X ∈ Cm×m, by ‖X‖p we indicate the matrix norm induced by the lp vector 

norm ‖y‖p =
[∑m

j=1 |yj |p
]1/p

for p ∈ [1, ∞) and ‖y‖∞ = max1≤j≤m |yj |, with y ∈ Cm. 
A further useful class of matrix norms is that of the Schatten p-norms (see [3] and 
references therein), where

‖X‖S,p =

⎡
⎣ m∑
j=1

σj(X)p
⎤
⎦

1/p
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if p ∈ [1, ∞) and ‖X‖S,∞ = σ1(X) = ‖X‖2, with σ1(X) ≥ · · · ≥ σm(X) ≥ 0 being the 
singular values of X. In other terms, the Schatten p-norm of a matrix can be viewed 
as the lp norm of the vector of its singular values. The latter, in view of the singular 
value decomposition [3], implies that all the Schatten p-norms are unitarily invariant, 
that is ‖PXQ‖S,p = ‖X‖S,p for every X, P, Q ∈ Cm×m, P, Q unitary matrices, and for 
all p ∈ [1, ∞].

Let Tn be a Toeplitz matrix of order n and let ω < n be a positive integer

Tn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 · · · a−ω...
. . . . . .

aω
. . . . . .

. . . . . . a−ω. . . . . .
...

aω · · · a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where the coefficients ak, k = −ω, . . . , ω, are complex numbers.
Let f ∈ L1(−π, π) and let Tn(f) be the Toeplitz matrix generated by f i.e. 

(Tn(f))s,t = as−t(f), s, t = 1, . . . , n, with f indicated as generating function of {Tn(f)}
and with ak(f) being the k-th Fourier coefficient of f that is

ak(f) = 1
2π

π∫
−π

f(s)e−iks ds, i2 = −1, k ∈ Z. (9)

With these notations the matrix reported in (8) can be written as Tn = Tn(f), where 
the generating function is f(s) =

∑ω
j=−ω ajeijs. It is worth noticing that study of the 

generating function gives plenty of information on the spectrum of Tn(f) for any fixed n, 
and also asymptotically as the matrix-size n diverges to infinity (see [9] and [10] for the 
multilevel setting). For instance, if f is real-valued almost everywhere (a.e.), then Tn(f)
is Hermitian for all n. Furthermore, when f is real-valued and even a.e., the matrix Tn(f)
is (real) symmetric for all n, while f real-valued and nonnegative a.e., but not identically 
zero a.e., implies that Tn(f) is Hermitian positive definite for all n: in such a setting the 
considered matrix-sequence could be ill-conditioned and indeed if f is nonnegative and 
bounded with essential supremum equal to M > 0 and a unique zero of order α > 0, then 
the maximal eigenvalue converges monotonically from below to M , whereas the minimal 
eigenvalues converges to zero monotonically from above with a speed dictated by α, 
that is the minimal eigenvalue is asymptotical to n−α. In many practical applications 
we remind that it is required to solve numerically linear systems of Toeplitz kind and of 
(very) large dimensions and hence several specialized techniques of iterative type, such 
as preconditioned Krylov methods and ad hoc multigrid procedures have been designed; 
we refer the interested reader to the books [4,16] and to the references therein. We 
recall that such types of large Toeplitz linear systems emerge from specific applications 
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involving e.g. the numerical solution of (integro-) differential equations and of problems 
with Markov chains.

2. Matrix formulation and notation in 1D

The linear system to solve is (7), and we can decompose the matrix Ah ∈ R(n+1)×(n+1)

as follows

Ah = 1
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 2 −1
0 0 . . . 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 1
h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϑh2 − 2 (1 − ϑ)h2 + 1 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
h2Tn+1(2 − 2 cos(s)) + 1

h2

⎡
⎢⎢⎢⎢⎣
vT
h

0
...
0

⎤
⎥⎥⎥⎥⎦ (10)

= Sn+1 + 1
h2 e1vT

h , (11)

where Tn+1(f) in (10) is the Toeplitz matrix generated by f according to (9), with 
f(s) = 2 − 2 cos(s) so that, in the matrix in (8), we have α = 2, a0 = 2, a1 = a−1 = −1. 
Furthermore, we have defined Sn+1 in (11) as

Sn+1 = 1
h2Tn+1(2 − 2 cos(s)).

For this matrix everything is known and in fact

Tn+1(2 − 2 cos(s)) = QDQ

with Q real symmetric and orthogonal and

Q = Qn+1 =
(√

2
n + 2 sin

(
ltπ

n + 2

))n+1

l,t=1

, D = diagl=1,...,n+1

(
4 sin2

(
lπ

2(n + 2)

))
.

Hence its conditioning κ2(·) in spectral norm (the one induced by the Euclidean vector 
norm) is exactly known and it is equal to

κ2(Sn+1) = sin2
(

(n + 1)π
)

sin−2
(

π
)

≈ 4
2n

2,
2(n + 2) 2(n + 2) π
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where an ≈ bn means an = bn(1 + o(1)) and where, in our setting, a even more precise 
relation can be derived, that is κ2(Sn+1) = 4

π2n
2 + O(1). Since everything is known 

regarding the term Sn+1 our idea is to reduce the analysis as much as possible to infor-
mation concerning the matrix Sn+1 and its inverse and to this end the application of the 
Sherman–Morrison–Woodbury is appropriate.

The Sherman–Morrison–Woodbury formula states that for and invertible square ma-
trix A, column vectors u and v, and 1 + vTA−1u �= 0

(
A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u . (12)

and thus we can obtain in our setting defined above in (12) with A = Sn+1 and u = e1

h2

and v = vh.

(
Sn+1 + 1

h2 e1vT
h

)−1

= S−1
n+1 −

S−1
n+1

1
h2 e1vT

hS
−1
n+1

1 + vT
hS

−1
n+1

e1
h2

.

or

A−1
h = S−1

n+1 −
1
h2S

−1
n+1e1vT

hS
−1
n+1

1 + 1
h2 vT

hS
−1
n+1e1

= S−1
n+1 −Rn+1. (13)

Our goal is to estimate quite accurately ‖A−1
h ‖p with p ∈ [1, ∞] and with ‖ · ‖p being the 

induced matrix norm introduced in Section 1.2. We concentrate our efforts in the case 
where p = 1, 2, ∞, since the other estimates can be obtained via classical interpolation 
techniques.

We start by estimating ‖S−1
n+1‖1, ‖S−1

n+1‖∞, ‖Rn+1‖1, ‖Rn+1‖∞. The latter are used 
for giving quite precise bounds on ‖A−1

h ‖1 and ‖A−1
h ‖∞. It should be noticed that for 

symmetric matrices the norms ‖ ·‖1 and ‖ ·‖∞ coincide, but our final structures of interest 
A−1

h are non symmetric, due to the non symmetry of the one-rank correction induced 
by the boundary conditions. Of course, this difficulty becomes very heavy in the case of 
multi-dimensional domains of non-rectangular type.

The estimate for ‖A−1
h ‖2 can be obtained by a direct check, but it essentially follows 

from the estimates on ‖A−1
h ‖1 and ‖A−1

h ‖∞, by means of the inequality ‖A−1
h ‖2 ≤√

‖A−1
h ‖1‖A−1

h ‖∞.

2.1. Estimating ‖S−1
n+1‖p with p = 1, ∞

We have S−1
n+1 = h2T−1

n+1 where Tn+1 = Tn+1(2 −2 cos(s)) and the inverse 
(
T−1
n+1

)
r,c

=
t
(c)
r
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T−1
n+1 =

⎡
⎢⎢⎢⎢⎣
t
(1)
1 t

(2)
1 . . . t

(n+1)
1

t
(1)
2 t

(2)
2 . . . t

(n+1)
2

...
...

. . .
...

t
(1)
n+1 t

(2)
n+1 . . . t

(n+1)
n+1

⎤
⎥⎥⎥⎥⎦ =

[
t(1) t(2) . . . t(n+1)

]
.

The components of the inverse T−1
n+1, t

(c)
r , are defined by, for a fixed column c,

t(c)r = (n + 2 − c)r
n + 2 , r = 1, . . . , c− 1, for c > 1, (14)

t(c)r = (n + 2 − r)c
n + 2 , r = c . . . , n + 1, (15)

and symmetrically for a fixed row r

t(c)r = (n + 2 − r)c
n + 2 , c = 1, . . . , r − 1, for r > 1, (16)

t(c)r = (n + 2 − c)r
n + 2 , c = r, . . . , n + 1. (17)

All terms of S−1
n+1 (and T−1

n+1) are positive and real, and they are symmetric. Hence by 
using the explicit expressions of the considered norms, we find

‖S−1
n+1‖∞ = max

r

{
n+1∑
c=1

(
S−1
n+1

)
r,c

}
= max

r

{
h2

n+1∑
c=1

(
T−1
n+1

)
r,c

}

= max
c

{
h2

n+1∑
r=1

(
T−1
n+1

)
r,c

}
= max

c

{
n+1∑
r=1

(
S−1
n+1

)
r,c

}
= ‖S−1

n+1‖1. (18)

By the formulas above, the highest row sum for the matrices T−1
n+1 with n + 1 even is 

obtained for the row index r = (n + 1)/2 (or r = (n + 1)/2 + 1, they are equal). For odd 
n + 1, the highest row sum appears for the row index r = (n + 2)/2.

Thus, for n + 1 even

‖T−1
n+1‖∞ =

n+1∑
c=1

t
(c)
(n+1)/2 =

(n−1)/2∑
c=1

(n + 2 − (n + 1)/2)c
n + 2 +

n+1∑
c=(n+1)/2

(n + 2 − c)(n + 1)/2
n + 2

= (n + 1)2 + 2(n + 1)
8 = 1 + 2h

8h2

and for n + 1 odd

‖T−1
n+1‖∞ =

n+1∑
t
(c)
(n+2)/2 =

n/2∑ (n + 2 − (n + 2)/2)c
n + 2 +

n+1∑ (n + 2 − c)(n + 2)/2
n + 2
c=1 c=1 c=(n+2)/2
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= (n + 2)2

8 = (1 + h)2

8h2

Consequently, for n + 1 even, we deduce

‖S−1
n+1‖∞ = h2‖T−1

n+1‖∞ = 1 + 2h
8 , (19)

and for n + 1 odd, we have

‖S−1
n+1‖∞ = h2‖T−1

n+1‖∞ = 1 + 2h + h2

8 . (20)

As a conclusion, for all n + 1 and using the symmetry and (19) and (20), we obtain that

‖S−1
n+1‖∞ = ‖S−1

n+1‖1 ≤ 1 + 2h + h2

8 , (21)

and the limit as the matrix-size tends to infinity, i.e. h → 0, is ‖S−1
n+1‖∞ = ‖S−1

n+1‖1 → 1
8 .

2.2. Estimating ‖Rn+1‖p for p = 1, ∞

Since S−1
n+1 = h2T−1

n+1 and T−1
n+1e1 = t(1), we find that

Rn+1 =
1
h2S

−1
n+1e1vT

hS
−1
n+1

1 + 1
h2 vT

hS
−1
n+1e1

=
T−1
n+1e1vT

hS
−1
n+1

1 + vT
hT

−1
n+1e1

=
t(1)vT

hS
−1
n+1

1 + vT
h t(1) . (22)

Moreover we have from (15) that the components of t(1) are

t(1)r = n + 2 − r

n + 2 = 1 − hr

1 + h
= 1 − h(r − 1)

1 + h
, r = 1, . . . , n + 1, (23)

and we have from (10)

vT
h =

[
ϑh2 − 2 (1 − ϑ)h2 + 1 0 . . . 0

]
=
[
v1 v2 0 . . . 0

]
.

Thus,
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vT
h t(1) = v1t

(1)
1 + v2t

(1)
2 = (ϑh2 − 2) 1

1 + h
+ ((1 − ϑ)h2 + 1)1 − h

1 + h

= (ϑ− 1)h3 + h2 − h− 1
1 + h

,

and

1 + vT
h t(1) = h2 ((ϑ− 1)h + 1)

1 + h
. (24)

Also,

vT
hS

−1
n+1 = h2vT

hT
−1
n+1

= h2
[
v1t

(1)
1 + v2t

(1)
2 v1t

(2)
1 + v2t

(2)
2 . . . v1t

(c)
1 + v2t

(c)
2 . . . v1t

(n+1)
1 + v2t

(n+1)
2

]
,

and thus the components of the row vector 
(
vT
hS

−1
n+1

)
c

are

(
vT
hS

−1
n+1

)
c

= h2
(
v1t

(c)
1 + v2t

(c)
2

)
,

and the components of the matrix 
(
t(1)vT

hS
−1
n+1

)
r,c

are

(
t(1)vT

hS
−1
n+1

)
r,c

= t(1)r h2
(
v1t

(c)
1 + v2t

(c)
2

)
, (25)

where t(1)r is defined in (23), and

t
(c)
1 = 1 − h(c− 1)

1 + h
, c = 1, . . . , n + 1, (26)

t
(c)
2 =

{
1−h
1+h , c = 1,
2−2h(c−1)

1+h , c > 1,
(27)

are defined in (16) and (17). Therefore, for c = 1

(
t(1)vT

hS
−1
n+1

)
r,1

= t(1)r h2
(
v1t

(1)
1 + v2t

(1)
2

)
= t(1)r h2vT

h t(1)

= 1 − h(r − 1)
1 + h

h2 (ϑ− 1)h3 + h2 − h− 1
1 + h

,

= h2(1 − h(r − 1))((ϑ− 1)h3 + h2 − h− 1)
(h + 1)2 , (28)

and for c > 1
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(
t(1)vT

hS
−1
n+1

)
r,c

= t(1)r h2
(
v1t

(c)
1 + v2t

(c)
2

)
= t(1)r h2vT

h t(c)

= 1 − h(r − 1)
1 + h

h2
((

ϑh2 − 2
) 1 − h(c− 1)

1 + h

+
(
(1 − ϑ)h2 + 1

) 2 − 2h(c− 1)
1 + h

)

= h4(2 − ϑ)(1 − h(c− 1))(1 − h(r − 1))
(h + 1)2 . (29)

Thus, we can now define the components of (Rn+1)r,c =
(

t(1)vT
hS−1

n+1
1+vT

h t(1)

)
r,c

, defined in (22), 

since we have (24), (28), and (29). For c = 1 we have

(Rn+1)r,1 = h2(1 − h(r − 1))((ϑ− 1)h3 + h2 − h− 1)
(h + 1)2

/
h2 ((ϑ− 1)h + 1)

1 + h

= h(r − 1) − 1
h(ϑ− 1) + 1 − h2(h(r − 1) − 1)

h + 1 (30)

and for c > 1

(Rn+1)r,c = h4(2 − ϑ)(1 − h(c− 1))(1 − h(r − 1))
(h + 1)2

/
h2 ((ϑ− 1)h + 1)

1 + h

= h2(2 − ϑ)(1 − (c− 1)h)(1 − h(r − 1))
(h + 1)(h(ϑ− 1) + 1) . (31)

Looking at the matrix structures, we deduce that the norms ‖Rn+1‖1 and ‖Rn+1‖∞ are 
attained by looking at the l1 norm of first column and of the first row, respectively.

Now we compute ‖Rn+1‖1,

‖Rn+1‖1 =
n+1∑
r=1

∣∣∣(Rn+1)r,1
∣∣∣

=
n+1∑
r=1

∣∣∣∣ h(r − 1) − 1
h(ϑ− 1) + 1 − h2(h(r − 1) − 1)

h + 1

∣∣∣∣
=

n+1∑
r=1

∣∣∣∣ (1 − h(r − 1))(h3(ϑ− 1) + h2 − h− 1)
(h + 1)(h(ϑ− 1) + 1)

∣∣∣∣
= −h3(ϑ− 1) − h2 + h + 1

(h + 1)(h(ϑ− 1) + 1)

n+1∑
r=1

(1 + h− hr))

= −h3(ϑ− 1) − h2 + h + 1
(

(n + 1)(1 + h) − h
(n + 1)(n + 2)

)

(h + 1)(h(ϑ− 1) + 1) 2
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= −h3(ϑ− 1) − h2 + h + 1
(h + 1)(h(ϑ− 1) + 1)

(
1 + h

h
− 1 + h

2h

)

= h3(1 − ϑ) − h2 + h + 1
2h(h(ϑ− 1) + 1) , (32)

since 0 < ϑ < 1.
We now compute ‖Rn+1‖∞, by taking into account that all coefficients are positive 

except the first in the first column. From (30) and (31) we find

(Rn+1)1,1 = h2

h + 1 − 1
h(ϑ− 1) + 1 , (33)

(Rn+1)1,c = h2(2 − ϑ)(1 − (c− 1)h)
(h + 1)(h(ϑ− 1) + 1) , c = 2, . . . , n + 1. (34)

Thus,

‖Rn+1‖∞ = − (Rn+1)1,1 +
n+1∑
c=2

(Rn+1)1,c

= −
(

h2

h + 1 − 1
h(ϑ− 1) + 1

)
+

n+1∑
c=2

h2(2 − ϑ)(1 − (c− 1)h)
(h + 1)(h(ϑ− 1) + 1)

= −
(

h2

h + 1 − 1
h(ϑ− 1) + 1

)
+ h2(2 − ϑ)

(h + 1)(h(ϑ− 1) + 1)

n+1∑
c=2

(1 + h− ch)

= −
(

h2

h + 1 − 1
h(ϑ− 1) + 1

)
+ h2(2 − ϑ)

(h + 1)(h(ϑ− 1) + 1)

×
(

(n + 1 − 1)(1 + h) − h

(
(n + 1)(n + 2)

2 − 1
))

= −
(

h2

h + 1 − 1
h(ϑ− 1) + 1

)
+ h2(2 − ϑ)

(h + 1)(h(ϑ− 1) + 1)

×
(

1 − h2

h
− 1 + h− 2h2

2h

)

= −
(

h2

h + 1 − 1
h(ϑ− 1) + 1

)
+ 1

2
h(2 − ϑ)(1 − h)

(h + 1)(h(ϑ− 1) + 1)

= 1
2
h(2 − ϑ)(1 − h) − 2h2(h(ϑ− 1) + 1) + 2(h + 1)

(h + 1)(h(ϑ− 1) + 1)

→ 1 as h → 0.
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2.3. Estimating ‖A−1
h ‖p for p = 1, ∞

By looking at the formal expressions of the involved matrices, we infer that ‖A−1
h ‖1

is reached by taking into consideration the first column, thus since A−1
h = S−1

n+1 −Rn+1, 
S−1
n+1 and Rn+1 positive and negative respectively, we can just compute the norm directly 

for A−1
h . The sum of the positive elements of the first column of T−1

n+1 is equal to n+1
2 , 

and thus the sum for the first column of S−1
n+1 is h

2(n+1)
2 = h

2 , and the sum of components 
−(Rn+1)r,1 is given in (32), that is

‖A−1
h ‖1 = h

2 + h3(1 − ϑ) − h2 + h + 1
2h(h(ϑ− 1) + 1)

= h3(ϑ− 1) + h2 + h3(1 − ϑ) − h2 + h + 1
2h(h(ϑ− 1) + 1)

= h + 1
2h(h(ϑ− 1) + 1) . (35)

Now we compute ‖A−1
h ‖∞. A−1

h = S−1
n+1 −Rn+1. From (17) we infer

(
S−1
n+1

)
1,c = h2t

(c)
1 = h2 1 + h(1 − c)

1 + h
, c = 1, . . . , n + 1,

and by using (33) we find

(
A−1

h

)
1,1 = (S−1

n+1)1,1 − (Rn+1)1,1

= h2

1 + h
−
(

h2

h + 1 − 1
h(ϑ− 1) + 1

)

= 1
h(ϑ− 1) + 1 , (36)

while the use of (34) leads to

(
A−1

h

)
1,c = (S−1

n+1)1,c − (Rn+1)1,c

= h2 1 + h(1 − c)
1 + h

− h2(2 − ϑ)(1 − (c− 1)h)
(h + 1)(h(ϑ− 1) + 1)

= h2(1 + h(1 − c))
1 + h

(
1 − 2 − ϑ

h(ϑ− 1) + 1

)

= h2(1 + h(1 − c))(ϑ− 1)
h(ϑ− 1) + 1 . (37)

Since 
(
A−1

h

)
in (36) is always positive and 

(
A−1

h

)
of (37) is always negative we have
1,1 1,c
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‖A−1
h ‖∞ =

(
A−1

h

)
1,1 −

n+1∑
c=2

(
A−1

h

)
1,c

= 1
h(ϑ− 1) + 1 −

n+1∑
c=2

h2(1 + h(1 − c))(ϑ− 1)
h(ϑ− 1) + 1

= 1
h(ϑ− 1) + 1 − h2(ϑ− 1)

h(ϑ− 1) + 1

n+1∑
c=2

(1 + h− hc)

= 1
h(ϑ− 1) + 1 − h2(ϑ− 1)

h(ϑ− 1) + 1

(
(n + 1 − 1)(1 + h) − h

(
(n + 1)(n + 2)

2 − 1
))

= 1
h(ϑ− 1) + 1 − h2(ϑ− 1)

h(ϑ− 1) + 1

(
1 − h2

h
− 1 + h− 2h2

2h

)

= 2 − h(ϑ− 1)(1 − h)
2(h(ϑ− 1) + 1) . (38)

As a conclusion we deduce from (35) and (38)

‖A−1
h ‖2 ≤

√
‖A−1

h ‖1‖A−1
h ‖∞

=

√
h + 1

2h(h(ϑ− 1) + 1)
2 − h(ϑ− 1)(1 − h)

2(h(ϑ− 1) + 1)

= 1
2(h(ϑ− 1) + 1)

√
h + 1
h

(2 − h(ϑ− 1)(1 − h))

= 1
2(h(ϑ− 1) + 1)

√
2(h + 1) + (h2 − 1)h(ϑ− 1)

h

= 1
2(h(ϑ− 1) + 1)

√
2
h

+ 2 + (h2 − 1)(ϑ− 1).

In order to make a comparison, we recall that we know the exact asymptotical behavior 
of ‖S−1

n+1‖2, with Sn+1 being the pure Toeplitz counterpart of Ah, as reported below

‖S−1
n+1‖2 = 1

λmin(Sn+1)
= h2

4 sin2
(

π
2(n+2)

) =

⎛
⎝ h

2 sin
(

πh
2(1+h)

)
⎞
⎠

2

h→0→ 1
π2 . (39)

2.4. Spectral results: comments

Here we give a short discussion on few items that, for some aspects, will be considered 
in more detail in Section 3 and for other aspects will be listed as open problems in the 
conclusion Section 4.
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• The estimates for ‖A−1
h ‖p are tight and the growth is like n1/p: however the numerical 

growth of the error seems to be bounded by a constant independently of p. The 
reason relies on the vectors for which the norm is attained. Such vectors should 
be concentrated on the first component and this is quite unphysical and it is not 
observed in practice.

• Even if Ah and its inverse are not symmetric we can prove the spectrum of the related 
matrix-sequence is clustered along a real positive interval, using the results of the 
GLT technology reported in Subsection 3.2 (see also [2,13]): we refer to Subsection 
3.4 where the analysis is performed both in 1D and 2D.

• Regarding the estimates of ‖A−1
h ‖p, the 2D case (and generically the dD case) is more 

difficult, but we can take advantage of the one dimensional case and from a clever 
tensor structure of the problem when the domain is rectangular (hyper-rectangular 
in the dD case).

• When the domain is generic a possibility is given by embedding techniques already 
exploited in the distributional setting via the GLT approach (see [18,19]).

2.5. Numerical tests in 1D

We consider the 1D problem (1) with a = 0 and b = π. We choose f = − sin(x), 
ga = 0, and gb = 0 so that u = − sin(xi) is the exact solution in points xi.

We perform several tests varying the value of ϑ ∈ [0, 1], in order to establish whether 
the convergence of the method depends on the choice of ϑ. In practice, we choose ϑ and 
n and we compute h and x0 accordingly:

h = b− a

n + ϑ
, x0 = b− (n + 1)h.

The numerical error eh = u − uh satisfies the following equation:

Aheh = τh,

where τh is the consistency error:

τh = fh −Ahu.

Consider the p−norm:

‖τh‖Lp ≈
(
h

n∑
i=0

|τh(xi)|p
) 1

p

, (40)

‖eh‖Lp ≈
(
h

n∑
|eh(xi)|p

) 1
p

. (41)

i=0
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Fig. 2. The dots represent the p - norm of the numerical error eh (top) and consistency error τh (bottom) 
for different values of n (horizontal axis) and ϑ: ϑ = 0 (left), ϑ = 0.5 (middle), ϑ = 1 (right). The solid line 
is a reference for second-order decay.

In Fig. 2 we show that:

‖τh‖Lp , ‖eh‖Lp ≈ O(h2), for p = 1, 2,∞, (42)

confirming that the method is second-order consistent and accurate.
We complete the analysis showing the behavior of the spectral radius of the matrix 

A−1
h . Fig. 3 shows how the smallest eigenvalue (in absolute value) of the matrix Ah

changes in relation to n (left panel) and in relation to ϑ (right panel).
Fig. 3 shows that the smallest eigenvalue (in absolute value) of the matrix Ah essen-

tially does not depend on the value of ϑ and it approaches a constant value when n goes 
to infinity.

Since ‖eh‖Lp ≤
∥∥A−1

h

∥∥
p
‖τh‖Lp , we can conclude that ‖eh‖Lp ≈ O(h2) and ∥∥A−1

h

∥∥
p
‖τh‖Lp ≈ O(h2− 1

p ), as predicted in the first item of Subsection 2.4.

3. Problem formulation in 2D and related analysis

The section is organized into three parts: first we introduce the d-level notation and 
the d-level Toeplitz matrices in Subsection 3.1, secondly we define the notion of spectral 
and singular value distribution and the ∗-algebra of Generalized Locally Toeplitz matrix-
sequences in Subsection 3.2, then we describe the matrices arising in the approximation 
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Fig. 3. Smallest eigenvalue in absolute value (vertical axis) for different values of n (horizontal axis, left 
plot) or for different values of ϑ (horizontal axis, right plot).

of a Dirichlet problem by the Coco–Russo method in Subsection 3.3, and finally we give 
a spectral analysis of the resulting matrix-sequences in Subsection 3.4.

3.1. Multilevel notation: the case of multilevel Toeplitz and diagonal sampling matrices

We start by introducing the multi-index notation, which is useful in our context. A 
multi-index i ∈ Zd, also called a d-index, is simply a (row) vector in Zd; its components 
are denoted by i1, . . . , id.

• 0, 1, 2, . . . are the vectors of all zeros, all ones, all twos, . . . (their size will be clear 
from the context).

• For any positive d-index m ∈ Nd
+, we set N(m) =

∏d
j=1 mj and we write m → ∞

to indicate that min(m) → ∞.
• If h, k are d-indices, h ≤ k means that hr ≤ kr for all r = 1, . . . , d.
• The standard lexicographic ordering is assumed uniformly

[
. . .

[
[ (j1, . . . , jd) ]jd=hd,...,kd

]
jd−1=hd−1,...,kd−1

. . .

]
j1=h1,...,k1

. (43)

For instance, in the case d = 2 the ordering is the following: (h1, h2), (h1, h2 + 1), . . ., 
(h1, k2), (h1 + 1, h2),
Multilevel Toeplitz Matrices.

We now briefly summarize the definition and few relevant properties of multilevel 
Toeplitz matrices, that we will employ in the analysis of the 2D setting. Given n ∈ Nd, 
a matrix of the form
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[ai−j]ni,j=e ∈ CN(n)×N(n)

with e vector of all ones, with entries ak ∈ C, k = −(n−e), . . . , n−e, is called a multilevel 
Toeplitz matrix, or, more precisely, a d-level Toeplitz matrix. Let φ : [−π, π]d → Cr×r

a matrix-valued function in which each entry belongs to L1([−π, π]d). We denote the 
Fourier coefficients of the generating function φ as

φ̂k = 1
(2π)d

∫
[−π,π]d

φ(s)e−î(k,s) ds ∈ C, k ∈ Zd,

where the integrals are computed component-wise and (k, s) = k1s1 + . . . + kdsd. For 
every n ∈ Nd, the n-th Toeplitz matrix associated with φ is defined as

Tn(φ) := [φ̂i−j]ni,j=e

or, equivalently, as

Tn(φ) =
∑

|j1|<n1

. . .
∑

|jd|<nd

φ̂(j1,...,jd)[J (j1)
n1

⊗ . . .⊗ J (jd)
nd

], (44)

where ⊗ denotes the (Kronecker) tensor product of matrices, while J (l)
m is the matrix of 

order m whose (i, j) entry equals 1 if i − j = l and zero otherwise. We call {Tn(φ)}n∈Nd

the family of (multilevel block) Toeplitz matrices associated with φ, which, in turn, is 
called the generating function of {Tn(φ)}n∈Nd .
Multilevel Diagonal Sampling Matrices. For n ∈ N and a : [0, 1] → C, we define the 
diagonal sampling matrix Dn(a) as the diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i

n

)
=

⎡
⎢⎢⎣
a( 1

n )
a( 2

n )
. . .

a(1)

⎤
⎥⎥⎦ ∈ Cn×n.

For n ∈ Nd and a : [0, 1]d → C, we define the multilevel diagonal sampling matrix Dn(a)
as the diagonal matrix

Dn(a) = diag
i=1,...,n

a
( i
n

)
∈ CN(n)×N(n),

with the lexicographical ordering (43) as discussed at the beginning of the subsection.

3.2. GLT matrix-sequences: operative features

We start with the definition of distribution in the sense of the eigenvalues (spectral 
distribution) and in the sense of the singular values (singular value distribution) for a 
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given matrix-sequence. Then we give the operative feature of the ∗-algebra of matrix-
sequences.

Definition 1. Let {An}n be a sequence of matrices, with An of size dn, and let f : D ⊂
Rt → C be a measurable function defined on a set D with 0 < μt(D) < ∞.

• We say that {An}n has a (asymptotic) singular value distribution described by f , 
and we write {An}n ∼σ f , if

lim
n→∞

1
dn

dn∑
i=1

F (σi(An)) = 1
μt(D)

∫
D

F (|f(x)|) dx, ∀F ∈ Cc(R). (45)

• We say that {An}n has a (asymptotic) spectral (or eigenvalue) distribution described 
by f , and we write {An}n ∼λ f , if

lim
n→∞

1
dn

dn∑
i=1

F (λi(An)) = 1
μt(D)

∫
D

F (f(x)) dx, ∀F ∈ Cc(C). (46)

If {An}n has both a singular value and an eigenvalue distribution described by f , then 
we write {An}n ∼σ,λ f .

The symbol f contains spectral/singular value information briefly described informally 
as follows. With reference to (46), assuming that dn is large enough and f is at least 
Riemann integrable, except possibly for a small number of outliers, the eigenvalues of 
An are approximately formed by the samples of f over a uniform grid in D, so that 
the range of f is a (weak) cluster for the eigenvalues of {An}n. It is then clear that the 
symbol f provides a ‘compact’ and a quite accurate description of the spectrum of the 
matrices An for n large enough. Relation (45) has the same meaning when talking of the 
singular values of An and by replacing f with |f |.

A d-level (d ≥ 1 integer) GLT matrix-sequence {An}n is nothing more than a matrix–
sequence endowed with a measurable function κ : [0, 1]d × [−π, π]d → C called symbol
characterizing the distributional properties of its singular values, and, under certain 
hypothesis, of its spectrum. For a complete overview of the theory we refer to the books [9,
10], while here we recall only the operative features we need for our restricted setting. 
Since we have already introduced the multilevel Toeplitz and diagonal matrix-sequences, 
the only other class we need is that of zero–distributed matrix-sequences, whose definition 
depends on Definition 1.

Definition 2. [Zero–distributed sequence] A matrix-sequence {Zn}n such that {Zn}n ∼σ

0 is referred to as a zero-distributed sequence. In other words, {Zn}n is zero-distributed 
if and only if
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lim
n→∞

1
n

n∑
i=1

F (σi(Zn)) = F (0), ∀F ∈ Cc(R).

In a different language, more common in the context of preconditioning and of the 
convergence analysis of (preconditioned) Krylov methods, a zero–distributed matrix-
sequence is a sequence of matrices showing a (weak) clustering at zero in the sense of 
the singular values (see e.g. [9,21] and references therein).

With the notation introduced in Section 1.2 regarding the Schatten p-norm, with 
‖ · ‖S,∞ = ‖ · ‖2 the spectral norm and with ‖ · ‖S,1 the trace norm (i.e. the sum of all 
singular values), the following result holds true [9].

Theorem 3.

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If {An}n ∼GLT κ and the matrices An are 
Hermitian then {An}n ∼λ κ.

GLT 2. If {An}n ∼GLT κ and An = Xn + Yn, where
• every Xn is Hermitian,
• ‖Xn‖S,∞, ‖Yn‖S,∞ ≤ C for some constant C independent of n,
• n−1‖Yn‖S,1 → 0,
then {An}n ∼λ κ.

GLT 3. We have
• {Tn(f)}n ∼GLT κ(x, s) = f(s) if f ∈ L1([−π, π]d),
• {Dn(a)}n ∼GLT κ(x, s) = a(x) if a : [0, 1]d → C is Riemann-integrable,
• {Zn}n ∼GLT κ(x, s) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then
• {A∗

n}n ∼GLT κ,
• {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ.

GLT 5. If {An}n ∼GLT κ and κ �= 0 a.e. then {A†
n}n ∼GLT κ−1.

A more general and more advanced result regarding item GLT2 can be found in [2,13], 
even if for our purposes item GLT2 is sufficient in our setting.

3.3. Coco–Russo method in 2D

We consider the following Dirichlet problem:
{
−uxx − uyy = f, in Ω,

u = g, in ∂Ω,
(47)

where Ω ⊆ [0, 1]2, f, g : Ω → R are assigned functions and u : Ω → R is the unknown 
function. We will consider several geometries in the following sections: rectangular, L-
shaped and circular domains.
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Fig. 4. Discretization of the 2D domain. Full circles are the n2 inside grid points, while full squares are the 
n ghost points. Linear extrapolation is used to define the ghost values ui,0 from ui,1 and the boundary 
values g(xi, 0), for i = 1, . . . , n.

3.3.1. Rectangular domain
We consider Ω = [0, 1] × [a, 1] ⊂ [0, 1]2. The square [0, 1]2 is discretized through a 

uniform Cartesian grid with (n +2)2 grid points (xi, yj) = (i h, j h), for i, j = 0, . . . , n +1, 
where h = 1/(n + 1). As in the 1D case, let 0 < a < h and call ϑS = (y1 − a)/h (see 
Fig. 4). The subscript S stands for south, since the boundary y = a is the bottom side 
of the domain. A similar approach can be followed in the other cases.

The elliptic equation −Δu = f of problem (47) is discretized by central finite difference 
on internal grid points, with eliminated boundary conditions on the boundaries x = 0, 
x = 1 and y = 1. Then, for 2 ≤ i ≤ n − 1 and 1 ≤ j ≤ n − 1 we have:

4uij − (ui−1 j + ui+1 j + ui j−1 + ui j+1)
h2 = fij , (48)

while for i = 1 and j = 1, . . . , n − 1 we eliminate the boundary condition on x = 0:

4u1 j − (u2 j + u1 j−1 + u1 j+1)
h2 = fij + g(0, yj)

h2 . (49)

Similarly, we eliminate the boundary conditions on x = 1 and y = 1. The boundary 
condition on y = a is discretized by linear interpolation:

ϑSui,0 + (1 − ϑS)ui,1 = g(xi, a), for i = 1, . . . , n.

Overall, there are n2 inside grid points (xi, yj) for i, j = 1, . . . , n and n ghost points for 
(xi, 0) for i = 1 . . . , n.

Using a total lexicographical order, the matrix of coefficients that we obtain is a 2-level 
matrix with the following structure:
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Ah =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϑSIn | (1 − ϑS)In | | | |
B | G | B | | |

| B | G | B | |

| | . . . | . . . | . . . |
| | | B | G | B
| | | | B | G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)

where

ϑSIn ∈ Rn×n,

(1 − ϑS)In ∈ Rn×n,

B = − 1
h2 In ∈ Rn×n,

and

G = 1
h2

⎛
⎜⎜⎜⎜⎝

4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4

⎞
⎟⎟⎟⎟⎠ ∈ Rn×n,

Ah has n blocks of G, so Ah ∈ Rn(n+1)×n(n+1).

3.3.2. L-shaped domain
We now consider the case of an L-shaped domain Ω ⊂ [0, 1]2 (Fig. 5). The square 

[0, 1]2 is discretized as in the previous case. Let 0 < ax, ay < h, 1 − h < cx, cy < 1, and 
ixh < bx < (ix + 1)h, jyh < by < (jy + 1)h for some ix, jy such that 0 < ix, jy < n + 1. 
The number of inside and ghost points depends on the position of the extremes bx and by
in the domain, in particular, we denote with ΩI the set of inside points and with ΩG the 
set of ghost points. Similar to the rectangular case, by discretizing the elliptic problem 
we obtain a linear system of |ΩI | + |ΩG| equations and |ΩI | + |ΩG| unknowns. The |ΩI |
equations are obtained discretizing the elliptic equation on the inside points:

−ui,j−1 − ui,j+1 + 4ui,j − ui−1,j − ui+1,j

h2 = fi,j , (i, j) : (xi, yj) ∈ ΩI

The |ΩG| equations for the ghost points are obtained from the discretization of the 
boundary conditions on y = ay, y = by, y = cy, x = ax, x = bx and x = cx by linear 
interpolations:

ϑSui,0 + (1 − ϑS)ui,1 = g(xi, ay), i = 1, . . . , n,

ϑN1ui,n+1 + (1 − ϑN1)ui,n = g(xi, cy), i = 1, . . . , ix,
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Fig. 5. Discretization of the L-shaped domain (Section 3.3.2). The black dots are the inside grid points, 
while the red dots are the ghost grid points.

ϑN2ui,jy+1 + (1 − ϑN2)ui,jy = g(xi, by), i = ix + 2, . . . , n,

ϑWu0,j + (1 − ϑW)u1,j = g(ax, yj), j = 1, . . . , n,

ϑE1un+1,j + (1 − ϑE1)un,j = g(cx, yj), j = 1, . . . , jy,

ϑE2uix+1,j + (1 − ϑE2)uix,j = g(bx, yj), j = jy + 2, . . . , n,

where ϑS = y1−ay

h , ϑN1 = cy−yn

h , ϑN2 = by−yjy

h , ϑW = x1−ax

h , ϑE1 = cx−xn

h , and 
ϑE2 = bx−xix

h . The ghost point at the corner (red circle in Fig. 5) of the domain is an 
exception, as it belongs to the stencil of two different inside points and for which the 
discretized equation becomes:

(ϑE2 +ϑN2)uix+1,jy+1 +(1−ϑE2)uix,jy+1 +(1−ϑN2)uix+1,jy = g(bx, yjy+1)+g(xix+1, by).

Using a total lexicographical order the matrix Ah is a block matrix with the following 
structure:
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Ah =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϑSIn IS
B̃1 G1 B1

B1 G1 B1
. . . . . . . . .

B1 G1 B1

B1 G1 B∗
1

BG1 BG2 BG3

B∗
2 G2 B2

B2 G2 B2
. . . . . . . . .

B2 G2 B̃2

IN1 ϑN1Inx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(|ΩI |+|ΩG|)×(|ΩI |+|ΩG|),

where, denoting with 0a a zero column vector of size a, 0t

b a zero row vector of size b, 
0c,d a zero matrix with c rows and d columns, nx the number of ghost points in the top 
boundary, we have:

ϑSIn ∈ Rn×n, ϑN1Inx
∈ Rnx×nx ,

IS =
(

0n (1 − ϑS)In 0n
)
∈ Rn×(n+2),

IN1 =
(

0nx
(1 − ϑN1)Inx

0nx

)
∈ Rnx×(nx+2),

B̃1 =

⎛
⎜⎝ 0t

n

− 1
h2 In
0t

n

⎞
⎟⎠ ∈ R(n+2)×n, B̃2 =

⎛
⎜⎝ 0t

nx

− 1
h2 Inx

0t

nx

⎞
⎟⎠ ∈ R(nx+2)×nx ,

B1 =

⎛
⎜⎝ 0 0t

n 0
0n − 1

h2 In 0n
0 0t

n 0

⎞
⎟⎠ ∈ R(n+2)×(n+2), B2 =

⎛
⎜⎝ 0 0t

nx
0

0nx
− 1

h2 Inx
0nx

0 0t

nx
0

⎞
⎟⎠ ∈ R(nx+2)×(nx+2),

B∗
1 =

⎛
⎜⎝ 0 0t

n

0n − 1
h2 In

0 0t

n

⎞
⎟⎠ ∈ R(n+2)×(n+1), B∗

2 =

⎛
⎜⎝ 0t

nx
0t

n+1−nx

− 1
h2 Inx

0nx,n+1−nx

0t

nx
0t

n+1−nx

⎞
⎟⎠ ∈ R(nx+2)×(n+1),

G1 =

⎛
⎜⎜⎜⎜⎝

ϑW 1 − ϑW

− 1
h2

4
h2 − 1

h2

. . . . . . . . .
− 1

h2
4
h2 − 1

h2

⎞
⎟⎟⎟⎟⎠ ∈ R(n+2)×(n+2),
1 − ϑE1 ϑE1
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G2 =

⎛
⎜⎜⎜⎜⎝

ϑW 1 − ϑW

− 1
h2

4
h2 − 1

h2

. . . . . . . . .
− 1

h2
4
h2 − 1

h2

1 − ϑE2 ϑE2

⎞
⎟⎟⎟⎟⎠ ∈ R(nx+2)×(nx+2),

BG1 =

⎛
⎜⎝ 0 0t

n 0
0nx

− 1
h2 Inx

0nx,n+1−nx

0n−nx
0n−nx,nx

(1 − ϑN2)In+1−nx

⎞
⎟⎠ ∈ R(n+1)×(n+2),

BG3 =

⎛
⎜⎝ 0 0t

nx
0

0nx
− 1

h2 Inx
0nx

0n−nx
0n−nx,nx

0n−nx

⎞
⎟⎠ ∈ R(n+1)×(n+1),

BG2 =
(

A 0nx+1,n−nx−1
B C

)
∈ R(n+1)×(n+1),

with

A =

⎛
⎜⎜⎜⎜⎝

ϑW 1 − ϑW

− 1
h2

4
h2 − 1

h2

. . . . . . . . .
− 1

h2
4
h2 − 1

h2

⎞
⎟⎟⎟⎟⎠ ∈ R(nx+1)×(nx+2),

B =
(

0t

nx
1 − ϑE2 ϑE2 + ϑN2

0n−nx−1,nx
0n−nx−1,2

)
∈ R(n−nx)×(nx+2),

C =
(

0t

n−nx−1
ϑN2In−nx−1

)
∈ R(n−nx)×(n−nx−1).

In particular, the matrices G1 and G2 appear in Ah, respectively, ny and n − ny − 1
times, where ny is the number of ghost points on the side E1 of the L-shaped domain.

3.3.3. Circular domain
Finally, we consider the case of a circular domain Ω ⊂ [0, 1]2 (Fig. 6). The reader 

can find more details on the discretization of the elliptic problem on general shapes 
in [7]. After determining the inside and ghost points, the discretization of the elliptic 
equation on the inside points is carried out as in the case of the L-shaped domain. The 
|ΩG| equations for the ghost points are obtained from the discretization of the boundary 
conditions imposed on the boundary. Therefore, for each ghost point, we determine the 
orthogonal projection P = (xP , yP ) on the boundary and impose the Dirichlet boundary 
condition on P by bilinear interpolation (Fig. 7):

ϑxϑyui,j−1 + (1 − ϑx)ϑyui+1,j−1 + ϑx(1 − ϑy)ui,j + (1 − ϑx)(1 − ϑy)ui+1,j = g(xP , yP ),
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Fig. 6. Discretization of the circular domain (Section 3.3.3). The black dots are the inside grid points, the 
red dots are the ghost grid points, the blue circles are the projection of each ghost point on the boundary. 
In these points we impose the boundary conditions.

Fig. 7. Bilinear interpolation on the point P.

where ϑx = xi+1−xP

h and ϑy = yP−yj

h .

3.4. Spectral analysis in 1D and in 2D

Having in mind the notations of Subsection 3.1, the matrix Ah can be decomposed in 
the following way
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Ah = 1
h2 [Tn(f) + Xn] (51)

where n = (n + 1, n), the size of Ah is N(n) = n(n + 1),

Tn(f) = Tn+1(2 − 2 cos(s)) ⊗ In + In+1 ⊗ Tn(2 − 2 cos(s)), (52)

Tk(2 − 2 cos(s)) is a Toeplitz matrix, already used in the 1D case in Section 2, and

Xn =
[
Tn

(
h2ϑS − 4 + 2 cos(s)

)
Tn

(
h2(1 − ϑS) + 1

)
0n×n(n−1)

0n2×n 0n2×n 0n2×n(n−1)

]
. (53)

Of course, taking into account relation (44) with d = 2 and (52), the function f is 
bivariate and can be written as

f(s1, s2) = 4 − 2 cos(s1) − 2 cos(s2).

Therefore by using item GLT1 in Theorem 3 we have

{Tn(f)} ∼GLT f

in the sense of Subsection 3.2, so that

{Tn(f)} ∼σ f,

according to Definition 1. Furthermore, since Tn(f) is Hermitian (in fact real symmetric) 
for any choice of the partial sizes, thanks to item GLT1, we deduce {Tn(f)} ∼λ f as 
well.

Now, taking into account Definition 2, it is easy to see that {Xn} is a zero–distributed 
matrix-sequence, simply because its rank is bounded by n and hence the number of 
nonzero singular values is at most n = o(n(n + 1)) with N(n) = n(n + 1) being the size
of Xn. Therefore by item GLT3

{Xn} ∼GLT 0,

so that {h2Ah} ∼GLT f by item GLT4, since both {Tn(f)}, {Xn} are GLT matrix-
sequences and h2Ah = Tn(f) + Xn for any choice of the partial sizes. Then, again by 
item GLT1 we deduce

{h2Ah} ∼σ f.

However, Xn is non-Hermitian and therefore we cannot apply item GLT1 for concluding 
{h2Ah} ∼λ f . However, this can be done by using item GLT2, as proven in the following 
lines both in 1D and in 2D.
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Theorem 4. With the notations used so far in 1D we have

{h2Ah} ∼λ 2 − 2 cos(s), (54)

while in 2D we have

{h2Ah} ∼λ 4 − 2 cos(s1) − 2 cos(s2). (55)

Proof. In 1D we recall the identity

h2Ah = Tn(2 − 2 cos(s)) + e1vT
h .

Since e1vT
h is a rank one matrix, it has a unique nonzero singular value so that

‖e1vT
h ‖S,1 = ‖e1vT

h ‖S,∞ = ‖vT
h ‖2,

and hence a trivial computation shows that

lim
n→∞

‖e1vT
h ‖S,1
n

= 0.

Therefore, by item GLT2, we infer that both the GLT matrix-sequences {h2Ah}, {Tn(2 −
2 cos(s))} share the same eigenvalue distribution function 2 − 2 cos(s), which is the GLT 
symbol, so that (54) is proven.

In 2D, according to the 2-level notation, we remind that

h2Ah = Tn(4 − 2 cos(s1) − 2 cos(s2)) + Xn, n = (n + 1, n).

Now in the light of (53) we deduce that

‖Xn‖S,1 ≤ ‖Tn

(
h2ϑS − 4 + 2 cos(s)

)
‖S,1 + ‖Tn

(
h2(1 − ϑS) + 1

)
‖S,1.

Now, using the fact that 2π‖Tn(g)‖S,1 ≤ n 
∫
[−π,π] |g(s)| ds (see [20]), we obtain

‖Xn‖S,1 ≤ n2π
∫

[−π,π]

|h2ϑS − 4 + 2 cos(s)| ds + n(h2(1 − ϑS) + 1)

and, as in the 1D setting, if we divide by the size of Xn i.e. n(n + 1) we find

lim
n→∞

‖Xn‖S,1
n(n + 1) = 0.

Consequently, again by item GLT2, we deduce that both the GLT matrix-sequences 
{h2Ah}, {Tn(4 − 2 cos(s1) − 2 cos(s2))} share the same eigenvalue distribution function 
4 − 2 cos(s1) − 2 cos(s2), which is the GLT symbol, and hence (55) is proven. •
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The previous result shows a spectral distribution as nonnegative functions both in 1D
and 2D. More precisely, looking at the range of the spectral symbols, we deduce that 
[0, 4] is a cluster for the eigenvalues of {h2Ah} in 1D, while [0, 8] is a cluster for the 
eigenvalues of {h2Ah} in 2D.

This is nontrivial (and somehow unexpected), given the fact that the related correc-
tions are non-Hermitian and possess only strictly negative eigenvalues and zero eigen-
values.

3.5. Numerical results and discussion in a general setting

We consider the more general case of a variable coefficient case

−∇ · (a∇u) = f in Ω (56)

where Ω is a segment in 1D and a rectangular, L-shaped or circular domain in 2D
(described in Sections 3.3.1, 3.3.2 and 3.3.3, respectively). Eq. (56) is discretized by the 
usual central finite difference method. In particular, the 1D discretization (3) becomes

−aLui−1 + (aL + aR)ui − aRui+1

h2 = fi for i = 1, . . . , n− 1,

where aL = (ai−1 + ai)/2 and aR = (ai+1 + ai)/2, while the 2D discretization (48)
becomes

(aL + aR + aB + aT )uij − aL ui−1 j − aR ui+1 j − aB ui j−1 − aT ui j+1

h2 = fij .

where aL = (ai−1,j + aij)/2, aR = (ai+1,j + aij)/2, aB = (ai,j−1 + aij)/2 and aT =
(ai,j+1 + aij)/2. In the 1D setting we consider the variable coercive coefficient a(x) =
1 + x2. We construct the matrices h2Ah from (7) for several values of h and we denote 
by N the matrix size. We plot in the left panel of Fig. 8 the eigenvalues of the matrices 
and of the function a(x)(2 − 2 cos(s)) sampled in m equispaced points in x on [0, 1] and 
in m equispaced points in s on [0, π], with m2 much larger than N : both sampling and 
eigenvalues sorted in nondecreasing way. When dealing with the 2D cases we consider 
the coercive variable coefficient a(x, y) = 1 +x2 + y. We construct the matrices h2Ah for 
different values of h and we denote by N the matrix size. We plot in the right panel of 
Fig. 8 the eigenvalues of the matrix for the rectangular case described in Section 3.3.1
and of the function a(x, y)(4 −2 cos(s)) sampled in m = m1, m2 equispaced points in x, y
on [0, 1] and in m = m1, m2 equispaced points in s1, s2 on [0, π], with m4 much larger 
than N : both sampling and eigenvalues sorted in nondecreasing way.

We repeat the previous procedure on a L-shaped (left panel of Fig. 9) domain in 2D
and on a curved domain in 2D (a circle, centered in (0.5, 0.5) with radius r = 0.35, right 
panel of Fig. 9). While the values of h are the same for all 2D tests (right panel of Fig. 8
and both panels of Fig. 9), the values of N differ due to the different sizes of the domains, 
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Fig. 8. GLT symbols (yellow line) and eigenvalues of h2Ah (dots) for different values of h and matrix sizes N
(Section 3.5). Left: 1D problem in Ω = [a, b] (Eq. (7) and Fig. 1). Right: 2D problem (56) on a rectangular 
domain (Section 3.3.1).

Fig. 9. GLT symbols (yellow line) and eigenvalues of h2Ah (dots) for different values of h and matrix sizes 
N (Section 3.5). Left: 2D problem (56) on a L-shaped domain (Section 3.3.2). Right: 2D problem (56) on 
a circular domain (Section 3.3.3).

since it is the sum of internal and ghost points only and does not include the external 
points. In all the previous situations, we observe a good matching (see Figs. 8 and 9) 
between the global eigenvalue distribution of {h2Ah} and the GLT symbol

a(x)(2 − 2 cos(s)), x ∈ [0, 1], s ∈ [0, π], (57)

in 1D and

a(x, y)(4 − 2 cos(s1) − 2 cos(s2)), x, y ∈ Ω, s1, s2 ∈ [0, π], (58)
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with Ω being a 2D domain. Since the rows related to ghost points have a different scaling 
(see the beginning of Section 2 in 1D and, for example, equation (50) in 2D (rectangular 
case), we observe that NG eigenvalues of h2Ah scale with h2, where NG is the num-
ber of ghost points. We call them ghost eigenvalues, while the remaining eigenvalues 
are called internal eigenvalues. Due to the non-decreasing order, the ghost eigenvalues 
are the smallest ones and their contribution to the spectrum is asymptotically negli-
gible, since NG/N → 0 as N → ∞. To better understanding the contribution of the 
ghost eigenvalues, we run an additional test in a rectangular domain similar to Fig. 4, 
with the difference that we place ghost points on all sides of the rectangle. We denote 
by ϑS , ϑN , ϑW and ϑE the values of ϑ on the bottom, top, left and right side, re-
spectively. We choose four different combinations of (ϑS, ϑN , ϑW , ϑE): (0.1, 0.1, 0.1, 0.1), 
(0.5, 0.5, 0.5, 0.5), (0.8, 0.8, 0.8, 0.8) and (0.1, 0.5, 0.8, 1). For each combination we plot in 
Fig. 10 the GLT symbol in yellow and the eigenvalues (blue dots for internal eigenvalues 
and red dots for ghost eigenvalues, upper-left 2 ×2 plots). In addition, due to the different 
scaling described above, we multiply the ghost eigenvalues by h−2 (scaled eigenvalues) 
and re-order all eigenvalues in a non-decreasing order (upper-right 2 × 2 plots). With 
this smart normalization choice, as well evident in Fig. 10, the agreement between the 
eigenvalues and the GLT symbol becomes more evident. Of course, when considering the 
internal eigenvalues only, the agreement with GLT symbol is, as expected, even stronger 
(lower-right 2 × 2 plots). Finally, we plot the scaled eigenvalues only (lower-left 2 × 2
plots), observing that they are bounded away from zero independently of h. From a 
theoretical point of view, it should be noticed that the derivations for obtaining (57)
and (58) are essentially the same as in Theorem 4, using the whole GLT machinery. 
The idea behind was presented in 2D in [18] and formalized under the notion of reduced 
GLT matrix-sequences in [19]. Very recently Barbarino gave a systematic treatment of 
the reduced GLT matrix-sequences and the tools introduced in [1] are exactly those 
needed for proving formally that the symbols in (57) and (58) are simultaneously the 
GLT and spectral symbols, for the various considered cases, even if the involved matri-
ces are globally non symmetric. In the present setting the key observation is that the 
rows responsible for the non symmetry show a cardinality of O(1) = o(N) in 1D, of 
O(N1/2) = o(N) in 2D, and of O(N (d−1)/d) = o(N) for a generic dimensionality d, with 
N indicating the actual matrix-size. Since the related corrections have bounded spectral 
norm independent of the finesse parameter, the use of item GLT2 allows to conclude also 
the spectral distribution, exactly as in Theorem 4.

4. Conclusions

We have provided spectral and norm estimates for matrix-sequences arising from the 
approximation of the Laplacian via the Coco–Russo method and we have validated them 
with a few numerical experiments. The analysis has involved several tools from matrix 
theory and in particular from the setting of Toeplitz operators and Generalized Locally 
Toeplitz matrix-sequences. A formal proof in the setting involving variable coefficients 
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Fig. 10. GLT symbols (yellow line) and internal (blue dots) and ghost (red dots) eigenvalues of h2Ah for 
a rectangular domain with ghost points on all fours sides (Section 3.5). The figure is divided in four 
subplots: ghost and internal eigenvalues (upper-left), scaled ghost and internal eigenvalues (upper-right), 
scaled ghost eigenvalues (lower-left), internal eigenvalues (lower-right). Each of these subplots is composed 
by 2 × 2 plots related to four combinations of (ϑS, ϑN, ϑW, ϑE): (0.1, 0.1, 0.1, 0.1) (upper-left plots of each 
subplot), (0.5, 0.5, 0.5, 0.5) (upper-right plots of each subplot), (0.8, 0.8, 0.8, 0.8) (lower-left plots of each 
subplot) and (0.1, 0.5, 0.8, 1) (lower-right plots of each subplot).

and non square domains has not been given in detail in Section 3.5, but the numerics 
strongly support, as expected, the conclusions. However, as previously observed, both 
cases of variable coefficients and non square domains can be handled from a spectral view 
point using the full power of the GLT machinery, as already indicated in Section 3.5, 
where the main proof steps have been mentioned. In particular, when considering variable 
coefficients, the use of the diagonal sampling matrix-sequences allows to remain in GLT 
∗-algebra, while the case of non square domains can be treated using the reduced GLT 
theory (see page 398-399 in [18], Subsection 3.1.4 in [19], and the meticulous study in 
[1]).

More involved is the case of the norm estimates of the inverse even in the case of a 
square in 2D. Below we present an idea in this direction.
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Actually the decomposition (53) suggests, as in the 1D setting, the use of the Sherman–
Morrison–Woodbury formula: we can set A = Tn(f), Xn = UCV , n = (n + 1, n), so 
that

U =
[

In
0n2×n

]
∈ Rn(n+1)×n

C = In ∈ Rn×n

V =
[
Tn

(
h2ϑS − 4 + 2 cos(s)

)
|Tn

(
h2(1 − ϑS) + 1

)
|0n×n(n−1)

]
∈ Rn×n(n+1)

= [V1|V2|0n×n(n−1)].

Hence

(A + UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

and thus A−1
h = h2(A + UCV )−1 = h2 (A−1 −A−1U(C−1 + V A−1U)−1V A−1), with 

C−1 = C = In.
The previous reasoning can be useful and promising, since the entries of the inverse of 

A = Tn(f), f(s1, s2) = 4 − 2 cos(s1) − 2 cos(s2), are explicitly known (see [15]). However 
technical difficulties remain due to the complicate expression of the entries of T−1

n (f): 
this task will be the subject of future investigations.
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