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Abstract
The aim of this work is to apply a semi-implicit (SI) strategy in an implicit-explicit (IMEX)
Runge–Kutta (RK) setting introduced in Boscarino et al. (J Sci Comput 68:975–1001, 2016)
to a sequence of 1D time-dependent partial differential equations (PDEs) with high order
spatial derivatives. This strategy gives a great flexibility to treat these equations, and allows the
constructionof simple linearly implicit schemeswithout anyNewton’s iteration. Furthermore,
the SI IMEX-RK schemes so designed does not need any severe time step restriction that
usually one has using explicit methods for the stability, i.e. �t = O(�tk) for the kth (k ≥ 2)
order PDEs. For the space discretization, this strategy is combined with finite difference
schemes.We illustrate the effectiveness of the schemes with many applications to dissipative,
dispersive and biharmonic-type equations. Numerical experiments show that the proposed
schemes are stable and can achieve optimal orders of accuracy.

Keywords Time dependent partial differential equations · Semi-implicit (SI) strategy ·
Implicit–Explicit (IMEX) Runge–Kutta methods · Finite difference schemes

Mathematics Subject Classification 35G25 · 65M06 · 65M20 · 65L05 · 65L06

1 Introduction

Many time-dependent PDEs which arise in physics or engineering involve the computation
of high order spatial derivatives. In this paper, we are interested in proposing a semi-implicit
(SI) approach with an IMEX RK setting for solving several types of PDEs with high order
spatial derivatives.

We consider a sequence of such PDEs with increasingly higher order derivatives. To
simplify the presentation, the PDEs examples below are only one-dimensional equations.

• The second order diffusion problem

ut−(a(u)ux )x = 0, (1)
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where a(u) ≥ 0 is smooth and bounded and it is a PDE with second order derivatives.
Many PDE of the form (1) which arise in physics or engineering, usually involve the
computation of nonlinear diffusion terms, such as: the miscible displacement in porous
media [1] which is widely used in the exploration of underground water, oil, and gas,
the carburizing model [2] which is derived in the chemical heat treatment in mechanical
industry, the high-field model in semiconductor device simulations [3, 4], and so on.
In this paper we also consider one-dimensional version of the convection–diffusion
equation

ut + f (u)x − (a(u)ux )x = 0. (2)

• The dispersive equation [5, 6] with third derivatives

ut + f (u)x + (r ′(u)g(r(u)x )x )x = 0, (3)

where f (u), r(u) and g(u) are arbitrary (smooth) functions. The Korteweg-de Vries
(KdV) equation [7] which is widely studied in fluid dynamics and plasma physics, is
a special case of Eq. (3) for the choice of the functions f (u) = u2, g(u) = u and
r(u) = u. The KdV-type equations play an important role in the long-term evolution of
initial data [8], are often used to model the propagation of waves in a variety of nonlinear
and dispersive media [9].
Another choice of the functions f (u) = u3, r(u) = u2 and g(u) = u/2, gives the so
called general KdV equation [6]

ut + (u3)x + (u(u2xx ))x = 0. (4)

Equation (4) is known to have compacton solutions of the form:

u(x, t) =
{√

2λ cos

(
x − λt

2

)
, |x − λt | ≤ π,

0, otherwise.
(5)

Furthermore, Eq. (4) is a particular case of the nonlinear dispersive equation [10]

ut + (um)x + (u(unxx ))x = 0, m > 1, m = n + 1, (6)

with m = 3 and n = 2. In the numerical tests section we will consider Eq. (6) with
m = 3, n = 2 and m = 2, n = 1.
Note that in general, the prototype of nonlinear dispersive equations is the K (m; n)

Eq. (6), introduced by Rosenau and Hyman in [11]. For certain values of m and n, the
K (m; n) equation has solitary waves which are compactly supported. These structures,
the so-called compactons, have several things in common with soliton solutions of the
Korteweg-de Vries (KdV) equation where a nonlinear dispersion term replaces the linear
dispersion term in the KdV equation.

• The fourth order diffusion equation

ut + (a(ux )uxx )xx = 0, (7)

is a special biharmonic-type equation, where the nonlinearity could be more general but
we just present (7) as an example. In this paper we will also concentrate on the one
dimensional case biharmonic type equation

ut + f (u)x + (a(ux )uxx )xx = 0. (8)

The fourth order diffusion problem has wide applications in the modeling of thin beams
and plates, strain gradient elasticity, and phase separation in binary mixtures [12].
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For all these equations suitable initial conditions and boundary conditions will be set.
It is well known that the time discretization is a very important issue for time dependent

PDEs. For the k-th (k ≥ 2) order PDEs, explicit methods always suffer from stringent and
severe time step restriction, i.e., �t = O(�xk), for the stability where �t is the time step
and �x is the mesh size. This time step is too small, resulting in excessive computational
cost and rendering the explicit schemes impractical. On the other hand, implicit methods can
overcome the drastic time step size restriction imposed by the stability condition for explicit
schemes. However, nonlinear algebraic system must be solved (e.g. by Newton iteration) at
each time step.

To cope with both the shortcomings of the explicit and implicit methods, one possible
approach is to use implicit-explicit (IMEX) methods. These methods have been proposed
and studied by many authors, for example [13–16]. IMEX schemes have been successfully
applied to various problems, such as convection–diffusion–reaction systems [13, 16, 17],
hyperbolic systems with relaxation [15, 18], and collisional kinetic equations [19].

In the case of evolutionary partial differential equations with higher-order derivatives,
IMEX methods can be used to treat the different derivative terms differently. Specifically,
the higher-order derivative terms are treated implicitly, while the rest of the terms are treated
explicitly. Using IMEX methods can help to alleviate the stringent time step restriction and
reduce the difficulty of solving algebraic equations when the higher-order derivative terms
are linear. However, for equations with nonlinear high derivative terms, IMEX methods may
be much more expensive than explicit methods because nonlinear algebraic system must be
solved (e.g. byNewton iteration) at each time step. In order to overcome this constraint in [20]
the authors introduced the explicit-implicit-null (EIN) time-marching method. This method
consists to add and subtract a sufficiently large linear highest derivative term on one side of
the considered equation. After that, the linear highest derivative term is treated implicitly,
while the remaining term is treated explicitly using an IMEX R-K setting.

We point out that the technique by adding and subtracting the same quantity on one side
of the considered equation has been used in several papers for treating hyperbolic system
with a stiff source term. For example in the paper [21], the authors for solving numerically
the Bolzmann kinetic equation, due to the nonlinear stiff collision (source) term, a penal-
ization technique have been proposed. This technique consists to penalize the Bolzmann
collision operator by adding and subtracting the BGK operator and to discretize in time by
an implicit-explicit approach so that the general Boltzmann operator can be handled as easily
as the much simpler BGK operator. Another example has been introduced in the context
of hyperbolic systems with stiff relaxation in the so-called diffusion limit. Here, standard
IMEX-RK schemes are useless because such schemes become consistent discretization of
the limit diffusive relaxed system, but suffer from the parabolic CFL restriction. In [22–24]
this drawback was overcame by a penalization method, which was based on the addition of
two opposite diffusive terms in the limit of large stiffness so that the limit scheme becomes
an implicit scheme, unconditionally stable, for the limit diffusive relaxed system.

Generally if the leading high order spatial derivative term in (2), (3) and (8) is linear, e.g.
for the Eq. (2):

ut + f (u)x = duxx , (9)

Eq. (3):

ut + f (u)x = −duxxx , (10)
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and Eq. (8):

ut + f (u)x = −duxxxx , (11)

with d > 0, a classical IMEX-RK method can be used, where the convection term is treat
explicitly and the leading high order term implicitly. From a stability point of view we know
that for the convection–diffusion and convection-biharmonic type equations (9), (11) if d is
large enough the IMEX scheme is unconditionally stable, i.e., there exist a positive constant
τ0 independent of the spatial mesh size�x , such that if�t ≤ τ0, then the solution is strongly
L2 stable, [17, 25, 26]. If d is very small and the mesh size �x is not too small, then the
scheme is stable under the usual CFL condition for the explicit time stepping of the convection
equation, i.e. �t ≤ C�x , where C is the Courant number, [13, 16, 17, 25, 26]. Basically, in
practice we can use the stability condition �t ≤ max(C�x, τ0).

For the convection–dispersion type equation (10), the IMEX scheme is strongly stable
under the classical CFL condition �t ≤ C�x , for hyperbolic conservation laws, see [20,
27].Although this analysis is only performed on the linear equations (9)–(10)–(11) containing
the highest derivatives, numerical experiments show that the stability criterions appear to be
also valid for nonlinear equations (2), (3), and (8) as shown by the numerical experiments in
Sect. 3.

In this paper we discuss an alternative approach to [20] for solving time dependent PDEs
with high order spatial derivatives by using high order IMEX-RK methods in a much more
general context than usually found in the literature, obtaining very effective schemes. The
basic idea is to propose a new strategy, called semi-implicit (SI), based on IMEXRunge–Kutta
methods (SI-IMEX-RK), for the construction of a class of schemes for the solution of Eqs.
(1), (2), (6) (7) and (8). Furthermore, in the literature, IMEX-RK schemes have been already
used in aSI-IMEX-RKstrategy for solving: relaxation problems containing degenerate and/or
fully nonlinear diffusion terms [28], a class of degenerate convection–diffusion problems [29,
30], fourth order nonlinear degenerate diffusion equation and surface diffusion of graph, [23].

The above strategy is really convenient and useful in the case in which we have a linearly
implicit evaluation for the unknown variable in the term involving high order spatial deriva-
tives, as in Eqs. (1), (2), (6), (7) and (8). The linearly implicit evaluation is the key to the
methods working for our problems. However, in other cases for time-dependent PDEs with
fully nonlinear high order spatial derivatives, as for example Eq. (3), the approach proposed
in [20] is more suitable.

In order to apply the SI-IMEX-RK idea, we take the nonlinear diffusion equation (1) as
an example to introduce the approach in detail. Assume that the semi-discrete formulation
of (1) can be written as

dU (t)

dt
= 1

�x2
B(U (t))U (t), (12)

whereU (t) = (U1(t),U2(t), . . . ,UM (t))T , withUi (t) is the approximate solution at spatial
position xi for i = 1, . . . , M , i.e., Ui (t) ≈ (u(xi , t), for i = 1, . . . , M , and uniform grid
spacing�xi = xi+1−xi .B ∈ RM×M is a tridiagonalmatrix arising from the discretization of
(a(u)ux )x . Here we emphasize that the matrix B inherits its discontinuous dependence onU
from that ofa(u)onu. TheSI-IMEX-RKapproach is based in choosing the timediscretization
by an implicit and explicit RK scheme, respectively, of an IMEXpair of schemes accordingly.
Roughly speaking, in the productB(U )U the implicit treatment is applied only to that second
factorU , while the nonlinear term B(U ) is treated explicitly. This approach does not require
solutions for nonlinear systems since the new methods require only solving a discretized
diffusion equation with a linear diffusion term in which the matrix B(U ) is given.
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An advantage of this approach with respect to [20] is that we can use different types of
IMEX-RK schemes already exiting in the literature. In [20] the drawback in the technique
of adding and subtracting the same term on one side of the considered equation is that the
constant that stabilizes the scheme depends on the specific type of IMEXRKmethod selected.
We will show several examples of equations of the form (1), (2), (6), (7) and (8) that can be
efficiently solved with the SI-IMEX-RK approach, choosing different IMEX RK tableaux.

In this paper, we coupled high order finite difference schemes with high-order SI-IMEX-
RK time discretization for solving diffusion (1), (2), dispersive (6) and fourth order diffusion
equations (7), (8), respectively.We choose the finite difference schemes to discretize the space
because of its simplicity in design and coding. However, other type of space discretization
can be considered as local discontinuous Galerkin schemes [31] with application to various
high order PDEs, [5, 6, 26, 32–35].

The organization of the paper is as follows. In Sect. 2 we present the numerical scheme
by the combination of a high order semi-implicit time discretization with a suitable spatial
discretization. Section3 shows a series of numerical experiments to evaluate the performance
of the proposed SI-IMEX-RK approach. Finally concluding remarks are given.

2 The Numerical Scheme

In this section, the strategy of numerical discretization is different from the traditionalmethod-
of-lines approach, since we first perform time discretization, after which we apply a suitable
space discretization. The feature of the scheme is the following: we design a SI-IMEX-RK
time discretization strategy, so that the scheme is stable with no stringent time stepping con-
straint and can be implemented in a semi-implicit manner [23, 28, 29] to enable effective and
efficient numerical implementations; meanwhile we adopt high order spatial discretization
strategy, so that the scheme can successfully solve the Eqs. (2), (6), (7) and (8), respectively.
Next we will present a first order semi-implicit temporal discretization applied to Eq. (12),
and then discuss high order extensions afterwards.

2.1 First Order Semi-implicit Temporal Discretization

It is known that in the one-dimensional case, discretizing Eq. (1) by coupling the classi-
cal explicit first order in time and second order in space method, the numerical scheme is

conditionally stable, with the size of the time step: �t = �x2/
(
2maxUn

j
(B(Un

j ))
)
.

Now, we couple the simplest first order semi-implicit scheme (forward-backward Euler
method) with centered scheme and show that the scheme is unconditionally stable. First we
approximate in space (1) at points halfway between the grid points x j ,

[(a(u)ux )]x j+1/2 ≈ a j+1/2
Uj+1(t) −Uj (t)

�x

with

a j+1/2 = a(Uj+1(t)) + a(Uj (t))

2
,

and the analogous approximation at x j−1/2. Differencing these then we get a centered
approximation to (1) at the grid point x j
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x j ≈ 1

�x

(
a j+1/2

Uj+1(t) −Uj (t)

�x
− a j−1/2

Uj (t) −Uj−1(t)

�x

)
=

1

�x2
(
a j+1/2Uj+1(t) − (a j+1/2 + a j−1/2)Ui (t) + a j−1/2Uj−1(t)

)
.

Then equation (1) can be written in the form (12), where the matrix B(U (t)) has the form⎡
⎢⎢⎢⎢⎢⎣

−(a1/2 + a3/2) a3/2
a3/2 −(a3/2 + a5/2) a5/2

. . .
. . .

. . .

aM−3/2 −(aM−3/2 + aM−1/2) aM−1/2

aM−1/2 −(aM−1/2 + aM+1/2)

⎤
⎥⎥⎥⎥⎥⎦

.

(13)

Now applying the first order SI scheme to (12) we get

Un+1 = Un + �t

�x2
B(Un)Un+1, (14)

where the numerical solution is given by

Un+1 =
(
I − �t

�x2
B(Un)

)−1

Un .

Then we state that this scheme is unconditionally stable, in the sense that ||Un || ≤ ||U 0|| for
all n and for any positive time-step �t > 0, which is guaranteed provided that the spectral
radius

ρ

((
I − �t

�x2
B(Un)

)−1
)

< 1. (15)

In order to guarantee inequality (15) we have to prove that the matrix B(Un) is nonsingular
and negative definite. The matrix (13) has the advantage of being symmetric, diagonally
dominant. Moreover, since a j+1/2, a j−1/2 > 0 for j = 1, . . . , M (as a > 0), the matrix (13)
is irreducible1 and then it can be shown that the matrix−B(Un) is nonsingular,2 and positive
definite3, [36–38]. This means that B(Un) is nonsingular and negative definite, i.e., all the
eigenvalues are negative, and then λ(I − �t

�x2
B(Un)) > 1. This confirms the statement.

Although this analysis is only performed on first order SI scheme, numerical experiments
in Sect. 3 demonstrate its validity for higher-order SI-IMEX-RK schemes as well.

2.2 High Order Semi-implicit Temporal Discretization

We introduce our proposed semi-implicit strategy for the time discretization in the framework
of high order IMEX-RKmethods. We emphasize that the following strategy avoid of solving
nonlinear equations required by a fully implicit scheme and avoid stringent time stepping
constraint required by an explicit one.

1 A tridiagonal matrix tr idiag(ai , di , ci ) is irreducible iff all the ai , ci are nonzero. A matrix which is not
irreducible is called reducible, [36, 37].
2 A diagonally dominant symmetric matrix A with nonnegative diagonal entries is positive semidefinite.
Moreover, if A is irreducible, and |aii | >

∑n
j=1, j �=i |ai j | for at least one i , then A is nonsingular, [37].

3 A n × n matrix A is positive define iff it is a nonsingular positive semidefinite matrix, [37].
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In the following section, we will generalize the basic idea presented in the introduction
to Eq. (12). This will be achieved through the use of the approach outlined in [23] which is
somehow inspired by partitioned Runge–Kutta methods, [39].

We start to consider the general class of autonomous problems of the form

u′ = F(u, u), u(t0) = u0. (16)

where F : Rn × R
n → R

n is a sufficiently regular mapping.
We observe that we can rewrite system (16) as a partitioned one⎧⎪⎨

⎪⎩
du∗

dt
= F(u∗, u),

du

dt
= F(u∗, u),

(17)

with initial conditions u∗(t) = u(t) = u0. In such case the solution of system (17) satisfies
u(t) = u∗(t) for any t ≥ t0 and is also a solution of Eq. (16). System (17) is a particular
case of partitioned system [39], with an additional computational cost since we double the
number of variables. Let us remark that the duplication of the unknowns in (17) does not
take place if appropriate choices of the IMEX-RK scheme are considered, [23].

Nowwe are ready to introduce the semi-implicit strategy for solving autonomous problems
of the form (17). This strategy involves treating the first variable u∗ explicitly and the second
variable u implicitly. From now on we shall adopt IMEX R-K schemes and the coefficients
of the method are usually represented in a double Butcher tableau as

c̃ Ã

b̃T

c A

bT
.

where Ã = (ãi j ), is a s×smatrix for the explicit scheme,with ãi j = 0 for j ≥ i and A = (ãi j )
is a s × s matrix for the implicit one. The vectors c̃ = (c̃1, . . . , c̃s)T , b̃ = (b̃1, . . . , b̃s)T ,
and c = (c1, . . . , cs)T , b = (b1, . . . , bs)T complete the characterization of the scheme. The
coefficients c̃ and c are given by the usual relation

c̃i =
i−1∑
j=1

ãi j , ci =
i∑

j=1

ai j . (18)

For the implicit part, diagonally implicit R-K (DIRK) schemes are often employed. This
approach is simpler to implement and guarantees that the terms involving the first argument
of F are explicitly computed.

Then the SI-IMEX-RK method applied to (17) is implemented as follows. First we set
u∗
n = un and compute the stage values for i = 1, . . . , s,

U∗
i = un + �t

i−1∑
j=1

ãi j K j , Ui = un + �t
i∑

j=1

ai j K j , (19)

with the numerical solution

u∗
n+1 = un + �t

s∑
i=1

b̃i Ki , un+1 = un + �t
s∑

i=1

bi Ki , (20)

where Ki = F(U∗
i ,Ui ), are the RK fluxes.
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From now on we shall adopt IMEX R-K schemes with b̃i = bi , for i = 1, . . . , s. We
observe that because b̃i = bi , for i = 1, . . . , s then the numerical solutions are the same,
i.e. if u∗

0 = u0 then u∗
n = un , for all n ≥ 0, therefore the duplication of the system is only

apparent and not necessary if we adopt the RK fluxes Ki = F(U∗
i ,Ui ) as basic unknowns,

so that one can rewrite the scheme in the following form

Ki = F

⎛
⎝U∗

i , un + �t
i−1∑
j=1

ai j K j + �taii Ki

⎞
⎠ (21)

for i = 1, . . . , s, with the numerical solution

un+1 = un + �t
s∑

i=1

bi Ki . (22)

In light of the previous discussion, the main advantage of using the SI approach to compute
numerical solutions is to solve a linear system. In the case of a high-order SI-IMEX-RK
scheme, the system (21) is linear in Ki . For instance, the system (12) can be expressed as
linear equations in terms of Ki :

Ki = B(U∗
i )

(
Ūi + �taii Ki

)
,

where Ūi = un + �t
∑i−1

j=1 ai j K j and the matrix B(U∗
i ) are computed explicitly.

Now, we provide the expression for the function F(u∗, u) that applies to Eqs. (1), (2), (6),
(7) and (8). Then, we have

F(u∗, u) = (a(u∗)ux )x , F(u∗, u) = − f (u∗)x + (a(u∗)ux )x , (23)

for the diffusion equations, whereas for the dispersion equation (6), rewriting the nonlinear
term (u(unxx ))x , as (u(a(u)ux )x )x with a(u) = nun−1, we get

F(u∗, u) = −((u∗)m)x − (u∗(a(u∗)ux )x )x . (24)

Finally, for the nonlinear term in the fourth order diffusion equations (7) and (8) we have

F(u∗, u) = −(a(u∗
x )uxx )xx , F(u∗, u) = − f (u∗)x − (a(u∗

x )uxx )xx . (25)

So in practice, after discretizing the spatial operators of Eqs. (23), (24), and (25) on a chosen
space grid withU (t) = (U1(t),U2(t), . . . .,Us(t))� andUi (t) ≈ u(xi , t), for i = 1, . . . , M ,
they are converted into a semi-discrete form. Specifically, for Eqs. (1)–(7), we have

F(U∗(t),U (t)) = B(U∗(t))U (t),

while for Eqs. (2)–(6)–(8), we have

F(U∗(t),U (t)) = F(U∗(t)) + B(U∗(t))U (t),

where F : RM → R
M and B(U∗(t)) a M × M matrix. Then the resulting SI-IMEX-RK

scheme can be applied.
We conclude this section by noting that it will be useful from now on to characterize

different IMEX schemes according to the structure of the DIRK method. Following [40] we
say an IMEX-RK method is of type I if the matrix A ∈ R

s×s is invertible, and we say an
IMEX-RK method is of type II [14] if the matrix A can be written as

A =
(
0 0
a Â

)
, (26)
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with a = (a21, . . . , as1)T ∈ R
(s−1) and the submatrix Â ∈ R

(s−1)×(s−1) is invertible, or
equivalently aii �= 0, i = 2, . . . , s and the DIRKmethod is reducible to a method using s−1
stages. In the special case a = 0, b1 = 0 the scheme is said to be of type ARS [13].

Finally, we list below the third order IMEX-RK schemes that we shall use in the paper.
The triplet (s, σ, p) characterizes the number of stages of the implicit scheme s, the number
of stages of the explicit scheme σ and the order of the scheme p.

• The ARS(3,4,3) scheme. The third order ARS(3,4,3) scheme has been introduced in
[13] with b̃i = bi and c̃i = ci for i = 1, . . . , s and with the following double Butcher
tableau:

0 0 0 0 0
0.4358665215 0.4358665215 0 0 0
0.7179332608 0.3212788860 0.3966543747 0 0

1 −0.105858296 0.5529291479 0.5529291479 0
0 1.208496649 −0.644363171 0.4358665215

(27)

0 0 0 0 0
0.4358665215 0 0.4358665215 0 0
0.7179332608 0 0.2820667392 0.4358665215 0

1 0 1.208496649 −0.644363171 0.4358665215
0 1.208496649 −0.644363171 0.4358665215

This scheme is of type ARS.
• The ARS(4,4,3) scheme. The third order ARS(4,4,3) scheme has been introduced in

[13], with b̃i �= bi , c̃i = ci for i = 1, . . . , s and with the following double Butcher
tableau

0 0 0 0 0 0
1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 −5/6 1/2 0 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

0 0 0 0 0 0
1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 −1/2 1/2 1/2 0
1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

(28)

This scheme is of type ARS.
• The SSP-DIRK3(4,3,3) scheme. The third IMEX-SSP3(4,3,3) scheme has been intro-

duced in [15] with b̃i = bi , c̃i �= ci for i = 1, . . . , s and with the following double
Butcher tableau

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1 − α α 0
1/2 β η 1/2 − β − η − α α

0 1/6 1/6 2/3

(29)

where α = 0.24169426078821, β = α/4 and η = 0.12915286960590. We call this
scheme SSP-DIRK3(4,3,3). This scheme is of type I.

• The I-IMEX(3,4,3) scheme. In this paper we propose a new IMEX-RK scheme of type
I designed starting from the scheme (27). We call this scheme I-IMEX(3,4,3) and the
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double Butcher tableau reads

0 0 0 0 0
0.4358665215 0.4358665215 0 0 0
0.7179332608 1.243893189 −0.5259599287 0 0

1 0.6304125582 0.7865807402 −0.4169932983 0
0 1.208496649 −0.644363171 0.4358665215

(30)

0.4358665215 0.4358665215 0 0 0
0.4358665215 0 0.4358665215 0 0
0.7179332608 0 0.2820667392 0.4358665215 0

1 0 1.208496649 −0.644363171 0.4358665215
0 1.208496649 −0.644363171 0.4358665215

Some coefficients of the explicit part are computed by assuming that the corresponding
stability region is the same of a classical fourth stage, fourth-order explicit RK schemes,
i.e.,

R(z) = 1 +
∑
i

bi z +
∑
i

bi ãi j z
2 +

∑
i

bi ãi j ã jk z
3 +

∑
i

bi ãi j ã jk ãkmz
4, (31)

with
∑

i bi = 1,
∑

i bi ãi j = 1/2, bi ãi j ã jk = 1/6,
∑

i bi ãi j ã jk ãkm = 1/24.
The stability functions (31) guarantees to have a larger stability region for the explicit
part of the scheme than the one of SSP-DIRK3(4,3,3) scheme (29).

Remark 2.1 Considering system (17) in the non-autonomous system, i.e.⎧⎪⎨
⎪⎩

du∗

dt
= F(t, u∗, u),

du

dt
= F(t, u∗, u),

(32)

with initial conditions u∗(t) = u(t) = u0, and applying a SI-IMEX-RK scheme we have

U∗
i = un + �t

i−1∑
j=1

ãi j K j , Ui = un + �t
i∑

j=1

ai j L j , (33)

with the numerical solution

u∗
n+1 = un + �t

s∑
i=1

b̃i Ki , un+1 = un + �t
s∑

i=1

bi Li ,

and {
Ki = F(tn + ĉi�t,U∗,U )

Li = F(tn + ci�t,U∗,U ).
(34)

Generally, Ki and Li given by Eq. (34) for 1 ≤ i ≤ s are different. However, there are two
cases where Ki = Li for i = 1, . . . , s. The first case is when the system is autonomous,
which means that F does not explicitly depend on time, i.e., Eq. (17). The second case is
when c̃i = ci for i = 1, . . . , s. In these two cases, only one evaluation of F is needed in Eq.
(34) and only one set of stage fluxes is computed, i.e., (21).
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Note that this restriction can be removed even in the general case of a non-autonomous
system, and c̃i �= ci , for i = 1, . . . , s, it is still possible to derive a scheme that does not
require two sets of stage fluxes (34). The details are reported in the “Appendix” of the paper
[23].

Now we observe that selecting a different vector of weights for the U∗, say b̃i �= bi , for
i = 1, . . . , s, such a vector will provide a lower/higher order approximation of the solution
for U∗. This would allow for automatic time step control. This procedure is commonly
used in numerical methods for ODEs [39]. In practice, we use vector b̃ for evaluating the
U∗ variable, and by setting u∗

n = un at the beginning of each time step, one advances the
numerical solution with the more accurate oneU , and uses the other variableU∗ to estimate
the error. However, in this paper, we do not implement any time step control.

Finally looking at the list of third-order IMEX-RK schemes presented previously, we
observe that schemesARS(3,4,3) andARS(4,4,3) have c̃i = ci , and therefore require only one
evaluation of F , i.e., (21). On the other hand, schemes SSP-DIRK3(4,3,3) and I-IMEX(3,4,3)
have c1 �= 0, and c̃i = ci , for all i = 2, . . . , s. Consequently, K1 �= L1 for the first evaluation
of F whereas Ki = Li for i = 2, . . . , s. Nonetheless, these two schemes have b̃i = bi for all
i = 2, . . . s and b̃1 = b1 = 0, which implies that the numerical solutions for both variables
U∗ and U are identical because we do not need to use the stage fluxes K1 and L1 in the
evaluation of the numerical solution. Additionally, scheme ARS(4,4,3) has bi �= b̃i for all i .
To handle this case, we use the variableU to compute the numerical solution. Specifically, at
the beginning of each time step n, we set u∗

n = un , and then solve using (21), since ci = c̃i
for all i , and then (22) for the numerical solution.

Therefore, in the numerical results section, we implement schemes SSP-DIRK3(4,3,3),
I-IMEX(3,4,3), ARS(3,4,3) and ARS(4,4,3) by using SI framework: (21) and (22).

2.3 The Spatial Discretization

Some preliminary notations are given. We consider one dimensional problems and assume
that the computational domain [a, b] is uniformly partitioned into M cells, with spatial mesh
size �x = (b−a)/M . We use the lowercase letter ui to denote the numerical solution to the
equation at the the spatial position xi for i = 1, . . . , M .

2.3.1 The Spatial Discretization for the Diffusion Equation

For the spatial discretization of the nonlinear diffusion equationwe take the following formula
that provides a fourth order approximation to (a(u)ux )x , with a five-point stencil [41, 42]

(a(u)ux )x |x j = 1

�x2
(a j−2, a j−1, a j , a j+1, a j+2)⎛

⎜⎜⎜⎜⎝

−25/144 1/3 −1/4 1/9 −1/48
1/6 5/9 −1 1/3 −1/18
0 0 0 0 0
−1/18 1/3 −1 5/9 1/6
−1/48 1/9 −1/4 1/3 −25/144

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u j−2

u j−1

u j

u j+1

u j+2

⎞
⎟⎟⎟⎟⎠ + O(�x4). (35)

Note that in the case a(u) = 1 the formula (35) becomes the classical fourth order central
finite difference scheme, i.e.,

D2
xu j = 1

12�x2
(−u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2). (36)
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2.3.2 The Spatial Discretization for the Dispersive Equation

To discuss about high order space discretization for Eq. (6), and in particular, for the nonlinear
term (u(unxx ))x , we consider again the equivalent nonlinear term:

(u(a(u)ux )x )x , (37)

with a(u) = nun−1. Then, to approximate the term (37) we use the following fourth order
finite difference spacial approximation,

Dx

(
u∗
jDx (a(u∗

j )Dx (u j ))
)

,

where

Dxu j = −(u j+2 − u j−2) + 8(u j+1 − u j−1)

12�x
, (38)

is a fourth order central approximation for ux (x j ).

2.3.3 The Spatial Discretization for the Biharmonic-type Equation

The fourth order finite difference scheme for the fourth order spatial derivative in the
biharmonic-type equation (7) can be written as

D2
x

(
a(Dxu

∗
j )D2

xu j

)
, (39)

where D2
xu j is a fourth order centered difference approximation to uxx (x j ) defined as (36).

Note that in (7) when a(ux ) = 1 we get from (39), D2
xD2

xu j , i.e., the central difference
approximation for the fourth order derivative uxxxx :

((u j−4 + u j+4) − 32(u j−3 + u j+3) + 316(u j−2 + u j+2) − 992(u j−1 + u j+1) + 1414u j

144�x4
.

3 Numerical Results

In this section, we will numerically verify the orders of accuracy and performance of SI-
IMEX-RK schemes for the solution of time dependent PDEs with high order derivatives, as
Eqs. (1), (2), (6), (7) and (8). For simplicity we used in all of our examples periodic boundary
conditions, although most of our discussions can be adapted for other types of boundary
conditions.

In each of the numerical tests presented below, we consider the third order IMEX-RK
schemes introduced in Sect. 2.2 for the time discretization andweprovide the time step�t that
will produce stable solutions across the entire solution domain. For the space discretization
we use high-order finite difference schemes introduced in Sect. 2.3, and we discretize the
convection term by means of standard third order finite difference WENO schemes with
local Lax–Friedrichs flux, [43–45]. All the tests presented in this paper are performed in
one-dimension since the main issue of this paper is to design an appropriate high order time
discretization for time-dependent PDEs. Finite difference schemes have been extensively
applied for solving higher dimensional equations because of its simplicity in design and
coding [46–48], then it is straightforward to extend to higher-dimensional equations this
type of space discretization.
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It is important to note here that, as mentioned in Remark 2.1, although some equations in
the test examples below are presented in non-autonomous form due to the time-dependence of
the source term, the errors tables reported below are computed solely based on the numerical
solution obtained through (22) using the SI framework (21)–(22), where the coefficients are
given by the IMEX-RK tables in Sect. 2.2.

3.1 The Second Order Diffusion Equations

Test 1. First we consider the diffusion equation

ut = (a(u)ux )x + f (x, t), x ∈ (−π, π), (40)

Here we consider the case a(u) = u2 +1 with initial condition u(x, 0) = sin(x) and
the source term f (x, t) is chosen such that the exact solution is u(x, t) = sin(x − t).
For this example, we take: the time step �t = C�x , with C = 1 and �x = 2π/N ,
periodic boundary conditions and final time T = 10. In Table 1 we display the
numerical results of the third order IMEX-RK schemes given in Sect. 2.2 coupled
with the finite difference type spatial discretization (35). In the table we list the L2,
L1 and L∞ errors and the orders of accuracy of each scheme and we can see that the
schemes are stable and achieve the third order of accuracy.
Now we use a larger value of C to show that the schemes remain stable even for
values of C > 1. In the Table 2special attention has been paid to large C = 10,
where the numerical results can be compared to those of C = 1. As example, we
report the results for the schemes: I-IMEX(3,4,3) (30) and ARS(3,4,3) (27), the other
schemes produce similar results. We see that the schemes are stable in both cases
and achieve optimal orders of accuracy. Note that larger C , as in the case C = 10,
causes larger errors.

Test 2. Next we consider the convection–diffusion equation

ut + (u2/2)x = (a(u)ux )x + f (x, t), x ∈ (−π, π) (41)

where the diffusion coefficient is a(u) = u2 + 2, initial conditon u(x, 0) = sin(x)
and the source term

f (x, t) = 1

4
(4 cos(x + t) + 9 sin(x, t) + 2 sin(2(x + t)) − 3 sin(3(x + t))) .

The problem has the exact solution: u(x, t) = sin(x + t).
The standard third order WENO(3,2), [45] scheme with linear weights is used for
the discretization of the convection term (u2/2)x . We compute to T = 1 with the
time step �t = �x .
The numerical results with different IMEX-RK schemes are listed in Table 3. From
the experiment we can see that SI strategy based on IMEX-RK schemes coupled
with finite difference schemes are stable and achieve optimal orders of accuracy.

Test 3. Now we consider the porous media equation (PME)

ut = (um)xx , (42)

in which m is a constant greater than one. This equation describes a lot of diffusion
processes, such as in nonlinear problems of heat and mass transfer, combustion
theory, and flow in porous media. where u is either a concentration or a temperature
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required to be non negative. The initial condition u0(x) is assumed to be bounded
non negative continuous function. Equation (42) can be written as

ut = (a(u)ux )x , (43)

with a(u) = mum−1, [26]. It’s a degenerate parabolic equation and it degenerates at
points where u = 0, resulting in the phenomenon of finite speed of propagation and
sharp fronts.
The classical solutions to PME may not exist in general, even if the initial condition
is smooth. One of the famous solution for Eq. (42) is the weak Barenblatt solution
[49] (see also Barenblatt [50]) which is given explicitly by

Bm(x, t) = t−k
[(

1 − k(m − 1)

2m

|x |2
t2k

)
+

]1/(m−1)

, (44)

where u+ = max{u, 0} and k = 1/(m+1). This solution for any t > 0 has a compact
support [−αm(t),−αm(t)] where

αm(t) =
√

2m

k(m − 1)
tk,

with the interface |x | = αm(t) moving outward at a finte speed. Various schemes
for approximating (42) have been developed in the literature, [24, 28, 51–58] and
references therein.
Here, we consider PME (43) with the Barenblatt solution (44). As initial condition
we take the (44) at time t = 1 and we begin the computation from t = 1 in order
to avoid the singularity near t = 0. The boundary condition is u(±6, t) = 0 for
t > 1 and we use uniform mesh with N = 160 points and time step �t = �x . We
adopt for the spatial discretization the fourth order approximation (35), and for the
time discretization the third-order I-IMEX(3,4,3) scheme (30). In Fig. 1we plot the
numerical results for m = 2, 3, 5 at t = 2 and we see that the numerical solution
simulates the Barenblatt solution (44) accurately and sharply. However, there is a
slight undershoot for the numerical solution for m = 3, 5 near the discontinuity. We
verify that this undershoot is reduced when we take more mesh points, for example
N = 320 (see Fig. 1d).
We point out that in this simulation we adopted a not suitable space discretization for
the PME equation (42), in the literature several optimal discretization are introduced
for PME equation, for instance, in [58] an adaptation of the WENO technique has
been proposed in oder to maintain conservation, accuracy and non-oscillatory per-
formance. Similarly in [26] the authors used local discontinuous Galerkin methods
coupled with two specific explicit-implicit-null time discretization for solving one-
dimensional nonlinear diffusion problems (43). However, the I-IMEX(3,4,3) scheme
(30) produces numerical solutions accurately without noticeable oscillations for the
PME equation (42).
From the above test, we can conclude that the SI-IMEX-RK approach essentially:
(1) removes the strict parabolic time step restriction, i.e. �t ≈ �x2, that usually one
has using explicit time discretization methods for nonlinear diffusion problems (43)
and (2) avoids nonlinear solvers required using implicit time discretization methods.
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Fig. 1 Numerical results of the Barenblatt solution for the PME (43), T = 2

Test 4. We conclude with an example of a strongly degenerate parabolic convection–
diffusion equation presented in [59]:

ut + f (u)x = ε(a(u)ux )x , εa(u) ≥ 0. (45)

We take ε = 0.1, f (u) = u2 and

a(u) =
{
0, |u| ≤ 0.25,
1, |u| > 0.25.

(46)

The equation is therefore of hyperbolic nature when u ∈ [−0.25, 0.25] and parabolic
elsewhere. We solve this problem considering the following initial data

u(x, 0) =
{ 1, − 1√

2
− 0.4 < x < − 1√

2
+ 0.4

−1, 1√
2

− 0.4 < x < 1√
2

+ 0.4

0, otherwise

(47)

Here we used the I-IMEX(3,4,3) scheme (30) for the integration in time and we consider
the classical hyperbolic CFL condition

max
u

| f ′(u)| �t

�x
= 1.0, (48)

to set �t . In Fig. 2 , the numerical simulations for different numbers of grid points N =
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Fig. 2 Riemann problem (45),
(46), and (47). T = 0.7

60, 200, 800. The scheme provides the high resolution of discontinuities and the accurate
transition between the hyperbolic and parabolic regions, comparable with the numerical
resolutions reported in [59].

3.2 Third Order Dispersive Equation

Test 5. In this test, we check the accuracy of the SI-IMEX-RK approach applied to Eq. (4).
We consider the general KdV equation [20],

ut + (u3)x + (u(u2)xx )x = 0, x ∈
(

−3

2
π,

5

2
π

)
, (49)

with initial condition u(x, 0) = √
2λ cos(x/2) and exact solution

u(x, t) = √
2λ cos((x − λt)/2).

We compute to T = π , with λ = 0.1. We choose �t = �x for the I-IMEX(3,4,3)
(30) and SSP-DIRK3(4,3,3) (29) whereas, as mentioned in the introduction about
the stability, for the scheme ARS(3,4,3) (27) in order to avoid that the numerical
solution blows up we reduced the time step to �t = 0.5�x . In Table 4we show
the convergence rate for these schemes. We omit the convergence results of the
ARS(4,4,3) scheme (28) in this table because they are comparable to those of the
ARS(3,4,3) scheme. As expected, the SI-IMEX-RK finite difference schemes are
stable and achieve the correct order of accuracy.
Note that, since λ represents the velocity of the traveling wave, selecting a larger
value of λ requires a careful choice of the time step to ensure the stability of the
method. In such cases, we set the time step as

�t = CFL
�x

maxu | f ′(u)|
with a fixed CFL.
As an example, we provide Table 5below that shows the convergence rates of the
schemes I-IMEX(3,4,3) and ARS(3,4,3) with λ = 10 and CFL = 0.5. We see that
the schemes are stable and achieve the expected order of accuracy. Note that larger λ

causes larger errors. We do not include the convergence results of the other schemes
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since they are comparable to those presented in Table 5. In all of the following tests:
6., 7., and 8., the boundary conditions are taken to be periodic in an interval much
larger than the compact support of the initial conditions.

Test 6. Now, we consider the nonlinear dispersive equation (6) with m = 2, and n = 1. In
this example we consider the following compacton initial data [10]

u(x, 0) =
{
2 cos2(x/2) |x | ≤ π,

0, |x | > π
.

In this case the numerical solution is a traveling wave given by

u(x, t) = 2λ

[
cos

(
x − λt

2

)]2
, |x − λt | ≤ π,

with λ = 1. Here, in order to ensure the stability of the schemes, we consider (48)
with

max
u

| f ′(u)| �t

�x
= 0.5,

to set �t . In Table 6we show the convergence rate of the schemes: ARS(3,4,3),
SSP-DIRK(4,3,3) and I-IMEX(3,4,3) and is approximately three for L1, L2, and
L∞-norm. Again, we omit the convergence results of the ARS(4,4,3) scheme in this
table because they are comparable to those of the ARS(3,4,3) scheme.

Test 7. In this example we approximate solutions of Eq. (49) by showing a collision for three
compactons, [6]. The initial data are taken as

u(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

4 cos((x + π)/2) x ∈ [−2π, 0],
2 cos((x − 2π)/2) x ∈ [π, 3π],
2 cos((x − 5π)/2) x ∈ [4π, 6π],

0, otherwise.

(50)

The computational domain is [−4π, 22π ] and N = 300mesh points. Herewe choose
the third order I-IMEX(3,4,3) scheme (30) in time.
The results are shown in Fig. 3 . As one can see rapid oscillations develop behind
the moving compactons and we would like to get a scheme that is at least stable
with respect to small perturbations of the solution. The SI approach coupled with
WENO space discretization does not solve correctly the oscillations in the tails but
it is able with a large time step �t (48) to control the oscillations and ensure that
the solution does not blow up for a long time. Note that suitable space discretization
[6, 10] are capable of capturing simultaneously the oscillations and the non-smooth
fronts. For example, in [6] the authors presented an approach for the construction of
the numerical fluxes in which the scheme is stable with respect to small perturbations
of the solution and then to avoid oscillations in the tails. This latter case is beyond
the goal of this paper.

Test 8. We conclude this section with the following test, [10]. We consider Eq. (6) with
m = 2 and n = 1. We use arbitrary initial data

u(x, 0) =
{
3 cos2(x/4) |x | ≤ 2π,

0, |x | > 2π
. (51)

In this case we take N = 200 and �t given by (48). In time, we use the third order
I-IMEX(3,4,3) scheme (30). In Fig. 4we plot the solution at time T = 0, 1, 2, 4, 6, 8.
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Fig. 3 Interaction among three compactons for Eq. (49). Initial data are given by (50). Time T = 0, 2, 4, 6

Fig. 4 Solution to (6) with m = 2 and n = 1 and initial data (51), N = 200 and time T = 0, 1, 2, 4, 6, 8

As we can see in the figures the behaviour is similar to the results reported in [10].
Clearly, the results of the SI approach coupled withWENOdiscretization suffer from
spurious oscillations in the tail for T = 4, 6, 8. Even in this case, our approach does
not solve correctly the oscillations in the tail but it is able with a large time step
�t (48) to control the oscillations and ensure that the solution does not blow up for
a long time. In order to avoid the numerical oscillations in the tail, suitable space
discretization can be used as in [10] where a particle method has been developed.
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Table 7 The L2, L1, L∞ errors and orders of accuracy for Eq. (52), Example 1 with C = 1

Scheme N L2-error Order L1-error Order L∞-error Order

SSP-DIRK(4,3,3) 40 3.8414e−04 – 3.9754e−04 – 3.3289e−04 –

80 7.1678e−05 2.42 7.3051e−05 2.44 7.2741e−05 2.19

160 9.4164e−06 2.92 9.8358e−06 2.89 9.0333e−06 3.00

320 3.5341e−06 1.41 3.4795e−06 1.50 3.8796e−06 1.21

640 5.5033e−07 2.68 5.4879e−07 2.66 5.8255e−07 2.74

I-IMEX(3,4,3) 40 5.5891e−04 – 5.6159e−04 – 5.5176e−04 –

80 7.5979e−05 2.87 7.4796e−05 2.90 8.0671e−05 2.77

160 9.5144e−06 3.00 9.4546e−06 2.98 9.7414e−06 3.04

320 1.1487e−06 3.05 1.0286e−06 3.20 1.4602e−06 2.73

640 1.3027e−07 3.14 1.1141e−07 3.20 1.7669e−07 3.04

3.3 Fourth Order Diffusion Equation

Test 9. First we consider the following nonlinear biharmonic-type equation [20]

ut + ((u2 + 2)uxx )xx = f (x, t), x ∈ (−π, π), (52)

with initial condition u(x, 0) = sin(x), source term

f (x, t) = e−3t (e2t − 6 cos2(x) + 3 sin2(x)) sin(x),

and exact solution u(x, t) = e−t sin(x). We compute the solution to T = 1 with the
time step�t = C�x settingC = 1 andC = 6.5. The numerical errors and orders of
accuracy are listed in Tables 7and 8. In each table, we display the numerical results for
the schemes SSP-DIRK(4,3,3) (29) and I-IMEX(3,4,3) (30). From the experimentwe
can see that the schemes are stable and achieve optimal orders of accuracy. However,
in the two tables the I-IMEX(3,4,3) scheme gives a better orders of accuracy than
SSP-DIRK(4,3,3) scheme. This verifies that the better condition on the stability (see
Sect. 2.2) for the scheme I-IMEX(3,4,3) guarantees a good behaviour with mesh
refinements.
We also note that in the Table 8 even if larger C causes larger error than C = 1, the
order of accuracy of the schemes achieves the correct order of convergence.

Test 10. Next, we have the biharmonic-type equation with a flux term:

ut + (u3)x + (u2uxx )xx = f (x, t), x ∈ (−π, π). (53)

We take initial condition u(x, 0) = sin(x) and the source term f (x, t) is chosen such
that the exact solution is

u(x, t) = e−2t sin(x).

We compute the solution to T = 1 with the time step�t = �x . The numerical errors
and orders of accuracy are listed in Table 9. In each table, we display the numerical
results of the two schemes SSP-DIRK(4,3,3) (29) and I-IMEX(3,4,3) (30).

Remark 3.1 We should point out that the schemes of type ARS, i.e. ARS(3,4,3) (27) and
ARS(4,4,3) (28), assembled in the SI strategy for solving 4-th order diffusion equation, are
not stable under the step size condition �t = O(�x). However, choosing �t = �x2, we
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capture correctly the order of accuracy. We omitted these results here to save space. We
remember that generally for the 4-th order PDEs, an explicit RKmethod requires severe time
step restriction, i.e., �t = O(�x4) for stability. In the future, we aim to conduct a more
detailed stability analysis of these ARS schemes, which would require additional details. It
is worth noting that an interesting aspect of this analysis could be the structure of the matrix
in the the implicit part of the ARS scheme, i.e., a11 = 0 in (26), which could potentially
result in instability in the subsequent internal stages of the explicit part after the first stage.
However, this is currently only a tentative conjecture, and we will postpone its investigation
to a future work.

4 Concluding Remarks

In this paper, following the idea of the work [23] we have developed a SI strategy based
on IMEX-RK methods coupled with high order finite difference schemes for solving high
order dissipative, dispersive and special biharmonic-type equations in one dimension. The
SI IMEX-RK schemes so designed for high order time-dependent PDEs does not need any
nonlinear iterative solver, and not require any time step restriction that usually one has using
explicit methods. Numerical experiments show that the schemes are stable and achieve the
aspected orders of accuracy for large time step.

Since themain issue of this paper is to design an appropriate high-order time discretization
for time-dependent PDEs, the numerical experiments are only performed for one-dimensional
equations. For the space discretization, we considered only classical finite difference spatial
discretization because of its simplicity in design and coding and it is straightforward to extend
to higher-dimensional equations. However, other types of space discretization can be used.
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