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Abstract: Age-related macular degeneration (AMD) has been described as a progressive eye disease
characterized by irreversible impairment of central vision, and unfortunately, an effective treatment
is still not available. It is well-known that amyloid-beta (Aβ) peptide is one of the major culprits
in causing neurodegeneration in Alzheimer’s disease (AD). The extracellular accumulation of this
peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and
represents one of the early signs of AMD pathology. Aβ aggregates, especially in the form of
oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE
cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes
in AMD. In the present study, we employed ARPE-19 treated with Aβ oligomers, representing
an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative
real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to
investigate the molecular alterations induced by Aβ oligomers. In particular, we found that Aβ

exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation
(increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of
NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein.
Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous
dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine
was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with
Aβ oligomers. These new findings obtained with ARPE-19 cells challenged with Aβ1-42 oligomers,
along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and
in vivo, able to prevent and/or counteract the dysfunctions elicited by Aβ oligomers, substantiate
the neuroprotective potential of this dipeptide in the context of AMD pathology.

Keywords: age-related macular degeneration; amyloid-beta oligomers; inflammation; oxidative
stress; carnosine

1. Introduction

Age-related macular degeneration (AMD) is a degenerative condition of the macula,
the region of the central retina responsible for the greatest visual acuity, and represents the
most common cause of irreversible blindness in elderly individuals due to the impairment
of photoreceptor cells and retinal pigment epithelium (RPE) cells. The early stage of
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AMD is characterized by the accumulation of extracellular material, lipid, and protein
aggregates between the RPE and Bruch’s membrane, lesions named drusen. Generally,
AMD is classified into two forms: non-exudative form (dry) and exudative form (wet).
The latter is characterized by choroidal neovascularization and blood-retinal barrier (BRB)
breakdown induced by the overexpression of vascular endothelial growth factor (VEGF) [1].
Unfortunately, only palliative treatments are available for the wet form, including anti-
VEGF antibodies, photodynamic therapy, and thermal laser therapy [2]. Currently, there are
no pharmacological treatments for dry AMD; only oral supplementations with antioxidants
are recommended.

Alzheimer’s disease (AD), the most common dementia in elderly patients [3], is
often associated with AMD. In fact, vision-related alterations are common in AD, and
visual defects are due to either degeneration of the visual cortex or to retinal degeneration
associated with glaucoma and AMD. Several pieces of evidence indicate that the oligomeric
form of amyloid-β (Aβ) peptide, one of the main actors in AD-related neurodegeneration,
might be associated with AMD pathogenesis [4]. In particular, Aβ aggregates constitute
the drusen deposits, resulting in chronic low-level inflammation and impairment of the
retinal barrier [5]. Moreover, the accumulation of Aβ peptide in debris paralleled by
the inflammatory processes could be considered a common pathogenetic mechanism
linking these two neurodegenerative disorders [6]. Aβ deposits trigger a cascade of events
activating microglia and retinal astrocytes with the secretion of pro-inflammatory cytokines,
such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), that, along with
reactive oxygen species (ROS) formation, generate a harmful microenvironment, leading
to retinal cells death and thinning of the retinal nerve fiber layer [7]. In addition, AD and
AMD share similar pathophysiological features, including age, genetic factors, oxidative
stress, and neuroinflammation [8,9].

Under physiological conditions, ROS are produced during oxidative metabolism,
participating in basal cellular activity. However, when the amount of ROS exceeds the
antioxidant system capability, ROS alter the balance of redox homeostasis, causing oxidative
stress [10,11], which makes the retina susceptible to oxidative damage [12]. Several studies
have shown that low levels of ROS can induce RPE cell apoptosis, while high levels of these
species may trigger necrosis [13,14]. Several pieces of evidence report the link between
oxidative stress and RPE dysfunction in AMD pathogenesis, so the identification of novel
pharmacological targets and innovative neuroprotective strategies represents a crucial
point [9].

In addition to neuroinflammation and oxidative stress phenomena, changes at the BRB
level occur in an early phase of AMD pathogenesis. In fact, maintenance of physiological
retinal cells structure, including RPE, requires tight junctions existence, such as zonula
occludens (ZOs), responsible for molecular transport and essential for the BRB integrity,
and its reduction or loss, under pathological conditions, increases barrier permeability [15].

Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide distributed at high con-
centrations in the human central nervous system as well as in skeletal and cardiac mus-
cles [16]. Numerous pre-clinical studies have shown the ability of carnosine to inhibit Aβ

aggregation [17], to act as a scavenger of reactive species [18], and to exert anti-inflammatory
activity by the modulation of immune cells [19–21]. With specific regard to AD, carnosine
has shown neuroprotective activity in different in vitro models of Aβ-induced neuroinflam-
mation and oxidative stress [22,23] as well as in animal models of AD [24], suggesting the
important role of this natural dipeptide in preventing and/or counteracting degenerative
disorders characterized by oxidative stress and neuroinflammation [25]. Moreover, in
regard to AMD, it has been demonstrated that carnosine plasma levels are significantly
reduced in AMD patients [26].

Based on the above, in the present study, we first investigated the toxic potential and
molecular alterations induced by Aβ1-42 oligomers in ARPE-19, representing an in vitro
model of AMD useful for drug-screening and/or biocompatibility testing of different
molecules [1]. In particular, hereby we evaluated the modulation of inflammatory media-
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tors, oxidative stress markers, and of ZO-1 protein expression after the Aβ1-42 oligomers
challenge. Once the in vitro pathological model was characterized, we examined the thera-
peutic potential of carnosine in counteracting the enhancement of IL-1β, IL-6, TNF-α, and
Nox-2 mRNA expression levels, the production of ROS, and the decrease of ZO-1 tight
junction-associated protein levels.

2. Results
2.1. Aβ1-42 Oligomers Treatment Decreases Cell Viability and ATP Levels in ARPE-19 Cells

Before examining the neuroprotective efficacy of carnosine, we first investigated the
effects of Aβ1-42 oligomers on ARPE-19 cell viability and ATP intracellular content. As
clearly shown in Figure 1A, the treatment of ARPE-19 cells with Aβ1-42 oligomers for 48 h
significantly decreased cell viability compared to resting (control) cells (p < 0.001).
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Figure 1. Change in (A) cell viability and (B) ATP intracellular levels caused by challenging ARPE-19
cells with Aβ1-42 oligomers. ARPE-19 cells were treated for 48 h with Aβ1-42 oligomers (2 µM). Data
are the mean of four to seven values and are expressed as the percent variation with respect to the
cell viability or ATP levels recorded in resting (control) cells. Standard deviations are represented by
vertical bars. *** significantly different, p < 0.001.

In line with the observed changes in cell viability, the treatment of ARPE-19 cells
with Aβ1-42 oligomers significantly decreased ATP intracellular levels compared to resting
(control) cells (p < 0.001) (Figure 1B), a molecular sign that cells are suffering and probably
undergoing necrosis or apoptosis.

2.2. Aβ1-42 Oligomers Treatment Increases the Levels of Pro-Inflammatory and
Pro-Oxidant Mediators

It is well-known the interplay between oxidative stress and inflammation in AMD
pathogenesis, with the excess of ROS that can activate pro-inflammatory signaling pathways
and the expression of multiple inflammatory mediators, such as cytokines, chemokines,
and eicosanoids [27]. Based on this, we first investigated the effects of Aβ1-42 oligomers
on mRNA expression levels of three well-known pro-inflammatory cytokines, namely
IL-1β, IL-6, and TNF-α. As depicted in Figure 2A–C, the exposure of ARPE-19 cells to
Aβ1-42 oligomers for 48 h led to a significant increase in mRNA expression levels of
all the considered targets (p < 0.001 for IL-1β, p < 0.01 for IL-6 and TNF-α compared to
resting cells).
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Figure 2. Effects of exposure of ARPE-19 cells to Aβ1-42 oligomers (2 µM) for 48 h on (A) IL-1β,
(B) IL-6, (C) TNF α, (D) Nox-2 mRNA expression levels, and (E) intracellular ROS levels. The
abundance of each mRNA of interest was expressed relative to the abundance of GAPDH, as an
internal control. Production of ROS is expressed as fold increase with respect to the dichlorofluorescin
(DCF) fluorescence measured in resting (control) cells. Values are reported as means of three to
four values. Standard deviations are represented by vertical bars. ** significantly different, p < 0.01;
*** significantly different, p < 0.001.

Figure 2D,E also shows the ability of Aβ1-42 oligomers to induce oxidative stress,
measured in terms of Nox-2 mRNAs expression levels and total ROS, in ARPE-19 cells. In
fact, it was observed a significant upregulation of Nox-2 mRNA expression in ARPE-19 cells
after 48 h exposure to Aβ1-42 oligomers (p < 0.01 compared to resting cells) (Figure 2D).
As expected, this increase of Nox-2 mRNA expression Aβ-induced was paralleled by a
significant enhancement in intracellular ROS levels (p < 0.001 compared to resting cells)
(Figure 2E).

2.3. Aβ1-42 Oligomers Treatment Reduces the Expression Levels of ZO-1 Junction Protein

We then examined the impact of Aβ1-42 oligomers on ZO-1 tight junction protein
expression, which plays a key role in maintaining BRB integrity. As shown in Figure 3,
ZO-1 expression, measured as fluorescence arbitrary units (AUs), was significantly reduced
after exposure for 48 h to Aβ1-42 oligomers compared to resting conditions (p < 0.001).
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Figure 3. Immunocytochemistry evaluation of ZO-1 staining in (A) resting ARPE-19 cells and
(B) ARPE-19 cells exposed to Aβ1-42 oligomers (2 µM) for 48 h. (C) The average intensity (AU) of the
data from more than 10 values per coverslip for ZO-1 under our experimental conditions is shown.
Standard deviations are represented by vertical bars. ZO-1 was labeled with FITC (green), while
nuclei were labeled with 4′,6-diamidino-2-phenylindole (DAPI) (blue). *** significantly different,
p < 0.001.

2.4. Carnosine Is Able to Counteract Most of the Molecular Alterations Induced by Aβ1-42
Oligomers in ARPE-19 Cells

Once the in vitro pathological model was characterized, the therapeutic potential of
carnosine in counteracting the Aβ-associated molecular alterations was evaluated.

As reported in Figure 4, carnosine pre-treatment was able to significantly counteract
the increase of mRNA expression levels of both IL-1β (Figure 4A) (p < 0.05) and TNF-α
(Figure 4C) (p < 0.05) induced by Aβ1-42 oligomers, while no differences regarding IL-6
mRNA expression were observed in ARPE-19 cells exposed to Aβ1-42 oligomers for 48 h,
in the absence or presence of carnosine (Figure 4B).
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Figure 4. Effects of exposure of ARPE-19 cells to Aβ1-42 oligomers (2 µM) for 48 h, in the absence
or presence of carnosine (20 mM; 1 h pre-treatment), on (A) IL-1β, (B) IL-6, (C) TNF-α (D) Nox-2
mRNA expression levels, and (E) intracellular ROS levels. The abundance of each mRNA of interest
was expressed relative to the abundance of GAPDH, as an internal control. Production of ROS is
expressed as fold increase with respect to the dichlorofluorescin (DCF) fluorescence measured in
resting (control) cells. Values are reported as means of three values and are expressed as the percent
variation with respect to IL-1β, IL-6, TNF-α, or Nox-2 mRNA expression levels or total ROS levels
recorded in Aβ1-42 oligomers-treated cells. Standard deviations are represented by vertical bars.
* significantly different, p < 0.05; ** significantly different, p < 0.01; *** significantly different, p < 0.001.

To further investigate the ability of carnosine to counteract the molecular alterations
induced by Aβ1-42 oligomers, we then compared the mRNA expression of Nox-2 along
with the intracellular ROS levels between ARPE-19 cells exposed to Aβ1-42 oligomers and
ARPE-19 cells exposed to Aβ1-42 oligomers in the presence of carnosine.

Figure 4D shows the ability of carnosine to down-regulate the expression of Nox-2
ARPE-19 cells challenged with Aβ1-42 oligomers (p < 0.001). This effect was paralleled by
carnosine’s ability to decrease the intracellular levels of ROS (Figure 4E) (p < 0.01).

An additional protective activity of carnosine is shown in Figure 5. In fact, carnosine
pre-treatment protected ARPE-19 cells against the Aβ-induced reduction of ZO-1 expression.
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Figure 5. Immunocytochemistry evaluation of ZO-1 staining in ARPE-19 cells exposed to Aβ1-42
oligomers (2 µM) for 48 h in the (A) absence or (B) presence of carnosine (20 mM; 1 h pre-treatment).
(C) The average intensity (AU) of the data from more than 10 values per coverslip for ZO-1 under
our experimental conditions is shown and expressed as the percent variation with respect to ZO-1
expression levels in Aβ1-42 oligomers-treated cells. Standard deviations are represented by vertical
bars. ZO-1 was labeled with FITC (green), while nuclei were labeled with DAPI (blue). *** significantly
different, p < 0.001.

3. Discussion

AMD represents a multifactorial neurodegenerative and inflammatory disease primar-
ily involving cellular and molecular components of the outer BRB; this barrier is damaged
by complement fragments and RPE-derived factors, which stimulate immune cell activation,
then promote an inflammatory response in the eye [28]. Of note, AD has been associated
with AMD. In particular, it has been demonstrated that Aβ oligomers are involved in AMD
pathogenesis [4,29], with the extracellular deposits of these species leading to the formation
of drusen [5]. Additionally, AD and AMD share common pathophysiological features,
including oxidative stress and neuroinflammation [8,9].

Carnosine is a naturally occurring endogenous dipeptide possessing a multimodal
mechanism of action [30] that includes a well-recognized direct and indirect antioxidant
activity [18], paralleled by anti-aggregation [31,32] and anti-inflammatory [33] effects. This
suggests a potential therapeutic application of this dipeptide for the treatment of neu-
rodegenerative disorders characterized by oxidative stress and inflammation, such as
AMD [34–36]. Furthermore, carnosine plasma levels are significantly reduced in AMD pa-
tients [26], suggesting that a deficit of this peptide can contribute to AMD pathophysiology.
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According to this scenario, in the present study, we first explored the toxic effects and
molecular alterations induced by Aβ1-42 oligomers on ARPE-19 cells. It was observed
that the treatment with Aβ1-42 oligomers significantly decreased the viability of ARPE-19
(Figure 1A), also decreasing the ATP levels (Figure 1B). These Aβ oligomers’ toxic effects
were paralleled by a significant enhancement of the oxidative stress, measured as the
induction of Nox-2 pro-oxidant enzyme mRNA expression levels and ROS production
(Figure 2D,E). Moreover, the inflammatory process was exacerbated, as underlined by the
up-regulation of the expression of IL-1β, IL-6, and TNF-α cytokines (Figure 2A–C), with
the direct consequence of a significant decrease of ZO-1 tight junction-associated protein
levels (Figure 3). The above-described results are in line with the deleterious effects of
the oligomeric forms of Aβ1-42 peptide, representing the most toxic species of Aβ [37,38].
In fact, numerous studies have shown that these oligomers are able to lead to synaptic
loss and neuronal death [39]. Aβ toxic effects can be mediated by the induction of both
neuroinflammation, through the production of pro-inflammatory mediators [40], and ox-
idative stress; in fact, Aβ oligomers have been shown to promote neurodegeneration and
neuroinflammation via oxidative stress [41,42]. It has also been demonstrated that oxidative
stress promotes the oligomerization of Aβ peptide [43], making the peptide highly neu-
rotoxic. With specific regard to ARPE-19, oligomeric Aβ1-42 can trigger AMD-like injury
by activating poly(ADP-ribose) polymerase (PARP1) and repressing Sirtuin (SIRT1) [44],
while a different study carried out by Varinthra et al. showed elevated expression of TNF-α,
cyclooxygenase-2, and inducible nitric oxide synthase via nuclear factor kappa-light-chain-
enhancer of activated B cells signaling [45]. Our work contributes to identifying, in an
experimental model of AMD, the key role of IL-1β and TNF-α combined with oxidative
stress in ARPE-19 cell degeneration.

Once the in vitro pathological model was characterized, we then examined the thera-
peutic potential of carnosine in counteracting the deleterious effects induced by Aβ1-42
oligomers in ARPE-19 cells.

Carnosine was able to counteract almost all the molecular alterations induced by
Aβ1-42 oligomers in ARPE-19 cells (Figures 4 and 5). In particular, carnosine pre-treatment
was able to significantly decrease the mRNA expression levels of both IL-1β and TNF-α
(Figure 4A,C), which exert a central role in initiating the inflammatory process. Several
studies have linked the deleterious effects of IL-1β with different pathological conditions,
such as diabetes [46], AD [47], and AMD [48]. It has also been shown that high extracellular
levels of TNF-α are linked to the worsening of pro-inflammatory and neurodegenerative
phenomena [49,50]. Our data demonstrate for the first time a relevant neuroprotective role
of carnosine in counteracting inflammatory phenomena in the context of AMD and are
in accordance with the anti-inflammatory activity showed by this dipeptide in different
models of neurodegenerative disorders [51].

In our experimental AMD model, carnosine was also able to decrease oxidative
stress as assessed by Nox-2 pro-oxidant enzyme mRNA expression levels and total ROS
production. Both Nox-2 expression and ROS production increased as a consequence of
the Aβ1-42 oligomers challenge and were significantly diminished in the presence of
carnosine (Figure 4D,E). These findings are in line with the well-recognized antioxidant
activity of carnosine linked with its ability to interact directly with these species [52] and the
presence of the imidazole ring part of histidine amino acid [53]. Our results, showing the
ability of this dipeptide to reduce species related to oxidative stress phenomena, are also in
accordance with other studies in which carnosine protected neuronal cells against oxidative
stress via the modulation of mitogen-activated protein kinase pathway [54] or exerted
neuroprotection in primary cells exposed to treatments able to induce oxidative stress
by generating free radicals [55]. The observed decrease in intracellular ROS levels could
also depend on the increased loading of carnosine under stress conditions [21], the ability
of carnosine to increase the rate of conversion of reactive mediators into their non-toxic
end-products [53], and/or of the ability of carnosine to preserve the monomeric form of Aβ

peptide or to disassemble the Aβ oligomers already formed [56,57]. We cannot exclude that



Molecules 2023, 28, 3324 9 of 15

carnosine can exert its protective effects on ARPE-19 cells also through other mechanisms,
e.g., promoting the release of neurotrophic factors such as transforming growth factor-β1
known to be reduced both in AMD patients and experimental models of AMD [58–60].
Further studies are therefore needed to explore the neuroprotective efficacy of carnosine in
experimental models of AMD.

Lastly, we were able to demonstrate as carnosine pre-treatment protected ARPE-19
cells against the reduction of ZO-1 expression Aβ-induced, preserving and/or counteract-
ing the deleterious effects exerted by Aβ1-42 oligomers (Figure 5). This result is particularly
important considering that RPE-barrier dysfunction has also been associated with attenua-
tion/disruption of ZO-1 [61].

All the above-described results, describing the ability of carnosine to counteract the
molecular alterations observed in ARPE-19, are relevant for drug discovery processes
in AMD since it is known that RPE, a single-cell layer at the posterior part of the eye,
plays a significant role in the pathogenesis of AMD. In healthy conditions, RPE cells
are responsible for maintaining the functionality of the overlying photoreceptor cells,
protection of the retina from excessive light, formation of the BRB in conjunction with the
vascular endothelium, and immune defense of the macula [62]. A functional degeneration
of the RPE leads to impaired maintenance of the sensory retina, which contributes to
vision loss in advanced AMD. Despite these promising results obtained by using carnosine,
further preclinical studies are needed in order to translate these findings into in vivo and
clinical studies.

The therapeutic relevance of carnosine in the context of AMD pathology recently
emerged in a clinical study conducted by Chao de la Barca and collaborators [26]. In this
study, in which the plasma metabolomic profile of exudative was determined in 40 AMD
patients and 40 age- and sex-matched subjects, carnosine was the only metabolite showing
a significantly reduced concentration in the AMD group with an almost half the mean
concentration compared to controls, demonstrating for the first time a carnosine deficiency
in AMD. Since increased oxidative stress, as well as the formation of advanced glycation
end products, have been observed in AMD retina [6], this study suggests that the relative
deficiency in carnosine could contribute to AMD pathogenesis and thus open a novel path
for drug development and possible therapeutic perspectives.

4. Materials and Methods
4.1. Materials and Reagents

All materials and reagents were of analytical grade and supplied by Sigma-Aldrich (St.
Louis, MO, USA) or Thermo Fisher Scientific (Waltham, MA, USA) unless differently speci-
fied. ARPE-19 (human retinal pigment epithelial) cells (ATCC® CRL-2302™), DMEM:F12
medium, fetal bovine serum (FBS), trypsin-EDTA solution, and penicillin/streptomycin
solution were purchased from American Type Culture Collection (ATCC, Manassas, VA,
USA). HFIP-treated amyloid β-peptide (1-42) and Amyloid β-Protein (42-1) were obtained
from Bachem Distribution Services GmbH (Weil am Rhein, Germany). C-Chip disposable
hemocytometers, used for ARPE-19 cell counting, were obtained from Li StarFish S.r.l.
(Naviglio, Italy). ATPlite 1 step kit was supplied by Perkin Elmer (Monza, Italy). Quanti-
Tect SYBR Green PCR Kits and QuantiTect Primer Assays were purchased from Qiagen
(Hilden, Germany). The 384-well plates were obtained by Roche Molecular Systems Inc.
(Pleasanton, CA, USA). Eppendorf LoBind 1.5 mL Microcentrifuge Tubes PCR Clean as
well as PCR tubes were obtained from Eppendorf (Hamburg, Germany).

4.2. Preparation of Aβ1-42 Oligomers and Selection of Carnosine Concentration

The preparation of Aβ1-42 oligomers was achieved by employing a well-validated
protocol previously described in detail [63]. Briefly, the HFIP-treated Aβ1-42, lyophilized
and under the monomeric form, was suspended in dimethyl sulfoxide at the final con-
centration of 5 mM. Ice-cold DMEM/F12 (1:1) medium was instead used to further dilute
(100 µM) all the samples. Aβ1-42 samples were then incubated for 48 h at 4 ◦C, at the end of
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which the formed oligomers were immediately used to treat ARPE-19 cells or aliquoted and
stored at −20 ◦C until their use. Atomic force microscopy (AFM) was previously used to
assess the suitability of this method used to obtain the formation of Aβ1-42 oligomers [64].
Preliminary experiments by employing Aβ42-1 (reverse sequence of Aβ1-42, inactive con-
trol for the Aβ) demonstrated no effects on the modulation of cell viability, the expression
of IL-6, TNF-α, and IL-1β mRNAs, as well as on ROS production compared to untreated
ARPE-19 cells.

4.3. Propagation and Maintenance of cells

The authentication of the cell line used in this study (ARPE-19) was performed by
Eurofins Genomics Europe Applied Genomics GmbH (Ebersberg, Germany) [65] (Supple-
mentary material: Supplementary Files S1–S5). ARPE-19 cells were cultured in DMEM:F12
medium enriched with FBS (10%), streptomycin (100 µg/mL), and penicillin s1 (100 U/mL)
by using 25 or 75 cm2 polystyrene culture flasks. Cells were maintained in a humidified
environment (37 ◦C, 5% CO2). In order to avoid cell overgrowth, ARPE-19 cells were
passaged every 2–3 days.

4.4. Analysis of Cell Viability

The appropriate concentration of Aβ1-42 oligomers able to exert toxic effects in ARPE-
19 cells was selected by preliminary testing three different Aβ concentrations (0.5, 1, 2 µM),
while carnosine was used at the concentration of 20 mM, representing the gold standard
in in vitro studies [16,21,66–69], a selection also sustained by preliminary experiments. In
particular, we first tested the effects of increasing concentrations of carnosine on ARPE-19
cell viability (Figure S1). By doing so, we were able to select the highest concentration
(20 mM) that could be used in this specific cell line without significant changes in cell
viability, which was also more effective in preventing the toxic effects induced by Aβ

oligomers (Figure S2).
ARPE-19 cells were harvested (trypsin-EDTA solution), counted (C-Chip disposable

hemocytometer), and plated in 96-well plates (1.5× 104 cells/well). The day after, cells were
treated with Aβ1-42 oligomers (2 µM) and incubated for 48 h in a humidified environment
(37 ◦C, 5% CO2). At the end of the stimulation process, cell viability was measured by
employing the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay
as previously described [70].

The effects of Aβ1-42 oligomers on ARPE-19 cell status were also evaluated by mea-
suring the ATP production with the ATPlite 1 step kit according to the manufacturer’s
instructions [71]. The concentration of ATP will be proportional to the luminescence inten-
sity coming from its reaction with luciferase and D-luciferin. At the end of the treatment,
the plate was equilibrated at room temperature and added to the reaction solution. The
luminescence was then measured with a Varioskan®Flash spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA).

4.5. Gene Expression Analysis by Quantitative Real-Time PCR (qRT-PCR)

Extraction of total RNA from ARPE-19 cells was performed with a TRIzol Reagent.
The concentration of total RNA recovered from untreated ARPE-19 cells or cells treated
with Aβ1-42 oligomers (2 µM), in the absence or presence of carnosine (20 mM), for 48 h
was determined through NanoDrop® ND-1000 (Thermo Fisher Scientific, Waltham, MA,
USA), by measuring the absorbance at 260 nm; Qubit® 3.0 Fluorometer (Thermo Fisher
Scientific) was instead used to test RNA quality [72]. cDNA was synthesized from 2 µg
of RNA with a reverse transcription kit (SuperScript™ II Reverse transcriptase) according
to manufacturer instructions. The quantification of cDNA samples loaded in a 384-well
plate was obtained by employing a LightCycler® 480 System (Roche Molecular Systems,
Inc., Pleasanton, CA, USA). Table 1 reports the information related to the genomewide,
bioinformatically validated primer sets (QuantiTect Primer Assays) employed for the gene
expression analysis.
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Table 1. The list of primers used for qRT-PCR.

Official Name # Official Symbol Alternative
Titles/Symbols

Detected
Transcript Amplicon Length Cat. No. §

interleukin 1, beta IL1B IL-1; IL1F2;
IL1beta; IL1-BETA

NM_000576;
XM_006712496 117 base pair (bp) QT00021385

interleukin 6 IL6
CDF; HGF; HSF;
BSF2; IL-6; BSF-2;
IFNB2; IFN-beta-2

NM_000600;
XM_005249745 107 bp QT00083720

tumor necrosis factor TNF
DIF; TNFA;

TNFSF2; TNLG1F;
TNF-alpha

NM_000594 98 bp QT00029162

cytochrome
b-245 beta chain CYBB

CGD; CGDX;
NOX2; IMD34;

AMCBX2; GP91-1;
GP91PHOX;
p91-PHOX;

GP91-PHOX

NM_000397 124 bp QT00029533

glyceraldehyde-3-
phosphate

dehydrogenase
GAPDH G3PD; GAPD;

HEL-S-162eP

NM_001256799;
NM_002046;

NM_001289745;
NM_001289746

95 bp QT00079247

# https://www.ncbi.nlm.nih.gov/gene/ (accessed on 3 January 2023); § https://www.qiagen.com/it/shop/pcr/
real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/ (accessed on 3 January 2023).

The protocol used to perform sample amplification, fluorescence data collection,
as well as sample quantification is the same as previously described [73]. The selected
housekeeping reference gene was GAPDH.

4.6. Immunohistochemistry

Immunocytochemistry analysis of ZO-1 was carried out as previously described [15].
Briefly, after a washing step with phosphate-buffered saline (PBS), ARPE-19 were fixed with
ice-cold acetone and incubated with ice-cold methanol. Cells permealization was obtained
by using a solution consisting of PBS, normal goat serum, and Triton-X 100, followed by the
incubation with ZO-1 antibody (1:100). After PBS washings, ARPE-19 cells were incubated
with FITC-conjugated goat anti-rabbit antibody (1:300), while nuclei were marked with
DAPI (1:10,000). The semi-quantitative evaluation of ZO-1 expression levels was carried out
as previously described [15,74]. Briefly, coverslips were mounted on glass slides through
the use of a mounting medium and analyzed by using an epifluorescent Zeiss Observer Z1
microscope equipped with the Apotome.2 acquisition system connected to a digital camera
(Carl Zeiss Microscopy GmbH, Oberkochen, Germany). ZO-1 immunostaining images
were analyzed with ImageJ software [75].

4.7. Measurement of ROS Production

The ability of carnosine to counteract the changes in intracellular ROS levels due
to Aβ oligomers treatment for 48 h was carried out in ARPE-19 cells by using a 2′,7′-
dichlorofluorescin diacetate (DCFDA) cellular ROS assay kit, according to the manufac-
turer’s recommendations. ROS quantification was achieved by measuring the fluores-
cence (excitation = 485 nm; emission = 535 nm) with a Varioskan Flash microplate reader
(Thermo Fisher Scientific) and normalized to the fluorescent intensity of untreated ARPE-19
cells (control).

4.8. Statistical Analysis

Statistical data analysis was carried out by using version 8.0 of the software Graphpad
Prism (GraphPad software, San Diego, CA, USA). Student’s t-test was used to assess the

https://www.ncbi.nlm.nih.gov/gene/
https://www.qiagen.com/it/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/
https://www.qiagen.com/it/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/
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statistical differences between the two experimental groups. Only p-values of less than 0.05
were considered statistically significant. Data are always reported as the mean ± SD of at
least three values.

5. Conclusions

In the present study, we were able to show that carnosine suppresses oxidative stress
and inflammation induced by Aβ1-42 oligomers in ARPE-19 cells. In particular, this dipep-
tide decreased ROS levels and the mRNA expression of pro-oxidant and pro-inflammatory
mediators, i.e., Nox-2, IL-1β, and TNF-α. Moreover, carnosine protected ARPE-19 cells
against Aβ1-42 oligomers-induced BRB impairment, as evidenced by ZO-1 protein im-
munostaining. Our results suggest a neuroprotective potential of carnosine in this in vitro
model, a translational and validated paradigm of AMD disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083324/s1. Figure S1: Cell viability in resting ARPE-
19 cells and in ARPE-19 cells treated with increasing concentrations of carnosine (1, 10, 20, 50, 100,
and 200 mM) for 48 h assessed by MTT assay. Figure S2: Cell viability in resting ARPE-19 cells and
in ARPE-19 cells treated with Aβ1-42 oligomers (2 µM) in the absence or presence of increasing
concentrations of carnosine (1 and 20) for 48 h assessed by MTT assay. Supplementary Files S1–S5.
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