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Abstract: Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the
treatment of inflammation-based diseases. Several scientific advancements, by both academia and
pharmaceutical companies, have enabled the identification of many synthetic ligands for this target,
along with the acquisition of precise information on biological requirements and linked therapeutic
opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these
compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4
inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive
pulmonary disease. Since then, three additional compounds have reached the market a few years
later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe
disease. The aim of this review is to provide an overview of the compounds that have reached clinical
trials in the last ten years, with a focus on those most recently developed for respiratory, skin and
neurological disorders.

Keywords: phosphodiesterase 4; PDE4 inhibitors; clinical trials; respiratory diseases; skin diseases;
rheumatoid arthritis; neurological disorders; COVID-19

1. Introduction

Starting from the discovery of phosphodiesterases (PDEs) by Sutherland and Rall
in 1958 [1], there has been a continuous and wide interest by the medicinal chemistry
community on the modulation of their activity. PDEs catalyse the hydrolysis of the phos-
phodiester bond of c-AMP and c-GMP affording the corresponding AMP and GMP inactive
counterparts. In fact, the inhibition of PDE leads to an increase in cyclic nucleotide levels,
which in turn play a prominent role as second messengers, in the regulation of a variety of
cell functions, such as secretion, contraction, metabolism and growth [2–5].

The first important synthetic effort made during the ‘1980s by the pharmaceutical
industry in the area of PDE led to the development and marketing by Sanofi-Aventis of the
PDE3 inhibitor Milrinone [6,7] for the treatment of heart failure (Figure 1). However, this
drug had many drawbacks and was later withdrawn from the market because of serious
side effects in the long term. Indeed, chronic administration of Milrinone resulted in re-
duced survival, showing that chronic elevation of c-AMP in cardiac myocytes is associated
with side effects provoking a major risk of fatal arrhythmias [8]. Milrinone is currently
marketed exclusively for hospital use in cases of cardiac shock [9] and given its power, it
is found in numerous clinical trials for pulmonary hypertension, septic shock and other
(ClinicalTrials.gov Identifier: NCT04484675: Comparative Study Between Inhaled and In-
travenous Milrinone in Patients With Severe Pulmonary Hypertension Undergoing Cardiac
Surgery; ClinicalTrials.gov Identifier: NCT05122884: for the treatment/prevention of severe
sepsis/septic shock, whose relatively common complication is myocardial dysfunction;
ClinicalTrials.gov Identifier: NCT04362527: for the therapy of subarachnoid hemorrhage).
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Figure 1. PDEs inhibitors.

Another significant success was the launch of Sildenafil (Figure 1), the first oral PDE5
inhibitor originally studied for angina, and then approved by FDA and marketed by Pfizer
as Viagra® in 1998 for the treatment of male erectile dysfunction [10–12]. About seven
years later it was also approved for pulmonary arterial hypertension and classified as an
orphan drug by EMEA [13]. The commercialization of Sildenafil was quickly followed by
the marketing of additional PDE5 inhibitors [14].

This remarkable achievement reinforced the assumption to intensify the investigations
also in the field of PDE4 inhibitors, already widely explored as potential candidates for the
treatment of chronic inflammatory disorders. In the development of these drugs, the most
ambitious goal was to be able to limit the side effects, in order to overcome the difficulties
found with PDE3 inhibitors, therefore allowing chronic use.

The interest for PDE4 by both academia and pharmaceutical companies is widely docu-
mented by the numerous reviews and patents published over the past twenty years [15–26]
and despite the disappointing results obtained in clinical studies with various PDE4 in-
hibitors, as well as the early termination of trials on compounds under development, very
important results have been obtained in this field, as highlighted by the PDE4 inhibitors
currently in clinical use.

2. Overview of PDE4

The superfamily of PDEs is currently subclassified into 11 families, namely PDE1-
PDE11, which are characterized by different kinetic properties, tissue distribution, re-
sponsiveness to endogenous regulators (Ca2+, calmodulin, c-GMP) and co-factors (Mg2+,
Zn2+), sensitivity to synthetic inhibitors and, in some cases, substrate specificity (c-AMP
or c-GMP) [27]. Each family is expressed by one or more genes; furthermore, alternative
mRNA processing is responsible for the production of multiple splice variants. Thus,
until now, more than 50 distinct human PDE proteins have been identified. The generally
accepted nomenclature for the different gene products is based on two capital letters indi-
cating the species (HS, Homo sapiens, RT Ratus norvegicus), followed by PDE; then there
is an Arabic numeral indicating the family, which is followed, in turn, by a capital letter for
the gene (A, B, C, D) and finally by an Arabic numeral for the splice variant [28,29].

Phosphodiesterase-4 (PDE4) is the most diversified sub-family of phosphodiesterase
(PDEs) and is abundantly expressed in a variety of cell types [30]. These enzymes have been
found to mediate several physiological processes, such as brain functions, macrophage and
monocyte activation, myocardial contractility, vascular smooth muscle proliferation and
neutrophil infiltration, to name a few. Moreover, PDE4 has been reported to participate
in the physio-pathogenesis of many inflammatory diseases such as rheumatoid arthritis,
chronic obstructive pulmonary disease (COPD) and asthma (Figure 2). Additionally, PDE4
have shown roles in the progress and development of autoimmune diseases, cardiovascular
diseases, and cancers [31,32].
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Figure 2. PDE4s involvement in the physio-pathogenesis of inflammatory diseases.

Four different subtypes of PDE4 have been identified to date, namely PDE4A, PDE4B,
PDE4C and PDE4D. The genes of these subtypes are located on chromosomes 19p13.2,
1p31, 19p13.11, and 5q12, and each of these subtypes can express from 3 to 11 different
proteins, resulting in at least 25 different isoforms of PDE4 distributed within different
cellular compartments and with different levels of expression. All the PDE4 have been
reported to exist in three different forms based on their size i.e., long, short and super-short.
The longer version of the protein has two conserved domains, UCR1 (of approximately
60 amino acids) and UCR2 (of approximately 80 amino acids) in the N-terminal region.
Differently, the short form has only the UCR2 domain in full, while the super-short version
of the protein has a truncated UCR2. At the C-terminus, all the PDE4 have a catalytic
domain of 300–350 amino acids. The active site of the enzyme can be divided into three
sections as shown by X-ray structures: (i) a pocket that interacts with the phosphate moiety
of cAMP, (ii) two pockets that form interactions with small molecules inhibitors, and (iii) a
solvated pocket [33,34]. Unfortunately, the high conserved sequence identity among the
family of PDE4 make the discovery of isoform-selective inhibitors challenging.

The UCRs motifs of the PDE4 are also important for the PDE4 regulation [35]. PDE4
is regulated by transcriptional regulation (long-term) or post-translational modifications
(short-term). When the protein kinase A (PKA) phosphorylates in a conserved PKA
phosphorylation site the UCRs, it has been reported to regulate the PDE4 dimerization and
catalytic activities [25]. In long-term regulation of PDE4, c-AMP concentration is increased
and the activation of adenylyl cyclase (AC) by hormone mediate stimulation is assisted
as a result of increased gene expression. Differently, in the short-term regulation, the
activation of PKA is determined by the increased concentration of c-AMP levels. In turn,
PKA phosphorylates specific serine residues in UCR1 of PDE4, producing a rapid increase
in its activity. However, PDE4 activity is also regulated by other proteins such as Src family
tyrosine protein kinases, arrestin and the receptor for activated C kinase 1 (RACK1) [35].

3. Inflammation and PDE4

The Nuclear Factor κ-light-chain-enhancer of activated B cells (NF-κB) can mediate
cell-specific responses and pharmacological attempt to block its activation is being consid-
ered a new therapeutic option in inflammatory conditions (Figure 3) [36–38]. It is known
that c-AMP interferes with the NF-κB signalling, being in parallel recognized as an im-
munosuppressive and anti-inflammatory actor as well [39]. As a result, PDE4 could be
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potentially useful to indirectly leverage the inactivation/activation of the NF-κB signalling
in inflammation. For instance, in endothelial cells, the high levels of c-AMP produced by
an adenylate cyclase activator (e.g., forskolin) have been reported to prevent the NF-κB-
dependent gene transcription [40]. When macrophages are treated with ethanol chronically,
the inhibition of PDE4 has been proved to decrease the TNF-α mRNA expression, by the
intervention of the transcriptional modulation of NF-κB [41]. Moreover, the inhibition
of PDE4 leads not only to less NF-κB-mediated TNF-α expression but also to activation
of the PKA and increased synthesis of IL-10 [42]. Consequently, inhibitors of PDE4 may
be useful to modulate, negatively or positively, gene expression. Variation in the NF-κB
by PDE4 and c-AMP has also been reported in T cells, where PDE4 has been found to
control the proliferation of T lymphocytes, along with the concentration of TNF-α and
other interleukins such as IL-2, IL-4, and IL-5 [43]. The c-AMP has also been reported as a
crucial mediator of the regulation of T cell suppression, by crossing the cell membrane of
responder T cells, such as CD4-positive [44] and TH2 subsets [45], as well as inhibiting T cell
proliferation. In the context of inflammation, PDE4 are known to promote also chemotaxis
and degranulation in both eosinophils and neutrophils. These effects are mediated by the
increased concentration of IL-8, leukotriene B4 and superoxide anion stimulated by PDE4
in neutrophils. Moreover, PDE4 has been reported to control the expression of adhesion
molecules, such as the β2-integrin Mac-1 in neutrophils, resulting in augmented adhesion
to vascular endothelial cells [46,47].

Figure 3. PDE4 inhibitors in the regulation of inflammatory responses [36–38].

4. From In Vitro and Preclinical Profile of The First PDE 4 Inhibitors to Approved Drugs

In the context of PDE4 inhibitors, it would appear definitely appropriate to start with
Rolipram (Figure 1), the synthesis of which dates back to 1977 [48,49]. Rolipram has cer-
tainly been the most investigated PDE4 inhibitor, from the first studies carried out shortly
after its synthesis, to investigations conducted at present time [50–56], including further
clinical trials (as detailed below). Already at the time of the first studies on Rolipram and
its analogues, there was a body of experimental evidence (confirmed later on) that PDE4
inhibitors were able to suppress inflammatory and immunomodulatory responses in a vari-
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ety of murine and human cells, to block superoxide generation in monocytes, macrophages,
neutrophils and eosinophils, to reduce TNF-α release in monocytes and macrophages,
and to suppress chemotaxis and phagocytosis [57,58]. It is important to highlight that
in eosinophils, which are the effectors “par excellence” of asthma, PDE4 inhibitors can
suppress superoxide generation, chemotaxis, degranulation, LTC4 synthesis and CD11b
expression. In vivo, PDE4 inhibitors demonstrated bronchodilatory effects and the ability
to reverse bronchospasm induced by a variety of agents, thus, the profile of selective
PDE4 inhibitors appeared to fulfil the requirement for the treatment of inflammation-based
pathologies such as asthma and chronic obstructive pulmonary disease (COPD) and some
auto-immune diseases [15,59–62].

Even though such promising in vitro and preclinical results generated a large consen-
sus on the concept of PDE4 as a valid target for the treatment of the above diseases, clinical
evaluation of several potent and selective PDE4 inhibitors was strongly disappointing [63].
A lack of correlation between preclinical and clinical data was a prominent limitation. In
this context, it is worth mentioning that the first clinical studies were performed with the
first generation of PDE4 inhibitors (rolipram and congeners), which were characterized
by serious adverse reactions found, at least in part, associated with the affinity for the
high-affinity Rolipram binding site (HARBS) [64]. Only in 1996, it become evident that
a better side-effect profile could be obtained with agents preferentially targeting the cat-
alytic site over HARBS [65]. Then, this type of selectivity was not pursued any longer,
and another type of selectivity versus the gene products A-D was proposed after these
subtypes were characterized, their tissue distribution demonstrated and their different
functional role suggested [66]. In the early 2000s, the PDE4D isoform was indicated as
being responsible for PDE4 inhibitor-induced emesis [67], although recent studies suggest
that it may not be the only factor involved in this side effect [68]; on the other hand, it has
been demonstrated that PDE4B selective inhibitors produce potent anti-inflammatory and
reduced emetic effects [69].

In the same way, crucial advancements were made on the knowledge of the bio-
chemistry, pharmacology and molecular biology of the PDE4 family, including a detailed
characterization of the different PDE4 subtypes, differentially expressed in tissues and
cells [66]. The identification of a variety of potent and selective compounds, defined as
second-generation PDE4 inhibitors, sustained the hope that the lower emetic potential of
these molecules should overcome the problems encountered with rolipram and its con-
geners, whose development as antiasthma drugs failed due to the adverse reactions [16].
This newly acquired information greatly stimulated the research leading to the synthesis
of Roflumilast by AstraZeneca, which was finally approved as a COPD drug in the EU
(in 2010) and in the USA (in 2011) [70]. Since the marketing of Roflumilast, three additional
compounds have been marketed as PDE4-inhibitor drugs (Figure 4) i.e., Crisaborole (by
Pfizer) for atopic dermatitis [71], Apremilast (by Celgene) for psoriatic arthritis [72] and
Ibudilast (by MediciNova) for Krabbe diseases (also known as globoid cell leukodystro-
phy) [73]. However, research in the field of PDE4 inhibitors has remained very active,
leading to very potent and pharmacologically relevant ligands that have entered clinical
trials for the treatment of a range of diseases. This review aims to provide an overview of
the most interesting compounds that have been developed and entered into clinical trials
since the marketing of the first PDE4 inhibitor Roflumilast.



Molecules 2022, 27, 4964 6 of 25

Figure 4. From Rolipram to marketed PDE4 inhibitors.

5. PDE4 Inhibitors under Development
5.1. Asthma and COPD

Although asthma and Chronic Obstructive Pulmonary Disease (COPD) cannot be
strictly classified as autoimmune diseases, the involvement of a variety of cells responsible
for immune response and the upregulation of TNF-α in these respiratory disorders strongly
suggests the benefit of drugs able to inhibit immunocompetent cell proliferation and
cytokine production. Since the discovery of Rolipram as a potent and selective PDE4
inhibitor, asthma became the major therapeutic target for this agent and its congeners, as
extensively covered by several excellent reviews [74–78].

COPD is a progressive lung disease affecting at least 6% of the population. In the
USA, a 60% increase in prevalence was observed from 1982 to 1995 and COPD was the
fourth leading cause of death in 2017 [79]. The definition COPD includes emphysema
and chronic bronchitis which are both characterized by obstruction of the air flow. Most
COPD cases (80–90%) are linked to smoking, although other causes are exposure to indus-
trial pollutants and lung infections. In the last years, COPD has received less attention
compared to asthma, as it has been considered an “intractable” air flow disorder, largely
unresponsive to treatment with corticosteroids and α2-agonists, which are typically used
in the treatment of asthma. However, COPD and asthma patients share similar clinical
phenotypes, difficult to distinguish, particularly when they coexist. Currently, the therapies
for COPD are mainly based on α2-agonists, anticholinergics, LTB4 antagonists and protease
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inhibitors [80–83], being the corticosteroids low effective/ineffective for the treatment of
this neutrophilic inflammation.

As a result, in the past decades, COPD became a major focus in the context PDE4
inhibitors, due to their ability to deeply suppress airway inflammation and relax smooth
muscle via the elevation of cAMP levels. Research in this field culminated in the mar-
keting of Roflumilast, as mentioned above, as an oral formulation for the treatment of
severe COPD (EU and USA in 2010 and 2011, respectively). Due to the success of this
new therapeutic approach, a huge effort was made by researchers to improve the potency,
safety and tolerability of these drugs, by considering inhaled PDE4 inhibitors as a viable
alternative [24]. In Table 1 are reported the molecules under development for the treatment
of respiratory inflammatory diseases. Among compounds developed by Chiesi Farmaceu-
tici [84–86], CHF 6001 results the most promising and advanced compound in clinical trials.
CHF 6001 is a potent PDE4 inhibitor that showed high preclinical efficacy [85] and it is
also well-tolerated in humans [87]. In a double-blind study, 36 atopic asthmatics received
the molecule (400 or 1200 µg inhaled once daily) for 9 days, resulting in a significantly
inhibited allergen-induced late asthmatic response (for both doses) [88]. In a different
study, 61 patients with COPD and chronic bronchitis received CHF 6001 at doses of 800 or
1600 µg inhaled twice daily for 32 days. Both doses of CHF 6001 significantly reduced mul-
tiple inflammation-related biomarkers demonstrating additional lung anti-inflammatory
action [89]. Minimal side effects (gastrointestinal adverse effects comparable to placebo)
were reported in the same study, demonstrating that CHF 6001 produces anti-inflammatory
effects with high toleration by patients, compared to other PDE4 inhibitors. Currently, CHF
6001 is in phase IIb clinical trials for the treatment of COPD (Table 1). Another compound
worthy of consideration is GSK256066, which is a potent PDE4 inhibitor (IC50 = 3.2 pM)
developed by GSK [90]. In contrast to other PDE4 inhibitors, GSK256066 exhibited marked
in vitro selectivity for PDE4 (vs. PDE1–7). GSK256066 has shown a protective effect on
the early and late asthmatic responses in a randomized, double-blind study. Moreover,
the molecule resulted well tolerated with limited systemic exposure when inhaled, ob-
taining good efficacies by minimizing side effects derived from systemic circulation of
the molecule [90]. In a different study (phase IIa) GSK256066 was tested for a 4 week
study using two different doses (25 and 87.5 mg). The results showed that there were no
differences in the inflammatory markers between the two doses and the incidence rates
of gastrointestinal side effects were negligible in all therapy groups [91,92]. RPL554 or
Ensifentrina is a mixed PDE4/PDE3 inhibitor endowed with a good efficacy and safety
profile without cardiac side effects. Despite its low potency Ensifentrine causes bronchodi-
lation and symptom improvements in COPD patients and it is under evaluation not as a
first-line treatment, but rather as an adjuvant drug to existing long-acting bronchodilators
for the treatments of COPD [93,94]. Oglemilast (GRC3886), by Forest Laboratories, is
currently in phase II clinical trials for the treatment of COPD [95]. Finally, it is worth
mentioning Cilomilast [96], MK0873 [97] and Revamilast [98], the clinical trials of which
have been discontinued from several years. After the commercialisation of Roflumilast,
these compounds rapidly reached the clinical phase for the treatment COPD and asthma.
In particular, Cilomilast was considered the most promising candidate, although the results
were not sufficient to allow its marketing (Table 1).
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Table 1. PDE4 inhibitors under development for the treatment of respiratory inflammatory diseases.

Compound Chemical Structure Company Phase NCT Number a

CHF6001
(Tanimilast) Chiesi Farmaceutici

Phase III
(COPD)

NCT04636801 (2022)
NCT04636814 (2021)

Phase II
(Asthma) NCT01689571 (2017)

Phase II
(COPD)

NCT03004417 (2020)
NCT01730404 (2017)
NCT02986321 (2019)

Phase I (COPD)

NCT04756960 (2021)
NCT05373953 (2022)
NCT04739774 (2021)
NCT02386761 (2020)
NCT05431426 (2022)
NCT01703052 (2020)

GSK256066 GSK

Phase II
(Asthma)

NCT00549744 (2017)

Phase II (COPD) NCT00549679 (2017)
NCT00515268 (2017)

RPL554 Verona Pharma Phase II (COPD)

NCT04027439 (2021)
NCT03937479 (2020)
NCT03673670 (2019)
NCT03443414 (2019)
NCT04091360 (2021)
NCT05270525 (2022)

Oglemilast Forest Laboratories Phase II (COPD) NCT00671073 (2019)

Cilomilast GlaxoSmithKline Phase III (COPD) NCT00103922 (2016)

MK0873 Merck Sharp & Dohme
LLC Phase II (COPD) NCT00132730 (2018)
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Table 1. Cont.

Compound Chemical Structure Company Phase NCT Number a

Revamilast
(GRC 4039)

Glenmark
Pharmaceuticals Ltd.

India
Phase II (Asthma) NCT01436890 (2013)

a ClinicalTrials.gov identifiers from https://clinicaltrials.gov (last accessed on July 14 2022).

5.2. Atopic Dermatitis (AD) and Psoriasis

Atopic dermatitis (AD) is a chronic inflammatory skin disorder that afflicts 2–3% of
the population worldwide and its prevalence intensifies with increasing age. There is a
high frequency of AD in subjects with a history of respiratory allergy [99]; moreover, 15%
of the individuals afflicted by AD develop arthritis. The aetiology of this disorder, which is
characterized by pruritis, cutaneous reactivity and erythema is unknown, but the implica-
tion of a variety of immune and inflammatory cell types strongly suggests a classification
as an autoimmune disorder [100]. An important approach for the treatment of AD must be
considered the use of moisturizers, necessary for the topical steroid preparations, the drugs
of choice for this condition (hydrocortisone, betamethasone and clobetasol), but which
have recently been joined by topical calcineurin inhibitors (TCIs) such as Tacrolimus (for
adults only) and Pimecrolimus) [99,101].

Psoriasis is a chronic inflammatory disease that involves the skin and nails, the in-
flammation is manifested in the skin by localised or generalised patches and it is a lifelong
condition [102]. For mild psoriasis, the main treatment is similar to that for the management
of AD and it is represented by topical steroids, TCIs and vitamin D analogues [103]. Psoria-
sis can be associated with other comorbidities, including psoriatic arthritis (PsA) which
sometimes occurs with joint inflammation and synovitis before the formation of plaques;
PsA is a complication of psoriasis in 30% of people affected by the autoimmune disease.

In the skin, PDE4 is primarily expressed in Langerhans cells, neutrophils, keratinocytes,
and T cells, which also contribute to the psoriatic plaque formation and it has been demon-
strated that PDE4 mRNA levels are higher in patients with psoriasis concerning healthy
individuals [104]. For these evidences, PDE4 inhibitors have been investigated also in the
field of skin disorders and psoriatic arthritis [100,105–108].

Apremilast, by Celgene [109], is the second approved PDE4 inhibitor in 2014 and was
marketed for the treatment of psoriatic arthritis and moderate to severe plaque psoriasis that
do not respond to topical glucocorticoid therapy. Previous preclinical study on arthritis and
psoriasis in vivo models showed that the oral administration of Apremilast significantly
mitigated the epidermal thickness and irregular proliferation and expression of ICAM-1,
HLA-DR and TNF-α in the affected skin [105]. An in vivo study with BALB/c mice and
DBA/1J mice confirmed the results, reducing the symptoms of arthritis with no measured
side effects [58]. Some adverse effects have been reported in clinical trials for Apremilast
such as headache, abdominal pain, depression, weight loss, nausea, diarrhoea, vomiting,
nasopharyngitis, and upper respiratory tract infections [110]. However, the molecule
offers an adequate therapeutic window and is well-tolerated in long-term exposure [108].
Apremilast is a well-tolerated drug and is currently in at least ten phase II and III clinical
trials for different types of psoriasis, both for oral and topical use (Table 2). There are also
two studies on paediatric subjects: the first one from 6 to 17 years of age with moderate

https://clinicaltrials.gov
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to severe plaque psoriasis, the second with active juvenile psoriatic arthritis. Finally,
Apremilast is also in development for Palmoplantar pustulosis and for nummular eczema.

Table 2. PDE4 inhibitors under development for the treatment of atopic dermatitis (AD) and psoriasis.

Compound Chemical Structure Company Phase NCT Number a

E6005 Dermavant Sciences

Phase II
(AD) NCT01461941 (2018)

Phase I/II
(AD)

NCT01179880 (2018)
NCT02094235 (2018)

GW842470X GSK

Phase II
(AD) NCT00354510 (2012)

Phase I (AD) NCT00356642 (2017)

OPA-15406 Otsuka

Phase III
(AD)

NCT05372653 (2022)
NCT03961529 (2021)
NCT03908970 (2021)
NCT03911401 (2021)

Phase II
(AD)

NCT02068352 (2021)
NCT02914548 (2020)
NCT03018691 (2020)
NCT02945657 (2018)

Phase I
(AD)

NCT02334787 (2016)
NCT01702181 (2014)

Leo-29102 Leo Pharma

Phase II
(AD) NCT01037881 (2019)

Phase II
(Psoriasis Vulgaris) NCT00875277 (2019)

Phase I
(AD)

NCT00891709 (2016)
NCT01447758 (2013)
NCT01005823 (2013)
NCT00958516 (2013)
NCT01423656 (2013)

Phase I
(Psoriasis Vulgaris) NCT01466478 (2013)

DRM02 Undisclosed Dermira

Phase II (Rosacea) NCT01993446 (2021)

Phase II (AD) NCT01993420 (2021)

Phase II (Psoriasis) NCT01993433 (2021)

Pefcalcitol
(M518101)

Maruho

Phase III (Psoriasis) NCT01908595 (2015)

Phase II (Psoriasis) NCT02970331 (2019)
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Table 2. Cont.

Compound Chemical Structure Company Phase NCT Number a

Hemay005 Tianjin Hemay
Pharmaceutical Co., Ltd.

Phase III (Psoriasis) NCT04839328 (2022)

Phase II (Psoriasis) NCT04102241 (2021)

Phase I
(Psoriasis)

NCT04837235 (2021)
NCT03007810 (2018)
NCT03570346 (2018)

Orismilast
(LEO-32731) UNION therapeutics Phase II (Psoriasis

and Skin Diseases) NCT05190419 (2022)

MK-0873 Merck Sharp & Dohme
LLC

Phase I (Psoriasis
Plaque)

NCT01140061 (2019)
NCT01235728 (2019)

Apremilast
(CC-10004)

Amgen

Phase IV (Psoriasis) NCT03022617 (2021)
NCT02400749 (2018)

Phase III (different
type of Psoriasis)

NCT03777436 (2022)
NCT04175613 (2022)
NCT01194219 (2022)
NCT03701763 (2022)
NCT03930186 (2022)
NCT05174065 (2022)
NCT04804553 (2022)
NCT03721172 (2021)

Phase II (Psoriasis)
NCT04572997 (2021)
NCT00604682 (2020)
NCT00606450 (2020)

Phase II (AD and
eczema)

NCT04306965 (2021)
NCT03160248 (2021)
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Table 2. Cont.

Compound Chemical Structure Company Phase NCT Number a

Crisaborole
(AN2728)

Pzifer

Phase IV (AD and
eczema)

NCT03832010 (2022)
NCT04023084 (2021)

Phase IV
(Seborrheic
Dermatitis)

NCT03567980 (2021)

Phase II (AD and
eczema)

NCT04091087 (2022)
NCT01652885 (2017)

Phase II (Morphea) NCT03351114 (2021)

Phase II (Psoriasis)

NCT00759161 (2017)
NCT01300052 (2017)
NCT00759161 (2017)
NCT01029405 (2017)

Phase I
(Psoriasis)

NCT00762658 (2019)
NCT00763204 (2019)

a ClinicalTrials.gov identifiers from https://clinicaltrials.gov (last accessed on July 14 2022).

Crisaborole (AN-2728, Eucrisa), the last licensed PDE4 inhibitor by Pfizer (December,
2016) [111] has been introduced as a drug for topical treatment of atopic dermatitis. Despite
its moderate potency (IC50 = 490 nM), it shows excellent anti-inflammatory activity both
in vitro and in vivo [112] and the animal toxicity studies indicated a wide safety margin in
systemic and topical application [113,114]. Clinical trials of the molecule showed that treat-
ment with 2% ointment twice daily was the most effective in relieving symptoms compared
with the vehicle-controlled study [115,116]. Unlike systemic treatment, topical therapy of
crisaborole failed to cause gastrointestinal adverse effects, probably because the molecule
is rapidly metabolized into two inactive compounds after the topical application [117].
Crisaborole is actually in clinical trials to evaluate its antipsoriatic efficacy and safety at
different concentrations of topical formulation in subjects with psoriasis vulgaris; it is also
in development for different types of dermatitis, to compare the efficacy of Crisaborole
with that of Hydrocortisone, Triamcinolone and Aquaphor (Table 2).

Other molecules currently under investigation with promising therapeutic efficacy for
AD and psoriasis treatment are reported in Table 2. E6005 (RVT-501) decreases pruritus
and inflammation in both paediatric and adult AD patients without no relevant side effects
when topically applied [118]. In a dose study, the skin lesion scores were reduced by the
molecule in a dose-dependent manner [119]. OPA-15406, by Otsuka, is in a different clinical
trial as a topical application for the treatment of AD, in particular in paediatric patients.
The studied 1% ointment improved the pruritus score, without adverse effects in the 2 week
study, assessing the efficacy and tolerability of topical treatment [120]. Leo-29102 was
developed by Leo Pharma in 2014 [121]. The molecules showed promising results for the
treatment of AD patients resulting in a significant effects of the molecule on the assessment
of pruritus and overall assessment of disease severity [20]. It recently also completed
phase II clinical trials for Psoriasis vulgaris, as Leo 29102 cream, and in combination with
calcipotriol and betamethasone. Pefcalcitol (M5181, Maruho Pharmaceutical) is a vitamin
D3 analogue with PDE4 inhibitory activity. Preclinical studies showed that the molecule
is an effective therapy for plaque psoriasis with fewer side effects than vitamin D3 when
used in topical application [122]. It is actually in clinical trials for psoriasis in a multicentre
study to assess the safety, tolerability and pharmacokinetic of 0.05% Pefcalcitol ointment
in adolescent subjects. Additional new PDE4 inhibitors are in development for psoriasis,
such as Hemay005 [123], Orismilast [124] and MK-0873 [125], while GW842470X [126]
and DRM02 for AD [127]; the latter have recently completed phase II as for AD and for
rosacea (see Table 2).

https://clinicaltrials.gov
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5.3. Rheumatoid Arthritis and Lupus

Rheumatoid arthritis (RA) is the most prevalent immune disorder, affecting 2.5 million
people in the US with an estimated expense for therapy of more than 17 billion dollars
each year [128]. RA can also affect young people, but more than 70% of the patients are
over 30 years old [129]. Mortality rates in RA are increased at least two-fold and are linked
to clinical severity [130]. In RA the joint lining swells, invading the surrounding tissues
and producing proteases that attack and destroy the joint surface. Although this generally
occurs in feet and hands, larger joints such as hips, knees and elbows also may be involved.
Swelling, pain and stiffness are usually the main symptoms, even when the subject is at
rest. There are well-defined protocols in the treatment of AR taking into account numerous
factors, in particular, the development stage of the disease; the drugs used in the first phase
of the pathology or pending a precise diagnosis are NSAIDs and glucocorticoids, while
Disease-Modifying Anti-Rheumatic Drugs DMARDS are used after certain diagnosis and
with the fully developed disease. Of the latter, the drugs of the first choice are conventional
synthetic DMARDs, of which Methotrexate is the most widely used, followed by the newer
Biologic DMARDs and Targeted Synthetic DMARDs [131–134].

Given the high costs and severe side effects of these drugs, research has turned to
other targets, including PDE4 [135]. The rational basis for the possible utility of PDE4
inhibitors in RA is the evidence that the c-AMP increase in leukocytes is associated with
the block of several leukocyte functions, including TNF-α production and the subsequent
release of other inflammatory mediators and reactive oxygen species [136]. This approach
is largely justified since some biologic DMARDs actually in use, such as Etanercept and
Infliximab, act precisely as TNF-α inhibitors. TNF-α plays a pathogenic role in the estab-
lishment of rheumatoid synovitis, in the formation of pannus tissue and joint destruction
by increasing synoviocyte proliferation and triggering a cascade of secondary mediators
which are involved in neo-angiogenesis, recruitment of inflammatory cells and in the
final joint destruction [137]. The first evidence of this possible therapeutic application
emerged during a study in the 1990s, carried out with PDE4 inhibitors, including rolipram,
aimed to demonstrate modulation of TNFa by these compounds [138]. Further studies per-
formed on Roflumilast, which had just come onto the market for COPD [139], and also on
Apremilast [58], which would not be approved for psoriatic arthritis until some years later,
highlighted the potential of these compounds for RA demonstrating a direct correlation
between PDE4 inhibition and synovial TNF-α and inflammatory cytokine and chemokine
release in human synovial cells. Moreover, Apremilast reduced in a murine model of RA
the degeneration of tibiotarsal joint in a dose-dependent manner. Other in vivo studies
demonstrated that weak and non-specific PDE inhibitors such as theophylline significantly
reduced oedema in rat adjuvant arthritis models [140]. Also Ibudilast, after its commerciali-
sation for Krabbe’s disease in 2016, has been tested in vitro and mouse models of RA [141]
and it is able not only to reduce the expression and secretion of inflammatory mediators
but also to inhibit the disease progression. Given its established safety profile, Ibudilast is a
good candidate to enter clinical trials for RA.

In the past decade, three compounds have entered clinical trials for RA: Revamilast
(GRC 4039, Glenmark) [142], MK0873 by Merk [125] and the drug Apremilast (Table 3).
Revamilast was under evaluation for different inflammatory disorders, and it finished phase
I for RA treatment, showing a significant TNF-α inhibition in healthy human volunteers [16].
It also completed a phase IIb study to determine the safety and tolerability in patients with
active rheumatoid arthritis who have shown an inadequate response to Methotrexate, but
the results are not published yet (ClinicalTrials.gov Identifier: NCT01430507). The clinical
trial of MK0873 was completed in 2014, while phase II of Apremilast was discontinued due
to lack of efficacy.
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Table 3. PDE4 inhibitors under development for the treatment of rheumatoid arthritis (RA) and lupus.

Compound Chemical Structure Company Phase NCT Number a

Revamilast
(GRC 4039)

Glenmark
Pharmaceuticals Ltd.

India

Phase II
(RA) NCT01430507 (2012)

MK0873 Merck Sharp & Dohme
LLC

Phase II
(RA) NCT00132769 (2015)

Apremilast
(CC-10004) Amgen

Phase II
(RA)

NCT01285310 (2020)
NCT01250548 (2014)

Phase I/II
(lupus) NCT00708916 (2021)

a ClinicalTrials.gov identifiers from https://clinicaltrials.gov (last accessed on July 14 2022).

Systemic Lupus Erythematosus (SLE) is a complex autoimmune multisystemic disease
characterized by erythematous skin, mucosal manifestations, and systemic involvement of
almost all organs and apparatuses such as the kidney, joints and central nervous system.
Unlike rheumatoid arthritis, lupus is less disabling and usually does not cause severe
destruction of the joints [143]. Current therapy for the treatment of SLE involves the use
of FANS, antimalarials, corticosteroids, and DMARDs such as Methotrexate and Ritux-
imab [144,145]. Due to positive anti-inflammatory properties, PDE4 inhibitors have been
also proposed as an interesting alternative/complementary choice for the management of
SLE [146]. Compound NCS613 (Figure 5) has been extensively studied and it demonstrated
to be able to reduce proteinuria and increase the survival rate in MRL/lpr lupus-prone mice
showed that NCS613. The molecule also inhibited basal and LPS-induced TNFα secretion
from PBMCs of lupus patients, which was also noted in the mice as well [147]. In a different
study, NCS613 was reported to downregulate PDE4B and, meanwhile, upregulated PDE4C
expression in healthy humans and in lupus patients. Moreover, NCS613 reduced the level
of TNF-α, IL-6, and IL-8 due primarily to the abolishment of phosphorylation of p38 MAPK
and the translocation of NF-κB [148]. A recent study showed that NCS613 suppresses
the immune complex deposition of MRL/lpr lupus-prone mice in the kidney, and since
nephritis is the most common and severe manifestation of SLE, this compound could be a
leading drug candidate for this pathology [149].

https://clinicaltrials.gov
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Figure 5. Structure of compound NCS613 (preclinical study for Lupus).

Finally, Apremilast has also entered clinical trials for Discoid Lupus Erythematosus
and phase II has been completed in 2021 (Table 3). No published data are available.

5.4. Neurological Disorders

Multiple sclerosis (MS) is a chronic inflammatory autoimmune and neurodegenerative
disease affecting the central nervous system (CNS) and a typical marker of this disorder is
the presence in CNS of sclerotic plaques characterized by demyelination which reduces
stimulus conduction, provoking a progressive physical impairment [150,151]. The factors
contributing to the onset and progression of this disease are many and complex, but genetic
and environmental ones are certainly the most important. About 350,000 people in US suffer
for MS, which, together with trauma, is the top cause of disability in young adults. In the
early stages of the disease, most of the patients experiments relapsing and remitting periods.
Symptoms vary greatly and depend on the location of lesions in the CNS, but generally
include problems with vision and touch, muscle weakness, difficult bladder control and
sexual dysfunction. Impairment of memory, attention and concentration generally affects
up to 60% of patients: in the first stage of the disease, symptoms can go into remission
for a long time, but suddenly severe attacks turn up again. In other cases, symptoms
worsen gradually over the years. Cognitive problems are a big part of the disease for
a lot of patients [150]. Currently, the first-line therapies for AR are immunomodulatory
or immunosuppressive therapies and among the used drugs are Interferon-β 1a and
1b (IFN-β1a and 1b), Glatiramer acetate, Teriflunomide, Fingolimod, Natalizumab and
Mitoxantrone, the most of these compounds showing severe adverse effects [150]. Since
inflammation is a fundamental component of neuroinflammatory and neurodegenerative
responses in MS, the anti-inflammatory properties of PDE inhibitors can be an attractive
choice to impede peripheral lymphocyte accumulation by reinforcing the BBB, as well as to
restore the balance between pro- and anti-inflammatory mediators [152].

The experimental evidence of PDE4 inhibitors efficacy against MS dates back to the
1990s when Rolipram was tested in a model of experimental allergic encephalomyelitis
(EAE), an animal model generally accepted for the study of MS. Rolipram administered
sc every 48 h for 45 days at 10 mg/Kg completely suppressed the clinical signs of EAE in
marmosets [153] confirmed by magnetic resonance imaging of the marmosets brain, that
showed the disappearance of abnormalities in comparison with vehicle-treated animals.
Moreover, Genain et al. [154] found that brain TNF mRNA levels were lower in Rolipram-
treated marmosets that showed no clinical signals of EAE. Unfortunately, these very exciting
results were not followed by the same success in clinical studies because of the presence of
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severe adverse events. Other than common nausea, vomiting and insomnia, the patients
treated with Rolipram reported an increase in the amount of contrast-enhanced lesions
(CEL) compared to the baseline state [155].

At the present, only the drug Ibudilast completed the phase II clinical trials for
Multiple Sclerosis and results seem to indicate its effect on brain atrophy, perhaps associated
with slower disease progression. However, this drug shows the usual side effects of PDE4
inhibitors, such as gastrointestinal symptoms and headache [156]. The same drug is in
three different studies for another form of sclerosis, Amyotrophic Lateral Sclerosis (ALS),
also known as motor neuron disease, a pathology characterized by the degeneration of
both upper and lower motor neurons [157]. It is a progressive and fatal neurodegenerative
pathology in which there is a progressive weakness of the voluntary muscles and muscles
of breathing, swallowing and speech [158]. Ibudilast has already completed phase II of two
different clinical trials, the first in which it was used alone, the second in association with
Riluzole, the only drug currently available for ALS. A further study started in June this
year and is currently being recruited (Table 4).

Table 4. PDE4 inhibitors under development for the treatment of different neurological disorders.

Compound Chemical Structure Company Phase NCT Number a

Ibudilast
(MN-166)

Medicinova

Phase II
(ASL)

NCT04057898 (2022)
NCT02714036 (2020)
NCT02238626 (2021)
NCT01982942 (2020)

Phase II
(Glioblastoma) NCT03782415 (2022)

Phase I
(Migraine Headache) NCT01389193 (2015)

BPN14770
(Zatomilast)

Shionogi Pharma,
Tetra Therapeutics

Phase III
(Fragile X Syndrome)

NCT05367960 (2022)
NCT05358886 (2022)
NCT05163808 (2022)

Phase II
(Fragile X Syndrome) NCT03569631 (2020)

Phase II (Alzheimer
disease) NCT03817684 (2019)

Phase II (Depression) NCT03861000 (2021)

Phase I (Alzheimer disease)
NCT02648672 (2017)
NCT02840279 (2017)
NCT03030105 (2018)

GSK356278 GlaxoSmith
Kline

Phase I
(Huntington disease)

NCT01602900 (2017)
NCT01573819 (2017)

Phase I (Depressive
Disorder and Anxiety

Disorders)
NCT01031186 (2017)

MK-0952 Merck Sharp &
Dohme LLC

Phase II (Alzheimer
disease) NCT00362024 (2016)
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Table 4. Cont.

Compound Chemical Structure Company Phase NCT Number a

Roflumilast AstraZeneca

Phase II
(Dementia)

NCT04658654 (2022)
NCT01433666 (2020)

Phase II
(Cerebrovascular Disorder) NCT04854811 (2021)

Phase II
(Nervous System Disease) NCT02743377 (2020)

Phase I
(Major Depressive Disorder) NCT04751071 (2022)

Phase I (Schizophrenia) NCT02079844 (2016)

Phase I (Memory Impair-
mentAlzheimer’s Disease) NCT02051335 (2017)

Phase I
(Fragile X Syndrome) NCT05418049 (2022)

Rolipram Schering AG

Phase II (Nervous System
Disease, PET)

NCT02743377 (2020)

Phase I (Major Depressive
Disorder, PET)

NCT00369798 (2018)

a ClinicalTrials.gov identifiers from https://clinicaltrials.gov (last accessed on July 14 2022).

PDE4-targeted therapy has also shown promising results in other neurological disor-
ders and the same Rolipram, the first blood-brain-barrier permeable PDE4 inhibitor, has
been proven to be effective in various animal models of Parkinson’s disease, Alzheimer’s
disease, depression and neuropathic pain [159–161]. Currently, there are some PDE4 in-
hibitors in clinical trials for different neurological disorders (Table 4) such as Alzheimer’s
disease (AD), fragile X syndrome, depression and Huntington’s disease [23]. As well
known, AD is a neurodegenerative pathology characterized by the deposition of amyloid
beta-peptide (AB) (so-called senile plaques) and tau protein in the form of neurofibrillary
tangles. The involvement of cAMP and cGMP on AB production has long been known [162],
as well as the increase in PDE4 expression in the early stages of AD [163], thus indicating
the interest in PDE4 inhibitors for the treatment of this pathology [164]. Two promising
compounds, MK0952 and BPN14770, as well as the drug Roflumilast, have been developed
for the treatment of AD and reached phase 2 and 1 clinical trials, respectively. BPN14770 in
particular has participated in several clinical trials, the last of which (NCT03817684) is still
active in phase 2.

It has long been known that in depressive patients there is a dysfunction of the AMPc
signalling pathway [165,166], and it was shown that the use of PDE4 inhibitors, such as
Rolipram, enhances the antidepressant effect when used in combination with beta1 or beta2
agonists in mouse models [167]. By increasing cAMP levels, depression has also become
an attractive target for PDE4 inhibitors [168] and in this last decade, three compounds
have entered clinical trials: BPN14770, which completed Phase II in 2021, GSK356278 and
Roflumilast whose estimated primary completion date is October 2022. GSK356278 has
also completed two phase I clinical studies (one alone and one in addition to Rolipram)
in 2017, for the treatment of Huntington’s disease (HD), an autosomal, progressive neu-
rodegenerative disease characterized by a progressive motor and cognitive decline with a
sorrowful prognosis [169].

A recently identified target for PDE4 inhibitors is fragile X syndrome, a genetic disease
caused by the alteration of FMR1 gene [170]. It represents the second cause of intellectual

https://clinicaltrials.gov
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disability and it shows itself with autistic-like behaviour and hyperactivity. This pathology
is strictly associated with reduced cAMP levels in mice and the use of BPN14770, a potent
PDE4D allosteric inhibitor [171] in the animal model of FXS (Fmr1 KO), afforded positive
effects, such as hyperactivity decrease and behaviour improvement [172]. BPN14770 com-
pleted phase II clinical trials in 2020 and the results are encouraging, since the treatment of
the patients with an oral dose 25 mg twice daily affords significant cognitive improvement,
together with good tolerability [173]. It is now entering phase III with three different groups
of patients, divided by age (Table 4).

Finally, [11C](R)-rolipram showing good properties such as high affinity (IC50 = 1–2 nM)
and lipophilicity (Log P about 3) is an interesting positron emission tomography (PET) brain
imaging agent. For these characteristics, Rolipram has entered clinical trials to measure
PDE4 levels in the brain of patients with various neurological and psychiatric disorders
(NCT00369798) to evaluate the different levels of PDE4 in patients with McCune-Albright
Syndrome (MAS) compared to healthy controls (NCT02743377) (Table 4).

5.5. COVID-19 and PDE4

Recently, because of the emergency related to the SARS-CoV-2 pandemic, interest has
arisen in the use of PDE4 inhibitors in the treatment of severe symptoms characterizing
COVID-19, both for their anti-inflammatory and antiviral effect on HIV-1 replication [174].
As known, COVID-19 disease is characterized by a hyperinflammatory state due to a
massive release of pro-inflammatory cytokines, called a “cytokines storm”, and effective
inhibitory action on cytokines is also performed by cAMP, through modulation of other
protein pathways. Thus, PDE4 could represent an attractive new target for the development
of potential drugs and the use of PDE4 inhibitors could prevent the storm of cytokine
responsible for the major compliances of COVID-19 [175,176]. Of interest, phase 3 clinical
trials have been completed (November 2021) for the drug Apremilast (previously in the
market as anti-psoriasis agent) for the treatment of SARS-CoV-2 infection (ClinicalTrials.gov
Identifier: NCT04590586).

6. Conclusions

Increasing the intracellular cAMP levels by PDE4 inhibition has been proven to be
an effective strategy for the treatment of several inflammation diseases and after more
than twenty years from the pioneering studies of Crummey, Thorphy and coworkers
suggesting the potential of in asthma therapy, different molecules PDE4 inhibitors have
been marketed. Since Roflumilast reached the market, the enormous therapeutic potential
for PDE4 inhibitors in various diseases has been studied and several clinical trials covering
different aspects of PDE4 inhibitions in several diseases have been reported. Among the
whole plethora of PDE4 inhibitors, Roflumilast was initially approved for the treatment
of COPD and asthma, apremilast for the treatment of psoriasis and psoriatic arthritis and
crisaborole was approved for the treatment of AD.

In addition to these applications, the currently know PDE4 inhibitors are being tested
for other different inflammation based diseases. Recent applications of PDE 4 inhibitors
also include the treatment of Behcet’s syndrome, where apremilast is being applied and for
the treatment of hepatic steatosis unassociated with alcohol, where ASP9831, developed
by Astellas Pharma Inc., exhibited potent anti-inflammatory and antifibrotic effects in
preclinical studies. The aim of this review was to provide the reader with an overview
of PDE4 targeting compounds that have reached clinical trials in the last ten years, since
the first PDE4 inhibitor was marketed, with a focus on those most recently developed for
respiratory, skin and neurological disorders. Unfortunately, despite that small molecule
PDE4 inhibitors have been widely studied as therapeutics for several human inflamatory-
based diseases, only a few of them have been able to be approved, due to side effects
as PDE4 is widely expressed in many tissues. Therefore, one problem that remains to
be solved is the achievement of tissue- and cell-specificity for specific therapeutic aims.
It appears evident that the research in this field is an avenue worth purchasing, but an
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analysis of the pharmacological profile of classical PDE 4 inhibitors, clearly indicated that
there are several charateristics to be improved for novel drug candidates of this class such
as nanomolar activity at the catalytic site of PDE 4, low affinity for HARBS, selectivity for
the PDE subtype, potent TNF-α inhibitory activity, low brain penetration, combination
therapy, change the routine of administration, (inhaled administration of GSK256066, that
limited the systemic exposure with less to none gastrointestinal side effects, and topical
application crisaborole did not cause any gastrointestinal adverse effects).

Although there are still drawbacks, the several compounds that are currently in
clinical trials and data reported in this review strongly encourage researchers to chase
the therapeutic the potential of PDE4 inhibitors in order to propose novel therapeutic for
human diseases.
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