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 Abstract 

Urban mobility is experiencing an exceptional season of change, under the 

impulse of the disruptive innovations brought by information and communications 

technologies. Innovative demand-responsive transport services, allowing the 

intelligent matching between demand and supply and enabling travellers to request 

shared rides in real-time via mobile applications, are spreading in most urban areas. 

They are used as an alternative to public transport or as an access/egress leg to mass 

transit stations, i.e., acting as a feeder service. This thesis focuses on planning, 

design and operation, in a multimodal transport network, of innovative forms of 

flexible transit, a term denoting a group of shared mobility solutions able to combine 

a high level of shareability, typical of conventional public transport, with an 

adequate flexibility of route and schedule. A specific attention will be paid to the role 

of flexible transit in low-demand areas, where it is difficult to provide an effective 

and cost-efficient public transport, thus resulting in an extensive use of private 

vehicles. We propose different methodological approaches and tools in order to plan, 

design and simulate flexible transit services, exploring operating strategies, 

optimization algorithms and performance indicators. We are also interested in 

understanding which spatial and temporal demand characteristics are more 

favourable to flexible operations rather than fixed-route public transport in 

providing feeder services toward mass transit. Eventually, we will devise a layout of 

urban transit networks able to be adaptive, i.e., to vary its operating features and 

optimally deploying conventional and demand-responsive strategies according to the 

spatial and temporal variations of the demand. The research questions raised in this 

thesis are addressed focusing on the operational, tactical and strategic decision 

levels of transit problems and using different methodological approaches 

accordingly. In particular, agent-based modelling and simulation and analytical 

models based on continuous approximation techniques are employed. Different 

applications of the proposed models, based on real case studies or synthetic 

networks, are presented to analyse and support the design of flexible transit services 

and their integration with mass transit. The main findings of our work highlight 

that optimally employing fixed-route and flexible feeder operations can prevent the 

passenger accessibility to the transit system from degrading in low-demand areas 

and off-peak periods, thus providing a proper quality of service without burdening 

on operating costs.  
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Sommario 

La mobilità urbana sta attraversando un’eccezionale stagione di cambiamento, 

sotto l’impulso delle innovazioni introdotte dalle tecnologie dell'informazione e della 

comunicazione. In molte aree urbane si stanno diffondendo servizi innovativi di 

mobilità on-demand di tipo flessibile, che consentono l’incontro intelligente tra 

domanda e offerta e permettono ai viaggiatori la prenotazione di viaggi condivisi 

tramite applicazioni mobili in tempo reale. Tali servizi sono utilizzati come 

alternativa al trasporto pubblico o come soluzione per coprire il primo e ultimo miglio 

di un viaggio, fungendo cioè da servizio di alimentazione (feeder) delle stazioni del 

trasporto collettivo. Il presente lavoro di tesi si concentra sulla pianificazione, 

progettazione e gestione, all’interno di una rete di trasporto multimodale, di forme 

innovative di trasporto collettivo flessibile (flexible transit), ovvero di un insieme di 

soluzioni di mobilità condivisa in grado di coniugare un elevato livello di 

condivisibilità, tipico del trasporto pubblico convenzionale, con un’adeguata 

flessibilità di percorso e orari. Un'attenzione specifica sarà dedicata al ruolo del 

flexible transit nelle aree a domanda debole, dove è difficile fornire un trasporto 

pubblico efficace ed economico, implicando così un ricorso estensivo alla mobilità 

privata. Diversi approcci metodologici e strumenti per la pianificazione, 

progettazione e simulazione di servizi di trasporto flessibile verranno proposti, 

esplorando diverse strategie operative, algoritmi di ottimizzazione e indicatori di 

performance. Il nostro interesse è inoltre volto a comprendere quali caratteristiche 

spaziali e temporali della domanda siano più favorevoli al trasporto flessibile 

piuttosto che al trasporto pubblico a percorso fisso nel fornire servizi feeder verso il 

trasporto di massa e, infine, a come progettare una rete di trasporto collettivo 

adattiva, in grado cioè di variare la sua caratteristiche operative e impiegare in modo 

ottimizzato servizi di trasporto fisso e flessibile in base alle variazioni della domanda 

nello spazio e nel tempo. Le domande alla base della ricerca verranno affrontate 

concentrandosi sui livelli decisionali operativo, tattico e strategico dei problemi 

progettuali riguardanti il trasporto condiviso e impiegando di conseguenza diversi 

approcci metodologici, nello specifico, modelli di simulazione ad agenti e modelli 

analitici basati su tecniche di continuous approximation. Diverse applicazioni dei 

modelli proposti, basate su casi di studio reali o reti ideali, verranno presentate con 

l’obiettivo di analizzare e supportare la progettazione di servizi di trasporto collettivo 

flessibile e la loro integrazione con il trasporto pubblico di massa. 
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I principali risultati del nostro lavoro evidenziano che l'utilizzo ottimale di 

trasporto fisso e flessibile è in grado di prevenire il degradarsi dell’accessibilità al 

sistema di trasporto pubblico, nelle aree a domanda debole e nei periodi non di punta, 

fornendo così un’adeguata qualità del servizio senza gravare eccessivamente sui costi 

operativi.
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Glossary of terms 

Here follows a glossary with the definitions of some recurring terms: 

Adaptive transit A multi-modal transit network which consists of a mass 

transit system and a feeder service provided by bus. 

Depending on the sub-region of the urban area and the 

period of the day, the system changes the feeder 

operation, between fixed-route and demand-

responsive, in order to adapt to the spatial and 

temporal variation of the demand density (p. 142). 

Agent-based modelling 

and simulation 

A computer-based modelling technique where a system 

is modelled as a collection of autonomous decision-

making entities called agents. Each agent individually 

assesses its situation and makes decisions on the basis 

of a set of rules, which determines its behaviours. 

Emergent phenomena result from the interactions of 

individual agents and complex dynamics (out of the 

reach of pure mathematical methods) can be explored 

(Bonabeau, 2002) (pp. 16, 35). 

Continuous 

Approximation 

It is an analytical modelling technique able to provide 

high-level guidelines for network planning, consisting 

in treating the transport demand and supply across a 

study area as a parametric environment, where input 

data and decision variables are density functions over 

time and space. The results from such models often 

bear closed-form analytical structures and, compared 

with discrete models, incur less computational burden, 

require less accurate input data, and can conveniently 

reveal managerial insights (Ansari et al., 2018) (p. 16). 

Demand responsive 

transport 

A transport service which is available to the general 

public, provided by low-capacity road vehicles such as 

small buses, vans or taxis, responding to changes in 

demand by either altering its route and/or its timetable 

and charging fares on a per-passenger and not a per-

vehicle basis (Davison et al., 2014) (p. 6). 

Feeder bus service The use of an access mode to a rail rapid public-

transport (Kuah and Perl, 1989), often by means of 

small public transport vehicles providing short-

distance connections to feeder rail transit stations (Zhu 

et a., 2017) (p. 43). 
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Flexible transit A group of shared mobility solutions combining a high 

level of shareability, typical of traditional public 

transport, with an adequate flexibility of route and 

schedule, since passengers are often asked to walk a 

short distance to access/egress the service. Flexible 

transit can be provided by either a private company or 

a public agency, or be intended for a specific group of 

people, e.g., disabled and elderly (p. 6). 

Mobility-as-a-Service A user-oriented integrator of transport services 

enabling searching, booking, and payment through a 

single digital platform (e.g., a single smartphone 

application), offering a tailored mobility package for 

door-to-door customized trip solutions  (Jittrapirom et 

al., 2017; Le Pira et al., 2021) (pp. 7, 108, 191). 

Shared Mobility An innovative transportation strategy that enables 

users to have short-term access to a transportation 

mode (e.g., vehicle, bicycle, or other travel mode) on an 

as-needed basis. Shared mobility includes various 

services and transport modes that meet the diverse 

needs of travellers (Shaheen et al., 2017) (p. 4). 
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CHAPTER 1 

1. Introduction 

Sustainable mobility is one of the main challenges of our century. It implies the 

joint planning of land use and transport system in order to guarantee a better 

accessibility to a wide range of opportunities, e.g.,  workplace, education, healthcare, 

leisure, etc., and reduce the carbon footprint of human activities. Accessibility-

oriented transport planning pays particular attention on active mobility, public 

transport and promotes multi-modal integration, i.e., combining of various transport 

modes throughout a trip from origin to destination. While remaining the most 

sustainable way to provide high transport capacity in dense urban settlements, 

conventional transit shows its inefficiency in low-demand areas, where mobility 

needs are spatially and temporally diverse. The recent technological innovations 

paved the way for the emerging of innovative forms of flexible, on-demand transport 

services, which are currently operated by private companies, often in competition 

with transit operators. 

This thesis focuses on the first/last mile problem of passenger trips, identifying 

the provision of feeder bus routes for mass rapid transit as main solution. We intend 

to provide a methodological framework for the design, planning and operation of 

feeder services with various levels of flexibility, from fixed-route to on-demand door-

to-door transit, with the ultimate objective of devising a demand-adaptive transit 

system, able to optimally integrate conventional and innovative shared transport 

modes in different urban contexts and time of the day. In this introductory chapter, 

we explain the motivation that underlie the thesis. Then, we establish the research 

objectives and questions and briefly outline the theoretical and methodological 

background. We further introduce our research approach, highlighting the main 

research contributions and some policy implications. Finally, we present the thesis 

outline.  



2  CHAPTER 1 - Introduction 

 

 

1.1 Motivation of the research  

Mobility has a significant impact on people’s quality of life. The ever-increasing 

growth of urban areas, which would not have been possible without the impressive 

technological development of transport systems, has definitely widened the action 

radius of citizens’ daily activities. If on one side this process increased the number of 

territorial opportunities, like the choice of residence or workplace locations, on the 

other side it exacerbated the need of fast, flexible and reliable transport modes. 

Except from those forms of mobility meant as leisure and sport activities, 

transport would not exist alone, for the sake of movement. Instead, transport 

represents a derived demand, i.e., related to other human activities. People employ 

a significant part of their daily routine travelling between the places where they live, 

work, study, buy, or have social relations. 

Transport is also a crucial element of the “sustainable development”, as first 

recognized at the 1992 United Nation’s Earth Summit. Recently, in 2015, the United 

Nations general Assembly set up 17 interlinked global goals, named Sustainable 

Development Goals (SDGs), which are included in “the 2030 agenda for sustainable 

development”. Sustainable transport is mainstreamed across several goals and 

targets, especially those related to food security, health, energy, economic growth, 

infrastructure, cities and human settlements. Specifically, sustainable transport is 

the focus of the 11th SDG, target 2, which states: “By 2030, provide access to safe, 

affordable, accessible and sustainable transport systems for all, improving road 

safety, notably by expanding public transport, with special attention to the needs of 

those in vulnerable situations, women, children, persons with disabilities and older 

persons”.  

Although sustainable mobility is almost a 30-years-old concept, not enough has 

been done to reduce the carbon footprint of transport activities and the desirable 

modal shift towards active and shared mobility is still far from being achieved in 

most cities, although the recent diffusion of the Information and Communication 

Technologies (ICT) in transport applications offers a chance to boost the emergence 

of innovative, accessible and flexible forms of shared mobility. 

1.1.1 The risks of the car-oriented development 

In the last decades, most cities have witnessed the uncontrolled expansion of low-

density, single-use suburban development (La Greca et al., 2011), which is, almost 

always, characterized by a low level of accessibility. With reference to the passenger 
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transport, Geurs and Van Wee (2004) defined accessibility as “the extent to which 

land use and transport systems enable (groups of) individuals to reach activities or 

destinations by means of a (combination of) transport mode(s)”. Biazzo et al. (2019) 

described accessibility as “the capacity of cities to allow people to move efficiently by 

guaranteeing equity and equal access to personal and professional opportunities”. 

The car ownership is a factor that radically changed the shape and size of modern 

cities: thanks to its characteristics of speed and flexibility, the car has favoured the 

increase of the average distance of the daily trips and the consequent decline of the 

residential density. So, the ability to make long journeys has been increasingly 

becoming a necessary condition for accessing the territorial opportunities. Since low-

density areas are located far away from the city core and often poorly served by 

public transport (PT), they became over the years strongly dependent on motorized 

private transport, increasing the congestion of the city centre as well as the time and 

monetary cost of transport activities, and thus contributing to the social, economic 

and environmental unsustainability of urban mobility (Newman and Kenworthy, 

2006; Banister, 2008, Ignaccolo et al., 2016). 

The modal imbalance towards the use of private vehicles in urban areas involves 

a series of costs and externalities for the community, including: 

• The reduction in safety conditions of soft mobility: as reported by the World 

Health Organization (2018), road traffic injuries are one of the ten leading 

causes of death and at least 30% of road crashes occurs in urban areas. 

Pedestrians, cyclists and motorcyclists should be regarded as “vulnerable” 

road users, and their number is rising also thanks to the recent worldwide 

diffusion of the electric micro-mobility. 

• The increased levels of atmospheric and noise pollution: transport is the 

major contributor to local and global pollution of air, soil and water, 

accounting for almost a quarter of energy-related global greenhouse gas 

emissions (IEA, 2018), undermining the efforts to meet the global challenge 

of climate change. 

• The uneven access to mobility services and territorial opportunities: a 

combination of land use and transport planning firstly directed at the 

motorized private mobility causes an unequal accessibility to public and 

private services and instances of social exclusion (van Wee and Geurs, 2004). 

• The congestion of road networks: road congestion is detrimental for 

travellers to the extent that it increases the time and money cost of accessing 

destinations (Levine and Garb, 2002).  
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• The inefficiency of PT: urban sprawl and car-oriented development gave rise 

to low-density areas, where the need of private vehicles becomes endemic, 

and PT is not able to ensure at the same time an extensive coverage and an 

adequate quality of service (QoS).  

Various risks are closely related to these costs for the society, first of all: (i) the 

road crashes and injuries in urban areas; (ii) the premature deaths attributable to 

air pollution; (iii) the negative contribution to the climate change and (iv) the rise of 

new forms of social exclusion. This last is defined by Van Wee and Geurs (2011) as 

the fact that some people or population groups are excluded from a certain minimum 

level of participation in location-based activities, in which they wish to participate.  

Under this respect, PT should aim at reducing the mobility gap experienced by 

several people to have a good accessibility to all the opportunities and services 

throughout a metropolitan area, e.g.: workplaces, education and healthcare services, 

leisure activities. From this perspective, by offering a mobility potential to all 

categories of users, PT stands as a determining factor for social inclusion policies 

(Lucas, 2006; Giuffrida et al., 2017). 

1.1.2 Shared mobility and sharing economy 

Urban mobility is facing a remarkable season of change. The sharing economy 

paradigm applied to transport services allows a shift from a travel behaviour based 

on private vehicle ownership to a new one based on sharing services and assets on 

as-needed basis (Ambrosino et al., 2016). Such alteration is sustained by the 

disruptive innovations brought by ICT, which enable new flexible, on demand 

transport services spreading as complementary to conventional public transport or 

in substitution to it (Cohen-Blankshtain and Rotem-Mindali, 2016). 

Examples like carsharing, ridesourcing, bikesharing, electric micromobility, 

microtransit show how these concepts are emerging in the ecosystem of urban 

mobility and rapidly sprawling worldwide (Shaheen and Chan, 2016; Machado et al., 

2018). Not only passenger transport but also logistics processes and related freight 

transport flows are rapidly changing, due to progress in information technology and 

unparalleled growth of consumer involvement in supply chains (Tavasszy, 2019; 

Marcucci et al., 2017a).  

Figure 1.1 outlines the innovative transport services for urban mobility, according 

to their level of flexibility, sustainability and shareability. Referring to shared 

mobility, a first classification can be made on the object of sharing. Therefore, we 
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distinguish those services enabling the sharing of a vehicle and those allowing for 

the sharing of passenger rides.  

 

Figure 1.1. Classification of mobility on demand and shared mobility services (adapted 

from Inturri et al., 2019) 

Carsharing, bikesharing and, more recently, e-scooter sharing, with their 

different operation policies, belong to the first category. These services offer the 

flexibility of the individual trip planning and vehicle usage without the burden of 

the ownership (e.g., fuel, maintenance, insurance), since users pay a usage- and/or 

membership-based fee (Shaheen and Chan, 2016). E-scooter and bike sharing have 

proven to be effective in allowing a modal shift towards PT (Ma et al., 2020), by 

providing a first/last mil access to PT lines. 

The sharing of a passenger ride is a more recent concept in the shared mobility 

framework. In fact, shared transport services accommodating users with similar trip 

origin and destination exist since the late 1960s and include carpooling and 

vanpooling (Chan and Shaheen, 2012). However, the new on-demand ride services 

are made possible by the spreading of ICT, which dynamically matches supply and 

demand and allow travellers to request rides in real-time via mobile applications, 

nowadays accessible to the majority of individuals. Ridesourcing, i.e., transport 

services connecting community drivers with passengers via mobile applications 

(Shaheen and Chan, 2016), has been growing rapidly: Lyft (North America), Didi 

(China), Uber (worldwide) are the most famous examples of how smartphone apps 

are able to change the urban transport ecosystem. Ridesourcing consists in real-time 

coupling potential passengers with drivers via ad hoc dispatching algorithm, under 
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a dynamic pricing model and has often outperformed the most traditional form of on-

demand individual mobility, like taxis (which also have adopted “e-hail” apps to book 

a taxi) in an uncertain regulatory and policy climate (Shaheen and Chan, 2016). 

According to Sadowsky and Nelson (2017), ridesourcing services initially tended to 

complement PT coverage, offering themselves as last mile solution in low density 

urban areas and during night hours, where and when PT operations are reduced. 

However, the increasing competition between ridesourcing companies for the market 

share, the growth in vehicle supply and thus the fares’ reduction caused, in the long 

term, a detrimental effect for PT.  

The subsequent step towards shared mobility is represented by the pooled 

ridesourcing services (Uber pool, Lyft shared ride, etc.) which offer a cheaper option 

thanks to accommodating different trip requests with similar origin and destination. 

Finally, with the term “flexible transit” we denote a group of shared mobility 

solutions combining a high level of shareability, typical of traditional PT, with an 

adequate flexibility of route and schedule, since passengers are often asked to walk 

a short distance to access/egress the service. Flexible transit can be provided by 

either a private company (e.g., Via Van) or a public agency, or be intended for a 

specific group of people (e.g., paratransit services for disabled and elderly). 

For the scope of this thesis, we group together ridesharing and flexible transit 

under the definition of Demand Responsive Transport (DRT) given by Davison et al. 

(2014), i.e., a transport service which is available to the general public, provided by 

low capacity road vehicles such as small buses, vans or taxis, responding to changes 

in demand by either altering its route and/or its timetable and charging the fare on 

a per-passenger and not a per-vehicle basis. 

It is not difficult to imagine a near future in which traditional transit modes will 

be replaced by DRT services also in large cities, also considering the disruptive 

potential of employing fully automated vehicles, but it has been shown (Basu et al., 

2018) that only the mass transit can effectively provide high transport capacity by 

accommodating large numbers of commuters, while reducing the congestion on the 

urban street network. Therefore, policymakers and transit agencies should benefit 

from the sharing economy paradigm and devise the optimal operation range of DRT 

services, i.e., where and when they should be deployed to increase the modal share 

of PT, prevent the dependence on private car and promote sustainable mobility. 
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1.1.3 Research context 

Shared mobility in general and DRT in particular can find diverse potential 

applications according to the spatial context and the specific constraints of the built 

environment (Shaheen et al., 2017). Although literature and real applications 

typically devote most of the attention on ridesharing services in dense urban 

contexts, we believe that DRT services have a great potential also (and especially) in 

low-density regions, whether they are suburban areas connected with a mass transit 

network, or small cities during off-peak hours, or even rural areas (which we do not 

consider in this work) where PT services would be unfeasible, to offer an alternative 

to the exclusive use of private vehicles. 

In Figure 1.2 we propose a simplified three-dimensional scheme (the “DRT 

operational cube”) representing the DRT operating context, according to: 

• The type of urban context. We distinguish the city centre, defined by the 

highest concentration of jobs (central business districts) and services, from 

the periphery, characterized by a low-density residential development and 

a commuter demand mostly directed to/from the inner urban area. 

• The time of the day. DRT operations should be managed in a different way 

when dealing with peak demand rather than serving off-peak demand. 

• The size of the city. Large urban areas usually have a MRT network acting 

as backbone of the transit system, while in small cities a bus network 

including few strategic lines is often provided. 

To pursue a decisive modal shift towards shared mobility, future cities cannot rely 

only on traditional forms of PT. Instead, the technological innovations are favouring 

the transition from a culture where consumers own assets, i.e., vehicles, toward the 

Mobility-as-a-Service (MaaS) culture (Jittrapirom et al., 2017; Le Pira et al., 2021), 

where consumers share access to assets. 
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Figure 1.2. The DRT operational cube, considering the urban context, the time of the day 

and the size of the city. 

Table 1.1 identifies some possible solutions of how DRT services can properly 

complement or substitute PT according to the eight different (simplified) 

combinations depicted Figure 1.2. We highlight that these schemes are purely 

qualitative and do not account for a wide set of intermediate situations. However, 

they are intuitive insights into the integration between conventional and innovative 

forms of shared mobility. 

First let us consider the case of a small city. During peak hours, some bus routes 

with a relatively high ridership can be provided. They can ensure a good coverage of 

the city centre and the denser peripheral areas, where the uncovered zones can be 

served by ridesharing services by means of low-capacity vehicles. Also, the bus 

operations could adopt a flexible routing strategy in certain peripheral areas. During 

off-peak hours, instead, providing conventional PT would be too expensive, due to 

low ridership, and it could be substituted by RS. Besides, in the city centre, a flexible 

transit (via minibuses or vans) could be provided. To summarize, in small cities DRT 

can act as (i) an “independent” service with respect to PT, (ii) a substitute of 

conventional (fixed) transit especially in off-peak and low-peak hours, and (iii) a 

complement of the fixed-route transit network, to connect those areas uncovered by 

PT with transfer stations. 
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Table 1.1. Possible integration between Mass Rapid Transit (MRT), Conventional bus, 

Flexible Transit (FT) and Ridesharing (RS), according to different spatial and temporal 

contexts. 
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Large urban areas often count on a MRT system and an extensive bus network. 

Currently, ridesharing providers are almost always competitors of PT. However, 

with the future improvement of MaaS platforms the two mobility options would be 

integrated in multi-modal trip chains and DRT could play a different role according 

to the spatial and temporal context. In peak hours, fixed transit modes operate with 

high frequencies and wide coverage. Suburban areas are connected to MRT via 

feeder bus routes, but in the distant periphery the amount of demand could justify 

the use of flexible transit policies. Ridesharing services mostly complement MRT, 

serving shorter trips and allowing for a good shareability. During off-peak hours, in 

the city centre the PT structure does not change, but a less frequent service is 

provided, while suburban and peripheral areas generate demand levels low enough 

to favour flexible transit operations feeding the MRT system. 

The arguments discussed so far allow us to state that a different approach in 

planning transit systems, considering the integration between on-demand and 

conventional transport services, would make it possible for transit agencies to save 

capital cost and gain in ridership. This concept is qualitatively outlined in Figure 

1.3. Transport demand for PT services usually exhibit two daily peaks following 

commuting patterns. The fleet for transit operations in urban areas, i.e., the number 

of trains, buses, etc. and the vehicle size, is determined by the characteristics of 

demand during the peak hour, while in off-peak periods, where the demand is quite 

lower, frequencies are reduced consequently (Jara-Díaz et al., 2017). However, when 

DRT services are optimally integrated with the transit system, the PT agency could 

avoid oversizing the fleet of conventional buses and reduce the number of bus lines 

in the periphery (see Section 7.5.3), since a share of trip requests is served by DRT 

both for first/last mile connections (complement) and shared trips between 

underserved areas (substitute). Besides, the introduction of DRT services would be 

beneficial also in terms of the new latent demand induced by the increased 

attractiveness of the transit system, mostly consisting in trips which were made by 

private car due to the poor QoS of conventional transit. In off-peak hours, DRT has 

mainly a complementary role, acting as feeder of MRT. During the evening and night 

hours, DRT services are the most efficient way to serve the low and sparse demand 

which otherwise cannot be satisfied by conventional transit. 
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Figure 1.3. Transit demand satisfaction when (a) only conventional public transport 

(CPT) is provided and (b) demand-responsive transport (DRT) services complement CPT 

(own setup). 

1.2 Research scope 

This thesis focuses on planning, design and operation of innovative forms of 

flexible transit in multimodal transport networks. A specific attention will be 

devoted to the role of flexible transit in low-demand areas (also called “weak demand 

areas”), i.e., those urban and suburban settlements characterized by a significant 

dispersion of the mobility demand. The attributes “low” and “weak” do not refer only 

to the number of trips generated or attracted by the zone itself, but also to the 
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variability of this number over the time of the day (or day of the week, etc.) and the 

heterogeneity of the demand density across the space. 

We believe that low-demand areas would benefit from a hierarchical transit 

network model having the mass rapid transit (MRT) as “backbone” of the travellers’ 

trip chain and bus feeder services to cover the first and last mile leg of transport 

(“feeder-trunk” scheme, depicted in Figure 1.4). The latter can consist of fixed-route 

microtransit, performed by buses with a schedule known in advance, or demand-

responsive flexible services, which often deploy smaller vehicles (minibuses, vans, 

etc.) and offer a tailored alternative to private mobility. Multimodal integration 

along a trunk-feeder transit corridor is crucial to expand the service coverage of PT 

without exceeding in operational cost (e.g., vehicle-kilometres travelled) and still 

guaranteeing an accessibility level competitive with that of the private automobile. 

 

Figure 1.4. Representation of a feeder-trunk transit scheme 

1.2.1 Research gaps 

The present thesis aims at addressing some research gaps (G) related to the 

design of flexible transit services. Low-demand areas usually lack of an effective and 

cost-efficient PT service, implying an exclusive use of private vehicles, though 

restricted to who can afford it. Conventional PT is well suited to serve high-density 

and high-demand mobility corridors; nevertheless, fixed-route and scheduled transit 

services can result in low quality of travel experience and scarce load factors where 

the demand is sparse and highly variable, since it is particularly challenging to 
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ensure both good coverage and high ridership (Walker, 2012). In order to keep a good 

QoS, it would be necessary for PT agencies to operate a huge number of lines without 

penalizing too much the service frequency, which would result in an excessive agency 

cost, with respect to the few passengers served per-vehicle. 

Besides, the fast development and diffusion of ICT do not make difficult to 

transform PT by making it “adaptive”, i.e., able to modify its operational features 

(fleet size and composition, routing strategies, service areas, etc.) to the spatial and 

temporal variations of transport demand, and thus bridging a performance gap 

between expensive (but flexible) on-demand ridesharing and cheap (but fixed) 

conventional bus transport. Flexible transit services should take advantage of ICT 

allowing passengers to book and pay for a ride and get real-time travel information 

and transit operators to manage the fleet, update the route and communicate with 

the users or the other vehicles. 

In medium and large cities, where a MRT system operates, an effective planning 

and design of feeder routes (with variable level of flexibility) can be identified as a 

solution to the first and last mile transport problem related to suburban low-density 

zones. Since Kuah and Perl (1989) defined the feeder bus network design problem, 

many authors have proposed analytical (Chang and Schonfeld, 1991) and heuristic 

(Wang, 2019) models aimed at supporting the design of feeder services, either in the 

network perspective (Mohaymany and Gholami, 2010; Kuan et al., 2006; Almasi et 

al., 2018) or in the optimal routing (Xiong et al., 2013) and scheduling (Lu et al., 

2015) of such services. However, none of the previous studies adopts accessibility 

measures obtained, e.g., from socio-demographic and mobility datasets (G1). 

Moreover, a gap exists between modelling sophistication, which often consists in 

abstract, complex approaches difficult to understand by non-experts (Park et al., 

2019), and the practicality of urban transport planning, which should benefit from 

handy and flexible tools allowing for a detailed spatial representation of transport 

network, demand data and geographical constraints (G2). 

Let us focus on the opportunity to provide flexible transit services for the first/last 

mile coverage. There is a broad literature on how to design flexible transit systems 

(Koffman, 2004, Cordeau and Laporte, 2007), from the almost outdated form of dial-

a-ride, where the reservation for the service should take place in advance via call 

centres, to the new challenges brought by real time internet-based ridesharing 

services (Ho et al., 2018). Nonetheless, a small percentage of this research field is 

devoted to flexible feeder services. Among them, many authors have proposed (a) 

efficient heuristics, to address the related dynamic routing and scheduling problems 

(Pan et al., 2015; Li et al., 2018), and (b) analytical models (Quadrifoglio and Li, 
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2009; Chandra et al., 2013; Huang et al., 2020) to compare the performance of fixed-

route (FR) vs. demand responsive (DR) feeder options. However, the former do not 

allow for a comparison between FR and DR policies under different demand levels 

or fleet configurations, while the latter do not explore intermediate flexible strategies 

between a purely fixed and a purely door-to-door service, also due to the 

simplifications related to analytical modelling (G3). 

Besides, most of the work on flexible transit focuses on vehicle dispatching and 

routing strategies to meet users’ requests exactly where they originate, i.e., without 

considering a walking time for passengers, thus implying longer detours to satisfy 

the demand. Only a few papers face the design of ridesharing services in which users 

are requested online to walk towards access/egress their stop locations (Li et al., 

2018; Fielbaum et al., 2021). However, the aforementioned works consider a “stand-

alone” system involving small vehicles (i.e., low shareability) without any modal 

integration with other transit modes (G4). 

Eventually, much research has been devoted to transit network design problem 

(TNDP) (Guihaire and Hao, 2008; Farahani et al., 2013; Ibarra-Rojas et al., 2015). 

This problem can be modelled as a discrete optimization problem (Baaj and 

Mahmassani, 1995; Zhang et al., 2014) to determine the set of transit lines given an 

OD matrix and then predicted travel times on the network and general performance 

indicators of the system. An alternative to this approach is to represent the TNDP 

through analytical models where passenger demand (Ouyang et al., 2014) and 

transit supply (Chen et al., 2015) are represented via a continuous approximation 

(CA) approach, i.e., as function over a geographical space. These CA models deal with 

fixed PT (Daganzo, 2010; Badia et al., 2014), flexible transit (Nourbakhsh and 

Ouyang, 2012; Shi and Gao, 2020), or the integration of both (Chen and Nie, 2017; 

Luo and Nie, 2019). However, none of the previous works has considered how to vary 

(spatially and temporally) the layout of the whole transit network (composed of FR 

and DR transit modes) across the entire urban area, thus making the network 

capable of optimally accommodating flexible transit modes in a given time of day and 

in certain zones of the urban area (G5). 

1.2.2 Research questions 

The research questions (Q) underlying the thesis work arise from the gaps we 

identified in the literature on flexible transit, as explained in pre previous sub-

section. The research questions, which are listed below, will be addressed in different 

chapters of the thesis, as follows: 
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Q1:  How can sprawled urban and suburban areas be effectively served by public 

transport, thus contrasting the massive use of private vehicles? (Addressing 

G1 and G2; Chapters 3 and 5). 

Q2:  What can be a useful, practical and flexible tool to implement, reproduce 

and analyse the performance of on-demand transit services with different 

levels of flexibility? (Addressing G1, G2 and G3; Chapters 4, 5 and 6). 

Q3:  How flexible and demand responsive feeder transport services can 

effectively match the demand with the supply in real-time, trying to 

maximize shareability, minimize operator cost and contain passenger travel 

time? (Addressing G3 and G4; Chapter 5 and 6). 

Q4:  When is it more convenient to adopt a fixed-route policy rather than a 

flexible one in providing feeder services toward mass rapid transit? 

(Addressing G3 and G4; Chapters 6 and 7). 

Q5:  Where, when and how the layout of the urban transit network should adapt 

to the spatial and temporal demand variations? (Addressing G5; Chapter 7). 

The research questions we mentioned above are the driving force behind the 

objectives and goals we set in present thesis, as discussed in the next sub-section. 

1.2.3 Research goals 

The scope of our research comes within the overarching objective of promoting the 

use of public transport and the multimodal integration, with particular reference to 

low-demand areas. The specific goals this thesis aims to pursue are the following: 

1. To develop a practical, customizable but rigorous tool able to guide the 

design of feeder bus lines in low-density and suburban contexts. 

2. To show the suitability of ad-hoc agent-based simulation environments to 

reproduce and compare the performance of different operating strategies for 

flexible transit, involving a range of service flexibility based on the demand 

variations. 

3. To optimize the operation of flexible transit services integrated with mass 

rapid transit, in a multimodal feeder-trunk scheme. Such services are aimed 
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at dynamically matching the transport supply (vehicles and facilities) to the 

demand (users’ trip requests). 

4. To propose a methodology for the design of “adaptive” transit networks for 

large urban areas, i.e., a transit system deploying demand responsive modes 

to complement fixed transit according to spatial characteristics and the time 

of day, therefore with the aim of providing high transport capacity, while at 

the same time ensuring high levels of service even in peri-urban and low 

demand areas. Two objectives that would otherwise be in conflict when 

recurring only to conventional transit. 

1.2.4 Methodological approach 

In order to pursue the aforementioned research goals, two different 

methodological approaches have been chosen: 

Agent-Based Modelling (ABM). Several modelling techniques have been used to 

design and reproduce the main characteristics of transport systems. ABM is a 

computer-based computational method enabling researchers to simulate the 

behaviour of a complex system (such as transport systems), involving numerous 

autonomous agents governed by given decision rules and interacting with the 

environment. ABM adopts a “bottom-up” approach: the agents (bottom level) are able 

to interact with the other agents, having a partial, localized knowledge of the 

surrounding environment and possibly learn and adapt their behaviour over time. 

By simulating such agents, it is possible to understand the comprehensive patterns 

emerging from the system (upper level) and evaluate the resulting outcomes. In 

transit-related models, the major advantage of ABM over mathematical and also 

microsimulation approaches is the ability to provide insight into the operation of a 

system (Ronald et al., 2015), e.g., taking passenger preferences or transit operator 

strategies into account. 

 Continuous Approximation (CA). In Section 1.2.1 we mentioned the distinction 

between discrete and continuous approaches to address the TNDP. By the use of CA 

we model the transport demand and supply across a study area as a parametric 

environment, where input data and decision variables are density functions over 

time and space. The key idea of this modelling technique is to provide high-level 

guidelines for network planning, especially for large-scale practical problems 

(Daganzo, 2010). The results from such models often bear closed-form analytical 
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structures and, compared with their discrete counterparts, incur less computational 

burden, require less accurate input data, and can conveniently reveal managerial 

insights (Ansari et al., 2018). 

1.3 Thesis outline 

This section presents an overview of the thesis structure. Chapter 2 examines the 

scientific background and the relevant literature on flexible transit and transit 

network design problems, with a focus on the methodological approaches. Chapters 

3-7 form the core of this thesis: each of them addresses a problem related to a specific 

decision level in transit planning and design (see Farahani et al., 2013), i.e.: 

1. Strategic. This level involves long-term decisions, mostly related to the 

transit infrastructure. 

2. Tactical. This level includes those mid-term decisions regarding the use of 

infrastructures and facilities of the existing transit network, including bus 

routes and reserved lane allocation, transit service frequency, rolling stock 

type, etc. 

3. Operational. This level encompasses only short-term decisions, which are 

mostly related to transit fleet control, demand management or scheduling 

problems.  

According to the decision level addressed in each chapter and in accordance with 

the methodology used, the core of the thesis can be organised in two main parts, as 

shown in Figure 1.5: 

I. The first part (Chapters 3-6) addresses the design (tactical level) and 

simulation (operational level) of flexible feeder transit services. The 

methodology is mainly based on the agent-based modelling (ABM) 

technique. Also, optimization algorithms are incorporated into the ABMs. 

II. The second part (Chapter 7) mainly addresses the strategic decision level, 

by proposing a solution model of the adaptive transit network design 

problem. The methodological approach is analytical and based on the 

continuous approximation technique. 

The five chapters constituting the thesis core are based on own research papers 

(already published or currently under review). 
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Figure 1.5. Overview of the thesis structure 

Chapter 3 focus on the design of feeder bus routes conceived for covering the 

commuting demand of suburban areas and enhancing the ridership of mass transit 

system. We implemented an Ant Colony Optimization (ACO) algorithm into an ABM 

programming environment in order to find the optimal set of routes connecting the 

service area to the transfer stations and constrained by a maximum cycle time. The 

potential demand at a feeder bus stop is estimated according to accessibility 

indicators, using GIS-based demographic data. The model was applied to case 

studies in the city of Catania (Italy). This chapter is based on the following 

publication:  
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Calabrò, G., Inturri, G., Le Pira, M., Pluchino, A., and Ignaccolo, M. 

“Bridging the gap between weak-demand areas and public transport using 

an ant-colony simulation-based optimization”. Transportation Research 

Procedia, vol. 45, pp. 234-241, 2020. 

Chapter 4 presents an ABM for the simulation of a flexible transit service called 

MVMANT, experimented in the city of Dubai (United Arab Emirates) in 2019. The 

study evaluates the best vehicle dispatching and route choice strategies, also varying 

the capacity if the operating vehicles, from the points of view of both the operator 

and the community. This chapter is based on the following publication:  

Giuffrida, N., Le Pira, M., Inturri, G., Ignaccolo, M., Calabrò, G., Cuius, 

B., ... and Pluchino, A. “On-demand flexible transit in fast-growing cities: 

The case of Dubai”. Sustainability, vol. 12, no. 11, p. 4455, 2020. 

In Chapter 5 the comparison between two alternative feeder transit services is 

conducted, i.e., fixed-route-and-schedule versus on-demand flexible bus. The 

objective is to identify the optimal demand ranges that justify the adoption of flexible 

rather than the fixed operating strategy. For this purpose, a new ABM integrated 

with GIS data is developed and tested on the real case study of a feeder service for a 

metro station located in Catania. The two operational strategies are simulated under 

various demand and supply conditions, with the aim of establishing a trade-off 

between passengers, operator and community needs. This chapter is based on the 

following publication:  

Calabrò, G., Correia, G., Giuffrida, N., Ignaccolo, M., Inturri, G., and Le 

Pira, M. “Comparing the performance of demand responsive and schedule-

based feeder services of mass rapid transit: an agent-based simulation 

approach”. In 2020 Forum on Integrated and Sustainable Transportation 

Systems (FISTS), pp. 280-285, IEEE, 2020. 

Chapter 6 extends the scope of the previous one, by proposing a novel theoretical 

ABM which reproduces and allows to compare different operating policies of feeder 

services in a synthetic simulation environment. The conditions (demand patterns, 

shape of the service area, number and capacity of vehicles) making a demand-

responsive feeder more attractive than a fixed-route feeder are explored, in order to 

find the critical demand density allowing the switch between the two operating 

strategies. This chapter is based on the following paper: 
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Calabrò, G., Le Pira, M., Giuffrida, N., Inturri, G., Ignaccolo, M., and 

Correia, G. “Fixed route vs. demand-responsive transport feeder services: 

an exploratory study using an agent-based model”. Submitted to Journal 

of Advanced Transportation (under review). 

In Chapter 7 an analytical method for the adaptive design of transit systems is 

presented. The objective is to propose a new planning tool to approach the design of 

a transit network which gets the best from fixed-route and demand-responsive 

transit, combining both, depending on the demand observed in each sub-region of 

the urban conurbation and time-of-day. The goal is to provide high transportation 

capacity while guaranteeing high QoS, two objectives that are instead conflicting if 

only classic fixed-schedule transportation is deployed, as in today’s cities. This 

chapter is based on the following paper:  

Calabrò, G., Araldo, A., Oh, S., Seshadri, R., Inturri, G., Ben-Akiva, M. 

“Adaptive transit design: optimizing fixed and demand responsive multi-

modal transport for metropolitan areas” (to be submitted). Presented at 

the 100th Annual Meeting of the Transportation Research Board (TRB 

2021). 

Finally, we draw the overall conclusions of the thesis in Chapter 8, where we also 

discuss their practical implications. At the end of this last chapter, we also formulate 

recommendations for future research.



 

 

 

CHAPTER 2 

2. Background 

In this chapter, a conceptual, theoretical and methodological foundation of the 

thesis work is provided.  

Section 2.1 examines the evolution of demand-responsive transport and flexible 

transit concepts, including their specific characteristics, operational features, and 

performance indicators. The development of new technologies has been changing the 

planning and modelling approach adopted by researchers, transit agencies and 

transport providers towards the design and operation of on-demand flexible services. 

From the first operating experiences of dial-a-ride services, where the request for a 

trip was supposed to be notified well in advance, to the current possibility of booking 

a shared ride in real time using a smartphone application, several routing and 

scheduling strategies as well as the vehicle dispatching algorithms to optimize DRT 

performance have been proposed. Moreover, in view of a future where shared 

mobility will be driven by the diffusion of autonomous vehicles (AVs), some relevant 

studies on the impact of autonomous mobility on-demand on urban transport 

systems are analysed in this chapter. 

Section 2.2 reports a literature review of transit networks design problems, 

analysing the objectives, input parameters, decision variables, and solution methods 

characterizing them. Then, a specific attention to the design of feeder bus routes for 

first/last mile connection to mass transit is paid, focusing on different heuristic 

procedures employed to propose solutions to the problem. 

This chapter also provides an overview on agent-based modelling and continuous 

approximation techniques to address the simulation of transport systems on various 

scales and the design of transit networks, respectively.   
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2.1 The evolution of Flexible transit 

The popularity of Demand Responsive Transport (DRT) services has been growing 

since the end of the last century. Nowadays, the range of different transport services 

which can be grouped in the DRT family is considerably wider than twenty years 

ago. 

An early definition of DRT is reported by Brake et al. (2004): “an intermediate 

form of public transport, somewhere between a regular service route that uses small 

low floor buses and variably routed, highly personalised transport services offered 

by taxis. Services are routed according to the needs of the customers, generally only 

stopping where passengers request collection or dropping off”. One can note how 

DRT was originally devised as a tool to integrate or substitute conventional public 

transport (PT) under certain conditions, but still considered as a form of PT. 

Moreover, probably the most significant difference between the first DRT services, 

also known under the name of dial-a-Ride, and those of today lies in the dynamic 

way in which trip booking, vehicle assignment and vehicle routing occur. In fact, in 

dial-a-ride services, all trip requests were known beforehand (from few days to few 

hours earlier) and vehicle routes were progressively adjusted to meet demand. 

Cordeau and Laporte (2007) provided a review of modelling and solution approaches 

to the Dial-A-Ride Problem (DARP), which consists of designing vehicle routes and 

schedules to serve a given number of users who specify origin and destination of their 

trips. The DARP has many similarities, from a modelling point of view, with two 

common variants of the Vehicle Routing Problem (VRP), namely: 

• The Pickup and Delivery Vehicle Routing Problem (PDVRP), since serving 

each new DRT user involves two additional locations to visit, in accordance 

with vehicle capacity constraints.  

• The Vehicle Routing Problem with Time Windows (VRPTW), since 

passengers may have constraints about the earliest or latest time to be 

served as well as the overall travel time. 

As emphasised by Cordeau and Laporte (2007), what makes the DARP different 

from VRPs is the human perspective. Not only operating cost should be taken into 

account, but also (especially) reducing user inconvenience. In fact, two main 

approaches to the DARP can be adopted when balancing operator and user 

perspectives: 
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1. Minimize system costs subject to full demand satisfaction (no-rejection 

policy) and side constraints. In this case (a) the fleet size is variable, 

according to the demand, and/or (b) user time windows are sufficiently large 

or “flexible”.  

2. Maximize satisfied demand subject to vehicle availability and side 

constraints. In this case (a) the fleet size is fixed and/or (b) time windows 

are “rigid”. 

In its initial dial-a-ride form, DRT was a social service rather than a proper public 

service. As a matter of fact, it was first deployed to serve specific user categories 

(elderly, disabled, etc.), often at high social costs. Users who were interested in using 

the service would communicate their trip requests via telephone some days in 

advance to the operator. The objective of Dial-a-ride was to serve widely dispersed 

trip-patterns and to provide a service in low-density suburban areas for mainly non-

work journeys but have often been criticised because of their relatively high cost of 

provision, their lack of flexibility in route planning and their inability to manage 

high demand (Mageean and Nelson, 2003). 

Currie and Fournier (2020) identified three distinct phases of DRT development: 

(1) the early DRT dial-a-bus type development (1970–1984), (2) the 

paratransit/community transport DRT era (1985–2009), and (3) the ICT tech Micro-

Transit DRTs (2010–2019). The authors showed that, statistically, high service costs 

are a major failure factor for DRT systems and that simpler operations (e.g., many-

to-few/one, where patronage is concentrated at one of the two trip ends or close to it) 

had lower failure rates compared to more complex, difficult to manage, many-to-

many service types. 

Yet, an evolution of dial-a-ride which combine features of conventional (fixed-

route) PT and purely demand-responsive (door-to-door) services is represented by 

“flexible transit services”. Koffman (2004) surveyed 28 flexible transit systems 

throughout North America, finding some common features: (1) flexible services 

operated in limited areas that are considered hard to serve for reasons of 

demographics, street layout, or community preferences; (2) they provide service in 

low-demand time periods; (3) they provide the entire transit service for a small city, 

low-density suburban area, or rural area. Moreover, flexible services had different 

functions based on the spatial and temporal context: in cities with an extensive 

transit network, flexible transit was likely to substitute for fixed-route operation in 

limited areas, while in other cities with more limited fixed-route network, flexible 

transit replaced the entire transit network at certain hours of the day. 
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Koffman (2004) first classified flexible transit operations from the less to the more 

flexible type. This classification is schematically depicted in Figure 2.1, where a 

distinction between two different cases is made, based on the demand pattern: in 

case origins and destinations of user trips are quite uniformly sprawled over the 

service area (many-to-many demand pattern), the flexible service travels from a 

departure terminal to an arrival terminal; instead, when a high percentage of 

ridership is directed to or come from a transfer station (many-to-one demand 

pattern) as in peak-hours commuting trips, the flexible service follows a cyclic route 

which “feeds” the transfer station. In the last case, flexible transit complements and 

expands the coverage of the fixed-route transit network. 

We report the description of the main typologies of flexible transit, based on the 

survey of Koffman (2004), from those slightly less rigid than conventional bus 

services to those approaching to door-to-door solutions. Among the “many to many” 

operation strategies, we can cite: 

• Request stops. Vehicles can serve a on-demand stops near their route. 

• Flexible-route segments. Vehicles travel along a fixed-route but switch to 

demand-responsive operation for a limited portion of the route, without pre-

defined stops. 

• Route deviation. Vehicles operate on a regular schedule along a well-defined 

path, with or without mandatory bus stops, and deviate to serve demand-

responsive requests within a zone around the path, which extent can be 

flexible. 

• Point deviation. Vehicles serve demand-responsive requests within a service 

area and also serve a limited number of stops within the zone without any 

regular path between the stops.  

• Zone route. Vehicles have established departure and arrival times at one or 

more locations but operate in demand-responsive mode along a corridor. 

Regarding “many-to-one” (feeder) transit services, also known as demand-

responsive connectors, the vehicle routes can also be based on demand-responsive 

stops (without a pre-defined route) or door-to-door operations, (the maximum level 

of flexibility). In both cases, the connection with one (or more) transfer station of the 

fixed transit network is ensured. 
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Figure 2.1. Flexible transit typologies (adapted from Koffman (2004)) 

As flexible services are being introduced, a critical issue is how to ensure the 

profitability of transport operators while providing a high QoS (Atasoy et al., 2015). 

The development of ICT in the transport applications has been providing new 

instruments to face this challenge and broaden the original restricted market of DRT 

services. Nowadays, ICT allows “on-demand” transport services booking a shared 

ride on a vehicle in real time. A transport operator can control a vehicle fleet via 

GPS, track the position of users through smartphones, monitor the service into a 

dynamic GIS, predict travel times and optimize the matching of drivers and riders 

with similar itineraries and schedule. Users can book, cancel, or easily change their 

reservation, pay using Internet tools, acquire information on transport modes, routes 

and expected travel times before and during the trip and expected arrival times. By 

the same token, new ICT facilitate coordination between operators, who can collect 

aggregate booking requests based on the place, time of departure and destination; 

select vehicle carriers, based on the number of passengers, tracing flexible routes 
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and estimate travel times with high load factor and low driven distances; collect and 

storage of service’s performance data. DRT services can assume different levels of 

sharing and flexibility, from a shared taxi service to a flexible transit service (Inturri 

et al., 2019), and can have a beneficial role in terms of social, environmental, 

technological and economic impacts (Liyanage et al., 2019). 

Alonso-González et al. (2018) propose an assessment framework with the aim of 

evaluating the performance of DRT with focus on user accessibility (Figure 2.2). The 

authors describe five distinctive characteristics of DRT systems, which are explained 

below: 

• Coverage and routing flexibility: the operation can range from a pure door-

to-door service (maximum flexibility) to a fixed-route service which allows 

for small detours, and the extent of the operating area can either be fixed 

or change over time. 

• Operating period: it is the span of the DRT service. 

• Fleet composition: the capacity of DRT vehicles, which often consist in 

vans or minibuses, determines the flexibility, as well as the level of 

shareability of the operation. This in turn affects the service fare, the 

expected passenger travel time and thus the user cost. 

• Booking system. Traditionally, dial-a-ride schemes relied on telephone 

reservations, but large-scale real-time DRT systems require the online 

processing of bookings and vehicle dispatching in real-time. 

• Rejection policy. Even though a DRT could operate under a no-rejection 

policy, enabling the satisfaction of all traveller requests, such strategy is 

not always feasible. Therefore, vehicle availability or user time windows 

are common request acceptance criteria. 

The authors then identify the main features of a DRT system from which specific 

indicators measuring the change in accessibility due to DRT derive. Regarding the 

travel distance, measuring the percentage of trips shorter than the walking or 

cycling thresholds (to be evaluated according to the trip purpose, the geographical 

area, the type of user, etc.) shows how much the DRT is indeed a competitor of active 

modes. Analysis of spatial and temporal usage reveals where and when DRT is more 

efficient, as a PT complement or substitute. In fact, long-distance trips can require 

connections with the mass rapid transit, where available, with DRT acting as a 

feeder. Measuring the share of such trips using DRT as first/last mile leg is proposed 

as another specific accessibility indicator.  
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Figure 2.2. DRT assessment framework (adapted from Alonso-González et al., 2018). 

The spatial coverage, the operating periods, as well as the performance of the 

system from the user perspective, including the travel time components and the 

percentage of rejected requests, determine the generalized travel cost experienced 

by users, which is an indicator used to compare the performance of DRT as a 

substitute of conventional transit. 

2.1.1 Routing, scheduling and operation of flexible transit 

In parallel with the conceptual development and paradigm change of DRT, 

literature has investigated the diverse problems that must be addressed when 

designing and operating ridesharing and flexible transit services. Among others, 

routing and scheduling problems have been widely addressed and various solution 

techniques have been proposed.  

Mourad et al. (2019) provide an extensive survey of models and algorithms for 

optimizing DRT. Most of the times, optimization problems regarding DRT (often 

called ridesharing problems) are modelled as a variant of the VRP formulations, 

according to a set of additional constraints defining the problem, which are listed 

below: 
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• Routing constraints. 

• Time constraints. 

• Capacity constraints. 

• Cost constraints. 

• Synchronization constraints. 

Optimization problems basically involve the minimization or the maximization of 

one (or more) objective function(s). In ridesharing problems, the objectives of the 

optimization procedure can be (a) operational objectives and (b) quality-related 

objectives. The former usually aim at ensuring a cost-effective service (limiting 

vehicle kilometres, minimizing the fleet size, maximize the number of served 

requests, etc.) and mainly reflect the operator’s point of view. The latter seek to 

ensure a good QoS provided (minimizing walking, waiting and in-vehicle time, 

maximizing direct trips, etc.) and reflect the users’ point of view. Operational and 

quality-related objectives regard both individual perspectives, which usually do not 

match with the collective benefit. A transport operator and, in a wider perspective, 

the transit agency, should adopt “system-wide”, multi-objective approach. 

Analytical methods were used to evaluate the performance of both pure door-to-

door services in terms of passengers’ waiting and riding time (Daganzo, 1978) and 

dial-a-ride systems with checkpoints able to cluster much of the demand (Daganzo, 

1984; Quadrifoglio et al., 2006). While these initial studies assumed a many-to-many 

demand pattern, many further works focused on demand-responsive transit as a 

feeder for the First Mile/Last Mile in a feeder-trunk scheme.  

On this account, Quadrifoglio and Li (2009) proposed an analytical model to 

estimate the demand density threshold for a feeder transit service, for which a 

demand-responsive, door-to-door policy starts to be more attractive (from a user 

perspective) than a fixed-route operation. In their model, a feeder services operates 

in a residential area of rectangular shape and homogeneous density, on the side of 

the major fixed transit line. Since such services are thought for commuters, no 

intrazonal trips were supposed (Many-to-One demand pattern). The best policy is 

chosen to maximize the service quality, defined as a weighed sum of customer 

walking time, waiting time and ride time. 

As the similar work proposed by Li and Quadrifoglio (2010), these analytical 

models aim at assisting planners in the decision-making process when having to 

choose between a demand-responsive and a fixed-route operating policy and whether 

and when to switch from one to the other during the day. The authors found that 

critical demand densities range from 10 to 50 customers/mile2h and that the DRT 
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service performs increasingly better when the portion of drop-off customers 

increases, such as in afternoon peak hours. 

Qiu et al. (2015) identified in the so-called “demi-flexible operating policies” a new 

category of transit operations able to fill the gap between door-to-door and 

conventional fixed-route systems in low-demand areas. The author proposed an 

analytical model to evaluate the transit system performance under the three transit 

policies, namely fixed-route, flag-stops and flex-route, when dealing with expected 

and unexpected demand levels. The passenger cost function, built on the three 

components of travel time (walking, waiting and riding), was treated as the 

performance measure of transit systems. In addition, the dynamic-station policy was 

introduced to assist the flex-route service to better deal with the uncertainties of 

travel demand in low-demand areas, allowing passengers whose deviation request 

were rejected to make use of accepted door-to-door stops, at the expense of a walking 

distance to cover. This strategy was found to be useful to reduce user costs at 

unexpectedly high demand. 

Recently, Papanikolaou and Basbas (2021) addressed a similar problem, 

identifying the critical demand density making conventional bus more convenient 

than DRT in serving the transport demand from a low-density suburban area 

towards the city centre. The analytical model involves the minimization of a cost 

function including both operator and user cost. 

Regarding the heuristics techniques applied to routing and scheduling problems 

of DRT, which constitute the most used approach in literature, Diana and Dessouky 

(2004) addressed the dial-a-ride problem with user time windows and showed the 

effectiveness of the proposed regret insertion heuristic in processing large number of 

requests without excessive computational burden. Their solution techniques 

outperformed classical heuristics when a high-quality service, i.e., narrow time 

windows, is provided to the passengers. Diana et al. (2006) proposed a solution 

method for the fleet size problem related to a DRT service. Their model determines 

the number of vehicles needed to ensure a predetermined quality for the user in 

terms of time windows, waiting time at the stops and maximum allowed detour, 

according to a probabilistic distribution of the demand over the service area. 

Quadrifoglio et al. (2008) studied the impact on productivity of specific operating 

practices currently used by DRT providers. They investigated the effect of using a 

zoning vs. a no-zoning strategy and time-window settings on performance measures 

such as total trip miles, deadhead miles and fleet size. Moreover, they conducted this 

study through a simulation model of the operations of DRT providers on a network 

based on data for a real DRT service operating in Los Angeles County, although 
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authors stated that the methodology is quite general and applicable to any other 

service area. Their results suggest the existence of a quasi-linear relationships 

between the performance measures and two service parameters, i.e., the time 

window size (increasing time windows allows to reduce the fleet size and the miles 

driven, despite a lower user satisfaction) and the zoning policy (a centralized control 

with smaller service areas carries operating cost savings). 

Martinez et al. (2015) focused on urban shared-taxi services, proposing a new 

efficient organizational design and pricing scheme which aim at optimizing the 

usage of the vehicle capacity. It considers that the client is only willing to accept a 

maximum deviation from his or her direct route and establishes an objective function 

for selecting the best candidate taxi. The objective function considers the minimum 

travel time combination deriving from possible taxi-user matching, while 

establishing a policy of bonuses to competing taxis with certain number of occupants. 

Pan et al. (2015) proposed a mathematical model and a heuristic approach to 

design the routing plans for a flexible transit system acting as feeder of a main 

transfer station and serving irregularly shaped communities. The authors developed 

a mixed integer linear programming model based on a gravity-based solution 

heuristic to optimize the service area covering a set of demand collection points and 

simultaneously plan the routes for all service trips.  Moreover, the feeder buses are 

scheduled and dispatched in coordination with the timetable of urban rail transit. 

The authors assumed that pick-up requests are collected and processed before the 

beginning of each trip, the travel times between pick-up points and the transfer 

station are given and the fleet size is known. Finally, the model featured a two-level 

structure with the aim of (i) maximizing the number of served passengers (upper 

level) and (ii) minimizing the operational cost (lower level). 

Given the user requests and the location of fixed stops, Lu et al. (2015) describe 

the three critical issues to be solved in constructing a DRT-type feeder network: (1) 

how to divide the target network into several sub-areas served by different feeder 

buses; (2) how to effectively design the optimal routing plan for each bus to serve 

both pre-determined stops and reserved passengers; (3) how to assign the reserved 

passengers to different feeder buses so as to balance the increasing of travel time 

along each bus route. 

Mendes et al. (2016) proposed a multi-objective approach to VRP applied to DRT. 

Using the “aggregation tree” iterative methodology, the authors construct a bi-

objective version for the problem starting from five different objective functions. 

Shen et al. (2017) concentrates on the vehicle routing operation of a demand-

responsive feeder system with on-demand stops. Authors propose a two-stage 
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routing model to serve variable passenger demand minimizing the system (operator 

plus travellers) cost. The first-stage model aims at serving predetermined requests 

and the second stage model manages extra requests received after the reservation 

deadline, which could be accepted or rejected according to vehicle capacity and 

maximum travel time constraints. 

Alonso-Mora et al. (2017) faced the large-scale ridesharing problem, where 

numerous travellers are matched in real time to a large fleet of shared vehicles (e.g., 

thousands of vehicles), showing how ride-pooling services can bring substantial 

improvement in urban transport systems. The authors introduced a highly scalable 

anytime optimal algorithm which processes requests collected during a time window 

and assigns them in batch to the different vehicles. The algorithm was then validated 

with 3 million rides extracted from the New York City taxicab public dataset, 

considering a ridesharing service with a capacity of up to 10 simultaneous 

passengers per vehicle. The authors found that the 98% of the demand can be served 

by the 15% of the taxi fleet (with vehicles of capacity 10) or the 23% of the taxi fleet 

(with vehicles of capacity 4), within a mean waiting time of about 3 min and trip 

delays between 2 and 4 min. Moreover, assuming that travellers accept a maximum 

delay of 5 min or more, the use of higher-capacity vehicles increase significantly the 

percentage of serviced requests, reducing the waiting time and the vehicle-distance 

travelled, so it is beneficial both for users and ridesharing operators. 

The model of Alonso-Mora et al. (2017) was recently extended by Fielbaum et al. 

(2021), shows that a significant improvement (reductions in the vehicle-hours 

travelled and in the number of rejections) can be achieved by asking travellers to 

walk a short distance to reach the pick-up/drop-off points (PUDOs) assigned by the 

optimization algorithm. They proposed an insertion heuristic algorithm able to face 

large instances while saving computational time, with the objective of minimize the 

number of rejected requests and the expected travel times for passengers (including 

walking and waiting times), limiting the vehicles-hours-travelled (which have a 

relevant impact congestion). The simulation was performed both on a toy grid 

network and the real case study of Manhattan, where one hour of the operation was 

simulated using the publicly available dataset of taxi travels. The authors also found 

that passengers whose origins or destinations lie in the most demanded zones tend 

to have a worse QoS and are more likely to be requested to walk. 

Li et al. (2018) proposed a mixed integer linear programming model for the route 

design of a ridesharing system with meet points, including practical constraints, e.g., 

the travellers’ desired time windows and drivers' maximum acceptable travel time. 

The authors developed a tabu-search meta-heuristic algorithm to solve the problem 
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and found that the introduction of meet points can save the total travel time by ~3% 

for small-scale ridesharing systems. 

Araldo, Di Maria et al. (2019) also proved that limiting pick-up and drop-off points 

to a finite set of meeting points allows to increase the number of shared trips and 

the demand served. However, a trade-off between favouring high capacity or QoS 

should be evaluated on case-by-case basis, e.g., according to the fleet size and the 

amount of demand. 

Stiglic et al. (2018) investigated and quantified the potential benefits of 

integrating ridesharing with PT as well as the ride-matching technology required to 

support it. The authors considered a transit service provider that receives a sequence 

of trip requests from commuters, so the transit service provider is able to three types 

of matches: (i) a ride-share match between a rider and a driver, (ii) a transit match 

in which the driver transports the rider to a transit station, and (iii) a park-and-ride 

match in which the driver parks his car and then uses public transport to reach his 

final destination. Authors showed that such multi-modal integration enhances the 

transport system performance by reducing total distance travelled by vehicles and 

thus the negative externalities associated with car travel. 

Sayarshad and Gao (2020) proposed a dynamic optimization approach for smart 

transit service that switches between demand responsive vehicles and fixed-route 

minibus system, including a dynamic pre-positioning of idle vehicles in anticipation 

of new customer arrivals, and relocation of vehicles to rebalance the use of vehicles 

in the system. The proposed method was tested using a New York City transit 

dataset, showing that the dynamic switching and relocation approaches can improve 

social welfare by up to 32% and reduce vehicle miles travelled up to 53% over that of 

the current transit service, hence the positive impact on energy and environmental 

conservation. 

An interesting change in perspective in improving the efficiency of the dynamic 

matching between demand and supply in DRT systems is given by the work of Wang 

et al. (2021), who integrated monetary incentives for passengers to motivate them to 

consolidate pick-up/drop-off locations and thus reduce the ineffective detours of 

vehicles. Although users’ sensitivity towards incentives depends on various factors 

(e.g., trip purpose, socio-demographic characteristics, etc.), first results suggest that 

the proposed approach has the potential of reducing the number of deployed vehicles, 

shortening the onboard time, decreasing the total distance travelled and increasing 

the profits for the service provider. 
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2.1.2 Autonomous mobility on-demand 

Another field of research that is developing fast and which could give further 

incentives to the implementation of innovative DRT services is that of Autonomous 

Vehicles (AVs). In the next future, fully autonomous vehicles, i.e., those which do not 

need a driver, are expected to bring a disruptive change in urban mobility, reducing 

travelling costs and providing a safer, more comfortable, and sustainable transport 

mode (Meyer et al., 2017). Recently, many authors have been interested in studying 

the impact of autonomous mobility on-demand (AMoD) on urban transport systems 

(Azevedo et al., 2016), as well as rural areas (Schlüter et al., 2021) and whether it 

can lead to a substitution or a complementary effect with respect to PT (Tak et al., 

2021). In fact, while AMoD is often considered as PT competitor, many researchers 

envision a scenario in which AVs are integrated in the PT offer, thus allowing transit 

to dynamically adapt to travellers’ demand, instead of following pre-determining 

fixed routes. 

One of the first investigations about the operation of urban shared AVs and its 

benefits versus vehicle ownership was carried out by Fagnant and Kockelman 

(2014), who developed an ABM simulating the daily displacements of travellers and 

shared AVs within an ideal “gridded” city. The model estimates the impact of 

different demand patterns and vehicle relocation strategies on the QoS and the 

operating cost. A remarkable result is that a system of shared AVs is able to 

accommodate the demand served by a number of private vehicles ten times higher, 

while increasing of about 11% the user travel time.  

AVs have also a potential as first mile/last mile connection to MRT modes. In this 

regard, Liang et al. (2016) proposed a mathematical model thought as planning tool 

for automated taxis operation used for the last mile of train trips, according to a 

profit maximization function. Scheltes and Correia (2017) developed an ABM to 

evaluate the performance of an automated electric fleet of small vehicles employing 

a dedicated dispatching algorithm able to distribute trip requests, having origin or 

destination at a train station, amongst the available vehicles. Requests are processed 

by the algorithm according to a first-come-first-served sequence a set of specified 

control conditions (e.g., travel time to reach a passenger). Several simulation 

scenarios were set up by considering different vehicle relocation strategies, pre-

booking possibilities, vehicle cruising speeds and battery charging strategies, finding 

that such a system should be able to compete with the walking mode and, if higher 

cruising speed would be allowed, also with the cycling mode. Finally, the authors 
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conclude that operational and economic advantages can be brought by using higher 

capacity vehicles and increasing the system shareability. 

Shen et al. (2018) focused on the relationships between AV operators and 

conventional PT agencies and operators (Figure 2.3), identifying synergy strategies 

between AVs and the PT system according to the organizational structure and 

demand characteristics of Singapore. The authors simulated several integrated AV 

and PT scenarios for first-mile trips during morning peak hours, finding that the 

integrated system would improve the QoS, save resources, and be financially 

sustainable, with respect to the current bus operations. 

 

Figure 2.3. Stakeholders around AV-PT operation and AV characteristics from the 

perspectives of operation (AV and PT operators), governance (public authority), technology 

(AV producer), and consumption (AV and PT riders) (Shen et al., 2018).  

A step towards the shared mobility concept was done by Fagnant and Kockelman 

(2018), who proposed a simulation model on dynamic ridesharing service provided 

by AVs. The system pools multiple travellers with similar travel patterns in the same 

vehicle, optimizing fleet sizing. Not surprisingly, results of this work suggested that 

automated ridesharing can play a crucial role in limiting vehicle-miles travelled and 
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traffic congestion. Moreover, Basu et al. (2018) analysed the competitive and 

complementary relationship between MRT and AMoD via a multi-modal agent-

based simulation platform. One significant finding regarded the inability of 

replacing mass transit with AMoD without compromising the user level of service. 

Zhang et al. (2019) addressed the topic of automation in bus transit systems by 

proposing a cost model for bus operations under increasing levels of automation 

technology, from conventional bus to semi-autonomous and fully autonomous bus 

services, operating on a trunk-and-branches network. One of the main concerns 

raised by the authors regards the commercial speed of autonomous buses, which 

needs to be higher than current speed levels (related to safety issues) to lead to 

successful implementation. 

Despite the attractive perspective of a near future where shared mobility is 

enabled and driven by vehicle automation, various barriers still remain for 

implementing AMoD in most areas, including technological and safety barriers, 

regulatory barriers and cost. 

2.1.3 Agent-based simulation of demand responsive transport 

Modern cities and their transport systems are regarded as complex systems 

(Bettencourt, 2015; Ettema, 2015). The state of the system, as well as its 

development over the time, are driven by the aggregation of individual behaviours, 

which interaction leads to highly non-linear emergent phenomena. The complexity 

of transport systems is difficult to address using analytical models, which aims at 

providing exact solutions based on a mathematical formulation of the problem under 

exam. Although analytical models are very suited for “high-level” design problems, 

where the whole system is entirely described and ruled by the parameters and the 

decision variables of the model, they require many simplifying assumptions to limit 

the number of parameters needed and reduce the computational burden, especially 

in large-scale instances. 

The need to capture the stochastic dynamics of the interactions between the 

individual components (agents) of the system led to development of powerful 

simulation tools able to reproduce the behaviour of the agents and the emergence of 

macro-level outcomes (bottom-up approach) from micro-level interactions (M’hamdi 

and Nemiche, 2018). In this context, one computer-based simulation technique 

which has been gaining an ever-increasing popularity is the agent-based modelling 

(ABM). A system modelled via ABM is composed of autonomous decision-making 

entities called agents, each one behaving according to a set of rules which govern the 
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interactions with other agents or the environment where they act. As stated by 

Bonabeau (2002) even a simple ABM can exhibit complex behavioural patterns out 

of the reach of pure mathematical methods and provide valuable information about 

the dynamics of the real-world system that it emulates. More sophisticated ABMs 

can incorporate learning techniques (e.g., neural networks, evolutionary algorithms, 

etc.) to allow realistic learning and adaptation. Contrary to traditional simulation 

modelling (where a model is implemented according to a centralized theory), in ABM, 

agents are provided with few rules of behaviour and emerging patterns through the 

simulation are investigated. Another difference stands in the level of aggregation: 

Even if traditional behavioural models can be disaggregated and detailed, they 

always presume limited options, rational behaviour and maximizing goals (Le Pira, 

Marcucci et al., 2017). Moreover, agent-based programming differs from object-

oriented languages (e.g., Java, C++, Python, etc.) in the degree of autonomy and the 

behavioural flexibility towards the environment. In fact, while an object typically 

exhibits autonomy over its state, an agent has control also over its autonomous 

behaviour, which is also reactive (it can perceive and respond to changes in the 

environment), proactive (it can take initiatives to achieve given goals), and social (it 

can interact with other agents to satisfy given objectives), and has its own thread of 

control (Wooldridge, 2009). 

ABMs have been widely proposed as a valid tool to study complex urban 

environments and they are suitable to understand the complexity of transport 

systems and the emergent phenomena deriving from the interaction between 

individual agents with different objectives and behaviours (Jennings and 

Wooldridge, 1998). Besides, demand models, such as discrete choice models, can be 

integrated in the design of ABM, allowing a realistic representation of agents’ 

behaviour (Marcucci et al., 2017b).  The use of ABM also provides a suitable 

environment where to test transport systems serving the same demand and evaluate 

their performance under different configurations, to understand the potential 

effectiveness of shared services and their applicability range. 

Martinez et al. (2015) proposed an ABM to simulate a shared-taxi system and 

show its advantages over the current scenario without shared taxis. Clients and taxis 

are modelled as agents who take decisions according to their specific interests, while 

the optimization of space and time matching between the demand and the supply 

side is performed by an entity programmed to act in the interest of both the agents.  

Results showed that taxi passengers may benefit from significant fare and travel 

time savings at the expense of penalizing a little the productivity of the taxis in terms 

of revenue per travelled kilometre. The extension of the previous ABM considering 
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the introduction of self-driving vehicles on large-scale was proposed by Martinez and 

Viegas (2017). The authors envisioned and simulated a scenario where all private 

mobility plus conventional bus services were replaced by shared autonomous taxis 

and autonomous minibuses, showing substantial reductions of travelled vehicle-

kilometres and CO2 emissions. 

Several platforms or software have developed and made available ABMs to 

transport modelling, even including public transport and shared mobility 

components. Among these platforms, we can cite MATSim and SimMobility. 

MATSim1 is an activity-based, extendable, multi-agent simulation framework 

implemented in Java (Axhausen et al., 2016). In MATSim, every agent repeatedly 

optimizes in a given number of iterations its daily activity schedule (plan) on the 

transportation infrastructure, while in competition for space-time slots with all other 

agents. Following an activity-based approach to demand generation, agents select a 

plan (composed of a daily activity chain) from their memory, according to the plan 

scores (econometric utilities), which are computed after each mobility simulation 

run. A certain share of the agents is then allowed to modify their plan, through the 

replanning module. The iterative process is repeated until the average population 

score stabilizes (Figure 2.5). 

 

Figure 2.4. The MATSim loop (Axhausen et al., 2016). 

Franco et al. (2020) employed the MATSim platform to model and predict the 

demand for DRT services using anonymised and aggregated mobile phone network 

dataset as well as additional land-use data sources for the city of Bristol (UK). The 

model aimed at helping plan flexible transit services integrated with mass transit in 

substitution of bus services where and when is needed. Narayan et al. (2020) propose 

a multimodal route choice and assignment model implemented in MATSim and 

applied for the network based on the city of Amsterdam, allowing travellers 

combining fixed and flexible transit services for their trips. The simulation study 

highlighted the benefits of multi-modal integration when flexible transit is used as 

access/egress mode to the fixed PT, rather than as exclusive mode. Recently, 

 
1 https://matsim.org/  

https://matsim.org/
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MATSim has also been used to assess the advantages of MaaS and the potential 

change in modal share among urban mobility options (Cisterna et al., 2021). 

SimMobility2 is an agent-based modelling framework which integrates various 

mobility-sensitive behavioural models within a multi-scale simulation platform that 

considers land-use, transport and communication interactions, following the 

activity-based paradigm (Adnan et al., 2016). The framework incorporates three sub-

models, each one dealing with different time horizons (Figure 2.5a) The Short-Term 

module works at the operational model and can simulate in detail movement, 

interactions and decisions of agents (pedestrians, private vehicles and PT). The Mid-

Term simulator handles the transport demand and supply on a daily level, including 

route choice, mode choice, activity pattern and its iterative scheduling of departure 

time choice. This module is based on activity-based modelling in a multi-modal 

transport environment and with explicit pre-day and within-day behaviour. The 

Long-Term simulator captures the strategic decision process on a year-to-year basis, 

including house, job and economic activity location choices and land use 

development. The main advantage of this approach is that these three modules can 

be used individually and, at the same time, enable a seamless flow of information 

between them.  

 

Figure 2.5. Simulation environment of SimMobility, including (a) the three temporal 

component of the simulator and (b) the three modules of the Mid-term simulator and their 

relationship (adapted from Oh et al. (2020)). 

 
2 https://github.com/smart-fm/simmobility-prod/wiki  

https://github.com/smart-fm/simmobility-prod/wiki
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Several extensions to SimMobility have been implemented, including autonomous 

mobility on-demand (AmoD) systems (Azevedo et al., 2016), urban logistics (Sakai et 

al., 2020) and energy estimation models (Fournier et al., 2018). As regards the scope 

of this thesis, it is worthwhile to cite the work of Basu et al. (2018), which used 

SimMobility to simulate different operations of AMoD modes and their potential 

impact on mass transit. The results over a mid-size virtual city suggest that AMoD 

could not replace mass transit without incurring in heavy congestion problems, while 

encouraging the introduction of AMoD for the first/last mile connectivity, with 

beneficial outcomes in terms of mass transit ridership. Moreover, Oh et al. (2021) 

evaluated the environmental impacts of AMoD in terms of energy and emissions, 

referring to the mobility network of Singapore reproduced in SimMobility. Results 

suggest that the introduction of AMOD may increase traffic congestion, travel delays 

and energy consumption, while reducing vehicle emissions, and that a large portion 

of AMOD demand would derive from PT with walk access. 

The ABM platform used in most of research presented in this thesis, despite not 

being specifically thought to transport modelling, is NetLogo.3 Introduced by 

Wilensky (1999), NetLogo is a multi-agent programming language and modelling 

environment for simulating natural and social phenomena, developed at the Center 

for Connected Learning and Computer-Based Modeling of Northwestern University. 

The program offers a fully programmable and customizable environment for 

studying complex systems that evolve over time (Tisue and Wilensky, 2004), 

allowing the dynamic visualization of their significant parameters. NetLogo provides 

to the modeler a meta-language that is simple and intuitive, but highly powerful at 

the same time, based on the original Logo syntax, and makes it possible, in real time 

(a) to interact with the simulated environment by modifying the control parameters 

through buttons and sliders, (b) to visualize variables, graphs and histograms related 

to the simulation in progress, (c) to import and save images and data from/to external 

files, and (d) to perform sets of experiments when the initial conditions or control 

parameters change. The simulation environment of NetLogo consists of a graphical 

interface (Figure 2.6) where simulations are managed, and a code section. 

Another significant advantage in using NetLogo is its compatibility with the GIS 

environment, including the possibility of supporting vector and raster data within 

the model. This is useful to build simulations based on the actual population 

(residents and employees) of a certain area at census zone level, thus allowing the 

 
3 https://ccl.northwestern.edu/netlogo/  

https://ccl.northwestern.edu/netlogo/
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integration of theoretical models with real data sets (Inturri et al., 2019) and in this 

way to give the model a more immediate transferability to other contexts. 

 

Figure 2.6. NetLogo graphical interface (snapshot from one of our models). 

Few examples of ABMs on transport applications using NetLogo can be found in 

literature. They regard the simulation of dynamic carpooling operations 

(Armendáriz et al., 2011), the implementation of scheduling strategies for 

paratransit vehicles (Torkjazi and Huynh, 2019), the optimization of the matching 

between passenger demand and service supply to improve the capacity usage and 

the QoS of urban rail transit networks (Zhang (2021), or the comparison between 

flexible transit and taxi services (Inturri et al., 2021). Finally, an agent-based 

simulation approach was adopted by Chen and Nie (2018) in order to validate results 

from an analytical model of a demand-adaptive transit network integrating flexible 

and fixed transit operations.  

2.2 Transit Network Design Problems 

The optimal design of transit networks is a widely studied issue. During the last 

five decades much research has been carried out in the field of transit network design 

problem (TNDP) (Guihaire and Hao, 2008; Farahani et al., 2013, Ibarra-Rojas et al., 

2015). TNDP consists in a hierarchy of decisions, based on three levels, i.e., strategic, 

tactical and operational. 

TNDP is an optimization problem which has been addressed via different solution 

methodologies, from exact, analytical approaches, often applied to small-size or 

simplified instances, to heuristics or meta-heuristics, to tackle more complex large-

scale problems. The objectives taken most frequently into account include user 

and/or operator cost minimization, total welfare maximization, transit capacity 
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improvements, protection of the environment. Parameters, constraints, and decision 

variables regard the network structure, demand patterns, fleet characteristics, 

headway, route and stop spacing, etc.  

According to Ceder and Wilson (1986), the global transit planning process can be 

divided into a sequence of five steps, i.e., (1) the design of transit routes; (2) the 

definition of frequencies; (3) the timetabling; (4) the vehicle scheduling; (5) the crew 

scheduling and rostering. The first step lies at the strategic planning level and is 

also known under the name of Transit Route Network Design Problem (TRNDP). 

The second and third steps belong to the tactical level, while the last two deal with 

operational decisions.  

An extensive review on TRNDPs is provided by Kepaptsoglou and Karlaftis 

(2009). The authors disaggregated the TRNDP into three layers, namely (a) 

objectives; (b) parameters and (c) methodology (as shown in Figure 2.7). 

 

Figure 2.7. Key characteristics of TRNDP models (Kepaptsoglou and Karlaftis, 2009) 
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The definition of objectives largely depends on the decision-maker’s policy for 

transit network, which might aim to minimize the costs of the system or maximize 

the QoS provided. Most times, it considers more than one objective, so the resultant 

problem is usually addressed using a weighted sum objective function. Ceder (2001) 

suggested four objectives for the TNDP, namely (i) minimize the total waiting time 

of passengers (user perspective), (ii) minimize the total unused seat capacity to 

improve the cost-effectiveness of the PT service (operator perspective), (iii) minimize 

the extra time (and related cost) if all the PT passengers are switched to the shortest 

path, e.g., using the private vehicle (both community and user perspective), and (iv) 

minimize the fleet size, i.e., the number of vehicles to carry on the desired 

frequencies (operator perspective). In general, as shown in Figure 2.7, a classification 

of design objectives can be done distinguishing between the point of view of the 

different stakeholders involved in transit operations, i.e., (1) user benefit, (2) 

operator cost, (3) total welfare, (4) system capacity; (5) environmental protection, and 

(6) other individual parameters. 

The parameters of TRNDPs, according to Kepaptsoglou and Karlaftis (2009), are 

the decision variables (e.g., headways, stop and route spacings, fares, stop location, 

etc.) of the problem, the (simplified) structure of the network (e.g., grid-like, 

rectangular, radial, irregular, etc.), the demand patterns (many-to-one or many-to-

many) and characteristics (elasticity, time- and space-dependency, etc.), the 

constraints and the operational strategies. 

Eventually, the methodologies adopted for the solution of TNDPs and TRNDPs 

can be basically divided into two categories, namely conventional and heuristic 

approaches. The former includes analytical models and mathematical programming 

formulations, both providing exact solutions to the problem. However, given the 

significant number of variables involved in modelling the relationships between 

components of the public transportation network, these models are usually applied 

to small size networks with a simple or idealized structure (Ceder and Wilson, 1986). 

The latter includes heuristics and, more recently, metaheuristics. Heuristic 

algorithms encompass a broad family of innovative solution methods devised to 

obtain near-optimal solutions in reasonable computing time. Metaheuristics 

(Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, 

Particle Swarm Optimization, to mention a few) are algorithmic procedures, often 

inspired by natural processes, which explore the space of solutions to find the closest 

possible to the optimal one. Computation time, number of solutions explored, and 

accuracy of the best solution found, i.e., the closeness to optimality, are indicators of 

the goodness of heuristics. 
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2.2.1 Design of Feeder Bus Services 

In large urban areas, where a mass rapid transit (MRT) system operates, i.e., one 

or more transit lines with high transport capacity and commercial speed, providing 

a hierarchical structure of the transit network, with the design of feeder bus lines 

complementing the MRT in medium-low demand areas, would increase the coverage 

and the ridership of the PT network. The definition for a feeder service in transit 

operations is not unitary in literature. Kuah and Perl (1989) defined it as the use of 

an access mode to a rail rapid public-transport, to improve multi-modal integration. 

According to Zhu et al. (2017) the term feeder bus refers to small public transport 

vehicles providing short-distance connections to feeder rail transit stations. It is also 

called community/feeder shuttle (Xiong et al., 2013; Ceder, 2013) or, when it carries 

out on-demand operations, it is sometimes referred as demand-responsive connector 

(Li and Quadrifoglio, 2010; Shen et al., 2017). 

The problem of properly designing feeder bus routes for MRT usually belongs to 

the tactical planning level. A feeder line can be based on fixed routes and schedules, 

or it can provide a flexible service, able to vary its characteristics as transport 

demand changes. Most of the times, the problem is to examine which strategy is 

optimal for the context, according to the demand pattern or taking into consideration 

the real-time traffic situation. 

Ceder (2013) examined different operational strategies and routing scenarios for 

an implementation of a feeder service (Figure 2.8). The system could be founded on 

a set of fixed routes, previously identified as optimal, with demand-driven schedules. 

These routes may be travelled by vehicles maintaining the same direction of travel 

and the same sequence of stops, or vehicles could be allowed to choose the direction 

according to real-time demand information (bi-directional routing strategy). Also, a 

flexible schedule makes possible the eventuality of short turns, i.e., when a vehicle 

can turn back to the terminal before reaching the end of the line, if there are no 

passengers waiting in the remaining part of the fixed route, to better accommodate 

the demand at transfer MRT station, and short cuts, i.e., when a vehicle does not 

continue its fixed route and uses the shortest path to arrive at the terminal station, 

e.g., due to loading constraints or synchronization criteria. The objective of the 

maximum coverage of potential user demand towards the transfer station is also 

constrained by travel time thresholds, which may not be exceeded to ensure 

adequate level of service. 
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Figure 2.8. Routing and scheduling strategies of feeder service according to Ceder (2013). 

The Feeder Bus Network Design Problem (FBNDP) was defined by the authors 

Kuah and Perl (1989). It consists in determining the optimal bus-route spacing, bus 

operating headway, and bus-stop spacing of a feeder bus system designed to access 

an existing rail transit network, in order to minimize the sum of user and operator 

costs. The mathematical model of FBNDP basically constitutes a multiple vehicle-

routing type model, implying the satisfaction of a non-linear objective function, 

under a set of constraints. Given the rail public-transport network, the location of 

bus stops and the fleet of bus vehicles, also given the OD demand at each bus stop, 

the travel cost in the rail system between each pair of railway stations, the distance 

between each pair of bus stops and between every bus stop and every railway station, 

the problem is to design a set of feeder-bus routes and to determine the service 

frequency on each route so as to minimize the sum of operator and user costs. 

The coordination of feeder services with mass transit alternatives has been widely 

studied in the public transport literature, most of times using vehicles with reduced 

capacity, such as minibus, picking-up users at pre-established stops and drop them 

at a rail transit station. Input data often encompass the area’s topology (defined by 

the road network, bus stops and transfer stations), bus and train operating costs, 

fleet size and performances of various modes (commercial speed, capacity, etc.). To 

limit the complexity of the model, passenger demand is usually assumed fixed, or 

inelastic, as if users are not sensitive to service variables (comfort, prices, etc.), and 

may be viewed as hourly averages for a given time period. 

As stated above, this class of problems have a multi-objective nature, so fitness to 

the criteria to be met is usually evaluated considering the trade-off between operator 

and passenger costs. Without considering fares, the operator looks at the number of 

vehicles involved, operating and maintenance costs, while users’ costs are referred 

to the amount of time spent in the system (waiting, riding, and transfer time). Also, 

users would like to have a bus network with more coverage area (percentage of the 

estimated demand which can be served), more direct trips (if a trip requires more 
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than two transfers, it is assumed that the user will switch to another mode of 

transport) and high accessibility in the service area. On the other hand, the 

operator’s costs are reduced by keeping the total route length within a certain bound 

(Almasi et al., 2018).  

It is well-known that FBNDP is a NP-hard, non-convex optimization problem, 

therefore it often requires a complex mathematical modelling and innovative 

solution methods, including exact (analytical) methods, heuristics and 

metaheuristics. Many of these heuristic optimization techniques (typical of 

operational research) have acquired an ever-increasing importance in the various 

phases of planning, management and monitoring of transport systems. 

The design of feeder bus routes may be considered as a Vehicle Routing Problem 

(VRP) applied to passenger transport, which requires to satisfy the passenger 

demand using a fleet of vehicles departing from one or more terminal stations. The 

original version of the VRP was proposed by Dantzig and Ramser (1959) under the 

definition of Truck Dispatching Problem, which dealt with the calculation of a series 

of optimal routes for a fleet of trucks for petrol deliveries. This issue, in turn, may be 

considered as a generalization of the Travelling-Salesman Problem (TSP), which 

consists in finding the shortest route (or, in general terms, the lowest cost path) 

connecting all vertex of a graph, starting and finishing at a specified vertex after 

having visited each other vertex exactly once. Assuming that each pair of nodes in 

the graph is joined by a link, the total number of different routes through n points is 

½n!, and even for small values of n the total number of routes is extremely large. 

Several variants of the basic problem have been put forward and VRPs have been 

studied extensively in last decades (Toth and Vigo, 2002; Cordeau et al., 2007), 

thanks to their numerous practical implications, especially in logistics but also in 

passenger transport. One of the most studied members of the VRP family is the 

Capacitated Vehicle Routing Problem (CVRP), in which a fleet of identical vehicles 

has to be optimally routed from a central depot to supply a set of geographically 

dispersed customers with known demands (Baldacci et al., 2012). In Vehicle Routing 

Problems with Simultaneous Pick-up and Delivery (VRPSPD) the delivery demand 

and the pick-up demand are served at the same time for each customer (Zhang et al., 

2008). In Vehicle Routing Problems with Time Windows (VRPTW) clients may need 

to be served according to time constraints, within desired time windows 

(Gambardella et al., 1999). In Dynamic Vehicle Routing Problems (DVRP), new 

orders and service requests are also handled during pick-up and delivery operations, 

although some of the orders are known in advance, so the schedule (previously 

defined) must be updated during run time and vehicle routes undergo continuous 
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adjustments. In such problems, vehicles which are assigned new orders when they 

are already travelling, do not have to go back to the depot in order to process them. 

This formulation covers some families of DVRP, as stated by Montemanni et al. 

(2005), including feeder systems which typically are local dial-a-ride systems aimed 

at feeding mass transit at a particular transfer location.  The authors proposed a 

solving technique based on the Ant Colony Optimization (ACO) paradigm, 

explaining how a DVPR can be tackled as a sequence of static VRP instances, by 

implementing a mechanism to transfer information about good solutions from a 

static VRP to the following one. There is an event manager collecting new orders and 

keeping trace of the already served orders and of the current position of each vehicle. 

This kind of information is used by the event manager to construct a sequence of 

static instances, which are solved heuristically by the ACO algorithm, to which the 

pheromone conservation procedure is strictly connected. To limit the time dedicated 

to each static problem, the concept of time slot has been introduced. However, the 

drawback of such an approach is that the time dedicated to each static problem 

would not be known in advance, and then optimization might be interrupted before 

a good local minimum is reached, producing unsatisfactory results.  

VRP could be a useful optimization tool for the urban PT design (Borowska-

Stefanska and Wisniewski, 2017). In this regard, a similarity between goods and 

passengers can be observed: the main problem related to the transport of goods 

concerns their distribution from the origins (e.g. production places) to destinations 

(e.g. distribution and / or sales centres), which should be both effective (capable to 

satisfy demand) and efficient (able to minimize transport costs). Passenger 

transport, likewise, deals with this problem, but also includes socio-psychological 

factors and other issues related with the subjective perception of the service offered, 

which enhance the complexity of the problem.  

Mohaymany and Gholami (2010) developed an approach to solve the multi-modal 

feeder network design problem (with buses and vans offering connections to rail 

stations) with the objective of minimizing the total operator, user, and society costs. 

ACO was used to construct feeder routes, identify the best transport mode to deploy 

and determine service headways. Results showed how multimodal networks have a 

great potential to reduce passenger costs, hence, they are more likely to attract 

private vehicle users to use transit and thus improve the profit of transit operators. 

ACO algorithms are, by their nature, suitable for constructing optimal paths 

(Dorigo and Stützle, 2004). Moreover, this family of algorithms can be used in hybrid 

approaches, together with other heuristics. Kuan et al. (2006) compared and 

combined different metaheuristic procedures, such as genetic algorithms and ACO 



Transit Network Design Problems 47 

 

 

to improve the initial solutions for FBND. One potential solution (i.e., the sub-

optimal set of feeder-bus routes and related frequencies) of the problem is shown in 

Figure 2.9. The benchmark problem is taken from Kuah and Perl (1989), which 

includes 55 stops and 4 stations covering a service area of 5 mile2, with a bus-stop 

density of 11 stops/ mile2 and a hourly demand density of about 2200 pax/ mile2. The 

objective function to be minimized represents the sum of passenger (total travel 

time) and operator (total length travelled by the buses) costs. 

 

Figure 2.9. Scheme of a potential solution of FBNDP. 

Ciaffi et al. (2012) suggested a methodology based on a heuristic route generation 

algorithm, in order to design a basin of different and complementary lines. Then, the 

authors found the sub-optimal network of feeder services and the relative 

frequencies by using a genetic algorithm which properly combines the candidate 

lines, with the objective of maximizing the service coverage while minimizing the 

total travel time. 

Zhu et al. (2017) found that a circular route model could maximize the flexible 

advantage of a feeder bus, under the condition of shorter length for feeder bus lines, 

with the major objective of maximizing the potential demand. Optimal routes 

starting and ending at a rail station were generated and examined by a genetic 
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algorithm. The potential demand of a link is assumed proportional to the traffic 

demand of the corresponding aggregated area and the distance between the link and 

a rail transit station, and inversely proportional to the average distance of 

passengers to be attracted to that link. The authors also introduced the potential 

demand reduction coefficient to reflect the relationship between the operating 

conventional bus lines and feeder bus lines. 

When dealing with large and complex transport networks, the problem of 

determining optimal routes cannot be easily solved by exact algorithms, since 

computational times grow exponentially with problem size. Heuristics and 

metaheuristics can thus represent the only feasible options for complete design when 

the problem complexity is relevant. Instead, exact methods and analytical models 

are more suitable for suggesting transport policies, where less detailed information 

are required and general insights about the system performance are needed. 

2.2.2 Analytical models and Continuous Approximation 

Analytical models are widely used for studying and planning transport systems, 

allowing the comparison of different type of transit services (Nourbakhsh and 

Ouyang, 2012; Luo and Nie, 2019) or network structures (Badia et al., 2014; Chen et 

al., 2015). On one hand, addressing transit network design problems with discrete 

models can allow to obtain good sub-optimal solutions when dealing with large-scale 

instances. On the other hand, discrete models are often not robust to stochasticity 

and uncertainty of input data (Daganzo, 1987), thus not suitable for the strategic 

level of transit planning. Continuous Approximation (CA) techniques have been 

developed to overcome this limitation, modelling parameters and variables of the 

system under exam as continuous density functions over time and space. As reported 

by Ansari et al. (2018), who provide a comprehensive review of CA models for 

logistics and transport systems, the key idea is to approximate the objective into a 

functional (e.g., integration) of localized functions that can be optimized by relatively 

simple analytical operations. CA is thus used as a complement to discrete models in 

various contexts. The CA approach was first proposed by Newell (1973), who stated 

that “the approximate nonunique solution of an idealized problem may be more 

useful than the (possibly unique) exact solution”, e.g., when evaluating strategic 

decision problems. The systems modelled via CA are defined by parametric schemes 

and the optimization of the decision variables can be solved with high computational 

speed. CA has been applied to various logistics problems including facility location, 
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inventory management, vehicle routing, transit studies, integrated supply chain and 

logistics studies. 

CA models of urban public transport networks with many-to-many (Chen et al., 

2015; Badia, 2020) and many-to-one (Chandra and Quadrifoglio, 2013; Huang et al., 

2020) demand patterns have been recently acquired a renewed interest. Aldaihani 

et al. (2004) used CA to model the integration between fixed-route transit services 

travelling along the lines of a grid network and a taxi service operating within the 

resulting sub-regions. The comparison of gridded-based fixed-route and demand-

responsive transport networks was extended by Edwards and Watkins (2013) to a 

wide variety of street and transit layouts, finding that DRT services could handle 

trip requests towards transit stations with relatively low demand at off-peak hours 

and in a cost-effective way. 

A milestone paper in analytical modelling of transit network design problems is 

that of Daganzo (2010), who described the network shapes and operating 

characteristics that allow a transit system to deliver an accessibility level 

competitive with that provided by the automobile. The transit network scheme 

proposed by Daganzo involves a “hybrid” structure, combining the advantage of both 

the grid and the hub-and-spoke layouts (Figure 2.10a). In the city centre, a double 

routes coverage is provided determining a transit grid, while radial routes branch 

toward the periphery. Such structure allows transit users to reach every destination 

by means of two trips with an intermediate transfer. The optimization problem only 

involves three decision variables, namely the stop spacing, vehicle headway and ratio 

between the side of the peripheral region and the side of the boundary of the double-

coverage area, allowing to derive handy closed-form solutions. 

Estrada et al. (2011) generalized the hybrid model of Daganzo (2010) for 

rectangular networks, distinguishing transfer stops from non-transfer stops and 

applied the model to the master plan for a high-performance bus network in 

Barcelona. Taking inspiration from the “polar network” of Vaughan (1986), Badia et 

al. (2014) applied the hybrid concept to a ring-radial route layout (Figure 2.10b), 

where ring lines are provided in the city centre while radial lines bifurcate towards 

the periphery. 
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Figure 2.10. Hybrid networks with (a) a grid in the centre and branches in the periphery. 

(Adapted from Daganzo (2010)) and (b) a radial structure with ring routes in the centre and 

radial routes toward the periphery (Badia et al., 2014). 

Chen et al. (2015) also proposed a ring-radial transit structure and compared it 

with the grid network design. The novelty is the decision variables of the model, as 

well as the objective function, including agency- and user-related costs, are based on 

the integration of localized functions of the distance from the city centre. 

Recently, Badia (2020) faced the optimal design of bus networks taking into 

account the mobility patterns associated with different degrees of urban dispersion. 

The author investigated the area of applicability where different network structures, 

e.g., radial, direct-trip-based, hybrid (transfer-based) achieve the minimum total 

system cost. He found that the demand distribution is the most determinant factor 

to discern the optimal structure: high demand levels favour direct trips operations, 

while large cities would achieve a more competitive transit system under a transfer-

based hybrid network where transfers between lines are optimally coordinated. 

The spatial heterogeneity of demand was also considered by Luo and Nie (2020), 

who developed a design of paired-line hybrid transit systems, consisting in a 

combination between fixed-route and demand-adaptive transit services in a ring-

radial network structure, to find a balance between accessibility and efficiency. 

CA models have been also proposed for DRT systems, to evaluate the performance 

of both door-to-door services (Daganzo, 1978; Fu, 2002) and dial-a-ride systems with 

checkpoints clustering the demand (Daganzo, 1984; Quadrifoglio et al., 2006). More 

recent works focused on flexible transit as the first/last mile solution of a feeder-

trunk scheme. Quadrifoglio and Li (2009) used CA to estimate the critical demand 

density which justifies the switching between demand-responsive (door-to-door) and 

conventional (fixed-route) operations for feeder transit service. Their analyses were 

extended (Li and Quadrifoglio, 2010) showing that DRT feeder services perform 
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better with lower demand rates and when larger values are assigned to the weight 

for traveller walking time. Moreover, the identification of optimal cycle length range 

for demand-responsive connectors has been investigated by Chandra and 

Quadrifoglio (2013), highlighting the trade-off between service coverage and QoS. 

The hybrid transit network proposed by Nourbakhsh and Ouyang (2012) involves 

an alternative flexible-route transit system, in which buses are allowed to travel 

across elongated areas (tube) while collectively form a hybrid (hub-and-spoke) 

structure resembling a grid network. 

Multi-modal transit has also been studied using CA models, with the integration 

of fixed-route and demand-responsive strategies. Chen and Nie (2017) studied a grid 

and a radial network with fixed-route transit lines paired with demand-responsive 

lines connecting passengers to the stops of the former, showing that the paired lines 

design outperforms the two systems (only fixed-route or only demand-responsive) 

adopted individually, under a wide range of scenario configurations. The model was 

also extended to radial network structures (Chen and Nie, 2018), able to perform 

better than the grid route network. A dynamic system, switching from fixed to 

flexible transit operations for last mile services was proposed by Guo et al (2018). 

Luo and Nie (2019) compared six different transit schemes (most of them studied in 

the aforementioned works) using via CA, showing advantages and disadvantages of 

each of them. 

Daganzo and Ouyang (2019) developed a general analytic framework to model 

demand-responsive door-to-door services, from non-shared taxis to dial-a-ride 

systems with increasing levels of shareability, providing approximated but closed-

form formulas. Finally, Badia and Jenelius (2020) compared fixed-routes and door-

to-door transport operations, carried out by means of autonomous vehicles, to 

provide first/last-mile solutions in suburban areas, showing how the reduction of 

operating cost brought by vehicle automation can broaden the range applicability of 

demand-responsive services.





 

 

 

CHAPTER 3 

3. Feeder Bus Route Design via Ant 

Colony Optimization  

In this chapter we present the first results of an agent-based model (ABM) aimed 

at designing feeder bus routes able to cover the gap between public transport 

coverage and ridership in weak demand areas. We approach the optimized design of 

feeder bus routes as a Vehicle Routing Problem applied to passenger transport, using 

Ant Colony Optimization (ACO) to find the minimum cost paths within a road 

network. The methodology proposed has been applied to the case of Catania (Italy), 

where a metro line is being extended to the city centre to peripheral areas. We used 

a GIS approach to build the road network, select all potential bus stops, and weight 

them via accessibility indicators, as a proxy of the potential transport demand. Then, 

we developed and implemented the ACO algorithm in NetLogo, a multi-agent 

programming and modelling environment for simulating complex systems, in order 

to find an optimal set of feeder bus routes, where the terminal is a given metro 

station. These routes are chosen to maximize the potential demand of passengers 

while complying with the constraint of a desired travel time. Different scenarios have 

been analysed by comparing a set of key performance indicators based on service 

coverage and ridership. First results highlight the validity of the method to find 

suitable routes to cover the gap between conventional public transport and weak 

demand urban areas and provide useful suggestions for the operation and design of 

a feeder service.  
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3.1 Introduction 

Public transport (PT) has a key role in providing an extensive coverage of an 

urban area, preventing congestion phenomena arising from private motorised 

transport and offering an affordable mobility solution to all citizens. 

However, conventional PT is unable to ensure both coverage and ridership in low 

demand areas, i.e., those areas characterized by low and heterogeneous residential 

density and high motorization rate (this is due to the poor QoS provided by the PT). 

Introducing feeder bus lines connecting low demand areas with mass rapid transit 

nodes could therefore help to shift passenger’s mode of transport from individual to 

collective and shared mobility, thus enhancing the accessibility to urban facilities 

and services, and reducing the environmental impact. However, the effective design 

and operation of feeder services should take into account two conflicting objectives: 

on one side, trying to maximize the demand to serve; on the other side, guaranteeing 

a reasonable access time to the terminal stations they “feed”. 

The Feeder Bus Network Design Problem (FBNDP) was addressed by Kuah and 

Perl (1989) determining a set of feeder-bus routes and the related service frequency, 

in order to achieve the optimal balance between operator and user cost. The 

mathematical model of FBNDP basically constitutes a multiple vehicle-routing type 

model, in which a non-linear objective function must be satisfied, given a set of 

constraints. Due to the NP-hard nature of such optimization problems, conventional 

mathematical programming methods can be suitable only for small, simplified 

networks, while for real large networks, heuristic and, more recently, metaheuristic 

methods have been used and combined to find “good” suboptimal solutions to the 

FBNDP. 

Under this respect, Kuan et al. (2006) proposed to improve initial solutions by 

using Genetic Algorithms (GA) and Ant Colony Optimization (ACO) algorithms. 

Mohaymany and Gholami (2010) developed an approach to solve a multimodal feeder 

network design problem based on minimizing costs of users, operator, and society. 

They used an ACO algorithm for the development of bus and van routes in a given 

service area, calculating frequency of all modes on each route. Martínez and Eiró 

(2012) considered the timetable of the mass rapid transit as a constraint to which a 

minibus feeder service has to adjust, taking into account commuters’ time windows. 

Huo et al. (2014) proposed an optimization of the school bus routing operation based 

on ACO. The circular route model proposed by Zhu et al. (2017) included GA to find 

a route starting and ending at urban rail transit stations, with the major objective 

of maximizing the potential demand. 
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All these approaches proved valid to support an optimized design of feeder bus 

routes. However, there is still a gap between modelling sophistication and the 

practicality of urban transport planning. Under this respect, they usually act as 

“black boxes”, difficult to understand by non-experts, and do not include a detailed 

spatial representation of spatial constraints and transport demand. 

Based on this premise, this paper presents a new modelling framework applied to 

a real case study for the optimized design of feeder bus routes, by integrating GIS 

data, accessibility indicators with real transport networks in a multi-agent 

programming environment. The main contribution of this work with respect to the 

existing literature is the use of ACO to determine the best set of feeder-bus stops to 

be served in order to strike a balance between area coverage and ridership. 

The remainder of the chapter is organized as follows: Section 3.2 outlines the 

methodology with the details of the ABM we developed and of the ACO algorithm we 

implemented in it. Section 3.3 describes a first application of the model to the case 

study of the San Nullo metro station in Catania (Italy), whose accessibility should 

be improved by designing a feeder bus service, discussing these first results. Then, 

in Section 3.4 we solve the feeder routing problem involving multiple stations to be 

served and apply the model to two real case studies. Finally, Section 3.5 resumes the 

work, providing some considerations for further research. 

3.2 Methodology 

In this work, the optimized design of feeder bus routes has been approached as a 

Vehicle Routing Problem (VRP) applied to passenger transport. Simulations were 

carried out by using NetLogo (Wilensky, 1999), a multi-agent programming and 

modelling environment for simulating natural and social phenomena, which allows 

users to model and simulate complex systems, reproducing their main 

characteristics and allowing the visualization of their significant parameters in real 

time. 

Although scientific literature devotes much space to the resolution of feeder bus 

routing problems, applications to real transport networks are rarely used and often 

replaced by small ideal graphs. In this regard, a significant advantage in using 

NetLogo lies in its integration with the GIS environment, thanks to the possibility 

of supporting vector and raster files within the model. It is therefore possible to 

integrate a GIS-based demand providing the model an easy transferability to other 
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contexts (Inturri, et al., 2019). The interface of the model proposed in this chapter is 

shown in Figure 3.1. 

 

Figure 3.1. NetLogo interface (own setup). 

The main features and the steps involved in the model creation are: (1) the 

construction of the road graph and the identification of the potential bus stops; (2) 

the estimation of the transport demand associated to bus stops; (3) the 

implementation of the vehicle routing algorithm. These steps are explained in detail 

in the following subsections. 

3.2.1 Characteristics of the transport network 

The construction of the transport network starts from the real street network 

made up of by arcs (street lanes), nodes (intersections) and stop-nodes (potentially 

served by the feeder route). Then, the transport network consists in a directed graph 

where the stop-nodes are connected via through non-congested links. 

Stop-nodes are equipped with the value of the potential transport demand 

gravitating around it. Each link ij is characterized by a generalized cost (Cij) that 

only includes the average travel time along the link itself, given by the ratio between 

the length (lij) and the assumed commercial speed of the vehicle (Vbus), be it a 

conventional bus, minibus, van, etc. Location and distance between stops should be 

studied appropriately considering different factors, including the travel time 

incurred by users walking from or to the stop, speed performances of vehicles (such 
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as the commercial speed, which is also influenced by the time spent at each stop) and 

the potential overlap of stops’ catchment area. 

3.2.2 Transport demand and accessibility functions 

We used a Many-to-One demand pattern (Kuah and Perl, 1989), with the 

following assumptions: 

a. Passengers have the transfer station as common origin/destination. 

b. Each stop-node can be served by one feeder-bus route.  

c. Each bus route is linked to exactly one rail station.  

d. Vehicles have standard commercial speed and no capacity constraints. 

In order to estimate the potential demand, we also assume that:  

i. The transport demand is concentrated at stop-nodes, around which a 

“passenger catchment area” of the feeder bus service gravitates. 

ii. The potential demand of a stop-node is directly proportional to the transport 

demand of the areas around, thus depending on socio-demographic factors. 

iii. The more a potential user is far from the nearest stop, the less she will be 

attracted to the feeder service. 

iv. The more a stop is far from the terminal station, the more it will be 

attractive to passengers. 

v. The presence of other PT lines serving the same stop reduces the potential 

demand for the feeder service, depending on their frequency and service 

coverage area. 

In view of this, travel demand can be expressed in terms of accessibility of a stop-

node. Most of accessibility measures depend on the amount of opportunities in a 

given zone and the generalized transport cost to reach it (Geurs and Van Wee, 2004). 

Among the different existing formulations, gravity-type accessibility indexes 

(Hansen, 1959) provide a continuous measure where the opportunities are weighted 

by a spatial impedance function, usually depending on travel time or travel distance 

dij between places i and j. Moreover, Cascetta (2009) makes a distinction based on 

land use between the active (origin) accessibility and the passive (destination) 

accessibility. 

Regarding the choice of the impedance function, Kwan (1998) indicates the 

inverse power function dij-
, the negative exponential function exp(- dij) and the 
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modified Gaussian function exp (- dij2 / ). According to Ingram (1971), the latter has 

the advantage of having a slow rate of decline close to the origin, in comparison with 

the first two functions. Therefore, two impedance functions are used to estimate the 

number of potential users of a stop-node: the first (Equation 3.1) takes in account 

the effect of decreasing attractivity due to the increase of walking distance, while the 

second (Equation 3.2) considers the effect of increasing attractivity due to the greater 

distance from the metro station, based on: 

 𝑓𝑏(𝑑𝑖,𝑘) = 𝑒

𝑑𝑖,ℎ
2

2𝛾𝑏
2
,     𝑖𝑓 𝑑𝑖,ℎ < 𝑑𝑤𝑘,𝑚𝑎𝑥 (3.1) 

 𝑓𝑡(𝑑𝑡,ℎ) = 1 − 𝑒

(𝑑𝑡,ℎ−𝑑𝑚𝑖𝑛)
2

2𝛾𝑡
2

,     𝑖𝑓 𝑑𝑡,ℎ < 𝑑𝑚𝑖𝑛 (3.2) 

where di,h is the walking distance from the centroid of the traffic zone k to the 

nearest stop-node i, dwk.max is the radius of an area around stop-nodes where demand 

for feeder service can arise, dt,h is the distance from the terminal node (e.g. a MRT 

station), dmin is the radius of an area around the station with no demand for feeder 

service since, thanks to the short distance, travellers prefer to walk, s and t are 

constants to be calibrated. In addition, as suggested by Zhu et al. (2017), the model 

considers the potential demand reduction for the feeder service due to the other bus 

lines that are operating via the stop-node through a coefficient Mi. 

Based on the above analysis, the potential demand for a feeder stop-node i can be 

calculated in terms of active and passive accessibility, as shown below: 

 𝐴𝑎𝑐𝑡,𝑖 = 𝑀𝑖 ∙ ∑ 𝑓𝑏(𝑑𝑖,ℎ) ∙ 𝑓𝑡(𝑑𝑡,ℎ) ∙  𝑅ℎℎ∈𝑍  (3.3) 

where Z is the set of traffic zones gravitating around the stop-node i and Rh is the 

number of residents of zone k. By the same token, passive accessibility Apas,i is 

calculated by replacing Rh with Wh, or the number of employees of zone h, as follows: 

 𝐴𝑝𝑎𝑠,𝑖 = 𝑀𝑖 ∙ ∑ 𝑓𝑏(𝑑𝑖,ℎ) ∙ 𝑓𝑡(𝑑𝑡,ℎ) ∙  𝑊ℎℎ∈𝑍  (3.4) 

To assign to each stop-node a single accessibility value, we chose to express this 

value as a linear combination of active and passive accessibility, weighted 

respectively by wact and wpas coefficients, ranging from 0 to 1 (Equation 3.5). 

Furthermore, for each stop-node accessibility is normalised by dividing by the 

highest accessibility value Amax in the study area. 

 𝐴𝑖 = (𝑤𝑎𝑐𝑡 𝐴𝑎𝑐𝑡,𝑖 +𝑤𝑝𝑎𝑠 𝐴𝑝𝑎𝑠,𝑖) 𝐴𝑚𝑎𝑥⁄  (3.5) 
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3.2.3 The vehicle routing algorithm 

The route design model we propose deals with an NP-hard problem in the field of 

operations research. For this type of instances, several heuristic procedures have 

been developed to find good suboptimal solutions with acceptable computational 

efforts. Such procedures are often inspired by natural mechanisms and known under 

the name of metaheuristics. Ant Colony Optimization (ACO) algorithms (Dorigo and 

Stützle, 2004) take inspiration from the social behaviour of certain ant species and 

their ability to find shortest paths between their nest and a food source, simply by 

exploiting communication based on pheromone trails, a volatile substance that ants 

may deposit on the ground and smell (Teodorović, 2008). In this family of 

metaheuristics, by extension, a certain number of simple artificial agents cooperate 

to build good solutions to hard combinatorial optimization problems via low-level 

based communications (Dorigo and Gambardella, 1997). Iteration after iteration, 

more pheromone is deposited on the more frequented trails and this brings out a 

learning mechanism: when constructing a solution of the problem, the probability of 

selecting a certain move is higher if this move has previously led to a better solution 

in previous iterations. This principle can be applied to find minimum cost routes 

compatible with a set of constraints, by employing a population of ants to jointly 

solve the optimization problem.  

As stated by Dorigo and Di Caro (1999), the ACO metaheuristic can be applied to 

discrete optimization problems characterized by the following items. 

• A finite set of components 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑁𝑐}. 

• A finite set of possible connections 𝐿 = {𝑙𝑐𝑖𝑐𝑗  | (𝑐𝑖 , 𝑐𝑗) ∈ �̃�} , |𝐿| ≤ 𝑁𝑐
2 among the 

elements of �̃�, where �̃� is a subset of the cartesian product 𝐶 × 𝐶. It is 

preferable to simplify notation by referring to 𝑙𝑖𝑗. 

• A connection cost function 𝐽𝑐𝑖𝑐𝑗  ≡ 𝐽 (𝑙𝑖𝑗 , 𝑡) associated to each 𝑙𝑖𝑗 ∈ 𝐿, possibly 

parameterized by some time instant t.  

• A finite set of constraints 𝛺 ≡ 𝛺 (𝐶, 𝐿, 𝑡) assigned over the elements of C and 

L. 

• A sequence over the elements of C (or, equivalently, of L) called a state of 

the problem 𝑠 = 〈𝑐𝑖, 𝑐𝑗 , … , 𝑐𝑘 , … 〉. If S is the set of all possible sequences, the 

set �̃� of all the (sub)sequences that are feasible with respect to the 

constraints Ω (𝐶, 𝐿, 𝑡) is a subset of S. The elements in �̃� define the problem’s 

feasible states. The length of a sequence s (or the number of components in 

the sequence) is expressed by |s|. 
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Using the graph G = (C; L), ACO algorithms can be applied to find minimum cost 

sequences (paths) feasible in respect of the constraints Ω, employing a population of 

ants to jointly solve the optimization problem. Given two states s1 and s2, the state 

s2 is said to be a neighbour of s1 if both states belong to S, and s2 can be reached from 

s1 in one logical step. This way we can define a neighbourhood structure of a state s, 

denoted by s. Each element of �̃� that satisfies all the problem’s requirements is a 

solution 𝜓, to which a cost J (L, t) is associated. This is a function of all the costs Jij 

of all the single connections belonging to the solution 𝜓. To each connection (arc) lij 

two types of information are associated: 

➢ The pheromone trail  ij, encoding a long-term memory about the whole ant 

search process. 

➢ The heuristic value  ij, which generally represents a priori information 

about the problem instance definition provided by an external source 

(different from the ants). 

From the earliest applications, several variants of ACO have been proposed by 

different authors. Dorigo and Socha (2006) described the main features of three 

popular ACO algorithms: Ant System, Ant Colony System and MAX-MIN Ant System 

(MMAS). The latter was developed by Stützle and Hoos (2000) in order to improve 

performance of the original Ant System algorithm, introducing the following 

changes: 

1. To better exploit the best solutions found, after each iteration only the best 

ant is allowed to reinforce the pheromone trail. 

2. To avoid stagnation of the search the range of possible pheromone values is 

limited to an interval [𝜏𝑚𝑖𝑛; 𝜏𝑚𝑎𝑥]. 

3. To achieve a higher exploration of solutions at the start of the algorithm, 

the pheromone trails are initialized to 𝜏𝑚𝑎𝑥. 

The algorithm implemented in our model derives from Ant Colony System (Dorigo 

and Gambardella, 1997), and particularly from MAX-MIN Ant System (Stützle and 

Hoos, 2000), which are the two main improvements of the first Ant System, 

originally applied to the Travelling Salesman Problem. Three subsequent steps are 

taken for one simulation, as schematically shown in Figure 3.2, i.e., (i) the initial 

setup of transport network and GIS dataset (t = 0); (ii) the setup of the ACO 

parameters (t = 0); (iii) the simulation run (t > 0).  
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Figure 3.2. The three main steps of the simulation process. 

In Figure 3.3 the flow chart of the routing algorithm implemented in our model is 

outlined. At the start of a simulation, a colony of m artificial ants is generated on the 

start-node (i.e., the metro station). At every iteration, ants explore the network 

recording the visited stop-nodes and the crossed links and updating the route travel 

time. After visiting a stop-node, each ant updates its own Coverage attribute CVk, 

given by the sum of Accessibility of the visited stop-nodes. When all m ants have 

completed their tour, the best ant (i.e., the one with the highest objective function 

(Equation 3.6)) is selected and the pheromone updating rule is applied.  

The constraints of the model can be summarized as follows:  

1. Each stop-node can be included in at most one feeder route.  

2. Each route must start and end at the same metro station. 

3. If the travel time (Tpath,k) exceeds a specified threshold (Tdes) representing 

the desired route travel time (input parameter), the ant comes back to the 

start-node through the shortest path completing its tour. 

The objective function is calculated for each ant as a route efficiency indicator E 

to be maximized, as follows: 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝐸𝑘(𝑡) = 𝐶𝑉𝑘 −
2 𝐶𝑉𝑘

𝑇𝑟𝑜𝑢𝑡𝑒,𝑘
 Δ𝑇𝑒𝑥𝑐𝑒𝑠𝑠 = 𝐶𝑉𝑘 ∙ (1 − 2

Δ𝑇𝑒𝑥𝑐𝑒𝑠𝑠

𝑇𝑟𝑜𝑢𝑡𝑒
) (3.6) 
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where Texcess = (Tpath,k – Tdes) if Tpath,k > Tdes, otherwise it is equal to zero. In this 

way, a penalty is given to the Coverage when the travel time of ant k exceeds the 

desired route travel time. 

 

Figure 3.3. Flow chart of the ACO algorithm for the feeder bus routing problem. 

As previously stated, each ant builds a route by applying a random proportional 

rule to decide the next stop-node to go. Therefore, the probability with which ant k, 

currently at stop-node i, chooses to go to stop-node j is given by: 

 𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗(𝑡)]
𝛼
∙[𝜂𝑖𝑗]

𝛽

∑  [𝜏𝑖𝑙(𝑡)]
𝛼∙[𝜂𝑖𝑙]

𝛽
𝑙∈𝒩𝑖

𝑘
     if 𝑗 ∈ 𝒩𝑖

𝑘 (3.7) 

where  and  are parameters that control the relative importance of the pheromone 

trail 𝜏𝑖𝑗 versus the heuristic information 𝜂𝑖𝑗, 𝒩𝑖
𝑘 is the feasible neighbourhood of ant 

k when being at stop-node i, i.e., the set of stop-nodes directly linked to i and not 

visited yet.  
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While the pheromone trail is updated after every generation t, the heuristic 

information is available a priori and is given by the ratio between the potential 

demand (accessibility) of stop-node i and the distance between i and j, or the length 

of link ij, measured on the road network: 𝜂𝑖𝑗 = 𝐴𝑖/𝑑𝑖𝑗. 

If  = , the process acts as a greedy algorithm and the closest stop-nodes are more 

likely to be chosen; on the other hand, if  = , only pheromone amplification is 

enabled, and this would lead to the rapid emergence of solutions stagnation and 

hence to strongly sub-optimal solutions. 

Each generation of ants concurrently builds circular routes starting and ending 

at the metro station. Once all the m ants have completed the tour, only the “best” 

ant (i.e., the one that founds the solution that maximizes or minimizes the desired 

objective function) is allowed to reinforce the pheromone trail, to better exploit the 

best solutions found by every generation, by means of the following updating rule: 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∙ 𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗
𝑏𝑒𝑠𝑡(𝑡)     with Δ𝜏𝑖𝑗

𝑏𝑒𝑠𝑡(𝑡) = 𝑄 ∙
𝐸𝑏𝑒𝑠𝑡(𝑡)

𝐸𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑒𝑠𝑡
 (3.8) 

where  is the evaporation rate, ranging from 0 to 1, Δ𝜏𝑖𝑗
𝑏𝑒𝑠𝑡(𝑡) is the amount of 

pheromone deposited on link ij used by the best ant at iteration t, Ebest indicates the 

highest value of the objective function among all the m ants at generation t, Eglobal-

best is the best value of E found from the start of the simulation and Q is the diffusion 

rate. Moreover, the pheromone trail is lower bounded by 𝜏𝑚𝑖𝑛 to avoid stagnation of 

the search. Finally, if the number of generations Ngen is still lower than a given value, 

another generation of m ants is launched on the network searching for the best route, 

otherwise the algorithm stops and outputs the results. 

3.3 Case study 1: single-station problem 

Improving urban accessibility by PT service is a subject of significant interest for 

Catania, a city of about 300,000 inhabitants located in the eastern part of Sicily 

(Italy), which has been affected by a process of decentralization of housing 

settlements and commercial services to peripheral areas, modifying the citizens’ 

travel patterns, increasing the amount of commuter traffic and producing air 

pollution. A metro line currently connects the city centre with the northwest zones 

of the city and it is subjected to further development. 

The case study focuses on improving the accessibility of the San Nullo metro 

station (SN), thanks to the optimized design of feeder bus routes. The station is 

located in a suburban area, where the only access routes to the station are not 
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equipped with sidewalks and present high slopes, constituting a real obstacle for 

pedestrians and therefore reducing the attractiveness of the station itself. Once the 

study area has been identified, the potential stops of the feeder service have been 

placed on the map, partially based on existing stops of public transport. The study 

area is divided up into a grid of patches (i.e., cells in NetLogo, each one having its 

own pairs of spatial coordinates), to which a number of residents aged 15 to 74 and 

of employees is assigned, based on demographic data provided by the most recent 

ISTAT database (dating back 2011) at census zone level. Demand (Rk and Wk) is 

generated only within a specified radius around stop-nodes, which accessibility Ai is 

calculated using Equation 3.5. 

For a first test of the model, the design of two feeder routes has been carried out, 

seeking to obtain the widest coverage possible in accordance with travel time 

constraints. Various scenarios have been analysed and compared, by setting 

different desired travel times. Input parameters are shown in Table 3.1. They have 

been chosen after several tests which resulted in better computational times and 

simulation outcomes. 

Table 3.1. Input parameters set for case study 1. 

wact wpas 
dmin 

(m) 

dwk,max 

(m) 

s Vbus 

(km/h) 

# ants start Q    

1 0.35 250 400 0.20 16.0 100 10.0 1.00 0.025 1.00 0.50 

Figure 3.4 and Table 3.2 report the results of 7 scenario simulations, performed 

by increasing Tdes from 10 to 40 minutes. Figure 3.4 shows the convergence process 

of the objective function E after each ants’ generation, for given different Tdes.  

 
Figure 3.4. Convergence process of the objective function (best Efficiency). 
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As can be observed in Figure 3.5, as well as in the last column of Table 3.2, 

Efficiency shows higher growth rates when desired travel times are set between 20 

and 30 minutes. 

Table 3.2. Comparison of simulations results. 

Scen. 

No. 

Route 

No. 
Ngen 

Tdes 

(min) 

Troute 

(min) 

CV 

(%) 

CVtot 

(%) 

E 

(%) 

Etot 

(%) 

E / 

Tdes 

(min-1) 

Etot / 

Tdes 

(min-1) 

1 
1 50 10 10.4 3.35 

9.12 
3.09 

5.44 
0.309 

0.272 
2 50 10 14.2 5.77 2.35 0.235 

2 
1 100 15 18.5 10.37 

19.00 
6.49 

12.31 
0.680 

0.687 
2 100 15 17.9 8.63 5.82 0.694 

3 
1 100 20 20.6 13.87 

24.03 
13.03 

22.26 
1.308 

0.995 
2 100 20 21.0 10.16 9.23 0.682 

4 
1 150 25 25.4 20.44 

35.33 
19.86 

32.04 
1.366 

0.978 
2 100 25 27.5 14.89 12.18 0.590 

5 
1 200 30 30.4 28.10 

44.27 
27.29 

43.42 
1.486 

1.138 
2 100 30 30.0 16.17 16.13 0.790 

6 
1 200 35 34.6 32.07 

51.39 
32.07 

51.39 
0.956 

0.797 
2 100 35 34.9 19.32 19.32 0.638 

7 
1 200 40 41.1 34.42 

55.95 
32.55 

53.92 
0.096 

0.253 
2 100 40 40.2 21.35 21.37 0.410 

 
Figure 3.5. Total coverage and efficiency in each scenario. 

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

CV (T)
E (T)

T_des

Coverage

Efficiency



66  Chapter 3 - Feeder Bus Route Design via Ant Colony Optimization 

 

 

Based on this result, the best compromise between demand coverage and 

operating costs is represented by the 5th scenario, involving two routes with a travel 

time of 30 minutes. 

From the graphical output of the three simulations shown in Figure 3.6, it 

emerges that routes extend towards areas which are more distant from the terminal 

station, when increasing the desired travel time. It should be noted that if a 

simulation produces a wide circular route, this result could not be optimal for a 

feeder line, as it would force some passengers who get on the shuttle to bear 

unjustifiably high travel times before reaching the station. In this case, two circular 

routes that run in opposite directions could be provided. 

 

Figure 3.6. Graphical output of three simulations: couple of feeder routes setting Tdes 

equal to (a) 20 min; (b) 25 min; (c) 30 min. 

3.4 Case study 2: feeder bus routing problem with multiple 

stations 

This section presents the first results of the described ABM improved by 

considering the multiple feeder lines connected to different MRT stations, assuming 

that each station is served by one feeder line.  

With respect to the methodology explained in Section 3.2 the model was improved 

by considering the expected passenger travel time, using the feeder service, from the 

bus stop i to the terminal station (taccess,i) and vice-versa (tegress,i), in relation with the 

corresponding travel times if using the shortest path (tsp,access,i and tsp,egress,i). 

Specifically, every time the ants complete their routes, the accessibility Ai (Equation 

3.5) of the stop-nodes served by one feeder route is recomputed considering a penalty 

factor, as shown in the following equation: 



Case study 2: feeder bus routing problem with multiple stations 67 

 

 

 𝐴𝑖
∗ = 𝐴𝑖 ∙ √

𝑡𝑠𝑝,𝑎𝑐𝑐𝑒𝑠𝑠,𝑖

𝑡𝑎𝑐𝑐𝑒𝑠𝑠,𝑖
∙
𝑡𝑠𝑝,𝑒𝑔𝑟𝑒𝑠𝑠,𝑖

𝑡𝑒𝑔𝑟𝑒𝑠𝑠,𝑖
 (3.9) 

The computation of the objective function (Equation 3.6) is affected by this penalty 

factor. Therefore, the optimization procedure is less likely to find routes with a 

“wide” shape.  

To test the updated version of the model, two case studies were chosen: the first 

one focuses on the metro stations “Nesima”, “San Nullo” and “Cibali”, (opened 

between 2017 and 2021) while the second one relates to the urban rail stations 

“Ognina” and “Picanello” (opened between 2017 and 2018). 

Both the case studies regard the MRT network of Catania, which currently does 

not have a feeder bus system complementing its stations. An overview of the 

geographic location of the stations is shown in Figure 3.7. 

 

Figure 3.7. Location of the stations to serve. 

The input parameters chosen for case study 2 are shown in Table 3.3. Input 

parameters set for case study 2. 

Table 3.3. Input parameters set for case study 2. 

wact wpas 
dmin 

(m) 

dwk,max 

(m) 

s Vbus 

(km/h) 

# ants start Q    

1 1 200 400 0.128 16.0 100 10.0 1.00 0.025 1.00 0.50 

We point out that the parameters of the impedance functions (Equations 3.1-3.2) 

are chosen considering the suburban context of the stations under exam, thus a rapid 

decline of the walking accessibility with the distance from the stop. From Figure 3.8 
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one can note that the impedance fb is close to zero at distance 𝑑 = 400 m, which is 

the maximum walkable distance users are willing to cover.  

 
Figure 3.8. Values of the impedance functions fb and ft along the distance d from the 

terminal station, with dmin = 0.2 km and  t = b = 0.128. 

3.4.1 Metro stations “Nesima – San Nullo – Cibali” 

The service area related to the three stations under exam measures 7 km2 and 

includes 210 stop-nodes. We recall that, in our model, not every stop-nodes have to 

be served by feeder bus routes, since we do not aim at covering the 100% of the area 

(it would be possible, but not cost-effective). About 41200 residents live and 11680 

employees work within the study area. Figure 3.9 shows the graphical output of the 

three optimal routes found with Tdes equal to 30 min. Figure 3.10 shows the 

convergence process of the objective function.  

In detail, the first feeder route linked to Nesima has an expected travel time (cycle 

time) of 29.5 min, the second route linked to San Nullo has a shorter cycle time 23.2 

min, while the third route connected with Cibali station has the higher cycle time, 

31.6 min. The explanation of this difference in the cycle time lies in the accessibility 

value of the stop-nodes. In fact, increasing too much the route coverage is 

detrimental for the travel time experienced by passengers, and this impact is 

stronger when the stop-nodes of the route have a relatively low accessibility value 

(e.g., few users are in their catchment area). In other words, it is better to provide a 

more “direct” feeder service, avoiding circuitous routes serving a sparse demand, 

even though this means renouncing a wider coverage. 
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Figure 3.9. Feeder routes linked to the 3 metro stations (Tdes = 30 min) 

 

Figure 3.10. Convergence process of the objective function 
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3.4.2 Rail stations “Ognina – Picanello” 

The service area of the two rail stations is smaller than the previous case: it 

measures 4 km2 and includes 130 stop-nodes. Overall, 25800 residents live and 

13430 employees work within the study area. The graphical output of the two 

optimal routes (with Tdes = 30 min) is shown in Figure 3.11, while Figure 3.12 shows 

the convergence process of the objective function.  

 

Figure 3.11. 

 

Figure 3.12. Convergence process of the objective function 
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In detail, the first feeder route linked to Ognina station has a cycle time of 28.0 

min, while the second route linked to Picanello station has a shorter cycle time 17.8 

min. Also in this case, a longer route would imply more detours and higher travel 

times to serve a low share of additional demand. Moreover, a short route has the 

advantage of reducing the service headway while keeping constant the number of 

vehicles assigned to the feeder route. 

3.5 Discussions 

This chapter has focused on the development of a solution model for the route 

optimization problem of feeder bus services, which mainly serve for the last mile leg 

of travellers, helping to build or reinforce a trunk-feeder scheme. We integrated an 

ACO algorithm into an ABM environment to design optimal transit routes in low-

demand areas, where the transport demand is biased towards MRT stations, and 

thus, enhancing the effectiveness of the whole transit system. 

Thanks to the possibility of dynamically interacting with the simulation 

environment and visualizing routes on the map, with an easy transferability to other 

contexts, our model can serve as a practical and flexible tool for public transport 

planners and companies. 

First simulations were carried out regarding the case study of the San Nullo 

station of the Catania metro line. By varying travel times, several routes have been 

originated allowing some conclusions to be drawn, regarding both the service 

coverage and operating costs. In this regard, for the specific case study, a couple of 

routes with 30 minutes travel time seems a good compromise between the 

effectiveness and efficiency of the service. Then, the feeder route design problem 

involving multiple stations was addressed using an updated version of the model, 

enabling us to find the optimal combination of routes serving different MRT stations 

located in Catania. 

A limitation of the present model is that it is able to suggest the optimal fixed-

route configuration when most of the ridership is directed to or come from a transfer 

station, even though this is rarely valid in mixed-use urban zones. Also, suburban 

areas can significantly benefit from a flexible, demand-responsive feeder service, 

able to vary the flexibility of route and schedule according to the period of the day. 

In reality, most of flexible transit services have some fixed operating schedule 

(Koffman, 2004), typically limited to departure and arrival times at checkpoints, and 

the uncertain travel demand in low-demand areas makes it difficult to design 
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reliable deviation services to meet all door-to-door requests, which explains why 

nowadays flexible operating policies are mostly limited to extreme low-demand 

areas. In this respect, the model presented in this chapter can be used to understand 

which locations (e.g., potential fixed bus stops) are the most relevant to be served 

and which, instead, could be served only via a demand-responsive operation.



 

 

 

CHAPTER 4 

4. Simulating On-Demand Flexible 

Transit via Agent-Based Modelling 

Increase in city population and size leads to growing transport demand and 

heterogeneous mobility habits. In turn, this may result in economic and social 

inequalities within the context of rapid economic growth. Provision of flexible transit 

in fast-growing cities is a promising strategy to overcome the limits of conventional 

public transport and avoid the use of private cars, towards better accessibility and 

social inclusion. 

This chapter presents the case of Dubai (United Arab Emirates - UAE), where a 

demand-responsive transit service called MVMANT (a company based in Italy) has 

been tested in some low demand districts. The contribution of this work relies on the 

use of an agent-based model calibrated with Geographic Information System (GIS) 

real data to reproduce the service and find optimal configurations from both the 

perspective of the transport operator and the community. Different scenarios were 

simulated, by changing the vehicle assignment strategy and capacity, and comparing 

MVMANT with a ride-sharing service with smaller vehicles.  

Results suggest that route choice strategy is important to find a balance between 

operator and user costs, and that these types of flexible transit can satisfy transport 

demand with limited total costs compared to other shared mobility services. They 

can also be effective in satisfying fluctuating demand by adopting heterogeneous 

fleets of vehicles. Finally, appropriate planning and evaluation of these services are 

needed to fully explore their potential in covering the gap between low-quality fixed 

public transport and unsustainable private transport.  



74 Chapter 4 - Simulating On-Demand Flexible Transit via Agent-Based 

Modelling 

 

 

4.1 Motivation and aim of the study 

Modern cities are evolving into complex and fragmented systems where the 

proximity to activities, job places and other opportunities provides a social advantage 

and an increase of possibility of socialization. One of the main challenges of transport 

planning is trying to promote sustainable and shared transport modes, and the 

improvement of social equity, health, resilience of cities, urban-rural connection and 

productivity of rural and dispersed areas (Gudmundsson et al., 2016).  

In cities characterized by fast economic growth, the growth city population and 

demand for mobility require tailored strategies to satisfy the ever-increasing and 

diverse transport demand. In these contexts, innovative on-demand mobility, i.e., 

the one provided by Demand Responsive Transport (DRT) services, can help to 

bridge the gap between shared low-quality public transport and unsustainable 

individual private transport. DRT can promote the socio-economic and territorial 

integration of the residents, favouring the connection with the reference area centres 

and even providing a more extended and frequent public transport, flexible mobility 

schemes and feeder services (Ambrosino et al., 2016). 

There are some clear trade-offs that should be tackled when planning DRT 

services. From the operator’s point of view, it is important to correctly dimension the 

fleet, and select the optimal strategy to assign vehicles to passengers’ requests, so to 

perform high load factor (to increase revenues) and low driven distances (to reduce 

operation costs). This should be done while minimizing the additional time and 

distances travellers have to experience to assure the expected level of service (user 

point of view). Such an optimal design of a generic DRT can guarantee its effective 

management and operation. Therefore, it becomes fundamental to explore the 

variables of the system that can make the service successful. In this respect, 

simulation models can provide useful decision support. 

Among others, agent-based models (ABM) have proven their suitability to 

reproduce complex systems characterized by individual agents acting and 

interacting with the other agents and with the environment (Tisue and Wilensky, 

2004). Starting from the micro-interaction among the agents, it is possible to monitor 

the state of the system and find a balance between conflicting objectives. 

The following sections present the results of agent-based simulations using GIS 

real data to support the planning and operation of DRT services in real-world 

contexts. In particular, the ABM proposed by Inturri et al. (2019) is applied to the 

case of a particular type of DRT, i.e., an on-demand flexible route transit service for 

one district of the city of Dubai. 
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The aim of the model is to find optimal configurations both from the perspective 

of the transport operator and of the community. Our contribution is twofold: 

1. To prove the suitability of our ad-hoc agent-based simulation environment 

to reproduce different DRT services and adapt to different contexts. 

2. To test an already existing service so to provide useful suggestions for DRT 

correct planning and management. 

In this respect, we believe that this tool is suitable for both for ex-ante and for ex-

post evaluation of flexible transport services. This is in line with sustainable urban 

mobility planning processes, implying continuous monitoring and evaluation of 

solutions from the beginning. 

Since our attention is focused on transport services presenting both a demand-

responsive fashion and a high shareability, we deal with levels of flexibility that are 

intermediate between a pure door-to-door individual transport and the conventional 

fixed-route public transport. The degree of flexibility affects both the operator and 

the users of the service. The former makes decisions about the fleet size and 

composition or the ICT facilities to be equipped with. The latter experience costs 

related to the different travel time components (not taking the fares into account), 

which can be strongly variable with the operational strategy. The importance of the 

user perspective in determining the success of flexible and demand-responsive 

transit services is underlined by Alonso-González et al. (2020), which estimate the 

time-reliability-cost trade-offs of users in terms of value of time and value of 

reliability, the latter being related to the time variability and uncertainty. 

In this study, a particular type of DRT, i.e., an on-demand flexible route transit 

service for one district of the city of Dubai, is tested through an ABM, by simulating 

the interaction between vehicles travelling along with the road network and users 

willing to get the transport service to their destinations. Such service has been 

launched as a pilot by The Roads and Transport Authority and was provided by 

MVMANT (https://www.mvmant.com). It can be configured as a dynamic and flexible 

transit. It is dynamic since real-time arriving demand requests affect both the way 

routes are assigned to vehicles and the service of optional stops, resulting in a 

dynamic routing elaborated just in time. Moreover, the company designed it as 

flexible because it is composed of fixed and optional routes, which are currently 

travelled by the DRT only if demand is present, and which have been designed in 

advance together with the fixed-route, based on-demand patterns and infrastructure 

constraints. In fact, due to the short distances between the users’ desired stops, 
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reduced size of the circuit and constraints of roads’ geometry, routes were chosen 

with a more static approach, making the service more efficient than a pure door-to-

door service. 

The presented ABM is based on the implementation of: 

i. An ad-hoc GIS-based demand model integrated into the simulation 

environment. 

ii. Different dispatching strategies allowing a dynamic matching between 

vehicles and passengers. 

iii. A flexible simulation interface that easily changes variables and monitor the 

state of the system in real-time. 

The model has been presented in Inturri et al. (2019) and applied to the case study 

of the small-medium city of Ragusa (Italy), where a similar service was tested and 

where an optimal operation range was found. In this respect, the model can be easily 

adapted so to reproduce different DRT services and applied to other contexts, 

allowing to find optimal operation configurations, by monitoring ad-hoc performance 

indicators. The ABM is able to capture the performance of the DRT, which depends 

on how vehicles are allocated to passengers, routes and schedules, on the particular 

topology of the road network and on the spatio-temporal pattern of passenger 

demand. In the following, the main characteristics of the ABM for the test of 

MVMANT service in Dubai are presented. 

4.2 Methods and materials 

The context reference for the case study is the city of Dubai, the largest and most 

populous in the UAE, laying on the southeast coast of the Persian Gulf and capital 

of the Emirate of Dubai (Figure 4.1a). In September 2016, the Dubai Future 

Accelerators selected MVMANT for a 12-week innovation and acceleration program 

aimed at transforming the city of Dubai into a global testing ground for cutting-edge 

ideas and technologies. MVMANT is an urban mobility platform which enables the 

deployment of a dense fleet of vehicles circulating on a fixed-route and the forecast 

of the mobility flow, coupled with the requests in real-time generated by customers. 

MVMANT worked closely with the local government transport authority to the 

implementation of its smart mobility solution in the city of Emirate. The service was 

tested in two districts located in the vibrant heart of the city - i.e., Al Barsha 1, one 

of the neighbourhood of the Al Barsha district, where life gravitates around the 
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“terminus” Mall of Emirates (including both a commercial centre and a metro 

station), characterized by users moving mainly for shopping and leisure (Figure 

4.1b); Dubai Internet City, which gravitates around the “terminus” Nakheel MS 

Seaside (a metro stop), refers to a business centre area, and is characterized by home-

work journeys. Our work aims at reproducing MVMANT service via the ABM, 

evaluating the performance of different vehicle dispatching strategies and service 

configurations. Simulations have been performed for the district of Al Barsha 1, 

where the service covered an area of about 3 km2 and has been particularly 

successful in connecting the different parts of the district with each other and with 

the main point of interest, i.e., Mall of Emirates. 

The demographics available for the area, supplied by the local authorities to the 

MVMANT company, refer to 2014; the resident population of the area is 

approximately 15.000 inhabitants (Figure 4.1c), while the number of employees is 

higher (approx. 18.000, Figure 4.1d) mainly due to the presence of the Mall. 

 

Figure 4.1.  (a) Location of Dubai on the Arabian Peninsula; (b) Al Barsha district and 

its subdivision; population (c) and employees (d) in 2014 in Al Barsha 1. 
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The ABM used in this study has been built within the NetLogo agent-based 

programming and integrated modelling environment (Wilensky, 1999). The main 

features of the model are the (a) transport network, (b) demand model, (c) agent (user 

and vehicle) dynamics, (d) assignment of route choice strategies and (e) indicators to 

evaluate the model’s performance. 

4.2.1 Transport network and demand model 

The model’s network, based on the real road network, is built with a fixed-route 

and different optional routes, composed of links, stop nodes and diversion nodes (to 

skip from fixed to optional routes). Through the GIS extension of NetLogo, a GIS 

dataset is used both to build the actual road network and implement a georeferenced 

real dataset of origin-destination (OD) requests, collected during the MVMANT 

service’s first weeks of tests. 

The demand model is based on previous works developed by Inturri et al. (2019). 

However, in this work, the demand model has been improved by using real-world 

observed data for trips origin and destinations. A trip request is randomly generated 

in the network following the Poisson distribution with an average trip rate ATR, 

suited for simulating booking processes, particularly when demand rate is low, and 

requests can be considered independent (Coffman et al., 1999). The trip rate TRij 

from an origin i to a destination j is calculated via a gravitationally distributed model 

as in Equation 4.1: 

 𝑇𝑅𝑖𝑗 = 𝑇𝑅𝑖 × 𝑝𝑖𝑗 =
𝑇𝑂𝑖

∑ 𝑇𝑂𝑖𝑖
∙ 𝐴𝑇𝑅 ∙

𝑇𝐷𝑖∙𝑑𝑖𝑗
𝛼 ∙𝑒

−𝛽𝑑𝑖𝑗

∑ 𝑇𝐷𝑘∙𝑑𝑖𝑘
𝛼 ∙𝑒−𝛽𝑑𝑖𝑘𝑘

 (4.1) 

where TRi is the generation trip rate of zone i, and pij is the probability that a trip 

with origin i has destination in j. TRi is proportional to the density of trip origins 

(TOi) and to an average trip rate (ATR) set at the beginning of the simulation (see 

Equation 4.2)  

 𝑇𝑅𝑖 =
𝑇𝑂𝑖

∑ 𝑇𝑂𝑖𝑖
∙ 𝐴𝑇𝑅 (4.2) 

while pij is calculated via Equation 4.3: 

 𝑝𝑖𝑗 =
𝑇𝐷𝑖∙𝑑𝑖𝑗

𝛼 ∙𝑒
−𝛽𝑑𝑖𝑗

∑ 𝑇𝐷𝑘∙𝑑𝑖𝑘
𝛼 ∙𝑒−𝛽𝑑𝑖𝑘𝑘

 (4.3) 
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where TDj is the number of trip destinations located at zone j, dij is the distance from 

i to j,  and  are the parameters of the decay function f(d) in Equation 4.4:  

 𝑓(𝑑) = 𝑑𝛼𝑒−𝛽𝑑 (4.4) 

4.2.2 Agents (passengers and vehicles) dynamics 

A trip request of a passenger group (with a maximum prefixed size) is 

stochastically generated, according to the demand model. The user group’s trip 

request can assume different status: 

• “Rejected”, if the distances from the origin destination (OD) stops overcome 

a prefixed threshold. 

• “Waiting”, if the OD pair is within the distance range, and the users’ group 

moves to the nearest stop. 

• “Satisfied”, when a vehicle with an appropriate number of available seats 

reaches the stop, each user boards and alights at the nearest stop to its 

required destination; this is an indicator of the satisfied demand of service 

within the accepted requests. 

• “Unsatisfied”, if no vehicle reaches the passenger group within a maximum 

waiting time. 

At the beginning of the simulation, the number of vehicles, their seat capacity and 

their speed are set, and vehicles are generated at random stops. As far as the vehicle 

dynamics is concerned, each vehicle starts travelling along the fixed-route until it 

stops where waiting users are loaded following the first-come-first-served queue 

rule, updating available vehicle’s seats. 

4.2.3 Route Choice Strategies 

In our model, vehicles can be assigned to different Route Choice Strategy (RCS), 

i.e.: 

• FX - “fixed-route”, each vehicle drives only on the fixed-route. 

• FR - “fully random”, each vehicle at a diversion node randomly chooses to go 

on the flexible route; approximately, half of the vehicles will drive on the 

flexible route, and the other half will keep on driving on the fixed-route, 

until the next diversion node is reached. 
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• AVAR - “all vehicles drive on all flexible routes”, each vehicle is allowed to 

drive on a flexible route, but it chooses to do so only when passengers have 

to alight at a stop located along the flexible route, or she is waiting at such 

a stop, or according to a given random component (probability to choose the 

flexible route even though none of the previous two situations happens). 

• EVAR - “each vehicle is assigned to a flexible route” with a prefixed 

percentage of vehicles assigned at random. 

FR, AVAR and EVAR strategies can have a randomness component. This 

component refers to the possibility that the vehicle would follow a different route 

from the one indicated by the RCS. For example, in the case of AVAR strategy, where 

all vehicles always drive on the flexible route, it could happen that a percentage of 

vehicles’ trips would skip driving the flexible route (even if demand is present). This 

is to test the role of randomness, since it has been demonstrated that it can increase 

the efficiency of social and economic complex systems (see Pluchino et al. (2010)). 

4.3 Results 

 Dubai’s network used for MVMANT service was reproduced in the ABM (Table 

4.1) with fixed (dark blue) and flexible (pink) routes (Figure 4.2a). 

Table 4.1. Values of the input variables in the different scenarios 

Routing strategy Length (m) Time (s) 

ER - extended route (fixed + optional) 3944 700 

FX - fixed-route (fixed) 3053 580 

Difference 891 120 

From the analysis of OD data collected during the first weeks of MVMANT service 

(while it still was in operation), it was possible to derive a peak hour demand rate in 

the range between 50-60 requests per hour. For scenario simulations, a demand rate 

equal to 100 requests per hour was chosen to simulate a higher demand that, in 

principle, could be satisfied by the service. The GIS zoning implemented in the 

simulation is based on a squared grid layer (100m x100m) where each zone is 

assigned with the information related to the number of OD requests (Figure 4.2b); 

the demand model then takes into consideration the requests generated at a 

maximum of around 300 m from the centroid of the zones (Figure 4.2c,d). 
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Figure 4.2. MVMANT service with fixed (dark blue) and flexible (pink) routes; (b) 

Geographic Information System (GIS) zoning; requests for the catchment area of (c) 

destination and (d) origin. 

4.3.1 Scenario 1: test of system efficiency based on RCS 

The first set of simulations considered all the different RCS with increasing levels 

of randomness, to test routes and the overall system performance. Three types of 

input variable were considered: service and demand variables, and RCS. They are 

summarized in Table 4.2. 

A set of performance indicators (Table 4.3) has been analysed during the 

simulation to test the impact of different vehicle dispatching strategies on service 

efficiency and effectiveness.  
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Table 4.2. Input data used for Scenario 1. 

Type of variable Input variables Input data 

service variables 

total simulation time (ST) 6 h 

number of vehicles (nV) 2 

vehicle maximum capacity (cap) 19 seats 

vehicle average speed 30 km/h 

vehicle operation cost (VOC) 0.9 €/h 

driver cost (DC) 20 €/h 

demand variables 

demand rate (request/hour) 100 

maximum no. of passengers per demand 1 

maximum waiting time (min) 10 

value of time (VOT) 10 €/h 

RCS 
Type of strategy (FX, FR, EVAR, AVAR) 

Level of Randomness (0-30%) 

FX 0% 

ER 0% = EVAR 0% 

FR 100% 

AVAR 0–30% 

Table 4.3. Performance indicators 

Acronym Indicator Unit 

%–r percentage of rejected requests % 

%–s percentage of satisfied users % 

NP total number of passengers transported adim. 

TDD total driven distance km 

APTD average passenger travel distance km 

ALF average vehicle load factor adim. 

AWT average passenger waiting time min 

AoBT average passenger on-board time min 

APTT average total travel time min 

TPTT 
total user travel time (with a penalty of 60 min for each 

unsatisfied user) 
h 

OC 
Operation cost (depending on simulation time, TDD, driver 

cost, VOC) 
€ 

TUC total unit cost €/pax 
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Indicators evaluate the quality of transport service, its sustainability and the 

overall benefit brought to society. They are chosen to capture the different objectives 

and points of views of the system actors - i.e., (1) a user is interested in reducing the 

trip cost (length, travel time, fare); (2) a private company providing the service is 

interested in maximizing the profit, by increasing the number of passengers within 

a prefixed travelled distance or, conversely, reducing the amount of travelled 

distance to serve a prefixed demand; (3) the community is interested in reducing 

transport externalities, i.e., pollution and congestion. 

The total unit cost (TUC) indicator is evaluated according to Equation 4.5, taking 

into account the total passenger travel time total user travel time (TPTT) (h), the 

value of time VOT (€/h) for passengers, and the vehicle operation cost (OC) (€): 

 𝑇𝑈𝐶 =
𝑇𝑃𝑇𝑇 ∙ 𝑉𝑂𝑇 + 𝑂𝐶

𝑁𝑃
 (4.5) 

It considers the cost of users (with the VOT and the TPTT, which users would like 

to have as low as possible) and the cost of the operator per each transported 

passenger, as follows: 

 𝑂𝐶 = 𝑛𝑉 ∙ 𝐷𝐶 ∙ 𝑆𝑇 +  TDD ∙ VOC ∙ (cap/15) (4.6) 

Therefore, the TUC can be seen as a unit cost for the transport system (demand and 

supply) as a whole. 

From the comparison among the different RCS, it is possible to evaluate the 

efficiency of each route in relation to the performance indicators.  

Operator profit (total driven distance (TDD) and average vehicle load factor 

(ALF)). From the point of view of the operator, it is important to achieve high load 

factors (to increase revenues) and low driven distances (to reduce operation costs); 

those two factors can be measured through TDD and ALF indicators, which have 

their best values for AVAR strategy (Figure 4.3a). This means that, for the case study 

under consideration, and from the point of view of the operator, assigning all vehicles 

to the flexible route, but only when demand is present, would be the best way to 

satisfy more demand while minimizing the travelled distance. This will also have a 

direct impact in terms of carbon and local pollutants emissions. Note that the higher 

TDD occurs for the FX strategy, despite the shorter distance of the fixed route. This 

can be explained considering the smaller number of served passengers, resulting in 

a low ALF (Figure 4.3b) and in less dwell time at stops. 
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Figure 4.3. (a) Total driven distance and (b) Average Load Factor, according to the 

different strategies. 

Service coverage (%-r). With regard to the percentage of rejected requests (Figure 

4.4a), it is possible to see how, in comparison to any other strategy, FX reports a 

potential loss of 33% of requests in the catchment area. This shows the importance 

of the introduction of the optional route in order to expand the accessibility of users 

in the study area. 

Demand satisfaction (%-s). Demand satisfaction keeps above the 95% for all 

strategies (Figure 4.4a), indicating the possibility of extending the service to a 

greater catchment area, without changing operation costs.  

Total unit cost. If one considers both the point of view of the operator and of 

passengers, it results that the worst strategy in terms of TUC is FR, while the other 

performs similarly (Figure 4.4b). The low value assumed for the FX strategy clearly 

depends on the fact that routes are shorter, implying a lower value of total passenger 

travel time. While, if one considers the environmental impact, then AVAR should be 

preferred, since it implies less travelled distance and higher load factor. In this 

respect, some carbon credit mechanisms could be defined from policymakers to take 

into considerations environmental concerns (see Anand et al., 2019). However, the 

FX strategy would clearly provide more than 50% of rejected requests, as shown in 

Figure 4.4a, and this would be socially unsustainable. While, for an equally good 

value of coverage, the best strategy in terms of TUC is the EVAR with 0% of 

randomness, corresponding to ER. 
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Figure 4.4. (a) Percentage of rejected requests and satisfied users and (b) Total Unit Cost, 

according to the different strategies. 

4.3.2 Scenario 2: comparison to other DRT services 

This second set of simulations tests different DRT services in terms of vehicle 

capacity and evaluates the economic efficiency of each system in relation to TUC. 

Scenario 2 takes into account two services with the following characteristics:  

• A flexible transit with minibus (comparable to the actual MVMANT service). 

• A ridesharing with small vehicles, capable of collecting up to two requests 

at a time (comparable to typical ride sourcing operators providing services 

like a shared taxi). 

The main input data are summarized in Table 4.4; unlike the other tested 

scenarios, in Scenario 2, the number of vehicles will be one of the main outputs. 

Table 4.4. Input data used for Scenario 2 

Type of 

variable 
Input variables 

Input data 

Ride-sharing 

service 

flexible 

transit service 

service 

variables 

total simulation time (h) 6 6 

vehicle average speed (km/h) 30 30 

demand 

variable 

demand rate (request/hour) 100 100 

maximum waiting time (min) 6 10 

number of passengers per demand 1 1 

performance 

constraint 
percentage of satisfied users - %-s > 85% > 85% 

route choice 

strategy 
RCS EVAR with 0% randomness 
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Number of vehicles. The first output of simulations is that, in order for the ride-

sharing service to achieve at least the 85% of satisfied users, six small vehicles are 

needed; two vehicles with a capacity equal to 19 seats are needed for the minibus 

system. 

Additional time and Distance. In order to assure the expected level of service, 

operators should minimize the additional time and distances travellers have to 

experience. One can consider the additional travel distance (ATD), depending on 

average passenger on-board time (AoBT) and average vehicle speed (as a function of 

TDD, simulation time and number of vehicles), and the additional travel time (ATT), 

related to average passenger waiting time (AWT) and AoBT. In the comparison 

between the two services, passengers of the minibus travel on average the same 

distance than those travelling by the ride-sharing service, with an additional time of 

three minutes (Table 4.5). This implies that the two services are comparable in terms 

of the additional distance experimented by a passenger when sharing a trip with 

others, but the flexible transit achieves less TDD because of the reduced numbers of 

vehicles used. Of course, this can be easily converted into pollutant emissions. 

Table 4.5. Additional travel distance and additional travel time and TUC according to 

the different services. 

Service N. of vehicles ATD (km) ATT (min) TUC (€/pax) 

Ridesharing 6 2.19 7.44 6.01 

Flexible transit 2 2.26 10.43 2.90 

Total Unit Cost. The TUC of the ride-sharing service assumes a value equal to 

more than the double of the same service performed via a minibus (Table 4.5). This 

implies that the supposed transport demand can be easily satisfied by a flexible 

transit service rather than a shared ride-sharing service with more vehicles of lower 

capacity. 

4.3.3 Scenario 3: optimum vehicle capacity based on demand 

fluctuation 

This third set of simulation analyses the efficiency of the system as the number 

of available seats varies, and according to the fluctuation of demand during the week. 

Based on the analysis of the real-word data coming from the pilot, a demand rate of 
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50% of the weekdays has been adopted for holidays. Vehicles with 19 seats 

(corresponding to the MVMANT service), eight seats and four seats have been used 

to perform the simulations. The main input data are summarized in Table 6. 

Table 4.6. Input data used for Scenario 3. 

Type of variable Input variables Input data 

service variables 

total simulation time (h) 6 

number of vehicles 2 

vehicle maximum capacity (seats) 4 – 8 – 19 

vehicle average speed (km/h) 30 km/h 

demand variable 

demand rate weekdays (request/hour) 100 

demand rate holidays (request/hour) 50 

maximum waiting time (min) 10 

number of passengers per request 1 

 

Transport intensity (TI). This indicator represents kilometres travelled for each 

passenger (km/pax) and companies providing the service are interested in having 

low values of TI. The main result of this analysis is that a 19-seats vehicle is good 

for the weekday demand rate, while the 8-seats vehicle is the best solution during 

the holidays (Figure 4.5).  

 

Figure 4.5. Travelled kilometres per passenger during weekdays and holidays. 
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This suggests that, in order to be efficient, the service could be tailored according 

to the fluctuating demand, by using a heterogeneous fleet of vehicles. This also has 

interesting implications in terms of environmental impact, with low-capacity 

vehicles emitting less pollution than high-capacity ones. Once again, incentive 

mechanisms or restrictive policies (i.e., a limited traffic zone) could be useful to 

include environmental concerns in the planning and operation of such services. 

4.4 Discussion and conclusions 

This chapter presented the results of agent-based simulations of the on-demand 

flexible transit service called MVMANT, experimented in 2019 in the city of Dubai. 

The aim was to test its performance by reproducing the service in the district of Al 

Barsha 1, changing important service characteristics, like route assignment and 

vehicle capacity, and comparing it with alternative shared transport services. 

An already implemented ABM was used to this purpose, calibrating it via 

georeferenced real dataset including OD couple requests collected during the first 

weeks of the service. Results demonstrates the flexibility of the model to reproduce 

different services and contexts and provide useful suggestions for its correct 

planning and management. Results of the simulations of this flexible transit service 

highlighted: 

1. The importance of introducing an optional route in order to expand the 

accessibility of users in the study area. 

2. The possibility of extending the service to a greater catchment area, without 

changing operation costs. 

3. The importance of dynamically scheduling vehicles to passengers and routes 

and its reflection on economic performance parameters. 

Besides, the comparison of the minibus flexible transit service provided by 

MVMANT with a ride-sharing service with small vehicles showed that the former is 

more convenient than the latter in terms of a total unit cost accounting both for 

operator and user points of view, in the hypothesis of guaranteeing a minimum 

demand satisfaction level of 85%. Finally, fluctuation of demand during the week 

was considered in the simulations, showing the efficiency of a 19-seats minibus 

during the weekdays, while suggesting the adoption of a smaller vehicle (with eight 

seats) during holidays. 
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From an environmental point of view, some useful suggestions can be derived 

from the results. In this respect, policymakers should adopt push and pull measures 

so to include environmental concerns in the planning and operation of such flexible 

services. As an example, operators can decide to use a heterogeneous fleet based both 

on service efficiency and on policy restrictions. 

Other useful policy implications could be derived by changing other service 

variables. As an example, it would be interesting to understand how this flexible 

service would perform if considering a “delay” time at the terminus “Mall of 

Emirates”, as a standard bus. In this respect, from a simple evaluation based on real 

data from the pilot, it resulted that the introduction of a 3-minute delay time of the 

vehicles at the terminus would lead to a reduction of about the 15% of necessary 

rides (and thus, of travelled kilometres). The increase in service efficiency with the 

introduction of a delay time at the terminal could be due to the greater number of 

passengers that the service will be able to serve, but also because, being a low-

demand area, the vehicle would travel less kilometres while empty. It would be 

interesting to verify this scenario via the ABM, evaluating its feasibility, taking into 

account the increase in passenger travel time. 

Future research should also aim at improving demand estimation, by looking at 

the preferences of users for different service configurations (see Atasoy et al., 2015) 

and include more direct environmental evaluations, both related to global emissions 

(i.e., greenhouse gases) and to local pollutants (e.g., PM10, NOx). A combination with 

other evaluation approaches, like stated preference surveys or multicriteria decision-

making techniques, would be suitable both to investigate agent preferences, and to 

evaluate different scenarios according to multiple criteria of judgment 

(environmental, social and economic). In this respect, an analysis of different options 

from the sustainability lens would be interesting, especially in comparison with 

private mobility, starting from a rough estimation of the travelled distances (per 

passenger) of private vehicles satisfying the same demand. Finally, it would be 

important to understand how this type of service should be integrated with other 

transport services, in order to guarantee a seamless transport system following the 

approach of mobility as a service (MaaS). 

All these evaluations are useful to support decision-makers in planning, 

management, and optimization of innovative transit services, which have a great 

potential to reduce car dependency and increase accessibility - especially in cities 

characterized by fast economic growth, resulting in heterogeneous mobility needs 

and economic and social inequalities. 





 

 

 

CHAPTER 5 

5. Comparing Fixed-route and Flexible 

Transit Feeder Services: an Agent-

Based Model 

This chapter presents a new agent-based model able to simulate innovative 

flexible demand-responsive transport services, specifically thought to solve the last-

mile problem of mass rapid transit (MRT). This is particularly needed in areas 

characterized by insufficient transit supply and lower sprawled demand, where 

conventional public transport is not always able to meet the population’s need for 

accessibility to jobs, education, health, and other opportunities in terms of routes 

and frequencies.  

However, new technologies have the potential to dynamically couple demand with 

supply, providing forms of flexible transit which are well suited to act as a feeder 

service to high-capacity transit lines. 

The model compares the performances of two feeder services, one with fixed routes 

and stops, and the other with flexible routes and stops activated by the requests of 

users, satisfying the same demand. 

The case study city is Catania (Italy), where such services could increase the 

ridership and coverage of a 9 km long metro line that connects the city centre to 

peripheral areas. Different scenarios have been analysed by comparing a set of key 

performance indicators based on service coverage and ridership.  

The first results allows us to identify optimal operation ranges of flexible on-

demand services and pave the way for further investigation needed to understand 

their acceptability and economic viability.  
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5.1 Introduction and related works 

Transport systems are experiencing times of unprecedented changes. This can be 

attributed to the innovations brought by new information and communication 

technologies, which enable flexible services, spreading e.g., as complementary to 

conventional public transport or in substitution to it (Cohen-Blankshtain and 

Rotem-Mindali, 2016; Sadowsky and Nelson, 2017). 

The importance of studying in advance the potential of such new services and 

their optimal range of operation has been already underlined in the previous 

chapter. Such mobility options would be specifically needed in areas where both 

insufficient transit supply and lower sprawled demand make it difficult to provide 

mass transit services. 

The issue of covering the first/last mile of mass rapid transit is a case in point, 

being a Many-to-One problem characterized by multiple origin/destination with a 

low and dispersed demand and a single destination/origin with a concentration of 

demand (Calabrò et al., 2020). In this case, two main design choices appear, i.e.: 

a. The choice between scheduled feeder services (as in conventional public 

transport) and demand-responsive transit (DRT) services in which routes 

are dynamically adapted to the users’ requests (Koffman, 2004), trying to 

guarantee maximum flexibility while complying with operating costs. 

b. The level of flexibility (in terms of routes, stops and scheduling) of such DRT 

services. 

Both alternatives (fixed and flexible) have their own design questions. A 

fundamental one for scheduled feeder services is the optimal design of routes and 

frequency. For flexible services, the design issue to address is what degree of 

flexibility, from the operator perspective (e.g., routing and dispatching strategies, 

fleet composition) and the passenger point of view (e.g., user engagement in the 

booking process) best exploits the trade-off between minimizing the cost of the 

system and maximizing service quality. 

Literature on modelling approaches to study flexible and demand-responsive 

transport (DRT) services is abundant (Liyanage et al., 2019). In particular, ABM has 

been largely used thanks to the possibility to simulate complex environments with 

individual autonomous agents acting and interacting according to their objectives. 

This is well suited to reproduce DRT services, characterized by real-time user 

requests and the need to match them with vehicles in an optimal way. 
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Recently, Di Maria et al. (2018) proposed a modular simulation framework for 

autonomous mobility on demand and focused on the important issue of optimization 

strategies using the Manhattan Grid case as a testbed. 

Inturri et al. (2019) presented a multi-agent simulation to reproduce a mixed 

fixed/flexible route transit service with different fleet size and vehicle capacity in the 

city of Ragusa (Italy), showing an optimal range of operating vehicles that minimizes 

a total unit cost indicator, accounting both for passenger travel time and operation 

cost. Giuffrida et al. (2020) extended the results of Inturri et al. (2019), studying the 

effects of different vehicle assignment and route strategies and comparing its 

performance with a ride-sharing service provided via low-capacity vehicles. 

Some authors have focused on the first and last mile (FMLM) problem of mass 

rapid transit. Scheltes and Correia (2017) studied the so-called “Automated Last-

Mile Transport” via an agent-based simulation model whereby a dispatching 

algorithm distributes travel requests amongst the available vehicles using a First-

In-First-Out (FIFO) sequence and selects a vehicle based on a set of specified control 

conditions (e.g., travel time to reach a requesting passenger). However, this type of 

service does not allow shared trips among passengers, which would increase the 

complexity of the modelling effort. Besides, while solving FMFL issues, it is 

important to understand which level of flexibility is needed according to demand 

patterns. 

In this chapter we aim at contributing to the current literature in this field by 

presenting a new ABM to simulate flexible/fixed feeder services with different 

vehicle fleets and demand patterns, to help solve the FMLM problem of mass rapid 

transit. The remainder of the chapter is organized as follows. The following section 

presents the methodology, drawing complete description of the model, outlining the 

demand-supply interaction and the proposed dispatching algorithm, and describing 

the performance indicators. In Section 5.3 we apply the model on a real case study, 

describing the main results. Finally, Section 5.4 concludes the chapter, introducing 

some future research directions. 

5.2 Methodology 

The present work is built on and extend the works of Inturri et al. (2019) by 

allowing for different levels of flexibility, Scheltes and Correia (2017) for the 

passenger and vehicle dynamics, while allowing for ride sharing, and Calabrò et al. 

(2020a) by reproducing the operation of a feeder service with optimally designed 
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routes. The model also allows for a more detailed spatial representation of the 

demand compared to the previous ones, since requests are geocoded to the building 

scale. The model is specifically designed to compare the performance of the two 

alternative feeder services, while satisfying the same demand. 

5.2.1 Description of the model 

The rationale for using ABM is to understand the trade-off between costs and the 

level of service of feeder services, taking flexibility as a design parameter, while 

simulating different vehicle fleet capacity and demand patterns. The ABM has been 

implemented in the NetLogo programming environment (Wilensky, 1999), and takes 

as reference other previously implemented models (Scheltes and Correia, 2017; 

Inturri et al. 2019; Calabrò et al, 2020a; Giuffrida et al., 2020). A brief description of 

the model is provided in the following paragraphs. 

Transport network model. The network consists of mandatory stops and optional 

stops, to encompass both fixed-route feeder (FRF) and demand-responsive feeder 

(DRF) which routes are built on the real network.  

Demand model. The GIS extension of NetLogo is used to map the distribution of 

socio-demographic data (residents and employees) at a census zone level. A further 

level of disaggregation is achieved by assigning socio-demographic data to each 

building proportionally to their surface, whose data were obtained through 

OpenStreetMap. 

The average trip demand rate is based on historical data of the daily distribution 

of passengers’ accessing/egressing the metro station. The service has been simulated 

for the current demand, but also for higher and lower potential demand, to test the 

efficiency of the feeder services under different demand rates.  

A users’ group trip request is generated according to a gravitationally distributed 

probability from an origin (O) building to the metro station and from the metro 

station to a destination (D) building, following a Many-to-One demand pattern. The 

demand model is based on Inturri et al. (2019) and it has been improved through the 

introduction of an index of attractiveness of the transit mode versus the walking 

mode to reach the terminal station. 

Given a set of n buildings, the trip rate TRij (where i or j corresponds to the 

terminal station) is calculated with Equation (1), where TRi is the generation trip 

rate from (and to) the building i, proportional to population density and an average 
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trip rate per trip direction (ATR) (simulation variable), calculated with Equation (2), 

and ij is the transit index of the attractiveness of the transit mode, which assumes 

values between 0 and 1, determined for each building i through the exponential 

function shown in Equation (3). 

 𝑇𝑅𝑖𝑗 = 𝑇𝑅𝑖 ∙ 𝜂𝑖𝑗  (5.1) 

 𝑇𝑅𝑖 =
𝑃𝑜𝑝𝑖

∑ 𝑃𝑜𝑝𝑘
𝑛
𝑘=1

∙ 𝐴𝑇𝑅  (5.2) 

 𝜂𝑖𝑗 = 1 − 𝑒
−
(𝑑𝑖𝑗−𝑑𝑇0)

2

0.5 𝑑𝑇0
2

  (5.3) 

where dT0 is the minimum distance from the terminal station to consider the 

transit service attractive for the users. For distances shorter than dT0, users are 

assumed to walk directly to the terminal station. 

A trip request of a passenger group (with a maximum prefixed size) is generated 

according to the following rules: (i) from buildings to metro: stochastically generated 

and Poisson distributed according to the hour trip rate; (ii) from metro to buildings: 

Poisson distributed, every 10 minutes (which is the headway of the metro service). 

Access mode choice. We do not consider private car use, but users have a twofold 

choice to reach the metro station, i.e., walking and transit. In this respect, we 

simulate a DRF service with different fleet configurations in comparison with a FRF 

service while keeping the demand constant. 

5.2.2 Fixed-route feeder dynamics 

After a trip request is generated, if the distance from the origin to the nearest 

feeder bus stop (or from the destination, if the origin is the metro station) overcomes 

a given threshold, the group of travellers assumes the status “rejected”. This is 

because it is assumed that a traveller may decide not to use transit due to excessive 

access time and will use other modes. Otherwise, the request is confirmed, 

passengers assume the status “accepted” and move to the stop that allows them to 

minimize the sum of walking time and on-board time, assuming the status “waiting”, 

while waiting for the feeder service.  

If a prefixed maximum waiting time is overcome before a vehicle reaches the stop, 

each group of travellers gives up and assumes the status “unsatisfied”. Otherwise, 

each passenger boards the vehicle assuming the status “satisfied”. 
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If the overall travel time overcomes a certain desired travel time (given by the 

vehicle maximum travel time tmax multiplied by the index of attractiveness 𝜂𝑖𝑗), the 

passenger assumes the status “delayed”. 

Fleet size, vehicle capacity, and speed are set at the beginning of the simulation. 

Each vehicle is generated at the terminal stop (i.e., the metro station). The FRF 

vehicle travels along the route until it reaches a stop. Passengers at their destination 

stop alight and waiting users board the vehicle following the First-Come-First-

Served (FCFS) queue rule, but only if the traveller group size is not greater than the 

available seats, updating vehicle’s available seats. 

5.2.3 Demand responsive feeder dynamics 

Traveller requests for the DRF service can be served at multiple potential stops 

either close to origin or destination (according to the vehicles’ availability and 

schedule). As in the previous case, after a trip request is generated, if the distance 

from the nearest stop to the origin exceeds a given threshold, the group of travellers 

assumes the status “rejected”. Otherwise, the request is processed through the 

dispatching algorithm and the passenger group can be assigned to a predetermined 

stop and vehicle according to capacity and time constraints as fully explained in the 

next subsection. 

If no vehicle can fulfil these constraints, each traveller of the group assumes the 

status “rejected”. If accepted, the dynamics of passengers originated at the metro 

station and those whose origin is one of the buildings follow different rules.  In the 

first case, passengers wait for the assigned vehicle at the metro station, board it, and 

finally get off the vehicle at the predetermined stop, walking to their destination 

located at one of the buildings. In the second case, passengers do not go to any stop 

until the expected time for pick-up, also given the required walking time and an 

additional “buffer” time (in case the vehicle is earlier than the scheduled arrival 

time). 

Then, the group moves to the assigned stop assuming the status “waiting”, while 

waiting for the vehicle. If a prefixed maximum waiting time is reached before a 

vehicle arrives at the stop (e.g., schedule variations and increased travel times of the 

vehicle due to other following requests), the passenger group gives up and assumes 

the status “unsatisfied”. Otherwise, each passenger boards the vehicle, alights at the 

metro station, and assumes the status “satisfied”. 

However, if the overall travel time overcomes the desired travel time (given by 

the vehicle maximum travel time tmax multiplied by the index of attractiveness 𝜂𝑖𝑗), 
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a passenger assumes the status “delayed”. The following flow charts summarize the 

traveller (Figure 5.1) and vehicle dynamics (Figure 5.2) for the flexible DRT feeder 

service. 

 

Figure 5.1. DRF traveller dynamics flow chart. 

 

Figure 5.2. DRF traveller dynamics flow chart. 

Vehicles of the DRF service start travelling from the metro station at a scheduled 

departure time across the street network and towards the pre-scheduled mandatory 

stops (hereafter called waypoints). 
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Every time that a new request is accepted and assigned to the given vehicle, its 

schedule is updated with the possible insertion of a new stop to be served between 

two already scheduled stops. Vehicles drive to pick-up passengers at their origin stop 

and/or to drop-off passengers at their destination stop. 

5.2.4 The dispatching algorithm 

As previously said, when a new request is generated for the DRF, an insertion 

heuristic algorithm is used to determine the feasibility of the insertion, and then the 

minimum cost insertion of the request in the current schedule of one of the vehicles. 

Since we deal with a dynamic procedure, vehicles can take new requests in 

accordance with the maximum travel time tmax and/or the maximum capacity 

constraint according to the FCFS rule and minimizing its cost function. 

The main novelty of the procedure lies in the three levels of explorations of 

feasible solutions. For the insertion of a new stop, the algorithm examines: 

i. Each vehicle v of the fleet, considering the list of already scheduled stops, 

arrival time at each stop and available seats after serving a stop. 

ii. Each potential stop s, within a maximum radius of walking distance from/to 

the origin/destination of the travel request. 

iii. Each possible insertion of s between two any subsequent stops belonging to 

the current schedule of the vehicle v, if s is not already scheduled. The 

feasibility of each combination of vehicle, stop and insertion location is 

evaluated by ensuring that it complies with the following constraints: (i) the 

extra ride time needed to serve stop, also considering the additional time 

lost during pick-up/drop-off operations, must not be higher than a certain 

threshold Tmax, in order not to spend too much travel time in one single 

detour; (ii) the number of available seats should never be negative. 

For every new user request, the best insertion in the schedule is the one that 

minimizes the cost function (Equation 5.4), which considers the extra waiting and 

ride times due to the new request insertion: 

 𝐶𝑜𝑠𝑡 =  𝑤1 ∙ 𝑁𝑑𝑒𝑙𝑎𝑦𝑒𝑑 ∙ ∆𝑅𝑇 + 𝑤2 ∙ 𝑁𝑈𝐺 ∙ 𝑊𝑇𝑈𝐺  (5.4) 

where Ndelayed is the number of passengers who have to bear an extra ride time 

RT due to the insertion of the new request, NUG is the number of users who make 

the new request at time t and need a walking time WTUG to reach the stop or the 
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destination, w1 and w2 are weights that regulate the importance of the additional 

ride time of passengers versus the walking time for the new passenger group. In our 

application, for a first test, we set both weights equal to 1, leaving for future research 

the tuning of such parameters. 

5.2.5 Performance indicators 

The local strategies determining the interaction between passengers and vehicles 

give rise to global patterns that can be monitored via appropriate performance 

indicators. They are chosen to capture the different objectives and points of view of 

the system actors, i.e.: (1) a traveller is interested in reducing the trip cost (distance, 

travel time, fare); (2) a company providing the service is interested in maximizing 

the profit, by increasing the number of passengers within a prefixed travelled 

distance or, conversely, in reducing the amount of travelled distance to serve a 

prefixed demand; (3) the community is interested in reducing transport-related 

externalities. 

The model can monitor different key performance indicators to compare the two 

services, related both to the traveller and the operator perspective:  

• the total number of transported passengers NP (pax). 

• the total number of accepted requests NAP (pax). 

• the total number of satisfied users PAX (pax). 

• the average passenger travelled distance APTD (km). 

• the average vehicle load factor ALF (pax/vehicle). 

• the average passenger travel time Tpax (min), in terms of average walking 

time TWK, average waiting time TWT (min) and average ride time TRD (min). 

• the total driven distance TDD (km). 

• the transport intensity TI (km/pax), as the ratio between TDD and NAP. 

• the average traveller travel time Ttrav (h) (including a penalty time of 60 min 

for each unsatisfied user). 

• the operation cost OC (€) (see Equation 4.6 of Section 4.3.1). 

• the effectiveness E (-) of the service, where E = PAX / NP. 

• the total unit cost TUC (€/pax) (see Equation 4.5 of Section 4.3.1). 

The next subsection will illustrate how the model was tested in a real-world case 

study. 
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5.3 Case study 

The case study focuses on improving the accessibility of the San Nullo metro 

station (SN) in Catania, a medium-sized city in the south of Italy. 

Territorial framework. The station is located in an arterial road that acts as a 

barrier between two neighbourhoods. In particular, it stands at the outskirt of the 

northern residential neighbourhood where walking paths are not of great quality, 

making it difficult for pedestrians to access the station. In such a context, the 

introduction of a FMLM transit service would help to reduce private car use and 

increase service coverage. However, it is important to guarantee a good passenger 

experience, in terms of travel time, and pay attention to the operator’s cost. 

Besides, the same service strategy and configuration could perform differently, 

i.e., very well during rush hours but not very well during off-peak hours, so a flexible 

feeder system able to switch between alternative routing and scheduling strategies 

in different periods of the day is desirable. We aim to evaluate the best choice 

between the two operating strategies (FRF vs DRF) under different demand rates 

and service configurations, identifying their optimal application scopes, through the 

comparison of passenger-related and cost-related performance indicators (see the 

next subsection). Figure 5.3 shows the FRF route (in blue) resulting from Calabrò et 

al. (2020a) and the road network used for the DRF service (in orange). 

 

Figure 5.3. Road network for FRF (blue) and DRF (orange) services. Mandatory stops for 

the DRF are evidenced by red markers. 
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Input variables and scenario simulation. The main input variables of the system 

are: 

• Service variables, i.e.: the type of service (FRF/DRF), the total simulation 

time (h), the number of vehicles (n), the vehicle maximum capacity (cap, in 

terms of seats), the average vehicle speed (S, in km/h). 

• Demand variables, i.e.: the demand rate (dem_rate in trips/hour), the 

maximum number of travellers per request (max_group), the maximum 

waiting time (mwt in min). 

Scenario simulation considers service operation by combining input values 

according to Table 5.1. In order to ensure comparability between the two services, 

we assume the same total capacity (e.g., 45 and 90 seats) for the FRF and the DRF 

services. 

Table 5.1. Values of the input variables in the different scenarios 

Type of 

variable 
Abbreviation Unit 

Value 

FRF DRF 

Service 

variables 

n - 3 3, 5, 6, 10 

cap - 15, 30 15, 9 

S km/h 25 25 

Demand 

variables 

dem_rate trips/h 25, 50, 100, 200 25, 50, 100, 200 

max_group - 3 3 

mwt s 600 600 

5.3.1 Results 

The main results of the experiments are reported below. For each scenario, five 

replications of the simulation were performed, given the stochastic nature of the 

demand in the model. The model allows monitoring of the parameters and provides 

graphs and histograms of the main simulation variables during the simulation. In 

Figure 5.4, the satisfaction plot in terms of satisfied (S), unsatisfied (U) and delayed 

(D) users, and the average-load-factor plot are reported for a single event in the 

scenario with 50 pax/h average demand rate, a total capacity of 45 seats, i.e., 3 

vehicles of 15 seats for both services. 
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Figure 5.4.  Satisfaction plot and average load factor for DRF (left) and FRF (right) for 

50 pax/h and 3 vehicles. 

Travel time. The experience of travellers is expressed by the travel time that is 

calculated as the sum of walking, waiting, and ride times. Service configurations 

lead to variable results according to the demand rate. For the lowest demand rate 

considered (25 pax/h), the DRF with large fleet and low vehicle capacity (10 vehicles 

of 9 seats) is the best option. For the highest demand considered (200 pax/h), the 

fixed feeder is preferable even it implies higher waiting times than the DRF. Results 

for demand rate of 50 pax/h and 100 pax/h are reported in Figure 5.5.  

In the case of 50 pax/h, the FRF result in a lower travel time, while, when it comes 

to the DRF, it is possible to decrease the travel time only by increasing the vehicle 

capacity. In particular, the FRF and the DRF with more vehicles (10) can be 

considered as the best options from the user point of view. More in detail, if the 

highest weight would be given to waiting and walking time, users would prefer the 

DRF service. In the case of 100 pax/h, a lower travel time is achievable always with 

a higher capacity. As in the previous case, the FRF and the DRF with more vehicles 

(10) should be preferred from the user point of view, even if the willingness to pay 

for the different times (walking, waiting, riding) should be further investigated since 

it is context specific. In both scenarios, the ride time weighs more on the DRF 

performance, due to the various detours required to serve pick-up and drop-off 

passengers, even though there are considerable savings in waiting and, to a smaller 

extent, walking time. 
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Figure 5.5. Average travel time for demand rates of 50 and 100 pax/h. 

TI - E – TUC. We decided to compare the performances of different service 

configurations using three main indicators, i.e., TI, E and TUC. 

TI is the ratio between the total distance travelled by the fleet of vehicles and the 

total transported passengers. A low TI indicates an efficient service in terms of 

operation cost per travelled passenger and a low impact on the environment as well. 

E, which is the ratio between the number of transported passengers and the 

number of accepted passenger requests (PAX/NAP), should be high to increase the 

number of satisfied users compared to the total number of accepted requests. 

Finally, TUC should be as low as possible to reduce the total costs of the system 

(operator and user) and increase the number of satisfied passengers. In this respect, 

it can be considered as an overall measure of the transport system efficiency.  

For low demand rates (25 pax/h), the high capacity DRF service (10x9) is the less 

convenient for TUC and TI, while E is very high and comparable with the other DRF 

solutions. For high demand (200 pax/h), the best results in terms of TUC and TI can 

be achieved by a high-capacity FRF service. 

Main results from the scenarios with demand rates of 50 and 100 pax/h are 

reported in Figure 5.6. 
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Figure 5.6. TUC, TI and E for 50 pax/h (top) and 100 pax/h (bottom). 

In the case of 50 pax/h, the two FRF services are comparable in terms of 

performance, but they reach approximately 76% of accepted requests. Low capacity 

in the case of DRF is in general better, with comparable values of TUC. In particular, 

the FRF would be preferable for the operator since it has lower TI and a good TUC, 

but with a higher percentage of rejected user requests, while it is possible to cover 

more than 90% of requests with a DRF service with 5 vehicles of 9 seats.  

In the case of 100 pax/h, the two FRF services are also comparable, but allow 

reaching approximately 70-75% of accepted requests. For 100 pax/h, high capacity is 

in general better with comparable values of TUC, and this is evident for the DRF 

with a reduced fleet size, which fails to serve a large percentage of users. As for the 

previous case, a fixed feeder would be preferable for the operator since it has lower 

TI and a good TUC, while DRF with 10 vehicles is the one with the highest coverage, 

but with a high TI. A compromise solution would be the DRF with 6 vehicles and 15 

seats, but it would be better evaluated by estimating the extra cost for the system 
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due to each “rejected” passenger, i.e., a user who does not use the feeder service and 

maybe chooses to use the private car. Once again, the higher driven distance due to 

the various detours of the DRF service is responsible for the greater TI value 

compared with fixed feeder, which however is unable to serve a certain percentage 

of users far from its stops. 

5.4 Conclusion 

FRF services travel on regular routes at scheduled times, but passengers have to 

walk to reach the fixed stops and wait for the service. On the other hand, flexible 

DRF services can pick-up and drop-off passengers wherever and whenever they 

want, therefore it is expensive to operate, even if passengers are more satisfied. We 

presented new ABM able to simulate both fixed and flexible mobility services, where 

the fleet size and capacity, and the demand rates are chosen as input parameters of 

different simulation scenarios. 

The model was tested in a case study with a real network and based on real 

demand data. First results with different demand rates (from low to high) identify 

the optimal configuration of DRF to achieve a trade-off among passengers’ 

convenience, service coverage, operation efficiency, and environmental impacts as 

well. 

In particular, for the case study analysed, the model can tailor the service 

according to the current demand, where a DRF fleet with 5 vehicles of 9 seats would 

be suitable for an average demand rate of 50 pax/h, while a fleet of 10 vehicles of 9 

seats would fit a demand rate of 100 pax/h. For lower and higher demand rate, a 

trade-off between coverage and ridership emerges. For higher demand rates, the 

FRF becomes the best choice even if it implies a lower coverage. Future research 

should investigate the demand side, in terms of the willingness to pay related to the 

different components of travel time. Other interesting indicators could be added to 

better evaluate the services and the related externalities, e.g. CO2 emissions. 

Moreover, it would be interesting to reproduce different cases with parametric road 

network topologies and demand (see Chapter 6), to see the impact on travelled 

distance and level of service. 

Another step forward would be to test a multi-station system, with feeder buses 

serving different metro stations. Finally, the use of autonomous vehicles should be 

tested, affecting the results of TUC (in terms of operation costs). 
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In summary, the model can contribute to the development of flexible DRF 

services, to solve of the coverage/ridership dilemma of rapid transit services, and to 

understand the impact of land use, road network and demand patterns on the 

flexible service performances.



 

 

 

CHAPTER 6 

6. Comparing Fixed-Route and Demand 

Responsive Transit Feeder Services: a 

Theoretical Agent-Based Model 

Feeder transport services are fundamental as first- last-mile connectors of mass 

rapid transit (MRT). Besides, the rapid spread of new technologies and the shared 

mobility paradigm gave rise to new mobility on-demand modes that are dynamically 

able to match demand with service supply. In this context, the new generation of 

demand-responsive transport (DRT) services can act as on-demand feeders of MRT, 

but their performance needs to be compared with conventional fixed-route feeders. 

This chapter presents an agent-based model able to simulate different feeder 

services and explore the conditions that make a demand-responsive feeder (DRF) 

service more or less attractive than a fixed-route fixed-schedule feeder (FRF). The 

main difference compared to the model presented in the previous chapter is the use 

of a parametric simulation environment including realistic constraints (e.g., 

passenger time windows) and parameters (e.g., vehicle capacity) which are usually 

not considered in analytical models due to high computational complexity. We 

identified the critical demand density representing a switching point between the 

two services. Once the demand density is fixed, exploratory scenarios are tested by 

changing the demand spatial distribution and patterns, service area and service 

configurations. Main results suggest that the DRF is to be preferred when the 

demand is spatially concentrated close to the MRT station (e.g., in a TOD4-like land-

use area) or when station spacing is quite high (e.g., a regional railway service), while 

FRF performs better when the demand is mainly originated at the MRT station to 

any other destinations in the service area (e.g., during peak hours). Besides, 

automated vehicles could play a role in reducing the operator cost if the service is 

performed with many small vehicles rather than few higher-capacity vehicles, even 

if this would not imply a major benefit gain for the users. 

 
4 Transit-Oriented Development 
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6.1 Introduction  

The push towards sustainable mobility and the advances in technology are 

modifying both transport services and user habits. Besides, the COVID-19 outbreak 

has heavily hit public transport (PT) and influenced travel behaviour with expected 

long-lasting impacts, especially at the urban level. In this changing environment, 

good planning and designing of transport systems becomes increasingly important 

to shape the future of urban regions (Gkiotsalitis and Cats, 2021). Transport 

planning cannot ignore new trends and paradigms that are rapidly emerging, 

oriented towards the concept of sharing assets and services via on-demand services 

enabled by digital platforms. Mobility as a Service (MaaS) is one good example of 

such a new concept, being a digital platform enabling multimodal door-to-door trips 

via a single app that should aim at reducing private car usage (and eventually 

ownership) (Storme et al., 2020). To achieve this goal, PT is considered to be the 

backbone of MaaS, complemented by mobility on demand and shared modes 

(Ambrosino, Nelson and Gini, 2016). 

In this context, DRT can play a fundamental role. It came back in the limelight 

in recent years mainly due to the spread of app-based ride-sharing systems such as 

Uber, Via, and Lyft (also known as transport network companies). 

However, the performance of these systems is often questioned especially 

concerning the transport demand they are meant to cover, the characteristics of the 

area, the topology of the road network in which they should operate, and the level of 

flexibility of the routes they follow. While they are often in competition with PT in 

the case of densely populated urban areas, they can potentially constitute a good 

solution to improve the accessibility to mass transit systems in the case of low 

demand areas by covering the first- last- mile of passenger PT trips (EPRS, 2016). 

The EU highlights how sparsely populated and underpopulated regions suffer from 

several structural problems such as lack of transport connections, few job 

opportunities and inadequate social services (EPRS, 2016). In a recent publication 

by the European Parliament (Bisaschi et al., 2021), the lack of accessibility to PT is 

considered as one of the main issues faced by low-density and depopulated areas, 

with the consequent social exclusion of their inhabitants. The strategic document 

underlines the role that DRT enabled by novel technologies could have in those 

regions as a result of its flexibility in meeting the demand. The document also notes 

that particular attention should be paid to its use in supplementing conventional PT 

such as train, metro and trams that cannot reach all regions with the same coverage. 
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The conditions for DRT success have been explored in the literature focusing on 

some of the key aspects for PT systems viability e.g. the demand patterns making 

DRT services more attractive than fixed scheduled ones, optimal fleet size and fleet 

composition. Besides, real case studies (or pilots) have been set up and investigated 

which are inevitably influenced by the territorial context where they happen leading 

to results that are often difficult to generalize and thus transfer to other regions (e.g. 

Mehran et al., 2020; Mishra et al., 2020). Analytical models have been typically used 

to find demand thresholds and switching points from one service to the other, as in, 

for example, the work done by Quadrifoglio and Li (2009). 

Moreover, while the routing of these systems has long been addressed in the 

literature (Garaix et al, 2010; Bruni et al., 2014; Ronald et al., 2016)), the recent 

technological innovations in the trip booking processes have led to the emergence of 

new problems due to the need to guarantee dispatching of vehicles and requests in 

real-time. These issues are amplified in the case of shared rides since different users 

might have different time schedules.  

Finally, any analysis of these systems, cannot ignore the technological evolution 

of the vehicles used. These seem to be oriented towards the conversion to full-electric 

ones and in the longer-run to full automation (Wang et al., 2019). 

Based on these premises, we aim to propose the use of an agent-based model 

(ABM) to explore the performances of DRT in comparison to a fixed-route service as 

a feeder to mass transit. We began to address this issue in the previous chapter, by 

presenting and applying a new ABM to simulate adaptive flexible/fixed feeder 

services in a low-demand urban area in Catania (Italy). We extend the 

aforementioned model also to verify current analytical models that aim to 

distinguish DRT from fixed services (Quadrifoglio and Li, 2009). Moreover, we 

extend such models introducing a non-uniform demand density and a variable 

vehicle capacity. 

In the process we address several open research issues: (i) the transferability to 

different contexts by introducing a parametric design model; (ii) the booking process, 

by taking into account user-based time constraints in the dispatching algorithm; (iii) 

the possibility to perform the service with automated vehicles, considering the 

impact they could have especially in terms of the operator cost.  

The remainder of the chapter is organized as follows. The following section 

summarizes the literature on the DRT topic and highlights the current research gaps 

to be filled in this work. Section 6.3 presents the methodology, drawing an overview 

of the model with the dispatching algorithm and the selected output indicators. The 

model is applied to a synthetic parametric application case and results for different 
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scenarios are presented in Section 6.4. Then, we test our novel dispatching procedure 

on the case study presented in Chapter 5. Finally, conclusions and discussion and 

future research are outlined in Section 6.5. 

6.2 Literature review  

DRT planning and design has been addressed in literature mainly since the 

beginning of the 2000’s (e.g., Mageean and Nelson, 2003; Enoch et al., 2004). A fair 

number of analytical models have been developed to face strategic planning 

decisions.  In 2004, Diana and Dessouky (2004) addressed the dial-a-ride problem 

with time windows introducing a new regret insertion heuristic able to face a large 

number of requests and outperform classical heuristics when a high-quality service 

(narrow time windows) is provided to the users. However, a door-to-door transport 

policy is assumed, while more trip shareability and travel time savings could be 

achieved by aggregating requests in virtual stops even if passengers would have to 

walk a short distance. Later in 2007, Quadrifoglio et al. (2007) proposed an insertion 

heuristic for flexible services that merge the flexibility of DRT systems with the low-

cost operation of fixed-route ones; the proposed service covers a specific geographic 

zone, with mandatory checkpoints located at major connection points or high-density 

demand zones. However, the model assumes that customers never reject the 

insertion proposed by the algorithm, so there is no negotiation phase between the 

system and the customers. In 2009, Quadrifoglio and Li (2009) proposed a continuous 

approximation approach to compare the user-related performance of two operating 

strategies for a feeder bus service: fixed-route and demand-responsive. They 

provided approximate analytical solutions to estimate the critical demand density 

that allows a transit agency to switch between the two types of services. Chandra et 

al. (2013) extended the aforementioned model using a gravity-based accessibility 

model to evaluate the accessibility impacts for first/last mile transport connectivity 

in the case of fixed-route transit and DRT, although using the same uniform demand 

across space. Other issues investigated through analytical models were fleet sizing 

based on a given quality of service (QoS) for users (Diana et al., 2006), route design 

(Bruni et al., 2014), the choice between different flexible transit strategies to 

accommodate a variable demand level (Zheng et al., 2018), and estimating how user 

and operator costs vary according to the demand density, the service area and the 

fleet size (Huang et al., 2020). 
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Analytical models can be considered as design models that provide optimal 

solutions among infinite alternatives, thanks to the introduction of some 

approximations and simplifications within the model; such models are in general not 

capable of reproducing a complex reality without requiring enormous computation 

times, otherwise, it might be impossible to solve them analytically. In contrast, 

simulation models are ideal for reproducing the complexity of a system; once the 

input parameters are set, the simulation model runs a series of operations to the 

data whose number usually grows linearly with the size of the problem and can then 

generate several outputs, which can be used as key performance indicators of the 

system. In this respect, simulation models have been used extensively for making 

tactical and operational decisions regarding transport services in general and in 

particular for flexible transport services and last-mile connection (Wang et al., 2019; 

Shinoda et al., 2003; d’Orey et al., 2012; Bischoff et al, 2017; Cich et al., 2017). Winter 

et al. (2016) designed, simulated and tested an automated DRT for a campus-train 

station service; the simulation determined the optimal fleet size for the operation of 

the service and results showed the importance of adequate vehicle sizes and short 

vehicle dwell times. Scheltes and Correia (2017) explored the use of automated 

vehicles as last-mile connection of train trips using an ABM. The ABM incorporated 

a dispatching algorithm distributing travel requests amongst the available vehicles 

using a First-come-First-served (FCFS) sequence. However, the type of service that 

was tested was conceived as being individual, therefore it did not allow for shared 

trips among the passengers. Araldo, Di Maria et al. (2019) studied the impact of 

consolidating the demand and limiting the density of waypoints locations through a 

modular simulation platform, searching for a trade-off between guaranteeing high 

QoS for the users and providing a high-efficiency system; the model simulated 

different flexibility levels from door-to-door to bus-like services. Oh et al. (2020b) 

proposed an agent-based simulation framework to evaluate the performance of an 

automated demand-responsive transit system as complement and/or substitute to 

conventional mass transit. Their model suggests advantages in using higher capacity 

vehicles rather than taxis, resulting in less travelled kilometers for the operator and 

less congestion. Fielbaum et al. (2021) abandoned the door-to-door scheme showing 

that significant reductions in the vehicle-hours travelled and in the number of 

rejections can be achieved by asking travellers to walk a short distance to reach the 

assigned pick-up/drop-off points. They proposed an insertion heuristic algorithm 

that encompasses and weights both the travellers and the operator costs. The 

simulation was performed both on a toy grid network and the real case study of 

Manhattan. However, they considered neither the integration with PT nor a 
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comparison with other forms of PT. In 2019, Inturri et al. (2019) developed an ABM 

to compare the performance of a shared DRT with that of a taxi service both for fast-

growing cities (Giuffrida et al., 2020) and low demand areas (Inturri et al., 2021). 

Results showed that DRT shared services are convenient under specific demand 

patterns for the analyzed case studies. 

Literature analysis shows that simulation models are not meant to provide 

optimal service design; they provide a good description of the performance of the 

system under specifically designed scenarios. Nevertheless, if the number of 

combinations between relevant parameters is not great and the simulation run time 

is not too long it is possible to search the different configurations space in search for 

solutions that maximize or minimize a certain key performance indicator.  

In this chapter, we present an ABM, intending to integrate the benefits of the two 

methods: the model uses the simulation approach but on an ideal parameterizable 

environment so that the results are as scalable as possible. Based on the work of 

Quadrifoglio and Li (2009) and Calabrò et al. (2020b), the new ABM goes beyond a 

pure analytical model by proposing realistic and real-time dispatching algorithms, 

but without being tied to a specific simulation network neither to a particular case 

study, so its results are easily adaptable to other contexts using the main 

experimental parameters. 

6.3 Methodology 

Our research focuses on the first and last-mile leg of PT trips, supposing that the 

PT backbone is a mass rapid transit (MRT) network like rail or BRT. The transit 

agency might choose between two operational strategies: 

a) A fixed-route feeder (FRF) service carried out by buses that pick-up and drop-

off passengers at predetermined stops. 

b) A demand-responsive feeder (DRF) service, where each vehicle builds 

customized routes to serve a group of passengers. 

6.3.1 Overview of the model 

The main components of the simulation model are the service type (FRF or DRF), 

the geometric features of the service area, the demand model, the supply (vehicle) 
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characteristics, and the simulation duration. The agents of the model are the 

travellers requesting a ride and the vehicles.  

We consider that our feeder service operates in a rectangular area of length L 

from the terminal station (horizontal direction) and width W (vertical direction). The 

mobility demand follows a Many-to-One/one-to-many pattern since the focus is on 

the first/last leg of an entire PT multimodal trip. A trip request can therefore have 

either origin or destination at the MRT station (the terminal), located at the left side 

of the service region. The value of W can be considered as the average distance 

between the terminal and the MRT stations upstream and downstream. Hereinafter, 

we will refer to the passengers originating at the terminal as egress passengers, while 

the passengers having destination at the terminal will be referred to as access 

passengers.  

From a spatial perspective, the base demand density (in trips/km2h) is modelled 

as a linear function  = 0 – m x, where x is the horizontal distance from the terminal 

(in km), 0 is the demand density at x = 0 and m is the slope that makes the values 

decrease. Let us denote with L the as the demand density at x = L, with �̅� the average 

demand density (which occurs at x = L/2) and with  the ratio between L and 0 

(Figure 6.1).  

 
Figure 6.1: A general trend of the demand density along x. 

We obtain m = (0 − L)/L, �̅� = (0 + L)/2 and L = 0. We can therefore express 

the demand function via the two parameters �̅� and  as follows: 

 𝜆 =
2

1+𝛬
 �̅�  (1 −

1−𝛬

𝐿
𝑥)  (6.1) 

From Equation 6.1 we derive 0 = 2�̅� /(1+) and L = 2�̅� /(1+). The value  = 1 

represents the case where the demand is assumed spatially homogeneous 

throughout the service region, thus from Equation 6.1 we obtain  = �̅�, ∀ x. By varying 
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the slope of the demand decay function, we reproduce different types of urban density 

and land use.  

Each trip request i involves a group of a number 𝐺𝑖 of travellers. We assume that 

𝐺𝑖 follows a geometric distribution. If we denote with p1 the probability that request 

i consists of a single user (𝑃𝑟(𝐺𝑖 = 1)), therefore the probability that the group is 

constituted by k users is given by: 

 𝑃𝑟(𝐺𝑖 = 𝑘) = 𝑝𝑘 = 𝑝1 (1 − 𝑝1)
𝑘−1 (6.2) 

In our model, we assume that a user chooses between walking and using the 

feeder service to reach the MRT station. If the Manhattan distance (i.e., the distance 

measured along axes at right angles) dT,i between the user’s origin and the MRT 

station (access leg) or the MRT station and the destination (egress leg) is lower than 

a minimum threshold d0, a user is assumed to walk directly to/from the station. 

Otherwise, the probability of choosing the feeder service rapidly increases with dT,i 

and is given by the attractiveness coefficient  ∈  we introduced as follows: 

 𝜂𝑖 = 1 − 𝑒
−0.5 

(𝑑𝑇,𝑖−𝑑0 )
2

𝛾2   (6.3) 

where  is a parameter that rules the increase in attractivity of the feeder service 

due to the distance from the station: the lower the value of , the higher the speed at 

which  increases with dT,i. Figure 6.2 shows a graphical representation of  across 

the service area. 

 

Figure 6.2: Values of the attractiveness coefficient across a service area with L = 2.4 km 

and W = 1.2 km. In this example, we set  = d0 = 0.3 km. From a temporal point of view, the 

demand follows a Poisson process with  as the rate parameter. 
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As in Quadrifoglio and Li (2009), the fraction of trips having the MRT station as 

the destination is given by the parameter  ∈ [0,1], so the proportion of users going 

from the station to a destination inside the service area is (− ). Although the 

Poisson process is well suited for the former, the temporal distribution of the egress 

passengers is strongly related to the schedule of the MRT line. However, assuming 

that the headway of the MRT line is small enough (i.e., less than 5 minutes) in both 

directions, we believe that the Poisson distribution with rate parameter  is a 

reasonable approximation and should marginally affect the results. 

Regarding the supply side, the vehicles (buses, minibuses, vans or automobiles) 

are defined by three input parameters: the number of vehicles nV composing the fleet, 

the cruising speed v and the allowed capacity in available seats in each vehicle Cap. 

Finally, the duration of the simulation ST, in which the input parameters are 

unchanged, should be sufficiently high to ensure that the steady state is reached and 

that the results are marginally affected by the warm-up period. 

6.3.2 The Fixed-Route Feeder 

The FRF (Figure 6.3) runs back and forth on a straight line from the MRT station 

to the farthest bus stop, with spacing ds (input parameter) between the stops. 

 

Figure 6.3: Scheme of the FRF service: users in black are about to take the bus, users in 

grey got off the bus, the user in blue is walking directly to the terminal. 

Assuming ideal conditions (no congestion or other disturbance to the service), the 

maximum cycle time CTmax, i.e., the time needed for a vehicle (bus) to complete the 

round trip, is the sum of two components: 

 𝐶𝑇𝑚𝑎𝑥 =
2(𝐿−

𝑑𝑠
2
)

𝑣
+ ( 

2𝐿

𝑑𝑠
− 1) ∙ (𝜏𝑠 + 𝜏𝑝) (6.4) 
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where the first component is the ratio between the length of a complete cycle and 

the bus cruising speed v, the second one estimates the dwell time at each stop s, 

including the time of acceleration and braking, and the additional dwell time due to 

boarding/alighting passengers p. 

The headway between two vehicles is given by Equation 6.5: 

 ℎ =
𝐶𝑇𝑚𝑎𝑥 + 𝜏𝑡

𝑛𝑉
  (6.5) 

where t is the minimum dwell time required at the terminal. 

Egress passengers originate at the MRT station, take the bus with the earliest 

departure time and alight at the desired stop (i.e., the closest one to the destination 

of the trip) during the first half of the cycle, and walk to their final destination. 

Access passengers originate in the service area, walk to the closest stop, wait for the 

first bus headed to the terminal, travel onboard and finally alight at the terminal. 

We assume that a traveller is aware of the expected waiting time at the stop 

thanks to a real-time information system provided by the feeder service. Therefore, 

if the expected waiting time is above a certain maximum waiting time tw,max (input 

parameter) traveller i assumes the status “rejected” and walks to the station. 

Instead, if the overall travel time overcomes the latest drop-off time interval at the 

station ldi, the passenger assumes the status of “delayed”. This threshold varies 

according to the different time tolerance of the users, as shown in Equation 6.6: 

 𝑙𝑑𝑖 = 𝒎𝒊𝒏 {𝑡𝑤,𝑚𝑎𝑥 + (1 + 𝛿𝑖 + 𝛾𝑖)
𝑑𝑇,𝑖

𝑣
, (1 + 𝛾𝑖)

𝑑𝑇,𝑖

𝑣𝑝
 } (6.6) 

Where  = dT,i /(L+W/2)  relates the travellers’ distance to the maximum one to 

reach the terminal (based on the farthest user that could be generated in the service 

area), and represents the willingness to deviate from the shortest path based on 

his/her distance to the terminal;   ∈ [0, 1] aims at reproducing travellers’ individual 

willingness to deviate based on the trip purpose, and vp is the walking speed since 

Equation 6.6 also takes into account the walking time from origin to destination. 

Fleet size, vehicle capacity, and cruising speed are set at the beginning of the 

simulation. Each vehicle is generated at the terminal stop (i.e., the MRT station). 

The fixed feeder vehicle travels along the route until it reaches a stop. Passengers at 

their destination stop alight while waiting travellers board the vehicle (if in the 

inbound direction), following the FCFS queue rule, and only if the passenger group 

size is not greater than the available seats. 
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6.3.3  The Demand Responsive Feeder 

The DRF (Figure 6.4) travels along a grid street network, with spacing dg between 

the streets. Vehicle routes are dynamically created based on users’ requests and each 

intersection can act as a potential access/egress location for a traveller (virtual stop). 

 

Figure 6.4: Scheme of the DRF service: users in black are waiting for the assigned vehicle, 

users in grey have left the vehicle and are walking to their destination, the user in blue is 

walking directly to the terminal. 

Unlike in the FRF case, choosing the headway of the DRF is not straightforward. 

While the flexibility of the DRF implies that vehicles could leave the station when 

they are full, in the case of a feeder service it could be better to assume a given 

headway to assure service regularity and synchronization with the MRT. In fact, the 

length of the full cycle route and the cycle time depend on the expected number of 

requests n that the vehicle should serve along that route, which in turn depends on 

the headway, as shown in Equation 6.7: 

 𝑛 = 𝑛𝑢∑  
𝑝𝑘

𝑘
∞
𝑘=1 = �̅� 𝐿 𝑊 ℎ ∑  

𝑝𝑘

𝑘
∞
𝑘=1  (6.7) 

where nu is the number of users generated during the time interval of duration h. 

We point out that n ≤ nu because a single trip request can involve k users (see 

Equation 6.2). 

A rough approximation of the expected cycle distance ECD for the DRF service, 

i.e., the length of the round route, can be estimated based on n (Equation 6.7) and is 

given by the sum of a horizontal component (the vehicle movement from left to the 

right and vice-versa) and a vertical component (the deviations along the vertical 
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direction to serve the passengers). The former derives from Section 4.2 of 

Quadrifoglio and Li (2009) and generalizes the result to the non-uniform demand 

assumption, while the latter derives from Section 4 of Quadrifoglio et al. (2006) and 

it is improved by a correction coefficient c (described in the next paragraph), which 

accounts for the spatial and temporal consolidation of multiple trip requests at the 

same virtual stop (i.e., served by the same vehicle at the same time).  

 𝐸𝐶𝐷 = 𝐸[max  (𝑥𝑟) | 𝑟 = 1,… , 𝑛] + 𝜉𝑐 [
𝑊

2
+ (𝑛 − 1)

𝑊

3
] (6.8) 

Now we derive the expected value of the horizontal component of the cycle 

distance. For a random request r, the probability that xr ≤ z, being 0 ≤ z ≤ L, is given 

by the ratio between the red trapezoid and the light-blue trapezoid in Figure 6.1, so 

that we derive: 

 Pr(𝑥𝑟 ≤ 𝑡) =
𝜆0+𝜆𝑧
2

 𝑧

𝜆0+𝜆𝐿
2

 𝐿
=

𝜆0+𝜆𝑧

𝜆0+𝜆𝐿
 
𝑧

𝐿
=

2−(1−𝛬)
𝑧

𝐿

1+𝛬
 
𝑧

𝐿
=

2

1+𝛬
 
𝑧

𝐿
−
1−𝛬

1+𝛬
 
𝑧2

𝐿2
 (6.9) 

where  is the ratio between L and 0. 

The expected value of the horizontal component of the DRF cycle distance can be 

derived as follows: 

 𝐸[max  (𝑥𝑟) | 𝑟 = 1,… , 𝑛] = ∫ {1 − Pr[(max(𝑥𝑟)|𝑟 = 1,… , 𝑛) ≤ 𝑧]} 𝑑𝑧
𝐿

0
 

 = ∫ {1 −∏ [Pr (𝑥𝑟 ≤ 𝑧)]
𝑛
𝑟=1 } 𝑑𝑧

𝐿

0
= ∫ [1 − (

2

1+𝛬
 
𝑧

𝐿
−
1−𝛬

1+𝛬
 
𝑧2

𝐿2
)
𝑛

]  𝑑𝑧
𝐿

0
 (6.10) 

Imagine dividing the length of the service area L in an adequately large number 

NL of segments of length z = L / NL (e.g., z ≈ 10 m). Then we can approximate 

Equation 6.10 as follows: 

 𝐸[max  (𝑥𝑟) | 𝑟 = 1,… , 𝑛] = ∑ [1 − (
2

1+𝛬
 
𝑧

𝑁𝐿
−
1−𝛬

1+𝛬
 
𝑧2

𝑁𝐿
 2)

𝑛

] Δ𝑧
𝑁𝐿
𝑧=1  (6.11) 

In the case of uniform demand density ( = 1), Equation 6.10 becomes:  

 𝐸[max  (𝑥𝑟) | 𝑟 = 1,… , 𝑛] = ∫ [1 − ( 
𝑧

𝐿
)
𝑛
]  𝑑𝑡

𝐿

0
= 𝐿

𝑛

𝑛+1
 (6.12) 

as in Quadrifoglio and Li (2009). 

Finally, we can express the expected cycle distance as follows: 

 𝐸𝐶𝐷 = ∑ [1 − (
2

1+𝛬
 
𝑧

𝑁𝐿
−
1−𝛬

1+𝛬
 
𝑧2

𝑁𝐿
 2)

𝑛

]
𝑁𝐿
𝑧=1

𝐿

𝑁𝐿
+ 𝜉𝑐 [

𝑊

2
+ (𝑛 − 1)

𝑊

3
] (6.13) 
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Unlike the above-cited works, in our simulation model backtrackings are allowed. 

In fact, let us imagine that the vehicle serves 3 requests ri (i = 1, 2, 3) with 

coordinates (xi, yi) and x1 < x2 < x3. With the no-backtracking policy of Quadrifoglio 

and Li (2009) and Quadrifoglio et al. (2006) the requests should have been served in 

the order [r1 r2 r3], but the dispatching algorithm (discussed in the next paragraph) 

could find that the order [r2 r1 r3] is a better solution even though it implies a minor 

backtracking movement. 

The headway of the DRF can be ultimately derived from the expected cycle time 

ECT and the fleet size as follows: 

 ℎ =
𝐸𝐶𝑇+𝜏𝑇

𝑛𝑉
=

𝐸𝐶𝐷

𝑣
+(𝜉𝑐𝜏𝑠+𝜏𝑝)𝑛+𝜏𝑇

𝑛𝑉
 (6.14) 

Equation 6.14 is non-linear (as ECD depends on h via n (Equation 6.7)), so we 

choose an initial value h* of the headway, compute n, ECD and ECT using Equations 

6.7;6.13-6.14, calculate the new value of h and then repeat the process for an 

adequate number of iterations until convergence. This procedure takes place in the 

“setup” phase before each simulation starts. 

The requests for the DRF service are processed in real-time through a dispatching 

algorithm that assigns the traveller to a vehicle and a virtual stop (either a pick-up 

or drop-off location), according to the user time windows and the vehicle available 

seats, based on the FCFS rule. If no feasible match can be found, the user assumes 

the status “rejected” and walks directly to the destination. In this way, the penalty 

due to the rejection is not an arbitrary fixed value, as done e.g., by Inturri et al. 

(2019) but is directly related to the walking time from the origin to the destination, 

under the simplification that the rejected user does not have any other modal 

choices. This implies that rejecting requests involving longer trips plays a significant 

role in increasing the average user disutility (they will have to walk more to the 

station or from the station). Figure 6.5 illustrates the dynamics for a DRF passenger, 

from the trip request moment to the arrival at the destination, while Figure 6.6 

shows the vehicle state chart. 
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Figure 6.5: Traveller state charts for the DRF feeder service. 

 
Figure 6.6: Vehicle state chart for the DRF service. 

Let us define the set of egress passengers as E and the set of access passengers as 

A. Egress passengers are assumed to make the trip request as soon as they show up 

at the terminal, so they are readily available to use the DRF service. Access 
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passengers, instead, need to be given enough time to reach the assigned pick-up 

location and cannot be served before the earliest pick-up time interval epij, which is 

formulated as follows: 

 𝑒𝑝𝑖𝑗 = {
0                         if i ∈ E  
𝑤𝑘𝑖𝑗 + 𝜏𝑤𝑘       if i ∈ A   

 (6.15) 

where wkij is the walking time needed for passenger i to reach the pick-up location 

j and wk is a fixed extra time to account for the variability of walking time implying 

the risk of late arrival at the stop.5  

When making a trip request, users should specify the latest pick-up time interval 

lpi they are willing to accept. Once again, this threshold is slightly different for egress 

and access passengers. The former has to wait for the DRF vehicle at the terminal, 

so they are supposed to be less tolerant towards the waiting time than the latter, 

who can generally wait at home or the workplace. The lpi is computed as follows: 

 𝑙𝑝𝑖 = {
𝑡𝑤,𝑚𝑎𝑥                      if i ∈ E

(1 + 𝛾𝑖) 𝑡𝑤,𝑚𝑎𝑥       if i ∈ A  
   (6.16) 

where the time tolerance level is ruled by the coefficient i introduced in Equation 

6.6. 

The last component of the user time windows is the latest drop-off time interval 

ldi, already introduced with the FRF service. This formulation is slightly different, 

since the term tw,max is replaced by lpi, as follows: 

 𝑙𝑑𝑖 = 𝑚𝑖𝑛 {𝑙𝑝𝑖 + (1 + 𝛿𝑖 + 𝛾𝑖)
𝑑𝑇,𝑖

𝑣
, (1 + 𝛾𝑖)

𝑑𝑇,𝑖

𝑣𝑝
 } (6.17) 

6.3.4 The dispatching algorithm for the DRF 

Every time a new trip request i (consisting of a user or group of users) occurs, the 

optimal matching between the demand (users group requesting the trip) and the 

supply (vehicle fleet) is carried out by the dispatching algorithm (Figure 6.7).  Our 

algorithm follows an insertion heuristic approach, which is widely used in practice 

to solve transportation scheduling problems, as it is computationally fast, provide 

very good solutions compared to optimality and can easily handle complicating 

constraints (Campbell and Savelsbergh, 2004). Our insertion heuristics involve three 

levels of exploration of the feasible solutions, including: 

 
5 It can be reasonably set to 1 minute. 
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i. The set of routes r ∈ R, i.e., the sequence of already scheduled stops (to be) 

visited by the vehicles (0, 1, …, p, p+1, …, m, 0) where 0 refers to the terminal. 

Note that each route corresponds to a complete cycle. 

ii. The set of possible virtual stops for the new passenger s ∈ S. 

iii. The set of feasible insertions of the request in the route schedule between two 

already scheduled stops (p, p+1) ∈ r. 

 

Figure 6.7: Flow chart of the dispatching algorithm for the DRF service. 

When determining R for a new trip request i, the algorithm first includes the 

vehicle routes of the current service cycle. In case no feasible insertion is found, R is 

updated including the vehicles’ route schedule of the next cycle. In this way, the 

possibility of rejection is reduced. 

The algorithm only considers the nearest three intersections to the user’s origin 

(or destination), plus the nearest already scheduled virtual stop, so to limit the 

vehicles’ detour from the original route. This implies a maximum of four possible 

stops, which is important to limit the length of S, especially in very “dense” street 
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networks, and reduce the computational time. Moreover, through this approach, we 

keep constant the maximum number of candidates and unbind the time complexity 

of the algorithm from the granularity of the street network.  

In Figure 6.8 the scheme of how passengers can be potentially assigned to the 

nearest three stops is depicted: the red dotted arrows indicate the stops where a 

single passenger request can be served, while the green dashed arrows indicate the 

stops where the consolidation of more than one request can happen. We ignore in 

this phase, for computational simplicity, the possibility of having a fourth virtual 

stop which is the nearest one already scheduled but not yet visited by the vehicle. 

 

Figure 6.8: Possible options of demand consolidation at virtual stops. 

Look at the virtual stop O in Figure 6.8: it is a potential stop for passengers a, b 

and c, where their trip requests can be consolidated. In general, we can determine 

an “attractivity area” around each virtual stop (the light blue area around stop O in 

Figure 6.8) equal to 3dg2. Therefore, considering the whole service region of area LW, 

the probability for two random requests of being consolidated in the same stop is 

given by the following equation: 

 𝑝𝑐 =
3 𝑑𝑔

2

𝐿 𝑊
 (6.18) 

from which we derive the probability of no-consolidation for two requests: pnc = 1–pc. 
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Let us consider the expected number of trip requests n that a vehicle should serve 

along its route (see Equation 6.7). Each new request i+1 has a joint probability of no-

consolidation with respect to each of the i already scheduled requests, pnc2. Then, 

considering the n–1 requests after the first one, we can derive6 the correction 

coefficient c which takes into account the decrease of the expected cycle time due to 

the demand consolidation. 

 𝜉𝑐 =
∑ 𝑝𝑛𝑐

𝑖𝑛−1
𝑖=1

𝑛−1
=

𝑝𝑛𝑐 (1−𝑝𝑛𝑐
𝑛−1)

(𝑛−1) (1−𝑝𝑛𝑐)
 (6.19) 

As regards the set of feasible insertions of a new request in the route schedule, for 

each r ∈ R and each s ∈ S, the algorithm repeats the procedure of inserting s between 

p and p+1 for each p = p*, …, m, where p* is the first not yet visited stop of r. verifying 

that the following constraints are satisfied and computing the cost of the insertion. 

The first constraint to be met is that the time ts at which the vehicle v will stop at 

s must be consistent with the time windows of the newly arrived user group i, as 

defined by Equations 6.15-6.17. This can be expressed as follows: 

 {
𝑡0 < 𝑡𝑠 ≤ 𝑙𝑑𝑖                    if i ∈ E
𝑒𝑝𝑖 ≤ 𝑡𝑠 ≤ 𝑙𝑝𝑖                 if i ∈ A 

 (6.20) 

The second constraint is related to the departure time t0 from the terminal and to 

the expected cycle time ECT (see Equation 6.14), as shown below: 

 {
0 < 𝑡0 ≤ 𝑙𝑝𝑖                                   if i ∈ E
𝑡𝑠 < 𝑡0 + 𝐸𝐶𝑇 ≤ 𝑙𝑑𝑖                    if i ∈ A 

 (6.21) 

Finally, the third constraint imposes that the number of passengers on board 

loadv,s when vehicle v stops at s must not exceed the vehicle capacity, as expressed 

by the following relation: 

 𝑙𝑜𝑎𝑑𝑣,𝑠 ≤ 𝐶𝑎𝑝 (6.22)     

If all the constraints are met, the cost function (inspired by Fielbaum et al. (2021)) 

of inserting s into r between p and p+1 is computed as the sum of the cost ci for the 

user (group of users) i to be inserted, the additional cost cd for the passengers who 

are delayed due to the insertion, and the cost co for the operator due to the detour. 

 𝑐𝑜𝑠𝑡(𝑟, 𝑠, 𝑝) = 𝑐𝑖(𝑟, 𝑠, 𝑝) + Δ𝑐𝑑(𝑟, 𝑠, 𝑝) + Δ𝑐𝑜(𝑟, 𝑠, 𝑝) (6.23) 

 
6 The derivation of 𝜉𝑐 is based on the sum of the geometric series ∑ 𝑟𝑘𝑛

𝑘=1 =
𝑟(1−𝑟𝑛)

1−𝑟
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Equations 6.24-6.26 show in detail the three components of the cost function, 

expressed in terms of time. The cost for the user group is given by the weighted sum 

of the three components of the travel time minus the ride time related to the shortest 

path from/to the terminal (since it is not affected by the optimization procedure), 

multiplied by the number of users in the group 𝐺𝑖 (see Equation 6.2) making the 

request. 

 𝑐𝑖(𝑟, 𝑠, 𝑝) = 𝐺𝑖 (𝑤𝑤𝑘 𝑡𝑤𝑘,𝑖(𝑠) + 𝑤𝑤𝑡 𝑡𝑤𝑡,𝑖(𝑟, 𝑝) + 𝑤𝑟𝑑 ( 𝑡𝑟𝑑,𝑖(𝑟, 𝑠, 𝑝) −
𝑑𝑇,𝑖

𝑣
))  (6.24) 

where wwk, wwt and wrd are weighting coefficients related to the walking, waiting 

and ride time, respectively. The additional costs both depending on the detour time 

tr caused by the insertion of s in r: 

 Δ𝑐𝑑(𝑟, 𝑠, 𝑝) = (𝑤𝑟𝑑 𝑛𝑟𝑑,𝑑(𝑟, 𝑝) + 𝑤𝑤𝑡 𝑛𝑤𝑡,𝑑(𝑟, 𝑝)) Δ𝑡𝑟(𝑟, 𝑠, 𝑝)  (6.25) 

 Δ𝑐𝑜(𝑟, 𝑠, 𝑝) = 𝑤𝑜 Δ𝑡𝑟(𝑟, 𝑠, 𝑝)  (6.26) 

where nrd,d is the number of passengers on board affected by the detour, nwt,d is 

the number of users who will have to wait an extra tr at the stop due to the schedule 

update and wo is the weighting coefficients of the additional cost caused by the detour 

for the operator, related to the vehicle-kilometres travelled. 

After having examined all the feasible solutions (if any), the insertion heuristic 

chooses the assignment that minimizes the cost function, as shown below:  

 min
𝑟∈𝑅;𝑠∈𝑆; 𝑝∈𝑟

 {𝑐𝑜𝑠𝑡 (𝑟, 𝑠, 𝑝)    s.t. Equations 6.20-6.22} (6.27) 

Regarding the time complexity of the insertion heuristic, considering the “first-

level” of exploration of the feasible solution, the size of the set of feasible routes r is 

linearly related to the fleet size nV. It is an input parameter, but it should be properly 

chosen based on the expected number of requests n to serve (imagine having no 

constraints on nV). If n is sufficiently high, nV is linearly related with n. The second 

level regards the potential stops s to associate with the user request. As already 

explained, we chose to limit the number of feasible stops to a maximum of four. 

Finally, in the third level, the number of feasible insertions in the vehicle schedule 

(m+1) is also linearly related with n. Based on these considerations, the time 

complexity of our insertion heuristic is O(n2), for each new request. This means that 

the matching process between passengers and vehicles requires low computational 

efforts and takes place dynamically, in real-time, even with a high number of 

requests per unit of time. 
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6.3.5 Output indicators 

The model results can be assessed through different output indicators (Inturri et 

al., 2019) to compare the two feeder services, FRF and DRF.  

Table 6.1. Description of the user-related output indicators. 

Indicator Abbreviation Description / Formulation 

# Users NU 
Total number of travellers generated during the 

simulation 

% Walking Users WLK 
Percentage of users who do not request for the 

feeder service and walk to/from the terminal 

% Accepted Passengers ACP Percentage of travellers using the feeder service 

% Rejected Requests REJ 
Percentage of travellers whose trip request was 

rejected 

% Delayed Passengers DEL 
Percentage of users who are delayed beyond the 

time windows 

Avg Pre-Trip Time [s] TPT* 

Average time that elapses between when a user 

makes the trip request (and is accepted) and 

starts walking to the stop  

Avg Walking Time [s] TWK 

Average time for a user of the feeder service 

walking from the origin to the stop or from the 

stop to the destination 

Avg Waiting Time [s] TWT 
Average time that a traveller waits at the stop for 

the vehicle 

Avg Ride Time [s] TRD 
Average time that a passenger spends on board a 

vehicle 

Avg Total Travel Time [s] T 
Average total travel time, which is the sum of the 

following components: T = TWK + TWT + TRD 

Rejection Penalty [s] Trej 
Total walking time related to rejected travellers 

divided by the total number of passengers.  

Avg Time Stretch STR 

Average ratio, for all passengers, between T and 

the sum of the ride and walking time if using the 

shortest path (no waiting times). 

Avg Disutility [min] U 

As defined in Quadrifoglio and Li (2009), it is the 

weighted sum of TWK, TWT and TRD considering 

the weighting coefficients of Equation (6.25) 

*only for the DRF service 
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Table 6.2. Description of the operator-related output indicators. 

Indicator Abbreviation Description / Formulation 

Tot. Driven Distance [km] D 
Total distance travelled by the vehicles during 

the simulation time 

Tot. Energy Consumption 

[kWh] 
TEC 

Total energy used by the vehicles during the 

simulation time: TEC = D ∙ EC7 

Avg Vehicle Occupancy [pax] AVO Average number of passengers per vehicle 

Transport Intensity [km/pax] TI 
Average distance travelled by the service per 

transported passenger 𝑇𝐼 = 𝐷/(𝑁𝑈 ∙ 𝐴𝐶𝑃) 

Commercial Speed [km/h] vc vc = D / ST 

% Stopping Time ST 

Ratio between the total time spent by vehicles 

at the terminal or the stops, and the 

simulation time 

Another indicator that encompasses both the user and operator point of view is 

the so-called Total Unit Cost (TUC). It is based on Inturri et al. (2019) and is equal 

to the sum of the Passenger Unit Cost (PUC) and the Operator Unit Cost (OUC): 

 𝑇𝑈𝐶 (€/𝑝𝑎𝑥) = 𝑃𝑈𝐶 + 𝑂𝑈𝐶 (6.28) 

Where: 

 𝑃𝑈𝐶 (
€

𝑝𝑎𝑥
) = [𝑤𝑤𝑘 (𝑇𝑤𝑘 + 𝑇𝑟𝑒𝑗) + 𝑤𝑤𝑡 𝑇𝑤𝑡 +𝑤𝑟𝑑𝑇𝑟𝑑] ∙ 𝑉𝑜𝑇 (6.29) 

 𝑂𝑈𝐶 (€/𝑝𝑎𝑥) =
𝐷∙𝐶𝑘𝑚+𝑛𝑉∙𝑆𝑇∙𝐶ℎ

𝑁𝑈 ∙ 𝐴𝐶𝑃∙(1−𝑊𝐿𝐾)
 (6.30) 

With VoT (€/h) the value of time for the travellers, 𝐶𝑘𝑚 (€/veh km) the distance-

related operator cost, 𝐶ℎ (€/veh h) the hourly driver cost, and ST (h) the total 

simulation time. For a first test, VoT was estimed to be 10 €/h, while regarding the 

operator-related costs we set 𝐶ℎ = 25 €/veh h and 𝐶𝑘𝑚 ranging from 0.5 to 0.1 €/veh 

km according to the vehicle size.8 It is worthy of notice that in the case of a service 

performed by automated vehicles, the second term of the OUC would be equal to zero 

since no drivers are considered.  

 
7 Energy consumption (EC): automobile 4 pax 0.18 kWh/km (range 250 km) - minivan 6/8 

pax 0.3 kWh/km (range 200 km) - minibus 9 seats (20 pax) 0.6 kWh/km (range 120-150 km) 

https://www.bluebus.fr/caracteristiques-techniques - electric bus 50 seats 1 kWh/km (range 

120 km) https://www.sustainable-bus.com/news/electric-bus-range-focus-on-electricity-

consumption-a-sum-up/. 

8 Distance-related operator cost (€km): automobile 4 pax 0.1 €/veh km - minivan 6/8 pax 

0.25 €/veh km - minibus 9 seats (20 pax) 0. 5 €/veh km. 
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6.4 Application of the model with different parameters 

The model described above is programmed in the NetLogo development 

environment. The operation parameters of the feeder services can be varied, as 

already depicted in Figure 6.3 and Figure 6.4. This approach provides the advantage 

of obtaining useful insights for a transit agency operating in different urban contexts 

and under different demand patterns. Moreover, it is easy to perform a broad range 

of sensitivity analyses regarding the main input parameters of the system, which 

are outlined below. 

• Geometric: length L and width W of the service area, the distance between 

stops ds (for the FRF) and grid street spacing dg.  

• Service: type of service (fixed/flexible), total simulation time ST (h) and 

headway h (min).  

• Supply: number of operating vehicles nV, vehicle average speed S (km/h) the 

maximum seat capacity cap of a vehicle. 

• Demand: average demand density �̅� (pax/h), trip direction coefficient , 

demand decay coefficient  (ratio between demand density at x = 0 and at x = 

L), probability of having one user per request p1, maximum waiting time twt,max 

(min); and maximum walking distance dwk,max. 

• Cost: weighting coefficients related to the passenger wwk, wwt, wrd and the 

operator wo. 

6.4.1 First set of simulations: finding the critical demand density  

We first demonstrate the effectiveness of the simulation model and the proposed 

insertion heuristic by reproducing the scenarios described by Quadrifoglio and Li 

(2009). Following this approach, we computed the disutility function U for the FRF 

and the DRF services under increasing demand levels and keeping supply, cost and 

geometric parameters fixed. The critical demand density c is calculated as the one 

that provides an equal passengers’ disutility for the two services. The simulation 

input parameters are: simulation time ST = 8 h, service area dimensions L = 3.2 km 

and W = 0.8 km, grid spacing dg = 0.1 km, trip direction coefficient  = 0.5 and 

demand decay coefficient  = 1 (spatially uniform demand). The input parameters 

used for the simulations are listed in Table 6.3, where the abbreviation Sc-A1 refers 

to a one-vehicle case and Sc-A2 to a two-vehicles case. To better reproduce the 

assumptions made by Quadrifoglio and Li (2009), we chose sufficiently high values 
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of twt,max and cap to relax the passenger time windows and to assume an unlimited 

vehicle capacity, respectively.  

Besides, we set up a new scenario (Table 6.3, Sc-Base) able to better exploit the 

novelty of our methodology and include the “real-world” constraints of the DRF 

operations (passenger time windows, vehicle capacity, maximum cycle time, etc.) 

that were not considered in Quadrifoglio and Li (2009). Sc-Base also served as a 

reference scenario against which to compare other 10 operational scenarios (as 

shown in the next sub-sections) and thus perform a sensitivity analysis of the most 

significant input parameters. Each scenario has been replicated 25 times to have a 

statistic of events. 

Table 6.3. Input parameters adopted for the first set of simulated scenarios. 

Parameter Abbreviation 
Values 

Sc-A1 Sc-A2 Sc-Base 

Stop spacing [m] ds 490 490 425 

Average demand density 

[pax/ km2h] 
λ̅ 5-30 20-40 5-60 

Pr(Gi = k) Group probability p1 1.0 1.0 0.8 

Maximum waiting time [min] tw,max 30 30 10 

Walking speed [m/s] vp 0.9 0.9 1.0 

Vehicle cruising speed [km/h] v 32.0 32.0 30.0 

Vehicle capacity [pax] cap 50 50 20 

Number of vehicles nV 1 2 3 

Headway [min] 
(FRF) 

h 
20 10 7 

(DRF) 
17-30 10-20 7 

Cost coefficients [-] 

wwt 1 1 2 

wwk 3 3 2 

wrd 2 2 1 

wo 0 0 4 

Results of the first set of simulations in terms of average disutility and TUC are 

reported in Figure 6.10 and Figure 6.12. 

Sc-A1 (Figure 6.9) and Sc-A2 (Figure 6.10) find the critical demand density of 

respectively 15 pax/h-km2 for the 1-vehicle case and 30 pax/h-km2 for the 2-vehicle 



130 Chapter 6 - Comparing Fixed-Route and Demand Responsive Transit Feeder 

Services: a Theoretical Agent-Based Model 

 

 

case, a little bit higher than the 12 pax/h-km2  and 28 pax/h-km2 found by the 

analytical model of Quadrifoglio and Li (2009). This is probably due to the capability 

of the simulation model to reproduce a more efficient vehicle dispatching and routing 

for the DRF service, thus enlarging its range of performance. 

  

 

Figure 6.9: Disutility of Sc-A1 (bars showing confidence intervals). 

 

Figure 6.10: Disutility of Sc-A2 (bars showing confidence intervals). 

This is even more evident from the results of the Sc-base (Figure 6.11), obtained 

by removing the constraints corresponding to the analytical model, where the 

switching point for the passenger convenience shift in the range between 45 and 50 

pax/h-km2. However, by looking at the TUC (Figure 6.12), which is an indicator of 

system efficiency including also the operator point of view, the threshold is a bit 

lower, between 40 and 45 pax/h-km2. This is imputable to the fast increase of the 

DRF supply cost (distance travelled) for a higher demand rate. 

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30

U [min] 

Demand rate  [pax/h-km2]

U_FRF U_DRF

20

25

30

35

40

45

50

55

60

15 20 25 30 35 40

U [min] 

Demand rate  [pax/h-km2]

U_FRF U_DRF



Application of the model with different parameters 131 

 

 

As expected, the disutility for the FRF travellers, as opposed to the DRF ones, is 

not very sensitive to the demand density variation. This can be ascribed to the 

regularity of the service since the average ride time is almost the same for travellers, 

the headway (affecting the average waiting time at stops) is constant as well as the 

walking time, which only depends on W, ds and vp. In particular, in Figure 6.11 one 

can notice a small increase in U with the demand density due to the increasing 

number of passengers and vehicles causing higher idle times at stops. 

 

 

Figure 6.11: Performance of the Sc-Base scenario in terms of User Disutility (bars 

showing confidence intervals). 

 

Figure 6.12: Performance of the Sc-Base scenario in terms of TUC. 
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According to the results obtained, we decided to fix the demand density to the 

critical value of 40 pax/h-km2 and perform a second set of simulations to assess the 

attractiveness of the two services by varying the other model parameters. 

6.4.2 Second set of simulations: testing different demand/service 

configurations 

Several scenarios have been defined to reproduce different use cases by varying: 

1. The demand spatial distribution (Sc-1): from uniform (Sc-base) to trapezoidal 

(Sc-1a) or triangular (Sc-1b); the first one might represent a residential area, 

while the other two might mimic a TOD-like land-use area, where the demand 

progressively decreases from the MRT station to the outskirt. 

2. The demand O/D pattern (Sc-2): from uniform ( = 0.5) of the Sc-base, to more 

concentrated demand patterns to/from the MRT station ( = 0.9, Sc-2a;  = 0.1, 

Sc-2b). This allows mimicking different demand configurations according to 

both land use and temporal demand distribution. Sc-base is more 

representative of (i) a mixed land-use area with balanced trips from and to the 

MRT station, or (ii) a mono-functional land-use area during off-peak hours 

(e.g., a residential area). Both Sc-2a and Sc-2b might represent mono-

functional land use areas during peak hours. The former is a residential area 

during the “morning peak” period or a workplace/service area during the 

“evening peak” period and the opposite applies to the latter. 

3. The area stretching (Sc-3): modifying the ratio L/W from 4 (Sc-base) towards 

less/more stretched areas (L/W equal to 2 or 3, for Sc-3a and Sc-3b, and 6 for 

Sc-3c). This represents different MRT services according to the station spacing 

(from 0.6 km to 1.2 km), e.g., from an urban metro service to a regional railway 

service. 

4. The vehicle capacity (Sc-4): increasing the number of vehicles of smaller 

capacity, from 3 vehicles of 20 seats (Sc-base) to 5 vehicles of 8 seats (Sc-4a), 

10 vehicles of 4 seats (Sc-4b), and 20 vehicles of 2 seats (Sc-4c). This allows 

testing different types of flexible feeders, from those performed by minibuses 

or vans to a ride-sharing service with small vehicles (e.g., UberPool). 

The ten simulated scenarios are synthetically described in Table 6.4 concerning 

the Sc-base. All the other input parameters are set equal to those of Sc-base, as 

reported in Table 6.3. 
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Table 6.4. Description of the second set of simulated scenarios. 

Sc-base Scenario a b c 

 
Sc-1 

  
- 

 
Sc-2 

  
- 

 
Sc-3 

   

 

Sc-4 

 
  

The main results are reported and commented on the next subsections. Results of 

the two services will be first separately presented; then, a comparison between them 

is performed. From the point of view of the demand, we focus on PUC, from the point 

of view of the operator on OUC, while TUC encompasses both points of view. An 

overview of scenario results with all the output indicators defined in Table 6.1 and 

Table 6.2 is presented in Appendix A1. 

Fixed-route feeder. Results of the simulations for the FRF in terms of PUC, OUC 

and U are reported in Figure 6.13. 

 

 

Figure 6.13: Results of the second set of simulations for the FRF. 
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As expected, the operator cost OUC is quite constant over scenarios Sc-1 and Sc-

2 because the fixed service is not affected by the spatio-temporal demand 

distribution, while Sc3-a provides a smaller operation cost because of the shorter 

travelled distance.  

If we look at demand spatial distribution (Sc-1), when demand is higher near the 

MRT station, the TUC of the FRF remains almost the same (+1%). We report a 

reduction of PUC of 3% (SC-1a) and 7% (Sc1-b) if compared to a uniform demand 

distribution (Sc-base). This is mainly due to shorter passenger ride times since they 

are more concentrated near the MRT station. On the other hand, the OUC increases, 

since fewer travellers are using the feeder service. 

Interesting results emerge if we consider different demand patterns (Sc-2). In 

particular, there are two opposite trends: a higher concentration of users directed to 

the MRT station (Sc-2a) worsens the performance of the FRF in terms of PUC (+9%) 

and, thus, TUC (+7%), while the opposite occurs when users originate mostly at the 

MRT station (with multiple destinations) (-7%, -5%). This could be explained in 

terms of the regularity of the service. In the first case, bus bunching might occur 

thus worsening the headway regularity and average waiting times. Conversely, the 

regularity improves in the opposite case (Sc-2b) because passengers are generated 

mostly at the MRT station and board the FRF with scheduled departure times.  

A different configuration of the service area (more or less stretched) leads to 

different results. In particular, there is a decreasing trend of PUC (and TUC) from 

less-stretched to more-stretched areas with the best result in the case of Sc-3c. This 

outcome was expected as well since walking time is more relevant for users than the 

other time components. In this respect, a more stretched area implies shorter 

walking times and higher ride time. 

Demand-responsive feeder. Figure 6.14 reports the results from DRF simulations, 

similarly to the FRF case. 

Demand spatial distribution and, in particular, a demand concentrated closer to 

the MRT station (Sc-1) improves the performance of DRF compared to Sc-base, also 

because of better dispatching of passengers that can be more easily assigned to a few 

virtual stops. As in the previous case, the decrease in PUC (-2% in Sc-1a and -13% 

in Sc-1b) are compensated by the increase in OUC (+14% and +28%, respectively). 

Interesting and quite different results compared to the FRF case emerge if we 

consider different demand patterns (Sc-2). In particular, it is possible to see a lower 

performance of the DRF in Sc-2 with respect to Sc-base. More specifically the worst 

case occurs in Sc-2b, i.e., when the demand is mainly originated at the MRT station.  
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Figure 6.14: Results of the second set of simulations for the DRF. 

Three more scenarios are simulated for the DRF case, i.e., by varying the number 

and capacity of vehicles while keeping the total seat capacity constant (Sc-4). A clear 

increasing trend of TUC is visible due to higher OUC once the number of vehicles 

and drivers increase. Interestingly, PUC decreases from Sc-base to Sc-4, but the 

relative difference between the sub-scenarios is very low. This suggests that it is 

neither profitable nor beneficial to use a higher number of small vehicles (i.e., cars) 

to perform the DRF service (Sc4-b, Sc-4c), while vans might represent a good 

compromise. They would be a suitable solution from the user perspective while 

implying higher operator cost (+35%) but resulting in a slightly lower TUC (-4%) 

compared to the minibuses case of Sc-base. 

This result confirms the impact of driver costs on the total operator cost and 

suggests the possibility of looking at automated vehicles (AV) as a potential solution. 

Figure 6.15 shows a comparison between TUC with and without the driver cost for 

Sc-base and Sc-4 showing how the difference between the two values increases with 

the number of vehicles. Clear savings can be obtained in the case of Sc-4c, implying 

20 vehicles of 2 seats, i.e., a Uber-like service. However, this option should be 

analysed more in detail by looking at other important variables like the cost of AVs 

and the different operation conditions (e.g., road infrastructure, commercial speed, 

increased road congestion) and the willingness of passengers to use them. 
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Figure 6.15: Comparison between TUC for traditional and automated vehicles. 

DRF vs. FRF 

Figure 6.16 shows the comparison between DRF and FRF. This analysis allows 

finding what service suits better to each particular situation. 

 

 

Figure 6.16: Comparison between DRF and FRF in different scenarios. 
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In general, the DRF performs better in Sc-1b where we have a decreasing demand 

from the MRT station to the outskirts, thanks to the flexibility of the service which 

allows a better matching between passengers and vehicles and lower distances 

driven.  

A not very clear trend is obtained by varying the shape of the service area. The 

two services are almost equivalent in Sc-3a, Sc-3b and Sc3-c where a better 

performance for the users is compensated by higher costs for the operator (and vice 

versa). By stretching the area (Sc3-c), thus representing different catchment areas 

according to the MRT network (in terms of the station and line spacing) the FRF 

starts becoming more attractive than the DRF.  

Demand pattern is a critical issue to consider when planning and designing feeder 

services (Sc-2). In this respect, simulation results suggest adopting the FRF instead 

of the DRF when the demand is mainly originated at the MRT station (to multiple 

destinations) and vice versa, since this would imply smaller TUC, especially in the 

first case (Sc2-b). This is due to the regularity of the FRF service which is higher 

compared to the DRF. On the opposite, when the demand is homogeneously 

distributed in origin/destination from/to the MRT station, a DRF service is to be 

preferred. 

6.5 Conclusions 

This chapter presented an agent-based model for the mass rapid transit feeder 

design. Fixed route and demand-responsive feeder services (FRF and DRF) have 

been compared to understand their attractiveness under different conditions, by 

taking into account both operator and user perspectives. The ABM reproduces a 

parametric synthetic environment where different variables related to demand, 

service area and service configurations can be easily modified. The first set of 

scenarios allowed a comparison with the analytical model presented in Quadrifoglio 

and Li (2009) finding a critical demand density that acts as a switching point 

between the two services. This was done to demonstrate the effectiveness of the 

simulation model and the proposed insertion heuristic by reproducing the same 

scenarios and introducing new realistic constraints, allowing to find a demand 

density threshold.  

The second set of simulations was performed to reproduce different use cases by 

changing the demand/service configurations while maintaining the same demand 

density, mimicking realistic scenarios of different transport services and land use 
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areas. Results of ten scenarios show that a demand concentrated near the MRT 

station improves the performance of both the DRF and FRF services with the DRF 

to be preferred due to lower total (user and operator) unit costs. Stretching the 

service area improves the performance of the FRF services because of the lower 

travellers’ walking time, while a non-homogeneous demand pattern may suggest 

adopting different service configurations (FRF of DRF) along the day. Finally, by 

increasing the DRF fleet while maintaining the same total capacity (i.e., using 

smaller vehicles), one can notice that there is no gain in terms of total unit cost since 

the increase in the operator cost is not compensated by an equivalent decrease of 

user cost. This could be changed by considering automated vehicles that would 

drastically reduce the operator cost.  

In terms of practical implications, results suggest that the DRF is to be preferred 

in TOD-like areas characterized by a high negative density gradient from the MRT 

station (Sc1-b), or in peripheral areas where station spacing is quite high (Sc-base). 

Vice versa, FRF should be preferred in mono-functional land use areas (e.g., 

residential or workplaces) during peak periods. Besides, the same transport operator 

might switch services along the day as the demand pattern changes over time, using 

an FRF during peak periods and a DRF during off-peak periods. This could be done 

using the same vehicle fleet and staff, just changing the operation parameters. 

In summary, the proposed model can be used to optimize a feeder-trunk transit 

network, by using variables related to MRT network topology, its line and station 

spacing, spatial and temporal demand pattern as inputs, and finding the optimal 

feeder operation as output.  

This study comes with some limitations opening future research. First, the 

theoretical nature of the model, and the application to a synthetic case study, while 

making it generalizable, does not allow to formulate context-based practical 

implications. In this respect, the assumptions made on user preferences for different 

time components, the value of time, and operator cost can influence results. 

Therefore, the model needs to be tested with more data and use cases. In future 

research endeavours, it will be interesting to compare the performance of DRF and 

of parallel FRF services that could be used to serve the service area with the same 

operation costs, reducing the walking time of users while increasing the headway. 

Finally, the impact of AV on service performance should be analysed more in detail 

to further explore the potential of this new technology to provide efficient feeder 

services.  
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Appendix A 

This appendix reports the summarizing tables related to the FRF (Figure A1) and 

DRF (Figure A2) simulation outputs, showing their variations compared with the 

base scenario (SC-base). 

 

Figure A1. Summarizing table with FRF simulation outputs (for scenarios 1-3, 

percentage variations are reported with respect to Sc-base) 

 

Figure A2. Summarizing table with DRF simulation outputs (for scenarios 1-4, 

percentage variations are reported with respect to Sc-base) 

SC-base

base SC-1a SC-1b SC-2a SC2-b SC-3a SC-3b SC-3c 

USER-RELATED

# tot Requests (NR)                 820 0% 0% 0% 0% 1% 0% 1%

% Walking Users (WLK)               7.50 135% 260% 11% 2% 32% 16% 3%

% Accepted Requests (PAX)  99.86 0% 0% -1% 0% 0% 0% 0%

% Rejected Requests (REJ)              0.14 -13% 41% 443% -96% -100% -64% 296%

% Delayed Requests (DEL) 4.78 58% 112% 34% -17% 117% 86% -10%
Avg Walking Time (Twk) [min]         4.98 1% 2% 0% 1% 37% 20% -17%

Avg Waiting Time (Twt) [min]         1.92 -2% -5% 69% -76% -20% -5% 13%

Avg Ride Time (Trd) [min]             6.10 -11% -25% -14% 24% -17% -2% 13%

Avg Total Travel Time (T) [min]    12.99 -5% -11% 4% 0% 3% 6% 1%

Avg Time Stretch (STR)          1.61 2% 5% 4% -1% -8% -3% 7%

Avg Passenger Disutility (Upax)      19.18 -8% -16% 9% -7% 9% 8% -2%

Passenger Unit Cost (PUC) [€/pax] 3.32 -3% -7% 9% -7% 9% 8% -2%

OPERATOR-RELATED

Total Driven Distance (D) [Km]          381.33 0% 0% 0% 0% -15% -7% -1%

Total Energy Consumption (TEC) [kWh]      228.82 0% 0% 0% 0% -15% -7% -1%

Avg Vehicle Occupancy (AVO)              3.13 -21% -41% -14% 23% -18% -3% 15%

Transport Intensity (TI) [km/pax]   0.50 13% 28% 1% 0% -13% -5% -2%

Commercial Speed (Vc) [Km/h]             21.73 3% 6% -3% 6% -3% -1% -1%

% Stopping Time (ST)         46.88 -1% -1% -1% -1% 17% 8% 2%

Operator Unit Cost (OUC) [€/pax] 1.04 12% 27% 1% 0% -2% 0% -1%

SYSTEM-RELATED

Total Unit Cost (TUC) [€/pax] 4.36 0% 1% 7% -5% 7% 6% -2%

Total Unit Cost (TUC) [€/pax] AV 3.73 -2% -4% 8% -6% 7% 7% -2%

SC-1 SC-2 SC-3
OUTPUT

SC-base

base SC-1a SC-1b SC-2a SC2-b SC-3a SC-3b SC-3c SC-4a SC-4b SC-4c

USER-RELATED

# tot Requests (NR)                 820 0% 0% 0% 0% 1% 0% 1% 0% 0% 0%

% Walking Users (WLK)               16.17 81% 143% 44% 17% 44% 14% -5% -26% -31% -23%

% Accepted Requests (PAX)  94.20 -1% 0% -9% -3% -5% -2% 0% 5% 6% 5%

% Rejected Requests (REJ)              5.80 24% -3% 141% 53% 80% 30% -1% -87% -96% -80%

% Delayed Requests (DEL) 0.04 -50% -44% -85% 424% 307% 46% -2% -100% -100% -100%

Avg Pre-trip Time (Tpt) [min]        1.68 -7% -12% 85% -78% -1% -3% -10% -15% 16% 32%

Avg Walking Time (Twk) [min]         2.27 -8% -14% -14% 3% -8% -2% -8% -4% -6% -13%

Avg Waiting Time (Twt) [min]         3.08 9% 7% -26% 47% 14% 12% 11% -18% -6% -5%

Avg Ride Time (Trd) [min]             6.38 -7% -26% 29% 9% -1% 6% 7% -15% -27% -36%

Avg Total Travel Time (T) [min]    11.73 -3% -15% 6% 18% 2% 6% 5% -14% -18% -23%

Avg Time Stretch (STR)          2.00 10% 16% 6% 16% 17% 9% 3% -12% -14% -18%

Avg User Disutility (Utot)  [min] 18.11 -7% -20% 12% 18% 9% 7% 3% -19% -20% -22%

Passenger Unit Cost (PUC) [€/pax] 3.08 -2% -13% 9% 19% 8% 7% 4% -19% -20% -22%

OPERATOR-RELATED

Total Driven Distance (D) [Km]          439.44 -14% -26% -7% -15% -14% -9% -9% 46% 118% 280%

Total Energy Consumption (TEC) [kWh]      263.66 -14% -26% -7% -15% -14% -9% -9% -27% -35% 14%

Avg Vehicle Occupancy (AVO)              3.70 -14% -36% -2% 31% -2% 5% 10% -45% -73% -87%

Transport Intensity (TI) [km/pax]   0.64 1% 2% 1% -12% -7% -6% -11% 39% 105% 264%

Commercial Speed (Vc) [Km/h]             23.06 -3% -3% -3% -4% -4% -4% -5% 4% 9% 13%

% Stopping Time (ST)         39.56 21% 39% 12% 21% 20% 12% 12% 19% 52% 64%

Operator Unit Cost (OUC) [€/pax] 1.19 14% 28% 7% -1% 4% 1% -5% 35% 141% 387%

SYSTEM-RELATED

Total Unit Cost (TUC) [€/pax] 4.27 2% -1% 8% 13% 7% 5% 2% -4% 25% 92%

Total Unit Cost (TUC) [€/pax] AV 3.57 -1% -9% 8% 15% 6% 6% 2% -16% -12% 5%

SC-1 SC-2 SC-3 SC-4
OUTPUT





 

 

 

CHAPTER 7 

7. Adaptive Transit Design: Optimizing 

Fixed and Demand Responsive Multi-

modal Transport via Continuous 

Approximation 

In most cities, transit consists of fixed-route transportation only, whence the 

inherent limited Quality of Service (QoS) for travellers in sub-urban areas and 

during off-peak periods. On the other hand, completely replacing fixed-route with 

demand-responsive (DR) transit would imply huge operational cost. It is still unclear 

how to ingrate DR transportation into current transit systems to take full advantage 

of it.  

In this chapter, we propose a Continuous Approximation model of a transit system 

that that gets the best from fixed-route and DR transit, adapting to the demand 

observed in each sub-region of the urban conurbation and time-of-day. The goal is to 

provide high transportation capacity while guaranteeing high QoS, two objectives 

that are instead conflicting if only classic fixed-schedule transportation is deployed, 

as in today’s cities. Our model allows to decide, in each area, whether to deploy a 

fixed-route or a demand-responsive feeder service, and to redesign line frequencies 

and stop spacing of the main trunk service accordingly. Since such a transit design 

can adapt to the spatial and temporal variation of the demand, we call it Adaptive 

Transit. Our numerical results show that Adaptive Transit significantly improves 

user cost, particularly in suburban areas where access time is remarkably reduced, 

with only a limited increase of agency cost. We believe our methodology can assist in 

planning future generation transit systems, able to improve urban mobility by 

appropriately combining fixed and DR transportation. 
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7.1 The need for Adaptive Transit Network Design 

In recent years, urban transportation has witnessed the birth and spread of new 

demand-responsive and ride-hailing services, mostly provided by private companies 

(e.g. Uber, Lyft, Via). In most of cities, these “user-centric” services have penalized 

the conventional public transport (PT), which has basically not evolved in the last 

decades and still consists in fixed routes and fixed scheduling with some exceptions, 

or pilots or services for a specific targeted population (elders or handicapped). The 

detrimental role of ride-hailing and ridesourcing services towards PT can be reversed 

by transforming them from PT substitutes to PT complement (Sadowsky and Nelson, 

2017). In order to pursue this transformation, it is essential to re-think the whole 

transit network through a multi-modal approach and an integrated design of the 

various transport modes (conventional and demand-responsive). 

As already shown in the previous chapters, conventional PT is inefficient in sparse 

demand areas: providing a high number of lines with an adequate frequency to 

ensure an acceptable QoS to travellers would result in low passenger load factors 

and thus in an excessive agency cost. 

This problem is evident in suburbs and is one of the reasons for geographical 

inequity in modern society (Giuffrida et al., 2017). On the other hand, demand-

responsive transportation is not the solution to all mobility needs, as it is not suitable 

to serve dense demand (Basu et al., 2018), which it would result in tortuous vehicle 

routes (Araldo, Gao et al., 2019) and thus high operational cost. 

Therefore, a combination of fixed-route (FR) and demand-responsive (DR) services 

is needed to guarantee high capacity for dense demand areas and, at the same time, 

good QoS in sparse demand areas. For these reasons, in recent years public 

authorities have launched pilots to experiment with different ways to complement 

their offers with on-demand services, by subsidizing ride-sharing companies 

(Sörensen et al., 2021). Moreover, the scientific community has done a big effort in 

modelling the performance of DR transportation. However, there is no systematic 

methodology to guide the design of future-generation transit systems integrating FR 

and DR transport. 

Our contribution can be summarized as follows: 

• We are the first to propose, to the best of our knowledge, a Continuous 

Approximation model and an optimization procedure to design a transit 

system combining both FR and DR transport. We call such a system 

Adaptive Transit. It consists of consists of a Mass Rapid Transit (MRT) 
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system, which is always FR, and a feeder service provided by bus. 

Depending on the sub-region of the conurbation and the period of the day, 

the system changes the feeder operation, between FR and DR, in order to 

adapt to the spatial and temporal variation of the demand density. The 

optimization procedure decides the deployment parameters of both MRT 

and feeder (frequencies, stop spacing, etc.). 

• Via extensive numerical evaluation, we compare Adaptive Transit with 

current transit design, where were feeder service is always FR, in multiple 

scenarios. Our results show that Adaptive Transit may improves the user 

QoS, in particular during off-peak hours and in suburban areas, while 

keeping the overall cost (which includes the agency cost) under a reasonable 

level, even slightly reducing it. 

To summarize, the novelty of this work is the joint optimization of both FR and 

DR transport, integrated in a single system, deciding the overall deployment over 

space and in different times of day. This chapter is structured as follows: we discuss 

the related work in Section 2, present the design scheme of transit diagram in 

Section 3, and compare with classic transit schemes. We then present a Continuous 

Approximation model of such schemes and the optimization procedure to compute 

their optimal structure (Section 4). We finally contrast the performance of Adaptive 

Transit with current schemes in numerical results (Section 5) and conclude (Section 

6). 

7.2 Related work 

During the last decades, transit network design has been studied via several 

optimization problems, based on different objectives (user and/or operator cost 

minimization, total welfare maximization, protection of the environment, etc.), 

parameters and decision variables (network structure, demand patterns, fleet 

characteristics, headway, route and stop spacing, etc.) and solution methodologies 

(analytical, heuristics or meta-heuristics). An extensive review on Transit Route 

Network Design Problems is provided by Farahani et al. (2013). 

Only in the last decade, the concept of Mobility as a Service (MaaS) has emerged, 

which advocates the integration of different modes of transportation into a single 

multi-modal offer (Smith et al., 2018; Le Pira et al., 2021). We believe that MaaS 

should not consist in just adding DR services on top of the existing FR ones. On the 

contrary, to get the most benefits from a multi-modal transit combining the two, it 
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is required to holistically redesign the entire transit and “co-design” FR and DR 

services. The classic transit design methods are not suitable to this new aim, and 

new approaches are needed. 

In this section, we first briefly motivate our choice of a feeder-trunk structure for 

the transit, resorting to the literature showing its advantages. We then introduce 

the work on Continuous Approximation, which is the modelling approach we adopt 

in this chapter, with a particular focus on studies combining FR and DR operation. 

We also discuss the work combining FR and DR transport with methods different 

than CA. We finally state the novelty of our work with respect to the state-of-the-

art. 

7.2.1 Feeder-trunk transit structure 

The so-called “weak demand areas" (i.e., areas with by low residential density and 

high motorization rate) are the most critical for conventional public transportation, 

which is unable to ensure at the same time coverage, ridership and cost-efficiency. 

In these cases, an effective design of FRF or DRF bus lines connecting weak demand 

areas with mass rapid transit nodes could therefore help to shift passenger’s mode 

of transport from individual to collective mobility, thus enhancing the accessibility 

to urban facilities and services. 

The advantages of mass transit corridors in the metropolitan transport supply 

have been shown by Mohaymany and Gholami (2010) and Gschwender et al. (2016). 

In particular, Gschwender et al. (2016) compared the feeder-trunk scheme against 

different direct lines structures (where no transfers are required) showing that the 

first structure performs better when the demand is quite low and dispersed and the 

distances to travel are high, but also underlining that their results are strongly 

related to the penalty value assigned to the transfers. Mohaymany and Gholami 

(2010) demonstrated that feeder lines increase the use of high-capacity mass transit 

because the travel demand for a more extended area can be satisfied. 

7.2.2 Continuous Approximation models in transit-related studies 

Addressing transit network design problems at a strategic level with discrete 

models is often unfeasible when dealing with large-scale instances, which are also 

not robust to stochasticity and uncertainty of input data (Daganzo, 1987).  

To overcome such limitations, Continuous Approximation (CA) models have been 

proposed. We comply with the literature (Ansari et al., 2018) and define a CA model 
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as the one where demand and supply variables, either as input or as decision 

variables, are continuous density functions over space. Such models are simple but 

powerful tools for the strategic stage of a transit plan. The key idea, as reported by 

Ansari et al. (2018), is to construct an objective function, often including agency- and 

user-centric costs, based on the integration of localized functions of x,y coordinates, 

which can be analytically optimized without huge computational efforts. Results 

obtained via CA provide general insights about the performance of whole transit 

systems, only dependent on the choice of model’s parameters. It must be noted that 

CA models are very approximated and lack realism. For instance, they cannot 

include details about transportation topologies, traveller behaviour and vehicle 

routing. However, CA methodology can provide useful insights in understanding at 

high level the impact of different design choices on the performance of a 

transportation network. 

Analytical models for demand-responsive transportation under many-to-many 

demand pattern were proposed in Daganzo (1978) for door-to-door services. CA 

models considering checkpoints, around which the demand can be clustered, were 

presented in Daganzo (1984) and Quadrifoglio et al. (2006). 

Much further work focused on flexible transit to serve the First Mile/Last Mile 

(FMLM), in particular to compare the performance of FR and DR feeder therein. On 

this account, Quadrifoglio and Li (2009) estimated the demand density threshold, for 

a feeder transit service, below which DR buses are more efficient than FR buses. 

Edwards and Watkins (2013) expanded the comparison to all types of street 

networks, transit schedules and passenger demand levels.Recently, Badia and 

Jenelius (2021) found via CA that electrification and automation will impact the cost 

structure, so that the situations in which DR will be preferable to FR will extend 

(although FR will still be irreplaceable in very high demand-density areas). 

Note that, while the work mentioned in this subsection only focused on single 

FMLM areas, we instead aim to devise a design for an entire urban area, consisting 

in many FMLM sub-regions. 

Regarding CA models for metropolitan-scale transit, Daganzo (2010) proposed an 

analytical model of a FR transit network with a “hybrid” structure, in the sense that 

it combines the advantage of both the grid (double transit routes coverage in the 

central area) and the hub-and-spoke (radial routes branching to the periphery) 

structure. The transit is described by only three decision variables: stop spacing, 

vehicle headway and ratio between the side of the downtown district and the side of 

the city boundary. The author found that the more expensive the system’s 

infrastructure, the more it should tilt toward the hub-and-spoke concept. Agency 
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costs are always small compared with user costs; and both decline with the demand 

density. In all cases, increasing the spatial concentration of stops beyond a critical 

level tends to increase both the user and agency costs. This result demonstrates how 

excessive spatial coverage is counterproductive. 

This model is reformulated in Badia et al. (2014) and applied to a radial route 

layout. Among the different outcomes, the authors showed that the radial layout is 

suitable for a centripetal demand pattern, in which the central area is the major 

attractor and generator of trips (like we assume in our work). The two 

aforementioned articles show that a high-performance bus system (i.e., buses 

running on transit priority corridors) outperforms a rail rapid transit system for a 

wide range of demand density and coverage areas. However, since the former require 

quite large streets, it appears unrealistic to imagine that such systems can entirely 

replace underground transit in the big cities’ dense urban fabric. 

In Chen et al. (2015), two different city-wide transit structures are compared, 

showing that the ring-radial layout is more favourable to transit (in terms of costs) 

than the grid design. However, the demand density is assumed to be spatially 

uniform over the entire urban area, which is not realistic. Note that none of the 

aforementioned papers in this subsection consider the simultaneous operation of 

more than one transit mode, or even the presence of DR transport services, in a 

multi-modal transit scheme. 

Nourbakhsh and Ouyang (2012) proposed a transit network with no fixed route: 

individual buses cover a tube-shaped predetermined area where to pick up or drop 

off passengers while sweeping longitudinally back and forth through the tube. These 

“bus-tubes” form at a microscopic level a structure, although buses operate in a 

demand-responsive fashion. The optimal structure parameters were obtained via a 

simple constrained nonlinear optimization problem. The authors showed that under 

low-to-moderate passenger demand the system incurs lower cost than other 

conventional counterparts such as the fixed-route transit system and the chartered 

taxi system. The system is however not suited for high demand. We instead observe 

that in a big conurbation, the demand can be high or low depending on the 

geographic sub-region and time-of-day considered and therefore it is not possible to 

just rely on DR transit. For this reason, we instead keep FR operation at the core of 

transit and integrate DR to it. 

The work discussed so far does not combine feeder in FMLM and trunk MRT, 

which is instead crucial for our Adaptive Transit. We discuss in the next section CA 

approaches for multimodal transit, which consider such a combination. 
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7.2.3 Continuous Approximation models for multi-modal transit 

CA models have also been applied to multi-modal transit, with FMFL feeder and 

a trunk, or backbone, which corresponds in our design model to MRT. In these works, 

the feeder is either FR or DR. The novelty of our work is that we instead let our 

optimization decide between the two for each distance x from the centre and for each 

time of day t, based on demand density. 

Aldaihani et al. (2004) divided the study areas in a grid, with a FR service along 

the lines of the grid and a DR service within each sub-region, consisting of a taxi 

service, serving one passenger at a time. We also divide the entire area in sub-

regions, but we let our optimization choose between FRF and DRF therein. 

Moreover, our DRF is able to serve multiple passengers at a time. 

Sivakumaran et al. (2012) propose a CA model to show the benefits of coordinating 

feeder services and MRT (trunk), but they only consider FRF. 

Chen and Nie (2017) studied a grid and a radial network with fixed route transit 

lines paired with DR lines connecting passengers to the stops of the fixed route. 

Optimal design is formulated as a mixed integer program. The results show that the 

paired lines design outperforms the other two systems, one always using FR and the 

other always DR, under a wide range of scenario configurations. The main limit of 

Chen and Nie (2007) is that their DR service is forced to run in the entire urban area, 

everywhere with the same characteristics. e.g., with the same headway. We instead 

let our optimization problem choose where and when to deploy FRF or DRF (this is 

captured by our decision variable F(x)) and we find that, depending on the time of 

day, it is optimal to deploy FRF close to the city centre and DRF far from it. 

Later, Luo and Nie (2019) compared six distinctive transit systems using the CA 

approach, most of them already studied in the previously cited works. One finding of 

Luo and Nie (2019), which we also confirm is that the demand-responsive feeder 

services tilt the balance of trade-off considerably in the user’s favour, at the transit 

agency’s expense. A recent work by Wu et al. (2020) compares a system where feeder 

is provided by fixed bus with another where feeder is provided by bike sharing. 

The systems studied in all the aforementioned work are not adaptive, i.e., they do 

not take the optimal choice between FR and DR modes, in each region and period of 

day. Instead, they either use always one or the other. Our work instead shows that 

it is beneficial to make DR and FR co-exist in the same transit layout. 
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7.2.4 Other approaches to integrated transit and demand-

responsive transportation 

Salazar et al. (2020) provided a network flow model of Integrated Autonomous 

Mobility on Demand (I-AMoD), where a ride sharing service provided with 

autonomous vehicles is integrated with transit and they are modelled together in a 

multi-layer graph. They solve a static assignment problem to calculate how the 

origin-destination matrix demand distributes onto the arcs of such a graph. Their 

goal is to find optimal pricing, while we aim to optimize the structure of the overall 

transportation system. 

Narayan et al. (2020), Leffler et al. (2021) and Bürstlein et al. (2021) showed in 

simulation that DR transit can improve accessing line/schedule based public 

transport system, in terms of level of service and environmental impact. Franco et 

al. (2020) generated demand for future DR services integrated with fixed transit, 

based in phone data. Note that none of the mentioned work in this paragraph seeks 

to find optimal transportation layout for an entire metropolitan area, as we do. 

An and Lo (2015) solved the transit network design problem under demand 

uncertainty trough robust optimization for rapid transit and dial-a-ride services. 

However, the author did not include the passenger waiting times are not included in 

the model and determined the travel costs proportional to distance and not to travel 

time. 

Pinto et al. (2020) proposed a model based on dynamic programming and 

simulation-based assignment. The decision variables they aim to calculate are two: 

the headways of bus lines and the fleet size S of a taxi-hailing service, where each 

vehicle can have at most two riders on-board. The main difference of our work lies 

in the different insights we aim to study: we are interested in studying how the 

overall transit system can adapt spatially and temporally to the spatio-temporal 

demand variation, in particular choosing between FRF or DRF bus services. Instead, 

Pinto et al. (2020) let a mathematical program calculate a single value of S, without 

letting the agency decide in which regions and at which time of the day such S 

vehicles should be deployed. This suffers, we believe, from the potential risk to just 

attract such vehicles in the city centres, where most of the demand is and where 

fixed transit is already efficient. This would play against our goal of employing DRF 

in low demand areas and during off-peak hours. 

We instead keep the choice of where and when to deploy DRF in the hand of the 

agency. Moreover, our DRF service is able to serve many users (more than two) at 

the same time and can act as a ride sharing or minibus service. 
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The optimization problem of Steiner and Irnich (2020) aimed to “shorten” some 

bus lines, i.e., eliminate some stops at the beginning and the end of FR lines and 

replace them with a DR service. We believe that completely removing FR service 

from periphery of an urban area may worsen, rather than improving, mobility, 

overall. First, it would disadvantage even further suburban travellers. Second, it 

would require aggregating the demand close to the centre via a DR service, which 

may cause congestion and would suffer from limited capacity. We instead let FR 

service to be deployed up to the extreme periphery of the urban area and adopt DR 

services as feeder, instead of as a replacement, of FR lines (in our case, the MRT). 

Finally, Steiner and Irnich (2020) did not show how the transit service should 

change configuration over the day to adapt to the time-varying demand pattern. 

7.2.5 Positioning of our work 

To the best of our knowledge, none of the previous work has tackled the problem 

of designing Adaptive Transit, i.e., to decide how to optimally vary spatially and 

temporally the layout of transit over an entire urban area, also deciding in which 

regions and in which time of day (peak / off-peak) FR or DR transit must be deployed. 

A “variable” layout of this kind allows transit to better adapt to the demand, which 

is varying over time and space. 

To this aim, we do not need to re-invent a model from scratch, but we build upon 

the previous work discussed in this section, in particular the ones using continuous 

approximation. We readapt them to our Adaptive Transit case as described in the 

next sections. 

7.3 Transit Design Schemes 

We focus on the transit system of wide urban and metropolitan areas. They 

generally show a transition from a central zone to sprawled suburban areas. The 

former is characterized by dense urban fabric, high population density and presence 

of numerous “trip attractors” (job places, commercial activities, amenities, etc.). The 

latter, instead, are often shaped by low residential density and sparse transport 

demand, both temporally and spatially. The components of transit systems are:  

• A Mass Rapid Transit (MRT). 

• Possibly, a feeder service, provided by bus, to serve the First Mile and Last 

Mile (FMLM). 
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7.3.1 Central and suburban areas 

The MRT network is modelled as a ring-radial structure, as in Badia et al. (2014) 

and Chen et al. (2015), which can be adopted to model several big cities around the 

world (e.g., Paris, Singapore, Moscow). 

As common in Continuous Approximation modelling, we assume the entire area 

is composed of two parts: 

• A central area only served by MRT with double coverage provided by radial 

and circular rail lines. 

• A suburban area covered only by MRT radial lines (and no circular line). 

Feeder services can be deployed in the suburban area. 

7.3.2 Transit schemes 

We discuss three alternative transit schemes, which essentially differ in the way 

passengers can access MRT: 

1. MRT-only scheme, in which the access to MRT stations only takes place by 

walking. 

2. MRT-FRF scheme, which includes feeder bus lines with fixed routes to 

increase the accessibility of MRT stations in the suburban area, which can 

be reached either by walking or using the bus, depending on the distance 

to/from the station. 

3. Adaptive Transit scheme, in which the FMLM in the suburban area is still 

covered by a feeder service, but the feeder can switch between two modes, 

Fixed-Route Feeder (FRF) and demand-responsive feeder (DRF), choosing 

optimally between one or the other based on the transport demand density. 

Figure 7.1 breaks down the components of the travel time of the passengers using 

transit. A passenger needs first to access the transit. In case the passenger uses the 

MRT, she may access it by either walking or using a feeder service (which can be a 

FRF or a DRF, depending on the scenario). If she uses a feeder service, she has to 

wait for it and then spend some time in the feeder vehicle before arriving at the MRT 

stop. Symmetrically, to reach the final destination from the egress MRT station, she 

needs to walk or use another feeder service. Note that there is no walking time when 
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the DRF is employed, as it is assumed to be a door-to-door service. Waiting time at 

the MRT station and In-Vehicle Travel Time into the MRT are also depicted. 

 

Figure 7.1. Components of the access, egress and waiting time for the MRT-only scheme 

and when FRF or DRF services are provided. 

We clarify that in Adaptive Transit the choice of whether to deploy FRF or DRF 

is not made on-the-fly. On the contrary, we assume that, based on historical 

observations of the demand density, the authority would plan, for each area, the time 

periods when FRF or DRF will be operated. Such a plan would be revised only on a 

seasonal basis. 

We use MRT-only as a baseline scheme. Its poor cost-efficiency shown later in the 

numerical results demonstrates that a feeder bus service in the suburban area is, as 

expected, necessary. The MRT-FRF scheme is what it is basically currently deployed 

in most of cities around the world. The Adaptive Transit scheme is the design we 

propose for future generation transit. 

7.4 Continuous Approximation Model 

With the Continuous Approximation (CA) approach, an urban conurbation and a 

transit network are represented with a parametric model, consisting of: 

• A set of decision variables, describing the layout of the transit network, i.e., 

line and stop spacing, headway values, etc. 

• A set of input parameters, which are exogenous and describe the scenario, 

e.g., size of the urban conurbation, demand density. 

• A set of constraints, which ensure basic properties like conservation of flows, 

transit vehicle capacity constraints. 



152 Chapter 7 - Adaptive Transit Design: Optimizing Fixed and Demand 

Responsive Multi-modal Transport via Continuous Approximation 

 

 

• A cost function, which we want to minimize. It consists of a weighted sum 

of user-centric and agency-centric terms. It summarizes the performance of 

transit. 

CA models allow to understand the impact of different decision variables on the 

performance, in an approximated, concise and computationally efficient way. Due to 

the high level of simplification, results obtained via CA models should not be 

expected to be exact and realistic and must rather be interpreted as high-level 

trends, which can guide transit planning considerations. Therefore, we resort to CA 

modeling to understand the benefits of choosing between a FRF and a DRF service, 

in order to better adapt to the demand, over time and geographical areas, a concept 

that we call Adaptive Transit. We are not interested in exact results representative 

of a single specific city. For this reason, CA methodology perfectly fits our needs. Our 

formulation is mainly based on Chen et al. (2015); Daganzo (2010), both of which, 

however, do not integrate MRT and feeder. For this reason, we need to introduce 

some modification, which we will pinpoint in the following pages. 

One novelty with respect to the previous work on CA is that we introduce a notion 

of time-evolution. We need to do so, as we want to evaluate the capacity of our transit 

design to adapt to change of the intensity of the demand over the day. We therefore  

day a set 𝒯 of time instants 𝑡 ∈ 𝒯, when the demand and supply of the transit system 

have given characteristics, and partition the entire day into non-overlapping time 

intervals starting in instants 𝑡 ∈ 𝒯, each of duration Δ𝑡 during which such 

characteristics remain constant. With slight abuse of notation, we will denote with t 

a time instant and also the time interval starting at t. Observe that, to keep the 

mathematical development treatable, we make the simplifying assunmption that the 

aforementioned time intervals are independent of each other, in the sense that there 

is no propagation of passenger flows from one interval to the next. This is also 

equivalent to assuming that the flow starting in the current time interval and 

terminating in the next is compensated by the flow starting in the previous and 

terminating in the current.  

The notation used in this section is summarized in Appendix B (Table B.1). 

7.4.1 Main decision variables 

We study a circular metropolitan area of radius R (exogenous input parameter). 

The transit layout, depicted in Figure 7.2, is organized as described in the previous 
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section. It is described by 10 local decision variables and 4 global decision variables, 

determining the transit structure. 

The local decision variables take a value for each value x of distance (in km) from 

the centre. They are: 

• The angle 𝜃𝑟(𝑥), in radiants, between radial MRT lines; based on that, we 

can also compute the corresponding linear spacing 𝑆𝑟(𝑥) = 𝜃𝑟(𝑥) ∙ 𝑥. 

• The spacing 𝑆𝑐(𝑥) between circular MRT lines, defined for 𝑥 < 𝑟, where 𝑟 is 

the radius of the central area. 

• The spacing 𝑠(𝑥) between the MRT stations (hereinafter called just 

“stations”) along a radial MRT line. 

• The angle 𝜙(𝑥) between stations on a circular MRT line, defined for 𝑥 < 𝑟. 

• The headway 𝐻(𝑥) on circular and radial MRT lines. 

• The headway ℎ(𝑥) of the feeder service (only defined in the suburban area). 

• The variable 𝐹(𝑥) ∈ {FRF,DRF,0}, defined for 𝑥 > 𝑟, indicating whether at 

location x a FRF, a DRF or no feeder service is deployed. We introduce the 

following indicator function 𝕀𝑗(𝑥), 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹, 0}, which is 1 for the x where 

𝐹(𝑥) = 𝑗, and 0 otherwise. 

• The variable 𝑑𝐹𝑅𝐹(𝑥), defined for 𝑥 > 𝑟 and 𝐹(𝑥) = FRF, which is the spacing 

between FRF stops. . 

• The variable 𝑑0,𝐷𝑅𝐹(𝑥), defined for 𝑥 > 𝑟 and 𝐹(𝑥) = DRF, which is the value 

determining the area close to the MRT station where the feeder service does 

not pick-up or drop-off passengers (see Figure 7.2). 

• The number of strips 𝑁𝑠(𝑥), an integer variable defined for 𝑥 > 𝑟, in which a 

FMLM subregion is divided. Each strip is served by a feeder service. In the 

MRT-only scheme, 𝑁𝑠(𝑥) = 1. 

The variation of such local variables along x can be seen as an approximation of 

what one could observe in reality. For instance, if radial lines bifurcate with the 

distance x, we can represent this by reducing the angular spacing 𝜃𝑟(𝑥) with x. 

Accordingly, the headway 𝐻(𝑥) would increase with x because less vehicles will 

travel along a single line. Note that, to limit the number of parameters, we consider 

the same headway on circular and radial lines 𝐻(𝑥). Note that this constraint is only 

active in the central area (𝑥 < 𝑟), while in the suburbs, where no ring lines are 

present, 𝐻𝑟(𝑥) is free to take any value. 
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Figure 7.2. Transit network layout (this takes inspiration from Chen et al. (2015) and 

Quadrifoglio and Li (2009)). 

The global decision variables are:  

• The radius of the central area 𝑟.  

• The angle 𝜙𝐵 between stations on the outermost circular MRT line, at 𝑥 = 𝑟 

(city centre’s boundary). 

• The headway 𝐻𝐵 of the MRT line at 𝑥 = 𝑟. Observe that we need global 

variables for 𝜙𝐵 and 𝐻𝐵 because the outermost circular MRT line serves 

more trips than all other ring lines. Indeed, the outermost circular MRT line 

attracts the transfers of the travellers whose origin and destination are in 

the suburban area (see Figure 7.3b). 

• The maximum value 𝑄0 of the total radial flow of MRT vehicles, which occurs 

at 𝑥 = 0 (see the next subsection). 

Regarding the last decision variable, we define the radial flow 𝑄(𝑥) as the number 

of MRT vehicles crossing an infinitesimal annulus of radius x in both inward and 

outward direction. 

 𝑄(𝑥) =
2𝜋

𝜃𝑟(𝑥)
∙

1

𝐻(𝑥)
 (7.1) 
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Therefore, the two local decision variables 𝜃𝑟(𝑥), 𝐻(𝑥) are interdependent since 

they determine the radial flow 𝑄(𝑥), which in turn is constrained by the global 

decision variable 𝑄0 ≡ 𝑄(𝑥 = 0), as explained in the next subsection. 

7.4.2 Assumptions and constraints 

Along each radial MRT line, in the inward direction, we assume a train can depart 

from any 𝑥 ≤ 𝑅, but always terminates in the centre (𝑥 =  0). In the outward 

direction, a train always departs from the centre and can terminate at any 𝑥 ≤ 𝑅. 

This translates to the following constraint: 

 𝐻(𝑥1) ≤ 𝐻(𝑥2),     ∀ 𝑥1, 𝑥2 | 𝑥1 < 𝑥2 < 𝑅 (7.2) 

By doing this, we allow radial lines to have higher frequency in the city centre (as 

often observed in real cities). This would occur when some of the trains passing 

through that line only serve the subset of stops closer to the centre. Also, we prevent 

the radial flow 𝑄(𝑥) from increasing outward (it would mean that there were vehicles 

not passing through the city centre, contradicting our assumption) with the following 

constraint:  

 𝑄(𝑥1) > 𝑄(𝑥2),     ∀ 𝑥1, 𝑥2 | 𝑥1 < 𝑥2 < 𝑅 (7.3) 

The following vehicle capacity constraint must also be respected: 

 𝑂𝑗(𝑥) ≤ 𝐶𝑝𝑎𝑥,𝑗,     ∀𝑥 (7.4) 

where 𝑂𝑗(𝑥) is the average vehicle occupancy at x and 𝐶𝑗 is the vehicle capacity of 

mode 𝑗 ∈ {MRT, FRF, DRF}. 𝑂𝑗(𝑥) is computed in Appendix B.1. 

7.4.3 Demand pattern and travel behaviour 

We assume that the transit demand density is both temporally and spatially 

variable and follows the Clark’s law (Clark, 1951), i.e., an exponential decline from 

the centre to the suburbs. Denoting with 𝑥 the distance (in km) from the city centre, 

the demand density (measured in trips per hour per km2) is given by: 

 𝜌(𝑥, 𝑡) = 𝜌0(𝑡) ∙ 𝑒
−𝛾𝑥  (7.5) 

where 𝜌0(𝑡) (pax/km2 h) is the density of users in the centre and 𝛾 (km-1) is the slope 

(also called density gradient) with which that value decreases as we move away. By 
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changing 𝜌0(𝑡) over the time t of the day, we can capture the temporal variation of 

the transport demand. In our work we consider that 𝜌0(𝑡) varies in a step-wise 

function, i.e., it remains constant within each time period 𝑡 ∈ 𝒯. 

Note that the demand density decreases towards the outer regions. When we omit t, 

to simplify notation, it means we are focusing on a single time instant.  

With such a model, the city centre, where economic activities are more concentrated, 

emerges as an attractor and generator of trips from/to the periphery (see Equation 

B.1). A passenger first accesses the closest transit station (either by walking or via 

a feeder bus, rides via MRT to the station closest to her destination and finally 

reaches (either by walking or via a feeder), her destination. Note that, within the 

MRT, a passenger could change from a radial to a ring line and vice versa. The 

sequence of such changes obeys classic assumptions in literature (e.g., Badia et al., 

2014; Chen et al., 2015) and are calculated in order to minimize the travelled 

distance via MRT. They are developed in Appendix B.4 and depicted in Figure 7.3. 

 

Figure 7.3. User’s route choice from the origin MRT station to the destination MRT 

station (inspired from Chen et al, 2015). 

In Figure 7.3a only those trips which do not require transfers between different 

MRT lines are represented: for such trips, the Origin-Destination (O-D) couple lies 

within a circular sector of central angle Θ1 ≤ 𝜃𝑟,𝑚𝑖𝑛 = min𝑥∈[0,𝑅] 𝜃𝑟(𝑥), which is the 

minimum angle between radial MRT lines. Moreover, there is a small likelihood (see 

Appendix B.4) that a trip can be made without using the MRT, when both origin and 

destination (see O1 and D1 in Figure 7.3a) lies near the same MRT station. 

In Figure 7.3b we represent trips with angle Θ2 < 2 [rad] between O and D. In 

this case, it is easy to see that, in order to minimize the travel distance, a user will 

travel via both radial and ring lines. Also, when both origin and destination (see O3 
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and D3 in Figure 7.3b) lie in the periphery (𝑥 > 𝑟), this is the only case that requires 

using the outermost ring line and implies two transfers. 

Finally, in Figure 7.3c the cases where the O-D couple has an angle Θ3 > 2 [rad] 

are shown: a user will travel by radial line towards the city centre, where she 

transfers to another radial line to reach her destination. 

7.4.4 Feeder services 

The suburban area is divided in FMLM sub-areas, each determined by the spacing 

between the radial lines and the station’s spacing along them, as in Figure 7.4. In 

case of MRT-only scheme, passengers can only walk therein. In the other two 

schemes, instead, each FMLM subarea is associated to a MRT station, and is further 

divided in a number 𝑁𝑠(𝑥) of strips (as in Guo et al., 2018) served by a feeder service, 

i.e., a fleet of buses bringing passengers to/from that MRT station. Each FMLM area, 

forming a ring sector, can be approximated into a rectangle with the following 

dimensions: 

length 𝑙(𝑥) =
𝜃𝑟(𝑥)

2
∙ 𝑥;   FMLM subarea width 𝑠(𝑥);   strip width 𝑤(𝑥) = 𝑠(𝑥)/𝑁𝑠(𝑥)  (7.6) 

 
Figure 7.4. FRF and DRF layouts. 

Note that, the size of an FMLM subarea depends on the MRT structure (the more 

the MRT lines and/or the smaller the station spacing, the smaller the FMLM 

subareas) and determines the total user demand to accommodate. 

Fixed-Route Feeder (FRF). The FRF is modelled as a straight route with spacing 

𝑑(𝑥) between stops and the vehicle moving back and forth between MRT station and 

the furthest stop, as in Quadrifoglio and Li (2009), so that the length of a complete 

cycle is given by: 

 𝐶𝐿𝐹𝑅𝐹(𝑥) = 2 (𝑙(𝑥) + Δ𝑙(𝑥) −
1

2
𝑑(𝑥))  (7.7) 
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where Δ𝑙(𝑥) is the average extra vertical distance (see Figure 7.4) which the FRF 

has to travel due to the different position of the strips with respect to the MRT 

station they serve, that we approximate to 𝑠(𝑥)/4 if 𝑁𝑠(𝑥) > 1, and 0, otherwise. 

We assume that travellers walk on a Cartesian grid, and thus all walking 

distances are Manhattan distances. Under this assumption, the average walking 

distance to reach the nearest bus stop is 

 𝑑𝐹𝑅𝐹
𝑤𝑎𝑙𝑘(𝑥) = 𝑠(𝑥)/4 + 𝑑(𝑥)/4  (7.8) 

 If the origin / destination of a user is in a location close enough to the MRT station 

(less than threshold 𝑑0,𝐹𝑅𝐹 = 𝑑(𝑥)/2), she will prefer to directly walk to / from the 

MRT station. We call such locations “walking area”, represented in grey in Figure 

7.4. The fraction of traveller locations in the walking areas is 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹(𝑥) =

𝑑0,𝐹𝑅𝐹/𝑙(𝑥). The time needed to complete a cycle can be calculated as follows: 

 𝐶𝐹𝑅𝐹(𝑥) =
𝐶𝐿𝐹𝑅𝐹(𝑥)

𝑣𝐹𝑅𝐹
+ 𝜏𝑠 (

2𝑙(𝑥)

𝑑(𝑥)
− 1) + 𝜏𝑝 ∙ 𝑛(𝑥) + 𝜏𝑇  (7.9) 

where 𝑣𝐹𝑅𝐹 is the cruising speed of the bus, 𝜏𝑇 is the terminal dwell time, 𝜏𝑠 is the 

time lost per stop, 𝜏𝑝 is the time lost per passenger due to boarding/alighting 

operations and it is multiplied by the average number of passengers per vehicle: 

 𝑛(𝑥) = 2 𝜌(𝑥) ∙ 𝑤(𝑥) ∙  𝑙(𝑥) ∙ ℎ(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹(𝑥))  (7.10) 

being 𝜌(𝑥) the demand density (in trips/km2h per travel direction). 

Demand-Responsive Feeder (DRF). The DRF is assumed to provide a door-to-door 

service, so passengers do not have to walk to any physical bus stop. We assume that 

each new request is processed in real-time via an insertion algorithm that aims at 

minimizing the in-vehicle time experienced by the passengers. We assume a “no-

rejection” policy, i.e., the DRF is able to serve all the users’ trip requests. The more 

passengers a single DRF vehicle has to pick-up/drop-off, the longer its route, due to 

longer detours. Travellers close enough to the MRT station, i.e., at Manhattan 

distance less than 𝑑0,𝐷𝑅𝐹(𝑥)  from the station (grey triangular area in Figure 7.4) 

directly walk to it. Their fraction is given by the ratio between the area of the walking 

area and the area of the FMLM subarea: 

 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥) = 𝑑0,𝐷𝑅𝐹
2 (𝑥)/(𝑙(𝑥) ∙ 𝑠(𝑥)) (7.11) 

The computation of the cycle length (𝐶𝐿𝐷𝑅𝐹) and the cycle time (𝐶𝐷𝑅𝐹) is based on 

the work of Quadrifoglio et al. (2006) and Quadrifoglio and Li (2009). The cycle 
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length is estimated based on the expected number of passengers per vehicle 𝑛(𝑥), 

which is computed as in Equation 7.10, substituting 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹(𝑥) with 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥). 

The cycle length is given by the sum of a horizontal component (the vehicle 

movement from left to the right and vice-versa) and a vertical component (the 

deviations along the vertical direction to serve the passengers):  

 𝐶𝐿𝐷𝑅𝐹(𝑥) = 2 𝑙(𝑥)
𝑛(𝑥)

𝑛(𝑥)+1
+
𝑤(𝑥)

3
∙ 𝑛(𝑥) +

𝑤(𝑥)

2
 (7.12) 

The time needed to complete a cycle can be calculated as follows: 

 𝐶𝐷𝑅𝐹(𝑥) =
𝐶𝐿𝐷𝑅𝐹(𝑥)

𝑣𝐷𝑅𝐹
+ (𝜏𝑠 + 𝜏𝑝) ∙ 𝑛(𝑥) + 𝜏𝑇  (7.13) 

7.4.5 Cost components 

The main objective of the present work is to find the optimal transit structure 

able to integrate fixed and demand-responsive modes. With this aim, we formulate 

a generalized cost function to be minimized as Badia et al. (2014) and Chen et al. 

(2015), which combines the disutility for users due to the travel time in its different 

components (Figure 7.1) and the costs incurred by the transport agency to provide 

the service (and the related externalities). 

As regards the transit users, as usually done in CA work, we do not consider 

transit fares. This is a reasonable assumption when most of users use monthly 

passes and since we do not consider a mode choice model in our work. 

The quantities involved in the generalized cost are summarized in Table 7.1 and  

Table 7.2. They are all converted to money metrics via specific coefficients. They 

are all density functions over the distance from the centre. We distinguish user-

related cost, representing the time spent and the discomfort suffered by the 

passenger during her trip, both in the FMLM segments and in the MRT segment. 

We also have agency-related cost, due to capital and operational costs for operating 

feeder services in the FMLM and the MRT. The detailed computation of all cost 

components in Appendices B.2–B.5. 

Agency’s and user’s metrics are converted into cost density functions by means of a set of 

cost coefficients, in order to compute the social cost (per unit of time) as a linear combination 

of those metrics. We denote with 𝜇𝐿,𝑀𝑅𝑇  or 𝜇𝐿,𝐹𝑀𝐿𝑀 (€/km-h), 𝜇𝑉,𝑀𝑅𝑇 or 𝜇𝑉,𝐹𝑀𝐿𝑀 (€/veh-km) and 

𝜇𝑀,𝑀𝑅𝑇  or 𝜇𝑀,𝐹𝑀𝐿𝑀 (€/veh-h) the cost coefficients related to the agency metrics, for MRT and 

FMLM, respectively. Regarding the MRT, we also consider costs specifically related to the 

stations through a coefficient 𝜇𝑆𝑇 (€/station). The cost components are detailed in Table 7.1 

and  
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Table 7.2, and commented in next sections. 

Agency-related costs. The cost components related to the transit agency depend 

on: 

• Infrastructure length L (km), i.e., the construction and maintenance costs. 

For the MRT we also include an additional unit cost component related to 

stations. 

• Total distance V (veh km/h) travelled by the vehicles per unit of time, i.e., 

the operational costs. 

• Size M (veh) of the vehicle fleet, i.e., the capital and crew costs. 

User-related costs. The cost components related to the users of the transit system 

depend on: 

• Walking time A to reach the bus stop or the MRT station or the destination. 

• Waiting time W at the bus stop or the MRT station. 

• In-vehicle (MRT, FRF or DRF) time T including boarding, riding, dwell and 

alighting time. 

• Transfers: since any possible transfer between different transit lines is an 

additional disutility, we treat it as a penalty of the extra walking time Δ𝐴. 

Similarly, the cost coefficients 𝜇𝐴, 𝜇𝑊, 𝜇𝑇 are all equal to the Value of Time (VoT) 

(€/h) associated to walking, waiting and travelling on-board, which have the same 

value independent on whether they refer to travelling in a feeder or in the MRT. 

7.4.6 Optimization problem 

To express the cost objective in a concise way, we use i to indicate the type of cost 

component, i ∈ {L, ST, V, M, A, W, T}, emphasizing that FRF and DRF are alternative 

feeder services. As in Chen et al. (2015), we distinguish: 

• Local densities 𝑌𝑖(𝑥), referred to the MRT, and 𝑦𝑖(𝑥), referred to the FMLM 

(either FRF or DRF), which vary with the distance from the centre x. 

• Global components 𝐹𝑖, which are instead only related to the outermost MRT 

ring line, i.e., at 𝑥 = 𝑟. 

We now formulate the optimization problem to minimize it. We separate the 

decision variables in two sets: 
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• Global decision variables: 𝐺 = {𝑟; 𝑄0;  𝜙𝐵;  𝐻𝐵}, 

• Local decision variables (functions of 𝑥): 𝐷(𝑥) =

{𝜃𝑟(𝑥); 𝑆𝑐(𝑥);  𝑠(𝑥);  𝜙(𝑥);  𝐻(𝑥);  ℎ(𝑥); 𝑑𝑗(𝑥); 𝑁𝑠(𝑥);  𝐹(𝑥)}. 

As in Chen et al. (2015), we constraint the station spacing on the outermost MRT 

ring line to be the same as the value of the corresponding local variable at 𝑥 = 𝑟, so 

we set: 

 𝜙𝐵 = 𝜙(𝑟) (7.14) 

For any values for the sets 𝐺 and 𝐷(𝑥), 𝑥 ∈ [0, 𝑅] at any time interval 𝑡 ∈ 𝒯, we 

denote the hourly cost of component 𝑍𝑖 as: 

𝑍𝑖(𝐷, 𝐺, 𝑡) = 𝜇𝑖,𝑀𝑅𝑇 ∙ (𝐹𝑖(𝑟, 𝜙𝐵, 𝐻𝐵, 𝑡) + ∫ 𝑌𝑖(𝐷, 𝑟, 𝑡, 𝑥)
𝑅

0
𝑑𝑥) + 𝜇𝑖,𝐹𝑀𝐿𝑀 ∙ ∫ 𝑦𝑖(𝐷, 𝑟, 𝑡, 𝑥)

𝑅

0
𝑑𝑥

 (7.15) 

Observe that all the cost components 𝑦𝑖(𝑥) and 𝑌𝑖(𝑥) are derived in Appendix B. 

In the formula above, we emphasize that they depend not only on 𝑥, but also on the 

demand density 𝜌0(𝑥) and the decision variables 𝐷(𝑥) and 𝐺. 

Table 7.1. Overview of agency-related and user-related local cost components 

 
 

FMLM  MRT 

User costs 

𝑦𝐴(𝑥) 
Cost due to walking to/from the 

feeder bus stop  
𝑌𝐴(𝑥) 

Cost due to walking to/from the 

MRT station 

𝑦𝑊(𝑥) 
Cost due to the time to wait for 

the feeder service 
𝑌𝑊(𝑥) 

Cost due to the time to wait for 

the MRT 

𝑦𝑇(𝑥) 
Cost due to the time spent into 

feeder vehicles 
𝑌𝑇(𝑥) 

Cost due to the time spent into 

MRT 

Agency 

capital 

costs 

𝑦𝐿(𝑥) 
Cost for the infrastructure in 

FMLM, i.e., construction and 

maintenance 

𝑌𝐿(𝑥) 
Cost for the infrastructure of 

the MRT, i.e., construction and 

maintenance 

𝑦𝑀(𝑥) 
Cost due to the feeder fleet, i.e., 

vehicles and crew cost 
𝑌𝑀(𝑥) 

Cost due to the MRT fleet, i.e., 

vehicles and crew cost. 

  𝑌𝑆𝑇(𝑥) 
Cost due to the MRT station 

density. 

Agency 

operation 

costs 

𝑦𝑉(𝑥) 
Cost due to vehicle-distance 

travelled by feeder vehicles. 
𝑌𝑉(𝑥) 

Cost due to vehicle-distance 

travelled by MRT 

 

Table 7.2. Overview of agency-related and user-related global costs 
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 MRT 

User costs 

𝐹𝐴 
Transfer cost, due to users’ changing MRT lines at the 

outermost ring line (Figure 7.3b) 

𝐹𝑊 
Cost due to the time to wait for the MRT at the outermost 

ring line 

𝐹𝑇 
Cost due to the time spent into MRT along the outermost 

ring line 

Agency capital 

costs 
𝐹𝑀 

Cost due to MRT fleet and crew cost on the outermost ring 

line 

Agency operation 

costs 
𝐹𝑉 

Cost due to the vehicle-distance travelled on the outermost 

ring line 

We distinguish user-related costs and agency-related costs. The latter are further 

divided into capital costs, which are not dependent on the time of the day, and 

operation costs, which instead vary with 𝑡. The total cost is the sum of the three cost 

components: 

𝑍(𝐷, 𝐺, 𝑡) =  𝑍𝑢𝑠𝑒𝑟(𝐷(𝑥), 𝐺, 𝑡) + 𝑍𝑐𝑎𝑝(𝐷, 𝐺) + 𝑍𝑜𝑝(𝐷, 𝐺, 𝑡) = ∑ 𝑍𝑖(𝐷, 𝐺, 𝑡)𝑖∈{𝐴,𝑊,𝑇} +

∑ 𝑍𝑖(𝐷, 𝐺)𝑖∈{𝐿,𝑀} + ∑ 𝑍𝑖(𝐷, 𝐺, 𝑡)𝑖∈{𝑉}   (7.16) 

For each of the three schemes of Section 7.3.2 (MRT-Only, MRT-FRF, Adaptive 

Transit), we first dimension the system in the peak hour. To do so, let 𝑡𝑝𝑒𝑎𝑘 be the 

time interval in which the demand density is the highest, i.e., 𝑡𝑝𝑒𝑎𝑘 = arg maxt 𝜌0(𝑡). 

We want to find, for every 𝑥, the optimal values of local decision function 𝐷𝑝𝑒𝑎𝑘(𝑥|𝑄0), 

which depends on 𝑄0, and the optimal values of the global variables 𝐺𝑝𝑒𝑎𝑘. We solve 

the following optimization problem:  

{𝐺𝑝𝑒𝑎𝑘, 𝐷𝑝𝑒𝑎𝑘(𝑥|𝑄0)} = arg min𝐺,𝐷(𝑥){𝑍(𝐷, 𝐺, 𝑡
𝑝𝑒𝑎𝑘) subject to Equations 7.2-7.4} (7.17) 

This optimization allows us to dimension the fleet size and the transit 

infrastructure needed. Note that, once fixed to satisfy the mobility needs in peak 

hours, the fleet size and the infrastructure does not change over the day, and the 

corresponding cost must be supported by the agency, even if there are periods of the 

day in which they are not fully used. We thus fix the capital cost as: 

  𝑍𝑐𝑎𝑝 = ∑ 𝑍𝑖𝑖∈{𝐿,𝑀} = ∑ 𝑍𝑖(𝐷
𝑝𝑒𝑎𝑘(𝑥), 𝐺𝑝𝑒𝑎𝑘)𝑖∈{𝐿,𝑀}  (7.18) 

We then optimize the system in each time slot independently only minimizing the 

operational cost: 

 𝐺∗(𝑡), 𝐷∗(𝑥, 𝑡|𝑄0, 𝑟) = arg min𝐺,𝐷(𝑥){𝑍𝑜𝑝(𝐷, 𝐺, 𝑡) +

𝑍𝑢𝑠𝑒𝑟(𝐷, 𝐺, 𝑡)    subject to Equations 7.2-7.4;7.20(a-g)}  (7.19) 
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where we introduced the following constraints, valid when 𝑡 ≠ 𝑡𝑝𝑒𝑎𝑘: 

a. 𝑟 = 𝑟𝑝𝑒𝑎𝑘 

b. 𝜃𝑟(𝑥) = 𝜃𝑟
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 

c. 𝑆𝑐(𝑥) = 𝑆𝑐
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 < 𝑟 

d. 𝑠(𝑥) = 𝑠𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥     (MRT-only or MRT-FRF scheme) 

e. 𝑠(𝑥) = 𝑠𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 < 𝑟,    𝑠(𝑥) ≥ 𝑠𝑝𝑒𝑎𝑘(𝑥)    ∀𝑥 > 𝑟   (Adaptive Transit scheme) 

f. 𝑑𝑗(𝑥) = 𝑑𝑗
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 > 𝑟, 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}     (MRT-FRF scheme) 

g. 𝑑𝑗(𝑥) ≥ 𝑑𝑗
𝑝𝑒𝑎𝑘(𝑥)     ∀𝑥 > 𝑟, 𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}   (Adaptive Transit scheme) (7.20) 

Note that the equalities among the constraints of the previous minimization 

represent the fact that the infrastructure remains, all over the day, the same as the 

one decided via Equation 7.17. The total cost, over the entire day, is: 

 𝑍24ℎ = ∑ Δ𝑡 ∙ (𝑍𝑐𝑎𝑝 + 𝑍𝑜𝑝(𝐷
∗(𝑥, 𝑡), 𝐺∗(𝑡), 𝑡) + 𝑍𝑢𝑠𝑒𝑟(𝐷

∗(𝑥, 𝑡), 𝐺∗(𝑡), 𝑡))𝑡∈𝒯  (7.21) 

We point out that the optimization procedure is done separately for MRT-only, 

MRT-FRF and Adaptive Transit schemes.  

7.4.7 Optimization procedure 

We now describe the optimization procedure we execute for each time instant. The 

optimization of Equation 7.17 is non-convex, so we resort to bi-level optimization to 

solve it. The lower level subproblem consists, given any value of global variables r, 

Q0, to solve the following local optimization problem, for all 𝑥 ∈ [0, 𝑅]. 

𝐷∗(𝑥, 𝑡|𝑄0, 𝑟) = arg min𝐷(𝑥){∑𝑖 𝜇𝑖 ∙ (𝑌𝑖(𝐷, 𝑟, 𝑡, 𝑥) +

 𝑦𝑖(𝐷, 𝑟, 𝑡, 𝑥))  subject to Equations 7.2-7.4;7.20(a-g)}  (7.22) 

We use an interior-point algorithm to solve such problem. The higher level 

subproblem (global optimization) is to determine the set of global variables 𝐺(𝑡) that 

minimizes the total cost 𝑍, which we remember is the sum of global and local costs 

(Equation 7.15). The following iterative procedure is implemented: 

1. Initialize 𝑟 (sufficiently small) and repeat the global optimization procedure 

(described in step 3) by increasing 𝑟 until the total cost found is higher than the 

average value from the previous 3 iterations. When this occurs, set 𝑟∗  equal to 

the value of the third to last iteration. 
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2. For any value of 𝑟, initialize 𝑄0 and, similarly to the previous point, increase 

𝑄0 until the total cost found is higher than the average value from the previous 

3 iterations. When this occurs, set 𝑄0 equal to 𝑄0
∗, the value of the third to last 

iteration. 

3. Run the global optimization procedure, composed by the following steps: 

a. Run the local optimization (Equation 7.22) in order to find 𝐷∗(𝑥, 𝑡|𝑄0) for all 

𝑥 ∈ [0, 𝑅] (we discretize this interval with a step Δ𝑥). 

b. Find 𝐻𝐵 = argminHB{∑𝑖 𝜇𝑖 ∙ 𝐹𝑖(𝑟, 𝜙𝐵, 𝐻𝐵, 𝑡)    subject to Equation 7.4}.This 

problem is simple to solve since it has only one decision variable9.  

c. Compute the total cost as in Equation 7.16.  

Observe that, we first run the optimization procedure explained above in the peak 

hours. After that, we fix infrastructure length and fleet size. We then repeat the 

same optimization procedure for all the other time instants, with the additional 

constraint of keeping infrastructure length and fleet size fixed to the peak hour 

values. 

7.5 Numerical results 

We now compare the performance of transit schemes in scenarios representing a 

large urban conurbation, during peak and off-peak hours. 

7.5.1 Scenario parameters 

The complete list of the parameter values describing our scenario is reported in 

Table 7.3. We consider a circular area of radius 𝑅 =  25 km, which corresponds to 

the size of large metropolitan areas, e.g., the Greater Paris region. The value of the 

demand density 𝜌0(𝑡) is estimated from the travel demand data of the regional 

Household Travel Survey “EGT 2010”.10 We approximately fit Equation 7.5 on 

residential density data on Paris region.11 Therefore, an average demand density 

�̅�0 = 640 trips/km2 h (this is the sum of trips departing from and arriving at each 

km2) and a slope of 𝛾 = 0.12 km-1 are assumed. The shape of the transit demand as 

a function of the distance from the city centre is represented in Figure 7.5. 

 
9 Note that 𝜙𝐵 = 𝜙(𝑟) (Equation 7.14) 
10 The travel demand of Greater Paris consists of 8.3 million PT trips, on average per working day. Since 

a complete trip needs on average one transfer, we obtain a daily demand of 4.15 million trips made by PT 

per day. Considering 18 hours of PT operation, we obtain an average demand of 230∙103 trips/h. 
11 https://www.insee.fr/fr/statistiques  

https://www.insee.fr/fr/statistiques
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For the sake of simplicity, we divided the day into time intervals Δ𝑡 = 1 hour, and 

assume that 𝜌0(𝑡) only takes three values during the day: 

• A peak value 𝜌0(𝑡
𝑝𝑒𝑎𝑘) = 2.5 ∙ �̅�0 = 1600 trips/km2h 

• An off-peak value 𝜌0(𝑡
𝑜𝑝) = 0.75 ∙ �̅�0 = 480 trips/km2h 

• A low-peak value 𝜌0(𝑡
𝑙𝑝) = 0.4 ∙ �̅�0 = 256 trips/km2h 

 

Figure 7.5. Demand density and cumulative transit demand as functions of the distance 

from the city centre.  

Using this scheme, which is represented in Figure 7.6, we obtain a ratio between 

𝜌0(𝑡
𝑜𝑝) and 𝜌0(𝑡

𝑝𝑒𝑎𝑘) of 3/10, as suggested by Jara-Díaz et al. (2017). 

 
Figure 7.6. Transit demand fluctuation during the day. 

Referring to Table 7.3 we assume the cost coefficients of the FRF and the DRF are 

equal: this is because we assume that the switching between the two feeder services, 

in the Adaptive Transit scheme, occurs maintaining the same vehicles.  
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Table 7.3. Parameters of the base scenario 

Parameter Value Name Reference 

𝑅  25 km Radius of metropolitan area - 

𝜌0(𝑡
𝑝𝑒𝑎𝑘)  1600 trips/km2h 

Demand density (city centre 

- peak hours) 
- 

𝜌0(𝑡
𝑜𝑝)  480 trips/km2h 

Demand density (city centre 

- off-peak hours) 
- 

𝜌0(𝑡
𝑙𝑝)  256 trips/km2h 

Demand density (city centre 

- low-peak hours) 
- 

𝛾  0.12 km-1 Demand density gradient - 

𝑣𝑤  4.5 km/h Walking speed Google Maps 

𝑣𝑀𝑅𝑇  60 km/h MRT cruise speed Daganzo (2010) 

𝑣𝐹𝑅𝐹 , 𝑣𝐷𝑅𝐹  25 km/h Feeder cruise speed Daganzo (2010) 

𝐶𝑀𝑅𝑇  1200 MRT vehicle capacity - 

𝐶𝐹𝑅𝐹 , 𝐶𝐷𝑅𝐹  80 Feeder bus capacity  - 

𝜏𝑠,𝑀𝑅𝑇  45 s Time lost at MRT station Daganzo (2010) 

𝜏𝑠,𝐹𝑅𝐹 , 𝜏𝑠,𝐷𝑅𝐹  30 s Time lost at feeder bus stop Daganzo (2010) 

𝜏𝑝  2 s 
Time lost per boarding / 

alighting passenger 
- 

𝜇𝐴, 𝜇𝑊 , 𝜇𝑇  15, 22.5, 30 €/h 
Value of Time related to 

walking, waiting, travelling 

Meunier and Quinet 

(2015) 

Δ𝐴  2 min 
Time penalty due to 

transfers between MRT lines 
- 

𝜇𝐿,𝑀𝑅𝑇   
600 €/km h (𝑥 < 𝑟); 
300 €/km h (𝑥 > 𝑟) 

Cost coefficient related to 

MRT infrastructure 
Flyvbjerg et al. (2008) 

𝜇𝑆𝑇,𝑀𝑅𝑇   
300 €/km h (𝑥 < 𝑟); 
100 €/km h (𝑥 > 𝑟) 

Cost coefficient related to 

MRT stations 
Flyvbjerg et al. (2008) 

𝜇𝐿;𝐹𝑅𝐹 , 𝜇𝐿,𝐷𝑅𝐹  10 €/km-h 
Cost coefficient related to 

feeder infrastructure 
CERTU (2011) 

𝜇𝑉,𝑀𝑅𝑇  6 €/veh km 
Cost coefficient related to 

MRT vehicle-distance 
Daganzo (2010) 

𝜇𝑉,𝐹𝑅𝐹 , 𝜇𝑉,𝐷𝑅𝐹  0.5 €/veh km 
Cost coefficient related to 

feeder vehicle-distance 
Cats and Glück (2019) 

𝜇𝑀,𝑀𝑅𝑇  120 €/veh h 
Cost coefficient related to 

MRT fleet size 
Daganzo (2010) 

𝜇𝑀;𝐹𝑅𝐹 , 𝜇𝑀,𝐷𝑅𝐹  50 €/veh h 
Cost coefficient related to 

feeder fleet size 
Cats and Glück (2019) 

Also, we set the cost coefficient 𝜇𝐿,𝑀𝑅𝑇 in the suburban area is half of the one in 

the central area, since MRT lines do not require extensive tunnelling (which impacts 

on costs) outside the city centre. For the same reason, the cost coefficient 𝜇𝑆𝑇,𝑀𝑅𝑇 is 

3 times larger in the central area.  
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Finally, to obtain the capital cost coefficients, we use a straight-line amortization 

assuming 20 years (of 365 days) of useful life for MRT, 12 years for FRF and DRF, 

considering 18 operating hours per day. 

7.5.2 Performance of Adaptive design scheme 

We now compare the overall cost 𝑍24ℎ obtained with the three transit schemes, 

the difference in their optimal structure and the impact on user QoS, to show the 

superiority of our proposed Adaptive Transit over today transit design. The results 

are obtained, for each transit scheme, by applying the optimization procedure on the 

respective CA model. Such procedure searches for the optimal structure, i.e., the set 

of values of the decision variables that minimize the social cost. 

We remark that such a procedure, which we implement in MATLAB, is quite 

computationally efficient and terminates in about 10-20 minutes on an ordinary 

laptop for each transit scheme. As a comparison, observe that one single agent-based 

simulation in Narayan et al. (2020), took 45h on a super-computer. Obviously, we 

expect that the accuracy of their results is much stronger. However, such huge 

computation times are not suitable when we do not want to study the performance 

of a single transit configuration, but we want to find the optimal spatial 

configuration of the overall transit structure in a large urban area, and we are only 

interested in high level managerial insights. 

Temporal distribution of cost. Figure 7.7 (left) shows the most relevant differences 

between the performance of classic Fixed transportation vs. our Adaptive Transit 

scheme. Let us partition the time periods into disjoint sets 𝒯 = 𝒯𝑝𝑒𝑎𝑘 ∪ 𝒯𝑜𝑝 ∪ 𝒯𝑙𝑝. We 

represent the capital cost 𝑍𝑐𝑎𝑝 = ∑ 𝑍𝑖𝑖∈{𝐿,𝑀}  (see Equation 7.18), the operational cost 

𝑍𝑜𝑝 = 𝑍𝑉 and the user cost components 𝑍𝑢𝑠𝑒𝑟 = 𝑍𝐴 + 𝑍𝑊 + 𝑍𝑇. We recall that the total 

cost 𝑍24ℎ over the entire day is computed via Equation 7.21. We clearly see that 

Adaptive Transit greatly reduces user cost in all periods of day. This reduction is 

particularly stronger outside the peak hour, where classic fixed transportation shows 

more evidently its limitations. The reduction in user cost is mostly achieved thanks 

to a remarkable reduction of access (walking) time 𝑍𝐴. Indeed, where and when the 

demand density is low (suburbs, off-peak), MRT-only scheme provides only few stops, 

to prevent the operational cost to explode, thus requiring users to walk a lot. A 

similar (although less pronounced) problem occurs in Off- and Low-peak with MRT-

FRF scheme. Adaptive Transit does not have such an issue, as when and where FRF 

becomes too disadvantageous for the user, it deploys DRF, which picks up and drops 
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off users at their locations. Observe that this improvement for users requires higher 

agency costs, both capital cost (fleet 𝑍𝑀 and infrastructure 𝑍𝐿) and operational 

(vehicle-km cost 𝑍𝑉), since the agency needs to deploy more feeder vehicles. 

However, such increase of agency cost is worth it, since the overall cost of Adaptive 

Transit outperforms the other schemes. Figure 7.7 shows that our Adaptive Transit 

scheme reduces the overall daily generalized cost (-19.7% and -3.6% than the MRT-

only and the MRT-FRF scheme, respectively). This saving is more pronounced 

during off-peak hours (7.2% of improvement compared to the MRT-FRF scheme). 

  

  

Figure 7.7. Cost of MRT-Only, MRT-FRF and Adaptive Transit scheme across the day. 

Spatial distribution of cost. In Figure 7.8, we divide the study area in 3 different 

zones: the 1st zone for x < 6 km, the second zone for 6 km < x < 15 km, and the third 

for x > 15 km. Such zones have comparable size to Paris city, Petite Couronne and 

Grande Couronne, respectively. With this figure we aim at evaluating how the user 

cost (in terms of travel time) distributes among the three zones in the different 

design schemes. 
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Figure 7.8. Components of the total access time to MRT stations in 3 zones of the study 

area, for MRT-Only, MRT-FRF and Adaptive Transit scheme, in (a) Peak, (b) Off-peak and 

(c) Low-Peak hours. 
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In particular, we represent in each zone the average time (in minutes) suffered by 

the users of the transit system to access the MRT station. This time is made up by 

five components, i.e., the walking time 𝐴𝑓𝑒𝑒𝑑𝑒𝑟 to access/egress the feeder stop (if 

any), the waiting time 𝑊𝑓𝑒𝑒𝑑𝑒𝑟 for the feeder service (if any), the in-vehicle time 

𝑇𝑓𝑒𝑒𝑑𝑒𝑟 on the feeder (if any), the walking time 𝐴𝑀𝑅𝑇 to access/egress the MRT station 

and the waiting time 𝑊𝑀𝑅𝑇 at the MRT station. 

We observe that the time needed to access the MRT explodes far the from city 

centre, in particular during off-peak hours, in the MRT-only and MRT-FRF scheme. 

In the first case, the discomfort for passengers far from the centre is further 

exacerbated by high waiting times. Such passengers are the ones that, in reality, 

would not take transit and would rather use private cars. Adaptive Transit, instead, 

provides a fast connection to MRT stations far from the centre, while keeping the 

waiting time relatively low. Therefore, Adaptive Transit prevents the accessibility to 

MRT from degrading in suburban areas. 

Our Adaptive design alleviates the cost suffered from users in the periphery much 

more than classic designs, by shifting the agency costs toward the outskirt (see the 

next subsection). Observe instead that classic design suffers from a bias, favouring 

city centre, in cost distribution: agency invests more in the city centre, so that user 

cost is minimized there, at the detrimental of suburban population. In order words, 

classic designs inherently suffer from high inequality. Such an inequality is 

alleviated with Adaptive Transit, which improves user-cost in the suburb, without 

degrading too much performance in the centre. 

7.5.3 Spatial adaptivity of Adaptive Transit 

Figure 7.9 shows the optimal structure of the three transit schemes with reference 

to the peak hours and the off-peak hours, explaining the cost results previously 

discussed. Observe that the three schemes slightly differ in the central area 𝑥 < 𝑟, 

since in any case only MRT is deployed there. 

We observe that the optimal value of 𝑟 for the MRT-only scheme (Figure 7.9a-b) 

is considerably higher than the schemes adopting feeder services in the FMLM. In 

fact, the outermost MRT ring line should have a 9 km radius vs. the 5.5 km of both 

MRT-FRF (Figure 7.9c-d) and Adaptive Transit (Figure 7.9e-f). This ensures a wider 

double-coverage (ring and radial lines) area, but it would result, as we have already 

seen, in higher infrastructure-related cost. 
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Figure 7.9. Optimal decision variables for the three transit schemes: (a) MRT-only; (b) 

MRT-FRF; (c) Adaptive. Recall that 𝑆𝑟(𝑥) and 𝑆𝑐(𝑥) are the spacings between MRT lines 

(radial and circular, respectively), 𝑠(𝑥) and 𝑠𝑐(𝑥) are the spacings between MRT stations 

(radial and circular, respectively), 𝐻(𝑥) is the headway of MRT and ℎ(𝑥) is the headway of 

the feeder service. 

The differences between the three schemes are clearly visible in the suburban 

area. In Figure 7.9b one can see that deploying FRF services allows the transit 

agency to save on infrastructure cost by increasing the spacing 𝑆𝑟(𝑥) between radial 

MRT lines and thus to halve the headway of the MRT 𝐻(𝑥) with respect to the MRT-

only scheme. Also, the distance between MRT stations is higher because users can 

(a) 

(c) 

(b) 

(d) 

(e) (f) 
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exploit the feeder service instead of walking: increasing the station spacing results 

in a higher commercial speed on MRT lines and thus in lower in-vehicle times for 

users. During off-peak, as one can note from Figure 7.9d, 𝐻(𝑥) is almost twice higher 

than the peak value, while ℎ(𝑥) is reduced. Such an improvement in the quality of 

the feeder service compensates the higher waiting time for the MRT during off-peak 

and low-peak periods. 

Finally, Figure 7.9e and Figure 7.9f show the decision variables derived through 

the optimization process for peak and off-peak hours for the Adaptive Transit 

scheme. During peak, Adaptive Transit prefers to deploy FRF in the close suburbs, 

where the demand is sufficiently high, and relegates DRF only to the further 

periphery (𝑥 < 21 𝑘𝑚), where the feeder service areas are slightly smaller compared 

to the FRF. Moreover, the DRF requires a lower headway ℎ(𝑥) to better 

accommodate the demand. 

Observe that, for all the schemes the MRT offer is richer where the demand 

density is high, i.e., the headway 𝐻(𝑥) and the radial line spacing 𝑆𝑟(𝑥) are smaller 

in the suburbs closer to the centre. This is also what we observe in real cities. We 

also observe that the stop spacing 𝑠(𝑥) decreases the further we go from the centre. 

This trend is more evident in the peak hours, due to the fact that the stop spacing 

strongly affects the commercial speed of the MRT and, consequently, the total travel 

time of passengers. Since the demand density is higher close to the city centre, it is 

more convenient to have a faster service (with less stops) in areas closer to it. 

It is important to remark how the structure of our adaptive structure changes 

over the time and space. It is worth highlighting how, for 𝑥 > 𝑟, the low demand 

density makes Adaptive Transit prefer DRF outside the peak. Moreover, the spacing 

between MRT stations increases going from peak to off-peak and low-peak hours. We 

pinpoint that such variation should not be interpreted as an unreal modification of 

the infrastructure, but as an operational strategy consisting of “skipping” some stops 

in certain moments of the day, i.e., introducing an “express” service not serving all 

the possible MRT stations, in order to offer faster connections. This shows that 

Adaptive Transit is able to vary the kind of offered feeder service spatially, to adapt 

to the geographic demand gradient, and temporally, to adapt to the time-evolution 

of the demand. 

7.5.4 Effects of varying urban area size and value of time 

We want to evaluate the impact of varying two parameters, namely the radius R 

of the city and the VoT for passengers, on the system costs in the Adaptive scheme. 
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In order to allow for a better comparison between each R–VoT combination, costs are 

expressed per passenger. Not surprisingly, the total cost rises when the study area 

widens and if the VoT increases. However, it is interesting to evaluate the “gain” in 

cost that we can achieve via Adaptive Transit, with respect to the MRT-FRF scheme. 

From Figure 7.10a, we notice how the higher gain (~5%) can be obtained when the 

VoT is small (10 €/h), independently of R. Increasing the VoT and for larger study 

areas, the Adaptive Transit scheme has still the lower total cost, but the percentage 

gain decreases. 

 

Figure 7.10. Cost improvements (on daily basis) of the Adaptive scheme with respect to 

the MRT-FRF scheme for different combinations of city size (R) and Value of Time (A), 

considering: (a) the total cost per transported passenger; (b) the agency-related costs per 

transported passenger; (c) the user-related costs per transported passenger. 

This trend can be better explained if we consider the agency-related (Figure 7.10b) 

and the user-related costs (Figure 7.10c) separately. Lower VoT (10 €/h) or small R 

(10 km) imply a modest increase of agency-related costs (~2%), but a significant 

reduction of user-related costs (from 6% to 8%). When considering higher values of 

VoT and R, instead, the optimal configuration of the Adaptive Transit leads to a 
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stronger increase in agency-related costs (~30% if VoT = 20 €/h and R > 30 km) than 

the decrease in user-related costs (~12% if VoT = 20 €/h and R > 30 km). One reason 

is that Adaptive Transit, as already claimed, prevents the accessibility to MRT (and 

thus travel times) from degrading in suburban areas, by offering a demand-

responsive feeder service with high frequency. Ensuring a good QoS results in higher 

capital and operating costs for the transit agency. 

7.6 Conclusion and future research 

We have presented the concept of Adaptive Transit, which combines fixed-route 

and demand-responsive transport and alternates between the two services in order 

to adapt to the spatial and temporal variation of the demand density. We provided a 

theoretical high-level model of Adaptive Transit based on Continuous 

Approximation, where the demand density and the decision variables defining the 

transit network are continuous functions across the space and vary over time. 

Numerical results on such a model show that Adaptive Transit tilts the balance of 

the overall costs in favour of user-centric components, keeping the agency cost at a 

reasonable level, such that the overall cost (the sum of the two) is improved. An 

important benefit of Adaptive Transit is that it limits the degradation of QoS in 

suburban areas. In the MRT-only Scheme, the line density in the entire study area 

would be unfeasibly high. MRT-FRF and Adaptive Transit schemes, instead, can 

afford a sparser MRT infrastructure by solving the FMLM transportation problem 

via feeder services, whence the infrastructure savings. An additional advantage, not 

considered in this work, can be represented by the induced or latent demand, i.e., 

due to the modal shift from car to PT which would take place thanks to the improved 

service for passengers. 

To summarize, the novelty of this work is that it provides managerial insights on 

how to holistically optimize the design of a future transit system, able to combine 

fixed schedule and demand-responsive operations in a single multi-modal service. In 

future work, we will verify the impact of electrification and automation (Badia and 

Jenelius, 2021), which deeply modify the agency cost components. Also, intermediate 

operating strategies between FRF and DRF should be investigated, including the 

possibility of consolidating the demand for the feeder service in a limited number of 

stop locations. In conclusion, we believe the concept of Adaptive Transit can guide 

planning agencies in the design of more efficient next-generation transit systems. 
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Appendix B 

The derivation of the cost components and constraints of the Continuous 

Approximation (CA) model is presented as follows. Table B1 lists the parameters and 

variables used in the model. 

Table B1. Notation of CA model’s variables and parameters 

Independent variables 

𝑥 radial distance from the centre (𝑥 = 0) of the urban area 

𝑡 time of the day. 

Input parameters 

𝑅 Radius of the metropolitan area 

𝜌0(𝑡) Demand density in the city centre during the time slot t 

𝛾 Slope of the Clark’s law (Equation 7.5) 

𝑣𝑀𝑅𝑇 , 𝑣𝐹𝑅𝐹 , 𝑣𝐷𝑅𝐹 , 𝑣𝑤 Cruise speed of MRT, FRF, DRF; walking speed 

𝐶𝑀𝑅𝑇 , 𝐶𝐹𝑅𝐹 , 𝐶𝐷𝑅𝐹 Vehicle capacity 

𝜏𝑠,𝑀𝑅𝑇 , 𝜏𝑠,𝐹𝑅𝐹 , 𝜏𝑠,𝐷𝑅𝐹 Dwell time at MRT stations, FRF and DRF stops 

𝜏𝑝 Extra dwell time per passenger 

𝜇𝐴, 𝜇𝑊, 𝜇𝑇 VoT of the access, walking and in-vehicle time 

𝛿𝑡𝑟 Time penalty due to transfers 

𝜇𝐿,𝑀𝑅𝑇 , 𝜇𝐿;𝐹𝑅𝐹 , 𝜇𝐿,𝐷𝑅𝐹 Cost coefficients related to the infrastructure length 

𝜇𝑉,𝑀𝑅𝑇 , 𝜇𝑉;𝐹𝑅𝐹 , 𝜇𝑉,𝐷𝑅𝐹 Cost coefficients for the distance travelled by the vehicles 

𝜇𝑀,𝑀𝑅𝑇 , 𝜇𝑀;𝐹𝑅𝐹 , 𝜇𝑀,𝐷𝑅𝐹 Cost coefficients related to the fleet size 

𝑁(𝑥) 
Number of passengers in the infinitesimal annulus of radius x, 

𝑁(𝑥) = 2 𝜌(𝑥) ∙ (2𝜋𝑥). 

Local decision variables at location x 

θr(𝑥), 𝑆𝑟(𝑥) Angular and linear spacing between radial MRT lines 

𝑆𝑐(𝑥) Spacing between circular MRT lines 

𝑠(𝑥) Spacing between stations along a radial MRT line 

𝜙(𝑥) Angle between stations on a circular MRT line 

𝐻(𝑥) Headway on circular and radial MRT lines 

ℎ(𝑥) Headway of the feeder service in the suburban area 

𝑑𝑗(𝑥) 
Spacing between FRF stops if j = FRF, twice the maximum 

walking distance from the station if j = DRF 

𝐹(𝑥) Type of FMLM service, 𝐹(x) ∈ {FRF, DRF, 0} 
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Derived variables at location x 

𝕀𝑗(𝑥) Indicator function, it is 1 if 𝐹(𝑥) = 𝑗, 0 otherwise 

𝒟(𝑥) 
Local decision functions  

𝒟(𝑥) = {θr(𝑥), 𝑆𝑐(𝑥), 𝑠(𝑥), 𝜙(𝑥), 𝐻(𝑥), ℎ(𝑥), 𝑑𝑗(𝑥), 𝐹(𝑥)} 

𝑙(𝑥) Length of the FMLM rectangle 

𝐶𝐿𝑗(𝑥) Cycle length of the FMLM feeder of type j ∈ {FRF, DRF} 

𝐶𝑗(𝑥) Cycle time of the FMLM feeder of type j ∈ {FRF, DRF} 

Global decision variables 

𝑟 Radius of the central (double-coverage) area 

𝑄0 Maximum value of total radial flow of MRT vehicles, 𝑄0 = 𝑄(x=0) 

𝐻𝐵 Headway at the outermost ring line 𝐻𝐵 = 𝐻(𝑥 = 𝑟) 

𝐺 Global decision variables 𝐺 = (𝑟;𝑄0; 𝐻𝐵) 

Output parameters 

𝑦𝐿,𝑗(𝑥), 𝑦𝑉,𝑗(𝑥), 𝑦𝑀,𝑗(𝑥) 
Agency local cost at distance x from the centre: infrastructure, 

vehicle-km and fleet costs, j ∈ {MRT, FRF, DRF} 

𝑦𝐴,𝑗(𝑥), 𝑦𝑊,𝑗(𝑥), 𝑦𝑇,𝑗(𝑥) 

Travel time components suffered by users at distance x from the 

city centre: walking, waiting and in-vehicle time,  

j ∈ {MRT, FRF, DRF} 

𝐹𝐿 , 𝐹𝑉 , 𝐹𝐴, 𝐹𝑊, 𝐹𝑇 Global cost components for agency and users. 

𝐷𝑒𝑚𝑜(𝑥), 𝐷𝑒𝑚𝑑(𝑥) 
Number of origin or destination trips lying within rings of radii 

(𝑥, 𝑥 + 𝑑𝑥). 

𝑃𝑜(𝑥), 𝑃𝑑(𝑥) 
Probability for an origin or destination trip of lying within rings 

of radii (𝑥, 𝑥 + 𝑑𝑥). 

𝐷𝐸𝑀 Total number of trips per hour in the study area. 

𝑣𝑐𝑟(𝑥), 𝑣𝑐𝑐(𝑥) Commercial speed on radial lines and ring lines at x. 

𝑄(𝑥) Radial flow of MRT vehicles (trains per hour) 

𝑂𝑗(𝑥) Average vehicle occupancy 

𝑍 Global cost 

The next sections of the appendix outline the derivation of operational outputs, 

the agency-related and the user-related cost components. The derivation procedure 

of the cost components for the MRT takes inspiration from Chen et al. (2015) - 

Appendix A - except that we consider the same headway on circular and radial lines 

𝐻𝑟(𝑥) = 𝐻𝑐(𝑥) = 𝐻(𝑥) and treat the spacing between radial 𝑠(𝑥) and circular 𝜙(𝑥) 

MRT stations as local decision variables, while in Chen et al. (2015) they do not 

change with x. Also, in this study we consider a symmetric demand pattern, so that 

𝐷𝑒𝑚𝑜(𝑥) = 𝐷𝑒𝑚𝑑(𝑥) = 𝐷𝑒𝑚(𝑥) = 2𝜋𝑥 ∙ 𝜌(𝑥), and we obtain:  
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 𝑃(𝑥) =
𝐷𝑒𝑚(𝑥)

𝐷𝐸𝑀
=

𝐷𝑒𝑚(𝑥)

∫ 𝐷𝑒𝑚(𝑦)𝑑𝑦
𝑅

0

 (B.1) 

B.1. Derivation operational outputs and constraints for the MRT 

MRT radial-line and ring-line commercial speed. They are given by the sum, per 

unit distance, of the cruising time (at speed 𝑣𝑀𝑅𝑇) and the time lost at stations due 

to acceleration and deceleration, including the time spent boarding passengers, as 

follows: 

𝑣𝑐𝑐(𝑥) = 1/ (
1

𝑣𝑀𝑅𝑇
+
𝜏𝑠,𝑀𝑅𝑇

𝑠(𝑥)
); 𝑣𝑐𝑟(𝑥) = 1/ (

1

𝑣𝑀𝑅𝑇
+
𝜏𝑠,𝑀𝑅𝑇

𝜙(𝑥)𝑥
) 

Commercial speed on the boundary ring. As before, but considering the angle 𝜙𝐵 

between stations on the outermost ring line, as follows: 

𝑣𝑐𝐵 = 1/ (
1

𝑣𝑀𝑅𝑇
+
𝜏𝑠,𝑀𝑅𝑇

𝜙𝐵𝑟
) . 

Vehicle capacity constraint. The expected maximum number of passengers on 

board a MRT vehicle is constrained to be less than the vehicle’s passenger-carrying 

capacity, i.e., 𝑂𝑀𝑅𝑇(𝑥) ≤ 𝐶𝑝𝑎𝑥,𝑀𝑅𝑇. To better understand the derivation of the 

following formulas, the reader can refer to the scheme of Figure 7.3. For ring lines, 

the total number onboard all MRT vehicles on a ring line at x is: 2 (𝑃(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
) ∙

2

𝜋
. The ratio of the average trip length to the length of the ring line is: 𝑥/2𝜋𝑥. The 

flow of MRT vehicles on that ring is: 2/(𝑆𝑐(𝑥)𝐻(𝑥)). Hence: 

𝑂𝑀𝑅𝑇,𝑐(𝑥) =  (𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
) ∙

2

𝜋
∙
(𝑆𝑐(𝑥)𝐻(𝑥)

2𝜋
, if 𝑥 < 𝑟. 

For radial lines, we therefore obtain: 

𝑂𝑀𝑅𝑇,𝑟(𝑥) =  ∫ 𝜌(𝑦)𝑑𝑦
𝑅

0
∙ (∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥 ∫ 𝑃(𝑦)𝑑𝑦
𝑥

0
∙
2

𝜋
+ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
∙ (1 −

2

𝑝𝑖
)) ∙

𝜃𝑟(𝑥)𝐻(𝑥)

2𝜋
, if 𝑥 < 𝑟. 

𝑂𝑀𝑅𝑇,𝑟(𝑥) =  ∫ 𝜌(𝑦)𝑑𝑦
𝑅

0
∙ (∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
) ∙

𝑆𝑐(𝑥)𝐻(𝑥)

2𝜋
, if 𝑥 > 𝑟. 

Vehicle capacity constraint on the boundary ring. Similarly, the vehicle’s 

passenger-carrying capacity constraint for the boundary route is: 𝑂𝐵 ≤ 𝐶𝑝𝑎𝑥,𝑀𝑅𝑇. 

Hence: 

𝑂𝐵 =  𝐷𝐸𝑀 ∙ (∫ 𝑃(𝑦)𝑑𝑦 ∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥

𝑅

𝑥
) ∙

2

𝜋
∙
𝐻𝐵/2

2𝜋
. 
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B.2. Derivation of the agency-related cost components for the MRT 

Local cost for the length of MRT lines. Consider the area between two rings of 

radii 𝑥 and 𝑥 + 𝑑𝑥, which is equal to 2𝜋𝑥 ∙ 𝑑𝑥. The length of the MRT radial lines 

within the ring pair is 2𝜋/𝜃𝑟(𝑥)  ∙ 𝑑𝑥. The length of the ring lines is instead 

2𝜋𝑥/𝑆𝑐(𝑥)  ∙ 𝑑𝑥. The local cost is given by the length of the MRT lines in the area 

divided by the area width 𝑑𝑥; that is: 

𝑌𝐿(𝑥) =
2𝜋

𝜃𝑟(𝑥)
+

2𝜋𝑥

𝑆𝑐(𝑥)
 if 𝑥 < 𝑟; 𝑌𝐿(𝑥) =

2𝜋

𝜃𝑟(𝑥)
, if 𝑥 > 𝑟. 

Local cost for the vehicle-distance travelled per hour. It is obtained by multiplying 

the local cost for the length of ring-lines and radial-lines with their corresponding 

transit flows, i.e., 1/𝐻(𝑥), multiplied by 2 due to the bi-directional travel flows on 

each line; that is: 

𝑌𝑉(𝑥) =
4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)
+

4𝜋𝑥

𝑆𝑐(𝑥)𝐻(𝑥)
 if 𝑥 < 𝑟; 𝑌𝑉(𝑥) =

4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)
, if 𝑥 > 𝑟. 

Global cost for the vehicle-distance travelled per hour. Global costs refer only to 

the outermost (boundary) ring line, hence: 

𝐹𝑉 =
4𝜋𝑟

HB
. 

Local cost for the fleet size in the peak hour. It is given by the ratio between the 

vehicle-distance travelled per hour and the commercial speed, that is: 

𝑌𝑀(𝑥) =
4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)𝑣𝑐𝑟(𝑥)
+

4𝜋𝑥

𝑆𝑐(𝑥)𝐻(𝑥)𝑣𝑐𝑐(𝑥)
 if 𝑥 < 𝑟; 𝑌𝑀(𝑥) =

4𝜋

𝜃𝑟(𝑥)𝐻(𝑥)𝑣𝑐𝑟(𝑥)
, if 𝑥 > 𝑟. 

Global cost for the fleet size in the peak hour. As before: 

𝐹𝑀 =
4𝜋𝑟

HB𝑣𝑐𝐵
. 

B.3. Derivation of the agency-related cost components for the FMLM 

Denoting with 𝑠𝑎(𝑥) = 2𝜋/(𝜃𝑟(𝑥)/2) the number of subareas along the ring at x, 

the agency local costs for the feeder service are computed as follows. We reasonably 

assume that the infrastructure cost 𝑦𝐿(𝑥) is the same for FRF and DRF operation 

and thus we do not need to distinguish between them. Therefore: 

 𝑦𝐿,𝑗(𝑥) = 𝑁𝑠(𝑥) ∙
𝐶𝐿𝐹𝑅𝐹(𝑥)

2 𝑠(𝑥)
∙ 𝑠𝑎(𝑥) 

We need to do this distinction, instead, for 𝑦𝑉(𝑥) and 𝑦𝑀(𝑥), in which the cycle 

length 𝐶𝐿𝑗(𝑥) and the cycle time 𝐶𝑗(𝑥) appear, which are different for FRF and DRF 

(see Equations 7.7; 7.9; 7.12; 7.13). The vehicle-distance travelled per hour is 
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obtained by multiplying the cycle length 𝐶𝐿𝑗(𝑥)/𝑠(𝑥) by their corresponding vehicle 

frequency 1/ℎ(𝑥): 

 𝑦𝑉,𝑗(𝑥) = ∑ 𝑁𝑠(𝑥) ∙
𝐶𝐿𝑗(𝑥)

𝑠(𝑥)∙ℎ(𝑥)
∙ 𝑠𝑎(𝑥)𝑗={𝐹𝑅𝐹,𝐷𝑅𝐹}  

The cost of fleet size is derived from the number of vehicles 𝐶𝑗/(𝑠(𝑥) ∙ ℎ(𝑥)) needed 

to ensure the feeder service:  

 𝑦𝑀,𝑗(𝑥) = ∑ 𝑁𝑠(𝑥) ∙
𝐶𝑗(𝑥)

𝑠(𝑥)∙ℎ(𝑥)
∙ 𝑠𝑎(𝑥)𝑗={𝐹𝑅𝐹,𝐷𝑅𝐹}   

In the equations above, sa(x) multiplies on the left the cost (per distance unit) 

related to a single service area. 

B.4. Derivation of the user-related cost components for the MRT 

The cost components related to the users of the transit system depend on: 

• Walking time A to reach the bus stop or the MRT station or the destination. 

• Waiting time W at the bus stop or the MRT station. 

• In-vehicle (MRT, FRF or DRF) time T including boarding, riding, dwell and 

alighting time. 

• Transfers: since any possible transfer between different transit lines is an 

additional disutility, we treat it as a penalty of the extra walking time Δ𝐴. 

To derive the user-related cost components, we consider nine different cases of 

trips, as depicted in Figure B1. 

Local cost for the passenger average access time. 

Cases (a) and (g): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
), if 𝑥 > 𝑟. 

Cases (b) and (h): 𝑌𝐴(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
) , if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
) , if 𝑥 > 𝑟.

 

Cases (c) and (i): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙ (1 −

2

𝜋
) , if 𝑥 < 𝑟. 

Case (d): 𝑌𝐴(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙

2

𝜋
, if 𝑥 > 𝑟; 

Cases (e): 𝑌𝐴(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙ (
𝜙(𝑥)𝑥

4
+
𝑆𝑐

4
) /𝑣𝑤 ∙

2

𝜋
, if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙

2

𝜋
, if 𝑥 > 𝑟.
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Case (f): 𝑌𝐴(𝑥)(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

𝑥
∙ (
𝜙(𝑥)𝑥

4
+
𝑆𝑐

4
) /𝑣𝑤 ∙

2

𝜋
+ 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙

(
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 ∙

2

𝜋
 , if 𝑥 < 𝑟; 

If we sum up these components (Cases a-i) we obtain: 

𝑌𝐴(𝑥)(𝑥) =

{
 
 

 
 2 ∙ 𝐷𝑒𝑚(𝑥) ∙ [∫ 𝑃(𝑦)𝑑𝑦

𝑥

0

∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤 +∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥

∙ (
𝜙(𝑥)𝑥

4
+
𝑆𝑐
4
)/𝑣𝑤] , if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∙ (
𝜃𝑟(𝑥)𝑥

4
+
𝑠

4
) /𝑣𝑤,                                                                                             if 𝑥 > 𝑟.

 

 

Figure B.1. Different cases of trips for the derivation of user-related cost components. 
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Global cost for the transfers between MRT lines. During their trips, travellers transfer once 

(Cases a-c;e-f), twice (case d, where origins and destinations both lie in the periphery and Θ < 2 

rad), or do not transfer (cases g-i). The average expected number of transfers is: 

𝐹𝐴 = 1 + ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
2

𝜋
−
𝜃𝑟,𝑚𝑖𝑛

𝜋
. 

Local cost for the passenger average waiting time.  

Case (a): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
), if 𝑥 > 𝑟. 

Case (b): 𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
) , if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥)∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
) , if 𝑥 > 𝑟.

 

Case (c): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙ (1 −

2

𝜋
), if 𝑥 < 𝑟. 

Case (d): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 > 𝑟. 

Case (e): 𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 > 𝑟.

 

Case (f): 𝑌𝑊(𝑥) = 2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑟

0
∙
𝐻(𝑥)

2
∙
2

𝜋
, if 𝑥 < 𝑟. 

The following cases account for those trips which do not require transfers between 

MRT lines. Therefore, they should be subtracted from the total value of 𝑌𝑊(𝑥). 

Cases (g), (h) and (i): 𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙
𝐻(𝑥)

2
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑥+𝑠/2

𝑥−𝑠/2
∙
𝐻(𝑥)

2
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 > 𝑟.

 

If we sum up Cases (a-g) and subtract Cases (g-i) we obtain: 

𝑌𝑊(𝑥) = {
2 ∙ 𝐷𝑒𝑚(𝑥) ∙ [1 − (∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
) ∙

𝜃𝑟(𝑥)

𝜋
] ∙

𝐻(𝑥)

2
,                                if 𝑥 < 𝑟 

2 ∙ 𝐷𝑒𝑚(𝑥) ∙ [1 − (∫ 𝑃(𝑦)𝑑𝑦
𝑥

0
+ ∫ 𝑃(𝑦)𝑑𝑦

𝑥+𝑠/2

𝑥−𝑠/2
) ∙

𝜃𝑟(𝑥)

𝜋
] ∙

𝐻(𝑥)

2
, if 𝑥 > 𝑟.

. 

Global cost for the passenger average waiting time. We only consider the cost that 

occurs at the outermost ring line, for case (d), excluding the limited portion of trips 

which do not involve any transfer: 

𝐹𝑊 = 𝐷𝐸𝑀 ∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝐻𝐵

2
∙ (
2

𝜋
−
𝜃𝑟,𝑚𝑖𝑛

𝜋
). 

Local cost for the passenger average in-vehicle time. We consider the annulus 

(𝑥, 𝑥 + 𝑑𝑥). We obtain the in-vehicle travel time on each annulus weighted by the 

proportion of users who travel along it and who cross it. Then, the in-vehicle travel 

time on that annulus by its width 𝑑𝑥.  
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Cases (a), (b) and (c): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙

1

𝑣𝑐𝑟(𝑥)
∙ (1 −

2

𝜋
), ∀𝑥 

Case (d): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙

1

𝑣𝑐𝑟(𝑥)
∙
2

𝜋
, if 𝑥 > 𝑟. 

Cases (e) and (f): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙

1

𝑣𝑐𝑟(𝑥)
∙
2

𝜋
+ 2 ∙

𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙

1

𝑣𝑐𝑐(𝑥)
∙
2

𝜋
, if 𝑥 < 𝑟 

The following cases account for those trips which do not require transfers between 

MRT lines. Therefore, they should be subtracted from the total value of 𝑦𝑇,𝑀𝑅𝑇(𝑥). 

Case (g): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑥+

𝑠

2

𝑥+
𝑠

2

∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑥+

𝑠

2

𝑥+
𝑠

2

∙
1

𝑣𝑐𝑟(𝑥)
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 > 𝑟. 

Case (h): 𝑌𝑇(𝑥) = 𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑥
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑥

0
∙

1

𝑣𝑐𝑟(𝑥)
∙
𝜃𝑟(𝑥)

𝜋
, if 𝑥 > 𝑟. 

If we sum up Cases (a-g) and subtract Cases (g-h) we obtain the local cost 𝑌𝑇(𝑥). 

Global cost for the passenger average in-vehicle time. We consider the in-vehicle 

travel time along the boundary ring line: 

𝐹𝑊 = 𝐷𝐸𝑀 ∙ ∫ 𝑃(𝑦)𝑑𝑦
𝑅

𝑟
∙ ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑟
∙
𝑟

𝑣𝑐𝐵
∙ (
2

𝜋
−
𝜃𝑟,𝑚𝑖𝑛

𝜋
) + [𝐷𝐸𝑀 ∙ 2∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
∙

∫ 𝑃(𝑦)𝑑𝑦
𝑥

0
] ∙

1

𝑣𝑐𝑟(𝑥)
∙
2

𝜋
+ [2 ∙ 𝐷𝑒𝑚(𝑥) ∫ 𝑃(𝑦)𝑑𝑦

𝑅

𝑥
] ∙

1

𝑣𝑐𝑐(𝑥)
∙
2

𝜋
. 

B.5. Derivation of the user-related cost components for the FMLM 

Let us denote with the walking speed with 𝑣𝑤 and the number of passengers in 

the infinitesimal annulus of radius x with: 

 𝑁(𝑥) =  2 𝜌(𝑥) ∙ (2𝜋𝑥)  

Note that a percentage 𝑝𝑤𝑎𝑙𝑘 of passengers does not use the feeder service and 

that the average walking distance for users residing in the walking area to reach the 

MRT station in case of DRF is 𝑑0,𝐷𝑅𝐹(𝑥)/3 + 𝑑0,𝐷𝑅𝐹(𝑥)/3 =  (2/3) 𝑑0,𝐷𝑅𝐹(𝑥). Then, the 

total time components suffered by users at x are expressed as follows. FRF 

passengers walk to the closest stop (feeder stop or directly MRT station). According 

to Equation 7.8, the average walk distance is 𝑠(𝑥)/4 +  𝑑(𝑥)/4. DRF passengers are 

picked-up and dropped-off in-place, without walking. Only the users within the 

walking area, i.e., a fraction 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹(𝑥), walk to/from the MRT station an average 

distance of (2/3) 𝑑0,𝐷𝑅𝐹(𝑥). Therefore, the local cost for the feeder access time is: 

 𝑦𝐴,𝑗(𝑥) = {
𝑁(𝑥) ∙

𝑠(𝑥)+𝑑(𝑥)

4 𝑣𝑤
                         𝑎𝑛𝑑   if 𝑗 = FRF

𝑁(𝑥) ∙ 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹 ∙
2/3 𝑑0,𝐷𝑅𝐹(𝑥)

4 𝑣𝑤
    if 𝑗 = DRF 
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The average waiting time for the feeder service and the in-vehicle time inside the 

feeder bus are as follows. Note that they are not experienced by passengers directly 

walking to the MRT station, whence the term (1 − 𝑝𝑤𝑎𝑙𝑘,𝑗). Assuming that the 

average waiting time for both feeder services is given by the half of the headway 

ℎ(𝑥), The local cost for the feeder waiting time is: 

 𝑦𝑊,𝑗(𝑥) = 𝑁(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝑗) ∙
ℎ(𝑥)

2
     if  𝑗 ∈ {𝐹𝑅𝐹, 𝐷𝑅𝐹}   

The average in-vehicle time for the FRF case is computed as in Quadrifoglio and 

Li (2009) and is given by 𝐶𝐹𝑅𝐹/4 + (Δ𝑙(𝑥) + 𝑑0,𝐹𝑅𝐹(𝑥)/2)/𝑣𝐹𝑅𝐹. For the DRF case, the 

average in-vehicle time is given by 𝐶𝐷𝑅𝐹/4 + Δ𝑙(𝑥)/𝑣𝐷𝑅𝐹. The local cost for the feeder 

in-vehicle time is: 

 𝑦𝑇,𝑗(𝑥) =

{
 
 

 
 
𝑁(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝐹𝑅𝐹) ∙ [

𝐶𝐹𝑅𝐹

4
+
(Δ𝑙(𝑥)+

𝑑0,𝐹𝑅𝐹(𝑥)

2
)

𝑣𝐹𝑅𝐹
]  if 𝑗 = FRF

𝑁(𝑥) ∙ (1 − 𝑝𝑤𝑎𝑙𝑘,𝐷𝑅𝐹) ∙ [
𝐶𝐷𝑅𝐹

4
+
Δ𝑙(𝑥)

𝑣𝐷𝑅𝐹
]                    if 𝑗 = DRF 

   

We can summarize the formulas above, for any FMLM feeder type, by using 

indicator functions. 

 𝑦𝐴(𝑥) = ∑  𝕀𝑗(𝑥)𝑗∈{𝐹𝑅𝐹,𝐷𝑅𝐹} ∙ 𝑦𝐴,𝑗(𝑥)    ∀𝑥 > 𝑟    

 𝑦𝑊(𝑥) = ∑  𝕀𝑗(𝑥)𝑗∈{𝐹𝑅𝐹,𝐷𝑅𝐹} ∙ 𝑦𝑊,𝑗(𝑥)    ∀𝑥 > 𝑟    

 𝑦𝑇(𝑥) = ∑  𝕀𝑗(𝑥)𝑗∈{𝐹𝑅𝐹,𝐷𝑅𝐹} ∙ 𝑦𝑇,𝑗(𝑥)     ∀𝑥 > 𝑟    





 

 

 

CHAPTER 8 

8. Conclusions 

The focus of this thesis has been on the design and operation of demand 

responsive transport (DRT) services acting as a feeder towards a transit line with 

high transport capacity and commercial speed, with the aim of enhancing the transit 

users’ accessibility and make the transport system more efficient. In particular, we 

have explored the role of DRT in low-demand and suburban areas, where novel 

design approaches should strengthen the integration between conventional and 

flexible transit modes and enabling transit operation to adapt to spatial and 

temporal variations of the mobility demand. 

This final chapter summarises and discuss the main findings of the thesis work 

(Section 8.1) and considers some directions for future research (Section 8.2).  
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8.1 Main findings and discussion of results 

This thesis took its first steps trying to answer the research questions outlined in 

Chapter 1, regarding the potential of new forms of flexible transit in sparse urban 

areas and the methodological tools aimed at supporting the design of such services. 

The first research question was: 

How can sprawled urban and suburban areas be effectively served by 

public transport, thus contrasting the massive use of private vehicles? 

We believe that the optimal design of feeder bus lines would enhance the PT 

coverage in suburban and low-demand areas, so we proposed a methodology to face 

this specific problem (Chapter 3) and compared the performance of fixed-route bus 

versus flexible feeder services (Chapter 5). In Chapter 3 we tackled the problem of 

designing feeder routes using an ant-colony optimization algorithm and a GIS 

dataset within an agent-based programming environment, with the objective of 

maximizing the service coverage in terms of potential demand for the feeder service 

and according to travel time constraints. The model was applied to different case 

studies located in Catania (Italy), where a MRT network is currently being 

developed. Both single-station and multiple-stations routing problems were solved, 

finding that excessively increasing the route coverage can be deleterious for the 

travel time experienced by passengers. Moreover, the proposed model can be 

deployed as tactical decision tool to understand which locations (e.g., potential bus 

stops) should be served by a conventional (fixed-route) bus line and which areas 

could be covered by demand-responsive (DR) operations. To this end, a set of 

comparative simulations of fixed-route and flexible operating strategies for a feeder 

service was presented in Chapter 5. Simulations focused again on a case study 

situated in Catania (the San Nullo metro station), according to real demand data. 

Results showed that for an average demand rate of 50 pax/h a fleet of 5 vans (9 seats 

vehicles) would efficiently serve the demand with a flexible operation, while a fleet 

of 10 van would fit a demand rate of 100 pax/h, despite the high cost for the operator. 

In this last case, the transit operator should evaluate the trade-off between QoS and 

cost, and maybe choose a fixed-route strategy using a reduced number of higher 

capacity vehicles (e.g., minibuses or buses). 

The second research question was of practical interest: 
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What can be a useful, practical and flexible tool to implement, reproduce 

and analyse the performance of on-demand transit services with different 

levels of flexibility? 

To answer this question, we developed a handy simulation tool aimed at 

reproducing the operation of flexible transit services and the interactions between 

supply and passenger demand. This tool consists in an ABM environment, 

completely programmable, customizable, and with the possibility of integrating GIS 

datasets. Specifically, in Chapter 4 we reproduced the operation of an on-demand 

flexible transit service called MVMANT, experimented in 2019 in Dubai (UAE). 

Starting from real O-D data we evaluated different routing strategies and fleet 

characteristics and compared the MVMANT with a ridesharing service with low-

capacity vehicles from both the points of view of the transport operator and the 

community. In Chapter 5, the level of flexibility of the simulated transit service is 

enhanced, since the requests can be served at multiple potential stops either at 

origin or destination, according to the vehicles’ availability and capacity or time 

constraints. Every time that a new request occurs, the dispatching algorithm decides 

if the request can be accepted and assigned to a vehicle, and if the insertion of a new 

stop between two already scheduled stops is required. Eventually, the ABM 

presented in Chapter 6 allows to simulate a feeder service which is totally demand-

responsive, i.e., where there are no fixed stops to serve, but the vehicle routes are 

dynamically built and updated according to real-time travellers’ requests. Moreover, 

this ABM is based on a synthetic environment to better generalize and thus transfer 

the results to different context, and it goes beyond pure analytical models by 

implementing a dynamic dispatching algorithm and considering practical 

constraints. To summarize, thanks to the possibility of dynamically interacting with 

the simulation environment and visualizing routes on the map, and also because of 

the easy transferability to other contexts, our models can serve as practical and 

flexible tools for public transport planners and agencies. 

The third research question was the following:  

How flexible, demand responsive feeder transport services can effectively 

match the demand with the supply in real-time, trying to maximize 

shareability, minimize operator cost and contain passenger travel time? 

This issue was specifically addressed in Chapters 5 and 6, by proposing dynamic 

vehicle dispatching algorithms able to satisfy as many trip requests as possible 

under realistic operating constraints. The algorithms presented in both chapters are 
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based on insertion heuristics involving three levels of exploration of the feasible 

solutions, i.e., the set of vehicles which can serve the request, the set of locations 

where the request can be physically served, and the set of feasible insertions between 

two already scheduled stops. This approach has the advantage of consolidating 

passenger requests, reducing detours and allowing for a higher shareability of the 

service. Moreover, it enables the transit operator to vary the flexibility of the 

operation from almost a door-to-door service to a point- or route-deviation service. 

The dispatching algorithm proposed in Chapter 6 is more sophisticated than the one 

outlined in Chapter 5, under two aspects. In fact, the former takes into account the 

passengers’ time windows (both for the access and the egress phase of the trip), as 

additional constraints, and the operator’s additional cost due to each new request, in 

formulating the objective function. We believe that such dispatching procedure can 

be applied by real operators in real transit networks, providing good solutions 

without requiring high computational burden, and it can be improved to deal with 

wider operating context. 

The fourth research question is as follows: 

When is it more convenient to adopt a fixed-route policy rather than a 

flexible one in providing feeder services toward mass rapid transit? 

An attempt to answer this question was made in Chapters 6 and 7. First of all, the 

convenience of a transit service is not absolute, but it depends on the point of view 

of the actors involved. In fact, a feeder service based on a fixed route covering the 

most demanded areas and thus ensuring a good ridership can be convenient for a 

transit operator but not for the community, since many other travellers would be 

excluded from the PT coverage, or at least they would walk long distances to access 

the transit system. On the other hand, employing a large fleet of vehicles to serve a 

sparse but low demand would greatly improve the QoS experienced by passengers, 

at the expense of operating cost and thus high service fees. The opportunity of 

switching between different operating strategies, increasing or decreasing the 

flexibility of routes and schedules, can help face this trade-off problem. In Chapter 6 

we presented a methodological approach allowing to find the critical demand density 

below which a demand responsive feeder service would be more efficient (convenient 

for passengers and profitable for the operator), given the fleet size and the 

characteristics (size and shape) of the service area. We found that, for elongated 

areas (ratio between length and width equal to 4) of about 2.5 km2 and “symmetric” 

demand patterns (similar share of travellers accessing and egressing the system) the 
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critical demand density is between 40 and 45 passengers/km2h, when relying on a 

fleet of 3 small buses. Moreover, when the critical demand value occurs, a DR service 

performs better when the demand density shows a decreasing trend from the MRT 

station to the outskirts (e.g., in a transit-oriented development scenario) and when 

a fleet of 5 vans (i.e., more vehicles with lower capacity) is deployed. Instead, 

simulation results suggest that the demand pattern is a critical issue to take into 

account, because a demand mainly originated at (or directed to) the MRT station 

would make DR operations less efficient. The comparison between conventional and 

DR feeder services is also addressed by the analytical model presented in Chapter 7, 

where we did not focus on single local areas around transfer stations, but we propose 

a design model for the entire urban transit network, which consists of several 

transfer stations. We showed that a transit system switching from fixed-route to DR 

feeder operations in off-peak hours can prevent accessibility to MRT from degrading 

in peripheral and suburban areas. Eventually, the introduction of fully autonomous 

vehicles in transit operations could radically shift the attention of transit providers 

towards DRT, due to the opportunity for a significant reduction of operating cost. 

Finally, the last research question regarded the entire urban transit network: 

Where, when and how the layout of the urban transit network should 

adapt to the spatial and temporal demand variations? 

The analytical design model presented in Chapter 7 was conceived to answer this 

question. The Adaptive Transit we proposed consists of a (fixed) MRT system served 

by feeder bus routes in suburban regions. Depending on the distance from the city 

centre and the period of the day, and thus to the demand variations, the system can 

switch between conventional and DR feeder service, acting on different service 

features (e.g., MRT and feeder headways, distance between stations, etc.). We 

modelled the design problem using the continuous approximation technique, which 

is suited for the strategic phase of transit plans, thanks to the possibility of providing 

high-level managerial insights on how the transit network should be designed. 

Numerical results showed that the proposed adaptive approach allows to reduce the 

social cost, particularly during off-peak hours and in peripheral areas, without 

exceeding in agency cost. Besides, the outcomes of the model are sensitive to the 

various input parameters, such as the value of time of travellers, which should be 

carefully investigated. 

To conclude this section, an overview table of the core chapters of the thesis is 

shown in Table 8.1.  
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Table 8.1. Summary table of the core chapters of the thesis 

 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 

Goal 

Design of 

optimal feeder 

bus routes 

Comparing 

flexible 

routing 

strategies 

Comparison 

between a 

fixed-route 

and a flexible 

feeder service 

Exploring the 

optimal 

operating 

conditions of 

fixed vs. DRT 

feeder services 

Design of 

adaptive 

transit, 

integrating 

conventional 

PT and DRT 

Decision 

level  
Tactical Operational Operational  

Operational 

and Tactical 
Strategic  

Methodology ABM + GIS ABM + GIS ABM + GIS 
Analytical + 

ABM 

Analytical 

(CA)  

Level of 

flexibility 

Low 

(fixed route) 

Medium/Low 

(Fixed route + 

optional 

routes) 

Medium 

(Fixed stops + 

optional stops) 

Medium/High 

(demand-

responsive 

stops with 

consolidation) 

High 

(from fixed-

route to door-

to-door DRT) 

Main 

performance 

indicators 

Service 

coverage 

Total Unit 

Cost (TUC); 

Service 

coverage; 

Operator cost. 

Passenger 

travel time; 

Transport 

Intensity (TI); 

TUC 

TUC; User 

disutility.  

Generalized 

transport cost 

(user + agency 

costs). 

Spatial 

context 
Suburban Suburban Suburban 

Suburban, 

periphery 

Large urban 

area 

Case study 

location 

Catania 

(Italy) 

Dubai 

(UAE) 

Catania 

(Italy) 
Synthetic 

Ideal 

(based on 

Paris, France) 

8.2 Research directions 

The comprehensive objective of this thesis is to contribute to the current 

methodological framework for the design and operation of flexible transit services, 

with specific reference to low-demand suburban areas. The recent technological 

innovations have led to the introduction of innovative forms of DRT services, which 

are currently (almost always) operated by private companies and often in 

competition with PT authorities. 

The transport planning process should involve policy-makers, transit agencies 

and on-demand transport providers to ensure the optimal integration between the 

various components of the shared mobility ecosystem. In order to achieve this, a 

more detailed analysis of cost and profit for the DRT operator and the transit agency 

(in case it is the provider of both conventional and flexible services) should be 

addressed in future research. 
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Another step forward would be to consider a broader range of mobility options in 

our models, introducing discrete choice models (Le Pira, Marcucci et al., 2017; 

Fournier et al., 2018; Oh et al., 2021) hence the possibility for travellers of choosing 

between alternative modes of transport (e.g., PT, ridesharing services, private car, 

micromobility, etc.) and accounting for more complex and realistic trip chains. 

In this thesis we chose to focus on the first and last mile leg of travellers’ journeys, 

often modelling the demand patterns according to a many-to-one scheme, where a 

transfer station attracts the ridership. In future research, our ABMs would be 

applied to a broader scope than just the local confined areas around MRT stations, 

thus dealing with a many-to-many demand pattern. 

Also, an attractive issue which is currently poorly addressed in literature is the 

evaluation of dynamic pricing schemes (Lei et al., 2019) for flexible transit, which 

would help the service providers improve system performance, maximizing the profit 

according to the spatial and temporal variation in demand. Dynamic pricing 

strategies can be included in more sophisticated ABMs, where negotiation 

mechanisms between the vehicle fleet and the users and among the vehicles 

themselves would be simulated. 

Future research would evaluate the impact of vehicle electrification and 

automation, under different maturity stage of this technologies, on the operations of 

conventional or flexible transit services. Once again, automated feeder transit 

solutions in suburban areas would be of particular interest (Badia and Jenelius, 

2021), since they are promising in the opportunity of reducing operating costs. 

The current research direction is envisioning near-future transport systems 

where conventional PT and DRT services are integrated in the broader context of 

Mobility as a Service (MaaS), where a tailored mobility package is offered to the 

users, by integrating different modes of transport in one online platform, using 

geospatial data generation tools, multimodal transport ticketing, and an integrated 

e-payment platform (Jittrapirom et al., 2017). Despite literature on the topic is still 

at an early stage, it is perceivable that the MaaS paradigm opens new attractive 

scenarios for demand-adaptive (collective and individual) mobility. Besides, MaaS 

would increase the overall attractiveness of the transit systems, especially for low-

demand areas where the PT operations are often expensive and ineffective. 

Finally, this thesis work proposes a methodological framework to support the 

design of flexible transit services in different stages of the transport planning 

process. We believe that this study represents the initial step of a wider research on 

the ever-changing era of the shared mobility.
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Annex A presents a model for the solution of a Capacitated Vehicle Routing 

Problem (CVRP) using a novel Ant Colony Optimization (ACO) algorithm, developed 

and implemented in agent-based modelling environment, with an application to a 

real case study regarding a freight transport and logistics company in South Italy. 

This work resulted in the following journal article: 

Calabrò, G., Torrisi, V., Inturri, G., and Ignaccolo, M. (2020). “Improving 

inbound logistic planning for large-scale real-world routing problems: a 

novel ant-colony simulation-based optimization”. European Transport 

Research Review, vol. 12, no. 1, pp. 1-11. 

Annex B presents a new agent-based model to explore different scenarios of e-

commerce urban deliveries, comparing home deliveries with consolidation-based 
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possible matching of customer systematic trips and collection/delivery points with 

small detour from the scheduled trip. This work has led to the following conference 
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Calabrò, G., Le Pira, M., Giuffrida, N., Fazio, M., Inturri, G., and 

Ignaccolo, M. (forthcoming). “Modelling the dynamics of fragmented vs. 

consolidated last-mile e-commerce deliveries via an agent-based model”. 
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Improving inbound logistic planning for
large-scale real-world routing problems: a
novel ant-colony simulation-based
optimization
Giovanni Calabrò1, Vincenza Torrisi1*, Giuseppe Inturri2 and Matteo Ignaccolo1

Abstract

This paper presents the first results of an agent-based model aimed at solving a Capacitated Vehicle Routing
Problem (CVRP) for inbound logistics using a novel Ant Colony Optimization (ACO) algorithm, developed and
implemented in the NetLogo multi-agent modelling environment. The proposed methodology has been applied to
the case study of a freight transport and logistics company in South Italy in order to find an optimal set of routes
able to transport palletized fruit and vegetables from different farms to the main depot, while minimizing the total
distance travelled by trucks. Different scenarios have been analysed and compared with real data provided by the
company, by using a set of key performance indicators including the load factor and the number of vehicles used.
First results highlight the validity of the method to reduce cost and scheduling and provide useful suggestions for
large-size operations of a freight transport service.

Keywords: Ant Colony optimization, Vehicle routing problem, Multi-agent simulation, logistics

1 Introduction
Logistics is the set of services and activities that allow
goods to be carried from the place of origin in which
they are available to the destinations where they are re-
quired. Transport helps to connect the sources of raw
materials, production centres and markets, generating an
increase in the value of goods sufficiently to justify the
transport cost incurred. The first component of the lo-
gistics system is inbound logistic, which deals with the
management of incoming materials, so it has to do with
the purchases and supplies of raw materials, components
or semi-finished products arriving from upstream sup-
pliers of the logistics network. Among the activities of
order management, collection, storage, internal handling
and transport of goods, the latter often represents the

main cost item. Therefore, a transport company that is
able to provide an efficient and timely service achieves a
competitive advantage in the increasingly competitive
national and international markets. By improving route
assignments to the vehicles of the fleet, it is possible to
obtain significant time and cost savings.
However, even big companies often plan loading and

distribution operations based on their empirical experi-
ence, without optimization methods able to minimize
driving distance, avoid space waste inside the transport ve-
hicles or at worse infeasible loading [1]. Since the rela-
tively recent development of computer tools, a huge
amount of scientific literature has been produced with the
aim of optimizing delivery and/or pickup operations for a
fleet of vehicles serving a set of customers and subject to
side constraints. This gave rise to a whole class of prob-
lems sharing the generic name of Vehicle Routing Problem
(VRP). The original version of the VRP was proposed by
Dantzig and Ramser [8] under the definition of Truck
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Dispatching Problem, which dealt with the calculation of
optimal routes for a fleet of trucks for petrol deliveries.
This issue, in turn, may be considered as a generalization
of the Traveling-Salesman Problem (TSP), consisting in
finding the shorter route (or, in general terms, the lowest
cost path) connecting all vertex of a graph, starting and
finishing at a specified vertex after having visited each
other vertex exactly once. Thanks to its numerous prac-
tical implications (especially in logistics but also in passen-
ger transport), several variants of the basic problem have
been put forward in recent years. One of the most studied
members of the VRP family is the Capacitated Vehicle
Routing Problem (CVRP), in which a fleet of identical ve-
hicles has to be optimally routed from a central depot to
supply a set of geographically dispersed customers with
known demands [2]. Although CRVPs are not so “hard”
to deal with as problems with pickups and deliveries and/
or time-windows, when we deal with large-scale instances,
it is fundamental to reduce the computational demand by
acting both on the optimization algorithm and on the net-
work topology, which is precisely the point on which this
paper is focused.
The work is organized as follows: Section 1 introduced

the research topic, highlighting the applicability of the Ant
Colony Optimization metaheuristic to solve freight trans-
port problems; Section 2 presents a brief literature review
on VRP instances and their resolution approaches, with
reference to the research contribution; Section 3 describes
in detail the methodology adopted and the algorithm im-
plemented in the multi-agent simulation environment;
Section 4 presents the application of the model to a real
case study; Section 5 shows and discusses the experimen-
tal results; finally, Section 6 concludes the work, providing
some considerations for further research.

1.1 The use of ant Colony optimization to solve the VRP
It is well known that VRP, in its various specifications, is
a non-determistic polynomial-time hard problem (NP-
hard problem) which is not easily addressed with exact
algorithms, since the computational time grows expo-
nentially with problem size (with the increase in the
scale of logistics and distribution this time would be ex-
tremely high). Therefore, a feasible option consists in
formulating heuristic and metaheuristic algorithms, con-
ceived so as to generate solutions that are as close as
possible to the optimal one.
Ant Colony Optimization (ACO) algorithms are de-

rived from an analogy with ants which lay a volatile sub-
stance called “pheromone” on their trail when foraging
for food. In this family of metaheuristics, by extension, a
certain number of simple artificial agents cooperate to
build good solutions to hard combinatorial optimization
problems via low-level based communications [9]. Iter-
ation after iteration, more pheromone is deposited on

the more frequented trails and this brings out a learning
mechanism: when constructing a VRP solution, the
probability of selecting a certain move is higher if this
move has previously led to a better solution in previous
iterations. Therefore, the “auto catalytic” nature of the
process leads to the convergence towards good near-
optimal solutions. A detailed explanation of the algo-
rithm proposed in the present work will be provided in
section 3.2.
In general, ACO is conceived to find the minimum

cost paths within a network, so it presents several appli-
cations to routing and scheduling problems and is of
particular interest in transport problems [4, 17]. Besides,
thanks to its easy applicability to dynamic problems,
where the topology of the characteristics of the network
changes during the simulation, ACO algorithms are able
to perform better than other metaheuristics. The excel-
lent performances of ACO in solving such optimization
problems are highlighted by the works of Catay [6] and
Carabetti et al. [5], which applied the ACO approach to
a series of benchmark problems finding results that were
comparable and in some cases better than those avail-
able from the literature.

2 Literature review and research contribution
An extensive review on VRP instances exists [7, 21] and
numerous variations of the basic problem in real-world
applications have been addressed, including supply chain
and freight transport issues [14], public transport [23],
street cleaning, urban solid waste collection [3], school
bus routing [12] and other instances.
Zhang et al. [26] investigate the reverse logistics ve-

hicle routing problem with a single depot, simultaneous
distribution and collection of the goods by a homoge-
neous fleet of vehicles under the restrictions of max-
imum capacities and maximum distance. They proposed
an Ant Colony System (ACS) approach in which the ve-
hicle residual loading capacity is introduced into the
heuristic function to consider the dynamic fluctuation of
vehicle load. Xiao et al. [22] extended the classical CVRP
introducing the objective of minimizing fuel consump-
tion, assumed as load dependent function, and using a
simulated annealing algorithm to solve the problem. Lin
et al. [15] addressed the recent trend of the environmen-
tal sensitivity in the supply chain management through a
survey of green vehicle routing problems. Schneider
et al. [18] introduced the electric VRP with time win-
dows with the possibility for vehicles of recharging at
any of the available stations, exploiting a hybrid heuristic
that combines neighbourhood search and tabu search.
Wang et al. [24] propose a modified ACO algorithm in-
tegrated with other savings algorithms in order to solve
the CVRP allowing ants to go in and out the depots
more than once until they have visited all customers,
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aiming at simplifying the procedure of constructing feas-
ible solutions. Martin et al. [16] developed a multi-agent
framework for scheduling and routing problems where
agents use different metaheuristics and cooperate by
sharing partial solutions during the search, giving rise to
a reinforcement learning and pattern matching process.
Hannan et al. [11] address the routing and scheduling
optimization problem in waste collection by using a
modified particle swarm optimization algorithm in a
CVRP model, with the objective of minimizing travel
distance, collected waste and tightness. Song et al. [19]
propose a multi-objective approach to solve a CVRP
with Time Windows and two-dimensional loading con-
straints, making use of mixed integer linear program-
ming and a generalised variable neighbourhood search
algorithm.
This paper contributes to the current literature by pro-

posing a new agent-based modelling framework for the
optimized planning of truck routes in large-scale in-
bound operations. This work provides a twofold contri-
bution, methodological, since the ACO has been applied
to a specific real transport network, allowing to vary and
verify the incidence of some specific parameters related
to truck freight (e.g. maximum working time, average
speed, truck capacity, etc.) in each simulation, and oper-
ational, considering that the proposed model stands as a
useful practical optimization tool able to support logis-
tics operators in the route planning phase of their
service.

3 Methodology
The problem addressed in the present work is to plan
and design an optimal set of routes for the collection of
goods through a new methodological approach. Its main
components are described as follows:

� a single depot (D) where collection, groupage and
distribution activities are centralized;

� a set of clients (farms) clustered in client nodes (N)
spread on the study area, with a pick-up demand
(Pj);

� a fleet of vehicles (V) with the same capacity (Q),
able to collect goods from the farms to the depot;

� the road network and the set of possible links (i, j ∈
L) between different client nodes.

Starting from the assumption of no congestion on the
road network (considering the suburban and rural
context) and thus assuming a constant average speed for
all vehicles, the objective of the optimization process is
to minimize the Total Distance Travelled (TDT) by the
vehicles of the fleet (minimization of the operational
costs), while taking into account a work hours
constraint. Decision variables, objective function and

constraints will be explained in section 3.1. The optimal
assignment of vehicles to routes is achieved by using an
ACO algorithm that will be described in detail in section
3.2. Simulations have been carried out in NetLogo [25],
a multi-agent programming and modelling environment
which allows to model and simulate complex systems
and allowing the visualization of their parameters in real
time.

3.1 Model conceptualization
The agent-based model is structured on a double-layer
network. The base layer spatially reconstructs the real
road network, while the upper layer reproduces the di-
rected graph of the possible connections (links) between
the different client nodes and between the depot and the
all the nodes.
The first step is the reconstruction of the road net-

work in the NetLogo workspace and the localization of
client nodes, to each of which an array of indivisible
loading units from each farm belonging to the client-
node itself is associated. This particular procedure has
been designed to reduce the number of nodes and links
of the graph by creating clusters of neighbouring farms
since when the problem deals with hundreds of cus-
tomers (large-scale VRP) it is computationally demand-
ing and difficult to tackle (Fig. 1).
Starting from the base layer of the road network, the

upper layer is created by connecting each client node
with the depot and with a certain number of other client
nodes. This number varies from node to node once a
maximum road distance (d-max) to other nodes and a
minimum number of links (n-links) to the nearest nodes
are selected. The road distance (dij) is an attribute of the
link connecting two client nodes; it is calculated for each
link through a shortest path algorithm before the simu-
lation starts.
The CVRP model formulated as follows:

Minimize TDT ¼
X

i∈N

X
j∈N

X
v∈V

dij∙xij;v ð1Þ

Subject to 0≤
X

i∈N

X
j∈N

P j∙xij;v≤Q v∈V

ð2Þ
X

i∈N

X
j∈N

tij þ nf ∙ts
� �

∙xij;v≤TTmax v∈V

ð3Þ

Eq. (1) is the objective function which minimizes the
TDT, xij,v is a binary variable equal to 1, if vehicle v
travels along the link (i, j), or 0, otherwise. Eq. (2) en-
sures that the pick-up load of each vehicle never exceeds
its capacity. Eq. (3) imposes a maximum travel time
TTmax (work hours constraints, generally equal to 8 h)
for each vehicle, defining ts as the service-time that the
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vehicle takes in each farm to for loading operations
(about 15 min), tij as the travel time along the link (i, j)
and nf as the number of farms of the client-node j served
by vehicle v.
It should be specified that each farm must be visited

only once (indivisibility of pickup loads), considering a
constant service-time, and each vehicle has a certain
capacity that cannot be exceeded considering any pickup
operations (however, since a client node could have an
overall demand exceeding the vehicle capacity, it may be
served by more than one vehicle of the fleet, as opposed
to classical VRP instances).

3.2 The ant Colony optimization algorithm
It is well known that CVRPs are NP-hard problems in
the field of operations research. Moreover, the proposed
model aims at addressing large-scale instances, where
the residual orders of client nodes changes dynamically
during the simulation, so they are practically impossible
to solve using exact methods. In last decades, a huge
number of heuristic procedures have been developed in
order to find good suboptimal solutions with acceptable
computational efforts. Among them, metaheuristics take
inspiration from natural optimization mechanisms,
translating them into specific algorithms. In particular,
ACO algorithms [10] derives from the social behaviour
of some ant species which are capable to find the short-
est paths between their nest and a food source. This
ability arises because ants can exploit a sort of commu-
nication based only on pheromone trails, a volatile
chemical substance deposited on the ground by ants.
Artificial ant colonies, despite being very simple organ-
isms, can form systems able to perform highly complex
tasks and jointly solve optimization problems by dynam-
ically interacting with each other.
The algorithm implemented in the present model de-

rives from MAX-MIN Ant System [20], which improved
the first member of the ACO family, named Ant System,

originally applied to the resolution of the Travelling
Salesman Problem. Simulations are based on an iterative
optimization process that ends after a given number of
generations (g) of a chosen number of colonies (m) made
of a specified number of ants. This process leads to the
quality improvement of the final solution comes from
the comprehensive exploitation of three different infor-
mation components, iteration after iteration: simulated
artificial ants build routes by considering a) the phero-
mone trail, b) the “visibility” and c) the residual capacity.
The first component is updated for each link when a
new generation g of colonies is launched. The last two
component are included in the heuristic function, which
structure is shown in Eq. (4). The visibility is given by
the reciprocal of the distance related to a link and repre-
sents the fixed information available a priori. As concern
the residual capacity, when ants explore their neighbour-
hood (client nodes linked with the actual node), the feas-
ible combination of orders from the farms belonging to
the next client node has to be recalculated every time.
So, if a client node consists of n farms, each one with a
given pick-up demand (number of loading units), ant k
at iteration t investigates the combination of all pick-up
demands pj,h that can be served without exceeding the
residual loading capacity (orders combination list).

ηij tð Þ ¼ 1
dij

�
Xn
h¼1

pj;h tð Þ ð4Þ

Where dij is the road distance between node i and
node j and pj,h (t) is pj,h if it belongs to the orders com-
bination list, zero otherwise. However, there are situa-
tions in which, although the remaining capacity makes
possible to satisfy another pick-up demand, it may be
preferable to return to the depot in order not to further
lengthen the distances covered. In consequence, we took
into account a heuristic function related to the links
from client node i to the depot D, given by the

Fig. 1 “Conceptual” schematization of the depot, client nodes and possible connections
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reciprocal of the product between the distance diD and
the residual loading capacity at iteration t. Since the total
numbers of orders, represented by standard loading unit,
is usually much higher than the single vehicle capacity,
multiple routes must be found, each one served by one
vehicle. So, every solution must be built by an ant col-
ony, able to jointly minimize the total distance travelled
without violating the constraints of maximum capacity
and maximum working time. Step by step, each ant of
the colony applies a random proportional rule to decide
the next farm to go. Therefore, the probability with
which ant k, currently at farm i, chooses to go to farm j
is given by Eq. (5):

pkij tð Þ ¼
τij gð Þ� �α � ηij tð Þ

h iβ
P

l∈Νk
i
τil gð Þ½ �α � ηil tð Þ

� �β if j∈Ν k
i ð5Þ

where and α and β are calibration parameters that con-
trol the relative importance of the pheromone trail τij
versus the heuristic information ηij, Ni

k is the feasible
neighbourhood.
When an ant of the colony reaches the loading cap-

acity (or its feasible neighbourhood is empty) it comes
back to the depot and the next ant of the same colony
starts its tour. When pick-up demands are all satisfied,
the following colony of ants is allowed to explore other
possible solutions, until the given number m of colonies
is reached.
Once all the m colonies have found their solution, only

the “best” colony (i.e. the one that founds the solution
that minimises the total distance travelled) is allowed to
reinforce the pheromone trail, to better exploit the best
of the m solutions found, using the following updating
rule (Eq. (6)):

τij g þ 1ð Þ ¼ 1−ρð Þ � τij gð Þ þ Δτbestij gð Þ ð6Þ

where ρ is the evaporation rate, ranging from 0 to 1,
Δτij

best is the amount of pheromone deposited on link (i,
j) used by the best colony at generation g, which is given
by Eq. (7):

Δτbestij gð Þ ¼ Q � Ebest gð Þ
Eglobal−best

� �2

ð7Þ

E represents the value of the objective function (i.e.
the reciprocal of the total distance travelled by vehicles)
and Q is the diffusion rate, which is greater than zero.
Finally, when the maximum number of generations is
reached, the simulation stops and outputs the results.
The whole process described so far is showed through a
flow chart in Fig. 2.

4 Case study
4.1 Territorial framework
The described methodology is applied to the case study
of Gali Group, a freight transport and logistics company,
located in Ispica (Sicily), on the eastern end of the prov-
ince of Ragusa, bounding Siracusa’s district. Ispica is 33
km from Ragusa (Fig. 3); it has an area of about 110 km2

with a population density of 143,54 inhabitants/ km2

[13]. Its economy is primarily agricultural boasting major
outputs of early fruit, tomato, vegetables and carob – for
which Ispica is Italian’s biggest producer and exporter.
Industry has developed in recent decades, particularly
the agriculture-related businesses. Thus, the main indus-
trial activities are those involved in processing and mar-
keting the agricultural products.
In this context, the Gali Group company is recognized as

a landmark for the activity of pick-up and delivery of horti-
cultural products from Sicily to the central-northern Italy
and in some cases also abroad. Its activity is based on road
transport. The company offers the possibility to request the
pick-up order by clients up to 5.00 p.m.; and only after this
time the pick-up activity is carried out. This way of working
arises from the concept that logistics operators can decide
the routes when they have an almost complete awareness
of the orders. This clearly affects the subsequent phases of
the logistics process. Hence, this work analyses the up-
stream of the process by addressing to the pick-up proced-
ure, in order to provide an optimized route planning in
terms of times and costs. The study area is represented by
the catchment area of Gali Group, as shown in Fig. 3 (on
the right side) and the data analysis and the algorithm im-
plementation are provided below.

4.2 Data analysis and algorithm implementation
Data analysis is referred to a period between May 2018
and March 2019. The initial basis of data for this study
is essentially represented by the analysis of 3 days with a
maximum flow of goods. For all these days, incoming or-
ders have been collected, with the following information:

� number, code and time of arrival of the order;
� name and pick-up zone of the customer/provider

company corresponding to each order;
� number and type of loading units.

On average, about 90 orders have been registered for
each day with more than 1400 loading units. In addition,
the operating program of the logistics operators con-
cerning the procedure of pick-up of goods has been re-
corded for each day, i.e. total distance travelled (TDT),
number of vehicles (NV) and load factor (LF).
Once the study area has been identified, coinciding

with the catchment area of Gali Group characterized by
the various provider companies, the first step to start

Calabrò et al. European Transport Research Review           (2020) 12:21 Page 5 of 11



simulations in NetLogo consisted in the definition and
construction of the road network graph. It has been
drawn using OpenStreetMap as a basis and it is charac-
terized by a double-layer network (as stated in section
3.1). Figure 4 shows the reconstruction of the real road
network (on the left side) and the directed graph of the
possible connections between the different client nodes

and between the depot and all the nodes (on the right
side), reproduced by links.
In the proposed model, the clients have been consid-

ered by creating clusters of neighbouring farms clustered
in client nodes, with the corresponding number of load-
ing units organized in an array for each node. Therefore,
60 client nodes or farms have been positioned.

Fig. 2 Flow chart of the ACO algorithm
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5 Results and discussion
Several simulations have been performed to test the
model and results are shown in Table 1. Since the ants
apply to each node a probability-based choice criterion,
an initial level of pheromone concentration is assigned
to each link of the network. Moreover, the maximum
number of generations gmax, the number of colonies for
each generation m, the vehicles capacity C (i.e. max-
imum number of units), the diffusion rate Q, the evapor-
ation rate ρ, exponents α and β have been fixed as input
parameters. They have been chosen after several tests
which resulted in better computational times and model
outcomes. The only two variable parameters have been
constituted by the maximum road distance d-max to
other client nodes and the minimum number of links n-
links to the nearest nodes. Three combinations of d-max
and n-links have been considered. The first one, 10–5 is

characterized by a low number of connections and from
the nearest ones considering the reduced radius. In the
second combination 50–10, both the radius and the
number of minimum connections have been increased.
The third one, 50–30 has an equal radius value while
the number of minimum connections is increased.
The results of these three sets of simulations highlight

that the shorter distances have been obtained for the
second combination 50–10. This proves that an increase
in exploration possibilities does not correspond to a bet-
ter solution found by the algorithm (in this case a de-
crease of TDT).
To demonstrate the effectiveness of the model, Fig. 5

shows the convergence curve of the objective function
obtained in one of the simulations for the day 1. The x-
coordinate denotes the number of generations and the
y-coordinate denotes the corresponding TDT. It can be

Fig. 3 Satellite Images of the study area (https://satellites.pro/)

Fig. 4 Road network graph implemented in NetLogo; a Base layer; b Upper layer
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seen that the convergence TDT within 150 iterations is
increasing almost constantly. It remains fixed at a value
of approximately 4900 between 95 and 130 iteration,
and finally converge to the best solution.
For each analysed day, considering the second combin-

ation of d-max and n-links (50–10), several simulations
have been performed. Scheduled data (provided by the
company) with reference to the total number of travelled
kilometers (calculated considering the optimal minimum
path for the trip of each vehicle), the number of vehicles
and the load factors have been taken into consideration
to make a comparison with data derived from simula-
tions. Table 2 shows the aggregated results of simula-
tions deriving from the elaboration of collected data
during the three analysed days. It is noticeable that the
total number of travelled kilometres (TDT) deriving
from the simulation is significantly lower than the
scheduled one provided by the company. This outcome
is more emphasized in the case of the second and third

days, during which the scheduled number of travelled
km and vehicles is greater. Moreover, the load factors of
simulated vehicles are higher than the scheduled ones,
consequently leading to a fewer number of vehicles to
carry out the procedure of pick-up of goods. Only the
Average Distance Travelled (ADT) by vehicles is higher
than the scheduled one for “Day 1”, but this outcome is
due to the minor number of vehicles resulting from
simulations.
These findings are much more evident from a graph-

ical point of view in Fig. 6 which show the comparison
between the daily programme of the logistics company
and data obtained through some simulations, related to
the number of travelled kilometres and the load factor
for each vehicle and for all days.
For most vehicles, the number of travelled kilometres

deriving from simulations is consistent with the sched-
uled one. Then, despite for the latest vehicles this num-
ber appears higher in the case of simulation (Fig. 6 on
the left side). This is largely justified by the fact that the
load factor of vehicles is higher (Fig. 6 on the right side).
Figure 7 shows the aggregated results for all 3 days.

Comparing the average results obtained from the simu-
lations and scheduled data, it is demonstrated how the
model can optimize the routes for the collection of
goods. This optimization is configured not only in a re-
duction of the travelled kilometres and a higher load fac-
tor of vehicles (as stated before), but also in a lower
simulated number of vehicles (e.g. vehicles’ number = 47
for the second day) compared to the one scheduled (i.e.
vehicles’ number = 60 for the second day) (see Fig. 7 on
the right).

Table 1 Input parameters set and simulations results (day 1)

N. Sim d-max n-links gmax m C Initial ph. val. Q ρ α β TDT [km] LF NV Avg. TDT

1 10 5 150 25 33 2.0 0.1 0.05 2.0 1.0 4951.8 0.922 39

2 4919.3 0.922 39

3 5018.5 0.897 40 4976

4 5006.7 0.926 39

5 4983.1 0.903 40

1 50 10 150 25 33 2.0 0.1 0.05 2.0 1.0 4857.5 0.923 39

2 4867.1 0.923 39

3 4901.2 0.927 39 4880

4 4846.7 0.959 38

5 4928.5 0.920 39

1 50 30 150 25 33 2.0 0.1 0.05 2.0 1.0 4920.8 0.952 38

2 4956.7 0.945 38

3 4912.6 0.954 39 4915

4 4866.3 0.935 38

5 4916.4 0.958 39

Fig. 5 Convergence curve of the objective function
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As seen, the implementation of the ACO in NetLogo,
besides representing an optimization tool, it allows the
logistics company to optimize resources through the
model results of routing, in terms of travelled km, load
factor and number of vehicles. Moreover, the proposed

study has an important advantage represented by the
fact that NetLogo gives the possibility of graphically
representing networks and displaying the best routes,
configuring NetLogo as an operational tool for the com-
pany from a practical point of view. Furthermore, the

Table 2 Aggregated results of simulations for the analysed days

Day 1 Day 2 Day 3

Simulated Scheduled Simulated Scheduled Simulated Scheduled

TDT [km] 4880 5280 5340 7952 5690 7380

LF 0.930 0.748 0.962 0.796 0.959 0.789

NV 39 44 45 60 48 58

ADT [km] 125.1 120.0 118.7 132.5 118.5 127.2

Min TDT [km] 4846.7 5287.9 5954.0

Fig. 6 Scheduled and simulated travelled kilometres and load factors; a first day; b second day; c third day
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element of absolute originality of the work consists in
having applied the multi-agent modelling environment
NetLogo to solve optimization problems in the planning
of transport operations. The simulations based on pa-
rameters of Table 1, after an initial calibration, could be
replicated in other contexts, allowing benchmark ana-
lyses to be performed between different contexts. Cur-
rently, the model does not consider the congestion level
of each link belonging to the transport network, but the
computations are based on the travelled distance. Fur-
thermore, the time-wasters due to the pick-up of goods
at each farm are considered in an equivalent manner in
the probabilistic choice made by the model in each iter-
ation (i.e. when the number of array components of each
pick-up zone varies). This is because more farms are
clustered in a single pick-up zone to simplify the model
and to decrease computational demand. These aspects
could be further investigated in future research.

6 Conclusions
This study proposes a new methodological approach of
CVRP to optimize inbound logistics in a large-scale
problem. The model has been tested using input data
provided by the logistics company Gali Group, located
in the Sicilia region in southern of Italy. Data have been
acquired for a significant period and 3 days with a max-
imum flow of goods have been considered for compari-
sons. From the analysis of data, the catchment area of
Gali Group has been identified and the road network
graph has been constructed in NetLogo to start simula-
tions. The CVRP using ACO algorithm has been imple-
mented for the identification of an optimal set of routes
for the collection of goods, by using an objective func-
tion coinciding with the travel distance and a maximum
working time of 8 h/day as a constrain. In this way, the
proposed model is able to support the logistics operators
during the route planning phase, optimizing the opera-
tions related to their service: in fact, comparing the ob-
tained results from simulations and the scheduled ones,

it is evident a significant reduction in the traveled dis-
tances by vehicles, as well as in the number of vehicles
itself, compared to those planned by the company, with
a corresponding higher load factor. Therefore, this study
lays the basis for a deeper analysis in order to investigate
the logistics process in its overall perspective. Further
analysis will be carried out in future research, in order
to obtain more information on the operation of the lo-
gistics company through interviews to planners and
drivers (e.g. departure and arrival times of vehicles from-
to the depot; groupage and delivery processes), identify-
ing algorithm improvements (although in the initial
phase, the model is providing very interesting results)
and paving the way for a well-thought-out decision sup-
port service of an optimized logistics freight transport.
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Abstract 

This paper proposes a new agent-based model (ABM) to explore different scenarios of e-commerce urban deliveries, comparing 

door-to-door deliveries with consolidation-based strategies. The ABM reproduces operation under different demand patterns and 

include the possible matching of customer systematic trips and collection/delivery points with small detour from the scheduled trip. 

Several variables of the model can be changed in a parametric simulation environment, allowing to infer the level of convenience 

of consolidation strategies for the different actors involved. The model provides indicators able to take into account customer and 

logistics operator perspectives, and the impact of the service on the community. Results can give useful information to understand 

how to manage growing on-demand urban deliveries and to measure the impact of freight transport on city sustainability.  
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1. Introduction 

E-commerce is a constantly growing phenomenon, becoming an increasingly common buyers’ practice, also 

pushed by digital technologies spread. The COVID-19 outbreak has contributed to a deep change of users’ habits, 

bringing people ever closer to the world of online shopping and increasing the related demand.  

Fragmented door-to-door deliveries may not be sufficient to satisfy this rising demand nor sustainable as they can 

lead to different transport and delivery issues such as missed deliveries, low load factors of vehicles, increase in travel 

distances and related GHG emissions (Lachapelle et al., 2018). Moreover, e-commerce-related deliveries generate 

additional traffic in cities that hardly compensate the reduction in individual shopping trips (World Economic Forum, 

2020).  

This is becoming one of the big concerns of policy-makers engaged in preventing the negative impact of freight 

urban deliveries (Le Pira et al., 2017; Allen et al. 2018). Besides, customers can count on a faster and more reliable 

service compared to the recent past. In this respect, same-day and instant deliveries are two fast-growing logistics 

segments, although they are still not the most diffused. Deliveries should be arranged by considering demanding 

customers, city constraints and last-mile logistics costs, which account for most of the supply chain costs (Gevaers et 

al., 2011). Innovative logistics solutions could be explored to this purpose, by appropriately taking into account: (i) 

the impact of logistics activities on city sustainability, e.g. congestion and emissions in urban areas; (ii) the quality of 

service for customers, e.g. in terms of the time elapsing between the order/purchasing and the parcel delivery (lead 
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time) that should be minimized; (iii) logistics costs, e.g. the number of vehicles needed for the deliveries, which 

depends on the demand and the possibility of consolidation of goods, expressed in terms of average load factor of 

parcel couriers vehicles and vehicle kilometres travelled (VKT).  

In this paper, we present a new agent-based model (ABM) built to compare the performance of two parcel delivery 

strategies, namely Home Delivery and Collection-and-Delivery Point (CDP), by varying customer demand patterns, 

vehicle fleet capacity and the spatial density of CDPs. The first option is the most common in last-mile delivery, even 

if it the logistics operator must manage a fragmented delivery process, a more complex routing and higher VKT (Iwan 

et al., 2016). The second option includes selected locations (e.g. parcel lockers, shops) where customers can pick-up 

their parcels. This allows consolidating parcels, solving the expensive problem of failed deliveries and potentially 

reducing the impact of freight deliveries on urban traffic (Lachapelle et al., 2018). The potential of CDPs is usually 

related to their closeness to origin/destination of customer trips, mainly activities, services and residences. The novelty 

of the ABM proposed here is the simultaneous dynamic simulation of customer and freight movements with the 

possibility for customers to pick up their parcels in CDP along their daily trip path, considering different trip purposes. 

Combining passenger mobility and last mile freight deliveries through a consolidation-based approach has the 

potential of increasing the overall efficiency of the transport, thus turning in to one of the most promising strategies 

for sustainable freight transport planning. Next section will frame our research in the context of the recent research 

endeavours on this topic.  

 

2. Fragmented vs. consolidated deliveries  

Literature on this topic has recently started to emerge. Schnieder and West (2020) introduced the concept of Time-

Area requirements, i.e. the product of the space usage and the time needed for the delivery process (including both 

couriers and customers movements), to evaluate the two delivery options, deriving some useful insights for policy-

makers to reduce the externalities of urban deliveries. Mitrea et al. (2020) investigated the feasibility of parcel lockers 

and the attitude of users towards this alternative delivery solution. Authors collected useful information through a 

survey about the willingness to use parcel lockers instead of the traditional deliveries and the most important features 

that parcel must have. Regarding locations, users seem to prefer parcel lockers close to their daily origin/destination 

(e.g. home, workplace) so to integrate the collection of goods in their daily routine. Besides, about two third of the e-

consumers are willing to deviate up to 10 minutes to collect their parcels. Van Duin et al. (2020) used three different 

methods for evaluating the suitability of parcel lockers in different scenarios: (i) Cost Effectiveness Analysis to 

calculate the delivery cost for each scenario; (ii) Multi-Criteria Analysis to identify the most important features for 

each alternative (e.g. safety, comfort); (iii) simulations to understand how different scenario works according to 

parameter set. Results show that the parcel locker solution can provide great benefits but it requires an appropriate 

analysis for the identification of their optimal location. There are some very recent studies that dealt with the issue of 

e-commerce delivery through ABM. Le Pira et al. (2020) proposed an approach based on the integration of discrete-

choice models and ABM able to simulate the propensity of users on choosing between three different e-grocery 

alternatives: home delivery, click-and-pick and the traditional way of shopping. Sakai et al. (2020) implemented an 

ABM framework, validated with real-world user’s survey, to model the general e-commerce delivery demand. 

Another related approach is the work of Palanca et al. (2021), where they simulated different urban mobility and 

delivery solutions. Alves et al. (2019) analysed different scenarios by changing the number of delivery lockers. The 

study integrated the use of ABM and GIS tool and main results show that lockers can reduce the missed delivery 

phenomenon, generate additional monetary revenue for the supermarkets that contain them, and improve the cost 

effectiveness for curriers. Literature so far focused on demand analysis for different delivery strategies or 

configurations of deliveries based on consolidation.  Our paper contributes to the literature in this field by building an 

ABM able to dynamically reproduce different delivery strategies and passenger movements. This is done in a 

parametric simulation environment to study the overall impact of the use of CDPs on the different actors involved, 

and specifically on the couriers routing, on the delivery cost and on the discomfort for customers, according to different 

demand patterns. Next section enters into the details of the methodology used to perform such analysis. 
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3. Methodology 

The aim of the ABM is to identify the trade-off between the operator cost, the quality of service for customers and 

the environmental impact, considering design parameters such as the spatial density of CDPs. The ABM is 

implemented in the NetLogo programming environment (Wilensky, 1999) and includes four types of agents, namely 

customers, delivery vehicles (couriers), parcels and CDPs. A huge advantage of using ABMs is that each agent is 

programmed to carry out series of tasks without being necessarily aware of the status of the other agents in the system 

and one can study the emergence of the collective behaviour, sometimes with unexpected outcomes. The main input 

parameters of our simulation model concern the geometric features of the service area, the demand (customers) 

characterization, the supply (couriers) characteristics, and the simulation duration. We assume that delivery operations 

take place in a rectangular area of length L and width W. Couriers are defined by the capacity CV (m3), the cruise speed 

vc (km/h) and the average energy consumption EV (kWh/km) assuming they are fully electric. Operation costs are 

related to the drivers’ wage (€dr) and vehicle cost by distance (€dist), not considering in the present work the fixed cost 

of vehicles. Couriers depart from a depot r distance away from the service area and travel along a grid street network 

(of spacing dg). Each intersection (node) of the network could act as a potential delivery location (stop-node) where 

couriers stop to serve a home delivery request or a CDP. The customer demand is assumed homogeneous throughout 

the area, according to a demand density  (customers /km2-day). Customer purchase orders can be delivered either at 

home or in a CDP, which for simplicity is assumed to be constituted by a certain number of parcel lockers. The latter 

serves multiple customers, who have to go and pick-up their parcels, and are characterized by the input parameter 

“density of CDPs”  (CDP/km2) . Fig. 1 presents a schematic representation of the deliveries using the two options. 

   

Fig. 1. Scheme of the delivery operations (Home Delivery and CDP) carried out by a fleet of couriers along the grid street network. Each 

courier’s route is depicted in different couleurs. 

The total number of deliveries in the simulated day, assuming one parcel per customer, is determined as follows: 

 𝑁𝐶 = 𝜆 ∙ 𝐿 ∙ 𝑊 ∙ (1 + 𝐾𝑅) ∙ (1 + 𝐾𝐹) (1) 

where KR and KF are coefficients accounting for the percentage of returned parcels and the percentage of failed 

deliveries. The latter should be calibrated based on the results of test simulations, since it depends on the previous 

days’ delivery operations. Each customer is characterized by a different “activity profile” (as synthesized in Table 1). 
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Customers have random origin (O) and destination (D) of their daily activities within the service region. The distance 

dOD has thresholds based on the activity profile. There are also customers not moving from home, except for picking 

up (or returning) their parcel. Customers choose between four mode of transport for their trips (“car”, “bike”, “PT” 

(public transport) and “walk”) and the probability Pij for customer i to choose transport mode j for his trip is given by 

a logit model: Pij = eVij /  j eVij, where Vij is the utility function associated with the alternative j. Vij depends on the 

travel time tOD from origin to destination, which in turn depends on the distance dOD, and the alternative-specific 

attributes (see Table 2). In the present application, the parameters of the utility functions are taken from Cascetta 

(1998). We reasonably assume that customers consider as “target” CDP (possible alternative to home delivery) the 

one minimizing the detour time to reach it, but not exceeding the maximum detour tdet,max (a key input parameter to be 

further investigated). If j = “walk”, the customer i can only choose the nearest CDP to the origin. If j = “PT”, one 

can also choose a CDP near to the destination. Finally, if j = “car” or j = “bike”, one can also choose a CDP near the 

O-D route (note that, given the same detour time, the detour distances are greater since car speed and bike speed are 

greater than walking speed). 

Regarding customers’ requests, we consider four different parcel sizes (Table 3), the percentage of which is 

hypothesized considering a standard courier capacity of 8 m3 and an average number of parcels (per fully loaded 

vehicle) of about 150 parcels (Llorca and Moeckel, 2020). The characterization of each customer (activity profile, 

mode of transport, type of parcel and delivery option) is made in the “setup” phase before the simulation starts. 

     Table 1. Input parameters related to the activity profile of customers. 

Activity profile Home-Work  

(Employee) 

Home-Work 

(Self-employed) 
Home-Shopping No displacement 

O-D Distance [km] > 0.2 > 0.2 < 5.0 0 

Start travel time 7:00 ÷ 8:30 6:00 ÷ 9:00 9:00 ÷ 17:00 - 

Travel time duration [hour] 6 ÷ 10 8 ÷ 10 1 ÷ 3 - 

Table 2. Input parameters related to the mode of transport. 

Mode of transport Car Bike PT Walk 

Avg. Speed [km/h] 30 15 15 5 

Utility (V)  βt,car tOD,car+βc,car dOD,car+β0,car βt,bike tOD,bike+β0,bike  βt,PT tOD,PT+β0,PT  βt,tOD,walk  

Table 3. Input parameters related to parcels. 

Parcel size  Small (S) Medium (M) Large (L) Extra-Large (XL) 

Percentage  40 % 40 % 15 % 5 % 

Size [m3] 0.005 m3 (0.4x0.25x0.05) 0.04 m3 (0.5x0.4x0.2) 0.12 m3 (0.8x0.5x0.3) 0.36 m3 (1x0.6x0.6) 

# reserved lockers in a CDP 20 26 4 0 

In order to limit the variables affecting the model, we assume that the probability for customer i of choosing the 

delivery at a CDP k only depend on an impedance function ik which is the ratio between the detour time to reach k 

and tdet,max, as below: 

 𝑃𝑖𝑘 = (1 − 𝜂𝑖𝑘) ∙ 𝑥𝐶𝐷𝑃 = (1 −
𝑡𝑖,𝑘

𝑡𝑑𝑒𝑡,𝑚𝑎𝑥
) ∙ 𝑥𝐶𝐷𝑃 (2) 

where xCDP is a Boolean variable which assumes the value 1 if there are available lockers for the parcel and 0 

otherwise. Note that, for simplicity, the detour time only includes the one-way time needed to reach the CDP, not the 

round-trip.  It may happen that the customer choosing home delivery is not at home when the courier arrives: in this 

case a failed delivery occurs, if nobody else is available (a family member, a neighbour, a doorman, etc.). The 

probability of having an alternative person to receive the delivery is a calibration parameter, which we set assuming a 

percentage of failed deliveries of about 25% (Van Duin et al., 2016) when only the home delivery option is available. 
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The vehicle routing problem (VRP) is solved in the “setup” phase, as follows. We first determinate the minimum 

fleet size nV by dividing the total volume of the parcel to be delivered Vdel,tot by the courier capacity C. Then we divide 

the service region into nV rectangular sub-regions (this approximation is justified by the homogeneous spatial demand 

distribution), assigning the stop-nodes to serve the and estimate the travel time (including the idle time with the parked 

vehicle during delivery operations). In real-world scenarios, determining the optimal route assignments to the vehicles 

of the fleet allows the operator to obtain significant time and cost savings, so the VRP should be addressed by ad-hoc 

optimization algorithms (Calabrò et al., 2020). Since we propose a synthetic case study with an idealized grid network, 

we follow the guidelines suggested by Daganzo (2004) and applied in the analytical model of Quadrifoglio and Li 

(2009), assuming that each courier travels through the upper half of the sub-region in a no-backtracking policy (e.g. 

left-to-right), and then through the bottom half in a no-backtracking policy in the opposite direction (e.g. right-to-left). 

This pattern can be observed in Fig. 1. We consider an additional time lost at each stop s = 30 s, including the time 

of acceleration and deceleration, and average delivery times per parcel p (home delivery) and cdp (CDP). 

The behaviour of the couriers and the behaviour of the customers are represented by two state charts in Fig. 2a and 

Fig. 2b, respectively. Every agent goes through several states, each one is activated when a given event occurs and/or 

if a set of conditions are met (square brackets), causing the transitions (the black arrows) between different states. 

   

Fig. 2. (a) Courier state chart; (b) Customer state chart.   

4. Preliminary results and discussion 

The ABM allows monitoring of different key performance indicators, related to both customers and operators’ 

points of view (Calabrò et al., 2021). Different scenarios can be simulated by varying the number and location of 

parcel lockers, courier fleet size, and customer demand patterns, allowing to infer about the attractiveness of different 

delivery options from the point of view of customers and logistics operators, and by evaluating the overall impact of 

deliveries on city sustainability. 

For a first test of the model, we simulate customers’ activities during an entire working day and delivery operations 

during 8 work hours (from 9 A.M. to 6 P.M., including a 1-hour lunch break). We applied the explained methodology 

to a synthetic case study that we called “Virtual-CT”. It mimics a medium-sized city (30 km2) with a grid-like network 

and the freight depot in the city outskirt. Operator-related costs are taken from Llorca and Moeckel (2020). We 

performed two sets of simulations, by varying (1) the density of CDP and (2) customer willingness to deviate from 

their usual trip to reach a CDP (i.e. the max detour). The inputs of the different scenarios are reported in Table 4: 

 

 

a) b) 
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Table 4. Scenario input parameters setup. 

GEOMETRIC PARAMETERS DEMAND PARAMETERS SUPPLY PARAMETERS 

L W r   KR vw tdet,max nV CV vc s p cdp €dr €dist 

[km] [km] [km] [CDP/km2] [cust/km2]  [km/h] [min]  [m3] [km/h] [s] [s] [s] [eur/h] [eur/km] 

6 5 1 0-0.5-1-2-5-10 25 0.15 5 6 - 10 5-7 * 8 25 30 120 30 26.9 0.77 

*The number of couriers is the minimum to satisfy the number of requests. It can vary in different simulation runs 

Eleven scenarios are simulated. In particular, scenario 0 only considers home deliveries and scenarios 1-5 are 

related to increasing density of CDP and are repeated twice by increasing the max detour from 6 to 10 min to account 

for more flexibility of consumers. In particular, scenario 1 considers a density of 0.5 CDP/km2, scenario 2 of 1 

CDP/km2, scenario 3 of 2 CDP/km2, scenario 4 of 5 CDP/km2 and scenario 5 of 10 CDP/km2. Each scenario has been 

run five times to test result fluctuations and have a statistics of events. Main results are reported in the following 

figures (Fig. 3-4-5). 

 

Fig. 3. Variation of customer- and operator-related outputs with respect to scenario 0 (home delivery) when increasing the CDP density (max 

detour time = 6 min). 

Fig. 3 compares scenarios in terms of variation of customer- and operator-related outputs. In general, while 

increasing the density of the CDP, the percentage of customers choosing them goes up from 26% to 58%. This occurs 

at the expense of a small increase in their average travel time due to the detour needed, which goes from 7% to 9% 

(from 16 to 18 minutes) from scenario 1 to 5. From the point of view of the operator, this implies fewer costs per 

parcel, and higher commercial speeds due to shorter stopping times (in line with Allen et al., 2018). However, the 

transport intensity, which is linked to the distance travelled per parcel, and the total energy consumption do not show 

a clear decreasing trend. In particular, one can notice a critical value of CDP density (5 CDP/km2) after which these 

indicators start to get worse with respect to the previous scenarios. This suggests that, for the specific area of analysis 

and simulation parameters, a further increase in the CDP density would not be so beneficial in terms of distance 

travelled per parcel and environmental impact, meaning that there is not a meaningful consolidation effect. 

If we look at failed deliveries (Fig. 4), there is a general improvement once the density of CDP increases. They 

drop from 22% in the scenario totally based on home deliveries (scenario 0) to 9 or 7% in the scenario with a density 

of CDP equal to 10 CDP/km2 (scenario 5, respectively considering 6 or 10 minutes detour).  

Finally, when comparing scenario results obtained by increasing customer willingness to deviate from their original 

trip from 6 to 10 minutes (Fig. 5), one can see a small increase in the average customer travel time, and a higher 

benefit in terms of transport intensity, especially for CDP density equal to 2 CDP/km2.  

To sum up, scenarios based on consolidation are to be preferred from the point of view of logistics efficiency and 

negative impact, even if they imply a small discomfort for the customers. The best solution from both the customer 

and the operator point of view (i.e. in terms of transport intensity) should be to provide a delivery service using CDP 
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with a density from 2 to 5 CDP/km2. A mechanism of incentives for customers choosing CDP could be considered to 

compensate the increase in travel time due to the detour to reach the CDP. 

 

Fig. 4. %CDP users with respect to failed deliveries in the different scenarios. 

 

Fig. 5. Customer vs. operator outputs in terms of transport intensity (TI) and customer travel time (CTT) in the different scenarios. 

5. Conclusions 

This paper presented the first results of a new agent-based able to reproduce the complexity of on-demand last-

mile parcel deliveries. These are expected to grow in the near future and are becoming a big concern for policy-

makers. The model reproduces a parametric environment and is able to dynamically simulate freight deliveries and 

customer movements. For a first test, it is used to reproduce scenarios based on delivery consolidation via CDP. 

Main results suggest that a trade-off between freight vehicle travelled distance, customer satisfaction and logistics 

costs can be found while proposing a solution to last mile parcel deliveries based on consolidation via parcel lockers. 

In particular, while increasing the density of CDP, there are more opportunities for reducing the operator costs and 

improving the logistics efficiency at the expense of a small discomfort for users in terms of travel time to pick up the 

parcel at the CDP. It is also possible to find an optimal range of CDP density implying the best results in terms of 

delivery impact (travelled distance per parcel and total energy consumption).  

In conclusion, the proposed methodology can be used as a support tool to understand how to plan e-commerce 

deliveries by considering efficient solutions both from sustainability and the customer satisfaction point of view. 

Future research steps will focus on more tests (e.g. by simulating more than one day or different demand patterns) and 

to make it more realistic by reproducing real case studies with demand data. 
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