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Abstract

The objective of this thesis is to present two new perturbative frameworks for the study of
low-energy Quantum Chromodynamics (QCD), termed the Screened Massive Expansion
and the Dynamical Model. Both the frameworks paint a picture of the infrared regime of
QCD which is consistent with the current knowledge provided by the lattice calculations
and by other non-perturbative methods, displaying dynamical mass generation in the gluon
sector and a massless ghost propagator. The Screened Massive Expansion achieves this by
operating a shift of the QCD perturbative series, performed by adding a mass term for the
transverse gluons in the kinetic part of the Faddeev-Popov Lagrangian and subtracting it
back from its interaction part so that the total action remains unchanged. The Dynamical
Model, on the other hand, interprets the generation of a dynamical mass for the gluons as
being triggered by a non-vanishing condensate of the form ⟨(Ah)2⟩, where Ah is a gauge-
and BRST-invariant non-local version of the gluon field, and explores the consequences
of the inclusion of the former in the partition function of the theory. Since the main
focus of this thesis is on the gauge sector of QCD, most of our calculations will be carried
out in the context of pure Yang-Mills theory. There we will show that the gluon and
the ghost propagator derived by using the two frameworks are in good agreement with
the Euclidean Landau gauge lattice data, within the limits of a one-loop approximation.
During the course of the thesis we will address topics such as the first-principles status of
two methods, the absence of Landau poles from the strong running coupling constant and
the extension of the Screened Massive Expansion to finite temperature and to full QCD.
Future research prospects are discussed in the Conclusions.
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Abstract (Italian)

L’obiettivo di questa tesi è presentare due nuovi framework perturbativi per lo studio
della Cromodinamica Quantistica (QCD) alle basse energie, denominati Sviluppo Pertur-
bativo Massivo (Screened Massive Expansion) e Modello Dinamico (Dynamical Model).
Entrambi i framework forniscono un quadro del regime infrarosso della QCD in accordo
con le conoscenze attuali ottenute grazie a calcoli su reticolo e ad altri metodi non perturba-
tivi, mostrando generazione dinamica di massa nel settore gluonico e un propagatore ghost
non massivo. Lo Sviluppo Perturbativo Massivo perviene a tale risultato attraverso una
modifica della serie perturbativa della QCD, operata aggiungendo un termine di massa per
i gluoni trasversali nella parte cinetica della Lagrangiana di Faddeev-Popov e sottraendo lo
stesso termine dalla parte di interazione, in modo che l’azione totale rimanga inalterata. Il
Modello Dinamico, per contro, interpreta la generazione di una massa dinamica per i gluoni
come innescata da un condensato non nullo della forma ⟨(Ah)2⟩, dove Ah è una versione
non-locale gauge e BRST invariante del campo gluonico, ed esplora le conseguenze della
sua introduzione nella funzione di partizione della teoria. Poiché il focus di questa tesi è
sul settore di gauge della QCD, la maggior parte dei nostri calcoli saranno condotti nel
contesto della teoria di Yang-Mills pura. In essa mostreremo che i propagatori gluonico e
ghost derivati nell’ambito dei due framework sono in buon accordo con i dati euclidei sul
reticolo nella gauge di Landau, entro i limiti di un’approssimazione a one loop. Nel corso
della tesi affronteremo argomenti quali lo status da princìpi primi dei due metodi, l’assenza
di poli di Landau nella costante di accoppiamento forte e l’estensione dello Sviluppo Per-
turbativo Massivo a temperature finite e alla QCD completa. Nelle Conclusioni verranno
discusse alcune prospettive di ricerca future.
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Abstract (Dutch)

Het doel van deze thesis is om 2 nieuwe perturbatieve raamwerken voor te stellen om lage
energie Kwantumchromodynamica (QCD) te bestuderen: de Gescreende Massieve Expan-
sie (Screened Massive Expansion) en het Dynamisch Model (Dynamical Model). Beide
raamwerken schetsen een beeld van het infrarood regime van QCD dat consistent is met
onze huidige kennis zoals aangeleverd door roostersimulaties en andere niet-perturbatieve
methodes: dynamische massageneratie in de gluonsector en een massaloos spookdeeltje.
De Gescreende Massieve Expansie bekomt dit door een gepaste shift van de QCD pertur-
batiereeks, meerbepaald door een nieuwe massaterm toe te voegen in de kinetische term
voor de transversale gluonenn op het niveau van de Faddeev Popov Lagrangiaan, waarbij
deze nieuwe term dan weer wordt afgetrokken in het interactiegedeelte. Daardoor blijft
de totale actie wel onveranderd. Het Dynamisch Model daarentegen bekomt een gluon-
massageneratie als een gevolg van een niet-verdwijnend massacondensaat van de vorm
⟨(Ah)2⟩, waarbij Ah een ijk- en BRST-invariante niet-lokale versie van het gluonveld is.
Verschillende niet-triviale consequenties van het toevoegen van deze laatste aan de par-
titiefunctie van de theorie worden uitvoerig besproken. Vermits het hoofddoel van deze
thesis de ijksector van QCD is, zullen we de meeste berekeningen in de context van pure
ijktheorieën uitvoeren. We zullen daarbij aantonen dat de gluon- en spookpropagator,
zoals deze kunnen bepaald worden vanuit beide raamwerken, in goede overeenkomst zijn
met de Euclidische Landau-ijk roosterdata en dat binnen de beperkingen van een één-lus
benadering. In de loop van de thesis zullen we verschillende onderwerpen bespreken zoals
daar zijn de ab initio status van beide methodieken, het ontbreken van een Landau-pool in
de sterke koppelingsconstante en de veralgemening van de Gescreende Massieve Expansie
naar eindige temperatuur en naar volledige QCD. Toekomstige onderzoeksuitbreidingen
bespreken we tenslotte in de Conclusies.
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Introduction

Quantum Chromodynamics as the theory of the strong inter-
actions

Quantum Chromodynamics was born in 1973 with the publication of three seminal papers
by D. J. Gross and F. Wilczek [GW73], H. D. Politzer [Pol73], and H. Fritzsch, M. Gell-
Mann and H. Leutwyler [FGML73]. During the late ’60s and early ’70s, evidence had begun
accumulating [Pan68, BCD+69, BFK+69, Tay69, MP71, FK72, MBB+72, Per72, BBB+75]
that the quarks, fermionic degrees of freedom originally devised as a mathematically con-
venient tool for explaining the observed hadron spectrum [GM61, Ne’61, Gre64, HN65,
GM64, Zwe64a, Zwe64b], might have more physical significance than was initially at-
tributed to them. Experiments on deep inelastic electron-proton scattering carried out
at SLAC [Pan68, BCD+69, BFK+69, Tay69, FK72, MBB+72], together with later exper-
iments on neutrinos [MP71, Per72, BBB+75], painted a picture of the nucleon structure
which was in general agreement with the theoretical predictions obtained by J. D. Bjorken,
R. P. Feynman and others [Bjo69, BP69, Fey69a, Fey69b] using the parton model. The lat-
ter regarded the nucleons as loosely bound conglomerates of more elementary components
– the partons – unable to exchange large momenta via their reciprocal non-electromagnetic
interactions.

While the scientific community started to get accustomed with the idea that the quarks
might in fact exist as elementary particles, the proponents of the quark model maintained
a more abstract, algebraic point of view [FGM71, FGM72]. The reason for this was the
complete lack of evidence for the existence of free quarks, combined with the fact that no
explanation had yet been given for the curious “switching-off” of the strong interactions
at large momentum transfers. It is in this spirit of abstraction that in 1973 Fritzsch,
Gell-Mann and Leutwyler advocated that the strong interactions inside the hadrons could
be modeled by an octet of massless gluon fields carrying color charge [FGML73]. In their
paper, they argued that the coloredness of the gluons – along with the established postulate
that any physical state be colorless – might explain why the gluons were not observed as
free particles, just like the quarks were not. This property of the strong interactions
is today known as confinement. The color octet gluon picture would also lead to other
physically meaningful consequences, such as the fact that quark-antiquark bound pairs
are preferably created in colorless states (in compliance with the aforementioned principle
of color-neutrality for physical states) and the existence of eight instead of nine massless
pseudoscalar mesons in the limit of zero mass for the constituent quarks. These would be
the charged and neutral pions and kaons plus the lighter neutral eta meson, if nature had
not decided to go its own way and provide the quarks with a mass.

In the meantime, the solution to the problem of the switching-off of the strong interac-
tions at high energies had been given by Gross and Wilczek and Politzer [GW73, Pol73].
Using the Renormalization Group (RG) approach of Gell-Mann, F. E. Low, C. G. Callan

xv
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and K. Symanzik [GML54, Cal70, Sym70], Gross, Wilczek and Politzer showed that the
non-abelian gauge theory formulated by C. N. Yang and R. Mills in 1954 [YM54] possesses
the property of asymptotic freedom: in the limit of high energies – provided that the num-
ber of fermions coupled to the gauge bosons is not too large – the running coupling constant
of the Yang-Mills (YM) theory tends to zero, thus making the theory effectively free at
sufficiently large energies. In particular, modeling the strong interactions as a Yang-Mills
theory with gauge group SU(3) – in which the gluons were to be identified with the massless
(color-charged) gauge bosons – would be sufficient to explain the success that the parton
model had in describing the scaling properties exhibited by the deep inelastic scattering
cross-sections. Such an approach also predicted violations to scaling, which would be sub-
sequently observed in the experiments [BDD+78, dGHH+79a, dGHH+79b, dGHH+79c].

With the theoretical machinery in place for turning ideas into numbers, the following
years were spent verifying the hypothesis that Quantum Chromodynamics was the right
theory of the strong interactions. By 1975, little doubt was left that quarks were true
dynamical degrees of freedom of the hadrons. In addition to the deep inelastic scattering
data, this was confirmed by the first measurements of the hadronic cross-section in e+e−

collisions [Ric74, SBB+75] and by the discovery of 2-jet events at SLAC [HAB+75]. The
latter were interpreted as the product of the hadronization of a quark-antiquark pair,
created by a single virtual photon in the process e+e− → (γ) → qq → 2 jets.

The discovery of the gluon, on the other hand, had to wait until the end of the decade.
The first indirect evidence for the existence of the gluon had been obtained in 1970-1971
by measuring the structure function of the nucleons [LS70, KW71, LS71]. Then it was ob-
served that the quarks and antiquarks inside the nucleons did not exhaust the momentum
sum rules of the structure functions, which would therefore also need to receive contribu-
tions from flavorless partons yet to be seen. The obvious candidate for the fulfillment of
the sum rules was, of course, the gluon. Conclusive proof of its existence, however, only
came in 1979, when four different collaborations – MARK-J, JADE, PLUTO and TASSO
– working at the PETRA electron-positron collider detected the occurrence of 3-jet events
in the hadronic channel of e+e− annihilation [BBB+79, BBG+79, BGG+79, BCD+80].
Since the quarks were fermions, the third jet in the event could not possibly stem from the
hadronization of a quark. Instead, it had to originate from a boson. Interpreting the third
jet as due to gluon bremsstrahlung in the QED/QCD process e+e− → (γ) → qqg → 3 jets
was sufficient (albeit far from trivial in terms of the model employed for jet formation) to
match the experimental data on the cross section of the channel and on the momentum
distribution of the decay products. Soon enough, analyses of the angular distribution of
the three jets confirmed the spin-1 nature of the gluon [BBG+80, BCF+80, BGG+80].

Since the ’60s and ’70s, the amount of evidence in favor of QCD being the true theory of
the strong interactions has multiplied to the point that nobody today questions the validity
of the model. From a mathematical perspective, QCD is a non-abelian gauge theory of
Yang-Mills type with gauge group SU(3). The global charges associated to the local SU(3)
symmetry are identified with the color charge carried by the gluons and quarks, the latter
taken to be Dirac fields living in the fundamental representation of the gauge group.

Thanks to the asymptotic freedom typical of non-abelian gauge theories, the high-
energy regime of QCD has been tested to an astonishing degree of precision using ordinary
methods of perturbation theory. Theoretical results have been derived up to fifth order in
the strong coupling constant αs [vRVL97, Cza05, LMMS16, BCK17, CFHV17, HRU+17],
and the fundamental parameters of the theory – that is, the coupling constant itself and
the quark masses – have been measured extensively [HRZ22, LMQ22, MLB22].
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Unfortunately, the other side of the coin of ultraviolet (UV) asymptotic freedom is
the unbounded increase of the value of the strong coupling the infrared (IR). Since the
beta-function coefficients computed in perturbative QCD (pQCD) turn out to be negative
up to the current reaches of the perturbative calculations [HRU+17], perturbation theory
predicts that, at low energies, the strong coupling constant grows to infinity at a finite,
non-zero scale, thus developing an infrared Landau pole. While a strongly-coupled IR
regime is perfectly consistent with the experimental observations, the fact that pQCD –
whose applicability rests precisely on the smallness of αs – yields an infinite IR coupling
marks the breakdown of the method at low energies. In particular, the existence itself of
the Landau pole cannot be trusted, being derived in a domain in which the assumptions
of perturbation theory are invalid.

In order to extract predictions from low-energy QCD, one has to resort to non-pertur-
bative methods, the most common of which are lattice QCD, the Dyson-Schwinger Equa-
tions and the Operator Product Expansion and Gribov-Zwanziger approaches. In the next
section we will give a brief introduction to these techniques.

Non-perturbative methods in Quantum Chromodynamics

The term “non-perturbative”, in general, can be understood to have two meanings. First
of all, it can mean methodologically non-perturbative – that is, not making use of any
form of perturbative expansion. Second, it can mean intrinsically non-perturbative – i.e.,
able to incorporate features which cannot be described at any finite order in ordinary
perturbation theory. Needless to say, calculational techniques which are methodologically
non-perturbative are usually employed to study features of the theory which are intrinsi-
cally non-perturbative. Broadly speaking, lattice QCD and the Dyson-Schwinger equation
approach are methodologically non-perturbative techniques, whereas the Operator Product
Expansion and Gribov-Zwanziger approaches are intrinsically non-perturbative techniques.

In lattice QCD (LQCD) [Cre85, IM97, DD06, GL10, LM15, HSL22], the fundamental
fields of the theory – that is, the gluon and quark fields – are defined on a discrete lattice
of finite volume. Ordinary (continuum) QCD is then recovered by extrapolating the lattice
results towards the limit of zero lattice spacing and infinite volume. Since the number of
sites in the lattice is finite, the number of degrees of freedom of LQCD is also finite. As a
result, the Green functions of the theory can be computed numerically by averaging over
the values of finitely many variables.

For a typical state-of-the-art lattice calculation, the number of lattice sites can be as
large as 1284 ∼ 3 · 108. Since the gluon has 4× 8 degrees of freedom per site, while a single
quark has 4, performing a LQCD calculation requires to evaluate integrals with as many
as ∼ 1010 variables of integration. Clearly, this can only be done on extremely powerful
supercomputers using Monte Carlo techniques.

In the intermediate- to high-energy regime, LQCD provides us with an independent
determination of the values of the strong coupling constant αs [ABC+22, HRZ22] and
of the quark masses [ABC+22, MLB22] which is in excellent agreement with the results
of perturbation theory. At low energy, amongst the most notable achievements of the
lattice approach, we mention the calculation of the decay constants of the pseudoscalar
mesons [BBB+15, FIK+15, CDK+16, GLT+18, DCMG+19, ABC+22, RSVdW22] – which,
in addition to being significant in its own right, is also essential for measuring the ele-
ments of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [CLS22] – and
the (partial) determination of the hadron spectrum [ABD+04, DFF+08, AII+09, BTB+10,
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CDI+10, LLOWL10, BBG+11, BDDP+11, DEJ+11, GDK+11, MW11, BnLB12, DDHH12,
GIRM12, MOU13, NAI+13, ADJ+14, BDMO14, PEMP14, PRCB15, AK17, DKL+19,
ADK22]. The fact that the lattice calculations are able to predict the lighter hadron
masses within an error of a few percent from their experimentally measured values is ar-
guably the most compelling proof that QCD truly provides a complete description of the
strong interactions, from the TeV scales reached at the hadron colliders, down to the MeV
scales typical of low-energy hadronic processes.

In contrast to lattice QCD, the Gribov-Zwanziger (GZ) approach is a continuum
method whose main concern is to address the existence of Gribov copies in the config-
urations of the gluon field. In order to fully contextualize the method, we must first take
a step back and discuss some of the issues that arise when quantizing a gauge theory.

The local gauge invariance which characterizes the theories like QCD causes some of the
degrees of freedom of theory to be redundant, in the sense that field configurations which
are related to one another via a gauge transformation describe the very same underlying
physics. In order to extract physical predictions from a gauge theory, one must first dispose
of such a redundancy by fixing a gauge – that is, by choosing a gauge in which to carry
out the calculations.

In continuum quantum field theories, the gauge is usually fixed by employing a proce-
dure devised by L. D. Faddeev and V. Popov (FP) [FP67]. The FP procedure consists in
integrating out the redundant degrees of freedom from the partition function of the theory
while introducing fictitious ghost fields whose role is to remove any leftover unphysical
contribution from the computed gauge-invariant quantities. The resulting FP action is
no longer gauge invariant, but possesses instead a fermionic global symmetry known as
BRST symmetry from the names of their discoverers, C. Becchi, A. Rouet and R. Stora
[BRS75, BRS76] and I. V. Tyutin [Tyu75]. Being realized through global transformations,
BRST symmetry does not pose any obstacle to the proper calculation of physical quan-
tities. On the contrary, it is nowadays used as the customary starting point for proving
a large number of properties of the gauge theories, such as their perturbative renormaliz-
ability [Wei96].

In 1978, V. N. Gribov [Gri78] observed that, at the non-perturbative level, the FP
procedure fails to fully fix the gauge of the non-abelian theories due to the existence of
zero modes of the so-called Faddeev-Popov operator −∂µDµ [FP67]. These zero modes can
be used to construct gauge transformations which relate distinct field configurations of the
FP partition function – the Gribov copies – to one another. As a result, the FP procedure
is invalidated.

In order to solve this issue, Gribov proposed to restrict the Faddeev-Popov partition
function to the configurations belonging to the domain since known as the Gribov region
[Gri78], defined by the requirement that their associated Faddeev-Popov operator be pos-
itive. A local and renormalizable action capable of implementing the Gribov constraint
was discovered in 1989 by D. Zwanziger [Zwa89], paving the way for the systematic study
of the gauge sector of QCD under the lens of the Gribov hypothesis.

Since the eigenvalues of the Faddeev-Popov operator are strictly positive for small
enough values of the gauge fields, the Gribov copies have no effect on the perturbative
(UV) regime of QCD. In the deep infrared, on the other hand, the restriction of the
fields to the Gribov region turns out to considerably alter the dynamics of the gluons: in
[Gri78, Zwa89] it was shown that, within the GZ approach, instead of growing to infinity as
is typical of massless fields, the zero-order gluon propagator vanishes at zero momentum.
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Nowadays, thanks to relatively recent lattice calculations, a consensus has been reached
that the IR behavior displayed by the standard GZ gluon propagator is not the cor-
rect one (we shall have more to say on this topic in the following section). Nonethe-
less, extensions of the GZ framework that take into account the non-perturbative ef-
fects brought by the vacuum condensates, like the Refined Gribov-Zwanziger approach
of [DGS+08, DSVV08, DOV10, DSV11], do manage to reproduce the exact low-energy
dynamics of the theory. These extensions shed light on key aspects of QCD such as the
analytical structure of the propagators, and provide us with important benchmarks for the
quantitative study of its infrared regime.

Vacuum condensates – that is, vacuum expectation values of products of operators
evaluated at the same spacetime point – play a central role in the approach known as the
Operator Product Expansion (OPE). First proposed by K. G. Wilson in 1969 [Wil69] and
put on firm mathematical grounds by W. Zimmermann in 1970 [Zim70], the OPE allows
us to compute the first non-perturbative corrections to the behavior of the Green func-
tions due to the non-vanishing of the condensates. Such corrections have been calculated
for quantities like the strong coupling constant αs, the heavy quark-antiquark effective
potential and numerous cross-sections – see e.g. [PS95, IFL10] for an overview.

While strictly valid only at intermediate- to high-energy scales, the OPE can be used
at all scales as a tool to prove that terms which – often for dimensional reasons – would
be forbidden to enter the perturbative series of a Green function can nonetheless emerge
from non-perturbative contributions. A classic example of this is the appearance of a mass
term in the quark propagator due to the non-vanishing of the quark condensate

〈
ψψ
〉

even
in the limit of zero quark mass, where such a term could never arise by plain perturbation
theory.

Within the functional approach to the quantization of the field theories, it is possible to
derive integral equations that describe the exact behavior of the n-point Green functions in
terms of higher-point Green functions. Such equations are known as the Dyson-Schwinger
Equations (DSE) from the names of their discoverers, F. J. Dyson and J. Schwinger [Dys49,
Sch51], and are customarily used to investigate the non-perturbative behavior of QCD.

In order to solve the DSE, one has to truncate the infinite tower of equations by making
assumptions on the form of the higher-point Green functions. A solution is then searched
for in a self-consistent way, by improving the accuracy of the approximation step-by-step
in the calculation until convergence is achieved.

One specific instance of a DSE, the Bethe-Salpeter equation [SB51], is the standard
tool for the study of bound states in relativistic quantum field theory.

Lattice QCD, the Schwinger-Dyson Equations and the Gribov-Zwanziger approach all
predict that, in the deep infrared, the dynamics of the gluons is substantially different from
what is expected from the calculations carried out in ordinary perturbation theory. The
low-energy behavior of the gluons in Quantum Chromodynamics is the subject of the next
section.

The mass of the gluon

While at high energies the experimental observations are consistent with the ordinary
perturbative picture of gluons as massless particles, it has been suggested in the literature
that a non-vanishing gluon mass could help explain some of the data gathered on the
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low energy behavior of QCD. Studies have been carried out on processes such as the
decay and formation of the pseudoscalar and vector mesons [PP80, JA90, CF94, LW96,
CF97, MN00, Fie02, Nat09], e+e− annihilation into hadrons [Fie94, LW96] and pp and pp
scattering [HKN93, LMM+05, Nat09], all of which show that the IR data are better fitted
by assuming that the gluon possesses a mass in the range ≈ 500-1000 MeV. The gluon mass
was included in the theoretical predictions by making use a multitude of techniques, ranging
from the calculation of phase-space effects [PP80, CF94, LW96, CF97, MN00, Fie02], to
the implementation of the solutions of the Dyson-Schwinger Equations [Nat09], to the
calculation of the non-perturbative corrections due to the quadratic

〈
F 2
〉

gluon condensate
[JA90, LW96] which in papers such as [Cor82] were linked to dynamical mass generation
in the gluon sector.

At the turn of the century, numerical simulations performed on larger and larger lattices
[LSWP98a, LSWP98b, BBLW00, BBL+01] made it possible to explore the deep infrared
regime of pure Yang-Mills theory – that is, QCD in the absence of quarks. The lattice
data clearly showed that, in the limit of vanishing momentum, the gluon propagator does
not grow to infinity as would be expected from a massless field, but saturates instead
to a finite, non-zero value, just like the propagator of a massive particle. This was not
completely unexpected, as approaches like that of Gribov and Zwanziger [Gri78, Zwa89] or
the discovery of the so-called scaling solutions of the Dyson-Schwinger Equations [vSHA97,
AB98] had already pointed out that non-perturbative effects could lead to the strong
suppression of the gluon propagator in the IR; moreover, the possibility that the gluons
might acquire a mass due to the strong interactions had already been investigated in
studies such as [Cor82] and in some of the previously mentioned phenomenological analyses.
Nonetheless, the results of the lattice calculations marked a turning point in the field of
low-energy QCD both by providing the first clear evidence of the occurrence of dynamical
mass generation for the gluons and by revealing that the zero-momentum limit of the gluon
propagator is in fact finite, instead of vanishing, as had been predicted within the GZ and
DSE frameworks. The massiveness and zero-momentum finiteness of the gluon propagator
have since been confirmed by a number of lattice studies carried out both in pure Yang-Mills
theory [SIMPS05, CM08, BIMPS09, ISI09, BMMP10, BLLY+12, OS12, BBC+15, DOS16]
and in full QCD [BHL+04, BHL+07, IMPS+07, SO10, ABB+12], and by the discovery
of the so-called decoupling solutions of the DSE [AN04, AP06, ABP08, AP08, HvS13],
to the point that, today, they are regarded as established facts by the low-energy QCD
community.

The occurrence of dynamical mass generation (DMG) in the gluon sector of QCD has
far-reaching implications both on the phenomenology and on the theoretical investigation
of the strong interactions in the infrared regime. From a phenomenological perspective, as
shown e.g. by the aforementioned [PP80, JA90, HKN93, CF94, Fie94, LW96, CF97, MN00,
Fie02, LMM+05, Nat09], it is clear that a non-vanishing gluon mass does indeed affect the
outcome of the experiments carried out at low energies. Nonetheless, we should remark
that the relation of the lattice/DSE findings to the empirical data is far from clear at
present: since the gluon propagator is a gauge-dependent quantity which must necessarily
enter the physical predictions in a gauge-invariant way, it is not straightforward to spell out
the influence of the saturation of the propagator on the QCD observables in the absence
of a complete theory of the gluon mass.

From a theoretical perspective, on the other hand, dynamical mass generation is cru-
cial to our understanding of the strong interactions, given that ordinary perturbation
theory forbids the gluons to acquire a mass to any finite order in the coupling con-
stant: it can be shown that the radiative corrections to the zero-momentum limit of the
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gluon propagator vanish in pQCD, so that a singular gluon polarization á la Schwinger
[Sch62a, Sch62b, ABP16, ADSF+22] yielding a finite propagator can never be obtained by
ordinary perturbative methods. Of course, it could be argued that, since pQCD breaks
down in the infrared regime, it makes little sense to try to extract predictions on the
low-energy behavior of the strong interactions by making use of perturbation theory. And
indeed, we will see that the issue of gluon DMG and that of the formation of a Landau
pole in the strong coupling constant are deeply related, to the extent that succeeding in
describing the first one also manages to solve the second. Nonetheless, the fact remains
that the failure of standard pQCD to account for DMG in the gluon sector leaves us with
little to no fully analytical tools to explore the correct low-energy limit of QCD starting
from its ordinary formulation, and creates the need to look for alternative computational
methods.

At the beginning of the last decade, M. Tissier and N. Wschebor [TW10, TW11] showed
that, by adding a mass term for the gluons in the Landau gauge Faddeev-Popov pure
Yang-Mills Lagrangian, one could perturbatively derive a gluon and a ghost propagator
that accurately reproduced the infrared lattice data already to one loop, while yielding
a strong coupling constant with no Landau poles. Since the gluon mass term breaks the
BRST invariance of the FP action1, their Curci-Ferrari (CF) model – so named after its
original proponents G. Curci and R. Ferrari [CF76] – was to be regarded as an effective
description of the strong interactions. Following the publication of [TW10, TW11], the CF
model was used to compute the three-point gauge vertices [PTW13], extended to full QCD
[PTW14, PTW15, PRS+17, RSTT17, PRS+21a] and to finite temperatures [RSTW14,
RST15, RSTW15a, RSTW15b, RSTW16], worked out to two loops [GPRT19, BPRW20,
BGPR21] and employed to study the analytical structure of the propagators [HK19, HK20]
– see also [RSTW17, PRS+21b]. In all cases, the CF technique provided essential insights
both into the viability of perturbative techniques in Quantum Chromodynamics and into
the IR behavior of QCD itself. The results obtained by making use of the model showed
a remarkable agreement with the available lattice data, which only improved by going to
higher order in perturbation theory.

The success of the Curci-Ferrari model in describing the low-energy regime of the strong
interactions suggested that treating the gluons as massive at tree level could be sufficient to
restore the validity of perturbation theory in the infrared, yielding a perturbative series that
correctly displays dynamical mass generation in the gluon sector while at the same time
remaining self-consistent thanks to the absence of Landau poles in the coupling constant.
This suggestion prompted the research of further perturbative techniques by which a gluon
mass term could be introduced in the expansion of the Green functions, without however
changing the content of the Faddeev-Popov Lagrangian. The Screened Massive Expansion
and the Dynamical Model are two examples of such techniques.

Massive perturbative formulations of Quantum Chromody-
namics and the outline of this thesis

The objective of this thesis is to present the main results obtained by making use of two
new perturbative frameworks for Quantum Chromodynamics, termed the Screened Mas-
sive Expansion and the Dynamical Model. In this section we give a brief overview of the

1Although the action still possesses a generalized, non-nilpotent BRST symmetry that can be exploited
to prove the renormalizability of the corresponding quantum theory – see [CF76].
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two methods and of the contents of the thesis.

The Screened Massive Expansion (SME) was formulated in 2015 by F. Siringo [Sir15a,
Sir15b, Sir16b] in the context of pure Yang-Mills theory with the aim of providing a massive
perturbation theory for QCD á la Curci-Ferrari without modifying the overall Faddeev-
Popov action. This was achieved by adding a transverse mass term for the gluons in the
kinetic part of the Lagrangian and subtracting it back from its interaction part, so that the
transverse gluons would propagate as massive at order zero in the perturbative expansion
while preserving the total action of the theory. As a result of the subtraction of the mass
term from the interaction Lagrangian, a new two-point interaction vertex – termed the
gluon mass counterterm – must be included in the Feynman rules of the expansion, giving
rise to new Feynman diagrams which are not present in the perturbative series of the Curci-
Ferrari model. To any order in the gluon mass counterterm, these diagrams can be shown
to be equal to derivatives of corresponding Curci-Ferrari diagrams with respect to the
gluon mass parameter. When all the new diagrams are resummed, the ordinary, massless
perturbative series of QCD is recovered, proving that the SME is indeed perturbatively
equivalent to pQCD. For obvious reasons, such a resummation is not performed in practice.

The Screened Massive Expansion neglects the existence of Gribov copies in the config-
uration space of QCD. The rationale for this is that the massiveness of the gluon – which
is already taken care of by the SME – suppresses the large field configurations, so that the
dynamical effects of the copies are expected to be suppressed not only in the UV – where
the SME reproduces the results of ordinary perturbation theory – but also in the IR.

The gluon and ghost propagators computed within the SME are found to be in excel-
lent agreement with the lattice data already at one loop [Sir15a, Sir15b, Sir16b, Sir17d],
displaying mass generation in the gluon sector. Within the SME, the latter occurs in a
non-trivial way: the tree-level mass term introduced in the gluon propagator by shifting
the expansion point of perturbation theory cancels with an opposite term in the gluon
polarization, so that the gluon mass only survives inside the loops of the expansion. In
other words, the saturation of the gluon propagator at zero momentum is a truly dynamical
effect of the interactions.

The SME was extended to the chiral limit of full QCD and used to study the analytic
structure of the propagators in [Sir16b, Sir17a, Sir17b]. There it was shown that the one-
loop gluon propagators possesses a pair of complex-conjugate poles and a spectral function
which violates the positivity conditions that must hold for physical particles. This can be
interpreted as evidence for gluon confinement. In the quark sector, an analogous finding
was made for the quark spectral functions, pointing to quark confinement, but a single
real quark pole was observed instead. Recent calculations, first presented in [CRBS21]
and carried out with the aid of more accurate lattice data, show that, on the contrary,
the poles of the quark propagator are actually complex conjugate like in the gluon sector.
The quark mass functions computed in [CRBS21] turn out to be in very good agreement
with the lattice, whereas the quark Z-functions display the wrong behavior due to the
limitations of the one-loop approximation.

In [Sir17c, SC21] the Screened Massive Expansion of pure Yang-Mills theory was ex-
tended to non-zero temperatures with the aim of studying the temperature-dependence of
the gluon propagator and of deriving dispersion relations for the gluon quasi-particles.
A comparison with the lattice data yielded good results in the (spatially) transverse
sector and mixed results in the (spatially) longitudinal sector, the latter accounted for
by the fact that a 4-dimensionally transverse gluon mass term for the gluons might be
sub-optimal at high temperatures. The finite-temperature behavior of YM theory was
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also investigated under the lens of the Gaussian Effective Potential in [CS18], where it
was shown that a discontinuity in the optimal value of the SME gluon mass parameter
produces a corresponding discontinuity in the entropy density, marking the occurrence of
the deconfinement phase transition.

The topic of the predictiveness of the Screened Massive Expansion was addressed in
[SC18], where an optimization procedure based on the Nielsen identities – see also [SC22b] –
was formulated with the aim of reducing the number of free parameters of the expansion.
By enforcing the gauge-parameter independence of the position of the poles and of the
phases of the residues of the gluon propagator, it was possible to obtain an expression for
the propagator which – modulo multiplicative renormalization – only depends on the value
of the gluon mass parameter. When compared to the lattice results, it was found that the
optimized propagator was indistinguishable from one obtained by a full fit of the lattice
data, thus demonstrating the soundness of the method. The optimization of the two-point
sector of pure Yang-Mills theory was completed in [Sir19a, Sir19b] with the determination
of the parameters of the ghost propagator. The results of [SC18] were used as a starting
point for the studies carried out in [CRBS21, SC21].

In [CS20] the one-loop pure Yang-Mills gluon and ghost propagators were improved
by making use of Renormalization Group methods. For not-too-large initial values of the
coupling constant, the Taylor-scheme running coupling was shown to be free of Landau
poles and to remain moderately small at all energy scales, thus confirming that the SME
is self-consistent in the infrared. As in most massive models of QCD, the finiteness of
the coupling is made possible by the fact that the gluon mass parameter provides the
beta function with a scale at which the RG flow is allowed to slow down. While the RG-
improved propagators display a good agreement with the lattice data at intermediate- to
high-energy energy scales, essentially reducing to their ordinary pQCD analogues in the
deep UV, the SME running coupling turns out to be too large at its maximum for the
one-loop approximation to be sufficiently accurate in the deep IR, below momenta of ap-
proximately 500 MeV. At such low energies, the optimized fixed-scale results of [SC18] still
constitute our best estimate of the behavior of the Yang-Mills propagators.

While the Screened Massive Expansion does not explicitly address the origin of the
gluon mass, the Dynamical Model (DM) – born from studies carried out in the framework
of the Gribov-Zwanziger approach [CDF+15, CDF+16a, CDF+16b, CDP+17, CFPS17,
CDG+18, MPPS19, DFP+19] –, advances the hypothesis that dynamical mass generation
might be triggered by a non-vanishing BRST-invariant quadratic gluon condensate of the
form

〈
(Ah)2

〉
, where Ah is a gauge-invariant version of the gluon field A. The formation of

such a condensate can be proved to be energetically favored in pure Yang-Mills theory by
making use of Local Composite Operator methods, which allow us to include the operator
(Ah)2 in the Faddeev-Popov Lagrangian from first principles, without changing the physical
content of the theory. An effective potential for the condensate can then be derived and
minimized to provide the on-shell value of

〈
(Ah)2

〉
, which is found to be different from

zero.
In the process of deriving the effective potential, successive transformations of the

Faddeev-Popov action yield a new action I in which the condensate is coupled to the
quadratic operator (Ah)2. Since to lowest order in perturbation theory (Ah)2 reduces to
the square A2 of the gluon field, a non-vanishing condensate then generates a mass term
for the gluons, with a mass parameter proportional to the condensate itself. We remark
that the action I and the Faddeev-Popov action are dynamically equivalent on the shell of
the gap equation – that is, on the minima of the effective potential. I is taken to be the
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defining action of the Dynamical Model.
The renormalizability of the Dynamical Model was proved in [CFG+16, CvEP+18].

The first preliminary results on the DM gluon and ghost propagators in the Landau gauge,
on the other hand, were obtained in [DM20], where it was shown that the propagators have
the same expressions as in the Curci-Ferrari model, with the notable exception that the
tree-level mass term in the gluon propagator disappears once the gap equation is enforced.
This feature shows that the description of the IR dynamics of Yang-Mills theory provided
by the DM lies somewhere in between the Curci-Ferrari model and the Screened Massive
Expansion. Like in the latter, DMG in the Dynamical Model is a result of the radiative
corrections brought by the interactions alone.

A new renormalization scheme for the RG analysis of the Dynamical Model in the
Landau gauge, termed the Dynamically-Infrared-Safe (DIS) scheme, is presented in this
thesis. Within the DIS scheme, it is possible to derive a finite running coupling and one-
loop RG-improved propagators which display a very good agreement with the lattice data
over a wide range of momenta, only failing below approximately 500 MeV just like in the
SME.

As a final note, we should mention that the Dynamical Model was recently extended
to finite temperature in [DvERV22] with the aim of probing the deconfinement transition
of pure Yang-Mills theory.

In this thesis we will give a theoretical overview of the Screened Massive Expansion
and of the Dynamical Model and present the main results that have been obtained within
the two frameworks. In detail, its contents are as follows. In Chapter 1 we review the
formalism of Quantum Chromodynamics and its ordinary perturbative formulation and
discuss the breakdown of the latter in the infrared. In Chapter 2 we review some of
the non-perturbative results obtained by lattice QCD, the Operator Product Expansion
and Gribov-Zwanziger approaches and the Curci-Ferrari model, upon which we will rely
during the rest of the thesis. In Chapter 3 we discuss the set-up of the Screened Massive
Expansion of pure Yang-Mills theory, report explicit expressions for the one-loop gluon
and ghost SME propagators, describe the optimization procedure by which the spurious
free parameters of the expansion are fixed from principles of gauge invariance and perform
the RG improvement of the propagators. In Chapter 4 we present two applications of the
Screened Massive Expansion – namely, its extension to finite temperature and to the quark
sector of full QCD. In Chapter 5 we define the gauge-invariant gluon field Ah, derive the
one-loop effective potential for its quadratic condensate

〈
(Ah)2

〉
and the action I of the

Dynamical Model, report expressions for the one-loop DM gluon and ghost propagators and
perform their RG improvement in the DIS scheme. The results of the lattice calculations
are used throughout Chapters 3 to 5 as a benchmark for the validity of our calculations.
In Chapter 6 we present our conclusions and discuss potential future developments of the
Screened Massive Expansion and of the Dynamical Model.
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Quantum Chromodynamics and its
infrared regime





1

The standard formulation of QCD

In this first chapter we start by reviewing the definition of Quantum Chromodynamics.
The main objective of our review is to fix the notation and highlight some of the properties
of QCD which are assumed to be valid at all scales. We will discuss the symmetries of the
theory, its quantization in the functional formalism and the issue of gauge fixing. Thanks
to the BRST symmetry which survives the fixing of the gauge, we will be able to derive
the general form of the well-known Slavnov-Taylor identities and that of the lesser-known
Nielsen identities. The latter of these will play a fundamental role in obtaining some of
the results presented in Chapter 3.

Next, we move on to the standard perturbative formulation of QCD. Although not
suitable for studying the infrared dynamics of the strong interactions, standard perturba-
tion theory remains the most important benchmark for any analytical treatment of QCD.
Going through the derivation of the perturbative series for an arbitrary Green function
will allow us to introduce the Feynman rules of standard perturbation theory, to discuss
the validity of the approximation and to show how the formalism leaves the doors open to
possible modifications of the series. By making use of the Renormalization Group, we will
address the asymptotic freedom typical of the non-abelian gauge theories and illustrate the
breakdown of the method at low energy.

1.1 Action functionals for QCD and their symmetries

1.1.1 The classical action

Quantum Chromodynamics is a Yang-Mills theory [YM54] with gauge group SU(3) min-
imally coupled to quarks in the fundamental representation. In the presence of a single
quark, the QCD Lagrangian density LQCD takes the form

LQCD = −1

4
F aµνF

aµν + ψ(iγµDµ −M)ψ . (1.1)

Here ψ – the quark field – is a triplet of Dirac fields, ψ = ψ†γ0 is its Dirac conjugate, M
is its mass, the γµ’s are matrices satisfying the Dirac algebra

{γµ, γν} = 2 ηµν 1 , (1.2)

where η = diag(+1,−1,−1,−1) is the Minkowski metric, and the covariant derivative
Dµ = Dµ(A) acting on the fundamental representation is defined as

Dµ = ∂µ − igAaµTa . (1.3)

3
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In the above equation, g is the strong coupling constant, the Ta’s (a = 1, . . . , 8) are the
generators of the Lie algebra su(3) of SU(3) – that is, they are 8 linearly independent
traceless 3× 3 matrices –, chosen so as to satisfy the normalization condition

Tr {TaTb} =
1

2
δab , (1.4)

and Aaµ – the gluon field – is an octet of vector fields also known as the gauge potential.
The gluon field-strength tensor F aµν = F aµν [A] is defined as

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν , (1.5)

where the f cab’s – the structure constants – define the commutation relations of su(3),

[Ta, Tb] = if cab Tc ; (1.6)

Fµν = F aµνTa can equivalently be expressed in terms of the commutator of two covariant
derivatives as

Fµν =
i

g
[Dµ, Dν ] . (1.7)

Clearly, f cab = −f cba and F aµν = −F aνµ. The Jacobi identity [X, [Y,Z]] + [Y, [Z,X]] +
[Z, [X,Y ]], valid for any triplet of square matrices X,Y, Z, translates into the relation

fabcf
c
de + fadcf

c
eb + faecf

c
bd = 0 (1.8)

for the structure constants.

In its full glory, the QCD Lagrangian can be expanded as

LQCD = −1

2
∂µA

a
ν (∂µAa ν − ∂νAaµ)− gfabc ∂µA

a
ν A

b µAc ν+ (1.9)

− 1

4
g2fabcf

a
deA

b
µA

c
νA

dµAe ν + ψ(iγµ∂µ −M)ψ + g ψγµTaψA
a
µ .

The classical field equations of QCD can be obtained by functionally differentiating the
action SQCD,

SQCD =

∫
d4x LQCD , (1.10)

with respect to the gluon and quark fields. They read

(iγµDµ −M)ψ = 0 , (1.11)

DµF
aµν + g ψγνT aψ = 0 , (1.12)

where the covariant derivative Dµ acts on Fµν – and, more generally, on any object in the
adjoint representation of SU(3) – as

DµF
σν = ∂µF

σν − ig[Aµ, F
σν ] , (1.13)

so that

DµF
aµν = ∂µF

aµν + g fabcA
b
µF

c µν . (1.14)
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QCD is a gauge theory in that it possesses a local symmetry – specifically, a local SU(3)
symmetry. In order to see this, consider the transformation defined by Aµ = AaµTa → AUµ ,
ψ → ψU , where

AUµ = U

(
Aµ +

i

g
∂µ

)
U † , ψU = Uψ , (1.15)

and U = U(x) is a function from Minkowski space to the group of 3× 3 unitary matrices
of determinant 1 – i.e., to the group SU(3). Using the transformation laws

Dµ(A
U )ψU = UDµ(A)ψ , Fµν [A

U ] = UFµν [A]U
† , (1.16)

ψU = ψU † , F aµνF
aµν = 2Tr {FµνFµν} ,

it is easy to show that LQCD remains invariant under the local SU(3) transformation in
Eq. (1.15). In particular, the QCD Lagrangian is constant over the gauge orbits, i.e. over
the sets of field configurations which are related to one-another via a gauge transformation
(the “gauge-equivalent” configurations): given a solution of the QCD field equations (1.11)
and (1.12), all of its gauge-equivalent configurations also solve the equations.

When globalized, the local SU(3) symmetry of the QCD action leads to the conservation
of an octet Jµa of Noether currents,

Jµa = ψγµTaψ + fabc F
b µνAcν , ∂µJ

µ
a = 0 . (1.17)

Altogether, the Jµa ’s form the color current. The color current corresponds to invariance
under the infinitesimal global transformation

δAaµ = gfabcA
b
µχ

c , δψ = igχaTaψ , (1.18)

obtained by first setting U = eigχ with χ = χaTa infinitesimal in Eq. (1.15), so that

δAµ = Dµχ = ∂µχ− ig[χ,Aµ] , δψ = igχψ , (1.19)

and then taking the χa’s to be constant. Observe that, in terms of the color current, the
field equations for the gluon field read

∂µF
aµν = −gJa ν . (1.20)

For future reference, we remark that the definitions presented in this section remain
valid, with obvious modifications, for any Yang-Mills theory whose local symmetry group
is a compact semi-simple group. In particular, they apply to arbitrary SU(N) Yang-Mills
theories once we replace the quark triplet with an N -dimensional Dirac multiplet and the
T a’s with a set of NA = N2 − 1 linearly independent traceless N × N matrices (a =
1, . . . , NA). Moreover, the definitions can be extended to multiple quark fields by simply
taking the QCD Lagrangian to be

LQCD = −1

4
F aµνF

aµν +
∑

f

ψf (iγ
µDµ −Mf )ψf , (1.21)

where f denotes the flavor of the quark and Mf is the corresponding mass. The other
equations must be changed accordingly. For example, in the presence of multiple quark
fields, the color current becomes

Jµa =
∑

f

ψfγ
µTaψf + fabc F

b µνAcν . (1.22)

In order to keep the expressions simple, in what follows we will restrict ourselves to a single
flavor of quark.
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1.1.2 Quantizing QCD: the Faddeev-Popov action

Quantum Chromodynamics is usually quantized by making use of the functional formalism.
In the functional formalism, given any quantum operator O, its vacuum expectation value
(VEV) ⟨O⟩ is computed by averaging its classical counterpart – which for simplicity we
will also denote with O – over the set of field configurations, using as the weighting factor
the complex exponential eiS of the classical action. In other words,

⟨O⟩ =
∫
DF eiS[F ] O[F ]∫

DF eiS[F ]
, (1.23)

where F denotes a generic field and DF is the measure over the complete set of fields.
When working with gauge theories over a continuum spacetime, this definition has to be
somewhat modified. The reason for this lies in the fact that, as remarked in the previ-
ous section, the action of any gauge theory is constant over the set of gauge-equivalent
configurations. Since there are infinitely many such configurations, the integrand in the
denominator of Eq. (1.23) is infinite. If, in addition, the operator O is gauge invariant,
then the integrand in the numerator of Eq. (1.23) will be infinite as well. In order to cure
these infinities, one resorts to a procedure first devised by L. D. Faddeev and V. Popov
(FP) [FP67]. In what follows, we will review the FP procedure in the context of QCD and
of the covariant gauges.

Let us start from a generic QCD path integral I,

I =

∫
DADψDψ eiSQCD[A,ψ,ψ] O[A,ψ, ψ] . (1.24)

If we assume O to be gauge invariant, then I is infinite and thus ill-defined. Nonetheless,
if we managed to factorize the infinity so that

I = C∞ · Ifinite , (1.25)

where C∞ is an infinite constant and Ifinite is finite, then the average of the operator O,

⟨O⟩ = C∞ · Ifinite∫
DF eiS[F ]

, (1.26)

would be well-defined provided that
∫
DF eiS[F ] contains the same infinite factor C∞ that

appears in the numerator of Eq. (1.26).
In order to show that this factorization can indeed be performed, let us re-write I as

I = N−1

∫
DADψDψDF e

iSQCD[A,ψ,ψ]−i
∫
d4x 1

2ξ
FaFa O[A,ψ, ψ] , (1.27)

where F a is a new set of integration fields, ξ is a (non-negative) constant and

N =

∫
DF e

−i
∫
d4x 1

2ξ
FaFa

. (1.28)

Since the ill-definedness of I is caused by gauge invariance, meaning that

SQCD[A
U , ψU , ψU ] = SQCD[A,ψ, ψ] , O[AU , ψU , ψU ] = O[A,ψ, ψ] , (1.29)

DAUDψUDψU = DADψDψ ,
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where we denoted with AU and ψU the gauge-transformed version of A and ψ as in
Eq. (1.15), to make the integral well-defined we must manipulate the integrand in Eq. (1.27)
so as to introduce in the action terms which break gauge symmetry. This can be achieved
by changing variables of integration from F a to λa, setting

F a = F a[λ] = ∂µ(AU(λ)
µ )a , U(λ) = eigλ

aTa . (1.30)

The resulting integral reads

I = N−1

∫
DADψDψDλ eiSQCD[A,ψ,ψ]−i

∫
d4x 1

2ξ
(∂·AU(λ))2

det

(
δ(∂ ·AU(λ))

δλ

)
O[A,ψ, ψ] ,

(1.31)
where the determinant can be explicitly computed to be equal to1

det

(
δ(∂ ·AU(λ))

δλ

)
= det

(
∂µDµ(A

U(λ))Λ(λ)
)
, (1.32)

and, for each value of the index a, Λa(λ) is the matrix

Λa(λ) = − i

g

∂eigλ

∂λa
e−igλ . (1.33)

The latter lives in the adjoint representation; thus, its covariant derivative DµΛ reads

Dµ(A)Λa = ∂µΛa − ig[Aµ,Λa] . (1.34)

The crucial thing to notice about the determinant in Eq. (1.32) is that part of it de-
couples from the rest of the integral I thanks to gauge invariance itself. Indeed, factorizing
the determinant as

det
(
∂µDµ(A

U(λ))Λ(λ)
)
= det

(
∂µDµ(A

U(λ))
)
det (Λ(λ)) (1.35)

and using the relations in Eq. (1.29), we can rewrite the integral I as

I =N−1

∫
DAUDψUDψUDλ eiSQCD[AU ,ψU ,ψU ]−i

∫
d4x 1

2ξ
(∂·AU )2× (1.36)

× det
(
∂µDµ(A

U )
)
det (Λ(λ))O[AU , ψU , ψU ] ,

where U = U(λ). A simple renaming of variables AU → A, ψU → ψ now yields

I =N−1

(∫
Dλ det (Λ(λ))

)
× (1.37)

×
(∫

DADψDψ e
iSQCD[A,ψ,ψ]−i

∫
d4x 1

2ξ
(∂·A)2

det (∂µDµ(A))O[A,ψ, ψ]

)
,

where the first line is a multiplicative constant which does not depend on the operator O.
On the second line, we see that the integrand is no longer gauge invariant: a transformation
A → AU , ψ → ψU , while still leaving the integration measure and the action SQCD

1It is precisely at this point in the derivation that the existence of Gribov copies – see the Introduction
and Sec. 2.3 – spoils the validity of the Faddeev-Popov procedure. If the operator ∂µDµ has zero modes,
then the determinant vanishes and the change of variables F a → λa cannot be performed consistently. As
discussed in our introduction to the Screened Massive Expansion, we will disregard this issue as it is not
relevant in the UV, nor potentially in the IR once dynamical mass generation is accounted for.
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invariant, changes the product (∂ ·A)2 and the gauge potential inside the determinant. In
particular, the second factor in brackets is finite. This is precisely what we were looking
for: going back to Eq. (1.25), we can identify the constant C∞ with the O-independent
quantity

C∞ = N−1

(∫
Dλ det (Λ(λ))

)
. (1.38)

The operator ∂µDµ(A) in Eq. (1.37) and its determinant are respectively known as
the Faddeev-Popov operator and the Faddeev-Popov determinant. The Faddeev-Popov
determinant can be computed in terms of so-called ghost fields by observing that, given a
pair of Grassmann – that is, anticommuting – fields c and c and an operator M,

∫
DcDc exp

{
i

∫
d4x cMc

}
∝ det(−M) . (1.39)

Therefore, by introducing two octets of Grassman fields ca and ca, we can rewrite the finite
part of the integral I in Eq. (1.37) as

Ifinite =

∫
DADψDψDcDc eiSFP[A,ψ,ψ,c,c] O[A,ψ, ψ] , (1.40)

where SFP is known as the Faddeev-Popov action and reads

SFP =

∫
d4x LFP = SQCD +

∫
d4x

{
− 1

2ξ
(∂ ·A)2 + ∂µcaDµc

a

}
. (1.41)

We remark that, in order to obtain the last term, we have performed a partial integration.
The Faddeev-Popov action SFP is not gauge invariant. Term by term, its Lagrangian

is given by

LFP = −1

2
∂µA

a
ν (∂µAa ν − ∂νAaµ)− 1

2ξ
∂µAaµ∂

νAaν − gfabc ∂µA
a
ν A

b µAc ν+ (1.42)

− 1

4
g2fabcf

a
deA

b
µA

c
νA

dµAe ν + ψ(iγµ∂µ −M)ψ + g ψγµTaψA
a
µ+

+ ∂µca∂µc
a + gfabc ∂

µcaAbµc
c .

The fields ca and ca are respectively known as Faddeev-Popov ghosts and antighosts. They
are fermionic fields in that they anticommute with each other (and with the quark fields,
which are also Grassmann/anticommuting fields); nonetheless, they have no spin structure,
as can be seen from their kinetic term ∂µca∂µc

a, which is typical of a scalar field. Their
role is to act as “negative” degrees of freedom by removing unphysical contributions to the
computed physical quantities of the theory.

The constant ξ is known as the gauge parameter and it defines the covariant gauge in
which the calculation is carried out. The VEV of any gauge-invariant operator which can
be expressed solely in terms the gluon and the quark fields is easily seen to be independent
of ξ. Indeed, since for any such operator O

⟨O⟩ =
∫
DADψDψ eiSQCD O∫
DADψDψ eiSQCD

=

∫
DADψDψDcDc eiSFP O∫
DADψDψDcDc eiSFP

, (1.43)

where strict equalities hold between all of the members, the right-hand side of the equality
must be ξ-independent because the middle average also is. On the other hand, the aver-
ages of operators which are not gauge invariant, or those of operators which also involve
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the ghost and antighost fields, can – and in general do – depend on the gauge parameter.
This is due to the fact that, since the FP procedure is only applicable to gauge-invariant
operators, these averages are ill-defined with respect to the classical QCD action, and their
calculation makes sense only a posteriori, by making use of the gauge-fixed, ξ-dependent
Faddeev-Popov action.

In the quantum setting, the FP action replaces the classical QCD action. For future
reference, let us write down its field equations. By functionally differentiating Eq. (1.42)
with respect to the gluon, quark, ghost and antighost fields, we obtain

(iγµDµ −M)ψ = 0 , ∂µDµc
a = 0 , Dµ∂

µca = 0 , (1.44)

DµF
aµν +

1

ξ
∂ν∂µAaµ + g ψγνT aψ − gfabc ∂

νcbcc = 0 .

Observe that the field equations of the ghost and antighost fields do not coincide: in gen-
eral, ∂µDµ ̸= Dµ∂

µ.

To end this section, we should mention that the covariant gauges are not the only class
of gauges used to quantize the QCD action. Two popular alternatives for fixing the gauge
in QCD are the axial gauges, defined by choosing the functional F a in Eq. (1.30) according
to

F a = nµ(AUµ )
a, (1.45)

where nµ is a constant vector, and the Coulomb gauge, defined by the choice

F a = ∇⃗ · (A⃗U )a , (1.46)

where only the spatial divergence of the (spatial component of the) gauge field is involved.
Both of these have the disadvantage of making the calculations more difficult by breaking
the Lorentz invariance of the action. A third alternative, the maximal abelian gauge,
defined by

FA = ∂µAAµ + gfAIB a
I µABµ , F I = ∂µaIµ , (1.47)

where the aI ’s are the diagonal components of the gauge field Aµ = AaµTa, whereas the
AA’s are its off-diagonal components, breaks global SU(3) symmetry. We will go no further
in discussing these alternatives.

1.1.3 The partition function and the quantum effective action

In this section we briefly review the definition of the partition function and of the quan-
tum effective action and recall how these are used in quantum field theory. For the sake
of definiteness, we will employ the Faddeev-Popov action of QCD for their formulation,
although the same formalism applies to any field theory.

Consider the VEV of a time-ordered product T{Aa1µ1(x1) · · ·Aanµn(xn)} of gluon field
operators2,

〈
T
{
Aa1µ1(x1) · · ·Aanµn(xn)

}〉
=

∫
DADψDψDcDc eiSFP Aa1µ1(x1) · · ·Aanµn(xn)∫

DADψDψDcDc eiSFP
. (1.48)

2It can be proven – see e.g. [PS95], Chapter 9 – that the path integral of a product of fields computed
at different spacetime points is actually equal to the quantum average of the time-ordered product of the
corresponding quantum operators, rather than to the average of their simple product.
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It is easy to see that, if we define a functional Z[j] as

Z[j] =

∫
DADψDψDcDc eiSFP+i

∫
d4x Aaµj

µ
a , (1.49)

where the jµa ’s are classical external currents, then
〈
T
{
Aa1µ1(x1) · · ·Aanµn(xn)

}〉
=

[
(−i)nZ−1[j]

δnZ[j]

δjµ1a1 (x1) · · · δjµnan (xn)

]

j=0

, (1.50)

where δ/δjµa (x) denotes a functional derivative with respect to jµa . More generally, we can
define a partition function Z[j, jc, jc, jψ, jψ] as

Z[j, jc, jc, jψ, jψ] =

∫
DADψDψDcDc eiSFP+i

∫
d4x

(
Aaµj

µ
a+c

ajca+c
ajca+ψ

AjψA+ψ
A
jψA

)
, (1.51)

where the external currents jc,c,ψ,ψ are Grassmann fields and the index A is a multi-
index that enumerates the Dirac and color components of the quark field. The time-
ordered product of gluon, ghost and quark operators can be computed by differentiating
the partition function with respect to the corresponding external currents3, multiplying
the result by the inverse of the partition function and by an appropriate power of i, and
finally setting the currents to zero. Due to this property, the partition function is also
known as the generator of the Green functions of the theory.

If we define a quantity W [j] as

W [j] = −i lnZ[j] , (1.52)

where with j we have collectively denoted the external currents corresponding to the gluon,
ghost and quark fields, we find that, for example,

δ2W [j]

δjµa (x)δjνb (y)

∣∣∣∣
j=0

= i
(〈
T
{
Aaµ(x)A

b
ν(y)

}〉
− ⟨Aaµ(x)⟩⟨Abν(y)⟩

)
= (1.53)

= i
〈
T
{
Aaµ(x)A

b
ν(y)

}〉
conn.

.

In the general case, by differentiating the functional W [j] with respect to the external
currents, we obtain connected Green functions. Therefore, W [j] is known as the generator
of the connected Green functions of the theory.

An interesting application of the generator of the connected Green function is the
computation of the VEV of the elementary quantum fields of the theory. For the gluon
field, we have

δW [j]

δjµa (x)
=
〈
Aaµ(x)

〉
j
, (1.54)

where the subscript j on the right-hand side denotes that the average is computed in the
presence of the classical external currents. Similarly,

δRW [j]

δjca(x)
= ⟨ca(x)⟩j ,

δRW [j]

δjca(x)
= ⟨ca(x)⟩j , (1.55)

δRW [j]

δjψA(x)
=
〈
ψA(x)

〉
j
,

δRW [j]

δjψA(x)
=
〈
ψ
A
(x)
〉
j
.

3Care has to be taken when differentiating with respect to Grassmann variables such as the fermionic
currents, since then the functional derivatives anticommute with the Grassmann fields. In what follows,
we will distinguish between left and right derivatives as in [Wei96], denoting the first with a subscript L
and the second with a subscript R.
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By converse, we can define a set of currents jcl.[Fcl.] = jcl.[Acl., ψcl., ψcl., ccl., ccl.] such that

δRW [j]

δjaµ(x)

∣∣∣∣
j=jcl.

= Aacl.µ(x) ,

δRW [j]

δjca(x)

∣∣∣∣
j=jcl.

= cacl.(x) ,
δRW [j]

δjca(x)

∣∣∣∣
j=jcl.

= cacl.(x) , (1.56)

δRW [j]

δjψA(x)

∣∣∣∣
j=jcl.

= ψAcl.(x) ,
δRW [j]

δjψA(x)

∣∣∣∣
j=jcl.

= ψ
A
cl.(x)

for a given set of classical fields Aacl.µ, c
a
cl., c

a
cl., ψcl., ψcl.. If we differentiate the functional

Γ[Fcl.] defined as

Γ[Fcl.] =W [jcl.[Fcl.]]−
∫
d4x

{
Aacl.µ j

µ
cl. a + cacl. j

c
cl. a + cacl. j

c
cl. a + ψAcl. j

ψ
cl.A + ψ

A
cl. j

ψ
cl.A

}

(1.57)

with respect to the fields Fcl., we obtain

δLΓ[Fcl.]

δAacl.µ(x)
= −jµcl. a(x) ,

δLΓ[Fcl.]

δcacl.(x)
= −jccl. a(x) ,

δLΓ[Fcl.]

δcacl.(x)
= −jccl. a(x) , (1.58)

δLΓ[Fcl.]

δψAcl.(x)
= −jψcl.A(x) ,

δLΓ[Fcl.]

δψ
A
cl.(x)

= −jψcl.A(x) ,

In particular, since jcl. = 0 if and only if Aacl.µ(x) =
〈
Aaµ(x)

〉
j=0

, ψcl.(x) = ⟨ψ(x)⟩j=0, etc.,
we see that solving the equations

δLΓ[Fcl.]

δFcl.(x)
= 0 (1.59)

for the fields Fcl.(x) is equivalent to finding the vacuum expectation values ⟨F (x)⟩ in the
absence of external currents. For this reason, Γ[Fcl.] is known as the quantum effective
action – or, in brief, the effective action – of the theory. From now on, we will drop the
“cl.” subscript from the arguments of Γ.

When differentiated three or more times, the quantum effective action can be shown
to generate the 1-particle irreducible (1PI) Green functions of the theory [PS95]. For
this reason, Γ[F ] is also known as the generator of the 1PI Green functions. The second
derivatives of the effective action, on the other hand, are equal, modulo factors of i, to the
functional inverses of the propagators of the fields [PS95]:

∫
d4z

〈
T
{
FA(x)FC(z)

}〉
jcl.[F ]

δ2LΓ[F ]

δFC(z)δFB(y)
= iδAB δ(x− y) (1.60)

where the indices A, B, C denote the different fields and their spacetime and color com-
ponents.

The effective action can be used to study how the symmetries of a quantum field
theory affect its Green functions. Indeed, it can be proven [PS95, Wei96] that, for any
transformation δFA of the fields,

∫
d4x

〈
δFA(x)

〉
jcl.[F ]

δLΓ[F ]

δFA(x)
= ⟨δSFP⟩ , (1.61)
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where δSFP is the transformation of the action corresponding to δFA. If the action is
invariant under δFA – that is, if δSFP = 0 –, then the effective action will satisfy the
invariance property ∫

d4x
〈
δFA(x)

〉
jcl.[F ]

δLΓ[F ]

δFA(x)
= 0 . (1.62)

Relations of this kind are used to prove the renormalizability of QCD – and, more generally,
of the Yang-Mills theories – in the covariant gauges, by exploiting a symmetry of the action
known as BRST symmetry. The latter is the subject of the next section.

1.1.4 BRST symmetry, the Slavnov-Taylor identities and the Nielsen
identities

In Section 1.1.2 we saw that in order to quantize QCD it is necessary to fix a gauge. By
construction, the action that results from the Faddeev-Popov procedure is no longer gauge
invariant; nonetheless, in 1975, C. Becchi, A. Rouet and R. Stora [BRS75] and I. V. Tyutin
[Tyu75] showed that the FP action still possesses a symmetry which can be regarded as a
remnant of the full gauge symmetry. This symmetry is today known as the BRST sym-
metry.

In order to define the BRST transformations, we first need to introduce a so-called
Nakanishi-Lautrup (NL) field Ba [Lau66, Nak66] in the FP action. Observing that

e
− i

2ξ

∫
d4x (∂·A)2 ∝

∫
DB ei

∫
d4x ( ξ2B

aBa+Ba∂·Aa) =
∫

DB ei
∫
d4x ( ξ2B

aBa−∂µBaAaµ) ,

(1.63)
the FP Lagrangian can be rewritten as

LFP = −1

4
F aµνF

aµν + ψ(iγµDµ −M)ψ +
ξ

2
BaBa − ∂µBaAaµ + ∂µcaDµc

a . (1.64)

When using the above expression for LFP, it is understood that the path integrals are to
be computed by also integrating over the configurations of the NL field.

Consider now the following set of transformations:

δAaµ = ϵDµc
a ,

δψ = iϵg caTaψ ,

δca = −1

2
ϵgfabc c

bcc , (1.65)

δca = ϵBa ,

δBa = 0 ,

where ϵ is a constant Grassmann parameter. Going back to Eq. (1.19), we see that the first
two lines in Eq. (1.65) are formally identical to an infinitesimal SU(3) gauge transformation
of the gluon and quark fields with the transformation parameters χa(x) taken to be equal
to ϵca(x). It follows that the first two terms in Eq. (1.64) – that is, the terms which make
up the classical QCD action – are left invariant by Eqs. (1.65). As for the other terms, we
have

δ

(
ξ

2
BaBa − ∂µBaAaµ + ∂µcaDµc

a

)
= (1.66)

= −ϵ ∂µBaDµc
a + ϵ ∂µBaDµc

a + ∂µcaδ(Dµc
a) =

= ∂µcaδ(Dµc
a) .
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The transformation of the covariant derivative Dµc
a can be shown to vanish as a conse-

quence of the Jacobi identity – Eq. (1.8) –,

δ(Dµc
a) = 0 . (1.67)

Therefore, we find that the FP Lagrangian – and the action SFP with it – is invariant
under the BRST transformations defined by Eqs. (1.65),

δLFP = 0 . (1.68)

A second way to prove the invariance of the FP action under the BRST transformations
is via the nilpotency of the latter. Let s be the operator such that δF = ϵsF , where F is
one of the QCD fields. Explicitly,

sAaµ = Dµc
a ,

sψ = ig caTaψ ,

sca = −g
2
fabc c

bcc , (1.69)

sca = Ba ,

sBa = 0 .

A straigthforward calculation shows that s2F = 0 for every F . It follows that s2 = 0,
i.e., the BRST transformations are nilpotent. In terms of the BRST operator s, the FP
Lagrangian can be rewritten as

LFP = LQCD + s

(
ξ

2
Baca −Aaµ∂

µca
)
. (1.70)

Since sLQCD = 0 and s2 = 0, the BRST invariance of the FP Lagrangian follows.

Being global symmetries of the FP action, the BRST transformations have an associated
conserved current jµB, given by

jµB = −F aµνDνc
a +BaDµca − g ψγµTaψ c

a +
g

2
fabc∂

µcacbcc , ∂µj
µ
B = 0 . (1.71)

The corresponding charge QB =
∫
d3x j0B, called the BRST charge, is nilpotent and self-

adjoint as a quantum operator4,

Q2
B = 0 , Q†

B = QB . (1.72)

QB generates the BRST transformations, in the sense that

[QB, F ]∓ = −isF , (1.73)

where the commutator [·, ·]− = [·, ·] applies to bosonic operators, whereas the anticom-
mutator [·, ·]+ = {·, ·} applies to fermionic operators. Using Eq. (1.73), the gluon field
equations in Eq. (1.44) – which in the presence of the NL field read

DµF
aµν − ∂νBa + g ψγνT aψ − gfabc ∂

νcbcc = 0 , ξBa + ∂ ·Aa = 0 (1.74)

4In what follows, we will not delve into the fascinating subject of the canonical quantization of the FP
action. The interested reader is referred to [KO78a, KO78b, Oji78, KO79a, KO79b, KO79c] for a complete
treatment of the topic, and to Appendix A for a short summary of the formalism.
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– can be rewritten as
∂µF

aµν + gJa ν − i {QB, Dνca} = 0 , (1.75)

where Jµa , the color current, now includes contributions from both from the ghost and NL
fields,

Jµa = ψγµTaψ + fabc

(
F b µνAcν +Ab,µBc + cbDµcc − ∂µcbcc

)
. (1.76)

In particular, on the solutions of the field equations, the color charge Qa =
∫
d3x ja 0 can

be evaluated as

Qa =
1

g

∫
d3x

(
∂iF

a 0i + i {QB, D0c
a}
)
= (1.77)

=
1

g

∮
d2xi F

0i +
1

g

∫
d3x {QB, D0c

a} ,

where i = 1, . . . , 3 are spatial indices. In the literature, this expression for Qa has been
used to tentatively link the confinement of color charge to the asymptotic behavior of the
gluon field strength tensor F aµν as |r⃗| → ∞ [Oji78, KO79a].

BRST symmetry is a powerful tool for exploring the properties of QCD and, more
generally, of the gauge theories. Modern proofs of the perturbative renormalizability of
the Yang-Mills theories in the covariant gauges exploit the BRST invariance of the FP
action to determine which kind of divergences can appear in their Green functions [Wei96].
BRST symmetry is also used to prove the perturbative unitarity of the scattering matrix
in the context of the gauge theories, once a gauge has been fixed [KO79a]. This is done by
classifying the states of the theory according to the cohomology of the BRST charge QB:
the physical states |phys⟩ – that is, the states which can be realized in the physical world
– are identified with the BRST-closed states of zero ghost charge Qc,

QB |phys⟩ = 0 , Qc |phys⟩ = 0 , (1.78)

where Qc generates the transformations ca → eλca, ca → e−λca, easily seen to be an
additional symmetry of the FP Lagrangian. The physical Hilbert space, defined as the
quotient (Ker{QB} ∩ Ker{Qc})/Im{QB}, can then be shown to carry a positive-definite
inner product, a property which is essential for interpreting mathematical quantities such
as ⟨phys′|phys⟩ as transition amplitudes from one physical state to another.

BRST symmetry imposes relations known as Slavnov-Taylor identities (STI) [Tay71,
Sla72] between the Green functions of the gauge theories. The STI are often derived
from Eq. (1.62) by choosing as δF the BRST transformations of the elementary fields
F , δF = sF ; nonetheless, they are easier to obtain using the operator formalism (see
Appendix A).

Quite generally, we might say that any identity of the form

⟨0| [QB,O]∓ |0⟩ = 0 , (1.79)

where |0⟩ is the vacuum state of the theory, O is an arbitrary operator and the upper
(resp. lower) sign applies to bosonic (resp. fermionic) operators, is a Slavnov-Taylor
identity. That Eq. (1.79) is indeed an identity can be seen by explicitly writing out the
anti/commutator and observing that, since the vacuum must be a physical state – i.e.,
QB |0⟩ = 0 –,

⟨0| [QB,O]∓ |0⟩ = ⟨0|QBO ±OQB |0⟩ = 0 . (1.80)
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From Eqs. (1.73) and (1.79), it follows that the VEV of the BRST transformation of any
operator O vanishes,

⟨sO⟩ = 0 . (1.81)

As an example of a STI, consider the (time-ordered) BRST transformation of the
product Ba(x)cb(y). Since

0 =
〈
T
{
s
(
Ba(x)cb(y)

)}〉
= −i

〈
T
{
Ba(x)Bb(y)

}〉
. (1.82)

BRST invariance tells us that the two-point function of the NL field vanishes exactly. A
second STI is given by

0 =
〈
T
{
s
(
Aaµ(x)c

b(y)
)}〉

= −i
〈
T
{
Dµc

a(x)cb(x) +Aaµ(x)B
b(y)

}〉
, (1.83)

that is,
〈
T
{
Aaµ(x)B

b(y)
}〉

= −
〈
T
{
Dµc

a(x)cb(x)
}〉

. (1.84)

The content of the above identity can be unpacked by making use of the field equations and
of the canonical anticommutation relations for the ghost fields. After taking the divergence
of the right-hand side of the equation, we obtain

∂µ(x)

〈
T
{
Dµc

a(x)cb(x)
}〉

=
〈{
D0c

a(x), cb(y)
}〉

δ(x0 − y0) = −iδabδ(x− y) , (1.85)

where the first delta distribution comes from the derivative of the time-ordering operator
and we have used the operatorial identities

∂µDµc
a = 0 , {ca(x⃗, t), D0c

b(y⃗, t)} = −iδabδ(3)(x⃗− y⃗) (1.86)

(see Appendix A). By Lorentz symmetry, it follows that

〈
T
{
Dµc

a(x)cb(x)
}〉

=

∫
d4p

(2π)4
e−ip·(x−y)

pµ
p2
δab . (1.87)

Eq. (1.84) thus tells us that the correlator between the A and the B field is given by

〈
T
{
Aaµ(x)B

b(y)
}〉

=

∫
d4p

(2π)4
e−ip·(x−y)

−pµ
p2

δab . (1.88)

The last result can be used to derive a fundamental property of the gluon propagator.
If in the last equation we replace the NL field with the gluon field by applying the field
equation

Ba = −1

ξ
∂µAaµ , (1.89)

we find that the following relation holds for the correlator of two gluon fields:

〈
T
{
Aaµ(x)∂

νAbν(y)
}〉

=

∫
d4p

(2π)4
e−ip·(x−y) ξ

pµ
p2
δab . (1.90)

Since the components of the gluon field commute with each other, the latter is equivalent
to

∂ν(y)

〈
T
{
Aaµ(x)A

b
ν(y)

}〉
=

∫
d4p

(2π)4
e−ip·(x−y) ξ

pµ
p2
δab . (1.91)
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Let now ∆ab
µν(p) be the Fourier-transform of the gluon propagator

〈
T
{
Aaµ(x)A

b
ν(y)

}〉
,

〈
T
{
Aaµ(x)A

b
ν(y)

}〉
=

∫
d4p

(2π)4
e−ip·(x−y) ∆ab

µν(p) . (1.92)

By Lorentz symmetry, ∆ab
µν(p) can be expressed in terms of two scalar functions ∆ab

T (p),
∆ab
L (p), so that

∆ab
µν(p) = ∆ab

T (p) tµν(p) + ∆ab
L (p) ℓµν(p) , (1.93)

where tµν(p) and ℓµν(p) are, respectively, the transverse and longitudinal projectors

tµν(p) = ηµν −
pµpν
p2

, ℓµν(p) =
pµpν
p2

. (1.94)

Eq. (1.91) then tells us that ∆L(p) = −iξ/p2, that is

∆ab
µν(p) = ∆ab

T (p) tµν(p) +
−iξ
p2

δab ℓµν(p) . (1.95)

The longitudinal component of the gluon propagator is thus constrained by BRST sym-
metry to be proportional to the gauge parameter ξ and to have a pole at p2 = 0.

The STI obtained from applying the BRST operator to polynomials of higher degree
in the fields enforce relations between the higher-order Green functions. For instance, the
vanishing of ⟨T{s(Aaµ(x)Abν(y)cc(z))}⟩ implies that

⟨T{Aaµ(x)Abν(y)Bc(z)}⟩+⟨T{Dµc
a(x)Abν(y)c

c(z)}⟩+⟨T{Aaµ(x)Db
νc(y)c

c(z))}⟩ = 0 , (1.96)

whereas that of ⟨T{ψ(x)ψ(y)cb(z)}⟩ yields

⟨T{ψ(x)ψ(y)Bb(z)}⟩ = i⟨T{Taψ(x)ψ(y) ca(x)cb(z)}⟩ − i⟨T{ψ(x)ψ(y)Ta ca(y)cb(z)}⟩ .
(1.97)

In the context of the covariant gauges, BRST symmetry finds yet another application
in the derivation of the so-called Nielsen identities (NI) [Nie75, PS85, BLS95]. The NI
describe how the Green functions of a gauge theory vary with the gauge parameter ξ.
They are extremely useful when studying features such as the gauge dependence of the
poles of the propagators, or more generally of any Green function.

In order to derive the general form of the Nielsen identities, we start by observing
that, being iξ

2

∫
d4x BaBa the only ξ-dependent term in the FP action, given an arbitrary

operator O,
∂

∂ξ
⟨O⟩ = i

2

∫
d4x ⟨T {OBa(x)Ba(x)}⟩ , (1.98)

where we have dropped a disconnected product of the form ⟨O⟩ ⟨BaBa⟩ since, as we saw
earlier,

〈
T
{
Ba(x)Bb(y)

}〉
= 0. Thanks to BRST symmetry, the last equation can be

rewritten as

∂

∂ξ
⟨O⟩ = i

2

∫
d4x ⟨T {O s [Ba(x)ca(x)]}⟩ = (1.99)

= ∓ i

2

∫
d4x ⟨T {(sO) Ba(x)ca(x)}⟩ ,

where the upper (resp. lower) sign applies to bosonic (resp. fermionic) operators. The
Nielsen identity for the Green function ⟨O⟩ is then obtained by writing out explicitly the
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BRST variation of the operator O in the above equation. For instance, the NI for the
gluon propagator reads

∂

∂ξ

〈
T
{
Aaµ(x)A

b
ν(y)

}〉
= − i

2

∫
d4z

[ 〈
T
{
Dµc

a(x)Abν(y)B
c(z)cc(z)

}〉
+ (1.100)

+
〈
T
{
Aaµ(x)Dνc

b(y)Bc(z)cc(z)
}〉 ]

,

whereas the one for the quark propagator is given by

∂

∂ξ

〈
T
{
ψ(x)ψ(y)

}〉
= −1

2

∫
d4z

[ 〈
T
{
Taψ(x)ψ(y)c

a(x)Bb(z)cb(z)
}〉

+ (1.101)

−
〈
T
{
ψ(x)ψ(y)Tac

a(x)Bb(z)cb(z)
}〉 ]

.

By taking the Fourier transform of the Nielsen identities, one is able to study how the
poles of the corresponding Green function vary with the gauge. Let us show how this works
for the case of the gluon propagator. Let Fab

µν(x) be the function defined by

Fab
µν(x− y) =

i

2

∫
d4z

{〈
T
{
Dµc

a(x)Abν(y)B
c(z)cc(z)

}〉
+ (x↔ y, µ↔ ν, a↔ b)

}
.

(1.102)
In terms of the Fourier transform Fab

µν(p) of Fab
µν(x), the NI in Eq. (1.100) can be expressed

in momentum space as
∂

∂ξ
∆ab
µν(p) = −Fab

µν(p) , (1.103)

or, dropping the indices,
∂

∂ξ
∆(p) = −F(p) . (1.104)

A Nielsen identity for the inverse gluon propagator is then easily derived:

∂

∂ξ
∆−1(p) = ∆−1(p) · F(p) ·∆−1(p) . (1.105)

Due to the orthogonality of the transverse and longitudinal projectors, t(p) · ℓ(p) = 0, the
transverse and the longitudinal components of the above equation decouple: if we set

∆−1(p) = ∆−1
T (p) t(p) + ∆−1

L (p) ℓ(p) , F(p) = FT (p) t(p) + FL(p) ℓ(p) , (1.106)

using the idempotency relations t(p) · t(p) = t(p), ℓ(p) · ℓ(p) = ℓ(p) and dropping the color
structure, from Eq. (1.106) we obtain the two equations

∂

∂ξ
∆−1
T (p) = FT (p)∆−2

T (p) ,
∂

∂ξ
∆−1
L (p) = FL(p)∆−2

L (p) . (1.107)

It is quite simple to check that the longitudinal identity is indeed satisfied: to do this, it
suffices to observe that5

∂µ(x)

〈
T
{
Dµc

a(x)Abν(y)B
c(z)cc(z)

}〉
= −iδ(x− z)

〈
T
{
Abν(y)B

a(x)
}〉

= (1.108)

= −iδ(x− z)

∫
d4p

(2π)4
e−ip·(x−y)

pν
p2
δab

5Here, like before, we use the ghost field equations and anticommutation relations.
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implies

FL(p) =
i

p2
, (1.109)

so that, with ∆−1
L (p) = ip2/ξ, the longitudinal identity explicitly reads

∂

∂ξ

(
ip2

ξ

)
=

i

p2

(
ip2

ξ

)2

= − ip
2

ξ2
. (1.110)

Of more interest is the transverse identity, since in this case the exact expression of the
transverse gluon propagator is not known a priori. To see how information on the gauge
dependence of the transverse pole can be obtained from the first of Eq. (1.106), we start
by noticing that, since the function Fab

µν(x) can be rewritten as

Fab
µν(x−y) = − i

2ξ

∫
d4z

{〈
T
{
Dµc

a(x)Abν(y)∂ ·Ac(z)cc(z)
}〉

+ (x↔ y, µ↔ ν, a↔ b)
}
,

(1.111)
due to the presence of two A fields in its definition, the Fourier transform Fab

µν(p) will
contain the gluon propagator as a factor, that is

F(p) = FT (p)∆T (p) t(p) + FL(p)∆L(p) ℓ(p) (1.112)

for a pair of functions FT (p) and FL(p) whose zeros and poles, in general, are different
from the poles of ∆T (p) and ∆L(p). We have already verified that this is the case for the
longitudinal component, for which FL(p) = −1/ξ. If we plug the last equation into the
first of Eq. (1.106), we now obtain

∂

∂ξ
∆−1
T (p, ξ) = FT (p, ξ)∆

−1
T (p, ξ) , (1.113)

where we have made the gauge dependence of the transverse propagator and of the function
FT explicit.

Consider now what happens to the pole of ∆T as ξ is changed. The transverse pole
p0(ξ) is defined as the solution of the equation

∆−1
T (p0(ξ), ξ) = 0 . (1.114)

By taking the total derivative of this equation with respect to the gauge parameter, we
find that

0 =
d

dξ
∆−1
T (p0(ξ), ξ) =

∂

∂ξ
∆−1
T (p0(ξ), ξ) +

∂

∂p
∆−1
T (p0(ξ), ξ)

dp0
dξ

(ξ) = (1.115)

= FT (p0(ξ), ξ)∆
−1
T (p0(ξ), ξ) +

∂

∂p
∆−1
T (p0(ξ), ξ)

dp0
dξ

(ξ) =

=
∂

∂p
∆−1
T (p0(ξ), ξ)

dp0
dξ

(ξ) .

Since the momentum-derivative of ∆−1
T , in general, is different from zero6, the last equation

implies that
dp0
dξ

(ξ) = 0 , (1.116)

that is, the position of the pole does not depend on the gauge parameter ξ. This exact
property of the strong interactions will be extremely useful when formulating a possible
modification of the QCD perturbative series in Chapter 3.

6Actually, it can be shown that the derivative vanishes if the pole is found at p = 0 for every value of
the gauge parameter. However, if this is the case, the gauge-parameter independence of the pole holds
trivially anyways, so this does not contradict our proof.
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1.2 Ordinary perturbation theory, the strong coupling con-
stant and the infrared breakdown of perturbative QCD

Having reviewed the definition of Quantum Chromodynamics, we are now in a position
to discuss the merits and failures of its standard perturbative formulation. When dealing
with a quantum field theory, one rarely knows how to exactly solve the equations which
describe its underlying physics. Approximate methods must thus be devised in order
to turn abstract expressions into physical predictions. Perturbation theory is one such
method. By assuming that the interactions only slightly affect the behavior of an otherwise
free theory, it provides an expansion of the quantities of interest in powers of the coupling
constant. If this assumption is accurate, the higher-order terms in the expansion will
make a negligible contribution to the overall result. The approximation then consists in
truncating the perturbative series at some predefined, finite order.

In the context of Quantum Chromodynamics, the results obtained by employing or-
dinary perturbation theory have proven to be very accurate in the high-energy regime.
This is made possible by the asymptotic freedom which is typical of the non-abelian gauge
theories: given a suitable definition for the energy-dependence of the coupling constant,
it can be shown that, as the energy increases, the coupling decreases like the inverse of
a logarithm. Thus, at very high energies, the non-abelian gauge theories resemble free
theories of massless gauge bosons and Dirac fermions.

If we reverse our perspective, however, we see that the perturbative method necessarily
entails an increase of the coupling constant at low energies. And as the coupling increases,
perturbation theory no longer can be trusted, since – at the very least – the higher-order
terms in the perturbative series will become less and less negligible. The situation is only
made worse by the fact that, at low energies, the coupling computed within the standard
perturbative framework increases so fast that it becomes infinite at a finite energy, thus
developing what is known in the literature as an infrared Landau pole. The existence of
an IR Landau pole in the strong coupling constant puts the final word on the validity of
ordinary perturbative QCD (pQCD) at low energies.

In what follows, we will start our discussion by reviewing the standard set-up of per-
turbation theory in the context of QCD.

1.2.1 The standard perturbative expansion and Feynman rules of QCD

Let O be an arbitrary operator and ⟨O⟩ be its VEV. As we saw in Sec. 1.1.2, ⟨O⟩ can be
computed in the functional formalism as

⟨O⟩ =
∫
DF eiSFP O∫
DF eiSFP

. (1.117)

In the above equation, the Faddeev-Popov action can be naturally split into two terms,

SFP = S0 + Sint. , (1.118)

where the zero-order action S0 and the interaction action Sint. are defined as

S0 = lim
g→0

SFP , Sint. = SFP − S0 . (1.119)
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Explicitly,

S0 =

∫
d4x

{
− 1

2
∂µA

a
ν(∂

µAa ν − ∂νAaµ)− 1

2ξ
∂µAaµ∂

νAaν+ (1.120)

+ ψ(iγµ∂µ −M)ψ + ∂µca∂µc
a

}
,

Sint =

∫
d4x

{
− gfabc ∂µA

a
ν A

b µAc ν − 1

4
g2fabcf

a
deA

b
µA

c
νA

dµAe ν+ (1.121)

+ g ψγµTaψA
a
µ + gfabc ∂

µcaAbµc
c

}
.

If we assume that the interaction terms contained in Sint. contribute to ⟨O⟩ with a
small correction over the corresponding zero-order result, that is, ⟨O⟩ ≈ ⟨O⟩0, where

⟨O⟩0 =
∫
DF eiS0 O∫
DF eiS0

, (1.122)

then it makes sense to seek an expansion of Eq. (1.117) in powers of g. Of course, such an
hypothesis is sensible only provided that the coupling constant g is not too large.

The power-expansion of ⟨O⟩ can be obtained as follows. We first rewrite the exponen-
tials in Eq. (1.117) as

⟨O⟩ =
(∫

DF eiS0 O ∑+∞
n=0

1
n! (iSint.)

n

∫
DF eiS0

)(∫
DF eiS0

∑+∞
n=0

1
n! (iSint.)

n

∫
DF eiS0

)−1

=

(1.123)

=

(
+∞∑

n=0

1

n!
⟨T {O(iSint.)

n}⟩0

)(
+∞∑

n=0

1

n!
⟨T {(iSint.)

n}⟩0

)−1

,

where, as in Eq. (1.122), the averages denoted with the subscript 0 are to be computed
with respect to the zero-order action. Then, in order to evaluate the averages, we observe
that the free action S0 is quadratic in the fields. More precisely, in momentum space,

−iS0 =
∫

d4p

(2π)4

{
1

2
Aaµ(−p) [∆−1

0 (p)]µνab A
b
ν + ψ(p)S−1

M (p)ψ(p) + ca(p) [G−1
0 (p)]ab c

b(p)

}
,

(1.124)

where ∆0(p), SM (p) and G0(p) are, respectively, the zero-order gluon, quark and ghost
propagator,

∆ab
0µν(p) =

∫
d4x eip·x

〈
T
{
Aaµ(x)A

b
ν(0)

}〉
0
=

−i
p2

δab [tµν(p) + ξℓµν(p)] , (1.125)

SM (p) =

∫
d4x eip·x

〈
T
{
ψ(x)ψ(0)

}〉
0
=

i

/p−M
13×3 , (1.126)

Gab0 (p) =

∫
d4x eip·x

〈
T
{
ca(x)cb(0)

}〉
0
=

i

p2
δab , (1.127)

with /p = γµpµ, and their inverses are given by

[∆−1
0 (p)]µνab (p) = ip2 δab

(
tµν(p) +

1

ξ
ℓµν(p)

)
, (1.128)

S−1
M (p) =

∫
d4x eip·x

〈
T
{
ψ(x)ψ(0)

}〉
0
= −i(/p−M)13×3 , (1.129)

[G−1
0 (p)]ab =

∫
d4x eip·x

〈
T
{
ca(x)cb(0)

}〉
0
= −ip2 δab . (1.130)
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En passing, we note that the zero-order gluon and ghost propagators – having a pole at
p2 = 0 – are those of a massless particle, whereas that of the quark is massive (provided
that M ̸= 0).

Now, since the interaction action Sint. is polynomial in the fields, every term of the
form

⟨T {O(iSint.)
n}⟩0 =

∫
DF e−(−iS0) O(iSint.)

n

∫
DF e−(−iS0)

(1.131)

under the summation sign in Eq. (1.123) is made up of Gaussian integrals. The technique
for computing such integrals is well-known. In the quantum-field-theoretical setting, they
are usually evaluated by employing so-called Feynman rules, by virtue of which averages
taken with respect to the zero-order action S0 are expressed as sums of Feynman diagrams.
To see where the Feynman rules come from, observe that the relation
〈
T
{
FA1 · · ·FAn

}〉
0
=
∑

σ

(±1)sσ
〈
T
{
FAσ(1)FAσ(2)

}〉
0
· · ·
〈
T
{
FAσ(n−1)FAσ(n)

}〉
0
,

(1.132)
where σ is a permutation of the indices and sσ = 0, 1 depends on whether the permutation
changes the order of the Grassmann variables, holds for the Gaussian averages. In partic-
ular, the left-hand side of Eq. (1.132) can be expressed as a sum of products of zero-order
propagators, whose explicit form we have already reported in Eqs. (1.125)-(1.127). In the
context of Eq. (1.131), in addition to the fields, each interaction term contained in (iSint.)

n

contributes to these products with a spacetime integral and with a multiplicative factor
which characterizes the interaction7.

The summands in Eq. (1.132) – together with the interaction factors and integrals – can
be represented pictorially by drawing a vertex for every spacetime point that appears in
the expression, and a line connecting one pair of vertices for every propagator. The corre-
spondence between the graphical components of the resulting diagrams and the analytical
expressions which must be used for the actual calculations is provided by the Feynman
rules of the theory. Those of the standard perturbative expansion of QCD are displayed
in Figs. 1.1-1.7. Looking back at Eq. (1.121), we see that the vertices can be read out
straight from the interaction action, once the cubic and quartic gluon interactions have
been symmetrized with respect to the gluon momenta and Minkowski and color indices.

ν, b = − i

p2
δab [tµν(p) + ξ ℓµν(p)]µ, a

Figure 1.1: Zero-order gluon propagator

b =
i

p2
δaba

Figure 1.2: Zero-order ghost propagator

7Interaction terms containing derivatives can be Fourier-transformed to momentum space, where the
derivatives are replaced by factors of momentum times −i.
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=
i

/p−M
13×3

Figure 1.3: Zero-order quark propagator

= g f abc [ ηµν (k − p)ρ + ηνρ (p− q)µ + ηρµ (q − k)ν ]

b, ν

a, µ

c, ρ

k

p
q

Figure 1.4: 3-gluon vertex

a, µ

c, ρ

b, ν

d, σ

=

−ig2 [ f abef cde ( ηµρηνσ − ηµσηνρ )+

+f acef bde ( ηµνηρσ − ηµσηνρ )+

+f adef bce ( ηµνηρσ − ηµρηνσ ) ]

Figure 1.5: 4-gluon vertex

= −g f abc pµ

c

a

b, µ

p

Figure 1.6: Ghost-gluon vertex
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= ig γµTaa, µ

Figure 1.7: Quark-gluon vertex

As the last step in our derivation, a combinatorial argument [PS95] can be used to
prove that

+∞∑

n=0

1

n!
⟨T {O(iSint.)

n}⟩0 =
(

+∞∑

n=0

1

n!
⟨T {O(iSint.)

n}⟩0,conn.

)(
+∞∑

n=0

1

n!
⟨T {(iSint.)

n}⟩0

)
,

(1.133)
where ⟨T {O(iSint.)

n}⟩0,conn. is given by the subset of diagrams in which all the interaction
vertices coming from (iSint.)

n are connected to at least one vertex coming from the “exter-
nal” operator O. Therefore, going back to Eq. (1.123), we obtain our final expression for
⟨O⟩ in the form

⟨O⟩ =
+∞∑

n=0

1

n!
⟨T {O(iSint.)

n}⟩0,conn. , (1.134)

where we remark that the averages are to be computed diagrammatically using the Feyn-
man rules of the theory. Clearly, with the exception of the n = 0 term which is equal to
⟨O⟩0, the remaining terms under the sign of summation will be proportional to powers of
the coupling constant g.

Under what conditions does the power-expansion of the Green functions fail? The first
and most obvious answer is that it fails when the coupling constant is too large. If this is
the case, higher-order terms will generally be larger than the lower-order ones, and only
retaining the first few terms of the expansion will yield a bad approximation.

Ordinary perturbation theory is also unsuitable for computing Green functions which
receive non-negligible contributions from quantities which are not analytical in the coupling
constant. An example of these are non-perturbative mass scales of the form

Λ = µe
− κ
g2 , (1.135)

with κ a constant and µ a second mass scale, which cannot be expanded in powers of g.
A third situation in which the perturbative series is unable to capture the exact behavior

of a Green function is when the latter has features that can only be described by resumming
an infinite number of diagrams. This is what happens, for instance, when computing some
four- and higher-point Green functions which contain information on bound states. The
latter is lost when a purely perturbative truncation is performed.

Finally, perturbation theory can fail if the perturbative series does not converge. If
this is the case, it may happen that adding higher-order terms to the perturbative series
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improves the approximation up until some finite order, after which the higher-order correc-
tions actually start to make the approximation worse. The worst-kept secret in quantum
field theory is that perturbation theory is believed, in fact, not to converge8. Nonetheless,
as far as Quantum Chromodynamics is concerned, going to higher perturbative orders has
so far only improved the match with the experimental data.

To end this section, we make an observation that will be useful later on in Chapter 3.
Going back to Eq. (1.131), we see that the correspondence between (perturbative) quan-
tum averages and Feynman diagrams exists simply because the zero-order action S0, being
quadratic in the fields, allows us to compute the former in terms of Gaussian integrals.
Indeed, the derivation which brought us from the exact Green function ⟨O⟩ to its pertur-
bative expression only rests upon this basic property of S0. As a consequence, if instead of
the S0 given by Eq. (1.120) we had chosen any other quadratic action S′

0, the procedure we
followed in the previous pages would have yielded the same final result, with Sint. replaced
by S′

int. = SFP − S′
0. Of course, such a result would no longer be an expansion of the

Green function in powers of the coupling constant. In some situations, however, this may
be precisely what we need in order to account for intrinsically non-perturbative effects.

1.2.2 Regularization and renormalization

When perturbation theory is used to compute the Green functions of a quantum field
theory, it may happen that some of the integrals which appear in the expressions do not
converge. The resulting divergences are called UV divergences if they arise from integrals
I which in the high-momentum limit of their domain of integration behave like

I ∼
∫

d4q

(2π)4
1

qκUV
(1.136)

with κUV ≤ 4, or IR divergences if they arise from integrals which in the low-momentum
limit of the integration domain behave like

I ∼
∫

d4q

(2π)4
1

qκIR
(1.137)

with κIR ≥ 4. Since in local quantum field theories such as QCD momenta with a negative
power can enter the perturbative series only via the propagators, these theories are free
of IR divergences when they describe fields which are all massive: if this is the case,
then the low-energy limit of the propagators limq→0±i(q2 −m2)−1 = ∓im−2 prevents the
appearance of powers of momenta κIR ≥ 4 as q → 0. On the other hand, if the theory
contains massless fields, then its Green functions can be IR-divergent.

As we saw in the last section, within the ordinary perturbative formulation of QCD the
gluon and ghost fields are both treated as massless; IR divergences, thus, do indeed show up
in the standard QCD perturbative series. The usual way to deal with these divergences is to
limit oneself to the computation of quantities which are IR-finite9. In what follows, we will
not discuss further the IR-finiteness of QCD, given that the non-perturbative generation
of a mass for the gluon is expected to cure the IR divergences. Instead, we will give a brief
overview of the status of QCD for what concerns its finiteness in the UV.

8And is actually known not to converge in the framework of Quantum Electrodynamics [Dys52].
9A comprehensive discussion of this topic in the context of standard perturbation theory can be found

e.g. in [Wei95], Chapter 13.
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By making use of dimensional arguments [Wei95], it can be shown that the Green
functions of any quantum field theory whose coupling constants have non-positive mass
dimension do contain UV divergences. QCD with its adimensional strong coupling g is, of
course, no exception. In order to remove the divergences and obtain meaningful physical
predictions, the perturbative series of QCD must undergo a procedure known as renormal-
ization.

Renormalization is carried out in two steps. The first of these, called regularization,
consists in redefining the perturbative series so that the UV divergences only appear when
a suitable limit is taken. As a consequence of regularization, the series is made finite, but
also dependent on a regulator, which needs to be removed at the end the calculation. The
second step is the renormalization proper, and consists in absorbing the diverging terms
into the free parameters of the theory. Once these terms disappear from the equations,
the regulator can be removed safely, and the procedure as a whole will have left behind a
finite expression.

The most commonly employed regularization scheme when dealing with gauge theories
is dimensional regularization (dimreg). If we go back to Eq. (1.136), after generalizing
from the 4-dimensional spacetime to a d-dimensional one,

I ∼
∫

ddq

(2π)d
1

qκUV
, (1.138)

we see that, if d strictly smaller than κUV, then the integral I does actually converge. In
particular, we could compute I in an arbitrary dimension d and, as long as the latter is left
undetermined, the resulting expression would remain finite. This is what dimreg does. By
redefining the theory so that it fields live in d = 4 − ϵ dimensions, dimreg provides finite
results which depend on the regulator ϵ. In the regularized expressions, the UV divergences
appear as poles of the form 1/ϵκ – with κ a positive integer – which must be removed by
renormalization before taking the ϵ→ 0 limit.

When dimensionally regularizing a theory, one must be careful in redefining any quan-
tity in such a way that the corresponding 4-dimensional limit has the correct dimensions.
This inevitably leads to the introduction of a mass scale µ into the expressions. For in-
stance, since in d dimensions the strong coupling constant g(d) has mass dimension (4−d)/2,
in going from 4 to d dimensions the coupling must be defined as g(d) = µ

4−d
2 g(4), where

the physical interpretation of the mass scale µ depends on the choice of renormalization
scheme which is later made to remove the divergences.

Behind renormalization lies the observation that the parameters which are contained
in the Lagrangian are not actually measured in the experiments; rather, what is measured
are suitable combinations of Green functions. A similar argument can be made for the
quantum fields. For instance, in the LSZ formula for the calculation of cross sections
[PS95], the propagators – and thus the corresponding fields – appear in such a way that
multiplying the latter by some constant does not change the result. Since neither the value
of the parameters nor the normalization of the fields can be measured in the experiments,
we are free to redefine both. The parameters and fields which were originally present
in the Lagrangian are referred to as bare quantities, whereas their redefined versions are
called renormalized quantities. Explicitly, in the context of QCD, one introduces a set of
multiplicative constants ZA, Zc, Zψ, Zg, Zξ and ZM such that10

10It can be proven that the ghost and antighost fields, as well as the different color components of the
same field, can be renormalized using the same multiplicative factor, see e.g. [Wei96].
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AaB µ = Z
1/2
A AaRµ , caB = Z1/2

c caR , caB = Z1/2
c caR , ψB = Z

1/2
ψ ψR , (1.139)

gB = Zg gR , ξB = Zξ ξR , MB = ZM MB ,

where the subscripts B and R denote, respectively, bare and renormalized quantities. The
Green functions are similarly renormalized. For instance, for the propagators, we have

〈
T
{
AaRµ(x)A

b
R ν(y)

}〉
= Z−1

A

〈
T
{
AaB µ(x)A

b
B ν(y)

}〉
, (1.140)

〈
T
{
caR(x)c

b
R(y)

}〉
= Z−1

c

〈
T
{
caB(x)c

b
B(y)

}〉
, (1.141)

〈
T
{
ψR(x)ψR(y)

}〉
= Z−1

ψ

〈
T
{
ψB(x)ψB(y)

}〉
. (1.142)

Consider what happens if the bare propagators in the above equations contain UV
divergences. If such divergences appear as multiplicative factors, then they can be absorbed
into the renormalization factors ZA, Zc and Zψ, and the resulting renormalized propagators
will be finite. In the process of factorizing the divergences, the bare couplings and masses
may also need to be renormalized (and usually they do). The property of a theory by
which all of its Green functions can be made UV-finite by a renormalization of the kind
defined in Eq. (1.139) is called multiplicative renormalizability. By making use of BRST
symmetry, it can be shown that QCD is indeed a multiplicatively renormalizable theory
[Wei96].

While the diverging terms contained in the Z-factors are fixed by the requirement that
the renormalized Green functions be finite, no such constraint exists with respect to the
choice of the finite part of the renormalization factors. This has two implications. First
of all, renormalization can be carried out in a multitude of schemes, depending on which
renormalization conditions are chosen to fix the (finite terms of the) Z-factors. Second of
all, the renormalized Green functions are renormalization-scheme-dependent. Thus, when
comparing Green functions – or, more generally, any renormalized quantity – computed
by different methods, one must be careful to take into account any difference in definition
that might come from renormalization.

In QCD, there is no single universally adopted scheme for the renormalization of cou-
pling, masses and fields. Nevertheless, three renormalization schemes are often used in the
literature. These are the minimal-subtraction (MS), modified-minimal-subtraction (MS)
and momentum-subtraction (MOM) schemes.

The MS and MS schemes are defined specifically for dimensionally regularized quanti-
ties. In dimreg, it can be shown that, as ϵ = 4 − d → 0, the divergences take the general
form

(
2

ϵ
+ ln 4π − γE

)κ
(1.143)

for some positive integer κ, where γE ≈ 0.5772 is the Euler-Mascheroni constant. In the
MS scheme, the renormalization constants are chosen so that only the ϵ-poles are removed
from the equations. In the MS scheme, on the other hand, also the ln 4π and γE constants
are removed. The highest-order perturbative results obtained so far in QCD are computed
in the MS and MS schemes.

In the MOM scheme, the Z-factors are chosen so that the renormalized Green functions
are equal to some specified quantity at fixed spacelike momentum p2 = −µ2 – often, to
their tree-level value. For instance, the MOM-scheme gluon and ghost renormalization
factors ZA and Zc are defined by the requirement that the exact transverse gluon and
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ghost propagators ∆T (p
2;µ) and G(p2;µ) renormalized at the scale µ, when evaluated at

p2 = −µ2, be equal to

∆T (p
2;µ)

∣∣∣∣
p2=−µ2

=
−i
−µ2 , G(p2;µ)

∣∣∣∣
p2=−µ2

=
i

−µ2 . (1.144)

The MOM scheme is especially suitable for situations in which finite-mass effects cannot
be neglected when renormalizing the theory. We will explain precisely what this means in
Chapter 3.

In the next section, we will see that renormalization causes the parameters of the
theory to acquire a dependence on the energy scale. The analysis of the parameters’
scale-dependence is the subject of study of the Renormalization Group approach.

1.2.3 The Renormalization Group, the running coupling constant and
the Landau pole

As we saw both in the context of dimensional regularization and in defining the MOM
scheme, when renormalizing a quantum field theory one is forced to introduce a momen-
tum scale into the expressions. Let us explore in more detail how this works and what use
can be made of this aspect of renormalization.

In dimreg, in order for the fields, couplings and masses to have the correct mass di-
mension in the ϵ = 4 − d → 0 limit, their corresponding renormalized quantities must be
defined as

AaB µ = µ−
ϵ
2 Z

1/2
A AaRµ , caB = µ−

ϵ
2Z1/2

c caR , caB = µ−
ϵ
2Z1/2

c caR , ψB = µ−
ϵ
2Z

1/2
ψ ψR ,

(1.145)

gB = µ−
ϵ
2Zg gR , ξB = Zξ ξR , MB = ZM MR ,

where µ is an energy scale. Since the bare quantities do not depend on µ, it follows that
the Z-factors and the renormalized quantities, in general, are µ-dependent.

In the MS and MS scheme, by definition, the renormalization constants only contain
ϵ-poles (plus µ-independent constants in the latter scheme); these poles, of course, are
multiplied by factors of the coupling constant. Without loss of generality, we can assume
that the coupling appears in the Z-factors in its renormalized form – i.e., as gR –, for in any
case gB can be expressed in terms of the former. When the MS and MS renormalization
constants are expressed as a series in ϵ−1 and gR, they clearly depend on the scale µ only
implicitly, through the coupling constant gR. By looking at Eq. (1.145), then, we see
that all of the renormalized quantities in the MS and MS schemes must have an explicit
dependence on the dimreg scale µ. In particular, it makes sense to ask how they vary as
functions of µ.

Consider the renormalized gluon propagator: in dimreg,

∆ab
µν(x;µ) =

〈
T
{
AaRµ(x)A

b
R ν(0)

}〉
= µϵ Z−1

A

〈
T
{
AaB µ(x)A

b
B ν(0)

}〉
. (1.146)

Since in the MS/MS schemes, as we just saw, the renormalized fields depend explicitly on
the dimreg scale µ, the renormalized propagators do as well (hence the notation with µ as
an argument of ∆ab

µν). By taking the total derivative of both members of Eq. (1.146) with
respect to µ and switching to momentum space, we obtain the following equation for the
renormalized gluon propagator:

(
µ
∂

∂µ
+ βg

∂

∂gR
+ γM MR

∂

∂MR
+ γξ ξR

∂

∂ξR
+ γA

)
∆ab
µν(p;µ) = 0 , (1.147)
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where the beta and gamma functions – the latter being also known as anomalous dimen-
sions – are defined as

βg = µ
dgR
dµ

, γM =
µ

MR

dMR

dµ
, γξ =

µ

ξR

dξR
dµ

, γA =
µ

ZA

dZA
dµ

. (1.148)

From the second line of Eq. (1.145), we compute that

βg =
ϵ

2
gR − µ

Zg

dZg
dµ

gR , γM = − µ

ZM

dZM
dµ

, γξ = − µ

Zξ

dZξ
dµ

. (1.149)

Eq. (1.147) is called the Renormalization-Group (RG) equation for the gluon propagator
(in the MS/MS scheme).

By proceeding as we did for the gluon propagator, one can derive RG equations for
any of the Green functions of the theory. These equations are generally used for improving
the convergence of the perturbative series, so that the perturbative approximation remains
valid over a wide range of momenta. Roughly speaking, since at order n the fixed-scale,
renormalized perturbative expressions contain terms of the form

(
g2 ln

−p2
µ2

)n
, (1.150)

perturbation theory breaks down when
∣∣∣g2 ln −p2

µ2

∣∣∣ ∼ 1. This happens when the energy
scale of the momenta is much larger or much smaller than that of the renormalization scale
µ. A way to tame these large logs, thus improving the approximation, is to make use of
a sliding renormalization scale. This is precisely what can be achieved by solving the RG
equations.

As an example, let us go back to the gluon propagator. For simplicity, we will only
consider its transverse component. The solution of the RG equation for the transverse
gluon propagator, renormalized in the MS/MS scheme at the scale µ, can be expressed as

∆T

(
p2; gR(µ),MR(µ), ξR(µ), µ

)
= e

−
∫ µ
µ0

dµ′
µ′ γA(µ

′)
∆T

(
p2; gR(µ0),MR(µ0), ξR(µ0), µ0

)
,

(1.151)
where µ0 is a second mass scale and we have written down explicitly all the parameters on
which the propagator depends. If we take µ0 to be equal to p =

√
−p2, then we can put

the last equation in the form

∆T

(
p2; gR(µ),MR(µ), ξR(µ), µ

)
= e

∫ p
µ
dµ′
µ′ γA(µ

′)
∆T

(
p2; gR(p),MR(p), ξR(p), p

)
. (1.152)

Thus, by making use of the RG equations, the propagator evaluated at the momentum p
and renormalized at the scale µ can be expressed as a function of the parameters renormal-
ized at the scale p, rather than on those renormalized at the scale µ. Since at p2 = −µ2 the
logs of the form log(−p2/µ2) vanish, the right-hand side of the equation does not contain
large logs. As a result, the perturbative series will not break down when

∣∣∣g2 ln −p2
µ2

∣∣∣ ∼ 1,
but rather when g2(p) ∼ 1.

In the context of the MOM scheme, the RG improvement of the Green functions works
in a slightly different, but non-dissimilar way. Going back to Eq. (1.145) and recalling
that, in the MOM scheme, the renormalized quantities are defined by fixing their value at
some specified momentum scale µMOM which bears no connection to the dimreg scale µ,
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we see that the renormalized fields, couplings and masses, together with the renormaliza-
tion factors, must necessarily depend on µMOM. For instance, since the transverse gluon
propagator’s MOM renormalization condition reads

Z−1
A DB,T (p

2 = −µ2MOM) = DT (p
2 = −µ2MOM;µMOM) =

i

µ2MOM
, (1.153)

where we have denoted with DB,T (p
2) the bare transverse gluon propagator, it is clear that

ZA explicitly depends on µMOM:

ZA = −iµ2MOMDB,T (−µ2MOM) . (1.154)

This is at variance with what happens in the MS and MS schemes with respect to the
dimreg scale µ. Then, since AaB µ = µ−

ϵ
2 Z

1/2
A AaRµ, we see that the renormalized gluon

field – and the renormalized gluon propagator with it – must explicitly depend on the
MOM scale µMOM as well. The same applies to the other renormalized fields, parameters
and Green functions. Thus, whereas in the MS and MS schemes we were interested in
investigating the dependence of the Green functions on the dimreg scale µ, in the MOM
scheme we study their dependence with respect to the MOM scale µMOM.

The derivation of the RG equations in the MOM scheme follows the same steps un-
dertaken to derive those of the MS and MS schemes. The result is formally identical to
its MS/MS counterpart, with µ everywhere replaced by µMOM. The only formal difference
with respect to the MS/MS case is that, since in the MOM scheme we do not differentiate
with respect to the dimreg scale µ, the MOM-scheme beta function loses an ϵ-term:

βg
∣∣
MOM = −µMOM

Zg

dZg
dµMOM

gR . (1.155)

Despite the similarities between the MS/MS and MOM RG equations, we should notice
that the beta functions and anomalous dimensions computed in these schemes are very
different from each other. Indeed, as we remarked before, the MS/MS Z-factors – and the
beta and gamma functions with them – do not explicitly depend on the renormalization
scale; the very opposite holds in the MOM scheme. Nonetheless, the solutions of the RG
equations are formally the same in each of the three schemes. As a consequence, the re-
moval of the large logs by the RG improvement of the perturbative series can be carried
out in the MOM scheme as well.

From the perspective of the Renomalization Group, the strength of the interaction
is measured in terms of the momentum-scale-dependent coupling11 g(µ). The latter is
known as the running coupling constant and is defined as the solution of the beta-function
equation

µ
dg

dµ
= βg , (1.156)

where the explicit form of βg depends on the renormalization scheme in which g is defined.
What does the beta function look like in the MS/MS scheme? An explicit one-loop cal-
culation [PS95] carried out in ordinary perturbation theory shows that, for a Yang-Mills
theory with gauge group SU(N) minimally coupled to nf Dirac fields in the fundamental
representation,

βg = −β0g
3

16π2
, (1.157)

11From now on we drop the R subscript to denote renormalized quantities.
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where the beta-function coefficient β0 is given by

β0 =
11

3
N − 2

3
nf . (1.158)

Clearly, as long as nf < 11
2 N , the one-loop beta function is negative. As a consequence,

the corresponding running coupling constant will decrease with the momentum scale. This
behavior is know as asymptotic freedom, and is typical of the non-abelian gauge theories.
For QCD we have N = 3 and nf at most12 equal to 6; therefore, β0 ≥ 7: QCD is an
asymptotically free theory.

Asymptotic freedom is the reason why standard pQCD works so well in the UV regime.
If we assume that there exists an energy scale at which the perturbative truncation of
the QCD Green functions constitutes a good approximation, then the Renormalization
Group tells us that at larger scales, being the coupling smaller, the perturbative series will
converge even better. Higher orders in perturbation theory will become more and more
negligible, and the behavior described by Eq. (1.157) will become (asymptotically) exact.
Of course, the assumption is proven right by comparing the theoretical predictions to the
experimental results.

The negativity of the beta function, however, also implies that at lower energies the
coupling becomes larger. To one loop, we can exactly solve the beta-function equation and
obtain

g2(µ) =
g2(µ0)

1 + β0g2(µ0)
16π2 ln(µ2/µ20)

(1.159)

for the one-loop running coupling of standard perturbation theory. Whereas in the µ→ ∞
limit g2(µ) goes to zero like the inverse of a logarithm, in the IR the coupling increases
faster and faster, until it develops a pole at a finite scale Λ whose value is given by

Λ = µ0 exp

(
− 8π2

β0g2(µ0)

)
. (1.160)

Such a singularity is known as an IR Landau pole, and outright invalidates the one-loop
standard perturbative approximation of QCD at low energies. The situation does not
improve at all when higher-order corrections are included in the perturbative series: if we
express the beta function’s power expansion as

βg = − g3

16π2

+∞∑

n=0

βn

(
g2

16π2

)n
, (1.161)

then we find that, for QCD, βn > 0 at least up to n = 4, which is the current limit of the
perturbative calculations. As a result, as the perturbative order is increased, the running
coupling diverges at scales which are even larger than the Λ defined by Eq. (1.160).

Does this means that QCD ceases to be a self-consistent theory at low energies? Of
course not. Before hitting the Landau pole, the running coupling computed in standard
perturbation theory has long become too large for the ordinary perturbative approximation
to be trusted. The Landau pole is, in fact, an artifact of standard pQCD: as we will see
starting from the next chapter, other approaches allow us to compute running coupling
constants which not only are finite in the IR, but also remain relatively small at low ener-
gies. We will review some of these approaches in the following chapters.

12We say “at most” because, as it turns out, the number nf which must be plugged into the beta-function
equation at the scale µ is actually equal to the number of fermions whose masses are smaller than µ.
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In conclusion, while asymptotic freedom makes sure that ordinary perturbation theory
constitutes a good approximation in the UV, the existence of an IR Landau pole in the
pQCD running coupling constant signals the breakdown of the method in the low-energy
regime. Due to the failure of pQCD at low energies, alternative approaches have to be
devised for studying the IR dynamics of the strong interactions.





2

Non-perturbative techniques and
results in Quantum Chromodynamics

In this chapter we will briefly review some of the techniques that are employed to study the
non-perturbative regime of Quantum Chromodynamics and describe results upon which
we will rely during the rest of this thesis. In Sec. 2.1 we will go over the definition of lattice
QCD within the framework of pure Yang-Mills theory and report the results of [DOS16]
regarding the Landau gauge gluon propagator and the Taylor-scheme running coupling.
In Sec. 2.2 we will formulate the Operator Product Expansion in a general setting and
show how non-vanishing vacuum condensates can contribute to the Green functions of
QCD with terms that cannot be derived by ordinary perturbative methods. In Sec. 2.3
we will review the Gribov-Zwanziger approach to the existence of the Gribov copies and
discuss the analytical properties of the Gribov-Zwanziger zero-order gluon propagator both
in the absence and in the presence of condensates. Finally, in Sec. 2.4 we will describe the
set-up of the Curci-Ferrari model and report the one- and two-loop results of [GPRT19]
concerning the RG-improved gluon propagator.

2.1 Lattice QCD

2.1.1 Set-up

Recall that the quantum average ⟨O⟩ of an arbitrary operator O can be computed as

⟨O⟩ =
∫
DF eiS O∫
DF eiS

, (2.1)

where S is the classical action of the theory and DF is the measure over the field config-
urations. Due to the oscillatory nature of the exponential eiS , the integrals in Eq. (2.1)
converge very poorly when evaluated numerically by making use of Monte Carlo techniques.
This can however be fixed by going from Minkowski spacetime to Euclidean spacetime1.

The (4-dimensional) Euclidean spacetime is defined by taking the fourth component
τ = x4 of the Euclidean position 4-vector to be equal to it = ix0, where t = x0 is the time
component of the Minkowski position 4-vector. Despite being a real quantity by definition,
τ is referred to as the imaginary time. In the action S of the theory, the integration measure,
the spacetime derivatives and the fields can be replaced by corresponding quantities defined
in Euclidean spacetime:

1The dynamical content of the theory is then recovered by performing an analytic continuation of the
Euclidean results back to Minkowski space.

33



34 2 Non-perturbative techniques and results in QCD

dx0dx1dx2dx3 = −idx4dx1dx2dx3 ,
∂0 = ∂/∂x0 = i∂/∂x4 = i∂4 , (2.2)

V 0 = −iV 4 ,

V0 = iV4 ,

where V 0, V0 and V 4, V4 are, respectively, the time components of a Minkowski vector or
covector and the imaginary-time components of a Euclidean vector or covector. In terms
of its Lagrangian L, the action then reads

S =

∫
dx0dx1dx2dx3 L = −i

∫
dx4dx1dx2dx3 L

∣∣
x0=−ix4 = iSE , (2.3)

where SE , defined as

SE = −
∫
dx4 dx1dx2dx3 L

∣∣
x0=−ix4 (2.4)

is the Euclidean action of the theory. As long as the energy density is positive-definite, SE
turns out to be a non-negative quantity. It follows that, in Euclidean space, the average

⟨O⟩ =
∫
DF e−SE O∫
DF e−SE

(2.5)

has nice convergence properties thanks to the damped nature of the real exponential e−SE .
In practice, when Monte Carlo techniques are employed to compute averages like ⟨O⟩, e−SE
is used as the probability density for sampling the configuration space.

Dropping the label E, the Euclidean action SYM of pure Yang-Mills theory reads

SYM =

∫
d4x

1

4
F aµνF

aµν , (2.6)

where d4x = dx4dx1dx2dx3 and in terms of the component Aa4 and of derivatives with
respect to x4 the gluon field-strength tensor F aµν is still defined as F aµν = ∂µA

a
ν − ∂νA

a
µ +

gfabcA
b
µA

c
ν . In Eq. (2.6), the spacetime indices are raised and lowered using the Euclidean

metric δ = diag(+1,+1,+1,+1) in place of the Minkowski metric. Clearly, SYM ≥ 0.

The Euclidean Yang-Mills action is discretized on the lattice [SO04] by defining group
variables Uµ(x) ∈ SU(3) over the links that connect any pair of neighboring lattice sites,
where the index µ refers to the direction of the link. Uµ(x) is then interpreted in terms of
the (Euclidean) gauge field Aµ as

Uµ(x) = eig0aAµ(x+aêµ/2) +O(a3) , (2.7)

where g0 is the bare lattice coupling, a is the lattice spacing, êµ is a unit spacetime vector
in the direction µ and Aµ(x + aêµ/2) = Aaµ(x + aêµ/2)Ta is the gauge field evaluated
midpoint in the link. By converse, up to higher-order corrections in the lattice spacing,

Aµ(x+ aêµ/2) =
1

2ig0a

(
Uµ(x)− U †

µ(x)
)
+O(a2) . (2.8)

The lattice action itself is defined in terms of so-called Wilson loops [Wil74] Uµν(x),

Uµν(x) = Uµ(x)Uν(x+ aêµ)U
†
µ(x+ aêν)U

†
ν (x) . (2.9)
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It can be shown [Rot97] that, in the limit of vanishing lattice spacing a, the Wilson loops
can be expanded as

Uµν = 1+ ig0a
2Fµν −

g20a
4

2
FµνFµν +O(a6) , (2.10)

where Fµν = F aµνTa and in the third term no sum is implied over the spacetime indices. In
particular, by taking the trace of the above expression, we find that

Tr {Uµν} = 3− g20a
4

4

∑

a

F aµνF
a
µν +O(a6) . (2.11)

The Wilson action SW, defined as

SW =
6

g20

∑

x,µ<ν

(
1− 1

3
Tr {Uµν(x)}

)
, (2.12)

is then easily seen to reduce to the Yang-Mills action in the a→ 0 limit. Within the lattice
approach, SW is taken to be the defining action of pure Yang-Mills theory.

Since the number of integration variables – that is, of link variables Uµ(x) – is finite
for a lattice of finite volume, the gauge invariance of the Wilson action2 poses no issue
of finiteness for averages computed by lattice methods. In particular, no analogue of the
Faddeev-Popov procedure is strictly required to be performed when carrying out lattice
calculations. Nonetheless, the gauge still needs to be fixed if one wants to evaluate the
vacuum expectation values of gauge-dependent quantities such as the gluon or the ghost
propagator. For the topics of covariant gauge fixing and of the effects of the Gribov copies
within the lattice approach, we refer e.g. to [SO04, DOS16]; for the evaluation of the ghost
propagator in covariant gauges, we refer to [BBC+15, CDM+18]. A review of some of
the most common techniques employed to discretize the quark fields on the lattice can be
found in [Rot97].

2.1.2 Results

In the Introduction we saw that the transverse component of the gluon propagator com-
puted on the lattice is found to saturate to a finite, non-zero value in the limit of vanishing
momenta, implying that in the infrared the gluons acquire a mass. In Fig. 2.1 we display
an example of such behavior, provided to us by the Landau gauge pure Yang-Mills results
of [DOS16]. In order to push the calculations below the GeV scale, these need to be per-
formed on lattices of very large volumes. In the figure, the results obtained for three such
volumes, of sides 6.5, 8.1 and 13.0 fm at fixed lattice spacing a = 0.10 fm, are shown.
Crucially, neither the finiteness of the gluon propagator, nor its saturation value are found
to be strongly dependent on the volume. This proves that the massiveness of the propa-
gator is not an artifact of the finite-volume approximation. An analogous conclusion can
be reached with respect to the dependence on the lattice spacing [DOS16], which however
turns out to be larger than the volume dependence.

In Fig. 2.2 we display the lattice data for the running coupling of pure Yang-Mills theory
reported in [DOS16]. In the latter, as is customary for lattice calculations carried out in the
Landau gauge, the coupling was computed from the gluon and the ghost propagators within
the so-called Taylor scheme3. As we can see, instead of diverging at a finite scale as in in

2The gauge transformations act on the link variables as Uµ(x) → g(x)Uµ(x)g
†(x + aêµ), where the

g(x)’s are SU(3) matrices defined at each lattice site [SO04].
3See Secs. 3.3.1 and 5.2.3.
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ordinary pQCD, the Taylor coupling hits a maximum at p ≈ 0.6 GeV and then decreases
to zero in the limit of vanishing momenta. The fact that the coupling remains finite and
moderately small at all scales proves on the one hand that the Landau pole predicted by
ordinary pQCD is an artifact of the expansion, and on the other hand that a perturbation
theory for infrared Quantum Chromodynamics may still be viable, provided that non-
perturbative effects such as the dynamical generation of a gluon mass are accounted for.

Figure 2.1: Euclidean Landau gauge transverse gluon propagator computed on the lattice
for different lattice volumes. Figure from [DOS16].

Figure 2.2: Taylor running coupling computed on the lattice and in the Landau gauge for
different lattice volumes. Figure from [DOS16].
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The lattice results show that Quantum Chromodynamics is infrared-finite, displaying
dynamical mass generation in the gluon sector. While in this section we have only reported
data obtained in the framework of pure Yang-Mills theory, similar calculations carried
out while including the quarks [BHL+04, BHL+07, IMPS+07, SO10, ABB+12, BBDS+14,
ZBDS+19, CZB+20] essentially paint the same picture of the low-energy dynamics of full
QCD.

2.2 The Operator Product Expansion

2.2.1 Set-up

The Operator Product Expansion (OPE) approach4 assumes that the product of two local
quantum operators O1(x1) and O2(x2) evaluated in the x1, x2 → x limit can be expressed
as a linear combination of local operators On(x) evaluated at x,

O1(x1)O2(x2) →
∑

n

Cn12(x1 − x2)On(x) , (2.13)

where the coefficient functions Cn12(x1−x2) only depend on the separation x1−x2 → 0. By
making use of Eq. (2.13), one is able to compute the first non-perturbative contributions
to the small-distance – equivalently, to the high-energy – behavior of the Green functions
of QCD in terms of vacuum condensates. Let us see how this works.

For simplicity, let x2 = 0 and rename x1 as x. By taking the time-ordered VEV of
Eq. (2.13), one obtains the OPE of the Green function corresponding to the operators O1

and O2,
⟨T {O1(x)O2(0)}⟩ →

∑

n

Cn12(x) ⟨On(0)⟩ (x→ 0) . (2.14)

Given an arbitrary local operator On(x)/∝1, where 1 is the identity operator, the VEV
⟨On(x)⟩ = ⟨On(0)⟩ is known as a vacuum condensate. Condensates are intrinsically non-
perturbative objects, in that their value depends on the low-energy content of the theory.
On the contrary, the coefficient functions which multiply the condensates in the OPE, being
evaluated at small separations x, are entirely determined by the high-energy behavior of
the operators. In asymptotically free theories such as QCD, these coefficients can be
computed explicitly by resorting to ordinary perturbative techniques which we will review
shortly. Once the OPE coefficients have been computed, Eq. (2.14) provides us with a high-
energy expression for the Green function ⟨T {O1(x)O2(0)}⟩ that includes non-perturbative
contributions due to the condensates.

In the x→ 0 limit, the dominant contributions to the OPE are given by the condensates
of lower mass dimension. This a consequence of the fact that the functions Cn12(x), having
canonical mass dimension κn = d1 + d2 − dn – where d1,2,n are the mass dimensions of the
operators O1,2,n –, scale like Cn12(λx) ≈ λ−κnCn12(x), and thus tend to zero more rapidly as
the dimension dn of the operator On increases. For this reason, only the lower-dimensional
condensates are usually retained in the OPE.

The OPE coefficients Cn12(x) can be computed as follows. Starting from the coefficient
C1

12(x) associated to the identity operator,

⟨T {O1(x)O2(0)}⟩ → C1

12(x) +
∑

On ̸=1
Cn12(x) ⟨On(0)⟩ , (2.15)

4The validity of the OPE in the context of asymptotically free theories was proven in 1970 by Zimmer-
mann [Zim70].
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we see that in the above expression C1

12(x) is the only term not to be multiplied by a
condensate. Therefore it must be equal to the perturbative value of the Green function,

C1

12(x) = ⟨T {O1(x)O2(0)}⟩pert. . (2.16)

As for the other coefficients, these can be computed by multiplying the OPE of O1(x)O2(0)
to a product of operators O3(x3) · · · ON (xN ) and then taking the time-ordered VEV of the
resulting expression,

⟨T {O1(x)O2(0)O3(x3) · · · ON (xN )}⟩ →
∑

n

Cn12(x) ⟨T {On(0)O3(x3) · · · ON (xN )}⟩ .

(2.17)
As long as the spacetime points x3, · · · , xN are kept sufficiently far from the origin, no new
condensates arise in Eq. (2.17). In particular, we can evaluate both sides of the relation
perturbatively in the limit of vanishing x and of very large x3, · · · , xN , and then determine
the functions Cn12(x) by matching the x-dependence of the right-hand side to that of the
left-hand side. In practice, this is usually done in momentum space, where the momenta
associated to the operators O3, · · · ,ON are kept small while the expression is expanded in
powers of the momentum p associated to the separation x as p→ ∞.

2.2.2 Results

By making use of the OPE formalism, one can show that, at high energies, a non-vanishing
quark condensate

〈
ψψ
〉

contributes to the quark propagator with a term that plays the
role of a quark mass. To see this, assume that the quark is massless and consider the OPE
of the product ψ(x)ψ(0),

ψ(x)ψ(0) → C1(x)1+ Cψψ(x)ψψ(0) + · · · . (2.18)

In the above expression, the dots denote contributions coming both from higher-dimensional
local operators and from operators which vanish as soon as the time-ordered VEV of
ψ(x)ψ(0) is taken5. The corresponding OPE for the quark propagator S(x) reads

S(x) → Spert.(x) + Cψψ(x)
〈
ψψ
〉

(x→ 0) , (2.19)

or, in (Minkowski) momentum space,

S(p) → iZ(p2)

/p
+ cψψ

〈
ψψ
〉

(p2)2
(p→ ∞) , (2.20)

where Z(p2) is the perturbative quark Z-function and by dimensional counting cψψ is a
dimensionless coefficient. To lowest order in the coupling, since Z(p2) = 1 + O(g2) and
cψψ = O(g2), we can set Z(p2)cψψ ≈ cψψ, so that

S(p) → iZ(p2)

/p

(
1−

icψψ

/p

〈
ψψ
〉

p2

)
≈ iZ(p2)

/p

(
1 +

icψψ
/p

⟨ψψ⟩
p2

) =
iZ(p2)

/p−M(p2)
, (2.21)

5Also, in Eq. (2.18) we are disregarding the dimension-2 operators A2 and cc, since these do not
contribute to the mass-like term under consideration. The former can be shown to correct the quark
Z-function already to lowest order in perturbation theory – see e.g. [LS88].
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where the mass function M(p2) is given by

M(p2) = −icψψ
〈
ψψ
〉

p2
. (2.22)

The coefficient cψψ can be explicitly computed to lowest order in the coupling to yield
[LS88]

cψψ = −i3NAg
2

8N2
=⇒ M(p2) = −3NAg

2

8N2

〈
ψψ
〉

p2
(2.23)

in the Landau gauge, where NA is the dimension of the gauge group SU(N). In particular,
we see that, even when the quark is massless, a non-vanishing quark condensate

〈
ψψ
〉

can
provide its propagator with a mass function.

A word of caution is in order. As discussed in the last section, the OPE is only valid in
the high-energy limit. That of being massive or massless, on the other hand, is a low-energy
property of the fields. Therefore, the function M(p2) defined by Eq. (2.23) should not be
interpreted as a fully-fledged non-perturbative mass function, but rather as the high-energy
limit of the actual mass function, which cannot be derived within the framework of the
OPE. What is of interest to us here is that – at variance with ordinary perturbation the-
ory – the OPE approach predicts that the mass of a massless quark can be different from
zero as a non-perturbative consequence of the existence of condensates.

Like the quark propagator, the gluon propagator as well can be expanded by making
use of a suitable OPE6,

Aaµ(x)A
b
ν(0) → C1(x)

ab
µν 1+ CA2(x)abµν A

2(0) + · · · . (2.24)

The OPE for the (Minkowski) momentum-space gluon propagator ∆ab
µν(p) = ∆µν(p)δ

ab

then reads

∆µν(p) → − iJ(p
2)

p2
tµν(p) + cA2

〈
A2
〉

(p2)2
tµν(p) ≈ − iJ(p2)

p2
(
1− icA2

⟨A2⟩
p2

) tµν(p) , (2.25)

where J(p2) is the perturbative gluon dressing function, cA2 is a dimensionless coefficient,
the calculations are carried out in the Landau gauge so that ∆µν(p) ∝ tµν(p) and we have
used J(p2)cA2 ≈ cA2 to O(g2) in order to bring the condensate to the denominator. If we
define a constant m2 as

m2 = icA2

〈
A2
〉
, (2.26)

then the OPE tells us that in the high-energy limit

∆µν(p) → − iJ(p2)

p2 −m2
tµν(p) , (2.27)

where in the Landau gauge the coefficient cA2 is computed to be [LS88]

cA2 = −iNg
2

4NA
=⇒ m2 =

Ng2

4NA

〈
A2
〉
. (2.28)

Like in the quark sector, we see that the OPE predicts that a high-energy mass term,
proportional to

〈
A2
〉

[CNZ99, GSZ01, GZ01, BLYL+01], is generated for the gluon propa-
gator which cannot be accounted for by ordinary perturbation theory. Nonetheless, there

6To leading order in the dimension of the condensates – that is, modulo condensates of dimension 3
and higher – no other terms are present in the gluon OPE as far as the propagator is concerned [LS88].
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is one crucial difference between the
〈
A2
〉

and the
〈
ψψ
〉

condensates: while ψψ is a gauge-
invariant operator, the A2 operator is not; it follows that the VEV

〈
A2
〉

may be expected to
be non-zero only if gauge invariance is broken by the vacuum7. This would have disastrous
consequences on the self-consistency of the theory. In Chapter 5 we will show that, thanks
to the existence of a (non-local) gauge-invariant generalization of the operator A2, the
condensate

〈
A2
〉

can actually be different from zero in the Landau gauge without spoiling
any fundamental symmetry of the strong interactions8.

2.3 The Gribov-Zwanziger approach

2.3.1 Set-up and results

In Sec. 1.1.2 we saw that the Faddeev-Popov procedure routinely employed to fix a gauge
for the QCD action involves the introduction of the determinant of the FP operator ∂µDµ

in the path integrals of the theory. If the FP operator has zero modes, meaning that there
exist algebra fields χa such that ∂µDµχ

a = 0, then such a determinant vanishes; as a
consequence, the FP procedure is invalidated9.

From the perspective of gauge invariance, the zero modes of the FP operator can be
used to construct gauge transformations that relate different field configurations of the FP
action to one another. Consider for instance the Landau gauge, defined by10

ξ = 0 =⇒ ∂µAaµ = 0 , (2.29)

where ξ, like in Sec. 1.1.2, is the gauge parameter. An infinitesimal gauge transformation
of the gluon field Aaµ with parameters χa yields

Aaµ → Ãaµ = Aaµ +Dµχ
a . (2.30)

If χa is a zero mode of ∂µDµ, then ∂µAµ = 0 implies ∂µÃµ = 0, so that both Aaµ and
Ãaµ belong to the configuration space of the Landau gauge FP action. In other words, the
FP procedure fails to fix a gauge for QCD. Two or more field configurations related to
each other by gauge transformations constructed by making use of zero modes of the FP
operator are called Gribov copies.

The existence of zero modes of the FP operator was proven by Gribov in 1978 [Gri78].
In order to address the issue of the Gribov copies, he proposed that, in the Landau gauge,
the Euclidean partition function of QCD be restricted to the so-called Gribov region,
defined by the positive-definiteness of the FP operator −∂µDµ,

∫
DF e−SFP

∣∣
ξ=0

→
∫

DF e−SFP
∣∣
ξ=0

Θ(−∂µDµ) , (2.31)

7Incidentally, as we will discuss in Chpt. 4, in the limit of zero quark mass the condensate
〈
ψψ

〉
should

vanish as well because of a global symmetry known as chiral symmetry. Such a symmetry is indeed known
to be broken by the vacuum.

8We should remark, however, that condensates of non-local operators do not enter in the OPE of
gauge-invariant operators.

9If the gauge field A is sufficiently small, the FP operator is just a perturbation of the Laplacian
operator. Since the latter has no zero modes that vanish at large distances, the FP procedure remains
valid in the perturbative regime.

10The implication is a consequence of the fact that the exponential e−
i
2ξ

∫
d4x (∂·A)2 that appears in the

QCD path integral reduces to a delta functional δ(∂ ·A) in the limit of vanishing ξ.
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where

Θ(x) =

{
1 x > 0

0 x < 0
(2.32)

is the Heaviside function. A local and renormalizable action SGZ that implements the
Gribov condition was discovered by Zwanziger in 1989 [Zwa89]. In Euclidean space, the
Gribov-Zwanziger (GZ) action SGZ reads

SGZ = SFP
∣∣
ξ=0

+

∫
d4x

(
ϕ
ac
µ Kabϕbc µ − ωacµ K

abωbc µ + γ2gfabcA
aµ(ϕbcµ + ϕ

bc
µ )
)
+ Svac. ,

(2.33)

where K = −∂µDµ(A), the commuting ϕabµ , ϕ
ab
µ and anticommuting ωabµ , ωabµ are new auxil-

iary fields, γ is a variational parameter with the dimensions of a mass known as the Gribov
parameter and the vacuum term Svac. is given by

Svac. = −4γ2V4NA , (2.34)

with V4 the volume of 4-dimensional Euclidean spacetime and NA = N2−1 the dimension
of the gauge group SU(N). The value of the Gribov parameter is fixed by the requirement
that the effective action of QCD be minimal with respect to its variation. This can be
easily shown to be equivalent to the horizon condition

⟨H[A]⟩γ = 4V4NA , (2.35)

where H[A] is the so-called horizon functional,

H[A] = g2
∫
d4x fabcfdecA

b
µ [K

−1(A)]adAe µ . (2.36)

The horizon functional appears in the GZ action as soon as the auxiliary fields are inte-
grated out:

SGZ → SFP
∣∣
ξ=0

+ γ4 (H[A]− 4V4NA) . (2.37)

Since the derivative of the Euclidean effective action with respect to γ is equal to the
derivative of W = − lnZ, where Z is the Euclidean partition function of the theory, the
horizon condition easily follows.

On the shell of Eq. (2.35), the extra terms in the GZ action can be shown [Zwa89] to
enforce the Gribov condition det(−∂µDµ) > 0 to every order in perturbation theory. At
the perturbative level, the horizon functional modifies the zero-order gluon propagator due
to the fact that the FP operator reduces to the Laplacian as gA→ 0,

Kad → −∂2 δad . (2.38)

Indeed, by making use of the SU(N) relation fabcfdbc = Nδad, we see that, when expanded
in powers of gA, the horizon functional contains a quadratic gluon term,

H[A] = Ng2
∫
d4x Aaµ

(
− 1

∂2

)
Aaµ +O(g3A3) , (2.39)

that shifts the zero-order gluon propagator from ∆0(p
2) = 1/p2 to a GZ propagator

∆GZ(p
2) whose inverse can be read out directly from the full action. Modulo color structure

∆−1
GZ(p

2) = p2 +
2Ng2γ4

p2
, (2.40)
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leading to

∆GZ(p
2) =

p2

p4 + 2Ng2γ4
. (2.41)

We then see that ∆GZ(p
2) vanishes in the p2 → 0 limit.

Gluon propagators with a vanishing zero-momentum limit have been derived in func-
tional approaches such as the Dyson-Schwinger Equations (the so-called scaling solu-
tions, [vSHA97, AB98]) and studied in relation to the phenomenon of confinement [Oji78,
KO79a]. Today we know that the deep-infrared behavior of the propagator is less sup-
pressed than predicted within the original GZ approach. To account for the zero-momentum
finiteness of the propagator, in [DGS+08, DSVV08, DOV10, DSV11] it was shown that a
condensate of the form ⟨ϕabµ ϕab µ−ωabµ ωab µ⟩ could provide the GZ action with an additional
quadratic gluon term. The p2 → 0 limit of the resulting Refined Gribov-Zwanziger (RGZ)
zero-order propagator ∆RGZ(p

2),

∆RGZ(p
2) =

p2 +M2

p4 +M2p2 + 2Ng2γ4
, (2.42)

is controlled by a mass parameter M2 whose value can be determined dynamically and
was proven to be different from zero [DSV11]. Once the quadratic gluon condensate

〈
A2
〉

is included in the RGZ formalism, a modified propagator of the form

∆
(⟨A2⟩)
RGZ (p2) =

p2 +M2

p4 + (M2 +m2)p2 + 2Ng2γ4 +M2m2
(2.43)

with m2 ∝
〈
A2
〉

can be derived that is found to be in very good agreement with the lattice
data up to momenta ≈ 1-1.5 GeV [DOV10].

The GZ and RGZ propagators reported in Eqs. (2.41)-(2.43) have the interesting prop-
erty of possessing poles which, depending on the values of the parameters, can be complex
conjugate. By looking at Eq. (2.43), we see that this happens when

(M2 +m2)2 − 4M2m2 − 8Ng2γ4 = (M2 −m2)2 − 8Ng2γ4 < 0 . (2.44)

The GZ propagator clearly satisfies the above inequality, given that M2 = m2 = 0 in that
case, yielding purely imaginary poles at p2 = ±i

√
2Ngγ2. As for the RGZ propagator,

using the parameters

M2 = 2.15±0.13 GeV2 , m2 = −1.81±0.14 GeV2 , 2Ng2γ4 = 4.16±0.38 GeV4 (2.45)

obtained in [DOV10] by fitting the lattice data, one finds that the poles are complex
conjugate for the central values of the fit, although the upper and lower bounds of the
parameters do not exclude that the propagator may have a pair of real poles.

To end this section, we mention that proposals have been recently made that aim to
extend the GZ and RGZ formalisms to covariant gauges other than the Landau gauge
in a way that complies with BRST invariance [CDF+15, CDF+16a, CDF+16b, CDP+17,
CFPS17, CDG+18, MPPS19, DFP+19]. Such proposals reformulate the horizon condition
– Eq. 2.35 – in terms of a gauge-invariant gluon field Ah which will be the subject of
Chapter 5.
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2.4 The Curci-Ferrari model

2.4.1 Set-up

The Curci-Ferrari (CF) model is defined by the Euclidean action SCF [TW10, TW11]

SCF = SYM + Sg.f. + Sm2 , (2.46)

where
Sg.f. =

∫
d4x (iBa∂ ·Aa + ca∂µDµc

a) (2.47)

is the Landau gauge FP gauge-fixing term11, whereas

Sm2 =

∫
d4x

1

2
m2AaµA

aµ (2.48)

is a mass term for the gluons. Under an infinitesimal gauge transformation with parameters
χa, the variation of the mass operator AaµAaµ is given by δ(AaµAaµ) = 2∂µχ

aAaµ ̸= 0. It
follows that the gluon mass term must be interpreted as being added to the action after
gauge fixing has been performed, for otherwise the lack of gauge invariance of SYM + Sm2

would forbid the FP procedure to be carried out in the first place.
Although the gluon mass term Sm2 breaks the BRST invariance of the FP action,

sSm2 = −m2

∫
d4x ∂µc

aAaµ ̸= 0 , (2.49)

where s is the ordinary BRST operator,

sAaµ = −Dµc
a , sca =

g

2
fabc c

bcc , sca = iBa , sBa = 0 , (2.50)

the overall CF action still possesses a global symmetry which reduces to BRST symmetry
in the limit of vanishing mass. The corresponding operator sm2 reads [PRS+21b]

sm2Aaµ = −Dµc
a , sm2ca =

g

2
fabc c

bcc , sm2ca = iBa , sm2Ba = im2ca , (2.51)

and acts on the sum Sg.f. + Sm2 as

sm2(Sg.f. + Sm2) = 0 . (2.52)

Clearly, limm2→0 sm2 = s. For m2 ̸= 0, since

s2m2c
a, s2m2B

a ∝ m2 , (2.53)

the extended BRST operator sm2 is not nilpotent. While in general the lack of nilpotency
of the BRST operator poses obstructions to the unitarity of a gauge theory, it has been
argued in [PRS+21b] that, if the CF model displays color confinement, then it may still
be possible to define a physical subspace with a positive-definite inner product within the
CF Hilbert space as the kernel of s2m2 .

The invariance of SCF under the extended BRST transformations in Eq. (2.51) can be
exploited to prove that the CF model is perturbatively renormalizable. The divergent parts
of the CF renormalization factors can be shown to satisfy the constraints [DVS03, TW11]

ZgZ
1/2
A Zc = 1 , Zm2ZAZc = 1 , (2.54)

11Note that the replacements ca → −ca, Ba → iBa and partial integrations with respect to Eq. (1.64)
– which are customary in Euclidean space – do not change the outcome of gauge fixing.
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where Zm2 is the renormalization factor of the gluon mass parameter,

m2
B = Zm2m2 . (2.55)

The two-point sector of the Curci-Ferrari model is usually renormalized within the so-
called Infrared-Safe (IRS) scheme [TW11], defined by extending the relations in Eq. (2.54)
to the finite terms of the renormalization factor and by imposing the conditions

∆(µ2;µ2) =
1

µ2 +m2(µ2)
, G(µ2;µ2) = 1

µ2
, (2.56)

on the (transverse) gluon and ghost propagators ∆(p2;µ2) and G(p2;µ2) renormalized at
the scale µ. The mass term in the first of Eqs. (2.56) is introduced in order to account for
the presence of an analogous tree-level term in the fixed-scale CF gluon propagator,

∆(p2) =
1

ZA p2 + ZAZm2 m2 +Π
(CF)
T (p2)

, (2.57)

where Π
(CF)
T (p2) is the transverse component of the CF gluon polarization.

2.4.2 Results

Within the IRS scheme, the running coupling αs(µ
2) of the CF model is found not to

develop Landau poles provided that the value of αs(µ20) at the initial renormalization scale
µ0 is not too large [GPRT19, PRS+21b]. For such values of the coupling, the model is
finite and self consistent in the infrared, admitting a perturbative expansion which can be
improved order by order.

In Fig. 2.3 we display the one- and two-loop RG-improved Euclidean gluon propaga-
tor and dressing function computed within the Curci-Ferrari model and renormalized in
the IRS scheme. The figure is reported from [GPRT19] and features lattice data from
[CMM08]. As we can see, the one-loop CF dressing function falls slightly above the lat-
tice results in the UV and slightly below them at intermediate energies12. Nonetheless,
already at one loop the CF results accurately capture the behavior of the lattice propaga-
tor, displaying dynamical mass generation in the gluon sector and a non-zero saturation
value for the propagator at vanishing momenta. Including the two-loop corrections sensi-
bly improves the quantitative match with the lattice, bringing both the UV tail and the
p ≈ 1-2 GeV segment of the curve closer to the lattice results.

The lesson that can be learned from the achievements of the Curci-Ferrari model is
that treating the gluons as massive at tree level yields a perturbative description of the
infrared regime of QCD which agrees both qualitatively and quantitatively with the non-
perturbative picture painted by the lattice calculations. The Screened Massive Expansion
and the Dynamical Model, to be discussed in the next chapters, build on this notion to
provide perturbative frameworks for low-energy QCD that accomplish the same objective
without changing the overall Faddeev-Popov action.

12For future reference, we note that a simple multiplicative normalization of the CF one-loop dressing
function can brings its UV tail to match the lattice data at the price of an over-suppressed zero-momentum
limit for the propagator.



2.4 The Curci-Ferrari model 45

Figure 2.3: Euclidean Landau gauge transverse gluon propagator (top) and dressing func-
tion (bottom) computed to one and two loops within the Curci-Ferrari model, together
with the lattice data from [CMM08]. Figure from [GPRT19].
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The Screened Massive Expansion

In Part I of this thesis we saw that the ordinary perturbation theory of Quantum Chromo-
dynamics breaks down at low energies due to the presence of a Landau pole in its running
coupling constant. In order to investigate the infrared regime of the strong interactions,
one has to resort to alternative, non-perturbative computational methods, such as lattice
QCD or the Dyson-Schwinger Equations. Both of these approaches offer a solid perspective
on the low-energy behavior of the transverse gluon propagator. They clearly show that,
in the infrared, instead of diverging as would be typical for a massless field, the propa-
gator changes concavity and saturates to a finite value [LSWP98a, LSWP98b, BBLW00,
BBL+01, AN04, AP06, ABP08, AP08, HvS13]. In other words, the gluons acquire a dy-
namically generated mass.

The occurrence of dynamical mass generation (DMG) in the gluon sector of QCD is a
feature of primary interest both from a phenomenological and from a theoretical point of
view. Phenomenologically, since in the IR a massive gluon behaves very differently from a
massless one, we should expect the low-energy dynamics of the strong interactions to be
deeply affected by DMG. For instance, as discussed in some early studies [PP80, CF94,
LW96, CF97, MN00, Fie02, LMM+05], a gluon mass would bring about both phase-space
effects and explicit modifications to the scattering amplitudes in the evaluation of the QCD
cross sections. Some (non-conclusive) experimental evidence for the IR-massiveness of the
gluon has been presented in the literature by now – see the Introduction for a brief review.

From a purely theoretical perspective, on the other hand, DMG poses new challenges
to our understanding and ability to make analytical predictions in the context of QCD.
In this respect, it is useful to take the Higgs mechanism of the electroweak interactions
as a benchmark. In the electroweak sector of the Standard Model, the quarks and the
charged leptons acquire a mass as a consequence of their being coupled to the Higgs field.
The Higgs mechanism is triggered by the non-vanishing VEV of the latter, which is a
direct consequence of the Higgs potential having a minimum for some non-zero value of
the Higgs field. In particular, the magnitude of the quarks’ and charged leptons’ masses is
in direct relation to the parameters which are present in the Higgs Lagrangian; moreover,
the Higgs mechanism is mainly classical in nature, as it already occurs at the classical
level, without the aid of quantum corrections. DMG for the quarks and charged leptons
in the electroweak sector can be easily accommodated into the standard formalism (and
studied with the ordinary computational methods) of the gauge theories, resulting in a
dynamical symmetry breaking of the global gauge group which we know how to deal with
analytically.

Conversely, the dynamical generation of a mass for the gluon is a genuinely quantum
phenomenon. It is not caused by the interaction of the gluon field with the VEV of some
other field, but rather it happens through self-interaction. The scale that sets the units

49
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for the gluon mass cannot be read off directly from the QCD Lagrangian, but is itself gen-
erated by the strong interactions. In addition to there being no evidence that it leads to
dynamical symmetry breaking, DMG for the gluons does not play well with the standard
analytical method used in QCD – namely, with ordinary perturbation theory. Indeed, as
we discussed in the Introduction, a mass for the gluons cannot be generated at any finite
order in standard perturbation theory due to the constraints imposed by gauge invariance
on the form of the radiative corrections which appear in the QCD perturbative series. In
other words, it is an intrinsically non-perturbative effect of the strong interactions. We
remark that this is a limitation of pQCD which is not directly related to its infrared break-
down: one could imagine that ordinary pQCD remained valid at arbitrarily low energies,
and DMG in the gluon sector would still be perturbatively forbidden by gauge invariance.

In the early 2010s, Tissier and Wschebor [TW10, TW11] made a groundbreaking dis-
covery: by adding a mass term for the gluons in the Landau gauge Faddeev-Popov La-
grangian, they were able to derive propagators and vertices which accurately reproduced
the lattice data in the deep-IR region of QCD (see e.g. Sec. 2.4.2). The strong running
coupling computed in their so-called Curci-Ferrari (CF) model was furthermore shown to
remain finite and moderately small down to arbitrarily small momenta – a feature that had
already been anticipated by the results of the lattice calculations. What is perhaps most
surprising about the achievements of the CF model is that, at the most basic level, the
latter uses nothing more than standard perturbative techniques. Of course, since the inclu-
sion of a gluon mass term constitutes a modification of the FP Lagrangian, the CF model
must be interpreted as an effective theory; indeed, it is not clear whether the model can
be derived from first-principles QCD. Nonetheless, the success of the Curci-Ferrari model
strongly suggests that, once DMG for the gluons is taken into account by the formalism,
the IR regime of the strong interactions might actually be accessible by simple perturbative
calculations. This raises a crucial question: may it be that standard perturbation theory
fails at low energies because it implicitly assumes that the gluons remain massless down
to arbitrarily small scales? If this is so, can a change of the expansion point of the QCD
perturbative series fix its IR behavior?

An answer to these questions was provided in 2015 with the formulation of the Screened
Massive Expansion of QCD [Sir15a, Sir15b, Sir16b]. The SME is a simple modification
of ordinary perturbation theory that consists in treating the transverse gluons as massive
already at tree level, while leaving the Faddeev-Popov action unchanged. By expanding
around massive, rather than massless transverse gluons, the SME implements DMG in the
gluon sector from the get-go; the gluon mass itself can then be shown to screen the IR
regime of QCD from the development of Landau poles, thus making the low-energy limit
accessible to ordinary perturbative techniques.

The main objective of this chapter is to present the general features and main results of
the Screened Massive Expansion with regard to the gauge sector of QCD. Since dynamical
mass generation for the gluons occurs even in the absence of quarks, in what follows we
will focus exclusively on pure Yang-Mills theory (YMT) – that is, on QCD with no quarks.
Working within the framework of YMT allows us to investigate the overall dynamics of
the gluons without having to worry about the values of the quark masses. Moreover, it
provides for better benchmarks on the infrared regime of the strong interactions, given
that the highest-quality lattice calculations which are currently available for the gluon and
ghost propagators are carried out in YMT rather than in full QCD.

This chapter is organized as follows. In Sec. 3.1 we define the Screened Massive Expan-
sion of YMT, discuss some of its features and present the first results for the one-loop gluon
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and ghost propagators. In Sec. 3.2 we show how the SME can be optimized by making
use of arguments based on gauge invariance. This will allows us to reduce the number of
free parameters in the expressions and make predictions from first principles. In Sec. 3.3
we perform a Renormalization Group analysis and improvement of the Screened Massive
Expansion. The strong running coupling constant αs(p) computed in the SME will be
shown to be free of Landau poles, provided that the value of the coupling at the initial
renormalization scale is not too large. The absence of IR Landau poles in αs(p) proves
that the SME is indeed a self-consistent method, valid down to arbitrarily small energy
scales.

Most of the contents of this chapter were originally presented in various papers pub-
lished between 2016 and 2020. Specifically, the main sources for the three sections that
make up the chapter are:

• Sec. 3.1: [Sir16b, CS18, SC18, Sir19b],

• Sec. 3.2: [SC18, SC22b, Sir19a, Sir19b],

• Sec. 3.3: [CS20].

Refs. [CS18], [SC18], [CS20] and [SC22b] are attached as an insert to this thesis, to be
found in Appendix C.

3.1 Motivation, definition and first results

3.1.1 Dynamical mass generation and perturbation theory: the set-up
of the Screened Massive Expansion

In our review of the set-up of ordinary perturbation theory (Sec. 1.2.1), we saw that the
standard perturbative expansion of QCD is obtained by splitting the Faddeev-Popov action
SFP as

SFP = S0 + Sint. , (3.1)

where, in the absence of quarks, the zero-order action S0 can be expressed in momentum
space as

S0 = i

∫
d4p

(2π)4

{
1

2
Aaµ(−p) [∆−1

0 (p)]µνab A
b
ν(p) + ca(p) [G−1

0 (p)]ab c
b(p)

}
, (3.2)

with the zero-order gluon and ghost propagators ∆0(p) and G0(p) given by

∆ab
0µν(p) =

−i
p2

δab (tµν(p) + ξ ℓµν(p)) , Gab0 (p) =
i

p2
δab , (3.3)

whereas the interaction terms in Sint. explicitly read

Sint =

∫
d4x

{
− gfabc ∂µA

a
ν A

b µAc ν − 1

4
g2fabcf

a
deA

b
µA

c
νA

dµAe ν + gfabc ∂
µcaAbµc

c

}
. (3.4)

Since ∆0(p) and G0(p) have a pole at p2 = 0, Eq. (3.2) implies that at the tree level of
standard perturbation theory the ghosts and the gluons are massless.

As we know by now, the strong interactions generate an infrared mass for the transverse
gluons. However, in the framework of ordinary pQCD, gauge invariance prevents the
quantum corrections from shifting the position of the transverse gluon pole to a non-zero
value of p2. This makes the standard perturbative expansion of QCD especially unsuitable
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to describe the low-energy limit of the strong interactions. In order to obtain a better
approximation of the exact gluon propagator, we could try to reorganize the perturbative
series in such a way that the transverse gluons are treated as massive already at tree level.
In other words, we could look for a modification of perturbation theory capable of yielding
a zero-order gluon propagator of the form

∆ab
mµν(p) = δab

(−itµν(p)
p2 −m2

+ ξ
−iℓµν(p)

p2

)
, (3.5)

where the pole of the longitudinal component of ∆m(p) is left unshifted from p2 = 0, since
we know that ∆L(p) = ℓµν(p)∆ab

µν(p) = −i ξ
p2
δab is an exact identity for the dressed gluon

propagator – see Sec. 1.1.4.
At the end of the derivation of the Feynman rules for ordinary pQCD in Sec. 1.2.1,

we observed that the perturbative expansion of QCD can be formally generalized to an
arbitrary zero-order action, provided that the latter is chosen to be quadratic in the fields.
This comes in very handy, since the ∆m(p) in Eq. (3.5) can be obtained as the zero-order
gluon propagator associated to the quadratic action Sm given by

Sm = i

∫
d4p

(2π)4

{
1

2
Aaµ(−p) [∆−1

m (p)]µνab A
b
ν(p) + ca(p) [G−1

0 (p)]ab c
b(p)

}
. (3.6)

In particular, a perturbative expansion of pure Yang-Mills theory around massive trans-
verse gluons can be achieved by splitting the Faddeev-Popov action SFP as1

SFP = Sm + S′
int. , (3.7)

where Sm is given by Eq. (3.6), whereas by definition

S′
int. = SFP − Sm . (3.8)

Explicitly, since Sm = S0 + δS with

δS = i

∫
d4p

(2π)4
1

2
Aaµ(−p) [∆−1

m (p)−∆−1
0 (p)]µνab A

b
ν(p) , (3.9)

the modified interaction action S′
int. is equal to Sint. − δS, where

−δS = −i
∫

d4p

(2π)4
1

2
Aaµ(−p) Γµνab (p)Abν(p) (3.10)

and the two-point gluon vertex Γµνab (p) contained in the interaction term −δS reads

Γµνab (p) = −im2 tµν(p) δab . (3.11)

The Feynman rules associated to the split defined by Eq. (3.7) can be read off directly
from the action terms Sm and S′

int.. By construction, the zero-order gluon propagator
is given by Eq. (3.5) – see Fig. 3.1 –, whereas the zero-order ghost propagator and the
3-gluon, 4-gluon and ghost-gluon vertices are the same as those of standard perturbation
theory – Figs. 1.2, 1.4, 1.5 and 1.6, respectively. In addition to the ordinary interaction
vertices, a new 2-gluon vertex – depicted by a cross in Fig. 3.2 – must be included in the
calculations; this is the vertex known as the gluon mass counterterm, and corresponds to

1Similar ideas can be found in the literature, see e.g. [JP97, KPP97].
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the quantity Γµνab (p) in Eq. (3.11). In what follows, we will refer to Feynman diagrams
containing one or more gluon mass counterterms as crossed diagrams.

The gluon mass counterterm Γµνab (p) arises from the shift of the zero-order action S0 →
Sm = S0 + δS, which must be balanced by an opposite shift in the interaction action
Sint. → S′

int. = Sint. − δS in order for the total Faddeev-Popov action to be left unchanged.
Γµνab (p) is a non-perturbative vertex, in that it is not proportional to any power of the strong
coupling constant g; conversely, it is equal – modulo a factor of −i and the transverse, color-
diagonal tensor structure tµν(p) δab – to the gluon mass parameter m2, which is the very
same parameter that appears in the zero-order massive gluon propagator.

Due to the presence of the gluon mass counterterm, the massive expansion defined by
Eq. (3.7) is intrinsically non-perturbative in nature. More precisely, the perturbative series
obtained by expanding the Green functions in powers of S′

int. is a power series in both the
coupling constant and the gluon mass parameter m2, with the caveat that the latter also
appears inside the loop integrals via the zero-order gluon propagator. For this reason, when
computing a quantity to some fixed order in the coupling constant, one must be careful in
choosing which crossed diagrams are to be included in the calculation. Indeed, it is easy
to convince oneself that the two-point nature of the gluon mass counterterm implies that
there are infinitely many crossed diagrams at any finite order in the coupling constant. We
will have more to say about this in the next section.

ν, b = δab
[−itµν(p)

p2 −m2
+

−iξ ℓµν(p)

p2

]
µ, a

Figure 3.1: Zero-order massive gluon propagator

ν, b = −im2 tµν(p) δabµ, a

Figure 3.2: Gluon mass counterterm

How do we know that the perturbative series defined by the massive split in Eq. (3.7)
yields a better approximation than ordinary perturbation theory? Ultimately, only calcu-
lations carried out a posteriori can tell. Nonetheless, a preliminary indication can already
be obtained by making use of a variational tool known as the Gaussian Effective Potential.

Roughly speaking, the Gaussian Effective Potential (GEP) is a first-order approxi-
mation of the vacuum energy density E of a quantum field theory computed under the
hypothesis that the vacuum state can be described as a Gaussian functional of the fields.
Since this hypothesis holds true for the (quadratic) perturbative vacua which are used to
set up perturbation theory, the GEP can be exploited to study which kind of perturbative
expansion is better suited to approximate the exact theory.

In the language of perturbation theory, provided that the elementary fields F do not
acquire a VEV, the GEP VG can be defined as

VG =
i

V4
ln

∫
DF eiI0 − i

V4
⟨Iint.⟩0 . (3.12)
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Here V4 is the four-dimensional volume of spacetime, I0 is the zero-order action of the
theory, Iint. is the interaction action, the full action is given by the sum I0 + Iint. and the
subscript 0 denotes that the VEV of Iint. is to be computed with respect to the zero-order
integration measure DF eiI0 . The crucial property of the GEP is that VG can be shown to
be greater than or equal to the exact energy density E of the theory,

e−iEV4 =

∫
DF ei(I0+Iint.) . (3.13)

This is a consequence of the so-called Jensen-Feynman inequality [Fey98], which holds for
the Gaussian integrals if the elementary fields F are not Grassmann fields.

Since the zero-order and interaction terms I0 and Iint. in Eq. (3.12) are only restricted
by the requirements that 1. they sum to the total action of the theory, and 2. that I0
be quadratic in the fields, we are free to choose any quadratic zero-order action I0, define
Iint. as the difference between the full action and I0, and the inequality VG ≥ E will be
fulfilled. In particular, in the context of pure Yang-Mills theory, we can take I0 to be equal
to Sm, Iint. = S′

int., and the resulting GEP will be a function of the mass parameter m2

which appears in the zero-order gluon propagator ∆m. The best approximation to the
vacuum energy density of Yang-Mills theory will then be provided by the value of the mass
parameter which, by minimizing the GEP VG(m

2), pushes the value of the potential closer
to the exact result E 2.

An explicit calculation shows that, in an arbitrary covariant gauge [Com19], the mass-
dependent GEP for a pure Yang-Mills theory with gauge group SU(N) is given by [CS18]

VG(m
2) =

3NAm
4

128π2

(
α ln2

m2

m2
0

+ 2 ln
m2

m2
0

− 1

)
, (3.14)

where NA is the dimension of the gauge group and α is a rescaled coupling defined by

α =
9Nαs
8π

, αs =
g2

4π
, (3.15)

and m2
0 is an arbitrary non-zero mass scale, generated by the renormalization of the poten-

tial, whose explicit value cannot be computed from first principles since pure Yang-Mills
theory is scale-free at the classical level. We stress that in Eq. (3.14) there is nothing spe-
cial about the scale m2

0, other than it being different from zero: we could redefine m2
0 by

multiplying it by some arbitrary constant, and the GEP would just acquire an additional
term proportional to m4. Also, we observe that the GEP is gauge-independent, in the sense
that VG(m2) does not depend on the gauge parameter ξ despite having been computed in
a general covariant gauge.

By differentiating VG with respect to m2, we find that – regardless of the value of the
coupling constant – the GEP has a local minimum at m2 = m2

0 ̸= 0, where

VG(m
2 = m2

0) = −3NAm
4
0

128π2
< 0 . (3.16)

By contrast, at m2 = 0 – which is also a local minimum for VG – the GEP vanishes,
thus attaining a value which is greater than VG(m

2 = m2
0). This can be clearly seen in

Fig. 3.3, where the GEP is plotted as a function of the ratio m/m0 for different values of
the coupling constant.

2Earlier we stated that the Jensen-Feynman inequality holds if the functional averages do not involve
Grassmann fields. Of course, in the path integrals of pure Yang-Mills theory we do integrate over Grass-
mann fields – namely, the ghost and antighost fields. Nonetheless, it can be shown that in the framework
of pure Yang-Mills theory the Jensen-Feynman inequality is saturated by maximizing the contribution due
to the ghosts. This is equivalent to requiring that the latter do not acquire a mass in the infrared; see
[CS18] for a detailed treatment of this technical aspect of the GEP.
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The fact that the GEP is globally minimized by a non-zero value of the gluon mass pa-
rameter signals that a perturbative expansion that treats the transverse gluons as massive
provides a better approximation to the vacuum energy density of pure Yang-Mills theory
in comparison to one in which the gluons are massless. In other words, the true vacuum
of pure Yang-Mills theory better resembles the vacuum of free massive transverse gluons,
rather than that of free massless ones. In particular, we may expect the massive expansion
defined by the split in Eq. (3.7) to reproduce more faithfully the infrared regime of the
strong interactions at finite order in its perturbative series, when compared to the ordi-
nary massless perturbation theory. As we will see in the following sections, this is indeed
the case: the Screened Massive Expansion allows us to incorporate the phenomenon of
dynamical mass generation non-trivially into the formalism of QCD, and to analytically
compute gluon and ghost propagators which are in excellent agreement with the results of
the lattice calculations down to the deep IR.
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Figure 3.3: The Gaussian Effective Potential of pure Yang-Mills theory, normalized by a
factor of 128π2
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and computed for different values of λB = 16π2α. Figure from [CS18].

3.1.2 General properties of the Screened Massive Expansion

In the process of replacing the zero-order massless gluon propagator ∆0 with a massive one,
the Screened Massive Expansion introduces a gluon mass parameter m2 in the perturbative
series of QCD. As it stands, m2 is a new free parameter whose value will need to be fixed in
order to be able to make physical predictions. Since pure Yang-Mills theory is scale-free at
the classical level, m2 – together with the renormalization scale – is the only dimensionful
parameter of the theory. Therefore, choosing a value for the gluon mass parameter is
equivalent to setting the energy units of the theory3. Of course, this cannot be done from

3This is not the case for full QCD with massive quarks, as of course the quark masses are also dimen-
sionful parameters. Nonetheless, the corrections to the gluon mass due to the presence of quarks turn out
to be negligible as far as the overall scale of m is concerned [Sir16a]. Therefore, even in the context of
full QCD, when discussing the deep IR behavior of the gluon propagator one can safely assume that m is
the only relevant energy scale. The same holds true for the ghost propagator, since the corrections to the
latter due to the quarks are higher-order in perturbation theory.
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first principles, but must instead be done a posteriori by making comparisons with the
experiments, or with the lattice data.

We should mention that m must not be interpreted as the actual mass of the gluon. In-
deed, whereas at tree level the pole of the transverse gluon propagator is found at p2 = m2,
the quantum corrections radically change the analytic structure of the dressed propaga-
tor already at the one-loop order. In particular, we shall see that the transverse gluon
propagator computed in the SME possesses a pair of complex-conjugate poles. Within the
Screened Massive Expansion, m must simply be regarded as a mass scale which determines
the infrared behavior of the gluon propagator.

The presence of the new free parameter m2 in the equations of the SME, when taken
at face value, may seem to reduce the predictive power of the approximation. While this is
certainly true if we limit ourselves to using the plain SME, we anticipate that optimization
methods can be devised to fix the value of some of the free parameters of the expansion
from first principles, thus restoring the predictivity of the technique. Interestingly, these
methods are ultimately based on the delicate balance that exists between the massiveness
of the gluon and the need to preserve gauge/BRST invariance. We will come back to this
topic in both Sec. 3.2 and Sec. 3.3.

As a consequence of the massiveness of the zero-order gluon propagator ∆m, some of the
loop diagrams of the SME contain mass divergences – that is, diverging terms proportional
to the gluon mass parameter m2. These divergences cannot be absorbed by the ordinary
renormalization counterterms of QCD, since the total Faddeev-Popov action – which is left
unchanged by the SME – contains no gluon mass term, and cannot therefore accommodate
a gluon mass renormalization counterterm.

Nonetheless, the mass divergences can be shown to disappear as soon as a sufficient
number of crossed diagrams is included in the equations. Heuristically, this can be ex-
plained by arguing that since ∆m → ∆0 in the high-energy (|p2| ≫ m2) limit, the Screened
Massive Expansion cannot modify the UV behavior of QCD; in particular, it will not mod-
ify the structure of the diverging terms in its perturbative series. If any of the diagrams
is found to contain a mass divergence, then other diagrams must exist that contain oppo-
site mass divergences to cancel it. This must be possible order by order in the coupling
constant.

A more precise argument requires us to analyze the structure of the crossed diagrams
which appear at a fixed order in g in the perturbative series of the SME. Let D0 be a
diagram which does not contain gluon mass counterterms, and denote with D1 the sum
of all of the diagrams which can be obtained from D0 by inserting a single gluon mass
counterterm in one of its internal gluon lines. Clearly, D1 is of the same order in g as D0.
Now, observe that the insertion of a single gluon counterterm Γ(p) into a gluon line ∆m(p)
can be achieved by replacing ∆m(p) → ∆m(p) · Γ(p) · ∆m(p) under the sign of integral;
moreover,

∆m(p) · Γ(p) ·∆m(p) =
im2

(p2 −m2)2
t(p) = −m2 ∂

∂m2
∆m(p) . (3.17)

It is then easy to see that

D1 = −m2 ∂

∂m2
D0 . (3.18)

If D0 contains a mass divergence, then the sum D0+D1, which thanks to the above equation
can be expressed as

D0 +D1 =

(
1−m2 ∂

∂m2

)
D0 , (3.19)
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will not contain any, given that the operator 1−m2 ∂
∂m2 kills any term linear in m2 inside

D0. What about the other crossed diagrams, D2, D3, . . . , Dn, which contain 2, 3, . . . , n
gluon mass counterterms? Just like D1, they are given by

Dn =
(−m2)n

n!

∂n

∂(m2)n
D0 . (3.20)

In particular, since every ∂/∂m2 derivative increases the number of propagators under the
sign of integral, the diagrams in D2 – which contain at least three gluon propagators – are
superficially convergent, as well as any Dn with n ≥ 3. Therefore, once the mass divergences
are cancelled in subdiagrams by summing the latter to their crossed counterparts, the rest
of the perturbative series is also convergent, as far as the divergences proportional to m2

are concerned.
Eq. (3.20) helps us understand the precise relation that exists between the SME and

ordinary perturbation theory. Indeed, if we start from a single diagram D0(m
2) – where

the dependence on m2 is made explicit for reasons that will become clear in a moment –
and sum to it all of the diagrams Dn(m

2) that can be obtained by inserting n gluon mass
counterterms in its internal gluon lines, we find that

+∞∑

n=0

Dn(m
2) =

( ∞∑

n=0

(−m2)n

n!

∂n

∂(m2)n

)
D0(m

2) = (3.21)

= e−λ
∂

∂m2

∣∣∣
λ=m2

D0(m
2) =

= D0(m
2 − λ)

∣∣∣
λ=m2

= D0(0) .

In other words, by summing an uncrossed diagram D0(m
2) to all of its crossed counterparts

Dn(m
2) (n ≥ 1), we obtain the former computed in ordinary pQCD, D0(0). This can be

seen explicitly at the level of the single gluon line, for which an identity analogous to
Eq. (3.21) reads

+∞∑

n=0

∆m(p) · [Γ(p) ·∆m(p)]
n = ∆m(p) ·

1

1− Γ(p) ·∆m(p)
= ∆0(p) , (3.22)

where we have used

1

1− Γ(p) ·∆m(p)
=

1

1 + m2

p2−m2

t(p) + ℓ(p) =
p2 −m2

p2
t(p) + ℓ(p) . (3.23)

It is then clear that in the Screened Massive Expansion we are not interested in resumming
all of the crossed diagrams: if we did so, we would be back to ordinary massless pertur-
bation theory. On the contrary, at any finite order in the coupling constant g, we must
choose a finite number of crossed diagrams to include in the calculation.

Unfortunately, to date, no first-principles argument has been found to constrain the
maximum number of crossed diagrams that are to be retained in a fixed-loop-order calcu-
lation. Nonetheless, the principle of renormalizability, together with a principle of mini-
mality, are still able to provide us with a useful criterion for the truncation of the SME
perturbative series. At a fixed loop order ℓ, in order to obtain a renormalizable result, one
must at the very least include all of the crossed diagrams which are needed to remove the
mass divergences arising from the uncrossed diagrams. Among these crossed and uncrossed
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diagrams, there will be a subset of diagrams with a maximal number of vertices N . In the
spirit of perturbation theory, once some diagrams with ℓ′ ≤ ℓ loops and N ′ ≤ N vertices
are included, then all of the diagrams with the same properties should be included as well.
Since there is no need to add other diagrams, by a principle of minimality we shall not do
so. When following these criteria, the SME can be interpreted as a double expansion in
both the number ℓ of loops and the number N of vertices.

In Secs. 3.1.3 and 3.1.4, the double expansion will be used to derive explicit expressions
for the one-loop ghost and gluon propagators. There we will see that the uncrossed loops
that contribute to the gluon propagator contain mass divergences which are removed by
corresponding crossed loops with a maximum number of vertices N = 3. As a consequence,
our calculations will include every diagram with at most 1 loop and at most 3 vertices.

3.1.3 The ghost propagator

In the present and in the following section we start reviewing some of the results which
have been obtained to one-loop by making use of the Screened Massive Expansion of
pure Yang-Mills theory. For the sake of conciseness, we will not go through the ex-
plicit derivation of the analytic expressions; the details of the calculations can be found in
[Sir16b, SC18, Sir19b] (see Appendix C for [SC18]). Let us begin from the dressed ghost
propagator.

The dressed ghost propagator Gab(p), defined as the Fourier transform

Gab(p) =
∫
d4x eip·x

〈
T
{
ca(x)cb(0)

}〉
, (3.24)

can be expressed in terms of a single scalar function G(p2) as

Gab(p) = G(p2) δab . (3.25)

The function G(p2), in turn, can be computed by resumming all the insertions of the
one-particle-irreducible (1PI) ghost self-energy Σ(p2),

G(p2) = i

Zc p2 − Σ(p2)
, (3.26)

where Zc, the ghost field renormalization factor, is required for removing the diverging
terms contained in Σ(p2).

Figure 3.4: Diagrams for the one-loop SME ghost self-energy

To one loop, the diagrams which contribute to the ghost self-energy are those displayed
in Fig. 3.4 [Sir16b, Sir19b]. The crossed loop on the right of the figure is included in the
calculation in order to be consistent with the choice of diagrams made for the computation
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of the gluon propagator. More precisely, as anticipated in the last section, to obtain the
one-loop gluon and ghost SME propagators we shall include every one-loop diagram which
has a maximum of three interaction vertices. An explicit calculation carried out in a
generic covariant gauge within the framework of the Screened Massive Expansion of pure
Yang-Mills SU(N) theory yields [Sir16b, Sir19b]

Σ(p2) =
α

4
p2
(
1− ξ

3

)(
2

ϵ
− ln

m2

µ2

)
− αp2

(
G(s)− 2

3
− ξ

12
ln s

)
(3.27)

for the one-loop, 1PI dimensionally regularized ghost self-energy. In the above equation,
µ =

√
4πµe−γE/2 is the energy scale generated by dimreg, α is a rescaled coupling constant

defined as

α =
3Nαs
4π

, αs =
g2

4π
, (3.28)

s = −p2/m2, and G(s) is the function given by

G(s) =
1

12

[
(1 + s)2(2s− 1)

s2
ln(1 + s)− 2s ln s+

1

s
+ 2

]
. (3.29)

In order to remove the divergence in Eq. (3.27), we choose the ghost field renormaliza-
tion factor Zc to be equal to

Zc = 1 +
α

4

[(
1− ξ

3

)(
2

ϵ
− ln

m2

µ2

)
+

8

3
+ 4g0

]
, (3.30)

where g0 is an adimensional constant which selects the renormalization scheme for the
ghost propagator. In the above equation, the ϵ-pole coincides with the one contained in
the corresponding MS renormalization factor [IZ06]. This was to be expected, since – as
discussed in Sec. 3.1.2 – the Screened Massive Expansion does not modify the UV behavior
of the theory, and in particular its UV divergences.

To one loop, the renormalized ghost propagator, which reads

G(p2) = i

p2[1 + α(G(s)− ξ ln s/12 + g0)]
, (3.31)

can be rewritten in such a way that the coupling constant formally disappears from the
equations. In order to do so, we define two adimensional constants G0 and ZG as

G0 =
1

α
+ g0 , ZG =

1

α
, (3.32)

in terms of which G(p2) can be expressed as

G(p2) = iZG
p2(G(s)− ξ ln s/12 +G0)

. (3.33)

While in the context of the SME the multiplicative factor ZG is given by Eq. (3.32), when
comparing G(p2) with ghost propagators computed by other methods we are free to inter-
pret ZG as an independent variable. This is a consequence of the arbitrariness in the choice
of the normalization for the quantum fields, which makes the corresponding propagators
comparable only modulo multiplicative factors. On the other hand, the additive constant
G0 contains information on both the value of the strong coupling constant and the renor-
malization scheme in which the one-loop ghost propagator is defined.
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As the first step in our analysis of the SME ghost propagator, let us explore its asymp-
totic behavior4. At large and small momenta – corresponding, respectively, to s→ ∞ and
s→ 0 –, the function G(s) which appears in the denominator of the propagator G(p2) has
the following limits:

lim
s→∞

G(s) =
1

4
ln s+

1

3
, lim

s→0
G(s) =

5

24
. (3.34)

By plugging the first of these into Eq. (3.27), we find that at high energies the ghost
self-energy reduces to

Σ(p2) → α

4
p2
(
1− ξ

3

)(
2

ϵ
− ln

−p2
µ2

)
. (3.35)

It should come as no surprise that this is the ghost self-energy computed in ordinary
perturbation theory [IZ06]: again, as we said, the SME does not modify the high-energy
limit of the theory. Because of Eq. (3.35), at large momenta the ghost propagator goes to
zero like 1/p2 ln(−p2).

At the other end of the spectrum, as p2 → 0, the function G(s) approaches a constant.
It follows that the ghost propagator diverges in the infrared:

lim
p2→0

G(p2) = lim
p2→0

iZG
p2(5/24− ξ ln(−p2/m2)/12 +G0)

= ∞ . (3.36)

In particular, in the framework of the SME, the ghosts remain massless. It is worth notic-
ing that, whereas the masslessness of the gluon is independent of the gauge, the way in
which G(p2) tends to infinity as p2 → 0 very much is: while in the zero-momentum limit
p2G(p2) remains finite in the Landau gauge (ξ = 0), the same is not true in any other
gauge, for then p2G(p2) itself goes to zero like 1/ ln(−p2) 5.

How does the ghost propagator computed in the Screened Massive Expansion compare
with the lattice data? The answer is shown in Fig. 3.5, where we display a fit of the Eu-
clidean ghost dressing function p2EGE(p2E) evaluated in the Landau gauge (ξ = 0) together
with the lattice data of [DOS16]. We recall that GE(p2E) is defined as

GE(p2E) = iG(−p2E) , (3.37)

with the Euclidean momentum p2E ≥ 0.
The fit in Fig. 3.5 was performed by using as free parameters the multiplicative and

additive renormalization constants ZG and G0 defined in Eq. (3.33), while fixing the gluon
mass parameter m to 0.654 GeV. The latter was obtained by fitting the SME transverse
gluon propagator, as described in the next section. Moreover, in order to avoid (at this
stage) the use of the Renormalization Group, the data was cut at a momentum of 2 GeV.
Finally, we should mention that the normalization of the ghost propagator is the one
provided by the lattice data, that is, we did not perform a further re-normalization of the
propagator. A summary of the values obtained from the fit is reported in Tab. 3.1.

As we can see, in the deep IR region the Screened Massive Expansion of the ghost
propagator manages to accurately reproduce the Landau gauge lattice. At low momenta,

4We should remark that the true high-energy limit of the propagators can only be studied by improving
their momentum behavior via the use of the Renormalization Group equations (Sec. 1.2.3). Thus, when
in the context of a fixed-scale calculation we say that a propagator has a certain high-energy limit, we
interpret this to be a formal, rather than substantial, property of the propagator.

5The infrared-suppression of the ghost dressing function in a general covariant gauge ξ ̸= 0 compared
to its Landau gauge counterpart was observed in a recent lattice calculation [CDM+18].
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the Euclidean ghost dressing function p2EGE(p2E) first changes concavity and then saturates
to a finite value, implying that as p2 → 0 the ghost propagator diverges to infinity like
1/p2, as previously anticipated. This behavior is consistent with that of the decoupling
solution obtained by solving the Dyson-Schwinger Equations for pure Yang-Mills theory
[AN04, AP06, ABP08, AP08, HvS13].
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Figure 3.5: Euclidean ghost dressing function in the Landau gauge (ξ = 0). Solid curve:
one-loop SME result with the parameters of Tab. 3.1. Squares: lattice data from [DOS16].

G0 ZG m (GeV)

0.1464 1.0994 0.654

Table 3.1: Parameters obtained from fitting the lattice data of [DOS16] for the Landau
gauge Euclidean ghost propagator in the range 0-2 GeV at fixed m = 0.654 GeV.

3.1.4 The gluon propagator

The dressed gluon propagator ∆ab
µν(p) is defined as the Fourier transform

∆ab
µν(p) =

∫
d4x eip·x

〈
T
{
Aaµ(x)A

b
ν(0)

}〉
. (3.38)

Since – as we saw in Sec. 1.1.4 – the longitudinal projection of ∆ab
µν(p) is exactly equal

to −iξ/p2, the gluon propagator can be expressed in terms of a single unknown scalar
function ∆(p2):

∆ab
µν(p) =

(
∆(p2) tµν(p) +

−iξ
p2

ℓµν(p)

)
δab . (3.39)

Modulo the color structure, ∆(p2) is the transverse component of the gluon propagator.
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∆(p2) can be computed by resumming all the insertions of the 1PI gluon polarization6,
whose transverse component we denote by Π(p2):

∆(p2) =
−i

ZA p2 −m2 −Π(p2)
. (3.40)

In the above equation, the gluon field renormalization factor ZA is needed to absorb the
diverging terms in Π(p2), whereas the presence of the mass term m2 is a consequence of
the massiveness of the zero-order SME propagator.

To one loop, the 1PI gluon polarization receives contributions from the diagrams shown
in Figs. 3.6 and 3.7. The single-counterterm diagram in Fig. 3.6 is easily computed to be
equal to −m2. It follows that the 1PI gluon polarization can be expressed as

Π(p2) = −m2 +Πloop(p
2) , (3.41)

where the function Πloop(p
2) collects the contributions to Π(p2) due to the loops of the

perturbative series. By plugging the last equation into Eq. (3.40), we see that the transverse
gluon propagator can be written as

∆(p2) =
−i

ZA p2 −Πloop(p2)
. (3.42)

The expression (3.42) for ∆(p2) is especially important, since it proves that, in the frame-
work of the Screened Massive Expansion, the generation of a gluon mass is not the trivial
consequence of having forced a mass term into the zero-order gluon propagator. Indeed,
if Πloop(p

2) vanished in the zero-momentum limit, then the gluon propagator – having a
pole at p2 = 0 – would remain massless. Instead, as we shall see in a moment, Πloop(p

2)
actually turns out to be proportional to the gluon mass parameter m2 when computed at
p2 = 0. As a result, the propagator is finite in the zero-momentum limit and a mass is
generated for the gluon. Coming from the loops of the expansion, such a mass is a truly
dynamical effect of the interactions.

Figure 3.6: Single-counterterm diagram

The diagrams which make up Πloop(p
2) at the one-loop order are depicted in Fig. 3.7.

Those denoted by (1), (2a) and (3a) are just the ordinary one-loop diagrams of standard
perturbation theory, although we should keep in mind that – at variance with pQCD –
diagrams (2a) and (3a) are computed by making use of the massive gluon propagator ∆m

7.
Due to the mass which runs inside the loops, both of these diagrams can be shown to contain
mass divergences. As discussed in Sec. 3.1.2, these divergences cannot be renormalized by
making use of the gluon field renormalization factor ZA 8. In order to eliminate the mass

6At variance with ordinary pQCD, the SME gluon polarization can develop a longitudinal component
ΠL(p

2) ̸= 0 when computed to finite order in the gluon mass counterterm. Nonetheless, we have seen that
by resumming all the crossed diagrams associated to an uncrossed SME diagram the ordinary pQCD result
is recovered. Therefore, we can assume that such a resummation has been performed and set ΠL(p

2) = 0.
7As such, diagrams (2a) and (3a) can also be found in the gluon polarization of the Curci-Ferrari model.
8That ZA is only able to absorb divergences proportional to the momentum squared p2 is clear from

Eq. (3.42).



3.1 Motivation, definition and first results 63

divergences, the crossed diagrams (2b) and (3b) must also be included in the calculation.
This is sufficient because, as we saw in Sec. 3.1.2,

Π(2b/3b)(p
2) = −m2 ∂

∂m2
Π(2a/3a)(p

2) , (3.43)

so that if the polarization term Π(2a/3a)(p
2) associated to diagram (2a/3a) contains a

divergence proportional to m2, then the sum

Π(2a/3a)(p
2) + Π(2b/3b)(p

2) =

(
1−m2 ∂

∂m2

)
Π(2a/3a)(p

2) (3.44)

does not. Finally, since diagram (3b) is a one-loop, three-vertex diagram, we also include
the only other diagram which has these properties – namely, diagram (2c).

Figure 3.7: Loop diagrams for the one-loop SME gluon polarization

An explicit calculation carried out in a general covariant gauge within the framework
of the Screened Massive Expansion of pure Yang-Mills SU(N) theory shows that, to one
loop and in dimensional regularization [Sir16b, SC18],

Πloop(p
2) =

α

3

(
13

6
− ξ

2

)
p2
(
2

ϵ
− ln

m2

µ2

)
− αp2 (F (s) + ξFξ(s) + C) . (3.45)

In the above equation, like in the last section, µ =
√
4πµe−γE/2 is the energy scale generated

by dimreg, α = 3Nαs
4π is a rescaled coupling constant and s = −p2/m2. Moreover, C is an

unessential constant which disappears after renormalization, and F (s) and Fξ(s) are the
functions defined as

F (s) =
5

8s
+

1

72
[La(s) + Lb(s) + Lc(s) +Ra(s) +Rb(s) +Rc(s)] , (3.46)

Fξ(s) =
1

4s
− 1

12

[
2s ln s− 2(1− s)(1− s3)

s3
ln(1 + s) +

3s2 − 3s+ 2

s2

]
, (3.47)

where the logarithmic functions La(s), Lb(s) and Lc(s) and the rational functions Ra(s),
Rb(s) and Rc(s) are given by

La(s) =
3s3 − 34s2 − 28s− 24

s

√
4 + s

s
ln

(√
4 + s−√

s√
4 + s+

√
s

)
,

Lb(s) =
2(1 + s)2

s3
(3s3 − 20s2 + 11s− 2) ln(1 + s) , (3.48)

Lc(s) = (2− 3s2) ln s ,
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Ra(s) = −4 + s

s
(s2 − 20s+ 12) ,

Rb(s) =
2(1 + s)2

s2
(s2 − 10s+ 1) , (3.49)

Rc(s) =
2

s2
+ 2− s2 .

In order to remove the divergence in Πloop(p
2), the gluon field renormalization constant

ZA must be chosen according to

ZA = 1 +
α

3

(
13

6
− ξ

2

)(
2

ϵ
− ln

m2

µ2

)
+ α(f0 − C) , (3.50)

where f0 is an adimensional constant that selects the renormalization scheme for the gluon
propagator. Just like in the ghost sector, the ϵ-pole in ZA is the one that appears in the
MS gluon field renormalization constant [IZ06], yet again confirming that the SME does
not modify the UV behavior of the theory.

As we did for the ghost propagator, we can rewrite the transverse gluon propagator,

∆(p2) =
−i

p2[1 + α(F (s) + ξ Fξ(s) + f0)]
, (3.51)

in such a way that the coupling constant disappears from the equation. To do so, we define
two adimensional constants F0 and Z∆ as

F0 =
1

α
+ f0 , Z∆ =

1

α
, (3.52)

in terms of which
∆(p2) =

−iZ∆

p2(F (s) + ξ Fξ(s) + F0)
. (3.53)

Again, Z∆ can be taken to be a free constant when the SME gluon propagator is compared
to one computed by different methods (see Sec. 3.1.4), whereas F0 contains information on
both the coupling constant and the renormalization scheme in which ∆(p2) is defined.

In the high- and low-momentum limits s→ ∞ and s→ 0, the functions F (s) and Fξ(s)
have the asymptotic behavior

lim
s→∞

F (s) =
17

18
+

13

18
ln s , lim

s→0
F (s) =

5

8s
, (3.54)

lim
s→∞

Fξ(s) = −1

6
ln s− 1

12
, lim

s→0
Fξ(s) =

1

4s
. (3.55)

As a consequence, in the UV, the SME gluon polarization Π(p2) reduces to

Π(p2) → α

3

(
13

6
− ξ

2

)
p2
(
2

ϵ
− ln

−p2
µ2

)
, (3.56)

which is the same expression that is obtained in standard perturbation theory [IZ06]. In
particular, just like the ghost propagator, the transverse gluon propagator tends to zero
as 1/p2 ln(−p2) in the high-energy limit (see Note 4 in Sec. 3.1.4). On the other hand, at
vanishing momentum,

∆(0) =
−iZ∆

−M2
ξ

, (3.57)
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where M2
ξ is the ξ-dependent mass scale given by

M2
ξ =

5m2

8

(
1 +

2ξ

5

)
. (3.58)

Since ∆(0) is finite, the gluon propagator is evidently massive.

In order to investigate the origin of the gluon mass in the framework of the SME, it is
interesting to analyze what kind of contributions are made to the scale M2

ξ – equivalently,
to the polarization term Πloop(0) – by the loop diagrams in Fig. 3.7. As we stated earlier,
diagram (1) is just an ordinary pQCD diagram. For this reason, we do not expect it to
generate a mass for the gluon, and indeed we find that Π(1)(p

2 = 0) = 0. On the other
hand, diagrams (2a), (2b), (3a) and (3b) are all computed by making use of the massive
propagator ∆m, and all of them contain mass divergences. As a consequence, their p2 → 0
limits are UV-divergent, and to quantify their contribution to M2

ξ it only makes sense to
consider the sums (2a+2b) and (3a+3b). This being said, we find that the mass scale M2

ξ

is distributed as follows between the one-loop diagrams (1) to (3c):

Π(1)(0) = 0 , (3.59)

Π(2a)(0) + Π(2b)(0) = −3α

4
m2 ,

Π(2c)(0) =
3α

8
m2 , (3.60)

Π(3a)(0) + Π(3b)(0) = α

(
1 +

ξ

4

)
m2 .

All of the one-loop diagrams, with the exception of the ordinary ghost loop, contribute
to the zero-momentum finiteness of the gluon propagator. Notably, the diagrams which
do not vanish in the p2 → 0 limit all involve the self-interaction of gluons, be it mediated
by 3-gluon or by 4-gluon vertices. The breakdown of the contributions to Πloop(0) clearly
illustrates that the generation of a dynamical mass for the gluons in QCD – as described
within the framework of the SME – is the consequence of the non-abelian nature of the
interaction between the gauge fields.

We remark that this would still hold true had we included the quarks in the calculation.
Indeed, the quark loop which in full QCD contributes to the gluon polarization to lowest
order in the coupling (Fig. 3.8), not containing internal gluon lines, has the same expression
both in the SME and in ordinary perturbation theory; hence it vanishes in the limit p2 → 0,
just like the ghost loop Π(1)(p

2). As an aside, we note that the vanishing of the quark loop
at p2 = 0, combined with the lack of the necessary gauge self-interaction vertices, also
implies that the SME would not predict the occurrence of DMG for the photons if it were
applied to Quantum Electrodynamics. This is further confirmation of the non-triviality of
DMG in the framework of the Screened Massive Expansion of QCD.

Figure 3.8: Quark loop (lowest-order full-QCD gluon polarization)
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Having discussed the main features of the SME gluon propagator, it is now time to
compare our results with the lattice data. In Fig. 3.9 we show the Landau gauge (ξ = 0)
Euclidean transverse gluon propagator ∆E(p

2
E), defined as9

∆E(p
2
E) = −i∆(−p2E) (p2E ≥ 0) , (3.61)

together with the lattice data of [DOS16]. The plot was obtained by fitting the free pa-
rameters F0, Z∆ and m in Eq. (3.53) over the Euclidean momentum range pE ∈ [0, 4] GeV;
this is at variance with the ghost dressing function, for which we had cut the data at
pE = 2 GeV. Like in the previous section, we did not perform a further re-normalization
of the propagator, using instead the normalization provided by the lattice. The outcome
of the fit is reported in Tab. 3.2. For future reference, we note that the fitted value of the
parameter F0 is −0.8872.

As we can see from the figure, the SME gluon propagator accurately reproduces the
lattice data down to very small momenta. As the momentum decreases, the propagator
changes concavity and saturates to a finite value ≈ 10 GeV−2, corresponding to ∆−1/2(0) ≈
0.3 GeV. The energy units are set by the gluon mass parameter, whose fitted value is found
to be m ≈ 0.654 GeV, in general agreement with values derived by other methods – see
e.g. [Fie02].
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Figure 3.9: Euclidean transverse gluon propagator in the Landau gauge (ξ = 0). Solid line:
one-loop SME result with the parameters of Tab. 3.2. Squares: lattice data from [DOS16].

F0 m (GeV) Z∆

−0.8872 0.6541 2.6308

Table 3.2: Parameters obtained by fitting the lattice data of [DOS16] for the Landau gauge
Euclidean transverse gluon propagator in the range 0-4 GeV.

9We should mention that the analytic continuation of results obtained in Minkowski space to the
Euclidean space and vice-versa is far from being as trivial as Eq. (3.61) suggests [SC22a]. This is especially
true for the gluon propagator, which – as we will see in Sec. 3.2 – possesses a pair of complex-conjugate
poles. In what follows we will disregard this issue and take Eq. (3.61) as a definition.
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The remarkable precision with which the infrared behavior of the gluon propagator
is predicted by the SME substantiates the hypothesis that a shift of the expansion point
of QCD is able both to incorporate dynamical mass generation and to avoid the low-
energy breakdown of perturbation theory, yielding results which remain valid down into
the deep IR. Nonetheless, up to this point, all of our predictions required the fitting of free
parameters which do not exist in standard perturbation theory. In the next section, we
will discuss how principles of gauge invariance can be exploited to fix some of their values
a priori, thus restoring the predictive power of the Screened Massive Expansion.

3.2 Optimization of the Screened Massive Expansion

In order to compare the one-loop ghost and gluon propagators computed in the Screened
Massive Expansion with the results of the Landau gauge lattice calculations, in Secs. 3.1.3
and 3.1.4 we performed fits which made use of a number of free parameters. For the gluon
propagator, these were the gluon mass parameter m2, the multiplicative renormalization
constant Z∆ and the additive renormalization constant F0; for the gluon dressing function,
they were the multiplicative renormalization constant ZG and the additive renormalization
constant G0. In total, these add up to one dimensionful parameter (m2) plus four adimen-
sional renormalization constants. By comparison, the ordinary perturbative expressions
contain far fewer free parameters. Indeed, going back to Eqs. (3.31) and (3.51), we see
that, in the absence of the gluon mass parameter m2, the one-loop analytical expressions
for the ghost and gluon propagators would be determined in terms of the value of the
coupling constant α (equivalently, αs) and of two additive renormalization constants, one
for each propagator. The latter are usually fixed by choosing appropriate renormalization
conditions.

Where do the additional SME free parameters come from? The gluon mass parameter,
of course, arises from the shift ∆0 → ∆m that defines the Screened Massive Expansion.
The additive renormalization constants F0 and G0, on the other hand, were introduced
with the double purpose of keeping the renormalization of the propagators fully general
and of removing the coupling constant from the expressions10, thus reducing the number
of parameters. As a by-product of this reparametrization, new multiplicative renormal-
ization constants Z∆ and ZG appeared as factors in ∆(p2) and G(p2). When comparing
the propagators with the results obtained by other methods (such as lattice QCD), the
arbitrariness in the choice of the ghost and gluon fields’ normalization, together with our
decision not to fix the renormalization conditions for the SME expressions, allows us to
interpret Z∆ and ZG as new free parameters.

As we saw in Secs. 3.1.3 and 3.1.4, when expressed in terms of m2, F0, G0, Z∆ and ZG ,
the SME ghost and gluon propagators turn out to accurately reproduce the infrared lattice
data. So accurately, in fact, that we may say that, at low energies, the parametrization
introduced in the last section effectively incorporates most of the corrections coming from
the higher orders in the perturbative series. Nonetheless, the number of free parameters
in the expressions is far too large to interpret our results as first-principles analytical
predictions. If we could somehow fix the values of the constants F0 and G0, then the
predictive power of the expansion would be restored, leaving Z∆ and ZG as the only
renormalization parameters and the gluon’s m2 as the scale that sets the physical units

10We remark that, formally, the removal of α is only possible at the one-loop order, since higher-order
corrections to the ghost self-energy/gluon polarization – being proportional to powers αk with k ≥ 2 –
would make it impossible to redefine the additive renormalization constants like we did in Eqs. (3.32) and
(3.52), while yielding α-independent propagators.
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of the expansion. In this scenario, m2 would play a role similar to that of the scale11

introduced in pQCD by the coupling constant αs(µ2).
The objective of this section is to show that the number of parameters of the SME can

indeed be reduced by resorting to principles of gauge invariance [SC18]. More precisely,
we will exploit the gauge-parameter independence of the position of the poles of the gluon
propagator in a general covariant gauge – see the discussion on the Nielsen identities in
Sec. 1.1.4 – to fix the free gluon constant F0. The latter can then be used to determine
the ghost constant G0 based on principles of minimal sensitivity. In what follows, we will
not go into the details of the determination of G0, limiting ourselves to present the main
results of [Sir19a, Sir19b] in Sec. 3.2.3.

The optimized one-loop expressions obtained by enforcing the gauge-parameter inde-
pendence of the analytical structure of the gluon propagator will be shown to reproduce
the infrared lattice data just as well as the fits of Secs. 3.1.3 and 3.1.4. However, at variance
with the fits, this will be achieved from first principles, with no external inputs other than
a required energy scale in the form of the gluon mass parameter m2.

3.2.1 The gluon poles and the Nielsen identities in the context of the
Screened Massive Expansion

By making use of the Nielsen identities, in Sec. 1.1.4 we showed that the position p20 of the
poles of the transverse gluon propagator, defined as the solution to the equation

∆−1(p20, ξ) = 0 , (3.62)

does not depend on the gauge parameter ξ. While this is a trivial property for massless
propagators, since in that case p20 = 0 for any ξ, if the gluon develops a mass its poles
are shifted from the origin and, in principle, can be found at any non-zero value of the
complex-p2 plane; therefore, the gauge-parameter independence of the poles acquires a new
significance in the presence of dynamical mass generation. Gauge-independent gluon poles
are likely to play an important role in the evaluation of gauge-invariant physical quantities,
which can be directly measured in the experiments12.

From an analytical perspective, the only constraint that the gluon poles must satisfy
is that they either be real, or appear in complex-conjugate (c.c.) pairs. This is a direct
consequence of the identity

∆(p2) = ∆(p2) , (3.63)

where the overline denotes complex-conjugation, which holds for ∆(p2) since the latter is
real for p2 ∈ R, p2 ≤ 0 and analytic away from its singularities. From Eq. (3.63) it follows
that if ∆−1(p20) = 0, then also ∆−1(p20) = 0, implying that p20 and p20 are both poles of the
propagator.

The existence of c.c. poles in the propagators of interacting quantum fields has been
linked in the literature to the phenomenon of confinement. This is due to the fact that,
in the presence of c.c. poles, the Källén-Lehman spectral representation which is derived
by ordinary quantum-field-theoretical methods for the propagators of physical particles is
invalidated [Sir17b]: first of all, the spectral representation acquires an anomalous rational
part which describes the contribution coming from the c.c. poles [Sir17b, SC18]; addition-
ally, the spectral function associated to the propagator is negative at both low and high

11That is, either the renormalization scale µ itself or the value of the QCD scale ΛQCD, ΛQCD =
µ exp(−8π2/β0g

2(µ)) – see Sec. 1.2.3.
12We should remark, however, that the Nielsen identities do not guarantee that the poles of the propaga-

tor do not depend on the gauge; technically speaking, they only prove that their position does not depend
on the gauge parameter in a general covariant gauge.
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momenta [SC18, HK19], in violation of the positivity constraints which hold for physical
particles. From a dynamical perspective, the imaginary part of the c.c. poles causes an ex-
ponential damping of the coordinate-space Minkowski propagator at large times |t| → ∞,
a symptom that the degrees of freedom described by the propagator are removed from the
asymptotic states of the theory [SC22a].

What does the Screened Massive Expansion tell us about analytic structure of the
transverse gluon propagator? If we take the parameters in Tab. 3.2 as an example, we find
that – as predicted by the Gribov-Zwanziger and Refined Gribov-Zwanziger approaches
(Sec. 2.3) – the Landau gauge (ξ = 0) gluon propagator computed in the SME indeed
possesses a pair of complex conjugate poles at

p20 = (0.4487± 1.0209 i)m2 , (3.64)

which, with m = 0.654 GeV, correspond to

p0 = (±0.5784± 0.3776 i)GeV , (3.65)

the four ± signs being independent from each other. More generally, since

∆−1(p2, ξ) = iZ−1
∆ p2 J−1(−p2/m2, ξ) , (3.66)

where the inverse dressing function J−1(s, ξ) reads

J−1(s, ξ) = F (s) + ξ Fξ(s) + F0 (3.67)

and is singular at s = 0, the gluon poles are given by the zeros of J−1(−p2/m2, ξ),

J−1(−p20/m2, ξ) = 0 , (3.68)

the latter being equivalent to the pair of coupled equations

Re
{
F (−p20/m2) + ξ Fξ(−p20/m2)

}
+ F0 = 0 , Im

{
F (−p20/m2) + ξ Fξ(−p20/m2)

}
= 0 .

(3.69)
Observe that the imaginary part of J−1(s, ξ) does not depend on the additive renormal-
ization constant F0, since the latter is a real quantity; moreover, Im{J−1(s, ξ)} does not
vanish for arbitrary s, despite J(s, ξ) being a real function for s ∈ R, as the domain of p2

– equivalently, of s – is the whole complex plane, p2 ∈ C.
In order to solve Eqs. (3.69), it is understood that one must first fix a gauge ξ; the

solution p20 will then be a function of the parameters m2, F0 and ξ:

p20 = p20(m
2, F0, ξ) . (3.70)

As ξ varies, we are actually allowed to change the values of both F0 and m2. Indeed, F0 is
a renormalization constant for the gluon propagator; since the latter is gauge dependent,
F0 also generally depends on ξ. m2, on the other hand, is a mass parameter which is
introduced in the Faddeev-Popov action after fixing the gauge of the QCD Lagrangian.
As such, there is no reason to force it to be a gauge-invariant parameter. With F0 = F0(ξ)
and m2 = m2(ξ), the solutions of Eqs. (3.69) take the form

p20(ξ) = p20(m
2(ξ), F0(ξ), ξ) . (3.71)

Are there solutions of Eqs. (3.69) such that dp20/dξ ̸= 0? The answer is yes. For general
values of the functions m2(ξ) and F0(ξ), the gluon propagator computed in the SME has
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poles which depend on the gauge parameter, in violation of the Nielsen identities. This
happens because the massive shift that defines the SME breaks BRST symmetry at any
finite order in perturbation theory, unless all the gluon mass counterterms are resummed.
As a result, the Nielsen identities are not automatically satisfied [SC22b], and the position
of the gluon poles can depend on ξ.

Nonetheless, since the shift does not change the total Faddeev-Popov Lagrangian, we
should expect the gauge-parameter independence of the gluon poles to be recovered also in
the framework of the SME. And indeed, the freedom in the choice of the functions F0(ξ)
and m2(ξ) in Eqs. (3.69) and (3.71) enables us to enforce the ξ-independence of the poles.
This can be done as follows. Suppose that we know that, in a gauge ξ1, the exact gluon
propagator has a pole at p20 = p20(ξ1). The Nielsen identities then tell us that in a gauge
ξ2 the propagator will have a pole at the same position p20(ξ2) = p20(ξ1). In order for this
to be true at one loop in the SME, the values of the parameters m2(ξ2) and F0(ξ2) need
to be chosen so that

p20(m
2(ξ2), F0(ξ2), ξ2) = p20(m

2(ξ1), F0(ξ1), ξ1) , (3.72)

where m2(ξ1) and F0(ξ1) are the parameters by which p20 = p20(ξ1) in the gauge ξ1. In
terms of Eq. (3.69), this means that the value of the gluon mass parameter m2(ξ2) must
be such that

Im
{
F (−p20/m2(ξ2)) + ξ2 Fξ(−p20/m2(ξ2))

}
= 0 . (3.73)

If this equation has a solution, then – again by Eq. (3.69) – F0(ξ2) will be given by

F0(ξ2) = −Re
{
F (−p20/m2(ξ2)) + ξ2 Fξ(−p20/m2(ξ2))

}
. (3.74)

The requirement that the gluon poles be gauge-parameter independent allows us to fix
the value of F0(ξ) and m2(ξ) in any covariant gauge ξ starting from their values F0(ξ0)
and m2(ξ0) in an initial gauge ξ0. To do so, one first computes the position of the pole
p20 = p20(ξ0) in the gauge ξ0 by solving the equation J−1(−p20/m2(ξ0), ξ0) = 0 for p20, and
then uses the steps described above to obtain F0(ξ) and m2(ξ).

As an example of the application of this method, in Fig. 3.10 we show the ratio
m2(ξ)/m2(0) and the function F0(ξ) computed from the Landau gauge (ξ = 0) lattice
fit values of Tab. 3.2, Sec. 3.1.4 – namely, F0(0) = −0.8872 and m(0) = 0.6541 GeV. As we
can see, the gluon mass parameter decreases with the gauge, whereas the additive renor-
malization constant F0(ξ) is a non-monotonic function of ξ. So long as m2(ξ) and F0(ξ) are
chosen like in the figure, the gluon poles computed in an arbitrary covariant gauge remain
fixed at their ξ = 0 value, p0 = (±0.5784 ± 0.3776 i)GeV. We remark that Eqs. (3.73)
and (3.74) are automatically satisfied by p20 if they are by p20, explaining how invariance is
achieved for both the c.c. gluon poles by a single choice of the functions m2(ξ) and F0(ξ).

Interestingly, the method we just described for determining m2(ξ) and F0(ξ) only works
if the poles of the gluon propagator have a non-zero imaginary part (and thus appear in c.c.
pairs), for otherwise Eq. (3.73) would be trivially solved by an arbitrary function m2(ξ)
and we would be left with an infinite number of corresponding F0(ξ)’s by Eq. (3.74). On
the other hand, if the propagator has more than one pair of c.c. poles, then it may be
impossible to enforce the gauge-parameter independence of all the poles by making use of
unique functions m2(ξ) and F0(ξ). It is remarkable that the single pair of c.c. poles found
by fitting the lattice data prevents these issues from arising.

Once the gluon mass parameter and additive renormalization constant are fixed in an
arbitrary covariant gauge by enforcing the gauge-parameter independence of the position
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of the poles, the SME expression for the gluon propagator is left to depend – modulo mul-
tiplicative renormalization – on just two real numbers: m2(ξ0) and F0(ξ0), both evaluated
at an initial gauge ξ0. By pushing forward with requirements of gauge invariance, it can
be shown that the constant F0(ξ0) also can be fixed from first principles, thus completing
the reduction of the number of free parameters needed to restore the predictivity of the
SME in the gluon sector. This will be the subject of the next section.
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Figure 3.10: Ratio m2(ξ)/m2(0) (left) and function F0(ξ) (right) computed from the Lan-
dau gauge (ξ = 0) lattice fit values of Tab. 3.2 using Eqs. (3.73) and (3.74).

3.2.2 The phases of the residues of the gluon propagator: restoring the
predictivity of the Screened Massive Expansion in the gluon sector

While investigating the properties of the SME gluon propagator evaluated on the fit pa-
rameters of Tab. 3.2, an unexpected discovery was made regarding the behavior of the
residues at its poles: if the propagator is extended to an arbitrary covariant gauge by
enforcing the gauge-parameter independence of the poles as described in Sec. 3.2.1, then
the phases of the its residues depend on the gauge parameter ξ so slightly that they may
also be regarded to be invariant.

In more detail, the functions m2(ξ) and F0(ξ) were derived by making use of Eqs. (3.73)
and (3.74) with the Landau gauge parameters of Tab. 3.2 as an input (see Fig. 3.10). The
residue R(ξ) of the gluon propagator at p20 = (0.4487+1.0209 i)m2(0), defined in terms of
the Euclidean propagator as

R(ξ) = lim
p2E→−p20

(p2E + p20)∆E(p
2
E , ξ) = |R(ξ)|eiθ(ξ) , (3.75)

was then calculated as a function of the gauge parameter ξ. Over the range ξ ∈ [0, 1], the
phase θ(ξ) was found to attain values

θ(ξ) = 1.262+0.09%
−0.24% , (3.76)

where the quoted value is the Landau gauge phase, θ(0) = 1.262, whereas the maximum
and minimum values were found at ξ ≈ 0.9 and ξ ≈ 0.3, respectively. In modulus, these
are equal to θ(0) to within less than 2.5 parts in 1000. For reference, the function θ(ξ)
is shown on an enlarged scale in Fig. 3.11. Due to the analytical properties of the gluon



72 3 The Screened Massive Expansion

propagator, these results also hold – with obvious modifications – for the conjugated pole
p20 = (0.4487− 1.0209 i)m2(0), which has residue R(ξ) and phase −θ(ξ).

If the gauge-parameter independence of the phases of gluon residues were an exact
property of the covariant gauges, this finding could hint to some degree of physical sig-
nificance for the angle θ. Such a notion is strengthened by the observation that θ does
not depend on the renormalization of the propagator. Indeed, while the residue R(ξ) can
always be redefined by multiplying the propagator ∆(p2, ξ) by a (generally ξ-dependent)
renormalization factor Z(ξ), so that the absolute value |R(ξ)| is both gauge and renor-
malization dependent, the same is not true for the phase θ(ξ): given that Z(ξ) must be
chosen real, the renormalization of the propagator cannot change the phase θ, nor its gauge
dependence.

 1.25

 1.255

 1.26

 1.265

 1.27

 1.275

 0  0.2  0.4  0.6  0.8  1
-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

θ
(ξ

)

∆
θ
(ξ

)

ξ

Figure 3.11: Phase of the residue θ(ξ) (left axis) and phase difference ∆θ(ξ) = θ(ξ) −
θ(0) (right axis) as functions of the gauge ξ computed by enforcing the gauge-parameter
independence of the gluon poles obtained from the fitted Landau gauge parameters of
Tab. 3.2. θ(0) ≈ 1.2617.

Interestingly, in the context of the Screened Massive Expansion, the assumption that
θ(ξ) be exactly gauge-parameter independent provides us with a criterion for fixing the
value of the renormalization constant F0(ξ0) at some initial gauge ξ0 [SC18]. The idea that
underlies this kind of optimization is that, if the phases of the residues of the exact gluon
propagator do not depend on ξ, then the best approximation of the propagator is the one
for which θ(ξ) varies the least with the gauge parameter. That this can be achieved by an
appropriate choice of F0(ξ0) can be shown as follows. Going back to the definition of the
residue – Eq. (3.75) –, we see that

R(ξ) = lim
p2E→−p20

(p2E + p20)∆E(p
2
E , ξ) = (3.77)

= lim
p2E→−p20

p2E + p20
∆−1
E (p2E , ξ)−∆−1

E (−p20, ξ)
=

(
∂∆−1

E

∂p2E

∣∣∣∣
p2E=−p20

)−1

.

In terms of the inverse dressing function J−1(s),

∆−1
E (p2E , ξ) = Z−1

∆ p2E J
−1(p2E/m

2(ξ)) , J−1(−p20/m2(ξ)) = 0 , (3.78)
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Eq. (3.77) reads

R(ξ) =
Z∆m

2(ξ)

−p20


∂J

−1

∂s

∣∣∣∣
s=− p20

m2(ξ)




−1

. (3.79)

By denoting the adimensional ratios m2(ξ)/m2(ξ0) and −p20/m2(ξ0) respectively with a(ξ)
and z0, the residue can be put in the form

R(ξ) =
Z∆ a(ξ)

z0


∂J

−1

∂s

∣∣∣∣
s=

z0
a(ξ)




−1

. (3.80)

In particular, R(ξ) depends on Z∆, z0 and a(ξ), and also on F0(ξ) and ξ through J−1(s).
Now, at ξ = ξ0, as detailed in Sec. 3.2.1, the position of the poles is found by solving

the equation
J−1(−p20/m2(ξ0)) = 0 ⇐⇒ J−1(z0) = 0 . (3.81)

Therefore, one does not need the mass parameter m2(ξ0) to compute z0: the adimensional
pole z0 only depends on F0(ξ0) and on the gauge ξ0 itself,

z0 = z0(F0(ξ0), ξ0) . (3.82)

Moreover, in a general gauge ξ ̸= ξ0, to find m2(ξ) and F0(ξ) one needs to solve the
equation

J−1(−p20/m2(ξ)) = 0 ⇐⇒ J−1(z0/a(ξ)) = 0 , (3.83)

i.e.
F (z0/a(ξ)) + ξ Fξ(z0/a(ξ)) + F0(ξ) = 0 . (3.84)

The imaginary part of Eq. (3.84) allows us to determine a(ξ),

Im {F (z0/a(ξ)) + ξ Fξ(z0/a(ξ))} = 0 , (3.85)

which therefore only depends on the gauge ξ and on the parameters F0(ξ0), ξ0 through z0,

a(ξ) = a(ξ;F0(ξ0), ξ0) . (3.86)

The real part of Eq. (3.84), on the other hand, allows us to determine F0(ξ),

F0(ξ) = −Re {F (z0/a(ξ)) + ξ Fξ(z0/a(ξ))} , (3.87)

which therefore also only depends on F0(ξ0) and ξ0:

F0(ξ) = F0(ξ;F0(ξ0), ξ0) . (3.88)

In other words, a(ξ) and F0(ξ), as functions of ξ, are determined by the single constant
F0(ξ0), and not by the mass scale m2(ξ0). This could have been anticipated by observing
that a(ξ) and F0(ξ) are adimensional parameters, while m2(ξ0) is a dimensionful scale.

Since z0, a(ξ) and F0(ξ) are all functions of F0(ξ0) and ξ0 alone, then the residue R(ξ)
also is:

R(ξ) = R(ξ;F0(ξ0), ξ0) (3.89)

(here we have suppressed the dependence of R(ξ) on Z∆, since the latter does not affect
the value of the phase θ(ξ)). In particular, if the gauge-parameter independence of the
position of the gluon poles is enforced by the method of Sec. 3.2.1, then phases of the
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residues in any covariant gauge are completely determined by the value of the additive
renormalization constant F0(ξ0) at the gauge ξ0. In what follows, we will take ξ0 to be
equal to the Landau gauge, ξ0 = 0.
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In Fig. 3.12 we show the phase differences ∆θ(ξ) = θ(ξ) − θ(0) of the residues at the
gluon pole p20 as functions of the gauge parameter ξ for different values of the additive
renormalization constant F0(0) at ξ = 0. We remark that, as F0(0) varies, the position of
the pole p20 also changes due to Eq. (3.81); in Fig. 3.13 we display the adimensional poles
p20/m

2(0) for different values of F0(0), with the understanding that the corresponding p20’s
are also poles of the transverse gluon propagator.

As we can see from Fig. 3.12, the deviation of the phase θ(ξ) from its Landau gauge value
θ(0) is approximately zero only in a neighborhood of the fitted parameter F0(0) ≈ −0.9.
This indicates that, analytically, the near-gauge-parameter independence of the phase is
a non-trivial feature of the one-loop SME approximation which is realized only when the
SME propagator accurately reproduces the lattice result. It thus makes sense to seek a
value of F0(0) that minimizes the dependence of θ(ξ) on the gauge parameter.

In order to determine the optimal value for the additive renormalization constant F0(0),
in [SC18] the maximum value of the difference |∆θ(ξ)| was minimized over the range
ξ ∈ [0, 1.2]. The resulting F0(0) was found to be equal to

F0(0) = −0.876 , (3.90)
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yielding the adimensional poles

p20 = (0.4575± 1.0130 i)m2(0) . (3.91)

The functions m2(ξ) and F0(ξ) which enforce the gauge-parameter independence of the
poles at the given value of F0(0) can be approximated by the polynomials

m2(ξ) ≈
(
1− 0.39997 ξ + 0.064141 ξ2

)
m2(0) (3.92)

and
F0(ξ) ≈ −0.8759− 0.01260 ξ + 0.009536 ξ2 + 0.009012 ξ3 , (3.93)

shown in Figs. 3.14 and 3.15 together with the corresponding optimized curves. These
approximations are quite accurate up to and beyond the Feynman gauge (ξ = 1).

The phase θ(ξ) corresponding to F0(0) = −0.876 – highlighted in red in Fig. 3.12 –
was found to be

θ(ξ) = 1.262+0.22%
−0.22% , (3.94)

the quoted value being the Landau gauge phase, θ(0) = 1.262, whereas the maximum and
minimum deviations ∆θ(ξ) = ±0.22% θ(0) were found at ξ ≈ 0.9 and ξ ≈ 0.2, respectively,
with maxξ∈[0,1.2] {|∆θ(ξ)|} being less than 2.5 parts in 1000. A summary of the optimized
results is reported in Tab. 3.3.
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F0(0) = −0.876
p20

m2(0)
= 0.4575± 1.0130 i

p0
m(0)

= ±0.8857± 0.5718 i θ = ± 1.262

Table 3.3: Position and phases of the residues of the gluon poles for F0(0) = −0.876.
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It is apparent that the optimization procedure described in this section yields parame-
ters which lie very close to those obtained by fitting the lattice data: the relative difference
between the optimized value of F0(0) and the one provided by the fit is around 1%, whereas
the phases of the residues provided by the two approaches are equal up to the third decimal
digit. As a result, as we will explicitly see in the next section, the optimized Euclidean
Landau gauge gluon propagator turns out to be undistinguishable from that which is ob-
tained by fitting F0(0). This gives us confidence that the assumption that dθ/dξ = 0
yields sensible results regardless of the specific criterion which is chosen to minimize the
dependence of θ(ξ) on the gauge parameter ξ.

3.2.3 The optimized gluon and ghost propagators

Within the Screened Massive Expansion, by enforcing the gauge-parameter independence
of the poles and phases of the residues as laid out in the previous sections, the gluon
propagator can be computed from first principles in any covariant gauge. The optimized
SME propagator,

∆E(p
2
E , ξ) =

Z∆(ξ)

p2E [F (s/a(ξ)) + ξ Fξ(s/a(ξ)) + F0(ξ)]
, (3.95)

where s = p2E/m
2(0) and a(ξ) = m2(ξ)/m2(0), is expressed in terms of the known functions

a(ξ) and F0(ξ) – approximated by Eqs. (3.92) and (3.93) in Sec. 3.2.2 –, of a multiplicative
renormalization constant Z∆(ξ) and of the Landau gauge gluon mass parameter m2(0).

Since pure Yang-Mills theory is scale free, the value of the gluon mass parameter m2(0)
cannot be predicted from first principles, and must instead be fixed by a comparison with
the experiments13. In this respect, its status is similar to that of the QCD scale ΛQCD
of ordinary perturbation theory (Sec. 1.2.3): it is m2(0) that sets the energy units of the
approximation. The value of Z∆(ξ), on the other hand, is determined by the normalization
conditions which are chosen for the propagator.

In what follows we will compare our optimized results with the lattice data. Unfor-
tunately, most of the lattice calculations of the QCD propagators are carried out in the
Landau gauge, due to numerical difficulties which arise on the lattice when trying to en-
force the gauge-fixing conditions for ξ ̸= 0. Therefore, we shall limit ourselves with making
our main comparisons with the Landau gauge lattice data, using Ref. [BBC+15] as the
only available benchmark for the gluon propagator in covariant gauges ξ ̸= 0.

In Fig. 3.16 the Landau gauge Euclidean transverse gluon propagators computed in the
SME are shown together with the lattice data of [DOS16]. The solid black curve is the full
fit already presented in Sec. 3.1.4 (see Tab. 3.2 for the fit parameters). The dashed green
curve, on the other hand, is obtained by first fixing F0 = −0.876, as determined via the
optimization procedure discussed in Secs. 3.2.1 and 3.2.2, and then fitting the gluon mass
parameter m2(0) and the multiplicative renormalization constant Z∆(0). The outcome of
the fit is reported in Tab. 3.4.

As we can see from the figure, the optimized and the fully-fitted propagators cannot
be distinguished to the naked eye. The value of the gluon mass parameter obtained for
the optimized curve, m = 0.6557 GeV, is equal to the one obtained via the full fit (m =
0.6541 GeV) to within less than 1%; the same holds true for the multiplicative constants
Z∆. This happens because, as we noted in the last section, the optimized and the fitted
Landau gauge additive renormalization constants F0 are extremely close to each other. In

13Or with the lattice data, given that pure Yang-Mills theory is not realized in the physical world.
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Tab. 3.5 we report the dimensionful position of the gluon poles, computed from Tab. 3.3
by making use of the fitted value of m2(0) at F0(0) = −0.876.

The precision with which the optimized propagator reproduces the infrared lattice data
substantiates the hypothesis that an accurate description of the low-energy dynamics of the
gluon can be obtained from first principles by enforcing the gauge-parameter independence
of the poles and of the phases of the residues.
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Figure 3.16: Euclidean transverse gluon propagator in the Landau gauge (ξ = 0). Solid
black curve: SME with F0 fitted from the lattice data (Tab. 3.2). Dashed green curve:
SME with F0 optimized by gauge invariance (F0 = −0.876, Tab. 3.4). Squares: lattice
data from [DOS16].

F0 m (GeV) Z∆

−0.876 0.6557 2.6481

Table 3.4: Parameters obtained by fitting the lattice data of [DOS16] for the Landau gauge
Euclidean transverse gluon propagator in the range 0-4 GeV at fixed F0 = −0.876.

FL0 = −0.876 p20 = (0.1969± 0.4359 i) GeV2 p0 = (±0.5810± 0.3751 i) GeV

Table 3.5: Dimensionful position of the gluon poles for F0(0) = −0.876 and m(0) =
0.6557 GeV. The latter is obtained by fitting the optimized gluon propagator to the lattice
data of Ref. [DOS16].
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For future reference, we mention that in the Landau gauge the gluon propagator is well
approximated by multiplying the principal part ∆(PP)

E (p2E) of the optimized propagator by
a constant ≈ 1. ∆

(PP)
E (p2E , ξ) itself, in a general covariant gauge, is defined as

∆
(PP)
E (p2E , ξ) =

R(ξ)

p2E + p20
+

R(ξ)

p2E + p20
. (3.96)

In the Landau gauge, with Z∆ = 2.6481 obtained by the fit, |R| is found to be equal to

|R| = 0.947Z∆ = 2.508 . (3.97)

The principal part ∆(PP)
E (p2E) of the propagator (solid red curve) is displayed together with

the Landau gauge optimized propagator (dashed green curve) in Fig. 3.17. As is clear from
the figure, ∆

(PP)
E (p2E) makes up for the majority of the optimized propagator ∆E(p

2
E).

Moreover, when normalized by a factor of 0.945 (solid blue curve), the principal part
provides a quite accurate approximation of the full optimized propagator up to momenta
≈ 4 GeV.
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Figure 3.17: Euclidean transverse gluon propagator in the Landau gauge (ξ = 0). Dashed
green curve: optimized propagator, with parameters given by Tab. 3.4. Solid red curve:
principal part of the optimized propagator, with poles and residues given by Tabs. 3.3
and 3.5, |R| = 0.947Z∆. Solid blue curve: principal part of the optimized propagator,
multiplied by a factor of 0.945. m = 0.6557 GeV.

Outside of the Landau gauge, the optimized gluon propagator behaves as displayed in
Fig. 3.18, where the lattice data for ξ = 0, 0.5 were extracted from Ref. [BBC+15]. In
order to compare the propagator with the data, the former was renormalized in the MOM
scheme,

∆E(µ
2, ξ) =

1

µ2
(3.98)

at µ = 4.317 GeV, as reported in [BBC+15]. The mass parameter m(0) = 0.6557 GeV
fitted from the lattice data of [DOS16] was used to obtain the curves shown in the figure.
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Figure 3.18: Optimized SME Euclidean transverse gluon propagator computed in different
gauges, renormalized at µ = 4.317 GeV. Lattice data from [BBC+15]. m(0) = 0.6557 GeV.
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Figure 3.19: Ratio between the optimized SME Euclidean gluon propagators computed in
a general covariant gauge and in the Landau gauge (ξ = 0), renormalized at µ = 4.317
GeV. Lattice data from [BBC+15].

As the gauge increases, the lattice propagator remains massive and slightly decreases
in value at fixed momentum. The optimized SME propagator reproduces this behavior,
showing a good qualitative agreement with the lattice. When the ratios between the ξ ̸= 0
propagators and their Landau gauge counterpart are compared (Fig. 3.19), no definite
conclusion can be reached regarding the quantitative agreement between the analytical
predictions and the lattice results due to the errors which affect the lattice data.
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In the introduction to Sec. 3.2, we anticipated that the ghost additive renormalization
constant G0 that appears in the expression

G(p2) = iZG
p2 (G(s)− ξ log(s)/12 +G0)

(3.99)

for the SME ghost propagator can be determined from the knowledge of the gluon constant
F0 by making use of principles of minimal sensitivity. This is possible because F0 and G0

are not actually fully independent parameters, being defined as

F0 =
1

α
+ f0 , (3.100)

G0 =
1

α
+ g0

(see Secs. 3.1.3 and 3.1.4), where f0 and g0 are adimensional constants which are fixed once
renormalization conditions are imposed on the gluon and ghost propagator, respectively.
As long as the renormalization conditions are left arbitrary, as we did in this chapter, the
values of F0 and G0 can be chosen independent of each other. If, on the other hand, the
renormalization conditions are specified, then the knowledge of F0, together with that of
f0 and g0, are sufficient to compute G0.

A straightforward calculation allows us to make the dependence of G0 and F0 on the
renormalization conditions and on α explicit. From the definition of the one-loop Euclidean
gluon and ghost SME propagators ∆E(p

2
E) and GE(p2E), we find that14

G0 =
1

α(µ)

(
µ2 GE(µ2)

)−1 −G(µ2/m2) +
ξ

12
ln(µ2/m2) , (3.101)

F0 =
1

α(µ)

(
µ2∆E(µ

2)
)−1 − F (µ2/m2)− ξ Fξ(µ

2/m2) , (3.102)

where µ is the renormalization scale for the propagators in a MOM-like renormalization
scheme. In particular, since by Eq. (3.102) the coupling is given in terms of the gluon
functions as

1

α(µ)
= µ2∆E(µ

2)
(
F (µ2/m2) + ξ Fξ(µ

2/m2) + F0

)
, (3.103)

the ghost additive renormalization constant can be computed as

G0 =
∆E(µ

2)

GE(µ2)
(
F (µ2/m2) + ξ Fξ(µ

2/m2) + F0

)
−G(µ2/m2) +

ξ

12
ln(µ2/m2) . (3.104)

In the above expression, the parameters m2 = m2(ξ) and F0 = F0(ξ) are known thanks
to the optimization procedure presented in the previous sections. Therefore, the only
unknowns are the gluon and the ghost propagators ∆E(µ

2) and GE(µ2) at the scale µ, and
the scale µ itself. These are determined by the renormalization conditions.

In Refs. [Sir19a, Sir19b], the propagators were defined in the so-called screened MOM
(SMOM) scheme, by which15

∆E(µ
2;µ2) =

1

µ2 +m2
, GE(µ2;µ2) =

1

µ2
. (3.105)

14For simplicity, in the following expressions we omit the explicit dependence of G0, F0, m2 and the
propagators on the gauge parameter ξ.

15The renormalization conditions reported in Eq. (3.105) are the same as those of the Curci-Ferrari’s
IRS scheme – Sec. 2.4.1 –, the only difference being the independence of the gluon mass parameter m2

from the renormalization scale.
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In the SMOM scheme, the ghost constant G0 is explicitly given by

G0 =

(
1 +

m2

µ2

)−1 (
F (µ2/m2) + ξ Fξ(µ

2/m2) + F0

)
−G(µ2/m2) +

ξ

12
ln(µ2/m2) .

(3.106)
The optimal renormalization scale µ was then determined by requiring that G0 be scale
independent,

∂G0

∂µ
= 0 . (3.107)

Such a requirement is made necessary by the observation, made in [Sir19a], that a µ-
dependent G0 would spoil the multiplicative renormalizability of the theory if F0 is taken
to be scale independent, as is implied by the optimization procedure of Secs. 3.2.1 and
3.2.2. The principle of minimal sensitivity on the scale µ applied to G0 provides us with a
single optimal value of G0. In the Landau gauge, this was found to be equal to

G0 = 0.1452 , (3.108)

corresponding to µ = µ⋆ = 1.004m(0) in Eq. (3.107). Like for the gluon, the additive
renormalization constant of the optimized ghost propagator is equal to the corresponding
fitted value (G0 = 0.1464, Tab. 3.6) to within less than 1%.

m (GeV) G0 ZG

0.6557 0.1452 1.0959

Table 3.6: Parameter ZG obtained by fitting the lattice data of [DOS16] for the Landau
gauge Euclidean ghost propagator in the range 0-2 GeV at fixed m = 0.6557 GeV and
G0 = 0.1452.
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Figure 3.20: Euclidean ghost dressing function in the Landau gauge (ξ = 0). Solid black
curve: SME with G0 fitted from the lattice data (Tab. 3.1). Dashed green curve: SME
with G0 optimized by gauge invariance and minimal sensitivity on the renormalization
scale (G0 = 0.1452, Tab. 3.6). Squares: lattice data from [DOS16]. m = 0.6557 GeV.
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In Fig. 3.20 we show the Landau gauge Euclidean ghost dressing functions computed in
the SME together with the lattice data of [DOS16]. The solid black curve is the fully-fitted
dressing function already presented in Sec. 3.1.3 (parameters in Tab. 3.1). The dashed
green curve, on the other hand, was obtained by fitting the multiplicative renormalization
constant ZG alone, as reported in Tab. 3.6, using m = 0.6557 GeV and G0 = 0.1452.

As a consequence of the constants G0 obtained by the two approaches being very close
to each other, the optimized Landau gauge ghost dressing function quantitatively matches
the infrared lattice data just as well as its fully-fitted counterpart. This result validates
the optimization procedure laid out for the ghost propagator, based on principles of gauge
invariance and of minimal sensitivity. A thorough discussion of the gauge dependence of
the optimized ghost propagator can be found in [Sir19b] together with a comparison with
the lattice data of [CDM+18].

In the present section we have described optimization procedures that enable us to
compute the gluon and the ghost propagators in the framework of the Screened Massive
Expansion from first principles, using the gluon mass parameter m2(0) and two multi-
plicative renormalization constants – one for each propagator – as the only external inputs
for the calculations. We have shown that enforcing the gauge-parameter independence of
the poles and of the phases of the residues of the gluon propagator is sufficient to reduce
the number of free parameters in the expressions, fixing the value of the gluon additive
renormalization constant F0(ξ) and of the adimensional ratio m2(ξ)/m2(0) in any gauge.
Starting from the optimized F0, we were able to determine an optimal value for the ghost
additive renormalization constant G0 by minimal sensitivity, which in turn provided us
with an optimized expression for the ghost propagator. When compared with the lat-
tice data in the Landau gauge, the optimized gluon and ghost propagators were found to
accurately reproduce the infrared dynamics of pure Yang-Mills theory.

In order to test the validity of the Screened Massive Expansion over the full dynamical
range of momenta, encompassing both the IR and the UV regimes, Renormalization Group
methods (Sec. 1.2.3) need to be employed. The Renormalization Group analysis of the
Screened Massive Expansion is the subject of the next section. Studying the dependence
of the strong coupling constant αs and of the propagators on the renormalization scale will
allow us to address the topic of the breakdown of perturbation theory in the low-energy
limit of QCD.

3.3 Renormalization Group analysis of the Screened Massive
Expansion in the Landau gauge

As discussed in Sec. 1.2.3, the presence of large logs in the perturbative series of the Green
functions of a quantum field theory spoils the validity of the fixed-scale approximations at
energies much different from the renormalization scale. The Screened Massive Expansion
is not immune from this issue, as is clearly illustrated by the fact that, in Secs. 3.1.3,
3.1.4 and 3.2.3, we were able to compare the SME results with the lattice data only up to
momenta of 2 GeV (for the ghost dressing function) or 4 GeV (for the gluon propagator).

While the renormalization scale is not explicitly present in the expressions for the
SME propagators, we note that – either by fitting the lattice data or by optimization – our
determination of the free parameters of the expansion was essentially made at low energies,
effectively giving them the status of infrared parameters. Even the optimization of F0 and
of G0 was more or less implicitly carried out in the low-energy regime: F0 was determined
by enforcing the gauge-parameter independence of the gluon poles, whose position is found
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at a scale set by the gluon mass parameter m2(0), whereas G0 was fixed by minimizing
its value with respect to a renormalization scale µ, yielding µ = µ⋆ = 1.004m(0) in the
Landau gauge. From an analytical perspective, the SME propagators contain logarithms
of the form ln(−p2/m2) 16, implying that, as far as the large logs are concerned, the SME
is affected by the same problems as ordinary perturbation theory when the momenta are
not of the order of the gluon mass parameter m2.

In this section, we wish to extend the validity of the SME propagators to scales larger
than the gluon mass parameter. Achieving this goal requires us to make use of Renormal-
ization Group methods (Sec. 1.2.3), by which the coupling constant and the propagators
are treated as functions of the renormalization scale. In order to perform the RG analysis
of the SME, we will need to go back to the expressions (3.31) and (3.51) for the ghost and
gluon propagators, in which the coupling constant appears explicitly. Moreover, we will
need to fix appropriate renormalization conditions for the propagators, instead of leaving
them arbitrary as we did up to this point. The analysis will be carried out in the Landau
gauge, where the calculations are especially simple.

By integrating the RG equations, we will obtain expressions that – at least in princi-
ple – remain valid over a wide range of momenta. In particular, we will see that the strong
running coupling αs(µ2) computed in the Screened Massive Expansion does not develop
Landau poles, provided that the value of the coupling αs(µ20) at the initial renormalization
scale µ0 is sufficiently small. This is a crucial feature of the SME: on the one hand, it con-
firms that the massive shift that defines the expansion yields a self-consistent perturbative
series; on the other hand, it proves that the infrared Landau pole that affects the running
coupling of ordinary pQCD is just an artifact of the choice of a massless expansion point.

The one-loop RG-improved ghost and gluon propagators will be shown to be in good
agreement with the lattice data from momenta of the order of 10 GeV down to p ≈ m.
Below this threshold, the coupling becomes quite too large for the one-loop approximation
to provide sufficiently accurate results: in the deep infrared regime, the fixed-scale results
of Sec. 3.2.3 still represent our best estimate for the behavior of the propagators. The
overlap between the RG-improved and the fixed-scale propagators at momenta p ≈ m will
be exploited in Sec. 3.3.3 to compute an optimal value of the coupling constant αs(µ20) at
the initial renormalization scale µ0 as a function of the gluon mass parameter m2. This
will again leave us with expressions whose only free parameter is m2, playing the same role
as the QCD scale ΛQCD in ordinary perturbation theory.

3.3.1 MOM-Taylor-scheme renormalization of the Screened Massive Ex-
pansion

In Sec. 3.1 we saw that, in the Landau gauge (ξ = 0), the one-loop Euclidean transverse
gluon and ghost propagators ∆(p2) and G(p2) computed in the Screened Massive Expansion
can be expressed as17

∆(p2) =
1

p2 [1 + α (F (s) + f0)]
, G(p2) = 1

p2 [1 + α (G(s) + g0)]
, (3.109)

where s = p2/m2, α is a rescaled coupling constant,

α =
3Nαs
4π

=
3Ng2

16π2
, (3.110)

16And others such as ln(
√

−p2/m2 + 4±
√

−p2/m2) and ln(−p2/m2 + 1).
17For conciseness of notation, in the rest of this chapter we will drop the subscript E from the quantities

defined in Euclidean space. Thus the p2 in Eq. (3.109) is actually a Euclidean momentum squared.
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the functions G(s) and F (s) were defined in Eqs. (3.29) and (3.46), and f0 and g0 are
additive renormalization constants. The latter are fixed as soon as the renormalization
conditions for the propagators are chosen. In [CS20], the RG analysis of the Screened
Massive Expansion was carried out in two renormalization schemes: the MOM scheme,
described in Secs. 1.2.2 and 1.2.3, and the SMOM scheme, defined in Sec. 3.2.3. During
the rest of this chapter, we will focus only on the former.

In the MOM scheme, the gluon and ghost propagators are renormalized by fixing their
value at a given renormalization scale µ so that

∆(µ2) = G(µ2) = 1

µ2
. (3.111)

By looking at Eq. (3.109), we see that, to one loop, these renormalization conditions are
equivalent to choosing

f0 = −F (µ2/m2) , g0 = −G(µ2/m2) . (3.112)

Going back to the explicit one-loop expressions for the ghost and gluon field renormalization
factors Zc and ZA in terms of the constants g0 and f0 – Eqs. (3.30) and (3.50) –,

Zc = 1 +
α

4

[(
1− ξ

3

)(
2

ϵ
− ln

m2

µ2

)
+

8

3

]
+ αg0 , (3.113)

ZA = 1 +
α

3

(
13

6
− ξ

2

)(
2

ϵ
− ln

m2

µ2

)
+ α(f0 − C) , (3.114)

where µ =
√
4πµd.r.e

−γE/2, µd.r. being the scale introduced by dimensional regularization,
Eq. (3.112) yields the following MOM gluon and ghost field renormalization constants:

ZA = 1 +
α

3

(
13

6
− ξ

2

)(
2

ϵ
− ln

m2

µ2

)
− α(F (µ2/m2) + C) , (3.115)

Zc = 1 +
α

4

[(
1− ξ

3

)(
2

ϵ
− ln

m2

µ2

)
+

8

3

]
− αG(µ2/m2) . (3.116)

The gluon and ghost anomalous dimensions γA and γc, defined as (see Sec. 1.2.2)

γA =
µ

ZA

dZA
dµ

, γc =
µ

Zc

dZc
dµ

, (3.117)

can be explicitly computed in the MOM scheme thanks to Eqs. (3.115) and (3.116). To
lowest order in the coupling constant, they read

γA = −2α
µ2

m2
F ′(µ2/m2) , γc = −2α

µ2

m2
G′(µ2/m2) , (3.118)

where
F ′(s) =

dF

ds
(s) , G′(s) =

dG

ds
(s) . (3.119)

Observe that in Eqs. (3.115) and (3.116), the terms which depend on the renormalization
scale µ only implicitly through the coupling constant α do not contribute to the MOM
anomalous dimensions to O(αs) since the derivative of α with respect to µ, given by the
beta function,

µ
dα

dµ
= µ

d

dµ

(
3Ng2

16π2

)
= 2

α

g
βg

(
µ
dg

dµ
= βg

)
, (3.120)
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is higher-order: being βg of order g3, µdα/dµ is of order α2
s. Similarly, if the gluon mass

parameter were taken to depend on the renormalization scale, then µdm2/dµ would be at
least of order αs, so that the product αµdm2/dµ would be at least O(α2

s) and would not
contribute to the one-loop anomalous dimensions.

In what follows, we will assume that the gluon mass parameter m2 is independent from
the renormalization scale. This assumption is motivated by an in-depth order-by-order
analysis of the RG equations for the Screened Massive Expansion in the MOM scheme,
which shows that, to one-loop, the derivative µdm2/dµ drops out of the equations just like
it does from the anomalous dimensions, implying that the µ-dependence of the gluon mass
parameter is arbitrary to O(αs) [CS20]. The simplest solutions to the MOM RG equations
thus have m2 being independent from µ.

With ZA and Zc defined in the MOM scheme, the renormalization of the SME is
completed by specifying the renormalization conditions for the coupling constant. In the
Landau gauge, the latter is conveniently defined in the so-called Taylor scheme, which we
have already encountered in Chpt. 2. Recalling that the renormalized coupling g is defined
as

g = Z−1
g gB, (3.121)

where gB is the bare coupling constant and Zg is the coupling renormalization factor, a
theorem by Taylor [Tay71] shows that, in the Landau gauge, the diverging terms18 of the
renormalization factors ZA, Zc, and Zg satisfy the relation

(
Zg Z

1/2
A Zc

)
div.

= 1 . (3.122)

The choice
Zg = Z

−1/2
A Z−1

c , (3.123)

which extends the Taylor relation (3.122) to the full renormalization factors, is thus con-
sistent with the divergences of the theory, and its adoption yields a renormalized coupling
constant known as the Taylor coupling.

In the Taylor scheme, the beta function βg takes on an especially simple form. Since
by Eq. (3.121)

βg = µ
dg

dµ
= − µ

Zg

dZg
dµ

, (3.124)

because of the Taylor condition – Eq. (3.123) – we find that

βg =
g

2
(γA + 2γc) . (3.125)

Thus the knowledge of the gluon and ghost anomalous dimensions is sufficient to compute
the beta function associated to the Taylor coupling.

In the context of the Screened Massive Expansion, we can define a beta function βα
associated to the rescaled coupling α 19:

βα =
dα

d lnµ2
. (3.126)

Using Eq. (3.120), it is easy to verify that

βα =
α

g
βg . (3.127)

18That is, the terms which would make up the renormalization factors in the MS scheme.
19Note the µ2 in βα.
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In particular, in the MOM-Taylor scheme, we find that

βα =
α

2
(γA + 2γc) = −α2 µ

2

m2
H ′(µ2/m2) , (3.128)

where the function H(s) is defined as

H(s) = F (s) + 2G(s) (3.129)

and H ′(s) = dH(s)/ds.

As the next step in our RG analysis of the SME, in the following section we will
analytically solve the RG equation for the running coupling constant and numerically
integrate the RG-improved propagators defined in the MOM-Taylor scheme.

3.3.2 The SME strong running coupling and RG-improved propagators

To one loop, the Renormalization Group equation for the SME coupling constant α reads

µ2
dα

dµ2
= βα = −α2 µ

2

m2
H ′(µ2/m2) . (3.130)

Since m2 does not depend on µ, the latter can be rewritten in terms of the adimensional
variable s as

dα

d ln s
= −α2H ′(s) . (3.131)

The solution of Eq. (3.131) is easily found to be

α(s) =
α(s0)

1 + α(s0) [H(s)−H(s0)]
, (3.132)

where s0 = µ20/m
2 is the adimensionalized initial renormalization scale and α(s0) is the

rescaled coupling constant defined at the same scale.
The one-loop MOM-Taylor strong running coupling αs(µ2) is obtained from the last

equation using α = 3Nαs/4π. Explicitly,

αs(µ
2) =

αs(µ
2
0)

1 +
3Nαs(µ

2
0)

4π
[H(µ2/m2)−H(µ20/m

2)]

. (3.133)

In the high-energy limit µ2, µ20 ≫ m2 (s≫ 1), by Eqs. (3.34) and (3.54),

F (s) → 13

18
ln s+

17

18
, G(s) → 1

4
ln s+

1

3
, (3.134)

the function H(s) and the difference H(µ2/m2)−H(µ20/m
2) that appears in the denomi-

nator of αs(µ2) approach

H(s) → 11

9
ln s+

29

18
, H(µ2/m2)−H(µ20/m

2) → 11

9
ln
(
µ2/µ20

)
. (3.135)

In particular, in this limit the gluon mass parameter disappears from αs(µ
2), while the

strong running coupling itself reduces to

αs(µ
2) → αs(µ

2
0)

1 +
11N

3

αs(µ
2
0)

4π
ln
(
µ2/µ20

) . (3.136)
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This is the result found in ordinary perturbation theory, Eq. (1.159), with nf = 0 in the
beta function coefficient β0. In the low-energy limit, on the other hand, again by Eqs. (3.34)
and (3.54),

F (s) → 5

8s
, G(s) → 5

24
=⇒ H(s) → 5

8s
. (3.137)

Therefore, as µ2 → 0,

αs(µ
2) → 32π

15N

µ2

m2
→ 0 : (3.138)

the running coupling vanishes like µ2, as predicted by the lattice calculations – see Sec. 2.1.2.
This is not accidental: the lattice coupling, as well as ours, is defined in the Taylor scheme,
starting from the behavior of the MOM gluon and ghost propagators. It will become clear
by the end of this section that the vanishing of the MOM-Taylor coupling at zero momen-
tum is the consequence of the gluon propagator becoming massive and of the gluon dressing
function remaining finite at p = 0. To one loop, the speed at which αs(µ

2) approaches
zero does not depend on the initial conditions of the RG flow (i.e. on αs(µ20) and µ20), but
only on the value of the gluon mass parameter m2.
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Figure 3.21: One-loop MOM-Taylor SME running coupling αs(µ
2) as a function of the

adimensional scale µ/m for different initial values of the coupling αs(µ20) at the scale µ0/m
= 6.098. With m = 0.656 GeV, this corresponds to µ0 = 4 GeV.

The one-loop MOM-Taylor SME running coupling αs(µ
2) is shown in Fig. 3.21 for

N = 3 as a function of
√
s = µ/m for different initial values of the coupling constant

αs(µ
2
0). The adimensional initial renormalization scale µ0/m was chosen equal to 6.098

so that, with our previous determination of the gluon mass parameter (m = 0.656 GeV),
µ0 = 4 GeV.

As we can see, for sufficiently small initial values of the coupling constant, the strong
running coupling αs(µ

2) computed in the SME has no Landau poles. Instead, it first
increases in value as µ decreases, then hits a maximum at a fixed scale µ⋆ = 1.022m, and
finally it decreases to zero as µ → 0. That the position of the maximum is independent
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from the value of the initial coupling αs(µ20) is a consequence of the one-loop beta function
having a zero at the renormalization scale µ⋆ such that

H ′(µ2⋆/m
2) = 0 . (3.139)

The solution of this equation, µ⋆ = 1.022m, can be obtained numerically and is clearly
independent from αs(µ

2
0).

For αs(µ0) ≥ 0.469, on the other hand, the running coupling develops an infrared
Landau pole. To see this, suppose that αs(µ2) becomes infinite at the scale µ2pole. This
can only happen if

1 +
3Nαs(µ

2
0)

4π
[H(µ2pole/m

2)−H(µ20/m
2)] = 0 , (3.140)

implying that the initial value of the coupling is related to µ2pole via the equation

αs(µ
2
0) =

4π

3N [H(µ20/m
2)−H(µ2pole/m

2)]
. (3.141)

Since µ⋆ = 1.022m is a minimum for H(µ2/m2), we have H(µ2/m2) ≥ H(µ2⋆/m
2) for any

value of the renormalization scale µ. It follows that

αs(µ
2
0) ≥

4π

3N [H(µ20/m
2)−H(µ2⋆/m

2)]
= α(thr.)

s (µ20) = 0.469 (3.142)

at N = 3 and µ0 = 6.098m. We remark that the threshold value α(thr.)
s (µ0) defined by the

last equation depends on the initial renormalization scale µ0, as well as on the number of
colors N .

Recall from Sec. 1.2.3 that the RG-improved gluon and ghost propagators renormalized
at the scale µ0 – ∆(p2;µ20) and G(p2;µ20), respectively –, can be expressed in terms of their
anomalous dimensions γA and γc as20

∆
(
p2;µ20

)
= e

∫ p
µ0

dµ
µ
γA(µ)∆

(
p2; p2

)
, (3.143)

G
(
p2;µ20

)
= e

∫ p
µ0

dµ
µ
γc(µ) G

(
p2; p2

)
. (3.144)

In the MOM scheme, the values ∆
(
p2; p2

)
and G

(
p2; p2

)
of the propagators at a momentum

equal to their renormalization scale are given by the renormalization conditions themselves,
Eq. (3.111), which we can rewrite as

∆
(
p2; p2

)
= G

(
p2; p2

)
=

1

p2
. (3.145)

By making use of the explicit expressions for the one-loop MOM gamma functions, Eq. (3.118),
we then find that the RG-improved one-loop SME propagators read

∆
(
p2;µ20

)
=

1

p2
exp

(
−
∫ p2/m2

µ20/m
2

ds α(s)F ′(s)

)
, (3.146)

G
(
p2;µ20

)
=

1

p2
exp

(
−
∫ p2/m2

µ20/m
2

ds α(s)G′(s)

)
. (3.147)

20The derivation of Eq. (3.144) is identical in all respects to the one carried out in Sec. 1.2.3 to obtain
Eq. (3.143), so we will not repeat it in this section.
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Figure 3.22: One-loop Landau gauge RG-improved Euclidean transverse gluon propagator
computed in the MOM-Taylor scheme as a function of the adimensional momentum p/m for
different initial values of the coupling αs(µ20) at the scale µ0/m = 6.098. Adimensionalized
by m2.
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Figure 3.23: One-loop Landau gauge RG-improved Euclidean ghost dressing function com-
puted in the MOM-Taylor scheme as a function of the adimensional momentum p/m for
different initial values of the coupling αs(µ20) at the scale µ0/m = 6.098.

The integrals in Eqs. (3.146) and (3.147) cannot be evaluated analytically. In order to
compute the RG-improved propagators, one thus has to resort to numerical integration.
Nonetheless, as shown in [CS20], the asymptotic limits of ∆

(
p2;µ20

)
and G

(
p2;µ20

)
can still

be put in closed form by making use of the s → 0 and s → ∞ expressions for F (s), G(s)
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and α(s). One then finds that in the UV, provided that µ20 ≫ m2 as well as p2 ≫ m2,

∆
(
p2;µ20

)
→ 1

p2

[
αs(p

2)

αs(µ20)

] 13
22

, G
(
p2;µ20

)
→ 1

p2

[
αs(p

2)

αs(µ20)

] 9
44

, (3.148)

which is just the ordinary pQCD result for nf = 0, while in the deep IR

∆
(
p2;µ20

)
→ κ

m2
, G

(
p2;µ20

)
→ κ′

p2
, (3.149)

where κ and κ′ are constants. By Eq. (3.149) we see that, at vanishing momenta, the
RG-improved SME gluon and ghost propagators are massive and massless, respectively,
just like their fixed-scale counterparts.

In Figs. 3.22 and 3.23 we show the RG-improved gluon propagator and ghost dressing
function computed for different values of the initial coupling constant αs(µ20) < α

(thr.)
s (µ20),

again at the initial scale µ0 = 6.098m. Observe that, in the figures, both ∆(p2;µ20) and
the momenta are adimensionalized by appropriate factors of the gluon mass parameter m.
The propagators clearly display the asymptotic behavior we just described. Notably, the
gluon propagators attains a maximum for any value of the initial coupling21, whereas the
ghost dressing function quickly saturates to a constant at momenta of the order of the
gluon mass parameter.

For future reference, we make an observation on the relation between the Taylor cou-
pling and the RG-improved propagators. Going back to Eqs. (3.143) and (3.144), it is
interesting to compute the product between the gluon propagator and the square of the
ghost propagator. A simple calculation shows that

∆
(
p2;µ20

)
[G
(
p2;µ20

)
]2 = e

∫ p
µ0

dµ
µ

[γA(µ)+2γc(µ)] ∆
(
p2; p2

)
[G
(
p2; p2

)
]2 = (3.150)

= e
2
∫ p
µ0

dµ
µ

βα
α ∆

(
p2; p2

)
[G
(
p2; p2

)
]2 =

= e
∫ p
µ0

dµ
α

dα
dµ ∆

(
p2; p2

)
[G
(
p2; p2

)
]2 =

=
α(p2/m2)

α(µ20/m
2)

∆
(
p2; p2

)
[G
(
p2; p2

)
]2 ,

where we have used the Taylor condition in the form βα = α
2 (γA + 2γc). It follows that

the Taylor coupling can be expressed in terms of the propagators as

αs(µ
2) = αs(µ

2
0)

[
∆
(
µ2;µ20

)

∆(µ2;µ2)

][
G
(
µ2;µ20

)

G (µ2;µ2)

]2
. (3.151)

In particular, when ∆(p2) and G(p2) are renormalized in the MOM scheme, the latter reads

αs(µ
2) = αs(µ

2
0)
[
µ2∆

(
µ2;µ20

)] [
µ2 G

(
µ2;µ20

)]2
. (3.152)

An explicit example of this relation is given by the UV limit of the SME propagators
(equivalently, by the results of ordinary perturbation theory) reported in Eq. (3.148).
From Eq. (3.152), it is clear that, in the MOM scheme, the finiteness of ∆(p2) and p2G(p2)
in the limit p2 → 0 always implies that the Taylor coupling vanishes at zero momentum.

21Though this is less clear from the figure for lower values of αs(µ2
0), the existence of a maximum for

every initial value of the coupling can be proven analytically, see [CS20].
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In this section we have explored the analytical properties of the MOM-Taylor scheme
SME strong running coupling and presented results regarding the corresponding RG-
improved gluon and ghost propagators. The absence of Landau poles from the SME
running coupling αs(µ

2) for sufficiently small initial values of the coupling constant is
an essential check on the validity of the method. Indeed, if the running coupling computed
in the SME had IR Landau poles regardless of the initial conditions of the RG flow (as
it happens in ordinary pQCD), then the results obtained in Secs. 3.1 and 3.2 would bear
no connection to the well-established UV behavior of the theory, having been obtained at
a scale where the theory would essentially be undefined. On the contrary, the finiteness
of αs(µ2) confirms both that the Screened Massive Expansion is self-consistent as a com-
putational method, and that the dynamics of QCD can in principle be studied over an
unlimited range of momenta by making use of the Renormalization Group.

We observe that, in the Screened Massive Expansion, the finiteness of the running
coupling is made possible by the presence of a non-perturbative mass scale – namely,
the gluon mass parameter – in the equations. To one loop, it is the vanishing of the
adimensional function H ′(s) in the MOM-scheme beta function – see Eq. (3.130) – that
allows αs(µ2) to attain a maximum at a fixed renormalization scale µ = µ⋆, instead
of diverging like in ordinary pQCD. In the absence of the gluon mass parameter, or in
scale-independent renormalization schemes, sH ′(s) would be replaced by a constant in βα,
forcing the latter to be negative at every renormalization scale, as is the case in pQCD.
Instead, around µ = µ⋆ = 1.022m, the running of the coupling slows down, stops and then
changes sign as the renormalization scale decreases.

Of course, the fact that αs(µ2) diverges for large values of αs(µ20) calls for further
investigations on the behavior of the RG-improved propagators. In particular, we need
to make sure that the exact propagators, as given for instance by the lattice data, can
be reproduced by making use of values of αs(µ20) smaller than the threshold at which the
Landau pole appears, α(thr.)

s (µ20) = 0.469 at µ0/m = 6.098. In addition to this, the RG-
improved SME propagators depend on two free parameters, αs(µ20) and m2, at variance
with their ordinary pQCD analogues – which clearly only depend on the initial value of
the coupling constant. Thus we find ourself in the same situation in which we were at the
end of Sec. 3.1, with the propagators needing optimization in order for predictions to be
made from first principles. The determination of an optimal value of αs(µ20) is the subject
of the next section.

3.3.3 Intermediate-energy matching with the fixed-scale optimized re-
sults and comparison with the lattice data

While in principle the validity of the RG-improved results presented in the last section
extends to arbitrary energy scales, in practice the one-loop approximation by which they
were obtained is accurate only provided that the value of the running coupling is sufficiently
small. By Fig. 3.21 we see that, depending on the value of the initial coupling, the maximum
αs(µ = 1.022m) can become quite large for the perturbative standards. Therefore, we
may expect the one-loop RG-improved propagators to deviate from the exact results at
the corresponding momenta p ≈ m, when integrated starting from the UV region.

The accuracy of the one-loop approximation can be tested by making use of the opti-
mized fixed-scale (OFS) expressions derived in Sec. 3.2. Since these are valid up to scales
of the order of the gluon mass parameter, we expect the RG-improved and OFS results
to overlap at least in the intermediate-energy region where p ≈ m. Such an overlap, of
course, will occur only for those values of the initial coupling αs(µ20) which yield a good
approximation of the exact propagators. Matching the high-energy RG-improved results
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to their low-energy fixed-scale counterpart thus provides us with a way to fix an optimal
value of αs(µ20) from first principles.

In [CS20], the intermediate-energy matching of the RG-improved and optimized fixed-
scale results was carried out by comparing the respective running couplings as functions
of the renormalization scale. In the context of the OFS approach, a Taylor coupling
α
(OFS)
s (µ2) can be defined by making use of Eqs. (3.151) and (3.152)22. Assuming that the

fixed-scale propagators are renormalized in the MOM scheme, Eq. (3.152) can be rewritten
as

α(OFS)
s (µ2) = κ

[
F (µ2/m2) + F0

]−1 [
G(µ2/m2) +G0

]−2
, (3.153)

where F0 and G0 take on the values obtained by optimization, whereas κ is a constant
that absorbs both α(OFS)

s (µ20) and the multiplicative renormalization constants Z∆ and ZG
contained in the OFS gluon and ghost propagators. Since α(OFS)

s (µ20) is undefined in the
fixed-scale approach23, in the above expression κ is a free parameter.

The normalization of α(OFS)
s (µ2) – i.e., the value of κ – can be fixed by requiring that the

former be equal to its RG counterpart αs(µ2) at an intermediate-energy renormalization
scale µ1, yielding

α(OFS)
s (µ2) = αs(µ

2
1)

[
F (µ21/m

2) + F0

F (µ2/m2) + F0

] [
G(µ21/m

2) +G0

G(µ2/m2) +G0

]2
. (3.154)

In [CS20], the scale µ1 was chosen equal to 1.372m, corresponding to 0.9 GeV for m =

0.656 GeV. We note that, if the running couplings α(OFS)
s (µ2) and αs(µ2) do match at inter-

mediate energies, then the specific choice of the scale µ1 is irrelevant to the normalization
of α(OFS)

s (µ2), as long as µ1 ≈ m.
In Fig. 3.24 we compare the OFS strong running coupling α(OFS)

s (µ2) – Eq. (3.154) – and
its RG counterpart αs(µ2) for different values of the initial RG coupling constant αs(µ20).
α
(OFS)
s (µ2) clearly shows the same behavior as αs(µ2). Nonetheless, despite having chosen
κ in such a way that the two functions coincide at µ = µ1, the two running couplings are
far from being equal for arbitrary values of αs(µ20); this is true in the low- and high-energy
regimes, as well as at intermediate energies. There exists, however, an interval of values,
centered around αs(µ

2
0) ≈ 0.39, for which the OFS and RG running couplings overlap at

renormalization scales µ ≈ µ1.
In [CS20] it was found that the relative difference between the two couplings is less than

1% over the widest possible interval of momenta – ranging from µ ≈ 1.1m to µ ≈ 2m –
when αs(µ

2
0) is chosen equal to 0.391. The running couplings corresponding to such a

value are displayed in Fig. 3.25. For αs(µ20) = 0.391, the maximum of αs(µ2) is found to
be αs(µ2⋆) ≈ 2.34, suggesting – as previously anticipated – that the one-loop RG-improved
propagators may diverge from the exact results for p ≲ m.

With αs(µ20) determined by the intermediate-scale matching with the OFS results, the
gluon mass parameterm2 is left as the only free parameter of the RG-improved propagators.
Observe that the value of m2 sets not only the energy scale of the propagators, but also
that of the initial renormalization scale µ0 and of the matching scale µ1.

22We remark that Eq. (3.151) can be derived from general principles of renormalizability which do not
require the propagators to be RG improved, see [CS20]. For this reason, it can also be employed in the
context of non-improved approaches, like the fixed-scale approximation of Secs. 3.1 and 3.2.

23Recall that the fixed-scale expressions of Secs. 3.1 and 3.2 do not explicitly contain the coupling
constant.
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Figure 3.24: N = 3 optimized fixed-scale (black) and RG (blue) strong running couplings
as a function of the adimensional renormalization scale µ/m for different values of the
initial RG coupling αs(µ20) (µ0 = 6.098m). The matching scale is set to µ1 = 1.372m.
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Figure 3.25: N = 3 optimized fixed-scale (black) and RG (blue) strong running couplings
as a function of the adimensional renormalization scale µ/m for αs(µ20) = 0.391 (µ0 =
6.098m). Matching scale set to µ1 = 1.372m. The red curve is obtained by combining the
low-energy OFS coupling and the high-energy RG coupling.

In Figs. 3.26, 3.27 and 3.28 we display the Euclidean transverse gluon propagator and
dressing function computed by different methods within the Screened Massive Expansion,
together with the lattice data of [DOS16]. For obtaining each of the curves, the gluon
mass parameter was set to m = 0.656 GeV. As a result, as previously reported, the initial
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renormalization scale is equal to µ0 = 4 GeV, while the matching scale is µ1 = 0.9 GeV. We
remark that the lattice data of [DOS16] were originally renormalized at 4 GeV, explaining
our choice of µ0.
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Figure 3.26: Landau gauge Euclidean transverse gluon propagator renormalized at the
scale µ0 = 4 GeV. Black curve: optimized fixed-scale SME renormalized by matching
at µ1 = 0.9 GeV. Blue curve: RG-improved SME. Red curve: combined OFS and RG-
improved SME matched at µ1. Orange curve: ordinary pQCD. Squares: lattice data of
[DOS16]. m = 0.656 GeV, αs(µ0) = 0.391.
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Figure 3.27: Landau gauge Euclidean transverse gluon propagator renormalized at the
scale µ0 = 4 GeV with the lattice data of [DOS16]. Linear x axis. Curves as in Fig. 3.26.
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Figure 3.28: Landau gauge Euclidean transverse gluon dressing function renormalized at
the scale µ0 = 4 GeV with the lattice data of [DOS16]. Curves as in Fig. 3.26.

The optimized fixed-scale propagator and dressing function are shown in black in the
figures. At variance with the previous sections, in Figs. 3.26, 3.27 and 3.28 these are
normalized by matching their value with that of their RG analogues at p = µ1, rather than
by fitting the multiplicative renormalization constant Z∆.

The RG-improved gluon propagator and dressing function computed for the optimal
value αs(µ20) = 0.391, on the other hand, are shown in blue. As expected, the propaga-
tor/dressing function deviates from the lattice data at p ≈ m: for smaller values of the
momentum, the OFS results (black curve, hidden behind the red curve in the IR, see ahead)
still yield a better approximation of the lattice data. In particular, compared to the exact
results, the RG-improved propagator appears strongly suppressed at low energies. This be-
havior is often observed in one-loop gluon propagators computed by massive perturbative
methods24; the two-loop results obtained within the Curci-Ferrari model [GPRT19] suggest
that taking into account the higher-order corrections to the propagator will enhance its IR
limit.

At high energies, especially for p > 3-4 GeV, the RG-improved results (hidden below
the red curve in the figures, see ahead) generally show a better agreement with the lattice
data in comparison to their OFS counterpart. Despite the former falling somewhat below
the data in the range ≈ 1-3 GeV, the RG-improved propagator still reproduces the lattice
UV tail quite accurately up to p ≈ 8 GeV. At such large scales, the SME results are in-
distinguishable from those computed by ordinary perturbation theory, displayed in orange
in the figures25. The red curves in Figs. 3.26, 3.27 and 3.28 are obtained by combining
the low-energy OFS gluon propagator with its high-energy RG-improved counterpart at
the matching scale µ1 = 0.9 GeV 26. The combined propagator/dressing function pro-

24The Dynamical Model of Chapter 5 explicitly shares this feature. As for the IRS Curci-Ferrari one-loop
propagator reported in [GPRT19], the latter either matches the IR lattice data and misses the UV tail, or
it reproduces well the UV tail and displays a suppressed IR limit when rescaled – see Note 12, Sec. 2.4.2.

25For integrating the ordinary pQCD propagator, the value αs(µ2
0) = 0.391 was used.

26In particular, the combined propagator is superimposed to the OFS propagator (black curve) in the
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vides the best overall approximation of the lattice data over the whole momentum range
p ∈ [0, 8] GeV.
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Figure 3.29: Landau gauge Euclidean ghost dressing function renormalized at the scale
µ0 = 4 GeV with the lattice data of [DOS16]. Curves as in Fig. 3.26.
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Figure 3.30: Landau gauge Euclidean ghost dressing function renormalized at the scale
µ0 = 4 GeV with the lattice data of [DOS16]. Linear x axis. Curves as in Fig. 3.26.

In Figs. 3.29 and 3.30 we show the Landau gauge Euclidean ghost dressing function
with the same color coding and parameters m2, αs(µ20), µ0 and µ1 as in the previous
figures. The improvement brought about in the UV by the Renormalization Group is

IR, and to the RG-improved propagator (blue curve) in the UV.
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remarkable. While the OFS dressing function fails to reproduce the lattice data already
at momenta p ≈ 2 GeV, its RG-improved counterpart is in excellent agreement with them
up to p ≈ 8 GeV. At low momenta p ≲ m, on the other hand, the RG-improved dressing
function saturates too quickly, and the OFS results provide a better approximation, just
like in the gluon sector.

As reported before, the propagators shown in Figs. 3.26 to 3.30 use the gluon mass
parameter m2 as their only free parameter, the initial coupling constant αs(µ20) at µ0 =
4 GeV and normalization of the optimized fixed-scale results having been obtained by
matching the OFS and RG running coupling at µ1 = 0.9 GeV. For m2, we chose the value
fitted in Sec. 3.2 – namely, m = 0.656 GeV – starting from the lattice gluon propagator
and the optimized-fixed scale expressions.

An alternative determination of m2 can be obtained by making use of the combined
low-energy OFS and high-energy RG-improved propagators as follows. First, the RG-
improved propagators renormalized at the scale µ0 are defined as functions of αs(µ20) and
m2, with the dimensionful value of µ0 set to 4 GeV following the lattice data of [DOS16].
Then αs(µ20) is expressed as a function of the gluon mass parameter by making use of the
running of the strong coupling, with the initial renormalization scale set to µ = 6.098m,
where we know by optimization that αs(µ2) = αopt.

s = 0.391. Explicitly,

αs(µ
2
0) =

αopt.
s

1 +
3Nαopt.

s

4π
[H(µ20/m

2)−H(6.0982)]

. (3.155)

Since αs(µ20) is completely determined by the value of m2, the same will hold true for the
RG-improved propagators. Finally, the latter are combined with the OFS propagators at
the matching scale p = µ1 = 1.372m, retaining the RG-improved propagators for p ≥ µ1
and the OFS propagators for p ≤ µ1. The resulting combined propagators are functions
of the gluon mass parameter alone. In particular, the value of m2 can be determined by
fitting the combined gluon propagator with the lattice data of [DOS16] over the widest
possible range of momenta.

The outcome of the fit is shown in Fig. 3.31. It was found that the value that best fits
the lattice data of [DOS16] is m = 0.651 GeV, very close to our previous determination
(also shown in the figure). The difference between the m = 0.651 GeV and m = 0.656 GeV
combined propagators is minimal, being visible only in the deep IR, where the former is
closer to the lattice data when compared to the latter. Analogous plots for the ghost
dressing function can be found in [CS20]; in the ghost sector, the m = 0.651 GeV and
m = 0.656 GeV dressing functions are indistinguishable to the naked eye.

In this section we have discussed the optimization of the RG-improved propagators
computed in the Screened Massive Expansion. While formally the RG-improved propaga-
tors depend both on the value of the coupling constant αs(µ20) at the initial renormalization
scale µ0 and on the gluon mass parameter m2, the requirement that the former match with
their optimized fixed-scale counterpart at intermediate energy scales (p ≈ m) allowed us to
determine the value of αs(µ20) as a function of m2. The resulting propagators show a good
agreement with the lattice data for p ≳ m up to 8 GeV, but deviate from the exact results
at low energies. This is due to the fact that, in the IR, the SME running coupling computed
in the MOM-Taylor scheme attains a maximum αmax

s ≈ 2.34 which is quite large for the
perturbative standards, thus preventing the one-loop approximation from fully capturing
the low-energy behavior of the propagators.

For p ≲ m, the optimized fixed-scale results of Sec. 3.2 still provide the best descrip-
tion of the lattice data. When the low-energy OFS propagators are combined with their
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high-energy RG-improved counterpart at the matching scale µ1 = 1.372m, the resulting
combined functions succeed in reproducing the lattice data over the whole momentum
range p ∈ [0, 8] GeV. By making use of these, one is able to obtain an alternative deter-
mination of the gluon mass parameter, m = 0.651 GeV, which is very close to the value
found in Sec. 3.2 by fitting the OFS gluon propagator (m = 0.656 GeV).
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dressing function (right) renormalized at the scale µ0 = 4 GeV, obtained by combining
the low-energy OFS results with the high-energy RG-improved results. Lattice data from
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3.4 Conclusions

The results presented in this chapter show that the Screened Massive Expansion is capable
of describing the dynamics of the gluons and ghosts from first principles over a wide
range of momenta. After optimization, the gluon mass parameter m2 is left as the only
free parameter of the expansion both at low energies, where the optimized fixed-scale
propagators of Sec. 3.2 provide the best approximation of the lattice data, and at high
energies, where the RG-improved propagators derived in Sec. 3.3.3 manage to reproduce
the lattice UV tails up to p ≈ 8 GeV.

The absence of Landau poles from the SME running coupling, made possible by the
explicit scale dependence of the beta function, confirms that the method is self-consistent
and well-defined in the infrared. Moreover, it proves that the diverging of the ordinary
pQCD coupling at low energies is just an artifact of the expansion, ultimately due to the
failure of pQCD in accounting for the dynamical generation of an IR gluon mass.

The precision with which the Screened Massive Expansion is able to reproduce the
lattice results already to one loop seems to indicate that most of the non-perturbative
effects which shape the IR dynamics of the gauge sector of QCD can be incorporated in a
perturbative series that treats the transverse gluons as massive at tree level.





4

Applications of the Screened Massive
Expansion

As an application of the Screened Massive Expansion presented in Chpt. 3, in this chapter
we summarize the main findings of [CS18], [CRBS21] and [SC21] regarding the thermal
behavior of the gluons in pure Yang-Mills theory and the dynamical generation of a mass
for the quarks in full QCD. In Sec. 4.1 we will extend the GEP analysis of Sec. 3.1.1 to
finite temperature [CS18] and study the gluon propagator and its poles as functions of the
temperature [SC21]. In Sec. 4.2 we will make use of the techniques presented in the last
chapter to show that a shift of the quark action similar to the one employed in the gluon
sector is able to account for dynamical mass generation in the quark sector, as is expected
in full QCD as a consequence of chiral symmetry breaking [CRBS21].

Refs. [CS18], [CRBS21] and [SC21] are attached as an insert to this thesis, to be found
in Appendix C.

4.1 The Screened Massive Expansion at finite temperature

The Screened Massive Expansion can be extended to finite temperatures T > 0 by making
use of the formalism of thermal field theory (TFT). In the framework of TFT [KG06],
the partition function and the quantum fields are defined in Euclidean space, with the
imaginary-time variable τ = it taken to lie in the interval τ ∈ [0, β]. The dimensionful
quantity β = 1/T – that is, the inverse temperature of the system – tends to infinity as
T → 0; thanks to the boundary conditions imposed on the finite-temperature fields, the
results of ordinary zero-temperature quantum field theory are recovered in such a limit.

The set-up of the Screened Massive Expansion at T > 0 is discussed in depth in [CS18]
and [SC21]. The shift of the expansion point of the perturbative series that defines the
SME is replicated in the framework of TFT to obtain expressions that depend on the gluon
mass parameter m2 as well as on the temperature. Since m2 is a mass scale whose value
depends on the problem at hand, in the context of the SME the former can itself be taken
to be a function of the temperature, m2 = m2(T ).

4.1.1 The Gaussian Effective Potential at finite temperature and the
deconfinement phase transition

In Sec. 3.1.1 we argued that treating the gluons as massive at tree level is expected to
provide a better approximation of the low-energy dynamics of QCD compared to ordi-
nary massless perturbation theory because such a choice minimizes the Gaussian Effective
Potential of pure Yang-Mills theory. The GEP analysis carried out in Sec. 3.1.1 can be

101
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repeated at finite temperature in order to check that this remains true for T > 0 [CS18].
At non-zero temperatures, the GEP can be interpreted as a first-order approximation of
the temperature-dependent free energy density F(T ) of the theory [CS18]. Therefore, in
what follows, we will denote the former by FG(T,m).
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Figure 4.1: Gaussian Effective Potential of pure Yang-Mills theory as a function of the
gluon mass parameter for different values of the temperature. All dimensionful quantities
are adimensionalized by factors of m0 = m(T = 0).
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The Gaussian Effective Potential FG(T,m) of Yang-Mills theory is displayed in Fig. 4.1
as a function of the gluon mass parameter m for different values of the temperature. In
the figure, all the quantities are adimensionalized by the value of m which minimizes the
GEP at zero temperature, m0 = m(T = 0).

We recall from Sec. 3.1.1 that for T = 0 the GEP has a global minimum at m =
m0 ̸= 0 and a local minimum at m = 0. As we can see from Fig. 4.1, as the temperature
increases, the position of the m = 0 minimum shifts towards larger values of the mass and
the corresponding value of the GEP grows more negative, until the two minima align at
T = Tc ≈ 0.35m0. For T > Tc, the lower-mass minimum becomes the global minimum of
the GEP, and its position starts to increase roughly linearly with the temperature.

The position of the global minimum of the GEP is shown in Fig. 4.2 as a function of
temperature. At low temperatures, the value of m which minimizes the GEP, denoted by
m(T ), remains roughly equal to its T = 0 value until it starts to decrease at T ≈ 0.2m0.
After hitting the critical temperature Tc, the high-temperature behavior of m(T ) becomes
similar to that of the thermal masses computed for the massless particles in the framework
of TFT [KG06], m(T ) ∝ T . For this reason, we may interpret T = Tc as the temperature
at which the gluon ceases to be massive and starts to behave as a massless particle.
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puted in the GEP approximation, together with the lattice data of [GP17]. Adimensional-
ized by the critical temperature Tc. For a discussion on the value of the coupling constant
αs see [CS18].

What are the consequences of the discontinuity found in m(T ) by the minimization of
the GEP? In Fig. 4.3 we display the pressure p and entropy density s computed in the
GEP approximation,

p = − [FG(T,m(T ))−FG(0,m0)] , s = − d

dT
FG(T,m(T )) . (4.1)

While the pressure is a continuous function of the temperature, the entropy density has
a discontinuity at T = Tc; this indicates that the system undergoes a first-order phase
transition. Such a transition is well-known to occur in pure Yang-Mills theory: it is the



104 4 Applications of the Screened Massive Expansion

deconfinement phase transition, by which the gluons1 cease to be confined in color-singlet
bound states and start behaving as free particles. Once again, we see that the existence
of a link between the IR-massiveness of the gluon and the phenomenon of confinement is
suggested by the results of the SME. With m ≈ 0.66 GeV, Tc would be predicted to be
around 230 MeV, not too far from the critical temperature found by lattice methods for
pure Yang-Mills theory, Tc ≈ 270 MeV [SOBC14]. In passing, we note that the pressure
and entropy density computed in the GEP approximation, when adimensionalized by the
critical temperature Tc, are in fair agreement with the lattice data of [GP17].

The GEP analysis of pure Yang-Mills theory at T ≥ 0 confirms that, below the criti-
cal temperature Tc, the Screened Massive Expansion is still expected to provide a better
approximation of the infrared dynamics of the gauge sector compared to ordinary pertur-
bation theory. At larger temperatures, on the other hand, the T -dependent gluon mass
parameter can be understood to play essentially the same role as the ordinary thermal
mass of massless particles, so that more specialized approaches such as the Hard Thermal
Loop resummation [BP92] might yield better results.

4.1.2 The Landau gauge gluon propagator and its poles at finite tem-
perature

In thermal field theory, the restriction of the imaginary time variable to the interval [0, 1/T ]
causes the breaking of the symmetry group SO(4) of 4-dimensional Euclidean spacetime
down to SO(3) – that is, the group of ordinary spatial rotations. From a physical point of
view, this is equivalent to the adoption of a reference frame with respect to which the state
variables and the state functions of the thermodynamical system, such as the temperature
and energy, are to be defined.

As a consequence of the breaking of SO(4) symmetry, at finite temperature the gluon
propagator ∆ab

µν cannot be expressed anymore in terms of just two scalar functions – namely,
its 4-dimensionally transverse and longitudinal components –, but is instead determined
by three scalar components. Indeed, it can be shown [KG06] that, in Fourier space, the
most general expression for ∆ab

µν at T ≥ 0 is given by2

∆ab
µν(p, T ) =

(
∆T (p, T )PT

µν(p) + ∆L(p, T )PL
µν(p) +

ξ

p2
ℓµν(p)

)
δab , (4.2)

where PT
µν(p) and PL

µν(p) are 3-dimensionally transverse and longitudinal projectors,

PT
µν(p) = (1− δµ4)(1− δν4)

(
δµν −

pµpν
|p⃗|2

)
, PL

µν(p) = tµν(p)− PT
µν , (4.3)

the fourth direction being that of the imaginary time variable, x4 = τ = it = ix0, and
∆T,L(p, T ) are the 3-dimensionally transverse and longitudinal components of the gluon
propagator. Because of SO(3) symmetry, the functions ∆T,L do not depend on the direction
of the three-dimensional vector p⃗, but only on its modulus |p⃗|,

∆T,L(p, T ) = ∆T,L(p
4, |p⃗|, T ) . (4.4)

That the 4-dimensionally longitudinal component of ∆ab
µν(p, T ), ξ/p2, is equal to its T = 0

limit can be proven by exploiting the BRST invariance of the Faddeev-Popov Lagrangian,
1And, in full QCD, the quarks, although strictly speaking in this case there is no phase transition, but

rather a crossover [AEF+06, BBC+12, BBD+14].
2We remark that, in Euclidean space, the 4-dimensional transverse and longitudinal projectors are

defined, respectively, as tµν(p) = δµν − pµpν/p
2 and ℓµν(p) = pµpν/p

2.
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which still holds at finite temperature. During the rest of this section, we will use the
terms transverse and longitudinal in the 3-dimensional sense, unless otherwise specified.

Observe that, in order for SO(4) symmetry and the ordinary result to be recovered at
zero temperature, we must have

∆T (p, T = 0) = ∆L(p, T = 0) = ∆(p) (4.5)

for the transverse and longitudinal propagators, where ∆(p) is the Euclidean (4-dimensionally
transverse) propagator studied in Chpt. 3. A similar relation can be shown to hold [KG06]
when the spatial momentum p⃗ vanishes at p4 ̸= 0:

∆T (p
4, |p⃗| = 0, T ) = ∆L(p

4, |p⃗| = 0, T ) (p4 ̸= 0) . (4.6)

Eq. (4.6) is easily understood to be a consequence of the fact that, at zero momentum,
p⃗ = 0⃗, there is no spatial direction with respect to which the transverse and longitudinal
components of the propagator ∆T,L(p, T ) can be distinguished.

Since the interval [0, 1/T ] is bounded, the Fourier variable p4 corresponding to the
imaginary time x4 = τ is a discrete variable. Due to the boundary conditions of the
thermal problem, which require the gluon field to be periodic in τ [KG06], p4 takes on the
values

p4 = ωn = 2πnT (n ∈ N) . (4.7)

The ωn’s are known as Matsubara frequencies.

In [SC21], the Landau gauge transverse and longitudinal components of the gluon
propagator were computed to one loop at finite temperature in the Screened Massive
Expansion, yielding

∆T,L(p, T ) =
ZT,L(T )

p2[F (s(T )) + F T,L0 (T ) + πT,L(p,m(T ), T )]
. (4.8)

In the above equation, s(T ) = p2/m2(T ) is the adimensionalized Euclidean momentum,
the gluon mass parameter m2 = m2(T ) is taken to be a function of the temperature, F (s)
is the function already reported in Sec. 3.1.4, ZT,L(T ) and F T,L0 (T ) are, respectively, multi-
plicative and additive temperature-dependent renormalization constants, and the functions
πT,L(p,m, T ), defined so that

πT,L(p,m, T = 0) = 0 , (4.9)

contain the one-loop thermal corrections to the components of the propagator. The explicit
form of πT (p,m, T ) and πL(p,m, T ) is reported in [SC21] in terms of one-dimensional
integrals which cannot be evaluated analytically.

The finite-temperature SME gluon propagator was then compared to the Landau gauge
lattice data of [SOBC14] at zero Matsubara frequency (n = 0). While the standard def-
inition of the Screened Massive Expansion makes use of a single gluon mass parameter
m2 to rearrange the QCD perturbative series, in [SC21] it was found that for T > 0, and
especially at high temperatures, it is not possible to reproduce the behavior of both the
components of the gluon propagator by a single T -dependent value of m2 in Eq. 4.8. This
is not totally unexpected, for the following reason. First of all, observe that the gluon mass
term which is added and subtracted from the Faddeev-Popov action,

δS =
1

2

∫
d4p

(2π)4
Aaµ(−p)m2tµν(p)Aaν(p) , (4.10)
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is 4-dimensionally transverse, and therefore does not take into account possible differences
in the behavior of the 3-dimensionally transverse and longitudinal masses that can only
arise at finite temperature. Second, the GEP analysis of the last section already showed
that, at high temperatures, the minimum of the GEP is found at a linearly rising mass
m(T ) ∝ T , which, as we noticed, resembles the thermal mass of a massless particle. For
the vector bosons, it is well-known that the thermal masses associated to the transverse
and the longitudinal components of the propagators do have a different dependence on the
temperature [BP92]. Therefore, if the picture painted by the GEP analysis is qualitatively
accurate, then the δS in Eq. (4.10) indeed will not be able to accurately reproduce the
exact results at sufficiently high temperatures.

Nonetheless, the Screened Massive Expansion was still found to be able to provide a
good semi-quantitative description of the gluon propagator at T > 0, so long as the mass
parameters in ∆T (p, T ) and ∆L(p, T ) are tuned separately as functions of the temperature.
Of course, since using two different mass parameters is not allowed in the standard SME
formalism, the results described in what follows are to be interpreted as estimates, rather
than as first-principles calculations.
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Figure 4.4: Values of the gluon mass parameter which best fit the lattice data of [SOBC14]
for the transverse and the longitudinal components of the Landau gauge Euclidean gluon
propagator at zero Matsubara frequency, as a function of temperature.

The values of the gluon mass parameter m2 which yield the best fit with the transverse
and the longitudinal components of the lattice gluon propagator of [SOBC14] at zero
Matsubara frequency (n = 0) are shown in Fig. 4.4 as functions of the temperature. As
we can see, while at low temperatures the transverse and the longitudinal mass remain
sufficiently close to each other, as soon as the temperature approaches Tc ≈ 270 MeV their
behavior starts to diverge radically. In particular, at high temperatures, the transverse
gluon mass parameter is essentially constant, whereas the longitudinal one decreases with
the temperature. We reiterate that, having been obtained by a non-standard procedure,
the fitted values of the parameters should be regarded as effective values whose sole purpose
is to reproduce the components of the propagator.
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In Fig. 4.5 we display the transverse component of the Landau gauge Euclidean gluon
propagator at zero Matsubara frequency (n = 0) as a function of the modulus |p⃗| of the 3-
dimensional momentum for different values of the temperature. By tuning the gluon mass
parameter as in Fig. 4.4, we see that the SME expression is able to give a good quantitative
description of the transverse propagator over the whole momentum range [0, 3] GeV and for
all the tested values of the temperature. When multiplicatively normalized at µ0 = 4 GeV
as in the figure, ∆T (p, T ) monotonically decreases with the temperature at every fixed
momentum |p⃗| ≤ 3 GeV. We remark that, in order to obtain the curves in Fig. 4.5, as well
as those in the figures that follow, the values of the additive constants F T,L0 (T ) contained
in Eq. (4.8) were also fitted at each temperature from the lattice data.

In Fig. 4.6 we display the longitudinal component of the Landau gauge Euclidean gluon
propagator at zero Matsubara frequency (n = 0) as a function of the modulus |p⃗| of the
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3-dimensional momentum. At variance with the transverse propagator, the longitudinal
one – when renormalized at µ0 = 4 GeV and at fixed momentum |p⃗| – is a non-monotonic
function of the temperature. Specifically, ∆L(p, T ) first increases with the temperature,
then attains a maximum at T = Tc, and finally it decreases at high temperatures just like
its transverse counterpart. The critical temperature Tc can indeed be defined as the point
at which the longitudinal propagator changes its behavior. Interestingly, the change in
behavior of ∆L(p, T ) at some fixed temperature is built into the SME propagator itself, as
opposed to being an effect of our choice of free parameters [SC21].

As we can see, at low momenta and already for T < Tc, the SME longitudinal expression
fails to reproduce the lattice data for all but the lowest value of temperature, T = 121 MeV,
the deviation from the lattice being larger around Tc. On the other hand, the agreement
with the data is satisfactory for |p⃗| ≳ 0.5 GeV.
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Since the transverse component of the SME gluon propagator was found to be in good
quantitative agreement with the lattice data down to vanishingly small spatial momenta,
the results we just presented can be exploited to compute the position of the pole of
the gluon propagator at p⃗ = 0 – that is, the pole mass of the gluon – as a function
of the temperature3. Recall that, for p⃗ = 0 and p4 ̸= 0, the two components of the
gluon propagator coincide. Therefore, assuming that the determination of the gluon mass
parameter m(T ) carried out by fitting the transverse propagator (Fig. 4.4) remains valid
at non-zero Matsubara frequencies, what follows can in principle be interpreted to hold for
both the components of the propagator.

By extending the imaginary-time component p4 of the Euclidean momentum from the
set of Matsubara frequencies p4 ∈ 2πT N to the whole complex plane p4 ∈ C, the equation
∆−1
T (p4, p⃗ = 0⃗, T ) = 0 can be solved for p4 = −i(ε0(T )− iγ0(T )) at m = m(T ) – the latter

having been obtained by fitting the transverse data – to yield the temperature-dependent
mass ε0(T ) and the zero-momentum damping factor γ0(T ) of the gluon quasi-particles
[SC21]. The solutions are shown in Fig. 4.7. At T = 0, the gluon poles are found at the
position already reported in Sec. 3.2.3, namely

ε0(T = 0) = ±0.5810 GeV, γ0(T = 0) = ±0.3751 GeV . (4.11)

As the temperature increases, the mass ε0(T ) first decreases to about 450 MeV at T = Tc,
and then starts to increase again, linearly with the temperature, for T > Tc. A similar pat-
tern is followed by the damping rate, with some uncertainty on the temperature at which
γ0(T ) becomes an increasing function of the temperature4 after having reached its mini-
mum value of about 350 MeV. The linear increase of the pole mass and zero-momentum

3A similar calculation was carried out in [Sir17c] under the assumption that the gluon mass parameter
and additive renormalization constants can be approximated by their zero-temperature value at T ̸= 0.

4γ0(T ) apparently starts to increase at a temperature T < Tc, rather than at T = Tc. However, this is
most probably caused by the uncertainty that affects the underlying parameters, which is about ±50 MeV
for the mass parameter.
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damping rate found at high temperatures is typical of massless particles [KG06]. An esti-
mate of the full dispersion relations – that is, of the gluon energy ε|p⃗|(T ) and damping rate
γ|p⃗|(T ) as a function of the spatial momentum |p⃗| – at finite temperature can be found in
[SC21].

The results presented in this section paint the picture of gluon quasi-particles which
behave as massive below the critical temperature, and then become massless above T = Tc,
where ε0(T ) and γ0(T ) can be interpreted, respectively, as a thermal mass and a thermal
zero-momentum damping rate. Since Tc ≈ 270 MeV is the temperature at which the
deconfinement phase transition occurs, we see that the SME predicts a strong correlation
between dynamical mass generation and confinement in the gauge sector.

As for the accuracy of the Screened Massive Expansion at finite temperature, we saw
that tuning the gluon mass parameter separately for the transverse and longitudinal com-
ponents of the gluon propagator is able to provide an effective description of the dynamics
of the gluons which is in good agreement with the lattice data at large spatial momenta,
while being insufficient at small momenta as far as the longitudinal component is con-
cerned. A proposal for an extension of the SME that would take into account the different
behavior of the longitudinal and transverse gluon mass was advanced in [SC21].

4.2 The Screened Massive Expansion of full QCD

4.2.1 Dynamical mass generation in the quark sector

It is a well-known fact that, due to the strong interactions, at low energies the quarks
acquire a mass which for the lightest flavors is much larger than the quark mass parameter
present in the Lagrangian. Such a phenomenon can be interpreted as a remnant of the
violation of chiral symmetry that occurs in the limit in which the quarks are massless. In
what follows, we give a brief introduction to this topic.

As we saw in Sec. 2.2.2, the non-vanishing of the quark condensate
〈
ψψ
〉

triggers the
dynamical generation of a mass for the massless quarks.

〈
ψψ
〉

is a gauge-invariant quantity
which, in the presence of chiral symmetry, would be forbidden to have a non-zero value.
Indeed, if chiral transformations5,

ψ → eiαγ
5
ψ , ψ → ψeiαγ

5
(α ∈ R) , (4.12)

were a symmetry of the vacuum, then the VEV of the quark operator ψψ, which is not
invariant under such transformations since

ψψ = ψ†
LψR + ψ†

RψL → ψe2iαγ5ψ = e2iαψ†
LψR + e−2iαψ†

RψL , (4.13)

would necessarily vanish. On the other hand, the fact that
〈
ψψ
〉
̸= 0 signals the violation

of chiral symmetry.
Symmetry under chiral transformations, which in the limit of massless quarks leave the

classical quark Lagrangian invariant given that, for every quark flavor,

eiαγ
5
γµeiαγ

5
= γµe−iαγ

5
eiαγ

5
= γµ =⇒ ψeiαγ

5
i /Deiαγ

5
ψ = ψ i /Dψ , (4.14)

can be violated for a multitude of reasons. First of all, it may happen that the symmetry is
anomalous, in the sense that it cannot be realized at the level of the quantum theory. The

5We recall that the fifth gamma matrix γ5 is defined as γ5 = iγ0γ1γ2γ3 and has vanishing anticommu-
tation relations with the other gamma matrices, {γµ, γ5} = 0. Also, γ5 = PR − PL, where PL,R are the
projectors onto the left- and right-handed components of the Dirac field.
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most renowned example of an anomalous chiral symmetry is the U(1) axial symmetry of
full QCD, under which the up (u), down (d) and strange (s) quark fields – taken to be
massless – transform as

u→ eiαγ
5
u , d→ eiαγ

5
d , s→ eiαγ

5
s . (4.15)

The divergence of the corresponding current,

jµ5 = uγµγ5u+ dγµγ5d+ sγµγ5s , (4.16)

instead of vanishing as would be suggested by the classical field equations, acquires a term
which is quadratic in the gluon field-strength tensor,

∂µj
µ
5 =

3Nαs
8π

ϵµνστF aµνF
b
στ , (4.17)

implying that the symmetry is violated at the quantum level.
Second, it may happen that, while being a symmetry of the quantum theory, the vacuum

state of the latter is not invariant under the chiral transformation. As a consequence, the
symmetry is spontaneously broken in the vacuum. An example of a spontaneously broken
chiral symmetry is the SU(nf ) axial symmetry – with nf the number of quarks –, which
in the case nf = 3 acts on the up, down and quark fields as



u
d
s


→ eiα

ATAγ
5



u
d
s


 , (4.18)

where the TA’s (A = 1, . . . , 8) are Gell-Mann matrices which generate the flavor SU(3)
transformations. The currents associated to this symmetry,

jµ5A = QγµTAQ , Q =



u
d
s


 , (4.19)

are indeed conserved, ∂µj
µ
A = 0; nonetheless, the vacuum state of QCD is not invariant

under such transformations, resulting in chiral symmetry breaking (CSB) and in the exis-
tence of massless pseudo-scalar Goldstone bosons, namely – in the limit of massless quarks
– the pions, kaons and lightest eta mesons.

Finally, chiral symmetry can be explicitly broken by the presence of quark mass terms
ψMψ in the Lagrangian, which, as we saw earlier, are not invariant under chiral transfor-
mations. This is what happens in real-world QCD, where the pions, kaons and lightest eta
mesons, instead of being massless as a consequence of CSB, posses masses that range from
135 MeV to 548 MeV.

Despite chiral symmetry not being an exact symmetry of full QCD, the mechanisms at
play in chiral symmetry violation (either through anomalies or through chiral symmetry
breaking) still cause an enhancement of the quark masses in the infrared. For the light
quarks, this enhancement makes up for the majority of the mass with which they propagate
at zero momentum; for instance, quarks with a Lagrangian mass of a few MeV turn out to
propagate with masses ≈ 300-400 MeV in the p→ 0 limit. Such a phenomenon cannot be
described in the framework of ordinary perturbation theory for two main reasons. First of
all, the radiative pQCD corrections which contribute to the dressing of the quark masses are
far too small to increase the values of the latter by orders of magnitude at energy scales in
which the strong running coupling is well behaved. Second of all, the breakdown of ordinary
perturbation theory in the infrared prevents us from computing the momentum-dependent
quark masses at low energies, where their enhancement occurs.
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The main objective of the following sections is to discuss how a shift of the quark
Lagrangian similar to the one performed in Chpt. 3 in the gluon sector of pure Yang-
Mills theory can be exploited in full QCD to describe the phenomenon of dynamical mass
generation in the quark sector, with a focus on the light quarks.

4.2.2 The massive shift of the quark Lagrangian

Recall that the quark Lagrangian Lq that appears in the Faddeev-Popov action of full
QCD can be expressed in terms of the bare fields, coupling and quark mass as

Lq = ψB(i/∂ −MB + gB γ
µAaB µTa)ψB . (4.20)

Given that, in what follows, we will not get into the specifics of renormalization – which
is discussed at length in [CRBS21] –, we can assume that all the quantities in the above
equation are renormalized and finite. In particular, we will denote the Lagrangian quark
mass with a subscript R and call it the renormalized mass, in order to distinguish it from
the mass developed by the quark in the infrared regime, whose scale is set by a parameter
M which we will refer to as the chiral mass. The expression from which we will start for
our study of the quark sector is then

Lq = ψ(i/∂ −MR + g γµAaµTa)ψ . (4.21)

In the previous section, we noted that the infrared enhancement of the light quark’s
mass caused by chiral symmetry violation cannot be described in ordinary perturbation
theory, since the latter is unable to modify the value of any parameter by orders of mag-
nitude via the radiative corrections. From a mathematical perspective, this translates to
the fact that the scale M of the infrared quark mass cannot be computed from the light
quark’s renormalized mass MR by truncating the ordinary perturbative series to any finite
order in the coupling constant. Therefore, when setting up perturbation theory in the
quark sector, we find ourself in a similar situation to that which occurs in the gluon sector.

If the aim of the perturbative expansion is to describe the low-energy dynamics of the
light quarks, then we should expect that a more accurate approximation of the exact results
would be obtained by expanding around the infrared quark mass M , rather than around
the renormalized value MR. This can be achieved by splitting the quark Lagrangian Lq as

Lq = Lq,0 + Lq,int (4.22)

with
Lq,0 = ψ(i/∂ −M)ψ , Lq,int = ψ(g /A

a
Ta +M −MR)ψ , (4.23)

and by using Lq,0 as the order zero of the perturbative series and Lq,int as the interaction
Lagrangian. Note that the split does not modify the quark Lagrangian Lq as a whole. It
is understood that the expansion point for the gluon propagator must be chosen massive
as in Chpt. 3 in order to capture the correct infrared behavior of the gluons in addition to
that of the quarks.

As a consequence of the split in Eq. (4.22), the zero-order quark propagator SM (p)
reads

SM (p) =
i

/p−M
, (4.24)

with the chiral mass M replacing the renormalized mass MR. Furthermore, two new quark
two-point vertices arise in the interaction action:

Sq,int = −i
∫
d4x ψ(ig /A

a
Ta + δΓq,1 + δΓq,2)ψ , (4.25)
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where
δΓq,1 = iM, δΓq,2 = −iMR . (4.26)

The latter essentially play the same role as the gluon mass counterterm, and will thus be
referred to as the quark mass counterterms.

Figure 4.8: Diagrams for the one-loop SME quark self-energy

The dressed quark propagator S(p) computed via Eq. (4.22) can be expressed in terms
of the quark self-energy Σ(p) as

S(p) =
i

/p−M − Σ(p)
. (4.27)

The quark mass counterterms in Eq. (4.26) contribute to Σ(p) already at tree level via the
diagrams (1a) and (1b) displayed in Fig. 4.8; it is easy to see that the quark self-energy
Σ(p) can be put in the form

Σ(p) = −M +MR +Σ(loop)(p) , (4.28)

where the first two terms are provided by δΓq,1/2, whereas Σ(loop)(p) is the contribution
coming from the loops of the expansion. Since

S(p) =
i

/p−MR − Σ(loop)(p)
, (4.29)

it is clear that, in the framework of the Screened Massive Expansion, the infrared enhance-
ment of the quark mass, if any, will originate non-trivially from the loops, and not from
the tree-level chiral mass present in Eq. (4.27), just like in the gluon sector the gluon mass
is generated by the loops and not by the tree-level gluon mass term m2.

By defining functions A(p2) and B(p2) such that

A(p2) = 1− ΣV (p
2) ,

B(p2) =MR +ΣS(p
2) , (4.30)

where ΣV (p2) and ΣS(p
2) are, respectively, the vector and the scalar component of Σ(loop)(p),

Σ(loop)(p) = /p ΣV (p
2) + ΣS(p

2) , (4.31)

the dressed quark propagator S(p) can be put in the form

S(p) =
iZ(p2)

/p−M(p2)
, (4.32)
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where the functions Z(p2) and M(p2), given by

Z(p2) =
1

A(p2)
, M(p2) =

B(p2)

A(p2)
, (4.33)

are known respectively as the quark Z-function and mass function. By comparing Eq. (4.32)
with the general form of the zero-order quark propagator, we see that M(p2) plays the
role of the momentum-dependent mass of the quark. In particular, M(p2) determines the
position of the poles of the quark propagator, given that

1

/p−M(p2)
=

/p+M(p2)

p2 −M2(p2)
= ∞ ⇐⇒ p2 = M2(p2). (4.34)

In the zero-momentum limit, the quark mass function approaches the value

M(0) =
MR +ΣS(0)

1− ΣV (0)
. (4.35)

Therefore, if the components of the quark self-energy do not vanish at p = 0, ΣV (0),ΣS(0) ̸=
0, the zero-momentum mass of the quark will be different from its renormalized mass,
M(0) ̸=MR. As we will see, this indeed turns out to be the case. In the framework of the
Screened Massive Expansion, the energy scale for the difference between M(0) and MR

will be set by M , and not by MR, since as a consequence of the shift of the quark action
it is the chiral mass M that runs into the quark loops. By this mechanism, the infrared
enhancement of the quark mass is made possible in the SME.

To end this section, we observe that – at variance with ordinary pQCD – the relation
M(0) ̸= MR also holds within the SME in the chiral limit (MR = 0). In particular,
the SME quark propagator can acquire a mass even when no mass term is present in the
Lagrangian, as discussed in Secs. 2.2.2 and 4.2.1. The chiral limit of the Screened Massive
Expansion was investigated in [Sir16a], where the first results for full QCD were presented6.

4.2.3 The quark propagator in the Landau gauge

To compute the SME quark propagator, we follow the prescriptions laid down in Sec. 3.1.2
regarding the number of mass counterterms to retain at a given order in perturbation
theory. In Secs. 3.1.3 and 3.1.4 the ghost and gluon propagator were expanded to one loop
and three vertices; in the quark sector we will do the same, working within the truncation
scheme that in [CRBS21] was termed the vertex-wise scheme. Additionally, we will present
some results obtained in the so-called complex-conjugate scheme, to be illustrated later
on. A third truncation scheme – termed the minimalistic scheme – was investigated in
[CRBS21] and will not be reported in what follows. The results presented in this section
were obtained in the Landau gauge.

The diagrams with at most one loop and at most three vertices which contribute to the
SME quark self-energy are displayed in Fig. 4.8. In the figure, the crosses denoted with
1 and 2 are the quark mass counterterms δΓq,1 and δΓq,2, whereas the unlabeled cross is
the gluon mass counterterm δΓabµν – Eq. (3.11). As we saw in Sec. 3.1, diagrams with one
gluon mass counterterm can be computed from the corresponding uncrossed diagrams by
differentiating the latter with respect to the gluon mass parameter. Similarly, since

6We should mention that [Sir16a] made use of lattice data for the quark mass function whose large errors
– customary in the context of unquenched calculations in the chiral limit – only allowed for a qualitative
comparison with the results of the SME.
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i

/p−M
(iλ)

i

/p−M
= −λ ∂

∂M

i

/p−M
, (4.36)

where λ = M,−MR, diagrams with one quark mass counterterm can be computed from
the uncrossed diagrams by differentiating them with respect to the quark chiral mass M .
In particular, we find that

Σ(2b)(p) = −M ∂

∂M
Σ(2a)(p) ,

Σ(2c)(p) =MR
∂

∂M
Σ(2a)(p) , (4.37)

Σ(2d)(p) = −m2 ∂

∂m2
Σ(2a)(p) ,

where Σ(2a,2b,2c,2d)(p) denote the contributions to Σ(p) due to diagrams (2a) to (2d).
Diagram (2a) contains a mass divergence proportional to the quark chiral mass M

which has no counterpart in ordinary perturbation theory – the mass divergences of the
latter being proportional to MR. Diagram (2b) cancels such a divergence by a mechanism
analogous to the one discussed in Sec. 3.1.4 when addressing the gluon mass divergences.
On the other hand, diagram (2c) contains the ordinary mass divergence ∝MR, which only
contributes to the renormalization of MR itself7. Finally, diagram (2d) is convergent. Since
in the Landau gauge none of the one-loop diagrams contain vector divergences – that is,
divergences proportional to the Dirac matrix /p –, the sum (2a+2b+2c+2d) only contains
a divergence proportional to MR, which is eliminated by renormalizing MR.

As for the finite parts of diagrams (2b) and (2c), since

Σ(2b)(p) + Σ(2c)(p) = −(M −MR)
∂

∂M
Σ(2a)(p) , (4.38)

we see that for the light quarks – MR ≪ M – we have |Σ(2c)(p)| ≪ |Σ(2b)(p)|. Therefore,
in what follows we will neglect8 the finite part of Σ(2c)(p) [CRBS21].

An explicit calculation carried out in Euclidean space yields9

ΣV (p
2) =

αs
3π

σV (p
2) , ΣS(p

2) =
αs
π
σS(p

2) , (4.39)

for the vector and the scalar component of the quark self-energy, where the functions
σV (p

2) and σS(p
2) are reported in [CRBS21]. In terms of these, the Euclidean quark Z-

and mass function can be expressed as

Z(p2) =
1

Zψ − αs
3π σV (p

2)
, M(p2) =

MR + αs
π σS(p

2)

Zψ − αs
3π σV (p

2)
, (4.40)

where for completeness in the above equations we have reinstated the quark field renor-
malization factor Zψ. We remark that, because of the absence of vector divergences in the
Landau gauge one-loop quark self-energy, Zψ is a finite quantity. By defining constants

h0 =
3π

αs
Zψ , k0 =

π

αs
MR , ZS =

3π

αs
, (4.41)

Z(p2) and M(p2) can be put in the form

Z(p2) =
ZS

h0 − σV (p2)
, M(p2) =

3[k0 + σS(p
2)]

h0 − σV (p2)
. (4.42)

7More details on this can be found in [CRBS21].
8We checked that this does not substantially affect the results.
9In what follows we omit the subscripts E from quantities defined in Euclidean space.
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The constant ZS can be fixed by renormalizing Z(p2) in the MOM scheme,

Z(µ2) = 1 (4.43)

at the initial renormalization scale µ.

Mlat (MeV) M (MeV) h0 k0 (MeV)

18 268.0 2.656 −16.9

18⋆ 197.6 2.051 6.8

36 228.7 2.418 11.5

54 221.4 2.577 40.0

72 238.4 2.977 70.1

90 249.0 3.207 102.5

Table 4.1: Parameters obtained by fitting the lattice data of [KBL+05] for the Landau
gauge Euclidean quark mass function. The asterisked row was obtained by fixing k0 = 6.8
and fitting the remaining parameters (see the text for details). m = 0.6557 GeV.

Mlat (MeV) αs MR (MeV) P0 (MeV)

18 2.605 −14.0 ±387.4± 180.9i

18⋆ 3.128 6.8 ±349.2± 193.1i

36 2.788 10.2 ±371.7± 185.4i

54 2.663 33.9 ±375.2± 177.2i

72 2.393 53.4 ±392.9± 167.6i

90 2.261 73.8 ±410.8± 170.2i

Table 4.2: Coupling constant, renormalized mass and quark poles corresponding to the
parameters in Tab. 4.1.

In [CRBS21], the Landau gauge Euclidean quark propagator computed in the Screened
Massive Expansion was compared with the quenched lattice data of [KBL+05] for quarks
with massesMlat ranging from 18 MeV to 271 MeV 10. In what follows, we report our results
up to Mlat = 90 MeV, for which the condition MR ≪M is better fulfilled. The constants
h0 and k0 that appear in Eq. (4.42) were fitted from the data for the quark mass function
M(p2) together with the chiral mass M for each separate value of Mlat. As for the value
of the gluon mass parameter m2, we used m = 0.6557 GeV, like in Sec. 3.2. Albeit having
been determined in pure Yang-Mills theory, this value is appropriate for comparisons with

10Roughly speaking, Mlat is the mass that appears at tree level in the bare lattice quark propagator.
See [KBL+05] for more details.
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quenched lattice data, since the latter do not take into account the corrections to the gluon
propagator due to the interactions with the quarks [CRBS21].

The outcome of the fit is reported in Tab. 4.1. One may notice that the value of
the constant k0 obtained by fitting the Mlat = 18 MeV dataset (first row) is negative,
in contradiction with the definition given in Eq. (4.41), which for MR, αs ≥ 0 would
necessarily require k0 ≥ 0. This issue was investigated in depth in [CRBS21], where it was
noted that at high energies the Mlat = 18 MeV data of [KBL+05] are plagued by large
oscillations – presumably caused by discretization errors – which make it very difficult
to unambiguously extract a value of k0 from the lattice results. As an alternative, in
Tab. 4.1 we record a second determination of the Mlat = 18 MeV parameters (second
row, asterisked), which was obtained by fixing k0 = 6.8 MeV 11, a value which – modulo
oscillations – is still able to reproduce the lattice data with good precision.

In Tab. 4.2, we report the values of the coupling constant αs and of the renormalized
mass MR and the position of the poles of the quark propagator corresponding to the
parameters in Tab. 4.1. By Eqs. (4.40), (4.41) and (4.42), αs and MR can be computed
from h0 and k0 via

αs = 3π[h0 − σV (µ
2)]−1 , MR =

3k0
h0

, (4.44)

where the renormalization scale µ was fixed to 4 GeV. As discussed in [CRBS21], one
should be careful when interpreting αs with the actual value of the coupling constant at
the scale µ, mainly because the former is defined starting from the (renormalization of the)
function Z(p2), which to one loop – as we will see in a moment – is not well-behaved in
the SME. The position of the quark poles is found by first solving the equation

p2 +M2(p2) = 0 (4.45)

in the complexified Euclidean space, and then converting the solutions to Minkowski space.
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Figure 4.9: Euclidean quark mass function in the Landau gauge (ξ = 0) for different values
of the quark mass. Colored curves: SME with h0, k0 and M fitted from the lattice data
(Tab. 4.1). Dots: lattice data from [KBL+05]. m = 0.6557 GeV.

11More details can be found in [CRBS21] for the reasoning that leads to the (non-unique) choice k0 = 6.8.
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In Fig. 4.9 we display the SME quark mass functions M(p2) computed by making use
of the parameters in Tab. 4.1, together with the lattice data of [KBL+05]. As we can see, at
zero momentum the quarks develop a mass M(0) ≈ 400 MeV which is much larger than the
UV limit of M(p2). While this infrared enhancement could not have been described within
ordinary perturbation theory, the Screened Massive Expansion succeeds in reproducing the
correct behavior of the mass function, thanks to the latter being dependent on two mass
scales: a renormalized mass MR, whose value is relevant to the UV regime, and a “chiral”
mass M , which sets the scale for M(0). In doing so, it uses values of the coupling which are
not too far from that of the SME running coupling at its maximum (Sec. 3.3). Notably, the
value of the zero-momentum mass is nearly the same for all quarks with lattice masses up
to 90 MeV, confirming that in the deep infrared the origin of the quark masses is almost
entirely accounted for by chiral symmetry violation. On the other hand, MR increases
monotonically with Mlat and is of the same order as the value of M(p2) evaluated at
high energies. As for the chiral mass M , we find that its value also increases with Mlat,
indicating that M should be interpreted as a mass scale appropriate to the quark under
examination, despite it yielding a value of M(0) which is independent from Mlat.

The quark poles calculated from the fitted mass functions are complex-conjugated (see
Tab. 4.2), like in the gluon sector. This can be regarded both as evidence for quark con-
finement and as a hint that the quarks may be confined by a similar underlying mechanism
to that which is at play for the gluons. The real and the imaginary part of the quark poles
for Mlat ≤ 90 MeV are found in the range [349, 411] MeV and [170, 193] MeV, respectively,
with the former increasing with Mlat and the latter slightly decreasing. In particular, we
see that the energy scale for the poles is set by the chiral mass, rather than by MR.
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Figure 4.10: Euclidean quark Z-function in the Landau gauge (ξ = 0) for Mlat = 54 MeV.
Blue curve: SME with h0, k0 and M fitted from the lattice data (Tab. 4.1). Dots: lattice
data from [KBL+05]. m = 0.6557 GeV.

In Fig. 4.10 we show the SME quark Z-function computed by the parameters in Tab. 4.1
for the single value Mlat = 54 MeV, again with the lattice data of [KBL+05]; as the results
obtained for the other quark masses are similar to those in the figure, we will not display
them in what follows. Clearly, the Screened Massive Expansion is not able to reproduce the
correct behavior of Z(p2) to one loop, yielding a function which decreases with momentum,
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instead of increasing as is found on the lattice. This is most probably due to the fact that
– as first argued by [PTW14] – the one-loop corrections to the vector component of the
Landau gauge quark self-energy are unusually small, even vanishing at m2 = 0, so that the
two-loop corrections must necessarily be taken into account. And indeed, in the framework
of the Curci-Ferrari model, it was shown [BGPR21] that the behavior of the Z-function can
be fixed by going to two loops. Within the Screened Massive Expansion, similar knowledge
is gained by computing the quark propagator in an alternative truncation scheme which
in [CRBS21] was termed the complex-conjugate (CC) scheme.

In the CC scheme, the one-loop quark self-energy is calculated by replacing the zero-
order gluon propagator with the principal part of the dressed propagator in the internal
gluon lines of the Feynman diagrams,

∆m(p
2) =

1

p2 +m2
→ 1

2Re{R}

[
R

p2 + p20
+

R

p2 + p20

]
, (4.46)

where p20, p20, R and R are, respectively, the poles and the residues of the optimized gluon
propagator of Sec. 3.2.3, and the normalization of the principal part is chosen so that the
latter equals 1/p2 at high energies. As we saw in Sec. 3.2.3, the principal part of the gluon
propagator yields a good approximation of the full propagator provided that the former is
multiplied by a constant. Since in the self-energy the zero-order gluon propagator always
appears multiplied by the coupling constant αs, changing the normalization of the gluon
propagator amounts to a redefinition of the coupling. Therefore, the replacement defined
by Eq. (4.46) allows us to compute the quark propagator in an approximation which takes
into account the radiative corrections to the gluon propagator. While not being equivalent
to a full two-loop calculation, the truncation provided by the CC scheme still implicitly
includes contributions from the higher orders in the gluon perturbative series.
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Figure 4.11: Euclidean quark Z-function in the Landau gauge (ξ = 0) for Mlat = 54 MeV.
Blue curve: CC-scheme SME with h0, k0 and M fitted from the lattice data. Dots: lattice
data from [KBL+05].

The SME Z-function computed in the CC scheme is shown in Fig. 4.11, again for
Mlat = 54 MeV. As we can see, the higher-order corrections to the gluon propagator change
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the high-energy behavior of Z(p2), turning it into an increasing function of momentum – as
it should be. Nonetheless, the quantitative agreement with the lattice data is still not good
in the UV; moreover, at low energies, the CC-scheme Z-function still shows the incorrect
behavior, indicating that a full two-loop calculation is required in order for the SME to
be able to reproduce the lattice data. Further details on the CC scheme can be found in
[CRBS21].

4.2.4 Conclusions

Despite not being as theoretically developed as in the gluon sector, lacking optimization
procedures which would allow us to compute the parameters that appear in the quark
propagator from first principles, the Screened Massive Expansion of full QCD still provides
us with an accurate picture of dynamical mass generation in the quark sector. By shifting
the expansion point for the quark perturbative series, the SME is able to incorporate a
parameter M – the chiral mass – into the expressions, that acts as the energy scale for the
mass M(0) with which the quarks propagate at zero momentum.

In the framework of the Screened Massive Expansion, the infrared enhancement of the
quark masses originates from the radiative corrections to the propagator, as expected for
a truly dynamical phenomenon. The Euclidean mass functions M(p2) computed for the
light quarks are found to be in good agreement with the quenched lattice data over a
wide range of (lattice) masses, displaying saturation at M(0) ≈ 400 MeV and a UV tail
dominated by the value of the renormalized mass MR. As a result of M(0) being much
larger than MR for the light quarks, the latter have poles which, instead of being real and
of the order of the renormalized mass, are complex-conjugate and of the order of M(0),
giving evidence for quark confinement. These conclusions are expected to apply also to the
chiral limit (MR = 0), although only preliminary results are available at present [Sir16b].

Due to the smallness of the O(g2) corrections to the Landau gauge self-energy, the
standard one-loop truncation of the Screened Massive Expansion is inadequate for the
calculation of the Landau gauge quark Z-function. An alternative truncation of the quark
propagator that takes into account the higher-order corrections to the gluon propagator
can be shown to fix the high-energy qualitative behavior of Z(p2), although neither the
quantitative agreement with the lattice data, nor the low-energy limit of the Z-function
substantially improved by employing such a method.
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The Dynamical Model

While the Screened Massive Expansion presented in Chpts. 3 and 4 is able to account for
dynamical mass generation in the gluon sector from first principles, the actual mechanism
that triggers such a phenomenon is far from made clear by its formalism. Indeed, the
shift that defines the SME – motivated by the GEP favoring a massive gluon vacuum over
the massless one of ordinary perturbation theory – incorporates the gluon mass into the
equations of QCD without explaining where the mass term in the Lagrangian originates
from in the first place. A second drawback of the Screened Massive Expansion is the
absence of a rigorous prescription for the truncation of its perturbative series at a given loop
order. In Sec. 3.1.2, the minimum number of mass counterterms to include in the Feynman
diagrams was fixed by the necessary requirement that the resulting Green functions be
renormalizable. Their maximum number, on the other hand, was decided on principles of
minimality which – albeit certainly meaningful – are perhaps not as strong as one would
like.

The main objective of this chapter is to present a second perturbative framework for
the computation of the Green functions of QCD at low energies, termed the Dynamical
Model (DM). The Dynamical Model addresses both of the aforementioned issues moving
from the hypothesis that a gauge-invariant, quadratic gluon condensate

〈
(Ah)2

〉
may be

the root cause of DMG in the gauge sector. By making use of local composite operator
(LCO) methods, it demonstrates that a mass term for the gluons is generated in the QCD
Lagrangian as a consequence of the non-vanishing VEV of (Ah)2. The resulting Landau
gauge perturbative series has features that place it half way in between the Curci-Ferrari
Model and the Screened Massive Expansion: with the former it has in common the explicit
form of the one-loop gluon polarization and ghost self-energy, whereas with the latter it
shares the fact that the gluon mass is generated beyond the tree level, from the loops of
the expansion. At variance with the SME, the Dynamical Model can be formulated in such
a way that the number of diagrams in the expansion is finite at fixed order in the coupling
constant g2.

The idea that DMG might be realized via gluon condensation is not at all new; as we
saw in the Introduction, the gluon mass has often been studied in the literature in terms
of the dimension-4 condensate

〈
F 2
〉

[Cor82, DL89, JA90, Lav91, LW96]. The possibility
that a dimension-2 condensate of the form

〈
A2
〉

[CNZ99, BLYL+01, GSZ01, GZ01] may
contribute to mass generation (see Sec. 2.2.2), on the other hand, was explored only more
recently, the main reason for this being that, since A2 is not a gauge-invariant operator,
the non-vanishing of its VEV could be interpreted as an indication that gauge symmetry
is broken in the vacuum. Nonetheless, it was soon realized [CDG+05, CDF+15] that a
suitable generalization of the Landau gauge operator A2 could yield a gauge-invariant and
BRST-invariant condensate with the right dimensions for playing the role of a gluon mass
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parameter m2. Such a generalization was achieved by defining a gauge-invariant gluon
field, customarily denoted by Ah in the literature, which reduces to the ordinary gluon
field A in the Landau gauge.

The field Ah as a tool to systematically investigate the infrared behavior of pure
Yang-Mills theory was first introduced in the context of the Gribov-Zwanziger model
[CDF+15, CDF+16a, CDF+16b, CDP+17, CFPS17, CDG+18, MPPS19, DFP+19] with
the objective of extending the framework of Gribov and Zwanziger to arbitrary covariant
gauges while complying with BRST symmetry. The study of Ah and its quadratic con-
densate in ordinary pure Yang-Mills theory – that is, neglecting the issue of the Gribov
copies –, on the other hand, was undertaken in [CFG+16, CvEP+18] and more recently in
[DM20], where the first preliminary expressions for the Landau gauge gluon and the ghost
propagators in the presence of a non-vanishing

〈
(Ah)2

〉
condensate were derived1.

In the present chapter we take up where [DM20] left off and discuss the generation of
the infrared gluon mass within the framework of the Dynamical Model. As we will see,
the inclusion of the

〈
(Ah)2

〉
condensate in the action of pure Yang-Mills theory causes the

gluons to propagate as massive at tree level. The resulting Feynman diagrams contain in-
ternal gluon lines whose mass parameter m2 ∝

〈
(Ah)2

〉
sets the scale for the non-vanishing

of the gluon polarization at zero momentum, yielding a propagator which – as we will
explicitly show in the Landau gauge – saturates to a finite non-zero constant at p = 0.
In other words, a dynamical mass is generated for the gluons in the deep infrared within
the Dynamical Model. The condensate

〈
(Ah)2

〉
itself – and m2 with it – can be computed

from first principles by solving a gap equation derived from a suitably defined effective
potential.

Our results will be shown to be in good agreement with the lattice data of [DOS16]
over a wide range of momenta, once improved by Renormalization Group methods. The
latter will also allow us to study the behavior of the Taylor running coupling computed in
the Landau gauge, which in the Dynamical Model turns out to be free of Landau poles.
The relevance of such a feature was already discussed in the framework of the Screened
Massive Expansion, and does not need to be restated here.

This chapter is organized as follows. In Sec. 5.1 we will define the field Ah, derive an
effective potential for its quadratic condensate and solve the corresponding gap equation.
In the process of doing so, we will show that, on the shell of the gap equation, the Faddeev-
Popov action SFP is dynamically equivalent to a second action I whose explicit expression
will be reported in Sec. 5.1.3. The action I defines the Dynamical Model, which is the
subject of Sec. 5.2. In the latter, we will compute the Landau gauge gluon and ghost
propagators, perform their Renormalization Group improvement and compare our results
with the lattice data of [DOS16]. Finally, in Sec. 5.3 we present our conclusions.

Most of the material presented in Sec. 5.1 and in Secs. 5.2.1-5.2.2 is a review of the
theory already developed in [CFG+16, CvEP+18, DM20]. The main contribution of this
thesis to the research on the Dynamical Model is the formulation of a new renormalization
scheme – the Dynamically-Infrared-Safe (DIS) scheme, Sec. 5.2.3 – in which the Lan-
dau gauge propagators are well behaved and are found to reproduce well the lattice data
(Sec. 5.2.4). The results of Secs. 5.2.3 and 5.2.4 are part of ongoing work in collaboration
with D. Dudal, et al..

1See also [DvERV22] for an application of the method to the study of the deconfinement phase transition.
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5.1 The BRST-invariant quadratic gluon condensate

5.1.1 A note on the conventions

For the rest of this chapter, we will slightly change our formalism in order to conform to
the conventions used in [CFG+16, CvEP+18, DM20]. In the latter, like in Sec. 2.4, all of
the calculations are carried out in Euclidean space, where the Faddeev-Popov action SFP
can be expressed as

SFP =

∫
d4x

(
1

4
F aµνF

aµν +
α

2
BaBa + iBa∂µAaµ + c̄a∂µDµc

a

)
, (5.1)

with the Nakanishi-Lautrup field Ba replaced by iBa and the ghost field ca replaced by −ca.
Because of these replacements, the BRST transformations under which SFP is invariant
are given by

sAaµ = −Dµc
a , sca =

g

2
fabccbcc , sc̄a = iBa , sBa = 0 . (5.2)

In Eq. (5.1) the symbol α is used in place of ξ 2 to denote the gauge parameter.
As for AU – that is, the field which is obtained by applying a gauge transformation U

to the gauge field A –, we will adopt the definition

AUµ = U †
(
A+

i

g
∂µ

)
U (5.3)

instead of one in which U and U † are interchanged. With this convention, the consecutive
application of two gauge transformations U1 and U2 reads

(AU1)U2 = A(U1U2) . (5.4)

5.1.2 The field Ah and its quadratic condensate

Consider the functional fA[U ] defined as [CDG+05]

fA[U ] = Tr
{∫

d4x AU ·AU
}
, (5.5)

where the dot product denotes a contraction of the spacetime indices of the AU ’s and the
trace is taken over the product of the SU(N) generators. A straightforward calculation
[CDG+05] shows that fA[U ] is minimized by the transformation U = h[A] which enforces
the divergence equation

∂µAh[A]µ = 0 . (5.6)

The resulting field Ah[A], which for simplicity will also be denoted by Ah in what follows,
has the important property of being gauge invariant. This is a consequence of the identity

h[AU ] = U †h[A] , (5.7)

which can be derived from Eqs. (5.4) and (5.6) by observing that

∂µAh[A]µ = 0 ⇐⇒ ∂µ[(AUµ )
U†h[A]] = 0 , (5.8)

2The symbol ξ will be reused for a new dynamical field, which will be defined in the next section.
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and implies the transformation law

Ah[A] → (AU )h[A
U ] = Ah[A] . (5.9)

While the general solution of Eq. (5.6) is not known in closed form, an explicit pertur-
bative expression for Ah can still be obtained by defining a set of A-dependent fields ξa[A]
such that, with ξ = ξaTa,

h[A] = eigξ[A] . (5.10)

By plugging the latter into Eq. (5.6) and solving the equation order by order in g, one
finds that [CDG+05]

ξ[A] =
∂ ·A
∂2

+ i
g

∂2

[
∂ ·A, ∂ ·A

∂2

]
+ i

g

∂2

[
Aµ, ∂

µ ∂ ·A
∂2

]
+
i

2

g

∂2

[
∂ ·A
∂2

, ∂ ·A
]
+ · · · ; (5.11)

it follows that the field Ah can be expressed as

Ahµ =

(
δµν −

∂µ∂ν
∂2

)
ϕν [A] , (5.12)

where the vector field ϕµ[A] is given by

ϕµ[A] = Aµ − ig

[
∂ ·A
∂2

, Aµ

]
+
ig

2

[
∂ ·A
∂2

, ∂µ
∂ ·A
∂2

]
+ · · · . (5.13)

Eqs. (5.12) and (5.13) explicitly exhibit Ah as a divergenceless version of the gauge field
A, the difference Ah − A being a non-local functional of the divergence ∂ · A. It is clear
from the above expressions that Ah and A perturbatively coincide in the Landau gauge
(α = 0, ∂ ·A = 0): if ∂ ·A = 0, then

ϕµ = Aµ =⇒ Ahµ = Aµ . (5.14)

In the quantum context, the gauge invariance of Ah translates into an invariance under
BRST symmetry. Since (Ah)2 = (Ah)a · (Ah)a is clearly also BRST invariant, its vacuum
expectation value

〈
(Ah)2

〉
is not constrained to vanish in the covariant gauges under the

assumption that BRST symmetry is not broken in the vacuum. In particular, it makes sense
to ask whether such a condensate indeed exists and – if it does – what the consequences
of its existence are on the vacuum structure of QCD.

The VEV of the quadratic operator (Ah)2 can be studied by making use of the local
composite operator (LCO) formalism [Ver95, VKVAV01, DVS03]. Within the latter, a
current J is coupled to the operator (Ah)2 by introducing two extra terms in the Faddeev-
Popov action,

SFP → S(1)[J ] , (5.15)

where

S(1)[J ] = SFP +

∫
d4x

(
J

2
(Ah)2 − ζ

2
J2

)
. (5.16)

In the above equation, the term quadratic in the current is introduced in order to ensure
the renormalizability of the partition function Z[J ] [VKVAV01], which, in Euclidean space,
reads

Z[J ] = e−W [J ] =

∫
DF e−S

(1)[J ] (DF = DADcDcDB) . (5.17)
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Z[J ] can be differentiated with respect to the current J to yield

δW

δJ
[J ] =

1

2

〈
(Ah)2

〉
J
− ζJ = σ[J ] ; (5.18)

when evaluated at J = 0, the last expression is equal to the BRST-invariant condensate
σ[J = 0] = 1

2

〈
(Ah)2

〉
J=0

.
An effective action Γ[σ] for the condensate can be defined starting from W [J ]. As in

Sec. 1.1.3, Γ[σ] is obtained by first inverting the functional σ[J ] to a J [σ], which we will
simply denote by Jσ,

δW

δJ
[Jσ] =

1

2

〈
(Ah)2

〉
Jσ

− ζJσ = σ , (5.19)

and then by computing the Legendre transform of W [J ],

Γ[σ] =W [Jσ]−
∫
d4x Jσ σ . (5.20)

The on-shell value of the BRST-invariant condensate is then obtained by differentiating
Γ[σ] with respect to σ,

δΓ

δσ
[σ] = −Jσ , (5.21)

and setting the derivative to zero:

δΓ

δσ
[σ] = 0 ⇐⇒ σ =

1

2

〈
(Ah)2

〉
J=0

. (5.22)

The calculation of the effective action will be carried out explicitly in the next section.

5.1.3 Calculation of the condensate’s effective action

In order to compute the effective action Γ[σ] – Eq. (5.20) – in a general covariant gauge, we
first need to address two unusual properties of the action S(1) that appears in Eq. (5.17).
These are the non-locality of the operator Ah and the quadratic dependence of S(1) on
both the current J and the field Ah. Let us start from the first one.

As we saw in the last section, Ah can be computed as a power series in the coupling g
whose zero-order term is the transverse projection AT of the field A,

ATµ =

(
δµν −

∂µ∂ν
∂2

)
Aν , (5.23)

and the remaining terms only depend on the divergence ∂ · A of the gauge field. The
presence of the operator (∂2)−1 both in the higher-order terms and in AT makes the series
that defines Ah highly non-local.

If we wish to localize the operator Ah, then a new dynamical field ξ can be introduced
in the FP action in such a way that Ah will be expressed as a polynomial of infinite degree
in ξ. This can be done as follows [CvEP+18]. First we insert a unity

1 =

∫
DF δ(F ) (5.24)

in the partition function Z[J ]. Then we redefine F to be a functional of a SU(N) algebra
field ξ = ξaTa, chosen so that Ah(ξ) – with h(ξ) = eigξ – is divergenceless. In other words,
we set

F = F [ξ] = ∂µAh(ξ)µ (5.25)



126 5 The Dynamical Model

and change variables of integration in Eq. (5.24) from F to ξ,

1 =

∫
Dξ det

(
δF

δξ

)
δ(∂µAh(ξ)µ ) . (5.26)

Under the sign of integral, Ah(ξ) is clearly equal to the gauge-invariant field Ah defined in
the previous section. In particular, the Ah which appears in the source term of S(1) can be
replaced by Ah(ξ) without spoiling the physical content of the partition function. In what
follows, we will denote h(ξ) simply by h, it being understood that the latter is ξ-dependent
and equal to eigξ.

With regard to the determinant and delta in Eq. (5.26), these can be rewritten as a
functional integral over new dynamical fields τa and ηa, ηa,

det
(
δF

δξ

)
δ(∂µAh(ξ)µ ) = det

(
−∂µDµ(A

h)Λ(ξ)
)
δ(∂µAh(ξ)µ ) = (5.27)

= N
∫

DτDηDη e−∆S1 det (Λ(ξ)) .

In the above equation, N is an irrelevant constant, the action term ∆S1 reads

∆S1 =

∫
d4x

(
τa∂µAh,aµ + ηa∂µDµ(A

h)ηa
)
, (5.28)

where Dµ(A
h) is the covariant derivative associated to the field Ah,

Dab
µ (Ah) = δab∂µ − gfabc(Ahµ)

c , (5.29)

and Λ(ξ) is defined as

Λab(ξ) =
2i

g
Tr
{
ta
∂h†

∂ξb
h

}
. (5.30)

The determinant det(Λ(ξ)) makes it first appearance in this thesis, having been neglected
in [CFG+16, CvEP+18, DM20] 3. In Appendix B, we show that it decouples from the rest
of the integral as long as the partition function is defined in dimensional regularization
and the calculations are carried out perturbatively. Since we will be working under these
hypotheses, the determinant will be dropped in what follows.

With the modifications we just discussed, the partition function Z[J ] reads

Z[J ] =

∫
DF e−S

(2)[J ] , (5.31)

where the integration measure DF is given by

DF = DADcDcDBDξDτ DηDη (5.32)

and in the action S(2),
S(2) = S(1) +∆S1 , (5.33)

Ah is to be expanded perturbatively,

Ahµ = Aµ − ∂µξ + ig[Aµ, ξ] + · · · . (5.34)

3[CFG+16] also neglected the ghost term in Eq. (5.28), which was introduced in [CvEP+18].
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Crucially, S(2) is invariant under an extended BRST symmetry which acts on the new
fields as [CvEP+18]

sτa = sηa = sηa = 0 , sh = −igcaTah . (5.35)

The latter translates into a corresponding transformation for the field ξ, which to lowest
order reads

sξa = −ca + g

2
fabc c

bξc +O(g2) . (5.36)

This extended BRST transformation, easily seen to be nilpotent since s2h = 0, was ex-
ploited in [CvEP+18] to prove the renormalizability of the theory defined by the action S(2).

The effective action Γ[F ] associated to the elementary fields F is usually computed
by shifting the latter as F → F + δF , so as to factorize an exponential of the form
exp(−

∫
JF ) from the partition function. In terms of the functional W [J ], such an ex-

ponential translates into the integral −
∫
JF that appears in the definition of Γ[F ]. In

our partition function, Eq. (5.31), the shift cannot be performed in terms of the elemen-
tary fields due to the fact that the condensate Ah not only appears quadratically in the
source term, but is also a complicated function of both the gauge field A and the algebra
field ξ. In order to overcome this obstacle, a new dynamical field σ can be introduced in
the action in such a way that its Green functions coincide with those of the condensate
[VKVAV01]. In the process of doing so, we will also get rid of the action term ∝ J2, which
could potentially obstruct the calculation of the effective action.

Consider what happens if we insert a unity of the form

1 = N
∫

Dσ e−∆S2 (5.37)

in the partition function Z[J ], where the action term ∆S2 is given by

∆S2 =
1

2ζ

∫
d4x

(
σ − 1

2
(Ah)2 + ζJ

)2

. (5.38)

If we define a new action S(3) as

S(3) = S(2) +∆S2 , (5.39)

then it is easy to see, by shifting σ → σ + 1
2 (A

h)2 − ζJ in the partition function, that

⟨σ⟩J
∣∣∣
S(3)

= σ[J ]
∣∣∣
S(2)

, (5.40)

where the left-hand-side average is computed with respect to the action S(3), whereas σ[J ]
is the condensate given by Eq. (5.18) – computed with respect to S(2). Since for any
value of the current J the VEV of the dynamical field σ is equal to the BRST-invariant
condensate, the latter can be studied by making use of the modified partition function

Z[J ] =

∫
DF e−S

(3)[J ] , (5.41)

where the action S(3) explicitly reads [VKVAV01]

S(3) = SFP +∆S1 +

∫
d4x

{
Jσ +

1

2ζ
σ2 − 1

2ζ
σ(Ah)2 +

1

8ζ
[(Ah)2]2

}
. (5.42)



128 5 The Dynamical Model

As we can see, both the quadratic coupling of Ah to J and the quadratic current term
∝ J2 have disappeared from the new action. Instead, S(3) is linear in J , which is itself
linearly coupled to the field σ.

Thanks to these features, the effective action can be computed by shifting σ → Σ+ δσ,
where Σ is the value of the condensate and δσ quantifies the fluctuations of the new field
around its VEV. Explicitly,

Z[J ] = e−W [J ] = e−
∫
d4x JΣ

∫
DF e−S

(4)
, (5.43)

where the measure of integration DF is given by

DF = DADcDcDBDξDτ DηDηDδσ (5.44)

and the action S(4) reads

S(4) = SFP +∆S1 +

∫
d4x

{
Jδσ +

1

2ζ
(Σ + δσ)2 − 1

2ζ
(Σ + δσ)(Ah)2 +

1

8ζ
[(Ah)2]2

}
.

(5.45)
After renaming Σ → σ, from Eq. (5.43) we obtain the following expression for the effective
action Γ[σ]:

Γ[σ] =W [Jσ]−
∫
d4x Jσσ =

1

2ζ

∫
d4x σ2 − ln

∫

⟨δσ⟩=0
DF e−I , (5.46)

where the action I is given by [DM20]

I = SFP +

∫
d4x

(
τa∂µAh,aµ + ηa∂µDµ(A

h)ηa
)
+ (5.47)

+

∫
d4x

{
1

2ζ
(δσ)2 − 1

2ζ
(σ + δσ)(Ah)2 +

1

8ζ
[(Ah)2]2

}

and the linear terms ∝ σδσ and ∝ Jδσ have been replaced in Eq. (5.45) by the requirement
that the VEV ⟨δσ⟩ be equal to zero, so that σ is the true value of the condensate.

Let us analyze the action I. First of all, we see that – with sδσ = 0 and by Eq. (5.35) –
I is BRST invariant. Second, we see that in I the fluctuation field δσ has a quadratic
term which we can interpret as the kinetic term for a perturbative expansion of Γ[σ]. The
corresponding zero-order propagator D(δσ)(p

2) reads

D(δσ)(p
2) = ζ . (5.48)

Third, the field δσ is coupled to the BRST-invariant gauge field Ah via a cubic interaction
∝ δσ(Ah)2. Moreover, as a result of our manipulations, a new interaction quartic in Ah

arises. Both of these terms are proportional to ζ−1, which can thus be regarded as a small
parameter for the set-up of perturbation theory4. We should remark that these interaction
terms actually incorporate an infinite number of vertices that couple the gauge field A to
the fluctuation field δσ, to the algebra field ξ and to itself, given that Ah must be expanded
in powers of gξ. Finally, a quadratic term in Ah is present in I, proportional to the VEV
σ. Just like the cubic and quartic interactions, this term needs to be expanded in powers
of g. To lowest order,

− σ

2ζ
(Ah)2 = − σ

2ζ
(A− ∂ξ)2 +O(g/ζ) . (5.49)

4Later on we will see that, by employing a procedure known as the reduction of couplings, ζ−1 can be
taken to be proportional to g2 to lowest order in perturbation theory, thus confirming this statement.
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We then see that the quadratic interaction yields a mass term for the gluon field,

δL =
m2

2
A2 , (5.50)

where the gluon mass parameter m2 is given by5

m2 = −σ
ζ
. (5.51)

As long as σ is computed on-shell – that is, as long as σ solves the effective action
equation δΓ/δσ = 0 –, the Green functions of pure Yang-Mills theory can be evaluated by
making use of the action I instead of SFP. This holds true due to the fact that setting
the derivative of the effective action to zero is equivalent to computing the action at van-
ishing external current, so that SFP is recovered in the partition function6. In particular,
if the effective action equation yields a non-zero value for σ, then a formulation of pure
Yang-Mills theory that uses I as its defining action will treat the gluons as massive at tree
level from first principles, without changing the content of the FP action. The experience
gained thanks to the Curci-Ferrari model and to the Screened Massive Expansion tells us
that this should be sufficient to lead to dynamical mass generation in the gluon sector. We
will come back to this subject in Sec. 5.2.

Having laid out the technique for calculating the effective action associated to the
BRST-invariant condensate, we can now proceed to derive an explicit expression for the
effective potential V (σ), defined as

V (σ) = Γ[σ]/V4 , (5.52)

where V4 is the 4-dimensional Euclidean volume and Γ[σ] is evaluated at constant σ. Since
σ is BRST invariant, the effective potential can be computed in the Landau gauge (α = 0)
without any loss of generality.

As we saw in the last section, in the Landau gauge the fields Ah and A coincide. In
particular, for α = 0 it is not necessary to localize the field Ah, so that the steps that led
to the introduction of the fields τ and η, η can be skipped; moreover, h can be everywhere
set to 1. In other words, in the Landau gauge we can use the action

IL = SFP
∣∣
α=0

+

∫
d4x

{
1

2ζ
(δσ)2 − 1

2ζ
(σ + δσ)A2 +

1

8ζ
(A2)2

}
. (5.53)

By Eq. (5.46), the effective potential will then be given by

V (σ) =
1

2ζ
σ2 − 1

V4
ln

∫
DF e−IL , (5.54)

where
DF = DADcDcDBDδσ . (5.55)

To lowest order in perturbation theory, the path integral in Eq. (5.54) is equal to the
product of the determinants of the fields’ zero-order propagators7. All of these propagators

5Observe that σ = 1
2

〈
(Ah)2

〉
does not necessarily imply σ > 0, since the VEV needs to be renormalized

and its value can become negative in the process. The renormalization of the condensate will be discussed
in Sec. 5.2.1.

6We remark that the modifications of the action which were performed in the present section – being
the result of insertions of unities in Z[J ] – do not change neither the partition function, nor the physical
content of the theory.

7Raised to the power of 1/2 for the bosonic fields or to the power of −1 for the fermionic fields.
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are independent from σ, except for that of the gauge field – ∆σ in the following equations –,
which will thus yield the only non-constant contribution to V (σ). Explicitly, to one loop,
modulo σ-independent terms,

V (σ) =
1

2ζ
σ2 − 1

V4
ln[det(∆σ)

1/2] , (5.56)

where, in momentum space,

(∆σ)
ab
µν(q) =

1

q2 − σ/ζ
tµν(p) δ

ab . (5.57)

It follows that

V (σ) =
µϵ

2ζ
σ2 +

(d− 1)NA

2
µϵ
∫

ddq

(2π)d
ln

(
q2 − µϵ

σ

ζ

)
, (5.58)

where NA = N2−1 is the dimension of the gauge group SU(N) and we have generalized to
d = 4 − ϵ dimensions with an eye to the renormalization of V (σ). In the above equation,
µ is the scale introduced by dimensional regularization. The evaluation of the logarithmic
integral yields the following regularized expression for the effective potential [VKVAV01,
DM20]:

V (σ) =
µϵ

2ζ
σ2 − 3NA

64π2ζ2
σ2
[
2

ϵ
+ ln

(
− µ2

µϵσ/ζ

)
+

5

6

]
, (5.59)

where µ =
√
4πe−γE/2µ. It is clear from Eq. (5.59) where the need to introduce a new

constant ζ comes from. Since the second term of the equation contains a divergence, we
need a tunable – and, more specifically, a renormalizable – parameter in the first term in
order to be able to absorb it. This is done by interpreting ζ as a bare parameter, ζ → ζB,
which is multiplicatively renormalized to a finite constant8,

ζB = µ−ϵZζζ . (5.60)

With these modifications, the effective potential reads [VKVAV01, DM20]

V (σ) =
µ2ϵ

2ζ
(1− δZζ)σ

2 − 3NA

64π2ζ2
µ2ϵσ2

[
2

ϵ
+ ln

(
− µ2

µϵσ/ζ

)
+

5

6

]
, (5.61)

where δZζ = Zζ − 1 and Zζ does not appear in the second term since the latter can be
interpreted as a higher-order term. Setting

δZζ = − 3NA

32π2ζ

2

ϵ
(5.62)

provides us with the effective potential renormalized in the MS scheme,

V (σ) =
µ2ϵ

2ζ
σ2 − 3NA

64π2ζ2
µ2ϵσ2

[
ln

(
− µ2

µϵσ/ζ

)
+

5

6

]
. (5.63)

In the next section we will rephrase V (σ) in terms of the gluon mass parameter m2 and
show that its minimization leads to a non vanishing value of m2.

8We should mention that here we are not renormalizing the parameters in a systematic way. In Sec. 5.2.1,
we will give a slightly different definition of the renormalization factor Zζ , which also takes into account
the renormalization of the condensate

〈
(Ah)2

〉
.
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5.1.4 Dynamical mass generation: the gap equation

Tracing back our steps to the definition of the gluon mass parameter, we see that in d = 4−ϵ
dimensions m2 can be expressed in terms of the renormalized parameter ζ as

m2 = −µ
ϵσ

ζ
, (5.64)

where the factor of µϵ ensures that the right-hand side has the correct dimensions in the
ϵ → 0 limit. A renormalized effective potential V (m2) for the gluon mass parameter can
then be derived from Eq. (5.63), yielding [VKVAV01, DM20]

V (m2) = ζ
m4

2
− 3NA

64π2
m4

(
ln
µ2

m2
+

5

6

)
. (5.65)

Both of the above equations have an explicit dependence on ζ. Since the latter has no
counterpart in the ordinary formulation of Yang-Mills theory, before trying to compute
the on-shell value of the gluon mass parameter from the minimization of the effective
potential we should find a way to fix its value from first principles.

To this extent, we observe that the fundamental quantities of Yang-Mills theory should
not explicitly depend on ζ, since the latter disappears from the equations in the limit of
zero source J . The most obvious way to fix ζ would then be to require that the effective
potential does not depend on it – that is, to enforce the equation dV/dζ = 0. Unfortunately,
to the current order in perturbation theory, such a constraint does not yield meaningful
results. In fact, not only does the vanishing of the derivative dV/dζ give us no clue on
the value of ζ, but it also yields m2 = 0, which is easily seen not to be a minimum of
the effective potential: while V (m2 = 0) = 0, there exist values of m2 for which V (m2) is
negative.

As an alternative, we could require that ζ be a function of the coupling constant g2

alone – so that ζ may be regarded as a quantity whose value is fixed order by order in
perturbation theory by the interactions themselves [Ver95, VKVAV01, DM20]. In other
words, we may seek an expansion of ζ in the form

ζ(g2) =
1

g2

∑

n

ζn g
2n , (5.66)

where the reason for having divided by g2 in the above equation will become clear in
a moment. If we want Eq. (5.66) to be valid at all scales, then we should also require
that the running of ζ be controlled by that of g2 – which in particular will lead to the
constants ζn being scale-independent. These assumptions are at the core of the so-called
Zimmermann reduction of couplings programme [Zim85, HMTZ19], which was proven to
yield accurate results when applied in the context of the Gross-Neveu model [VSV97]. In
[VKVAV01, Gra03], it was found that, in the MS scheme, the reduction yields

ζ(g2) =
NA

g2N

9

13
+

161

52

NA

16π2
+ · · · . (5.67)

Thus, to lowest order, ζ can be taken to be proportional to g−2, with the first non-zero
coefficients in Eq. (5.66) given by

ζ0 =
9NA

13N
, ζ1 =

161NA

52 · 16π2 . (5.68)
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As a consequence of ζ being expressed as a power series in g2, the mass parameter
m2 defined by Eq. (5.64) contains higher-order terms in the coupling constant [VKVAV01,
DM20],

m2 = − µϵσ

(ζ0/g2 + ζ1) +O(g2)
= m2

0

(
1− ζ1

ζ0
g2 +O(g4)

)
, (5.69)

where

m2
0 = −µ

ϵg2σ

ζ0
. (5.70)

Since our calculation of the effective potential V (m2) stops at one loop, we must be careful
to separate the contributions coming from the different orders in g2. An explicit calculation
shows that, when expressed in terms of m2

0, the effective potential reads [VKVAV01, DM20]

V (m2
0) =

9

13

NA

N

m4
0

2g2
− 3NA

64π2
m4

0

(
ln
µ2

m2
0

+
113

39

)
+O(g2) , (5.71)

where the higher-order terms come both from the O(g4) corrections to ζ and m2 and from
the interaction terms in the Landau gauge action IL that defines the partition function.
In Sec. 5.2 we will see that, to lowest order in the coupling, only m2

0 enters the expression
of the gluon propagator computed in the presence of a non-vanishing condensate. For this
reason, in what follows we will focus on the above expression for the effective potential,
which allows us to compute the value of the mass parameter m2

0 in terms of g2 and of the
renormalization scale µ.

The first derivative of V (m2
0) with respect to m2

0 reads

V ′(m2
0) =

9

13

NA

N

m2
0

g2
− 3NA

32π2
m2

0

(
ln
µ2

m2
0

+
187

78

)
. (5.72)

Equating the latter to zero yields the so-called gap equation, which provides us with the
on-shell value of the gluon mass parameter m2

0 [DM20]:

m2
0 =

13Ng2

3 · 32π2 m
2
0

(
ln
µ2

m2
0

+
187

78

)
. (5.73)

The gap equation has two solutions. The first of these, m2
0 = 0, corresponds to a vanishing

potential,
V (m2

0 = 0) = 0 . (5.74)

The second solution,

m2
0 = µ2 exp

(
187

78
− 3 · 32π2

13Ng2

)
, (5.75)

on the other hand, corresponds to a negative value of V (m2
0),

V (m2
0) = −3NAm

4
0

128π2
< 0 . (5.76)

Clearly, Eq. (5.75) yields the global minimum of the effective potential.

The fact that the minimum of V (m2
0) lies at a non-zero value of m2

0 has far-reaching
consequences. First of all, it proves that the gluon condensate

〈
(Ah)2

〉
does not vanish in

pure Yang-Mills theory. We remark that, albeit having been derived in the Landau gauge,
this result holds in every covariant gauge thanks to the BRST invariance of the operator Ah
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and of its square. Second of all, as a consequence of
〈
(Ah)2

〉
̸= 0, it shows that a mass term

for the gluons is generated in every covariant gauge via the inclusion of the BRST-invariant
condensate in the Faddeev-Popov Lagrangian. In the previous sections, this was achieved
by consecutive transformations of the action SFP – performed in such a way as to leave the
contents of the theory unchanged – which resulted in an action I with respect to which
the gluons propagate at tree level like massive particles. As we know by now, treating
the gluons as massive at order zero in perturbation theory is expected to yield a dressed
gluon propagator whose transverse component remains finite in the deep infrared. If this
turns out to be the case also for the propagator computed by using the action I, then our
findings will provide a strong indication that the occurrence of dynamical mass generation
in the gluon sector may be triggered by the BRST-invariant condensate

〈
(Ah)2

〉
. In the

next section we will test our hypothesis by computing the DM propagators in the Landau
gauge.

5.2 Dynamical Model: the propagators in the Landau gauge

Having seen how the BRST-invariant condensate
〈
(Ah)2

〉
can be included in the formalism

of QCD, we are now in a position to give a precise definition of the Dynamical Model. The
Dynamical Model (DM) is the reformulation of pure Yang-Mills theory that uses the action
I – Eq. (5.47) – in place of the Faddeev-Popov action SFP to study the dynamics of the
SU(N) gauge theories in a general covariant gauge. The equivalence between the Dynamical
Model and the ordinary formulation of pure Yang-Mills theory was proven to hold in
Sec. 5.1 provided that the gluon mass parameter m2 – equivalently, the gluon condensate –
is computed on shell – that is, on the solutions of the gap equation V ′(m2) = 0.

In the present section, the dressed gluon and ghost propagators will be computed in
the Landau gauge within the framework of the Dynamical Model both at fixed scale and
by making use of the Renormalization Group. As we will see, in the limit of vanishing
momenta the DM gluon propagator saturates to a finite constant. The latter will be shown
to be proportional to the inverse of the gluon mass parameter m2, implying that – as far
as the Landau gauge is concerned – dynamical mass generation in the gluon sector can be
accounted for by the non-vanishing of the BRST-invariant condensate

〈
(Ah)2

〉
.

As the first step in our derivation of the propagators, we will start by discussing the
renormalization of the Dynamical Model and by presenting its Feynman rules.

5.2.1 Renormalization and Feynman rules

In Sec. 5.1.2, the source term for the BRST-invariant condensate
〈
(Ah)2

〉
was introduced

disregarding the issue of renormalization. Since keeping track of the renormalization factors
will be essential in what follows, let us take a step back and show how the parameters and
fields of the Dynamical Model are to be renormalized.

When coupling the condensate to the external current J , two things need to be kept
in mind. First of all, the BRST-invariant gauge field Ah needs to be renormalized by
making use of an appropriate renormalization factor ZAh . Second of all, even after having
renormalized Ah, the VEV

〈
(Ah)a(x) · (Ah)a(x)

〉
is still divergent due to the fact that,

as a product of operators evaluated at the same spacetime point, the operator (Ah)2 is
singular. This issue can be overcome by interpreting the partition function Z[J ] to be a
functional of a renormalized current J – that is, by introducing a renormalization factor
ZJ for the current as well.



134 5 The Dynamical Model

Starting from ZAh and ZJ , one can define two mutually independent renormalization
factors Z2 and Zζ via the equations [VKVAV01]

JB A
h
B ·AhB = (ZJ ZAh) J A

h ·Ah = Z2 J A
h ·Ah , (5.77)

ζB J
2
B = Zζζ µ

−ϵ J2 . (5.78)

Note that, at variance with Sec. 5.1.3, the Zζ in Eq. (5.78) does not renormalize the
parameter ζ alone, but it also includes the renormalization of the current J . We will come
back to this point at the end of the present section. Z2 and Zζ are the renormalization
factors that appear in the source term ∆S for the BRST-invariant potential. Explicitly,

∆S =

∫
d4x

(
Z2

2
J Ah ·Ah − µ−ϵ

Zζζ

2
J2

)
. (5.79)

Differentiating the partition function Z[J ] with respect to J while using Eq. (5.79) now
yields the condensate σ[J ] in the form

σ[J ] =
δW

δJ
[J ] =

Z2

2

〈
Ah ·Ah

〉
J
− Zζζ µ

−ϵ J , (5.80)

where the fields Ah and J are to be interpreted as renormalized quantities. In the above
equation, the factors Z2 and Zζ are needed to remove the divergences that arise from the
product Ah(x) ·Ah(x) and its VEV.

The fields ξ, τ , η and η that were introduced in Sec. 5.1.3 with the purpose of local-
izing the operator Ah also need to be renormalized. Since the main focus of what follows
is computing the propagators in the Landau gauge – within which, as discussed earlier,
the localization step can be skipped –, we will go no further in discussing this topic. A
complete treatment of the renormalization of the action I in a general covariant gauge can
be found in [CvEP+18].

In the Landau gauge (α = 0) the DM action IL = I|α=0 amended by taking Z2 and Zζ
into account can be explicitly computed to be

IL = SFP
∣∣
α=0

+

∫
ddx

{
µϵ

2Zζζ
(δσ)2 − µϵZ2

2Zζζ
(σ + δσ)A2 +

µϵZ2
2

8Zζζ
(A2)2

}
. (5.81)

By rewriting the mass term as

−µ
ϵZ2

2Zζζ
σA2 = −µ

ϵ

2ζ
σA2 −

(
Z2

Zζ
− 1

)
µϵ

2ζ
σA2 , (5.82)

a renormalized gluon mass parameter can be still defined in terms of the finite quantities
σ and ζ as

m2 = −µ
ϵσ

ζ
, (5.83)

so that the zero-order Euclidean gluon propagator ∆ab
mµν(p) reads

∆ab
mµν(p) =

δab tµν(p)

p2 +m2
. (5.84)

The second term in Eq. (5.82), on the other hand, provides a renormalization counterterm
for the gluon mass operator: to lowest order,

∆Lc.t. = (δZ2 − δZζ)
m2

2
A2 (δZ2,ζ = Z2,ζ − 1) . (5.85)
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As for the other terms in IL, we see that – as before – the zero-order propagator D(δσ)(p
2)

of the fluctuation field δσ can be expressed as

D(δσ)(p
2) = ζµ−ϵ . (5.86)

Additionally, the analytical expressions for the cubic δσA2 and quartic (A2)2 vertices, δΓabµν
9 and δΓabcdµνρσ, respectively, are seen to be given by [DM20]

δΓabµν =
µϵ

ζ
δabδµν (5.87)

and
δΓabcdµνρσ = −µ

ϵ

ζ

(
δabδcdδµνδρσ + δacδbdδµρδνσ + δadδbcδµσδνρ

)
. (5.88)

The renormalization factors Z2 and Zζ contribute to these vertices and to the quadratic
δσ operator via appropriate renormalization counterterms, to be added to Lc.t.. Finally,
the remaining Feynman rules of the Dynamical Model are identical to those of ordinary
pure Yang-Mills theory, and include the renormalization counterterms ZA and Zg for the
gluon field and for the coupling constant.

To end this section, we point out that the condensate’s effective potential V (σ), com-
puted to one loop while taking into account the appropriate renormalization factors, is
given by

V (σ) =
µ2ϵ

2Zζζ
σ2 +

(d− 1)NA

2
µϵ
∫

ddq

(2π)d
ln

(
q2 − µϵ

σ

ζ

)
, (5.89)

where now Zζ is the renormalization factor defined by Eq. (5.78). Thus, while in Sec. 5.1.3
Zζ was referred to ζ alone, we see that the renormalized expression of the potential does
not change even when the correct renormalization factors are included. From V (σ) we can
derive a renormalized potential V (m2) for the mass parameter m2,

V (m2) =
ζm4

2Zζ
+

(d− 1)NA

2
µϵ
∫

ddq

(2π)d
ln
(
q2 +m2

)
(5.90)

whose first derivative V ′(m2),

V ′(m2) =
ζm2

Zζ
+

(d− 1)NA

2
µϵ
∫

ddq

(2π)d
1

q2 +m2
, (5.91)

once set to zero, provides us with the renormalized gap equation.

5.2.2 The gluon and ghost propagators

Let us proceed to the calculation of the gluon and of the ghost propagators within the Dy-
namical Model. The Landau gauge (inverse) gluon propagator computed in the framework
of the DM can be expressed as [DM20]

[∆−1(p)]abµν = δab
[
ZA p

2 tµν(p) + (1 + δZ2 − δZζ)m
2 δµν +Πµν(p)

]
. (5.92)

In the above equation, ZA is the gluon field strength renormalization factor, the renormal-
ization constants δZ2 and δZζ arise from the renormalization of the gluon mass operator

9Not to be confused with the gluon mass counterterm of Chpts. 3 and 4.
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m2A2, and Πµν(p) – modulo color structure – is the Landau gauge gluon polarization. An
explicit calculation shows that, to one loop,

Πµν(p) = Π(CF)
µν (p)− 4 · 2

2!

(
µϵ

2ζ

)2 ζ

µϵ

∫
ddq

(2π)d
∆mµν(q)+ (5.93)

+
4 · 3
4!

µϵ

ζ

[
δµνNA

∫
ddq

(2π)d
δστ∆mστ (q) + 2

∫
ddq

(2π)d
∆mµν(q)

]
.

Here Π(CF)(p) – given by diagrams (1), (2a) and (3a) in Fig. 3.7 – is the gluon polarization
computed in pure Yang-Mills theory by replacing the ordinary Landau gauge massless zero-
order gluon propagator by a massive one; as such, it is equal to the polarization computed
within the Curci-Ferrari model – hence the label CF. On the other hand, the second and
third terms in Eq. (5.93) arise, respectively, from the interaction of the gluon field with
the fluctuation field δσ and from the self-interaction mediated by the new quartic (A2)2

vertex. The corresponding diagrams are depicted in Fig. 5.1.

Figure 5.1: Diagrams that contribute to the DM one-loop gluon polarization, arising from
the new cubic and quartic vertices in the action IL. The wiggly line represents the fluctu-
ation field δσ’s propagator.

It is easy to see that, in Eq. (5.93), the second term inside the brackets cancels the
second term in the first line. Therefore, the DM gluon polarization simplifies to

Πµν(p) = Π(CF)
µν (p) +

(d− 1)NA

2

µϵ

ζ
δµν

∫
ddq

(2π)d
1

q2 +m2
. (5.94)

By plugging Eq. (5.94) into Eq. (5.92) and observing that, to lowest order, the tree-level
mass term in the latter can be rewritten as

(1 + δZ2 − δZζ)m
2 = δZ2m

2 + Z−1
ζ m2 , (5.95)

we find that the DM gluon propagator can be put in the form [DM20]

∆−1
µν (p) = ZAp

2 tµν(p) + δZ2m
2 δµν +Π(CF)

µν (p)+ (5.96)

+ δµν

(
Z−1
ζ m2 +

(d− 1)NA

2

µϵ

ζ

∫
ddq

(2π)d
1

q2 +m2

)
.

By comparing the last expression with Eq. (5.91), we see that the terms in brackets
are none other than the first derivative V ′(m2) of the gluon mass parameter’s effective
potential, divided by ζ. In particular, if m2 solves the gap equation – V ′(m2) = 0 –, then
these terms vanish and we are left with

∆(p2) =
1

ZAp2 + δZ2m2 +Π
(CF)
T (p2)

(5.97)
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for the transverse component ∆(p2) of the gluon propagator, where Π
(CF)
T (p2) is the trans-

verse component of the Curci-Ferrari polarization. Since the equivalence between the
Dynamical Model and ordinary pure Yang-Mills theory only holds on the solutions of
V ′(m2) = 0, we can take Eq. (5.97) as our final expression for ∆(p2).

Interestingly, the constant ζ disappears from the DM gluon propagator once the latter is
computed on the shell of the gap equation. This could have been foreseen, given that such a
parameter was not present in the Faddeev-Popov action in the first place. Nonetheless, an
implicit dependence of the propagator on ζ still survives via the solutions of V ′(m2) = 0.
Within the reductions of coupling programme, this dependence on ζ is traded with a
dependence on the coupling constant g2 in a perturbative fashion – see Sec. 5.1.4. In
particular, since both δZ2 and Π

(CF)
T (p2) are already first-order in g2, the mass parameter

in Eq. (5.97) can be identified with the lowest-order m2
0 defined in Sec. 5.1.4 – namely

m2
0 = −µ

ϵ g2Z2

〈
A2
〉

2ζ0

(
ζ0 =

9NA

13N

)
. (5.98)

In what follows, we will not distinguish between m2 and m2
0, denoting by m2 the value

provided by the last equation.
A second observation we wish to make is that, again when enforcing V ′(m2) = 0, the

tree-level mass term m2 is removed from ∆(p2). This is akin to what happens in the
Screened Massive Expansion after the single-cross diagram – Fig. 3.6 – is added to the
polarization; similar cancellations can be shown to occur at every order in perturbation
theory [DM20]. At variance with the SME, however, a renormalization counterterm of
the form δZ2m

2 is still left in ∆(p2). Such a feature is not accidental: the Curci-Ferrari
polarization, in fact, contains a mass divergence (proportional to m2) which needs to be
absorbed into δZ2 in order to obtain a finite result. Let us see explicitly how this works.

The one-loop Curci-Ferrari polarization was first computed in [TW10]. Its transverse
component reads

Π
(CF)
T (p2) = −λm

2

6

(
13s− 9

2

)(
2

ϵ
+ ln

µ2

m2

)
+ (5.99)

− λm2

24s2

[
242

3
s3 − 126s2 + 2s+ (s2 − 2)s3 ln s+

− 2(s+ 1)3(s2 − 10s+ 1) ln(s+ 1)+

− s3/2(s+ 4)3/2(s2 − 20s+ 12) ln

(√
s+ 4−√

s√
s+ 4 +

√
s

)]
,

where s = p2/m2, µ =
√
4πeγE/2µ is the scale introduced by dimensional regularization

and λ is a normalized coupling constant defined as

λ =
Nαs
4π

. (5.100)

The divergent part of Π(CF)
T (p2) is given by

[Π
(CF)
T (p2)]div. = −λ

(
13

6
p2 − 3

4
m2

)
2

ϵ
(5.101)

and contains two terms. The first one, proportional to p2, is absorbed by the usual gluon
field renormalization factor ZA = 1 + δZA. The second one, proportional to m2, can
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only be removed from the propagator if a corresponding counterterm is available. In the
framework of the Dynamical Model, this counterterm is precisely δZ2. In particular, from
Eq. (5.101), we see that δZA and δZ2 must be chosen according to

δZA =
13λ

6

2

ϵ
+ fin. , δZ2 = −3λ

4

2

ϵ
+ fin. , (5.102)

where the finite terms depend on the renormalization scheme in which the propagator is
defined. Note that δZA contains the ordinary gluon field divergence – see e.g. Sec. 3.1.4.
This happens because, just like the SME and the Curci-Ferrari model, the Dynamical
Model as well does not modify the UV limit of pure Yang-Mills theory.

Once renormalized, the Landau gauge DM gluon propagator reads

∆(p) =
1

p2 +Π
(CF)
T,R (p2)

, (5.103)

where Π
(CF)
T,R (p2) is the renormalized transverse Curci-Ferrari polarization. In the limit of

vanishing momentum p2 → 0, since

Π
(CF)
T (p2) → 3λm2

4

(
2

ϵ
+

5

6
+ ln

µ2

m2

)
̸= 0 , (5.104)

the gluon propagator remains finite – and is thus massive – unless the finite terms of the
renormalization constant δZ2 are chosen to exactly eliminate the finite terms in Π

(CF)
T,R (p2).

Of course, this will need to be avoided.

We now turn to the ghost sector. In the framework of the Dynamical Model, the ghost
propagator can be expressed as

G(p2) = 1

Zc p2 +Σ(p2)
, (5.105)

where Zc is the ghost field renormalization constant and Σ(p2) is the ghost self-energy. To
one loop, since the corrections coming from the cubic δσA2 and quartic (A2)2 vertices are
higher-order, the Landau gauge ghost self-energy diagrams are the same as those of ordinary
Yang-Mills theory10, albeit with massive zero-order propagators in their internal gluon
lines. In other words, the DM ghost self-energy is equal to its Curci-Ferrari counterpart
Σ(CF)(p2) [DM20],

Σ(p2) = Σ(CF)(p2) . (5.106)

Like the gluon polarization, the one-loop Curci-Ferrari ghost self-energy was also first
computed in [TW10], yielding

Σ(CF)(p2) = −3λ

4
p2
(
2

ϵ
+ ln

µ2

m2

)
+
λ

4
p2
[
(s+ 1)3

s2
ln(1 + s)− s ln s− 1

s
− 5

]
. (5.107)

Since the divergent part of Σ(CF)(p2) reads

[Σ(CF)(p2)]div. = −3λ

4
p2

2

ϵ
, (5.108)

we see that the ghost field renormalization constant must be chosen according to

δZc =
3λ

4

2

ϵ
+ fin. . (5.109)

10Namely, the diagram on the left in Fig. (3.4).
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Again, the latter is equal to the ordinary divergence of pure Yang-Mills theory – see e.g.
Sec. 3.1.3.

In the limit of vanishing momenta p2 → 0, the Landau gauge ghost self-energy goes to
zero like p2. Explicitly,

Σ(CF)(p2) → −3λp2

4

(
2

ϵ
+

5

6
+ ln

µ2

m2

)
. (5.110)

It follows from Eq. (5.105) that the ghost propagator grows to infinity as p2 → 0, confirming
that within the Landau gauge Dynamical Model the ghosts remain massless.

5.2.3 RG improvement of the Dynamical Model in the Dynamically-
Infrared-Safe scheme

In order to extend the validity of the Dynamical Model propagators to the widest possible
range of momenta, the fixed-scale results described in the previous section can be improved
by making use of Renormalization Group methods. In what follows, the propagators, the
gluon mass parameter m2 and the coupling λ will be defined in the so-called Dynamically-
Infrared-Safe (DIS) scheme, which is presented for the first time in this thesis. The DIS
scheme is just the MOM-Taylor scheme discussed in the context of the Screened Massive
Expansion (Sec. 3.3.1), with an additional renormalization condition for the gluon mass
parameter – that is, for the renormalization factor Z2.

Within the DIS scheme, the propagators are defined in the MOM scheme: denoting by
∆(p2;µ2) and G(p2;µ2), respectively, the gluon and ghost propagators renormalized at the
scale µ, we set

∆(µ2;µ2) =
1

µ2
, G(µ2;µ2) = 1

µ2
. (5.111)

From Eqs. (5.97) and (5.105), it follows that in the DIS scheme the one-loop Landau gauge
DM field renormalization factors ZA and Zc are given by

ZA = 1− δZ2
m2

µ2
− Π

(CF)
T (p2 = µ2)

µ2
, Zc = 1− Σ(CF)(p2 = µ2)

µ2
, (5.112)

where δZ2 in the first of the above equations still needs to be fixed by appropriate renor-
malization conditions. The strong coupling, on the other hand, is defined in the Taylor
scheme – that is, by choosing the coupling renormalization factor Zg so that

ZgZ
1/2
A Zc = 1 . (5.113)

As we saw in Sec. 3.3.1, this is equivalent to having the beta function βg be equal to

βg =
g

2
(γA + 2γc) , (5.114)

where γA and γc are the gluon and ghost anomalous dimensions. A beta function βλ for
the normalized coupling λ = Ng2/16π2 can be introduced as well, yielding

βλ = µ
dλ

dµ
= λ(γA + 2γc) . (5.115)

With ZA, Zc and Zg defined in the MOM-Taylor scheme, the only counterterm that
remains to be fixed to complete the renormalization of the Landau gauge Dynamical Model
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is Z2. The latter, as we saw in the previous section, determines the renormalization of the
gluon mass term in the propagator ∆(p2). Moreover, it enters the renormalization of the
gluon mass parameter m2 directly. In order to see this, recall that – to lowest order in g2 –
m2 can be expressed in terms of the BRST-invariant condensate as

m2 = −g
2µϵ

2ζ0
Z2

〈
A2
〉
. (5.116)

Substituting the coupling and the gluon field for their bare counterparts, we find that

m2 = −g
2µϵ

2ζ0
Z2

〈
A2
〉
= −g

2
Bµ

ϵ

2ζ0

Z2

Z2
gZA

〈
A2
B

〉
. (5.117)

In particular, again to lowest order, the renormalization factor of m2 is given by Z2/Z
2
gZA.

If the coupling is defined in the Taylor scheme, then such a factor can be rewritten as

Z2

Z2
gZA

=
Z2Z

2
c

Z2
gZAZ

2
c

= Z2Z
2
c . (5.118)

By introducing a gamma function γm2 for the mass, such that

µ
dm2

dµ
= γm2 m2 , (5.119)

we see that in the Taylor scheme

γm2 = γ2 + 2γc , (5.120)

where γ2 is the gamma function associated to the factor Z2,

γ2 =
µ

Z2

dZ2

dµ
. (5.121)

In order to fix Z2, we first notice that, by Eqs. (5.102) and (5.109),

(Z2Zc)div. = 1 . (5.122)

This relation was proven to hold to any perturbative order in [DVS03]. Therefore, we could
choose to set Z2 = Z−1

c , extending the equality in Eq. (5.122) from the divergent terms
to the full renormalization factors. However, this choice turns out to be disastrous when
the MOM scheme is used for the propagators. To see this, observe that, by Eq. (5.112),
Z2 = Z−1

c would yield

δZ2 = −δZc =
Σ(CF)(p2 = µ2)

µ2
. (5.123)

By expanding Σ(CF)(µ2) around µ2 = 0 – Eq. (5.110) –, we find that δZ2 = −δZc would
then imply the following asymptotic limit for the product δZ2m

2 that appears in the gluon
propagator:

δZ2m
2 → −3λm2

4

(
2

ϵ
+

5

6
+ ln

µ2

m2

)
, (5.124)

By Eq. (5.104), the latter is equal to −Π
(CF)
T (0). In other words, in the limit of vanish-

ing renormalization scales, δZ2 would kill the finite terms of the zero-momentum gluon
polarization, which is precisely what we wanted to avoid in the context of the fixed-scale
expansion.
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The asymptotic behavior described by Eq. (5.124) leads to a massless RG-improved
gluon propagator, just like it does at fixed scale. To solve this issue, we can impose a
slightly different renormalization condition on δZ2: instead of setting δZ2 = −δZc, we
define the former as

δZ2 = −δZc +
5λ

8
. (5.125)

The constant 5λ/8, when multiplied by m2, prevents the corresponding finite term in
Eq. (5.124) from entering δZ2, so that Π(CF)(0) is not renormalized to zero and the gluon
propagator remains massive11.

Eq. (5.125) – together with the MOM condition for the propagator and the Taylor
condition for the coupling – completes the definition of the Dynamically-Infrared-Safe
scheme. We note that, since the derivative of λ with respect to µ is O(λ2), Eq. (5.125)
implies that, to lowest order,

γ2 = −γc . (5.126)

In particular, by Eq. (5.120), the gluon mass parameter’s DIS anomalous dimension γm2

reads
γm2 = γc . (5.127)

Thus, in the DIS scheme, the RG flow is determined by the beta and gamma functions

βλ = λ(γA + 2γc) , γm2 = γc , (5.128)

where, to one loop,

γA = −µ d

dµ

(
Π

(CF)
T (p2 = µ2)

µ2
+
m2

µ2
Σ(CF)(p2 = µ2)

µ2
+

5λm2

8µ2

)
, (5.129)

γc = −µ d

dµ

(
Σ(CF)(p2 = µ2)

µ2

)
. (5.130)

An explicit calculation yields

γA → −13λ

3
, γc → −3λ

2
(µ2 → ∞) (5.131)

for the high-energy limit of the gluon and ghost anomalous dimensions. The latter are
just the ordinary pQCD gamma functions: in the UV regime, the RG-improved gluon and
ghost propagators will have the standard pQCD behavior. As for the running coupling
and gluon mass parameter, we find that

βλ → −22λ2

3
, γm2 → −3λ

2
(µ2 → ∞) , (5.132)

the first of which, again, is just the ordinary pQCD beta function, whereas the second
yields a running m2(µ2) which at large renormalization scales behaves as

m2(µ2) ∼ [λ(µ2)]
9
44 ∼ [lnµ2]−

9
44 , (5.133)

thus decreasing as a negative rational power of the logarithm at high energies.

11We remark that the massiveness of the RG-improved gluon propagator does not depend on the specific
coefficient of the constant term in Eq. (5.125), as long as it is chosen different from zero. The factor of 5/8
is the most natural choice, given that an opposite term is present in the low-energy expansion of δZc.
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To end this section, we derive some useful expressions for the RG-improved gluon and
ghost propagators12. Let us start from the latter. Recall that the MOM-scheme RG-
improved ghost propagator G(p2;µ20) renormalized at the scale µ0 can be expressed in
terms of the gluon anomalous dimension γc as

G
(
p2;µ20

)
=

1

p2
exp

(∫ p

µ0

dµ

µ
γc

)
. (5.134)

Since in the DIS scheme γc = γm2 , the above equation can be rewritten as

G
(
p2;µ20

)
=

1

p2
exp

(∫ p

µ0

dµ

µ
γc

)
=

1

p2
exp

(∫ p

µ0

dµ

µ
γm2

)
= (5.135)

=
1

p2
exp

(∫ p

µ0

dµ

m2

dm2

dµ

)
=

1

p2
m2(p2)

m2(µ20)
.

We thus see that in the DIS scheme the RG-improved ghost propagator is equal to the
running gluon mass parameter m2(p2) divided by p2, normalized by the value of m2 at the
renormalization scale µ0. Similarly, since by Eq. (5.128) the gluon anomalous dimension
γA can be expressed as

γA =
βλ
λ

− 2γm2 , (5.136)

the RG-improved DIS gluon propagator ∆(p2;µ20) renormalized at the scale µ0 can be put
in the form

∆
(
p2;µ20

)
=

1

p2
exp

(∫ p

µ0

dµ

µ
γA

)
=

1

p2
exp

(∫ p

µ0

dµ

µ

[
βλ
λ

− 2γm2

])
(5.137)

=
1

p2
exp

(∫ p

µ0

dµ

[
1

λ

dλ

dµ
− 2

m2

dm2

dµ

])
=

=
1

p2
λ(p2)

λ(µ20)

m4(µ20)

m4(p2)
.

Eqs. (5.135) and (5.137) allow us to study the infrared behavior of the RG-improved
propagators analytically. Indeed, assuming that, as p2 → 0, the running mass parameter
m2(p2) saturates to a non-zero constant while the running coupling λ(p2) goes to zero like
p2, the last equations tell us that ∆(p2;µ20) also saturates to a non-zero constant, whereas
G(p2;µ20) diverges like 1/p2. The validity of these assumptions can be proven by solving
the DIS RG equations for λ and m2 in the low-energy limit,

µ
dλ

dµ
∝ m2λ2

µ2
, µ

dm2

dµ
∝ λµ2 , (5.138)

which follow from the asymptotic behavior

γA ∝ m2λ

µ2
, γc ∝

µ2λ

m2
(µ2 → 0) . (5.139)

We thus conclude that in the deep infrared the RG-improved DIS propagators have the
expected limits. In the next section, we will put our results to the test by comparing them
with the lattice data.

12These can be shown to hold also in renormalization schemes which slightly differ from the DIS scheme
– see e.g. [DM20].
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5.2.4 Comparison with the lattice data

As we saw at the end of the previous section, the RG-improved Landau gauge DM gluon
and ghost propagators renormalized at the scale µ0 in the DIS scheme can be expressed as

∆(p2;µ20) =
1

p2
λ(p2)

λ(µ20)

m4(µ20)

m4(p2)
, G(p2;µ20) =

1

p2
m2(p2)

m2(µ20)
, (5.140)

where λ(p2) = Nαs(p
2)/4π is the running coupling and m2(p2) is the running gluon mass

parameter. The latter can be computed by numerically integrating the Renormalization
Group equations

µ
dλ

dµ
= βλ , µ

dm2

dµ
= γm2 m2 , (5.141)

with the beta and gamma functions βλ and γm2 provided by Eqs. (5.128) and (5.129),
starting from initial values λ(µ20) and m2(µ20) at the renormalization scale µ20.

Within the Dynamical Model, λ and m2 are not independent parameters. On the
contrary, they are related to one another via the gap equation V ′(m2) = 0. Since the
effective potential V (m2) is RG invariant by definition, the order in which one solves the
gap equation and the RG equations is irrelevant, as long as the choice of the renormalization
scheme is consistent between the two.

In Sec. 5.1.4, the gap equation was renormalized in the MS scheme and evaluated at
fixed scale. To be consistent with the RG improvement of the propagators, in what follows
we will instead use the RG improved version of the potential – namely,

V (m2) =
9

13

NA

N

m4(µ)

2g2(µ)

(
1 + β0

g2(µ)

16π2
ln
m2(µ)

µ2

)1+γ0/β0

, (5.142)

where
β0 =

11N

3
, γ0 = −3N

2
(5.143)

are the one-loop coefficients of the MS beta function βg and gamma function γm2 . Eq. (5.142)
can be obtained by resumming V (m2) to leading log within the MS scheme, as explained
in [Kas92].

To find the DIS solutions of V ′(m2) = 0 starting from Eq. (5.142), one has to convert
the coupling and mass parameter from one scheme to the other. This can be done by
making use of the equations

m2
DIS =

Zm2,MS

Zm2,DIS
m2

MS , λDIS =
Z2
g,MS

Z2
g,DIS

λMS , (5.144)

where Zm2,DIS and Zg,DIS (resp. Zm2,MS and Zg,MS) are the mass and coupling renormal-
ization factors evaluated in the DIS (resp. MS) scheme. Explicitly, to one loop, these
read

m2
DIS =

[
1 +

5λ

8
+ (δZc,DIS − δZc,MS)

]
m2

MS , (5.145)

λDIS =
[
1 + (δZA,DIS − δZA,MS) + 2(δZc,DIS − δZc,MS)

]
λMS . (5.146)

The solutions of the RG improved gap equation are displayed in Fig. 5.2 both in the DIS
scheme and in the MS scheme.
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Figure 5.2: Solutions of the RG improved gap equation at the renormalization scale µ0 =
1 GeV. Blue curve: DIS scheme. Orange curve: MS scheme.

In what follows, the one-loop RG-improved Landau gauge DM propagators ∆(p2;µ20)
and G(p2;µ20) will be compared with the lattice data of [DOS16]. The only free parameter
of the comparison will be the value of the DIS coupling λ(µ20) at the initial renormalization
scale µ0 – taken to be equal to 1 GeV 13 –, the value of the DIS gluon mass parameter
m2(µ20) being calculated from the gap equation as a function of λ(µ20).

In order to fix λ(µ20), a combined fit of the gluon and ghost dressing functions –
p2∆(p2;µ20) and p2G(p2;µ20), respectively – was performed, with equal weights for both
the functions. The fit yielded λ(µ20) = 0.473, corresponding to αs(µ

2
0) = 1.981 and to

m(µ20) = 0.655 GeV by the DIS gap equation (Fig. 5.2).
The RG-improved one-loop Landau gauge DM gluon propagator and dressing function

are displayed, respectively, in Figs. 5.3 and 5.4, together with the lattice data of [DOS16].
As we can see, the DIS functions show a very good agreement with the lattice over a
wide range of momenta, extending from p ≈ 0.5 GeV up to p ≈ 8 GeV. In the infrared,
as anticipated in the previous section, the gluon propagator saturates to a finite non-zero
value, confirming that within the framework of the Landau gauge Dynamical Model the
gluon develops a mass. Nonetheless, the one loop approximation in which the propagator
is computed is not able to reproduce the lattice results at energies lower than ≈ 0.5 GeV.
As discussed in Sec. 3.3.3 and reported likewise for the Screened Massive Expansion, this
issue is common to massive perturbative truncations of Yang-Mills theory improved by
the Renormalization Group, and is expected to be solved by going to higher order in
perturbation theory [GPRT19, CS20].

13Since the lattice data of [DOS16] were originally renormalized at 4 GeV, a rescaling of the data was
necessary to renormalize them at 1 GeV.
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Figure 5.3: Euclidean transverse gluon propagator in the Landau gauge (α = 0) renor-
malized at the scale µ0 = 1 GeV. Solid curve: one-loop RG-improved DM in the DIS
scheme with the gluon mass parameter obtained from the gap equation; λ(µ20) = 0.473,
m(µ20) = 0.655 GeV. Dots: lattice data from [DOS16].
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Figure 5.4: Euclidean gluon dressing function in the Landau gauge (α = 0) renormalized
at the scale µ0 = 1 GeV. As in Fig. 5.3.

In Fig. 5.5 we display the RG-improved one-loop Landau gauge DM ghost dressing
function. At variance with the gluon sector, the agreement between the DIS function and
the lattice deteriorates below p ≈ 1 GeV. Nonetheless, the match between the two is very
good at larger momenta – up to p ≈ 8 GeV. In the limit of vanishing momenta, the dressing
function p2G(p2;µ20) saturates to a constant, implying that G(p2;µ20) grows to infinity like
1/p2. In other words, the RG-improved ghost propagator is massless, as expected.
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Figure 5.5: Euclidean ghost dressing function in the Landau gauge (α = 0) renormalized
at the scale µ0 = 1 GeV. As in Fig. 5.3.
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Figure 5.6: DM running coupling (top) and gluon mass parameter (bottom) for the initial
values λ(µ20) = 0.473 and m(µ20) = 0.655 GeV at µ0 = 1 GeV.
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In Fig. 5.6 we show the DIS running coupling αs(p2) = 4π
3 λ(p

2) and gluon mass pa-
rameter m(p2) obtained by integrating the RG equations with initial values λ(µ20) = 0.473
and m(µ20) = 0.655 GeV at µ0 = 1 GeV. Given that, within the DIS scheme, the coupling
and propagators are defined, respectively, in the Taylor scheme and in the MOM scheme,
the relation

αs(p
2) = αs(µ

2
0) [p

2∆(p2;µ20)][p
2G(p2;µ20)]2 (5.147)

still holds between αs(p2) and ∆(p2;µ20) and G(p2;µ20), as can be easily seen from Eq. (5.140).
In particular, since the gluon propagator and the ghost dressing function saturate to a non-
zero constant as p2 → 0, αs(p2) tends to zero like p2 in the deep infrared. At intermediate
energies, the running coupling first increases with the momentum – attaining a maximum
at p ≈ 0.64 GeV, where αs ≈ 2.77 – and then decreases again, showing the same behavior
as the MOM-Taylor SME running coupling. In the UV, since the high-energy limit of
the theory is not modified by the introduction of the condensate, αs(p2) reduces to the
ordinary one-loop pQCD running coupling.

The running gluon mass parameter m2(p2) is a decreasing function of momentum. For
the fitted initial coupling λ(µ20) = 0.473, its saturation value at p = 0 is found to be
m(0) ≈ 0.78 GeV. At high energies, m2(p2) was already shown to have the behavior

m2(p2) ∼ λ
9
44 (p2) ∝ [ln(p2)]−

9
44 . (5.148)

5.3 Conclusions

In this chapter we showed that the non-vanishing of the BRST-invariant condensate σ =
1
2

〈
(Ah)2

〉
in pure Yang-Mills theory can be proven in any covariant gauge by minimizing

an effective potential V (σ) derived by coupling the condensate to an external current J
in the Faddeev-Popov action SFP. Subsequent manipulations of SFP, performed with the
double objective of localizing the field Ah and of linearizing the source terms, led us to an
action I which, when computed on the shell of the gap equation V ′(σ) = 0, is dynamically
equivalent to the Faddeev-Popov action. I defines the reformulation of pure Yang-Mills
theory which we referred to as the Dynamical Model.

In the framework of the Dynamical Model, the gluons propagate as massive at tree level
due to a mass term ∝ (Ah)2 which appears in the action as a result of the non-vanishing
of the condensate. The corresponding gluon mass parameter m2 was found to be equal
to −σ/ζ, where ζ is a free parameter introduced in the formalism in order to renormalize
the effective potential. By resorting to a procedure known as the reduction of couplings,
the parameter ζ was expressed as a power series in the coupling constant g2; given that,
to lowest order, ζ was found to be proportional to the inverse coupling g−2, the mass
parameter m2 turned out to be proportional to

〈
g2(Ah)2

〉
plus higher-order corrections,

which were tracked up to next-to-leading order as required for solving the gap equation.
In a general covariant gauge, the DM action contains a number of new fields. These are

the field δσ – which quantifies the fluctuations of the operator 1
2(A

h)2 around its vacuum
expectation value – and the fields τa and ηa, ηa – which enforce the divergencelessness
of the field Ah. τa and ηa, ηa can be neglected in the Landau gauge, where – at least
perturbatively – Ah coincides with the ordinary gluon field A, and as such already has zero
divergence. As a result, the Landau gauge DM action IL takes on a considerably simpler
form, in which the (Ah)2 operator (and the corresponding condensate) is replaced by the
ordinary quadratic gluon operator A2 and the only new field is the fluctuation field δσ.

Following [DM20], the one-loop DM gluon and ghost propagators were computed in
the Landau gauge by making use of the action IL. The latter contains two new interaction
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terms – namely, a cubic interaction δσA2 and a quartic interaction (A2)2 – which are
proportional to ζ−1. On the shell of the gap equation, the inclusion of the corresponding
diagrams was shown to have the sole effect of removing the tree-level gluon mass term m2

from the dressed gluon propagator, while leaving behind a counterterm δZ2 required to
renormalize the gluon polarization. Because of this, the one-loop Landau gauge DM gluon
and ghost propagators are the same as those computed within the Curci-Ferrari model,
with the notable exception of the aforementioned lack of a tree-level mass term in the gluon
propagator.

The Renormalization Group improvement of the DM propagators was performed in a
renormalization scheme termed the Dynamically-Infrared-Safe (DIS) scheme. In the DIS
scheme, the propagators and coupling are defined, respectively, in the MOM and in the
Taylor scheme, while the renormalization counterterm δZ2 is chosen in such a way as to
preserve the massiveness of the RG-improved gluon propagator at zero momentum. To one
loop, the Landau gauge DIS propagators can be expressed in terms of the running coupling
λ(p2) = N

4παs(p
2) and running gluon mass parameter m2(p2) alone. The former were

compared to the lattice results of [DOS16] and were found to be in very good agreement
with the data over a wide range of momenta, extending from p ≈ 0.5 GeV up to p ≈ 8 GeV.
Below p ≈ 0.5 GeV, the one-loop approximation is insufficient to reproduce the exact
results; the agreement with the data is nonetheless expected to improve by going to higher
order in perturbation theory.

The DIS running coupling was shown to have the behavior typical of Taylor couplings
computed by massive perturbative methods: instead of developing an infrared Landau pole
as in ordinary perturbation theory, it hits a maximum at p ≈ m and then decreases to zero
like p2 as p → 0; in the UV, it reduces to the running coupling of ordinary pQCD. The
running gluon mass parameter, on the other hand, strictly decreases with the momentum,
reaching a saturation value m(0) ≈ 0.78 GeV and vanishing at high energies like a rational
power of ln p2.

The Dynamical Model has the advantage of being a renormalizable framework within
which – by procedures such as the reduction of couplings – the Green functions can be
computed order-by-order in perturbation theory in terms of the strong coupling constant
alone. This is made possible by the fact that the value of the condensate, and thus of the
gluon mass parameter, can be computed by solving a gap equation which is itself built into
the definition of the theory.

In the infrared, the Landau gauge Dynamical Model reproduces the expected, non-
perturbative behavior of pure Yang-Mills theory not only qualitatively – by the saturation
of the gluon propagator at zero momentum – but also quantitatively, as demonstrated by
a comparison with the lattice data. In the UV, where the effects of the gluon condensate
are negligible, it reduces to ordinary perturbation theory.

The results presented in this chapter indicate that the non-vanishing of the BRST-
invariant gluon condensate

〈
(Ah)2

〉
is a good candidate for explaining the mechanism by

which dynamical mass generation occurs in the gluon sector of pure Yang-Mills theory.



6

Conclusions and outlook

The breakdown of ordinary perturbation theory in the infrared regime of Quantum Chro-
modynamics, together with the occurrence of dynamical mass generation in the gluon
sector, make it necessary to devise new analytical methods for studying the low-energy be-
havior of the strong interactions. In this thesis, two such methods – the Screened Massive
Expansion and the Dynamical Model – have been presented within the framework of pure
Yang-Mills theory, with applications of the former to full QCD.

The Screened Massive Expansion (SME) is a perturbative formulation of Quantum
Chromodynamics that treats the transverse gluons as massive at tree level by performing a
shift of the expansion point of the Faddeev-Popov gauge-fixed action. The shift is achieved
by adding a mass term for the transverse gluons in the kinetic part of the FP Lagrangian
and subtracting it back from its interaction part, so that the total action is left unchanged.
As a result of the shift, the gluons propagate with a massive propagator at order zero in
the perturbative series; moreover, a new interaction vertex – quadratic in the gluon fields –
arises in the Feynman rules of perturbation theory.

The presence of a gluon mass in the loops of the SME prevents the latter from devel-
oping infrared divergences and makes it possible for the gluon polarization not to vanish
in the zero-momentum limit. Due to a cancellation which occurs between the tree-level
mass inherited from the zero-order propagator and an opposite term contained in the po-
larization, the low-energy behavior of the transverse (dressed) gluon propagator is entirely
determined by the interactions. At variance with ordinary pQCD, the one-loop SME gluon
propagator is found to saturate to a finite constant – and thus to develop a mass – at zero
momentum, in agreement with the predictions of the lattice calculations. The ghost prop-
agator, on the other hand, diverges in the infrared, thus remaining massless as expected.
Both the propagators – when evaluated in Euclidean space and at fixed scale – accurately
reproduce the Landau gauge pure Yang-Mills lattice data up to momenta of ≈ 4 GeV for
the gluon, and of ≈ 2 GeV for the ghost.

By making use of optimization procedures based on principles of gauge invariance and
of minimal sensitivity, the pure Yang-Mills fixed-scale SME propagators evaluated in a
general covariant gauge can be made to depend – modulo multiplicative renormalization –
on the Landau gauge value of the gluon mass parameter m2 alone. In the gluon sector,
this is accomplished by enforcing the gauge-parameter independence of the position of the
(complex-conjugate) poles of the propagator – as required by the Nielsen identities – and
by assuming that the phases of the residues at the poles are independent from the gauge
parameter as well. The optimized propagators are found to be indistinguishable from those
obtained from a full fit of the lattice data.

The domain of validity of the SME propagators can be extended to arbitrarily large
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momenta by resorting to Renormalization Group (RG) methods. Within such a framework,
the Taylor-scheme SME running coupling is free of Landau poles provided that the value of
the coupling at the initial renormalization scale is not too large. At intermediate energies,
the RG-improved and the optimized fixed-scale results can be made to match by choosing
a suitable value of the initial coupling, leaving yet again m2 as the only free parameter of
the expansion. The corresponding propagators are found to be in good agreement with
the lattice calculations over a wide range of momenta, extending from ≈ 0.7 GeV up to
≈ 8 GeV. At low energies, the one-loop approximation is unable to capture the behavior
of the lattice data. The discrepancy between the two is expected to be mitigated by going
to higher order in perturbation theory.

The Screened Massive Expansion can be extended to finite temperatures T ̸= 0 in
order to study the thermal behavior of QCD. Within pure Yang-Mills theory, a one-loop
evaluation of the (spatially) transverse and longitudinal gluon propagators is able to re-
produce the lattice results only if the temperature dependence of the SME parameters is
tuned separately for the two components. Doing so provides an effective description of the
propagators at zero Matsubara frequency which is quite accurate in the transverse sector,
but less so in the longitudinal one – especially at low momenta and at high temperatures.
The temperature dependence of the zero-(spatial-)momentum gluon poles – that is, of the
mass and damping factor of the gluon quasi-particles – can be estimated by making use of
the results obtained in the transverse sector. Both of them are found to decrease with T
below the critical temperature Tc ≈ 270 MeV corresponding to the deconfinement phase
transition, and to increase roughly linearly with T – as is expected for massless particles –
for T > Tc. Overall, we assess that at high temperatures the SME may be suboptimal
as a perturbative method when compared to more refined approaches such as the Hard
Thermal Loop resummation.

Within the quark sector of full QCD, a shift analogous to the one performed in the
gluon sector can be used to study the infrared enhancing of the quark mass brought by
the violation of chiral symmetry. The Landau gauge Euclidean quark mass functions com-
puted to one loop in the SME are found to be in very good agreement with the unquenched
lattice results for light quarks of masses ≤ 90 MeV, displaying saturation values of about
≈ 400 MeV which are much larger than the quarks’ renormalized masses. The one-loop
SME quark Z-function, on the other hand, shows a decreasing behavior which conflicts
with the lattice results. This might be a consequence of the unusually small one-loop cor-
rections to the vector part of the Landau gauge quark self-energy, which make it necessary
to at least include the two-loop diagrams in the calculations. Evidence that the behavior
of the Z-function can be fixed by going to higher order in perturbation theory can be
provided within the framework of the SME by replacing the internal gluon lines of the one-
loop self-energy diagrams with (the principal-part approximation of) the full dressed gluon
propagator, thus taking into account the higher-order corrections to the latter. Doing so
provides a Z-function which correctly increases with momentum at high energies, despite
still showing the wrong behavior at low energies.

The Dynamical Model (DM) explores the possibility that the dynamical generation
of an infrared mass for the gluons might be triggered by a non-vanishing condensate of
dimension 2 of the form ⟨(Ah)2⟩, where Ah is a gauge- and BRST-invariant non-local
version of the gluon field A. The former can be defined as the field obtained by ap-
plying a gauge transformation to A in such a way as to make the latter divergenceless.
When expanded in powers of the coupling constant, Ah is found to be perturbatively equal
to the transverse component of the gluon field, plus an infinite number of higher-order
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terms which depend non-locally on the divergence ∂ ·A.
The non-vanishing of the VEV ⟨(Ah)2⟩ within pure Yang-Mills theory can be studied

by making use of Local Composite Operator methods. After coupling the operator (Ah)2

to an external current in the Faddeev-Popov action, successive transformations of the
partition function lead to a BRST-invariant action I in which the condensate ⟨(Ah)2⟩
appears multiplied by the operator (Ah)2 itself – thus yielding a mass term for the gluons.
An effective potential can then be derived which is found to have a minimum for a non-zero
value of the condensate, showing that ⟨(Ah)2⟩ ≠ 0 in any covariant gauge.

When evaluated on the solutions of the gap equation – that is, at vanishing first deriva-
tive of the effective potential –, the action I is dynamically equivalent to the Faddeev-Popov
action. The Green functions of pure Yang-Mills theory can thus be computed in any co-
variant gauge within the Dynamical Model, by making use of the action I. The DM
incorporates the non-perturbative corrections brought by the condensate via a gluon mass
parameter m2 ∝ −⟨(Ah)2⟩ and via a number of new vertices which also involve new bosonic
and fermionic auxiliary fields. The derivation of the DM gluon and ghost propagators is
the simplest in the Landau gauge, where Ah = A and most of the auxiliary fields decouple.
An explicit calculation shows that the one-loop Landau gauge DM gluon polarization is
equal to its Curci-Ferrari counterpart modulo new terms which cancel the tree-level gluon
mass as soon as the gap equation is enforced. Similarly, the one-loop ghost self-energy
is equal to the one computed within the Curci-Ferrari model. When renormalized in the
Dynamically-Infrared-Safe (DIS) scheme, the Euclidean RG improved DM propagators are
found to be in very good agreement with the Landau gauge lattice data down to momenta
≈ 0.5 GeV. Thanks to the gap equation, this is achieved by making use of the strong
coupling constant at the initial renormalization scale as the only free parameter of the
expansion. The corresponding DIS running coupling is free of Landau poles, but still quite
too large at intermediate energies for a one-loop approximation to be accurate down to
vanishing scales; indeed, the approximation fails to reproduce the lattice data at momenta
smaller than ≈ 0.5 GeV. The running gluon mass parameter is found to saturate to a finite
constant in the zero momentum limit, and to vanish like a negative rational power of the
logarithm at high energies.

The Screened Massive Expansion and the Dynamical Model paint a picture of the
infrared regime of Quantum Chromodynamics which agrees with the Landau gauge lattice
calculations both qualitatively – displaying dynamical mass generation in the gluon sector
and a massless ghost propagator – and quantitatively, within the limits of a one-loop
approximation. The advantage they provide over other frameworks for studying the strong
interactions at low energy is that of being first-principles, fully analytic methods, whose
predictions can be improved systematically by evaluating the higher-order contributions
to the QCD perturbative series. The way in which such predictions are made from first
principles differs between the two frameworks. In the SME, the spurious free parameters of
the expansion are fixed by requirements of gauge invariance and minimal sensitivity, which
in the context of the Renormalization Group can then be exploited to express the strong
running coupling as a function of the gluon mass parameter. In contrast, the Dynamical
Model achieves the same goal – although practically in the opposite sense, expressing the
mass parameter in terms of the coupling – thanks to a gap equation which is built into its
very definition.

Both the SME and the DM use the ordinary Faddeev-Popov action as the starting point
for the set-up of a modified perturbative expansion of QCD. This has three important con-
sequences on the overall structure of the resulting frameworks. First of all, BRST invariance
is retained as a symmetry: in the SME, this is true at the exact level, given that the total FP
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action is not changed at all; in the DM, on the other hand, BRST invariance is achieved
by a natural (nilpotent) extension of the standard BRST transformations to the new fields
that appear in the action I. Second of all, the tree-level mass term which appears in the
zero-order gluon propagators is removed from the corresponding dressed propagator: in
the SME this happens thanks to an opposite gluon mass counterterm in the polarization,
whereas in the DM the cancellation occurs as soon as the gap equation is enforced. In
particular, in both cases the massiveness of the propagator can be specifically traced back
to the loops of the expansion. Finally, none of the two frameworks addresses the issue of
the Gribov copies. As we argued in the Introduction, this can be justified on the account
that the effects of the Gribov copies on the dynamics of the theory are expected to be less
strong if the gluons acquire a mass.

Whereas the perturbative series of the SME contains an infinite number of crossed
diagrams at each order in the coupling – so that a criterion for its truncation has to be
chosen explicitly by moving first and foremost from renormalizability requirements –, the
opposite applies to the Dynamical Model. In practical terms, this means on the one hand
that the SME and the DM radiative corrections turn out to be different when computed to
fixed order in perturbation theory, and on the other hand that the gluon mass parameters
m2 defined within the two frameworks cannot be directly identified with one another. This
last aspect is confirmed by the fact that the mass parameter of the SME is found not to run
with the renormalization scale at one loop – at variance with its DM counterpart, whose
running is determined by that of the strong coupling constant and of the BRST-invariant
condensate. Thus, while in the Dynamical Model the gluon mass parameter is interpreted
in terms of the latter by its very definition, within the SME m2 must be simply regarded
as a dimensionful scale introduced in the formalism with the objective of providing the
transverse gluons with a mass. Despite these differences, the results obtained at one loop
within the two frameworks remain overall quite similar, and yield a value of m ≈ 0.65 GeV
(at 1 GeV, as far as the DM is concerned) when the energy units of the theory are fixed
by a comparison with the lattice data.

The achievements of the SME and of the DM in the two-point sector of pure Yang-
Mills theory make the two approaches worthy of further research. As far as the Dynamical
Model is concerned, work is already in progress to evaluate the propagators in an arbitrary
covariant gauge so as to test whether the model is able to predict dynamical mass generation
for the gluons beyond the Landau gauge. This is widely expected on the basis of the
massiveness of the corresponding zero-order propagator, but needs to be confirmed by
explicit calculations carried out in the context of specific renormalization schemes. Once
in possession of the relevant analytic expressions, we will also be able to investigate whether
the poles of the propagator are complex-conjugate and gauge-parameter independent, and
to test the hypothesis – advanced within the SME – that the phases of its residues as well
do not depend on the gauge.

In the framework of the Screened Massive Expansion, the gauge invariance of the gluon
phases can in principle be used to make a determination of the gluon free parameters also
within full QCD. Preliminary results suggest that this will be trickier to achieve than in
pure Yang-Mills theory due to the larger number of parameters, which encompasses the
chiral mass – that is, the mass parameter that sets the scale for the quark mass function
at low energies –, as well as the quark’s renormalized mass and various renormalization
constants. The latter might be fixed – or at least put in relation to one another – by
enforcing the gauge invariance of the quark poles, which again holds because of the the
Nielsen identities. One-loop expressions for the SME quark propagator in an arbitrary
covariant gauge have already been derived with the objective of undertaking these analyses.
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In the long run, it would be interesting to extend the Dynamical Model to full QCD
and to use both the SME and the DM to evaluate higher-point Green functions such as
the 3-gluon, the ghost-gluon and the quark-gluon interactions vertices. Moreover, the
calculations could be pushed to two loops in order to test whether the deep IR behavior
of the RG improved propagators and the overall behavior of the quark Z-function improve
as expected when the higher-order corrections are included in the perturbative series. Our
hope is that the results presented in this thesis and by previous works will generate further
interest in the research on perturbative methods for probing the non-perturbative regime
of Quantum Chromodynamics.
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Appendix A

Canonical quantization of the
Faddeev-Popov action

In Secs. 1.1.2 and 1.1.4 we saw that in the presence of the Nakanishi-Lautrup field Ba the
Faddeev-Popov Lagrangian LFP can be expressed as

LFP = −1

2
∂µA

a
ν (∂µAa ν − ∂νAaµ)− gfabc ∂µA

a
ν A

b µAc ν+ (A.1)

− 1

4
g2fabcf

a
deA

b
µA

c
νA

dµAe ν +
ξ

2
BaBa − ∂µBaAaµ+

+ ψ(iγµ∂µ −M)ψ + g ψγµTaψA
a
µ+

+ ∂µca∂µc
a + gfabc ∂

µcaAbµc
c .

Just like any Lagrangian, LFP can be quantized by making use of the canonical formalism.
Within the canonical formalism, one associates conjugate momenta Π to the time-

derivatives of the fields F using the formula

Π =
∂RL
∂Ḟ

(A.2)

and then computes the Hamiltonian density H by performing a Legendre transform of the
Lagrangian L,

H(F,Π) = Π Ḟ (F,Π)− L(F, Ḟ (F,Π)) , (A.3)

where the functions Ḟ (F,Π) are obtained by inverting Eq. (A.2). As quantum opera-
tors, the fields and their conjugate momenta are endowed with canonical (equal-time)
anti/commutation relations of the form

[F (x⃗, t),Π(y⃗, t)]∓ = i δ(x⃗− y⃗) , (A.4)

where the upper (resp. lower) sign holds for bosonic (resp. fermionic) fields. The Heisen-
berg equations for the fields and their conjugate momenta are then obtained by taking the
commutators of the former with the Hamiltonian operator H =

∫
d3x H,

Ḟ = i[H,F ] , Π̇ = i[H,Π] . (A.5)

By applying these definitions to LFP, we find that the momenta Πaµ, ΠaB, Πac , Πac , Πψ
conjugate to the fields Aaµ, Ba, ca, ca and ψ, respectively, are given by

Πaµ = F aµ0 , ΠaB = −Aa0 , Πac = ∂0c
a , Πac = −D0c

a , Πψ = iψ† . (A.6)
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We see that, formally, Πa 0 = 0. The term Πa 0Ȧa0 will thus vanish in Eq. (A.3). More-
over, ΠaB = −Aa0. It follows that in the canonical formalism Aa0 must not be treated as
a field variable, but rather as the momentum conjugate to the field Ba (modulo sign).
From Eqs. (A.4) and (A.6) we can read out the following non-vanishing anti/commutation
relations for the fields:

[Aai (x⃗, t), F
b j0(y⃗, t)] = iδabδji δ(x⃗− y⃗) , [Aa0(x⃗, t), B

b(y⃗, t)] = iδabδ(x⃗− y⃗) , (A.7)

{ca(x⃗, t), ∂0cb(y⃗, t)} = iδabδ(x⃗− y⃗) , {ca(x⃗, t), D0c
b(y⃗, t)} = −iδabδ(x⃗− y⃗) ,

{ψ(x⃗, t), ψ†(y⃗, t)} = δ(x⃗− y⃗)1 .

In order to derive the Faddeev-Popov Hamiltonian, we first note that, by Eq. (A.6),
the time derivatives of the fields Aai , c

a and ca can be expressed in terms of the fields
themselves and of their conjugate momenta as

Ȧai = −Πai + ∂iA
a
0 + gfabcA

b
iA

c
0 , ċa = −Πac − gfabcA

b
0c
c , ċ

a
= Πac . (A.8)

Despite the lack of analogous relations for the time derivatives of the fields ψ and Ba, the
linearity of LFP in ψ̇ and Ḃa, together with the result Πψ = iψ†, ΠaB = −Aa0, allow us to
compute H from Eq. (A.8) alone. An explicit calculation that uses

H = Πa iȦai +ΠaBḂ
a +Πac ċ

a +Πac ċ
a
+Πψψ̇ − LFP (A.9)

as its starting point yields

H = −1

2
Πa iΠai +Πa i

(
∂iA

a
0 + gfabcA

i
bA

c
0

)
+

1

4
F aijF

a ij − ξ

2
BaBa + ∂iBaAai+ (A.10)

+ iΠψγ
0
(
iγiDi + gγ0T aAa0 −M

)
ψ −Πac

(
Πac + gfabcA

b
0c
c
)
− ∂icaDic

a .

It can be checked that the Heisenberg equations for Aai , c
a and ca coincide with Eqs. (A.8),

whereas the other Heisenberg equations can be rearranged so as to be formally identical to
the field equations obtained by minimizing the Faddeev-Popov action SFP =

∫
d4x LFP.



Appendix B

Perturbative decoupling of the
determinant det(Λ(ξ)) within
dimensional regularization in the
Dynamical Model

In order to localize the BRST-invariant gluon field Ah, in Sec. 5.1.3 we introduced a unity
of the form

1 = N
∫

DξDτ Dη̄Dη e−∆S1 det(Λ(ξ)) (B.1)

in the partition function of the Dynamical Model. In this Appendix we show that the
determinant det(Λ(ξ)) does not perturbatively contribute to the n-point Green functions
of the theory, as long as it is defined in dimensional regularization. As a consequence,
when doing calculations in perturbation theory using dimensional regularization, the de-
terminant can be suppressed by setting det(Λ(ξ)) = 1.

In order to prove our statement, we first rewrite the determinant in terms of a functional
integral over a new pair of ghost fields (λ, λ),

det(Λ(ξ)) =

∫
DλDλ exp

{
−
∫
ddx λ

a
Λab(ξ)λ

b

}
. (B.2)

Since perturbatively

Λab(ξ) = δab −
g

2
fabc ξ

c +
g2

3!
facefedb ξ

cξd + · · · , (B.3)

we may re-express Eq. (B.2) as

det(Λ(ξ)) =

∫
DλDλ e−(I0+I1) , (B.4)

where the action terms I0 and I1 read

I0 =

∫
ddx λ

a
λa , I1 =

∫
ddx λ

a
Ωab(ξ)λ

b , (B.5)

and Ωab(ξ) is given by

Ωab(ξ) = Λab(ξ)− δab . (B.6)
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The action term I1 contains the interactions between (λ, λ) and ξ. The latter are quadratic
in the ghost fields, with their ξ dependence encoded in the function Ωab(ξ). I0, on the other
hand, contains the zero-order ghost propagator, which is easily seen to be Qab(p) = δab in
momentum space, or Qab(x) = δabδ(x) in coordinate space.

Consider the vacuum expectation value ⟨O⟩ of an operator O which does not depend
on the newly-introduced fields (λ, λ). This can be computed as

⟨O⟩ = ⟨Oe−I1⟩0
⟨e−I1⟩0

= ⟨Oe−I1⟩0,conn. =
+∞∑

n=0

(−1)n

n!
⟨OIn1 ⟩0,conn. , (B.7)

where the subscript 0 denotes that the average is to be taken with respect to the action I0
plus any other (λ, λ)-independent term originally present in the full action of the theory.
In d dimensions, ⟨OIn1 ⟩0,conn. explicitly reads

⟨OIn1 ⟩0,conn. =

∫ n∏

i=1

ddxi

〈
O

n∏

j=1

Ωajbj (ξ(xj))

〉

00,conn.

× (B.8)

×
〈
λ
a1
(x1)λ

b1(x1) · · ·λan(xn)λbn(xn)
〉

gh.,conn.
,

where the subscript 00 denotes that the first average is to be taken with respect to the
original action of the theory, whereas the subscript “gh.” denotes that the second average
is to be taken with respect to the zero-order ghost action I0. Diagrammatically, for each
n ≥ 1, the ghost average receives contributions from a single ghost loop, depicted in
Fig. B.1. In coordinate space, suppressing the color structure, the diagram reads

(−1)(n− 1)! δ(x1 − x2) · · · δ(xn−1 − xn)δ(xn − x1) , (B.9)

or, equivalently,

(−1)(n− 1)! δ(0)

∫
ddx

n∏

i=1

δ(xi − x) , (B.10)

where δ(0) is a Dirac delta in coordinate space,

δ(0) =

∫
ddq

(2π)d
1 . (B.11)

Therefore, for n ≥ 1,

⟨OIn1 ⟩0,conn. = (−1)(n− 1)! δ(0)

∫
ddx ⟨OTr {Ωn(ξ(x))}⟩00,conn. , (B.12)

where Ωn(ξ) is the matrix product of n factors of Ω(ξ) and the trace is taken over the color
indices.

In dimensional regularization, the integral in Eq. (B.11) vanishes (see e.g. [Col84]). It
follows that ⟨OIn1 ⟩0,conn. = 0 for every n ≥ 1, so that, going back to Eq. (B.7),

⟨O⟩ = ⟨O⟩0 = ⟨O⟩00 , (B.13)

where to obtain ⟨O⟩00 we have integrated out the free ghost action I0 from ⟨O⟩0. What
Eq. (B.13) means is that the perturbative corrections to the vacuum expectation value
⟨O⟩ due to the determinant det(Λ(ξ)) vanish in dimensional regularization. Therefore, the
vacuum expectation value of any operator O in the full theory can be computed by setting
det(Λ(ξ)) = 1 in its dimensionally regularized partition function.
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Figure B.1: Loop contributing to the ghost average in Eq. (B.8) (example for n = 6). The
dashed line is the (λ, λ) zero-order propagator.

One may have noticed that our proof – besides dimensional regularization – relies
exclusively on the fact that Λ(ξ) is equal to the unit matrix to lowest order in perturbation
theory. The question arises, then, whether the proof is general enough to apply to the
determinant of any such matrix. The answer is that, in general, it does not. Indeed,
setting δ(0) = 0 in dimensional regularization is allowed if and only if the calculations can
be carried out without spoiling the symmetries of the theory.

While Lorentz invariance is clearly preserved by the action in Eq. (B.2), showing that
the latter does not violate the BRST invariance of the full action of the theory requires us
to extend the symmetry to the ghost fields λ and λ. Indeed, a straightforward calculation
starting from Eq. (5.35) and from the definition of Λab(ξ) in Eq. (5.30) yields

sΛab(ξ) = Λac(ξ)Ψ
c
b(c, ξ) , (B.14)

where
Ψa
b (c, ξ) = −∂(sξ

a)

∂ξb
, (B.15)

so that the new ghosts must have non-vanishing BRST transformations if the action in
Eq. (B.2) is to be invariant. Since the BRST transformation does not act on the anti-ghost
index of Λab(ξ), it is reasonable to define

sλa = −Ψa
b (c, ξ)λ

b , sλ
a
= 0 , (B.16)

where sλa is chosen so that s(Λλ) = 0. The action in Eq. (B.2) – and the full action of
the theory together with it – is invariant with respect to this extended BRST transforma-
tion. The nilpotency of the extended BRST operator is easily proved by observing that
s2Λab(ξ) = 0 – which holds thanks to the nilpotency of s on the fields ξ and c – implies
that

0 = s2Λab = Λac

(
Ψc
dΨ

d
b + sΨc

b

)
, (B.17)

that is, sΨ = −Ψ2. When plugged into Eq. (B.16), this relation ensures that s2λa =
s2λ

a
= 0.
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Avery simple variational approach to pure SUðNÞ Yang-Mills theory is proposed, based on the Gaussian
effective potential in a linear covariant gauge. The method provides an analytical variational argument for
mass generation. Themethod can be improved order by order by a perturbative massive expansion around the
optimal trial vacuum. At finite temperature, a weak first-order transition is found (at Tc ≈ 250 MeV for
N ¼ 3) where the mass scale drops discontinuously. Above the transition the optimal mass increases linearly
as expected for deconfined bosons. The equation of state is found in good agreement with the lattice data.
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I. INTRODUCTION

In the last decades the dynamics of QCD has been under
intensive theoretical study, aimed at understanding the
properties of matter under the extreme conditions reached
by heavy-ion collisions. Our understanding of the phase
diagram has further motivated the study of pure SUðNÞ
Yang-Mills theory in the IR and at finite temperature,
neglecting quarks as a first approximation. However,
despite the important progresses made, we still miss an
analytical description of SUðNÞ theory from first princi-
ples, because of the breaking down of standard perturbation
theory below the QCD scale.
The numerical simulation of the theory on a lattice has

provided many important insights into the gluon dynamics.
Among them, the dynamical generation of a gluon mass
in the dressed propagator in the Landau gauge [1–8] and
the occurrence of a phase transition with the gluons
that become deconfined above the critical temperature
[9–11]. However, since the numerical simulations can only
provide data in the Euclidean space, no direct information
can be gained in the Minkowski space where the dynamical
properties of the gluon are defined. For instance, no direct
proof of confinement can be obtained on the lattice and
even the definition of mass can only be regarded as an
energy scale without any clear dynamical meaning.
Continuous methods have been developed such as

functional renormalization group [12–15], truncation of
Dyson-Schwinger equations [16–23] and Hamiltonian

approaches [24,25]. They usually require the numerical
solution of integral equations and there is no simple way to
extract analytical results from the data.
On the other hand, effective models have been studied

analytically, but they are not from first principles and are
usually based on some modified quantization procedure
[26–29] or different Lagrangians. For instance, adding a
gluon mass to the Lagrangian is enough for extending the
validity of perturbation theory down to the deep IR,
yielding a very good overall picture of Yang-Mills theory
at one loop [30–32]. In the context of background field
methods the added gluon mass has provided a good
description of the phase diagram at finite temperature,
enforcing the idea that most of the nonperturbative effects
can be embedded in the gluon-mass parameter [33–36].
While those models are important for understanding the
physics of gluons, there is a growing interest in the study of
analytical approaches to the exact SUðNÞ theory.
In this paper, we discuss a very simple variational

approach to SUðNÞ theory, based on the Gaussian effective
potential (GEP) in a linear covariant gauge. We do not
modify the original Lagrangian of the theory but optimize
the perturbative expansion by a variational argument,
yielding a calculational analytical method that already
provides very important predictions at the lowest orders
of the approximation. Among the main results achieved by
the present study we mention: (i) a variational argument
for mass generation; (ii) the prediction of a first-order
deconfinement transition at Tc ≈ 250 MeV for N ¼ 3;
(iii) the formal definition of a perturbative expansion
around the optimized vacuum, allowing for an order-by-
order improvement of the approximation.
The original approach of Ref. [37] is here improved and

extended to finite temperature, yielding analytical results
up to a one-dimensional numerical integration that is
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required for the thermal functions. The perturbative expan-
sion around the vacuum turns out to be the massive
expansion developed in Refs. [38–41] which was found
in excellent agreement with the lattice data [42]. Thus, the
present study enforces the validity of that expansion and
provides a variational argument for its derivation.
Moreover, while by itself the massive expansion cannot
give a genuine proof of mass generation, the variational
nature of the GEP can be used as a tool for demonstrating
that a massless gaussian vacuum of Yang-Mills theory is
unstable against the vacuum of massive gluons [37].
The expansion has been extended to finite temperature in

Ref. [41] allowing for a direct calculation of the gluon
damping rate in the IR and providing a direct proof of
confinement. While in that study the zeroth order mass
parameter was kept fixed, at finite temperature the GEP
provides the free energy and allows us to determine the trial
mass parameter variationally, as a function of temperature.
The optimal mass scale is found discontinuous at the
deconfinement transition, leading to an enhancement of
the mass decrease that was already found in Ref. [41], in
agreement with the observed behavior of the Debye mass in
lattice simulations [10].
The GEP is the energy density of a trial Gaussian

vacuum functional that is centered at a given average value
of the field. The width of the functional is given by the mass
of the trial free theory and is determined variationally at
each value of the average field, yielding an effective
potential that has been studied by several authors, mainly
in the context of spontaneous symmetry breaking and scalar
theories [43–64]. While the GEP is a genuine variational
method [46,47], several extensions to higher orders have
been proposed [56–59]. The idea of an expansion around the
optimized vacuum of the GEP is not new [65] but has not
been developed further. Expanding around the optimized
massive vacuum of the GEP, the unconventional massive
expansion ofRefs. [38–40] is recovered in a naturalway [37].
Thus, the phenomenological success of the expansion might
be due to the variational choice of a zeroth order vacuum
which incorporates most of the nonperturbative effects,
leaving a residual interaction term that can be treated by
perturbation theory.
One of the important merits of the GEP is its paradox of

being a pure variational method disguised as a perturbative
calculation, making use of the standard graphs of pertur-
bation theory. Moreover, in the present context, the
calculation is highly simplified by the assumption that
the average of the gauge field is zero at the minimum of the
potential. In other words, we only need the effective
potential at its minimum where it is a function VðmÞ of
the trial mass parameter m. However, at variance with
perturbation theory, the issue of renormalization is less
standardized in a variational method and the regularization
of the diverging integrals becomes a central aspect of the
calculation.

The paper is organized as follows: in Sec. II the general
formalism is discussed in the simple case of a scalar theory
where standard well known results are recovered by the
method; in Sec. III the delicate issue of regularization of the
diverging integrals and renormalization of the GEP is
addressed; in Sec. IV the GEP for pure SUðNÞ Yang-
Mills theory is studied at T ¼ 0, providing a simple
variational argument for mass generation; in Sec. V the
GEP is extended to finite temperature and the phase
transition is discussed; a general discussion and a summary
of the results follow in Sec. VI.

II. GEP AND MASS GENERATION
IN THE SCALAR THEORY

In order to illustrate the method, in this section we revise
the formalism for the simple case of a self-interacting scalar
theory [46] where the effective potential is well known
and is given by three vacuum graphs as shown in Fig. 1.
The renormalization scheme will be discussed in the next
section. Most of the arguments developed here are quite
general and will be used in the rest of the paper.
Let us consider the Lagrangian

L ¼ 1

2
ϕð−∂2 −m2

BÞϕ −
λ

4!
ϕ4 ð1Þ

where mB is a bare mass. We can split the total Lagrangian
as L ¼ L0 þ Lint where the trial quadratic part is

L0 ¼
1

2
ϕð−∂2 −m2Þϕ ð2Þ

and describes a free scalar particle with a trial mass
m ≠ mB. The new interaction follows as

Lint ¼ −
λ

4!
ϕ4 −

1

2
ðm2

B −m2Þϕ2 ð3Þ

so that the total Lagrangian is left unchanged. If we neglect
the interaction, then a free Hamiltonian H0 is derived from
L0 and its ground state jmi satisfies

H0jmi ¼ E0ðmÞjmi ð4Þ

and depends on the trial mass m. Restoring the interaction
Lint, the full Hamiltonian reads H ¼ H0 þHint and by

FIG. 1. Vacuum graphs contributing to the GEP for the scalar
theory (first row) and pure SUðNÞ Yang-Mills theory
(second row).
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standard perturbation theory, the first-order energy of the
ground state reads

E1ðmÞ ¼ E0ðmÞ þ hmjHintjmi ¼ hmjHjmi ð5Þ

and is equivalent to the first-order effective potential V1ðmÞ
evaluated by perturbation theory in the covariant formalism
with the interaction Lint. Thus, the stationary condition

∂V1ðmÞ
∂m ¼ ∂E1ðmÞ

∂m ¼ 0 ð6Þ

gives the best value ofm that minimizes the vacuum energy
of the ground state jmi.
While being a pure variational method, the first-order

effective potential V1ðmÞ ¼ E1ðmÞ can be evaluated by the
sum of all the vacuum graphs up to first order (the three
loop graphs in Fig. 1). The resulting optimized effective
potential is the GEP. Usually, the effective potential is
evaluated for any value of the average φ ¼ hϕi and the best
m also depends on that average. If the symmetry is not
broken, then the minimum of the effective potential is at
φ ¼ 0 where V1ðmÞ is a function of the trial mass, to be
fixed by the stationary condition Eq. (6). We assume that
the gauge symmetry is not broken in Yang-Mills theory so
that V1ðmÞ at φ ¼ 0 is the effective potential we are
interested in.
The variational nature of the method ensures that the true

vacuum energy is smaller than the minimum of V1ðmÞ. At
the minimum, jmi provides an approximation for the
vacuum and is given by the vacuum of a free massive
scalar particle with mass equal to the optimized mass
parameterm ≠ mB. Of course, the optimal state jmi is just a
first approximation and the actual vacuum is much richer.
However, we expect that a perturbative expansion around
that approximate vacuum would be the best choice for the
Lagrangian L, prompting towards an expansion with an
interaction Lint and a free part L0 that depend onm and can
be optimized by a clever choice of the parameter m.
Different strategies have been proposed for the optimiza-
tion, ranging from the stationary condition of the GEP,
Eq. (6), to Stevenson’s principle of minimal sensitivity
[66]. A method based on the minimal variance has been
recently proposed for QCD and other gauge theories
[57,67–71]. In all those approaches, the underlying idea
is that an optimal choice of m could minimize the effect of
higher orders in the expansion. Since the total Lagrangian
does not depend on m, the physical observables are
expected to be stationary at the optimal m, thus suggesting
the use of stationary conditions for determining the free
parameter. As a matter of fact, if all graphs were summed
up exactly, then the dependence on m would cancel in the
final result, so that the strength of that dependence
measures the weight of the neglected graphs at any order.

Leaving aside the problem of the best choice of m, we
observe that at φ ¼ 0 the calculation of the first-order
effective potential V1ðmÞ is quite straightforward and
follows from the first-order expansion of the effective
action ΓðφÞ

eiΓðφÞ ¼
Z
1PI

DϕeiS0ðϕþφÞþiSintðϕþφÞ ð7Þ

where the functional integral is the sum of all one-particle
irreducible (1PI) graphs and S ¼ S0 þ Sint is the action.
The effective potential then follows as VðmÞ ¼ −Γð0Þ=V4

where V4 is a total space-time volume. The sum of graphs
up to first order gives the first-order effective potential
V1ðmÞ which is the GEP when optimized by Eq. (6).
At finite temperature, the effective potential is replaced

by a density of free energy F ðT;mÞ according to

e−β½V3F ðT;mÞ� ¼
Z

DϕeðS0þSintÞ ð8Þ

where the action S ¼ S0 þ Sint is the integral over imagi-
nary time τ

S ¼
Z

β

0

dτ
Z

d3xL; ð9Þ

β ¼ 1=T and V3 is a total three-dimensional space volume.
The perturbative expansion of the free energy follows by
the same connected graphs contributing to the effective
potential, with loop integrals replaced by a sum over
discrete frequencies and a three-dimensional integration.
In the limit T → 0 the effective potential is recovered as
VðmÞ ¼ F ð0; mÞ and each thermal graph gives the corre-
sponding vacuum term. Because of the one to one corre-
spondence of the graphs we can easily switch from the
thermal to the vacuum formalism when required. Moreover,
at finite temperature, the GEP maintains its genuine
variational nature. In the Hamiltonian formalism, the
variational argument that follows Eq. (5) can be generalized
by Bogolubov’s inequality

F ≤ F 0 þ
1

V3

Tr½Hint expð−βH0Þ�
Tr½expð−βH0Þ�

¼ F 1 ð10Þ

while in the Lagrangian formalism the same result is found
by Jensen-Feynman inequality

F ≤ F 0 −
1

βV3

R
DϕSinteS0R
DϕeS0

¼ F 1 ð11Þ

where F 0 is the free energy obtained by the trial
Lagrangian L0 while F 1 is the first order approximation
which becomes the GEP when optimized. The two inequal-
ities tell us that the expansion must be truncated at first
order for a genuine variational approximation. Here and in
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the next two sections, when not specified, we will deal with
the effective potential and with the renormalization of the
vacuum graphs at zero temperature. The thermal corrections
are finite and do not require any further renormalization.
Since we are interested in the massless Yang-Mills

theory, we set mB ¼ 0 in the interaction Eq. (3) and study
a massless scalar theory as a toy model for the problem of
mass generation. The vertices of the theory can be read
from Lint in Eq. (3) where we set mB ¼ 0 and are used in
Fig. 1 in the vacuum graphs. The usual four-point vertex −λ
is accompanied by the counterterm δΓ ¼ m2 that is denoted
by a cross in the graphs. This counterterm must be regarded
as part of the interaction so that the expansion is not
loopwise and we find one-loop and two-loop graphs
summed together in the first-order effective potential.
That is where the nonperturbative nature of the method
emerges since the expansion in not in powers of λ but of the
whole interaction Lint. The zeroth order (massive) propa-
gator Δm follows from L0

ΔmðpÞ ¼
1

p2 −m2
ð12Þ

and is shown as a straight line in the vacuum graphs.
The tree term is the classical potential and vanishes in the

limit φ → 0. The first one-loop graph in Fig. 1 gives the
standard one-loop effective potential, containing some
effects of quantum fluctuations. It must be added to the
second one-loop graph in Fig. 1, the crossed graph
containing one insertion of the counterterm.
It is instructive to see that the exact sum of all one-loop

graphs with n insertions of the counterterm gives the
standard vacuum energy of a massless particle. In other
words, if we sum all the crossed one-loop graphs the
dependence on m disappears and we are left with the
standard one-loop effective potential of Coleman and
Weinberg [72] V0

1L ¼ −Γ0
1L=V4 where Γ0

1L is the standard
one-loop effective action at φ ¼ 0

eiΓ
0
1L ¼

Z
Dϕe

i
R

1
2
ϕð−∂2Þϕd4x ∼ ½DetðΔ−1

0 Þ�−1
2 ð13Þ

and Δ−1
0 ¼ p2 is the free-particle propagator of a massless

scalar particle. Up to an additive constant, not depending on
m, Eq. (13) can be written as

V0
1L ¼ −i

2V4

Tr logðΔ−1
m þm2Þ ð14Þ

then expanding the log we obtain a massive expansion

V0
1L ¼ −i

2V4

Tr

�
logðΔ−1

m Þ −
X∞
n¼1

ð−m2ΔmÞn
n

�
ð15Þ

that is shown pictorially in Fig. 2 as a sum of crossed one-
loop vacuum graphs. While the sum cannot depend onm, if

we truncate the expansion at any finite order we obtain a
function of the mass parameter. As a test of consistency,
one can easily check that, once renormalized as described
below, the sum of all the crossed one-loop vacuum graphs
in Fig. 2 gives zero exactly.
The calculation of the GEP requires the sum of only the

first two terms of Eq. (15), the two one-loop graphs in
Fig. 1. We cannot add higher-order terms without spoiling
the variational method since the average value of the
Hamiltonian in the trial state jmi is E1ðmÞ ¼ V1ðmÞ,
according to Eq. (5). Using the identity

Δm ¼ −
∂

∂m2
logðΔ−1

m Þ ð16Þ

the sum of one-loop graphs in Fig. 1 can be written as

V1LðmÞ ¼
�
1 −m2

∂
∂m2

�
KðmÞ ¼ KðmÞ − 1

2
m2JðmÞ

ð17Þ

where KðmÞ and JðmÞ are defined as

KðmÞ ¼ −i
2V4

Tr logðΔ−1
m Þ

JðmÞ ¼ i
V4

TrΔm ð18Þ

and because of Eq. (16), satisfy the identity

∂KðmÞ
∂m2

¼ 1

2
JðmÞ: ð19Þ

At T ¼ 0 they can be written as explicit diverging integrals

KðmÞ ¼ 1

2i

Z
d4p
ð2πÞ4 logð−p

2 þm2Þ

JðmÞ ¼ −i
Z

d4p
ð2πÞ4

1

−p2 þm2
ð20Þ

to be regularized in some renormalization scheme. At finite
temperature Eq. (19) still holds, but the integrals acquire a
finite additive thermal part.
We recognize KðmÞ as the standard one-loop effective

potential of Coleman and Weinberg for a massive scalar
particle in the limit φ → 0. This term contains the quantum
fluctuations at one-loop. The second term in Eq. (17) is a
correction coming from the counterterm and arises because
the exact Lagrangian was massless.

FIG. 2. Pictorial display of the right hand side of Eq. (15).
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The calculation of the GEP also requires the two-loop
graph in Fig. 1 which is first-order in λ. It can be recovered
from the crossed one-loop graph by just substituting the
vertex −m2 with the seagull one-loop self energy Σ1L that
reads [57]

Σ1L ¼ λ

2
JðmÞ ð21Þ

and adding a 1=2 symmetry factor. The resulting two-loop
term is

V2LðmÞ ¼ λ

8
½JðmÞ�2: ð22Þ

The GEP follows as the sum V1L þ V2L

VGðmÞ ¼ KðmÞ − 1

2
m2JðmÞ þ λ

8
½JðmÞ�2: ð23Þ

At this stage we have just recovered the GEP in the limit
φ → 0 and Eq. (23) agrees with the well known GEP in that
limit [46,56,57,59,60].
More precisely, VG is the GEP when m is optimized by

the stationary condition Eq. (6) that reads

∂VGðmÞ
∂m2

¼ 1

2

�∂JðmÞ
∂m2

��
λJðmÞ
2

−m2

�
¼ 0 ð24Þ

yielding the usual gap equation of the GEP

m2 ¼ λJðmÞ
2

: ð25Þ

From a mere formal point of view, if Eq. (25) has a nonzero
solution, the GEP predicts the existence of a mass for the
massless scalar theory. That is of special interest because
for mB ¼ 0 the Lagrangian in Eq. (1) has no energy scale,
just like Yang-Mills theory and QCD in the chiral limit.
Thus, it can be regarded as a toy model for the more general
problem of mass generation and chiral symmetry breaking.

III. RENORMALIZATION OF THE GEP

The scalar theory has been studied by many authors in
the past, using different regulators, ranging from the
insertion of a cut-off to dimensional regularization and,
of course, to lattice regularization. The resulting physical
theories are not always equivalent and the problem of
triviality is still not totally solved. The issue is quite subtle
and has to do with the physical meaning that we give to the
theory in a four dimensional space. The regularization of
the GEP has also been addressed by many methods
[44,46,60–64]. The most intuitive way of regularizing
the integrals is by inserting a large but finite cutoff Λ
which provides the physical units of the theory, as in lattice
calculations where the finite lattice spacing a cuts the

energies larger than Λ ∼ 1=a. In the Euclidean space, the
integral J reads

JðmÞ ¼
Z

Λ2

0

p2dp2

16π2

�
1

p2 þm2

�
> 0 ð26Þ

and is a finite positive-definite function of the mass
parameter. The gap equation, Eq. (25), has a well defined
solution at m2 ¼ m2

0 ¼ cλλΛ2=ð32π2Þ where cλ is a coef-
ficient of order unity, with 0 < cλ < 1 and cλ ≈ 1 in the
limit λ → 0. Since the derivative

∂JðmÞ
∂m2

< 0 ð27Þ

is negative for any value of m2, the derivative of the
effective potential in Eq. (24) changes sign at m ¼ m0 and
becomes positive for m > m0. Thus, the GEP has an
absolute minimum at m0 and the simple cutoff regulariza-
tion predicts a mass. The existence of a minimum at m ¼
m0 > 0makes sense when compared with the data of lattice
simulations that predict the existence of a finite mass in the
limit m2

B → 0þ of the unbroken-symmetry theory [73].
However, that mass is not a dynamical mass and arises from
the quadratic divergence of J because no special symmetry
protects the theory. That is not a desirable feature in a toy
model for Yang-Mills theory since Becchi-Rouet-Stora-
Tyutin (BRST) invariance, which is not broken on the
lattice, forbids the appearance of diverging mass terms. In
that context, dimensional regularization is the first choice
since it leaves BRSTunbroken and is the simplest and usual
way to cancel the quadratic divergence.
Having set d ¼ 4 − ϵ, in the limit ϵ → 0 the integral J is

redefined as Jμϵ where μ is an arbitrary scale of the order of
m and expanding in powers of ϵ

JðmÞ ¼ −
m2

16π2

�
2

ϵ
þ log

μ̄2

m2
þ 1þOðϵÞ

�
ð28Þ

where μ̄ ¼ ð2 ffiffiffi
π

p
μÞ expð−γ=2Þ. Integrating Eq. (19) and

neglecting an integration constant (that does not depend
on m)

KðmÞ ¼ −
m4

64π2

�
2

ϵ
þ log

μ̄2

m2
þ 3

2
þOðϵÞ

�
: ð29Þ

In the usual approach of Coleman andWeinberg [72], the
divergences are absorbed by the (infinite) integration
constants that are traded as finite and physical renormalized
parameters. Following that approach, we could hide the
poles in the definition of an energy scale Λϵ such that

logΛ2
ϵ ¼ log μ̄2 þ 2

ϵ
þ 1 ð30Þ
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and write the integrals K, J as simply as

JðmÞ ¼ m2

16π2
log

m2

Λ2
ϵ

KðmÞ ¼ m4

64π2

�
log

m2

Λ2
ϵ
−
1

2

�
: ð31Þ

If Λϵ were traded as a finite unknown energy scale, then the
regularized expressions of J and K would be finite.
Let us investigate the limits of Eq. (31) when the

definition of Λϵ, Eq. (30), is taken literally, in the attempt
to give it a physical meaning. While ϵ might even be a
complex variable and the physical meaning of the poles is
quite obscure in general, Eq. (30) only makes sense if we
assume that ϵ is real, at least. Moreover, the expansion can
only be trusted if jϵ logðμ̄2=m2Þj ≪ 1which is equivalent to
say that

log
Λ2
ϵ

m2
≈
2

ϵ
→ �∞ ð32Þ

yieldingm ≪ Λϵ if ϵ > 0 andm ≫ Λϵ if ϵ < 0. Thus, if we
literally assume to work in a ð4 ∓ jϵjÞ-dimensional space-
time, Eq. (31) holds asymptotically for a very small or a
very large mass compared to Λϵ. The energy scale Λϵ can
be regarded as a very large UV cutoff or a very small IR
cutoff, according to the sign of ϵ. In both cases, we must
face the non-intuitive result that the regularized J and its
derivative change sign according to the value of m: for
m ≪ Λϵ the integral J is negative while for m ≫ Λϵ the
derivative of J becomes positive, which is at odds with the
intuitive result obtained by a simple cutoff in Eqs. (26),
(27). Actually, we must recognize that dimensional regu-
larization is not neutral but its way to make sense of
divergences is part of the physical interpretation of a field
theory, with scaleless integrals that vanish exactly and a
less marked difference between UV and IR divergences.
Moreover, the use of dimensional regularization is con-
troversial in the scalar theory and different physical theories
seem to arise when the limit d → 4 is taken from above
(d > 4) or below (d < 4), as first pointed out by Stevenson
[62] in 1987. While it is still not obvious if any of them
describes the lattice-regulated scalar theory, they could be
very relevant for our toy model of Yang-Mills theory. After
reviewing them briefly, we will show how a dimensional
regularization scheme can be set up for the variational
effective potential of Yang-Mills theory.

A. The autonomous theory (d < 4)

The autonomous renormalization of scalar theory
[46,61] can be easily recovered by dimensional regulari-
zation for d < 4 [62,64]. It shows spontaneous symmetry
breaking and asymptotic freedom but cannot be connected,
perturbatively, to the usual low energy phenomenology that

emerges by perturbation theory and 1=N expansion
[62,63].
The search for a minimum of the GEP yields the coupled

equations [61,64]

m2
0 ¼

1

3
λφ2

0

m2
0 ¼ −

λ

2
Jðm0Þ ð33Þ

where φ0 is the optimal average value of the scalar field that
would eventually break the symmetry if a solution exists. In
that case, the other stationary point at φ ¼ 0 is a maximum
where Eq. (25) holds. If the symmetry is broken Eq. (25) is
replaced by the second of Eq. (33), which has the opposite
sign and has a physical solution if ϵ → 0þ (d < 4). In fact,
using the first of Eq. (31), the new gap equation reads

1

α
¼ log

Λϵ

m0

ð34Þ

where α ¼ λ=ð16π2Þ is a bare effective coupling and
Λϵ → ∞ in the limit ϵ → 0þ so that α → 0þ is positive.
The solution m0 of the gap equation can be regarded as a
physical scale which breaks the symmetry according to the
first of Eq. (33). Assuming that m0 takes some fixed
phenomenological value, the large scale Λϵ can be
eliminated as

Λϵ ¼ m0e1=α ð35Þ

so that the theory shows asymptotic freedom. Inserting the
explicit expressions of J andK in the effective potential, the
GEP at its minimum is [61,64]

VG ¼ −
m4

0

128π2
< 0 ð36Þ

and Λϵ can be sent to infinity (ϵ → 0þ) yielding a finite
energy density, spontaneous symmetry breaking and a
finite physical mass m0.
At variance with perturbation theory, in principle, the

variational method does not require the use of a renormal-
ized coupling. However, it is useful to parametrize the gap
equation in terms of a finite running coupling αμ which can
be defined according to [60,64]

1

α
¼ 1

αμ
þ log

Λϵ

μ
> 0 ð37Þ

where μ is any finite scale. The gap equation, Eq. (34), is
written as a finite renormalized gap equation

1

αμ
¼ log

μ

m0

ð38Þ
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where m0 is assumed to be the physical RG invariant mass.
As a toy model of Yang-Mills theory, we assume that
αμ > 0, so that μ must be larger than m0 and the running of
αμ takes place in the UV sector, limited from below by the
Landau pole at μ ¼ m0. The beta function is negative and
the running coupling shows asymptotic freedom. A plot of
the coupling αμ is shown (up to a factor) as a solid line on
the right side of Fig. 3. The breaking of symmetry and the
existence of a mass scale seem to reverse the usual trivial
behavior of the scalar theory. The autonomous behavior is
separated from the usual weak coupling limit which is
observed below the Landau pole. However, we must
mention that Eq. (38) is just a possible reparametrization
of Eq. (34); it is not necessary, since the effective potential
is anyway RG invariant at its minimum; and besides, the
parametrization is not unique. It has some features that
make it a good candidate as a physical renormalized
coupling at the scale μ: in fact, reversing Eq. (37) it can
be written in the perturbative weak coupling limit as αμ ¼
α½1þOðαÞ� and αμ → α in the UV limit μ → Λϵ. But, it is
not obvious how αμ is related to the four-point function at
the scale μ. Moreover, the parametrization is not unique: the
existence of a RG invariant energy scale m0 allows us to
define a generic scale

Λ0
ϵ ¼ m0

�
Λϵ

m0

�
ν

ð39Þ

and a different running coupling α0μ according to

1

α
¼ 1

α0μ
þ 1

ν
log

Λ0
ϵ

μ
ð40Þ

yielding by Eq. (34) the finite equation

1

α0μ
¼ 1

ν
log

μ

m0

: ð41Þ

Thus, the coefficient of the beta function is somehow
arbitrary and we do not expect that any serious prediction
can be made without an explicit calculation of the four-
point function. Quite interesting, the exponent ν can be
taken negative, inverting the sign of the beta function.
However, assuming that α0μ > 0, we obtain μ < m0 if
ν < 0. The negative beta function would be defined below
the Landau pole, and the new parametrization would
describe the IR sector of the theory showing the same
behavior that is predicted by perturbation theory and 1=N
expansion: an increasing running coupling and triviality.
For a negative ν, a plot of α0μ is shown as a solid line on the
left side of Fig. 3. We observe that if ν < 0 then Λ0

ϵ → 0 in
the limit ϵ → 0þ when Λϵ → ∞. Let us consider the special
case ν ¼ −1 and call δϵ ¼ Λ0

ϵ in order to make clear that
it is an infinitesimal IR scale, δϵ → 0. Eq. (34) can be
written as

1

α
¼ log

m0

δϵ
ð42Þ

which has the same identical content as before, but in terms
of the IR vanishing scale δϵ ¼ m0 expð−1=αÞ. Thus the
same theory now looks trivial. It is important to see that
different parametrizations for ν ¼ �1, predicting opposite
beta functions, refer to different ranges of μ, separated by
the Landau pole. Thus the respective weak coupling limits
cannot be connected by perturbation theory, yielding a
double-valued beta which is legitimate when the running
coupling is not a monotone function. In fact, joining
together the outcome of Eq. (41) for �ν we obtain

1

α0μ
¼

				 1ν log
μ

m0

				 ð43Þ

which holds for any μ ≠ m0, as shown in Fig. 3 where jνj is
arbitrarily chosen to match the strong coupling αs at
μ ¼ 2 GeV.

B. The precarious theory (d > 4)

Despite its name, the precarious renormalization of
scalar theory [46] predicts the same phenomenology of
perturbation theory and 1=N expansion [63]. Its handling
by a cutoff is problematic since it seems to be unstable until
the cut-off is sent to infinite. It emerges in a natural and
straightforward way by dimensional regularization in
d > 4, as first shown by Stevenson [62].
In the limit ϵ → 0−, the energy scale Λϵ goes to zero

according to Eq. (30). Let us call it δϵ in order to make clear
that δϵ ¼ Λϵ → 0. In the same limit, the coupled equations

 0

 0.5

 1

 1.5

 2

 0.01  0.1  1  10

μ 
=

 m
0

α μ

μ (GeV)

FIG. 3. The running coupling αμ of Eq. (43) is shown for m0 ¼
0.73 GeV (solid line), together with the lattice data of Ref. [4] for
the strong coupling αs of Yang-Mills theory in the Taylor scheme.
The exponent ν is arbitrarily fixed by matching the data at
μ ¼ 2 GeV. The dotted line is the analytical result of Ref. [39],
obtained by a one-loop expansion around the Gaussian massive
vacuum at m ¼ m0 ¼ 0.73 GeV.
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for the minimum of the GEP, Eq. (33), have no solution
because the bare coupling α would become negative in
Eq. (34). There is no spontaneous symmetry breaking and
the minimum of the effective potential is at φ ¼ 0. At that
point, having ruled out the breaking of symmetry, Eq. (25)
holds and can be written as

1

α
¼ log

m0

δϵ
ð44Þ

which has the opposite sign of Eq. (34). In the limit δϵ → 0
the bare coupling α is positive and an acceptable solution
m0 exists. As before, we assume that m0 is a RG invariant
physical mass which is generated dynamically in the
massless theory. Thus, the small energy scale δϵ can be
eliminated as δϵ ¼ m0 expð−1=αÞ in the effective potential.
We observe that Eq. (44) is identical to Eq. (42), and the
theory appears as trivial.
At its minimum φ ¼ 0, the effective potential is given by

Eq. (23) and inserting the regularized expressions of the
integrals J, K, as given by Eq. (31) with Λϵ ¼ δϵ → 0, we
can write it as

VGðmÞ ¼ m4

128π2

�
α

�
log

m2

δ2ϵ

�
2

− 2 log
m2

δ2ϵ
− 1

�
ð45Þ

which obviously makes sense only if m ≫ δϵ. Eliminating
δϵ by Eq. (44) the renormalized GEP reads

VGðmÞ ¼ m4

128π2

�
α

�
log

m2

m2
0

�
2

þ 2 log
m2

m2
0

− 1

�
ð46Þ

and is shown in Fig. 4. The only physical point is the
absolute minimum at m2 ¼ m2

0 where the effective poten-
tial does not depend on the bare coupling α and takes the
value

VGðm0Þ ¼ −
m4

0

128π2
< 0: ð47Þ

Then we can safely send ϵ → 0. We obtain the same
identical vacuum energy that was found in Eq. (36) by the
autonomous renormalization in d < 4, but here the mass
m0 is generated without any symmetry breaking.
We observe that the stationary point m0 is the physical

mass that emerges as the pole of the self-consistent
propagator. Actually, up to first order, the self-energy is
the sum of the tree-level counterterm −m2 and the seagull
graph Σ1L in Eq. (21), so that the self-consistency condition
m ¼ m0 is equivalent to the vanishing of the first-order self
energy [57]

Σ1 ¼ −m2 þ λ

2
JðmÞ ¼ 0 ð48Þ

which is just the stationary condition Eq. (25) satisfied
by m0.

As discussed for d < 4, we do not need to introduce any
running coupling in the variational calculation, because the
effective potential is finite in units ofm0. However, it might
be useful to reparametrize the gap equation by a finite
running coupling αμ which can be defined as before [62]

1

α
¼ 1

αμ
þ log

μ

δϵ
> 0 ð49Þ

where μ is an arbitrary energy scale. The gap equation,
Eq. (44), is thenwritten as a finite renormalized gap equation

1

αμ
¼ log

m0

μ
ð50Þ

wherem0 is thephysicalRG invariantmass. Sincewe assume
that αμ > 0, here μmust be smaller thanm0 and the running
of αμ takes place in the IR sector, below the Landau pole at
μ ¼ m0. While we could deduce, naively, that the theory is
trivial and the beta function is positive, again we must
recognize that the parametrization is not unique and the
running of αμ is limited in the IR sector. In fact, Eq. (50) is
identical to Eq. (41) for ν ¼ −1 and the present theory gives
the same running predicted by the autonomous theory in the
IR sector. Again, the existence of the RG invariant mass m0

allows us to define a new energy scale

Λ0
ϵ ¼ m0

�
δϵ
m0

�
ν

ð51Þ

and a different running coupling α0μ according to

1

α
¼ 1

α0μ
þ 1

ν
log

μ

Λ0
ϵ

ð52Þ

yielding by Eq. (44) the finite equation

1

α0μ
¼ 1

ν
log

m0

μ
: ð53Þ

Joining together the outcomeofEq. (53) for�νweobtain the
same identical result of Eq. (43) which holds for any μ ≠ m0

and is shown as a solid line in Fig. 3. We conclude that, up to
an unknown factor ν, the beta function might have the same
behavior in both renormalization schemes.

C. A toy model for Yang-Mills theory

When regularized dimensionally, two different renor-
malized theories seem to emerge in the limit d → 4.
However, for many aspects, the two renormalized theories
appear as two sides of the same coin. Both theories share a
dynamical mass generation, the same vacuum energy
density, a Landau pole at μ ¼ m0 and can be parametrized
by the same running coupling which is not monotone,
showing asymptotic freedom in the UV and a trivial
Gaussian fixed point in the IR.
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In both cases the Landau pole that emerges in the
reparametrization has no effect on the effective potential
which is RG invariant and is valid at any energy scale.
Actually, at variance with perturbation theory, the varia-
tional method does not even require the use of a running
coupling. However, the existence of the pole says that the
two weak-coupling limits cannot be connected by pertur-
bation theory which must break down at the scale μ ≈m0.
In fact, by general arguments, perturbation theory predicts
that the beta function must be unique at the lowest orders of
approximation and cannot depend on the special regulari-
zation scheme. But, if the running coupling is not a
monotone function, a double valued beta function is found,
taking different (opposite) values in different sectors that
cannot be connected by perturbation theory. That scenario
is only compatible with the existence of a RG invariant
phenomenological energy scale where perturbation theory
breaks down.
Ifwe look at the strong couplingαs ofYang-Mills theory in

the Taylor scheme, a non-monotonic behavior is found in the
Landau gauge on the lattice [4], assuming that the ghost-
gluonvertex is regular and a running coupling can be defined
from the product of the dressing functions of two-point
correlators. Some lattice data of Ref. [4] are shown in Fig. 3
together with the analytical prediction of Ref. [39], obtained
by a one-loop massive expansion around the zeroth-order
Gaussian propagator ð−p2 þm2

0Þ−1 with m0 ¼ 0.73 GeV.
The energy μ ≈ 0.7 GeV, where the coupling reaches its

maximum, is the phenomenological scale where perturba-
tion theory breaks down. Somehow, the running coupling
αμ of Eq. (43) can be seen as a zeroth-order Gaussian
approximation for the strong coupling αsðμÞ of Yang-Mills
theory. Actually, that is no coincidence since a gauge
invariant effective potential will be derived in the next
section for Yang-Mills theory, which is exactly the same
GEP of Eq. (46) and Fig. 4, apart from a normalization

factor and the precise definition of the effective coupling α.
Thus, irrespective of the agreement with the lattice-
regulated scalar theory, the dimensional-regulated GEP
of scalar theory is a useful toy model for pure Yang-
Mills theory.
The two scalar theories only differ because of the

breaking of symmetry which appears for d < 4; while,
for d > 4, a dynamical mass generation occurs without any
symmetry breaking. Since gauge symmetry is not broken in
Yang-Mills theory, we expect that the correct phenomenol-
ogy can only be reproduced if we adopt the second scheme
and regularize the theory keeping d > 4.

IV. GEP AND MASS GENERATION
IN SUðNÞ THEORY

The Lagrangian of pure SUðNÞYang-Mills theory can be
written as

L ¼ LYM þ Lfix þ LFP ð54Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ ð55Þ

Lfix is a gauge fixing term and LFP is the ghost Lagrangian
arising from the Faddev-Popov determinant. In terms of the
gauge fields, the tensor operator F̂μν is

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν� ð56Þ

where

Âμ ¼
X
a

T̂aA
μ
a ð57Þ

and the generators of SUðNÞ satisfy the algebra

½T̂a; T̂b� ¼ ifabcT̂c ð58Þ

with the structure constants normalized according to

fabcfdbc ¼ Nδad: ð59Þ

If a generic linear covariant gauge-fixing term is chosen

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�; ð60Þ

where ξ > 0 is an arbitrary positive number, the total action
can be written as Stot ¼ S0 þ SI where the free-particle
term is

FIG. 4. The renormalized GEP of Eq. (46) is shown in units of
m0 for different values of the strong coupling αs, having
set α ¼ 9N

8π αs.
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S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞddxddy

þ
Z

ω⋆
aðxÞδabG−1

0 ðx; yÞωbðyÞddxddy ð61Þ

and the interaction is

SI ¼
Z

ddx½L3g þ L4g þ Lgh� ð62Þ

with the usual local interaction terms that read

L3g ¼ −gfabcð∂μAaνÞAμ
bA

ν
c

L4g ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e

Lgh ¼ −gfabcð∂μω
⋆
aÞωbA

μ
c: ð63Þ

In Eq. (61), Δ0 and G0 are the standard free-particle
propagators for gluons and ghosts and their Fourier trans-
forms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
: ð64Þ

Here the transverse and longitudinal projectors are
defined as

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
ð65Þ

where gμν is the metric tensor.
As discussed in Refs. [39,40], an unconventional mas-

sive expansion can be introduced by adding and subtracting
mass terms δSi in the total action, just like we did for the
scalar theory in Eqs. (2), (3). The method can be gener-
alized by redefining the free and interacting parts of the
action

S0 → S0 −
X
i

δSi

SI → SI þ
X
i

δSi: ð66Þ

For the gluon we can take

δSg ¼
1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞddxddy ð67Þ

where the vertex function δΓμν is given by a shift of the
inverse propagator

δΓμνðx; yÞ ¼ ½Δ−1
0

μνðx; yÞ − Δ−1
m

μνðx; yÞ� ð68Þ

and Δm
μν is the massive free-particle propagator

Δ−1
m

μνðpÞ ¼ ΔT
mðpÞ−1tμνðpÞ þ ΔL

mðpÞ−1lμνðpÞ

ΔT
mðpÞ ¼

1

−p2 þm2
; ΔL

mðpÞ ¼
ξ

−p2 þm2
L

ð69Þ

As a general variational ansatz, the two masses m and mL
can be different.
In principle, we would also have the freedom to insert a

mass shift δSgh for the ghost

δSgh ¼
Z

ω⋆
aðxÞδabδΓðx; yÞωbðyÞddxddy ð70Þ

together with its counterterm δΓ

δΓðx; yÞ ¼ ½G−1
0 ðx; yÞ − G−1

M ðx; yÞ� ð71Þ

where GM would be a massive ghost propagator

GM ¼ 1

p2 −M2
: ð72Þ

One could wonder if the inclusion of a mass parameter in
the trial ghost propagator could shift the pole of the ghost at
one-loop, yielding a phenomenological mass which would
be at odds with the lattice data for the dressed ghost
propagator. However, in the massive expansion of the
propagators [39,40] the counterterm cancels the shift at
tree level and any real mass term can only arise from loops.
That is the reason why no mass would arise for the photon
in QED by the same method. It can be easily shown [71]
that the ghost self energy is of order Oðp2Þ and vanishes
when the external momentum p → 0, so that the dressed
ghost propagator still has a pole at p2 ¼ 0. That is an other
way to see that the gluon mass arises from gluon loops in
the expansion and is not a mere shift by a mass parameter.
The case of a finite ghost trial-mass M > 0 has been

explored in Ref. [74] and found to be sub-optimal when
compared with the standard choice of a massless ghost.
Then, we will assume M ¼ 0 in the present variational
study. It must be mentioned that, if the ghost mass M were
regarded as an independent variational parameter, then its
stationary point would be at M ¼ 0 because there are no
ghost-gluon vertices in the first order effective potential.
Actually, the ghost contribution would be maximal at that
stationary point, because of the wrong sign of ghost
statistics. However, as discussed in the next section, in
the more general context of the finite temperature formal-
ism, a maximal ghost energy minimizes the eventual
weakening of Jensen-Feynman inequality that might occur
in non-Abelian theories. While that weakening cannot be
avoided entirely, we will suggest a rigorous way to control
the error on the variational bound. Let us take aside the
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problem for a while and assume that the GEP can be trusted
as a variational method.
Since we have not changed the total action at all, we

know that the sum of all graphs contributing to the
longitudinal gluon polarization must give zero, because
of gauge invariance. Thus, the exact longitudinal part of the
gluon propagator must be equal to the free longitudinal
propagator ΔL

0 ðpÞ ¼ ξ=ð−p2Þ. While, in principle, mL
could be used as a variational parameter, we expect that
the best result is achieved if the trial ΔL

m is taken to be equal
to the exact ΔL

0 by setting mL ¼ 0 in Eq. (69).
Having setM ¼ mL ¼ 0, the variational ansatz becomes

the same that was used in the massive expansion of
Refs. [39,40,42] where no ghost and longitudinal masses
were inserted. Only the pole of the transverse free-particle
propagator is shifted and compensated by inserting a
transverse counterterm

δΓμνðpÞ ¼ −m2tμνðpÞ ð73Þ
among the vertices of the interaction, while the gauge-
dependent longitudinal part of the gluon propagator is left
unchanged and equal to the exact result. As shown in
Ref. [42], that massive expansion is in very good agreement
with the data of lattice simulations. Moreover, that choice
of counterterms has the merit of providing a fully gauge
invariant GEP at T ¼ 0, as shown below.
The calculation of the GEP follows the same steps as for

the scalar theory. The GEP is obtained as the first-order
effective potential in the covariant formalism, including the
counterterms among the interaction vertices and in the
limit of a vanishing background field, i.e., assuming that
hAaμi ¼ 0 since gauge symmetry is not broken in the
vacuum. The effective action reads

eiΓðaÞ ¼
Z
1PI

DA;ωeiS0ðaþA;ωÞþiSintðaþA;ωÞ ð74Þ

and the effective potential follows as V ¼ −Γð0Þ=V4 and is
the sum of all connected 1PI vacuum graphs. The first order
graphs contributing to the GEP are shown in the second row
of Fig. 1.
The zeroth order gluon and ghost loops in Fig. 1 give

V0 ¼
i

2V4

logDetΔμν
m −

i
V4

logDetG0: ð75Þ

The determinant of Δμν
m can be split as the product of

determinants in the orthogonal Lorentz subspaces,
DetΔμν

m ¼ Det½ΔT
mtμν�Det½ΔL

0l
μν�, yielding

V0 ¼
iðd − 1Þ
2V4

Tr logΔT
m þ i

2V4

Tr logΔL
0 −

i
V4

Tr logG0:

ð76Þ

where d ¼ 4 in a four dimensional space-time.

The constant gauge dependent (infinite) term Tr log ξ is
canceled by an equal factor in the normalization of the
Faddeev-Popov functional, so that usingΔL

0=ξ ¼ −G0, one-
half of the ghost cancels the longitudinal term yielding

V0ðmÞ ¼ NA½ðd − 1ÞKðmÞ − Kð0Þ� ð77Þ

where NA ¼ N2 − 1.
The crossed one-loop graphs in Fig. 1 are obtained by

one insertion of the counterterms. Since there are no ghost
and longitudinal counterterms, there is only one crossed
loop for the transverse gluon. The identity Eq. (16) changes
its sign for ΔT

m and inserting the counterterm of Eq. (73) the
sum of all one-loop graphs (zeroth and first order) can be
written as

V1LðmÞ ¼
�
1 −m2

∂
∂m2

�
V0ðmÞ ð78Þ

which reads

V1LðmÞ
NA

¼ ðd − 1Þ
�
KðmÞ − 1

2
m2JðmÞ

�
− Kð0Þ: ð79Þ

The functions KðmÞ and JðmÞ were defined in Eq. (20) and
their explicit regularized expression were given in Eq. (31).
The formal result of Eq. (79) is gauge invariant and also
valid at finite temperature, since Eq. (16) still holds when
the integrals K, J acquire a thermal part.
The first-order effective potential also includes the two-

loop gluon graph in Fig. 1. For mL ¼ 0 each loop of the
longitudinal propagator contributes a factor ξJð0Þ which is
zero by dimensional regularization, so that the two-loop
term is also gauge invariant at T ¼ 0. The same identical
expression would be obtained in Landau gauge (ξ ¼ 0) if
mL > 0. The calculation is formally different in the finite
temperature formalism and will be studied in the next
section. Here, we examine the vacuum part that contributes
to the GEP at T ¼ 0 and is relevant for discussing the
issue of mass generation. Inserting the seagull one-loop
graph [71]

Π1L ¼ −
ðd − 1Þ2Ng2

d
JðmÞ ð80Þ

the two-loop term reads

V2LðmÞ ¼ NANg2ðd − 1Þ3
4d

½JðmÞ�2: ð81Þ

Setting d ¼ 4 and adding the one-loop term of Eq. (79), in
terms of the new effective coupling α

α ¼ 9Ng2

32π2
¼ 9N

8π
αs; αs ¼

g2

4π
ð82Þ
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a gauge invariant GEP is found that can be written as

VGðmÞ
3NA

¼ KðmÞ −m2

2
JðmÞ þ 2π2α½JðmÞ�2 ð83Þ

having dropped the constant Kð0Þ which is zero at T ¼ 0.
That is the same identical result obtained in Eq. (23) for the
scalar theory, provided that the effective coupling α is
replaced by λ=ð16π2Þ. Thus, using the same dimensional
regularization scheme of Sec. III and keeping d > 4, the
renormalized GEP of Eq. (46) is recovered in units of the
optimal gluon-mass parameter m0. Inserting the correct
normalization factor, the GEP reads

VGðmÞ
3NA

¼ m4

128π2

�
α

�
log

m2

m2
0

�
2

þ 2 log
m2

m2
0

− 1

�
ð84Þ

and was shown in Fig. 4. That figure shows the existence of
two competing stationary points for the vacuum: an
unstable stationary point at m ¼ 0 and a stable minimum
at m ¼ m0.
The existence of a stable massive vacuum is a remarkable

nonperturbative prediction of the present variational
method and can be regarded as an argument for mass
generation in pure Yang-Mills theory. We are tempted to
identify the unstable stationary point at m ¼ 0 with the
massless scaling solution of Schwinger-Dyson equations.
That solution is not found in lattice simulations.
In the next section, we will show that the two stationary

points acquire a very different behavior at finite temper-
ature. The massless vacuum at m ¼ 0 develops a thermal
mass that increases with temperature like for a standard
massless boson, while the minimum at m ¼ m0 shows a
decrease of the mass until a weak first order transition
occurs before the merging of the minima.
As shown in Fig. 4, when written in physical units ofm0,

the renormalized GEP is not very sensitive to the actual
value of the strong coupling αs, especially at the stationary
points that might be identified as physical configurations.
Thus everything seems to be settled by the physical scale
m0, while the coupling αs must be regarded as a bare
coupling at the scale Λϵ according to our renormalization
scheme discussed in Sec. III. Its actual value should be
almost irrelevant and will be fixed by the principle of
minimal sensitivity [66] as the stationary point of the
critical temperature.
Since there is no scale in the original Lagrangian, the

actual value of the mass m0 cannot be predicted by
the theory and must come from the phenomenology. The
massive expansion of Refs. [39,40] arises as the natural
expansion around the best trial massive vacuum atm ¼ m0.
By that expansion, at one loop, the gluon propagator was
found in perfect agreement with the data of lattice simu-
lations [42] in the Landau gauge. The inverse dressing
function, which is basically given by the gluon self-energy,

is determined without any free parameter and is not
monotone, with a pronounced minimum that allows us
to fix the energy scale with good accuracy. As shown in
Fig. 3, the one-loop analytical expression for the running
coupling reproduces the lattice data very well. Sharing the
same units of the lattice data in the Landau gauge, the scale
m0 ¼ 0.73 GeV is extracted forN ¼ 3 [39,42]. We will use
that scale in the next sections.

V. THE GEP AT FINITE TEMPERATURE AND
DECONFINEMENT

At finite temperature, supposing that Jensen-Feynman
inequality Eq. (11) holds, the first-order free energy is
bounded below by the exact free energy F ðTÞ that can be
expressed as

e−β½V3F ðTÞ� ¼ Z ¼
Z

DA;ωeðS0þSintÞ ð85Þ

where the thermal action is the integral over imaginary time
defined in Eq. (9). If we split the action as in the previous
section, inserting the mass term Eq. (67) in the free part and
the counterterm Eq. (73) among the vertices, the free
energy in Eq. (85) is expanded by the same formal massive
expansion as before. The first-order approximation
F 1ðT;mÞ depends on the mass parameter m and is given
by the same graphs in the second row of Fig. 1. When
optimized it gives the GEP, while the optimal value of m
that minimizes F 1ðT;mÞ provides the best trial mass
parameter mðTÞ at finite temperature, so that mð0Þ ¼ m0.
In non-Abelian theories, the GEP might be bounded

below by an approximate free energy rather than the exact
free energy. Actually, the existence of ghosts in the
covariant formalism and the appearance of states with
negative norm in the Hamiltonian formalism might limit
the use of Jensen-Feynman inequality Eq. (11) and
Bogolubov’s inequality Eq. (10), respectively, unless we
have some physical evidence about the safe cancellation of
the unphysical degrees of freedom in the averages.
However, we can show that a weaker form of Jensen-
Feynman inequality still holds for the GEP.
The partition function in Eq. (85) can be written as

Z ¼
Z

DA;ωeS
0
DetMFPðAÞ ð86Þ

whereMFPðAÞ is the Faddev-Popov matrix, which is linear
in the field Aμ

a, and S0 is the original total action without any
ghost term, obtained by settingωa ¼ 0 in the sum S0 þ Sint.
We can also define zeroth order free energy F 0

0 and
partition function Z0

0 without ghost terms as

e−β½V3F 0
0
� ¼ Z0

0 ¼
Z

DAeS
0
0 ð87Þ
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where S00 is the quadratic part of S0, including the gluon-
mass term. The exact free energy F exact follows as

F exact ¼ F 0
0 − T log heS0intDetMFPðAÞi0 ð88Þ

where S0int ¼ S0 − S00 and the average over Aμ
a is defined

according to

h…i0 ¼
1

Z0
0

Z
DAeS

0
0ð…Þ: ð89Þ

In Eq. (88), we can use Jensen inequality in the pure
bosonic average of the convex exponential function and
write

F exact ≤ F 0
1 þ F gh ð90Þ

where

F 0
1 ¼ F 0

0 − ThS0inti0 ð91Þ

is the sum of all first-order gluon graphs in the second row
of Fig. 1 and gives the gluon contribution to the first-order
free energy, while F gh is a ghost free-energy given by

F gh ¼ −ThlogDetMFPðAÞi0 ð92Þ

which is different from the sum of all first-order ghost
graphs F gh

1 contributing to the GEP in Fig. 1. If the ghost
term F gh were known exactly, then its sum with the gluon
first-order term F 0

1 would provide through Eq. (90) a pure
variational approximation, bounded below by the exact free
energy.
We can loop expandF gh by inserting the explicit form of

the matrix MFP. In any linear covariant gauge

MFPðAÞ ¼ G−1
M þ δMðAÞ ð93Þ

where the massive ghost propagator was defined in Eq. (72)
and takes account of a generic shift of the pole, while
δMðAÞ is the sum of the ghost vertex of Lgh in Eq. (63)
(proportional to the gauge field Aμ

a) and the ghost counter-
term δΓ of Eq. (71). Expanding the log we obtain

βF gh ¼ Tr logGM − TrðGMδΓÞ

þ 1

2
hTr½GMδMðAÞGMδMðAÞ�i0 þ… ð94Þ

which is a sum of vacuum ghost graphs with insertions of
the standard vertices. The first two terms of the expansion
are just the first-order ghost graphs in Fig. 1 and give the
ghost term F gh

1 contributing to the GEP. The third term is
the two-loop graph

F gh
2L ∼ α

Z
GMΔmGM ð95Þ

which might be added to the first-order terms for improving
the approximation, as discussed by previous work in the
Lagrangian and Hamiltonian formalism [24,58]. We
observe that, while the bound in Eq. (90) is exact, any
arbitrary truncation of the expansion would invalidate it.
Thus, there is no way to tell if adding the two-loop term
would give a better result compared with the simple GEP
where only the first-order terms are retained. Denoting by
δF the difference between the exact ghost term and the
first-order terms retained in the GEP

δF ¼ F gh − F gh
1 ð96Þ

We can write the exact bound in Eq. (90) as

FGEP ¼ F 0
1 þ F gh

1 ≥ F exact − δF : ð97Þ

The GEP might actually fall below the exact free energy,
but we can minimize the problem by maximizing the ghost
term F gh

1 in the GEP, as suggested by Eq. (96). In fact, it
can be easily shown that δF ≥ 0 and F gh

1 is bounded above
by the exact ghost term F gh. By use of Jensen inequality in
the average of the log in Eq. (92)

F gh ≥ −T½Tr log hMFPðAÞi0�
¼ T½Tr logG0� ¼ F gh

1 jM¼0 ð98Þ

and sinceF gh
1 is maximal at its stationary pointM ¼ 0, that

point is also the safest choice that maximizes the ghost term
without reaching the exact value F gh. Having shown that
δF is positive, we could estimate its value by an explicit
evaluation of the two-loop term in Eq. (95) in order to keep
the approximation under control. We must mention that the
GEP might be closer to the exact free energy than expected
by the mathematical bound of Eq. (97) since δF is just the
maximal error that we have been able to establish in the
worst case. In fact, by a comparison with the data of lattice
simulations, we will show that at finite temperature the
GEP does very well, better than expected by the present
analysis.
At finite temperature, the explicit calculation of the GEP

follows by the graphs of Fig. 1. The sum of one-loop graphs
is still given by Eq. (79) where the integralsK, J in Eq. (18)
now include a sum over discrete frequencies and their
explicit expressions in Eq. (20) are replaced by

KðT;mÞ ¼ 1

2
T
X
n

Z
d3p
ð2πÞ3 logðp

2 þ ω2
n þm2Þ

JðT;mÞ ¼ T
X
n

Z
d3p
ð2πÞ3

1

p2 þ ω2
n þm2

ð99Þ
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having used in Eq. (18) the massive free propagator

Δmðωn;pÞ ¼
1

p2 þ ω2
n þm2

ð100Þ

in the Euclidean spacewherepμ ¼ ðωn;pÞ andωn ¼ 2πnT.
In the limit T → 0 the vacuum integrals in Eq. (20) are
recovered as JðmÞ ¼ Jð0; mÞ and KðmÞ ¼ Kð0; mÞ. We
denote them by JVðmÞ and KVðmÞ, respectively. They
contain the diverging part of the integrals and can be
regularized as discussed in the previous sections. Their
explicit expression is given by Eq. (31). The thermal parts
are finite but depend on T. We denote them by JTðT;mÞ and
KTðT;mÞ, respectively. Omitting the arguments for brevity,
they can be written by an explicit calculation as

KT ¼ K − KV ¼ −
1

6π2

Z
∞

0

nðϵk;mÞ
ϵk;m

k4dk

JT ¼ J − JV ¼ 1

2π2

Z
∞

0

nðϵk;mÞ
ϵk;m

k2dk ð101Þ

where ϵk;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and nðϵÞ ¼ ½expðβϵÞ − 1�−1 is the

Bose distribution.
The first-order free energy F 1ðT;mÞ can be written as

the sum of one-loop and two-loop terms

F 1ðT;mÞ ¼ F 1LðT;mÞ þ F 2LðT;mÞ: ð102Þ

The sum of one-loop graphs is obtained by just setting
d ¼ 4 in Eq. (79)

F 1LðT;mÞ ¼ 3NA

h
KðT;mÞ− 1

2
m2JðT;mÞ

i
−NAKðT;0Þ:

ð103Þ

The second term F 2LðT;mÞ is the two-loop graph in the
second row of Fig. 1. Because of the breaking of Lorentz
invariance at finite T, its expression gets formally different
than the vacuum term in Eq. (81) and also becomes gauge
dependent. In order to make contact with previous ana-
lytical and numerical work in the Landau gauge we set
ξ ¼ 0, which is the most common choice for the study of
the correlators, so that the scale m0 ¼ 0.73 GeV will be
used. In fact, that scale was extracted by matching the
predictions of the massive expansion with the data of
numerical simulations in the Landau gauge [39,42].
Assessing the whole gauge dependence of the GEP at
finite temperature is not an easy task, as the scalem0 should
be also changed by matching the gauge-dependent corre-
lators in a different gauge.
Following the same steps of the previous sections, in the

Landau gauge, the seagull graph of the gluon self energy
can be written as [71]

Πμν
ab ¼ −δabNg2T

X
n

Z
d3p
ð2πÞ3 ½2δ

μνΔm þ pμpνΔ0Δm�

ð104Þ

where Δm ¼ ΔmðpÞ is the Euclidean propagator in
Eq. (100). Integrating the single terms, it can be written as

Πμν
ab ¼ −δabNg2½2δμνJ þ Iμν� ð105Þ

where

Iμν ¼ T
X
n

Z
d3p
ð2πÞ3 p

μpνΔmðpÞΔ0ðpÞ: ð106Þ

The trace of Iμν is Iμμ ¼ J, so that at T ¼ 0, by Lorentz
invariance, the self energy of Eq. (80) is recovered for
d ¼ 4. At finite temperature, Iμν is still diagonal but
I00 ≠ Iii. By rotational invariance, using the trace again,
we can write

I11 ¼ I22 ¼ I33 ¼ 1

3
ðJ − I00Þ ð107Þ

which holds separately for the thermal and vacuum parts.
While the vacuum part is just I00V ¼ IiiV ¼ JV=4, the thermal
part can be obtained by an explicit integration as

I00T ¼ 1

m2
ðhm − h0Þ ð108Þ

where hm is the integral

hm ¼ 1

2π2

Z
∞

0

ϵk;mnðϵk;mÞk2dk ð109Þ

that can be evaluated exactly for m ¼ 0 yielding

h0 ¼ −3KTðT; 0Þ ¼
π2T4

30
: ð110Þ

Closing the second loop with the transverse gluon
propagator (ξ ¼ 0) and inserting the symmetry factor 1=4

F 2L ¼ −
1

4
Πμν

abT
X
n

Z
d3p
ð2πÞ3ΔmðpÞtμνðpÞδab: ð111Þ

Then, using Eq. (105), the two-loop term reads

F 2L ¼ NANg2

4
ð7J2 − IμνIμνÞ ð112Þ

and its inclusion in Eq. (102) together with Eq. (103) gives
the first-order free energy in closed form. When optimized,
it provides the GEP at finite temperature. With some abuse
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of language we can denote the first-order free energy by
FGðT;mÞ and call it the GEP.
It is useful to separate the thermal and vacuum parts of

the GEP. If we do that and use the explicit regularized
expressions Eq. (31) for the vacuum parts JV , KV , the total
first-order free energy of Eqs. (102), (103), (112) can be
easily shown to become

FGðT;mÞ ¼ FGð0; mÞ þ ΔFGðT;mÞ ð113Þ

where the vacuum part FGð0; mÞ ¼ VGðmÞ is just the GEP
at T ¼ 0, given by Eq. (84) when expressed in terms ofm0.
The thermal part ΔFGðT;mÞ vanishes at T ¼ 0 and can be
written as

ΔFGðT;mÞ
3NA

¼ KT þ π2

270
T4 þ αm2

4
JT log

m2

m2
0

þ 2π2α

�
J2T −

�
2

3

�
4
�
JT
4
− I00T

�
2
�
: ð114Þ

The GEP is shown in Fig. 5 for different values of the
temperature and in Fig. 6 for several values of the coupling
αs. As already discussed in the previous sections, the GEP is
not very sensitive to the coupling, especially in the physical
ranges around the minima and for T < 2Tc ≈ 0.5 GeV.
While the physical value of the GEP was not sensitive at

all to a change of αs at T ¼ 0, other observables, at finite
temperature, might depend on αs because the variational
method is not an exact calculation. In lattice simulations,
the bare coupling and the cutoff are finite, since the lattice
spacing cannot be set to zero. However, a stationary regime
is reached where the physical predictions seem to be not
sensitive to the actual value of the bare coupling. In the
present calculation, because of the approximations, we fail
to reach an exactly stationary regime for all the thermal

observables. Albeit small, a residual sensitivity to the bare
αs is found, posing the problem of the choice of the
coupling. We argue that, for any finite value of coupling
and cutoff, the outcome of the variational calculation is
more reliable and closer to the lattice data if the physical
observables are less sensitive to the arbitrary value of the
bare coupling. Thus, the best agreement with the data of
lattice simulations is expected in the range 0.6 < αs < 1.2
where a real plateau is observed, rather than in the limit
αs → 0 where a slightly larger sensitivity is found. For that
reason, even if αs should be sent to zero in the limit ϵ → 0,
we prefer to keep αs fixed at the optimal value αs ¼ 0.9 in
the following discussion and in the comparison with the
lattice data. We checked that any other choice does not
introduce important changes in the results.
At finite temperature, we observe that the minima of the

GEP have a very different behavior. The absolute minimum
at m ¼ m0 is almost frozen when T ≪ m0, as expected for
a massive confined gluon. When the temperature increases
the minimum moves backwards, so that the optimal mass
parametermðTÞ is a decreasing function of the temperature,
in fair agreement with the decrease of mass that is observed
on the lattice below Tc [10]. The unstable minimum, at
m ¼ 0 in Fig. 4, moves forward when T > 0 and its mass
value increases almost linearly like the thermal mass of a
massless boson. It gets deeper with increasing temperature.
Thus the GEP seems to show the competition between a
confined boson with a dynamical mass and a free boson
with a thermal mass. As shown in Fig. 5, at a critical
temperature Tc ≈ 0.35 m0 the minima reach the same free
energy before they can merge, so that a weak first-order
phase transition is predicted with a discontinuous drop of
the optimal mass parametermðTÞ that is displayed in Fig. 7.
The free energy at the minima is shown in Fig. 8 across the
transition. Below the transition point, the upper curve is the

FIG. 5. The renormalized GEP of Eqs. (113), (114) is shown in
units of m0 for αs ¼ 0.9 and different values of the temperature.

FIG. 6. The renormalized GEP of Eqs. (113), (114) is shown in
units of m0 for T=m0 ¼ 0.25 and different values of the strong
coupling αs.
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GEP at the unstable thermal mass, while the lower curve is
the GEP at the stable dynamical mass. Above the transition
point they reverse. At any temperature, the physical free
energy is the lower curve FGðT;mðTÞÞ.
The slight effect of a change of αs on the critical

temperature is less than �1% in Fig. 9, where it is shown
at a very enlarged scale. Apart the effect of the scale, the
critical temperature is basically unchanged for a large range
of αs, including the phenomenological interval 0.4 < αs <
1.2 which would be ranged by a running coupling in the

IR. The plateau has a stationary point at αs ≈ 0.9
where Tc ¼ 0.349 m0. We take that as the best predic-
tion of the GEP according to the principle of minimal
sensitivity [66].
Using the scale m0 ¼ 0.73 GeV that arises for N ¼ 3

from the massive expansion at one-loop [37–42], we
predict Tc ¼ 255 MeV, which is very close to the value
Tc ¼ 270 MeV that is found on the lattice [10].
It is important to mention that if the bare coupling were

sent to zero in the limit ϵ → 0, the resulting qualitative
picture would remain basically unchanged. In the limit
αs → 0, the deconfinement transition still takes place,
is weakly first order and with a critical temperature Tc ≈
0.32 m0 not too far from that found on the plateau.
The only relevant difference is in the behavior of the
unstable minimum, whose position does not change with
the temperature and remains fixed at m ¼ 0 for every value
of T, even if it gets deeper and eventually becomes the
stable minimum above Tc. Thus, in the limit αs → 0, the
optimal mass parameter is m ≈m0 for T < Tc, and m ¼ 0
for T > Tc. In the same limit, the critical temperature can
be estimated by observing that the gluon thermal term is
exponentially suppressed at m ≈m0 and cancels the oppo-
site ghost term, so that the minimum of FGðT;mÞ is
basically frozen at the vacuum value FGðT;mÞ ≈
VGðm0Þ ¼ −3NAm4

0=ð128π2Þ if T ≪ m0. On the other
hand, setting α ¼ 0 in Eq. (114), the unstable minimum
atm ¼ 0 is given by FGðT; 0Þ ¼ −3NAπ

2T4=135, so that a
first order phase transition occurs at Tc ≈ ð135

128
Þ14 m0

π ¼
0.32 m0 where the optimal mass parameter drops to zero.
The equation of state can be studied by introducing

pressure and entropy density according to
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FIG. 7. The optimal mass parametermðTÞ which minimizes the
GEP is shown as a function of temperature for αs ¼ 0.9.
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the lower curve (dashed) is the GEP at the stable dynamical mass.
The order reverses above the transition point.
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the calculation. The right hand scale is obtained by taking
m0 ¼ 0.73 GeV.
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p ¼ −½FGðT;mðTÞÞ − FGð0; m0Þ�

s ¼ −
∂
∂T FGðT;mðTÞÞ: ð115Þ

The reader might have noticed in Fig. 5 that below Tc the
minimum at m ¼ m0 moves slightly upwards. That behav-
iour gives an unphysical negative entropy for a limited
range of temperatures, as reported by other massive
approximations at one-loop [33,35] and by other variational
methods [75]. That minor shortcoming might be expected
since the contribution of the massless ghost is enhanced
when T ≪ m compared to the massive gluon. The problem
becomes more evident if we look at the ratio p=T4 in the
limit T → 0. That ratio should be exponentially suppressed
and dominated by the lightest glueball mass, in agreement
with the data of lattice simulations [76–78]. By inspection
of Eq. (114), we observe that while the thermal functions
KT , JT , I00T are exponentially suppressed, the second term
on the right hand side contributes with the fourth power of
T, originating from the massless ghost loop in Eq. (110)
which, besides, is taken with the opposite sign. When all
other terms are suppressed, the ghost loop dominates the
leading behavior yielding a finite nonzero ratio in the limit
T → 0

p
T4

→ −
NAπ

2

90
ð116Þ

and a negative entropy in the same limit. That seems to be a
shortcoming of the Landau gauge, since the same identical
finite values were found in Refs. [34,35] in that gauge.
The same authors find smaller finite values and a positive
entropy in the Landau-De Witt gauge by a two-loop cal-
culation. As discussed in Ref. [75], one would be tempted
to cancel the unphysical term by hand, but that term gives
an important contribution above the transition where it
cancels unphysical gluon terms.
On the other hand, the mismatch can only be observed

below Tc where the exact free-energy is almost constant
and the pressure is basically zero, so that even a very small
(positive) deviation can give an increasing free-energy and
a decreasing pressure. Actually, the effect can be hardly
seen in Fig. 10 where the pressure of Eq. (115) is shown
together with the recent lattice data of Ref. [76] which are
consistent with previous existing data [77,78]. We observe
that the figure is not a fit and that there are no free
parameters in the calculation. Moreover, in units of Tc the
pressure in Fig. 10 does not even depend on the energy
scale m0. Thus, it is remarkable that the data points fall so
close to the prediction of the calculation, at least for
T < 2Tc. As shown in the figure, the GEP provides a
pressure that seems to be bounded above by the data points,
as expected if the GEP were bounded below by the exact
free energy, suggesting that the error in the ghost free-
energy δF might be very small in Eq. (97). For comparison,

in Fig. 10 the pressure is also shown for a coupling
αs ¼ 0.6, smaller than the optimal value αs ¼ 0.9. While
the predictions are not sensitive to the choice of the
coupling at low temperature, above 1.5 Tc the pressure
acquires a slight dependence on it and the agreement with
the data improves by decreasing αs.
The problem of a negative entropy becomes more evident

in Fig. 11 where the entropy density of Eq. (115) is shown
together with the lattice data of Ref. [76]. The small jump of
the entropy density at T ¼ Tc is Δs=T3

c ¼ 2.7 yielding a
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FIG. 10. Equation of state. The pressure is evaluated by
Eq. (115) and shown in units of Tc for the optimal coupling
αs ¼ 0.9 (solid line) and for αs ¼ 0.6 (broken line). The squares
are the lattice data of Ref. [76].
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FIG. 11. Equation of state.The entropy density is evaluated by
Eq. (115) and shown in units of Tc for the optimal coupling
αs ¼ 0.9 (solid line) and for αs ¼ 0.6 (broken line). The squares
are the lattice data of Ref. [76].

VARIATIONAL STUDY OF MASS GENERATION AND … PHYS. REV. D 97, 056013 (2018)

056013-17

C.1 G. Comitini and F. Siringo, Phys. Rev. D 97 (2018) 181



latent heatΔH0 ¼ 2.7 T4
cwhich is larger than thevalues 1.3–

1.5 found in lattice simulations [76–78]. However, we expect
that the overall picture of dynamical mass generation,
deconfinement transition and equation of state might
improve greatly by adding higher-order terms of the expan-
sion in the free energy, as it is the case for the dressed
propagatorwhich gets on top of the lattice datawhen the one-
loop terms are added to the zeroth-order massive propagator
Δm ¼ 1=ðp2 þm2

0Þ [39,40,42].

VI. DISCUSSION

The self-consistency gap equation of the GEP, Eq. (25)
has attracted a lot of attention in the past [19,20,45] as a
basic physical tool for explaining the dynamical mass
generation of Yang-Mills theories. The main difficulty of
handling the gap equation has always been the regulariza-
tion of the diverging integral JðmÞ and its physical mean-
ing. Here, we have shown that, by dimensional
regularization in d > 4, the GEP provides a reasonable
account of the general features of Yang-Mills theory. The
existence of a deep minimum at m ¼ m0 ≠ 0 can be
regarded as a variational argument for dynamical mass
generation in the original scale-less theory.
In order to enforce our confidence on the genuine

physical nature of the minimum, we explored the model
at finite temperature. The emerging scenario for the
equation of state and the deconfinement transition is in
very good agreement with the data of lattice simulations,
leaving no doubt about the physical interpretation of the
minima in the GEP.
Moreover, the method provides a perturbative tool for

improving the results order by order. The expansion around
the optimal vacuum of the GEP turns out to be the massive
expansion developed in Refs. [38–40] which provides
accurate and analytical expressions for the propagators at
one-loop already. Once the nonperturbative effects are
embedded in the optimal variational mass, the residual
interaction can be described by perturbation theory yielding
a powerful analytical tool for QCD in the IR.

Thus, we argue that the present variational estimate of
the thermodynamical potentials might be improved by
inclusion of higher order terms. Second order extensions
of the GEP have been discussed by several authors [56–59].
In general, they do not retain the genuine variational
property of the GEP but different optimization strategies
have been proposed ranging from the principle of minimal
sensitivity [66] to the method of minimal variance [68–71].
Explicit massive two-loop thermal graphs have been
evaluated in Ref. [35]. Here, we limited the calculation
at the first order, just because we preferred to maintain the
genuine variational nature of the method unspoiled, as
much as Jensen-Feynman inequality allows in presence of
ghost fields. Nevertheless, the pure GEP provides a
remarkably good picture of the deconfinement transition.
From first principles, without any fit parameter, the simple
first-order calculation predicts a weak first order transition
at Tc ≈ 250 MeV for N ¼ 3, with a pressure which is very
close to the data points of lattice simulations. We must
mention that the method fails to predict a continuous
transition for N ¼ 2. That could be the consequence of a
known issue for the GEP which usually predicts a weak
first-order transition even when the transition is second-
order, e.g. for the scalar theory [46,56]. In that case, a
continuous transition is restored by inclusion of second
order terms [56]. Moreover, the GEP is known [43,63] to
predict the correct N → ∞ limit of 1=N expansions, so that
its reliability increases when N is large.
Finally, even if the present variational study is limited to

the low temperature range T < m0, where no resummation
of hard thermal loops is required because of the finite mass
in the loops, the effects of a finite mass become negligible
for large energies and T ≫ m0 and the standard results of
perturbation theory would be recovered by the massive
expansion in that limit.
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Explicit analytical expressions are derived for the gluon propagator in a generic linear covariant Rξ

gauge, by a screened massive expansion for the exact Faddeev-Popov Lagrangian of pure Yang-Mills
theory. At one-loop, if the gauge invariance of the pole structure is enforced, the gluon dressing function is
entirely and uniquely determined, without any free parameter or external input. The gluon propagator is
found finite in the IR for any ξ, with a slight decrease of its limit value when going from the Landau gauge
(ξ ¼ 0) toward the Feynman gauge (ξ ¼ 1). An excellent agreement is found with the lattice in the range
0 < ξ < 0.5 where the data are available.
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I. INTRODUCTION

Almost all the visible mass in the universe arises from
dynamical mass generation, a mechanism that converts
chiral current quarks into constituent quarks, each carry-
ing one third of the proton mass. The mechanism can be
understood as the effect of low-energy gluon clouds
dressing the current quark, so that the study of the gluon
propagator in the IR becomes of paramount importance
for a full comprehension of the mass generation [1–7].
Unfortunately, even in the pure gauge sector, perturbation
theory breaks down in the IR and the results of lattice
simulations [5,8–18] are regarded as the only benchmark
for the continuum approaches [19–38] that have been
developed. Among them, a purely analytical method has
been proposed in the last years [39–41], which is based
on a change of the expansion point of ordinary pertur-
bation theory and provides explicit and very accurate
expressions for the gluon propagator in the Landau gauge
[42]. The method relies on a screened massive expansion,
with massive propagators in the internal gluon lines of
Feynman graphs, and is derived from the exact Faddeev-
Popov Lagrangian of pure Yang-Mills theory, from first
principles, without adding any phenomenological param-
eter. The expansion can be seen to emerge from the
Gaussian effective potential [43,44] which provides a
simple argument for the dynamical mass generation
of the gluon and has been also studied at finite temper-
ature [44,45].

In this paper, the massive expansion is extended to the
more general case of a linear covariantRξ gauge and explicit
analytical expressions are provided for the gluon propagator
at any generic value of the gauge-fixing parameter ξ,
yielding new insight into the gauge dependence of the
propagator, that cannot be extracted by any other method.
Exploring the gauge dependence of the gluon propagator

is in itself important in order to individuate the properties
that are gauge invariant and might be directly related to
physical observables. Despite that, the covariant Rξ gauge,
which is under control at the perturbative level, is basically
unexplored in the IR because of convergence problems in
lattice calculations [46–48]. Quite recently, a lattice sim-
ulation has been extended up to ξ ¼ 0.5 [49], predicting a
saturation of the propagator deep in the IR, with very small
deviations from the results in the Landau gauge, but in
strong disagreement with some recent predictions of a
continuum study [25]. On the other hand, the lattice data
seem to be in qualitative agreement with the picture
emerging by Nielsen identities in Ref. [22]. Out of the
Euclidean space, no information has been reported so far
about the analytic properties in Rξ gauge.
On general grounds, because of Nielsen identities [50],

we know that the poles and the residues of the gluon
propagator, i.e., the principal part, must be gauge parameter
independent [51–53]. While no information on the exist-
ence and properties of the poles can be extracted from
lattice calculations in the Euclidean space, the massive
expansion provides explicit analytical expressions that can
be continued to the complex plane [41]. Some attempts at
reconstructing the spectral functions from the lattice data
have been reported [54,55] and are in qualitative agreement
with the predictions of the expansion [41].
At one-loop, by the massive expansion, a pair of

complex conjugated poles were found in the Landau gauge
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[45], as also predicted by different phenomenological
models [56–58], again in strong disagreement with other
continuum studies [59] based on the truncation of an
infinite set of Dyson-Schwinger equations. While the
genuine nature of the poles was already shown by studying
their behavior at finite temperature [45], their explicit gauge
invariance would provide further evidence that they are not
artifact of the expansion. Strictly speaking, by changing the
expansion point, the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry of the quadratic part of the Lagrangian is broken
in the expansion and we should not expect that the pole
structure might be exactly gauge invariant at any finite
order. However, since the total Lagrangian is not modified,
the gauge parameter independence must be recovered if the
expansion provides a very good approximation of the exact
propagator. Thus the gauge parameter independence of the
pole structure would give a quantitative estimate of the
accuracy in the complex plane, where no comparison with
the lattice can be made.
By the same argument, the massive expansion can be

optimized by enforcing the gauge parameter independence
of the whole pole structure, yielding a fully self-contained
calculation from first principles, without any adjustable
parameter or external input. Moreover, once optimized in
the complex plane, the result is found in excellent agree-
ment with the lattice data in the Euclidean space, not only
in the Landau gauge, but for the whole range, up to ξ ¼ 0.5,
that has been explored in the lattice so far [49]. No dramatic
difference is found for larger values of ξ and even in the
Feynman gauge the gluon propagator is finite in the IR,
with a slight suppression of its saturation value compared to
the Landau gauge. Being gauge parameter independent, the
principal part of the propagator might be directly related to
physical observables like glueball masses, as recently
discussed by a quite general method [58].
The paper is organized as follows: in Sec. II the massive

expansion of Refs. [39,40] is extended to a generic Rξ

gauge; in Sec. III the expansion is optimized by requiring
that the pole structure is gauge parameter independent as
demanded by Nielsen identities; in Sec. IV the optimized
gluon propagator is shown for a wide range of the gauge
parameter ξ, including the Feynman gauge (ξ ¼ 1), and is
compared with the available lattice data; Section V contains
a brief discussion of the main results. Explicit analytical
expressions for the propagator in Rξ gauge are derived in
Appendix with many details on the calculation of the
graphs.

II. THE MASSIVE EXPANSION IN Rξ GAUGE

The massive expansion has been first developed in
Refs. [39,40] and related to the Gaussian effective potential
in Refs. [43,44]. It is based on a change of the expansion
point of ordinary perturbation theory for the exact gauge-
fixed Faddeev-Popov Lagrangian of pure Yang-Mills
SUðNÞ theory. The Lagrangian can be written as

L ¼ LYM þ Lfix þ LFP ð1Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ; ð2Þ

the tensor operator F̂μν is

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�; ð3Þ

LFP is the ghost term arising from the Faddeev-Popov
determinant and Lfix is the covariant gauge-fixing term

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�: ð4Þ

The gauge field operators are

Âμ ¼
X
a

X̂aA
μ
a ð5Þ

where the generators of SUðNÞ satisfy the algebra

½X̂a; X̂b� ¼ ifabcX̂c; fabcfdbc ¼ Nδad: ð6Þ

In the standard perturbation theory, the total action is
split as Stot ¼ S0 þ SI where the quadratic part can be
written as

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞd4xd4y

þ
Z

ω⋆
aðxÞδabG−1

0 ðx; yÞωbðyÞd4xd4y ð7Þ

and the interaction is

SI ¼
Z

ddx½Lgh þ L3 þ L4�: ð8Þ

with the three local interaction terms that read

L3 ¼ −gfabcð∂μAaνÞAμ
bA

ν
c

L4 ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e

Lgh ¼ −gfabcð∂μω
⋆
aÞωbA

μ
c: ð9Þ

In Eq. (7), Δ0 and G0 are the standard free-particle
propagators for gluons and ghosts and their Fourier trans-
forms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
: ð10Þ
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having used the transverse and longitudinal projectors

tμνðpÞ ¼ ημν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
ð11Þ

where ημν is the metric tensor.
The massive expansion is obtained by adding a trans-

verse mass term to the quadratic part of the action and
subtracting it again from the interaction, leaving the total
action unchanged.
In some detail, we add and subtract the action term

δS ¼ 1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞd4xd4y ð12Þ

where the vertex function δΓ is a shift of the inverse
propagator

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ� ð13Þ

and Δm
μν is a new massive free-particle propagator

Δ−1
m

μνðpÞ ¼ ð−p2 þm2ÞtμνðpÞ þ −p2

ξ
lμνðpÞ: ð14Þ

Adding that term is equivalent to substituting the new
massive propagator Δm

μν for the old massless one Δ0
μν in

the quadratic part.
In order to leave the total action unaffected by the

change, we must add the same term in the interaction,
providing a new interaction vertex δΓ. Dropping all color
indices in the diagonal matrices and inserting Eqs. (10)
and (14) in Eq. (13) the vertex is just the transverse mass
shift of the quadratic part

δΓμνðpÞ ¼ m2tμνðpÞ ð15Þ

and must be added to the standard set of vertices in Eq. (9).
The proper gluon polarization Π and ghost self energy Σ

can be evaluated, order by order, by perturbation theory. In
all Feynman graphs the internal gluon lines are replaced by
the massive free-particle propagator Δm

μν and all insertions
are considered of the (transverse) mass counterterm δΓμν

which plays the role of a new two-point vertex. It is shown
as a cross in Fig. 1 where some two-point self-energy
graphs are displayed. We will refer to the graphs with a
cross as crossed graphs.
Since the total gauge-fixed FP Lagrangian is not modi-

fied and because of gauge invariance, the longitudinal
polarization is known exactly and is zero, so that the total
polarization is transverse

ΠμνðpÞ ¼ ΠðpÞtμνðpÞ ð16Þ

and the (exact) dressed propagators read

ΔμνðpÞ ¼ ΔðpÞtμνðpÞ þ ΔLðpÞlμνðpÞ
G−1ðpÞ ¼ p2 − ΣðpÞ ð17Þ

where the transverse and longitudinal parts are

Δ−1ðpÞ ¼ −p2 þm2 − ΠðpÞ

ΔLðpÞ ¼ ξ

−p2
: ð18Þ

At tree level, the polarization is just given by the counter-
term δΓ of Eq. (15), so that the tree-term Πtree ¼ m2 just
cancels the mass in the dressed propagator Δ of Eq. (18),
giving back the standard free-particle propagator of Eq. (10).
Finally, summing up the loops and switching to Euclidean

space, the transverse dressed propagator can be written as

ΔðpÞ ¼ ½p2 − ΠloopsðpÞ�−1 ð19Þ
whereΠloopsðpÞ is given by the transverse part of all the loop
graphs for the (proper) polarization.
At one-loop, as discussed in Refs. [39,40], we sum all the

graphs with no more than three vertices and no more than
one loop, which are displayed in Fig. 1. In Appendix,
explicit analytical expressions are given for all the polari-
zation graphs of the figure.
The diverging integrals are made finite by dimensional

regularization and can be evaluated in the Euclidean space,
by setting d ¼ 4 − ϵ. An important feature of the massive
expansion is that the crossed graphs cancel all the spurious
diverging mass terms exactly, so that no mass renormal-
ization is required. That is a very welcome feature since
there is no bare mass in the original Lagrangian. At one-
loop, as shown in Appendix, in the MS scheme, the
diverging part of the proper transverse polarization can
be written as

ΠϵðpÞ ¼ Ng2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2

�
p2

�
13

6
−
ξ

2

�
ð20Þ

which is the same identical result of standard perturbation
theory [60] and ensures that we obtain the correct leading

=Σ +

+

+= + +

++

+
(1a) (1b) (1c) (1d)

(2b) (2c)(2a)

Π

FIG. 1. Two-point self-energy graphs with no more than three
vertices and no more than one loop.
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behavior in the UV where the mass insertions are negli-
gible, as shown in Eq. (A49).
As usual the diverging part can be canceled by wave

function renormalization, by subtraction at an arbitrary
point. Of course, a finite term ∼const × p2 arises from
the subtraction and cannot be determined in any way. It also
depends on the regularization scheme and on the arbitrary
scale μ, so that its actual value remains somehow arbitrary. It
basically is the only free parameter of the approximation, as
discussed later. For an observable particle, the constant
would be fixed on mass shell, by requiring that the pole of
the propagator is at the physical mass with a residue equal to
1. The confinement of the gluon has been related to the
existence of complex conjugated poles [45], so that if, on the
one hand, there is nothing like an observable gluonmass, on
the other hand, the analytic properties at the poles and their
gauge parameter independence will be shown to be enough
for determining the propagator entirely and uniquely.
The finite part of the one-loop proper polarization, as

resulting from the sum of all the graphs in Fig. 1, reads

ΠfðpÞ ¼ −
3Ng2

ð4πÞ2 p
2½FðsÞ þ ξFξðsÞ þ C� ð21Þ

where s ¼ p2=m2 is the Euclidean momentum. The func-
tions FðsÞ and FξðsÞ are adimensional and do not depend
on any parameter. Their explicit expressions are derived in
Appendix by a detailed calculation of the integrals and the
final result is reported in Eqs. (A41), (A44). The constant C
arises from the subtraction of the diverging part by wave
function renormalization. For a generic subtraction point
p ¼ μ, the one-loop transverse propagator follows from
Eq. (19)

ΔðpÞ ¼ Zμ

p2 þ 3Ng2

ð4πÞ2 p
2½FðsÞ þ ξFξðsÞ − Fðμ2m2Þ − ξFξðμ

2

m2Þ�
ð22Þ

where Zμ is the arbitrary finite renormalization constant
Zμ ¼ μ2ΔðμÞ. Finally, the propagator can be written as

ΔðpÞ ¼ Z
p2½FðsÞ þ ξFξðsÞ þ F0�

ð23Þ

where the coupling and all other constants are absorbed by
a finite renormalization factor Z and the new constant F0

which depend on the subtraction point μ according to

Z ¼ ð4πÞ2Zμ

3Ng2

F0 ¼
ð4πÞ2
3Ng2

− Fðμ2=m2Þ − ξFξðμ2=m2Þ: ð24Þ

Eq. (23) provides an explicit analytical expression for the
one-loop gluon propagator. It contains three parameters:m,

Z and F0. However, the finite renormalization factor Z is
irrelevant, while m is the unique energy scale. Since the
exact Lagrangian does not contain any energy scale, m
cannot be determined by the theory: the mass parameter m
determines the overall energy scale and can only be fixed
by comparison with some physical observable. That is not a
limitation of the approximation but is a standard feature of
Yang-Mills theory. Moreover, being just a scale parameter,
the mass m is not a physical or dynamical mass and is not
even required to be gauge invariant. We will use the energy
scale of the lattice and fixm by comparison with the data of
simulations in the Landau gauge. Thus, the only free
parameter in Eq. (23) is the constant F0 which is related
to the arbitrary ratio μ=m. Since the result does depend on
F0, the expansion must be optimized by a criterion for
determining the best F0, yielding a special case of
optimized perturbation theory by variation of the renorm-
alization scheme, a method that has been proven to be very
effective for the convergence of the expansion [61].
Assuming that the expansion converges more quickly for

an optimal value of F0, the one-loop result might be very
close to the exact result for a special choice of the constant.
That is shown to be the case in Refs. [39–42] where an
excellent agreement with the lattice is found in the Landau
gauge. Unfortunately, the available data are not fully
consistent and a best fit yields slightly different values
of F0 andm for different data sets, as shown in Table I. The
deviations might be related to a slightly different choice of
units as recently discussed in Ref. [62]. We can extract a
global average F0 ≈ −0.9� 0.1. Of course, the actual value
of the constant F0 depends on the details of the definition of
the functions FðsÞ, FξðsÞ which are evaluated up to an
(omitted) arbitrary additive constant in Appendix. In this
paper, all the values of F0 refer to the definition given by
Eqs. (A41), (A44) for those functions.
In the Landau gauge, the best agreement is found for the

data set of Ref. [18], with a best fit parameter F0 ¼ −0.887
and a mass scale m ¼ 0.654 GeV, evaluated in the range
0 < p < 4 GeV. The resulting gluon propagator is shown
in Fig. 2 together with the lattice data.

III. OPTIMIZATION FROM FIRST PRINCIPLES

If the expansion is optimized in the Euclidean space, by a
direct comparison with the lattice data, any control of the
approximation is lost in Minkowski space and one might

TABLE I. Parameters of Eq. (23) optimized by the SUð3Þ data
of Ref. [18] (in the range 0—4 GeV) and Ref. [12] (0—2 GeV),
and by the SUð2Þ data of Refs. [9,10] (0—2 GeV).

Data set N F0 m (GeV) Z

Duarte et al. [18] SUð3Þ −0.887 0.654 2.631
Bogolubsky et al. [12] SUð3Þ −1.035 0.733 3.360
Cucchieri,Mendes [9,10] SUð2Þ −0.743 0.859 1.737
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wonder how robust the optimal choice would be when
continued to the complex plane. Moreover, a self-contained
optimization strategy, which does not require any external
input, would be essential for exploring new aspects that are
out of the reach of lattice calculations. In this section, we
show that the expansion can be optimized from first
principles in the complex plane by enforcing some general
exact analytic properties that arise from the BRST invari-
ance of the gauge-fixed Lagrangian.
The Nielsen identities [50] are exact equations con-

necting the gauge parameter dependence of some corre-
lation functions with other Green functions. Their proof
follows from the BRST invariance of the Faddeev-Popov
Lagrangian, Eq. (1), which has not been modified by our
change of the expansion point. They have been used as a
tool for establishing general invariance properties of the
pole structure in QCD [52] and in other Yang-Mills
theories [57].
Following the detailed derivation of Ref. [52], the exact

transverse projection of the gluon propagator ΔðpÞ must
satisfy the Nielsen identity

∂
∂ξ

1

ΔðpÞ ¼ GTðpÞ
�

1

ΔðpÞ
�
2

ð25Þ

where, omitting the diagonal color indices, GTðpÞ is the
transverse component

GTðpÞ ¼ tμνðpÞ
3

Gμν
aað−p; p; 0Þ ð26Þ

of the Green function Gμν
abð−p; p; 0Þ which is defined as

Gμν
abð−p; p; 0Þ

¼
Z

d4xd4yeip·ðx−yÞh0jT½DμωaðyÞAν
bðxÞω⋆

cð0ÞBcð0Þ�j0i

ð27Þ

in terms of the Nakanishi-Lautrup auxiliary field Ba and of
the covariant derivative of the ghost fieldDμωa. If the gluon
propagator has a pole in the complex plane at p2 ¼ p2

0ðξÞ,
then the inverse propagator has a zero and we can write the
identities

1

Δðp0ðξÞÞ
¼ 0;

d
dξ

1

Δðp0ðξÞÞ
¼ 0: ð28Þ

Then, the vanishing of the right-hand side of Eq. (25) at
p ¼ p0ðξÞ says that the partial derivative is also zero and
the pole p0 must be gauge parameter independent

d
dξ

p0ðξÞ ¼ 0: ð29Þ

By the same argument, the residues at the poles are also
gauge parameter independent [53]. In fact, if we differ-
entiate Eq. (25) with respect to p2

∂
∂ξ
�

d
dp2

1

ΔðpÞ
�
¼
�

d
dp2

GTðpÞ
��

1

ΔðpÞ
�
2

þ 2GTðpÞ 1

ΔðpÞ
�

d
dp2

1

ΔðpÞ
�
; ð30Þ

the right-hand side vanishes at p ¼ p0 because of Eq. (28),
so that the residue R, defined as

R ¼ lim
p→p0

ΔðpÞðp2 − p2
0Þ ¼ lim

p→p0

�
d

dp2

1

ΔðpÞ
�
−1
; ð31Þ

satisfies the exact equation

∂
∂ξR ¼ 0: ð32Þ

We conclude that, for the gauge-fixed Yang-Mills
Lagrangian, the principal part ΔP of the exact gluon
propagator

ΔPðpÞ ¼ R
p2 − p2

0

þ R⋆
p2 − p⋆

0
2

ð33Þ

must be gauge parameter independent. The argument fails if
GTðpÞ has a pole in p ¼ p0, which is usually not the case.
In the quadratic part of the Lagrangian, the BRST

symmetry is broken by the mass term that has been added
and has been subtracted again from the interaction. Thus,
while the total Lagrangian is BRST invariant, the symmetry
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FIG. 2. The one-loop transverse gluon propagator ΔðpÞ of
Eq. (23) is shown for the best fit parameters F0 ¼ −0.887, m ¼
0.654 GeV in the Landau gauge ξ ¼ 0 (solid line), together with
the lattice data of Ref. [18]. The broken line is the same
propagator obtained by Eq. (23) with the optimized parameters
F0 ¼ −0.876, m ¼ 0.656 GeV determined by the gauge param-
eter independence of the pole structure in Sec. III.
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is broken at any finite order of the massive expansion. For
that reason, we do not expect that the one-loop propagator
might satisfy the Nielsen identity exactly. However, the
closer we reach to the exact result, the better is expected to
be the agreement with the exact identities. Thus, we can
exploit the dependence on the parameters F0, m in Eq. (23)
and optimize the expansion by requiring that the pole
structure of the propagator is gauge parameter independent.
That is equivalent to an optimal choice of the subtraction
point μ=m, which is usually fixed on mass shell for an
observable particle. Without any observable gluon mass at
hand, the invariance of the poles and residues turns out to
be enough for determining the one-loop gluon propagator
entirely and for any choice of the gauge parameter.
For a generic choice of the gauge parameter ξ, the

optimal parameters can be regarded as functions F0ðξÞ,
mðξÞ, to be determined by the requirement that the pole and
the residue do not depend on ξ. Of course, the finite
renormalization factor Z remains arbitrary and has no
physical relevance. Let us denote by Ψðz; ξ; F0; mÞ the
inverse dressing function in Eq. (23)

Ψðz; ξ; F0; mÞ ¼ Fð−z2=m2Þ þ ξFξð−z2=m2Þ þ F0 ð34Þ

which is an analytic function of the complex variable
z ¼ xþ iy. On the imaginary axis, for x ¼ 0, p2

E ¼ −z2 ¼
y2 is the Euclidean momentum. On the real axis, for y ¼ 0,
we recover the Minkowskian momentum p2

M ¼ z2 ¼ x2.
Thus, the variable z is the analytic continuation of the
physical momentum pM. The pole z20 ¼ −p2

0 is a zero of the
inverse dressing function Ψ and must satisfy the equation
Ψðz0; ξ; F0; mÞ ¼ 0. The gauge parameter independence of
the pole requires that

Ψðz0; ξ1; F0ðξ1Þ; mðξ1ÞÞ ¼ Ψðz0; ξ2; F0ðξ2Þ; mðξ2ÞÞ ð35Þ

yielding a set of two coupled real equations for the real
and imaginary parts. The equations can be solved for
F0ðξ2Þ and mðξ2Þ from a given initial value F0ðξ1Þ, mðξ1Þ.
Taking the Landau gauge as the initial point ξ1 ¼ 0 and
fixing a scale m0 ¼ mð0Þ as energy units, the functions
F0ðξÞ and mðξÞ are determined for any value of the gauge
parameter ξ from the initial value F0ð0Þ which remains the
only free parameter. Thus, we can encode the gauge
parameter independence of the pole in the optimized
propagator and evaluate it for any value of the parameter
ξ. The functions F0ðξÞ, m2ðξÞ are shown in Figs. 3 and 4
for different choices of the initial value F0ð0Þ in the
Landau gauge.
In the range −2 < F0ð0Þ < 0, the gluon propagator of

Eq. (23) has a single pair of complex conjugated poles,
while other values of F0ð0Þ, out of that range, seem to be
unphysical. For F0ð0Þ < −2 the expression in Eq. (23) has
poles in the Euclidean space and changes sign at the poles,
on the positive s axis. Moreover, according to Eq. (24), the

coupling g2 would become negative in that range
because the minimal value of FðsÞ is ≈2. For F0ð0Þ > 0

the coupling g2 becomes very small in Eq. (24) for any μ
and the pole topology becomes very different. As discussed
in the previous section, in the Landau gauge, the best
agreement with the lattice is found for F0 ≈ −0.9 which is
at the center of the physical allowed range.
It is remarkable that, close to the best fit value

F0ð0Þ ≈ −0.9, the contour lines ReΨ ¼ 0, ImΨ ¼ 0, at
the crossing point z0 (the pole), are basically not rotated by
any change of ξ. That can be seen in Fig. 5 where the
contour lines are displayed for ξ ¼ 0 and ξ ¼ 1 and are
shown to be approximately tangent at the intersection point.
In other words, when the initial value F0ð0Þ approaches the
best fit value F0ð0Þ ≈ −0.9, the conformal map z1 → z2,
defined by

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.2  0.4  0.6  0.8  1  1.2

m
2 (ξ

)/
m

02

ξ

F0(0) = -1.50
F0(0) = -1.25
F0(0) = -1.00
F0(0) = -0.88
F0(0) = -0.75
F0(0) = -0.50
F0(0) = -0.25

FIG. 3. The mass parameter ratiom2ðξÞ=m2
0 as a function of the

gauge parameter ξ for different initial values of F0ð0Þ. The red
line is obtained for the optimal value F0ð0Þ ¼ −0.876.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0  0.2  0.4  0.6  0.8  1  1.2

F0(0) = -1.50

F0(0) = -1.25

F0(0) = -1.00

F0(0) = -0.876

F0(0) = -0.75

F0(0) = -0.50

F0(0) = -0.25

F
0(

ξ)

ξ

FIG. 4. The parameter F0ðξÞ as a function of the gauge
parameter ξ for different initial values of F0ð0Þ. The red line
is obtained for the optimal value F0ð0Þ ¼ −0.876.

FABIO SIRINGO and GIORGIO COMITINI PHYS. REV. D 98, 034023 (2018)

034023-6

190 Appendix C: Published papers



Ψðz1; ξ1; F0ðξ1Þ; mðξ1ÞÞ ¼ Ψðz2; ξ2; F0ðξ2Þ; mðξ2ÞÞ ð36Þ

becomes a local identity at the fixed point (the pole
z20 ¼ −p2

0). Denoting by θ the rotation angle of the contour
lines in the map and setting ξ1 ¼ 0, ξ2 ¼ ξ, we can write

θðξÞ ¼ Arg

(
d
dzΨðz; 0; F0ð0Þ; mð0ÞÞ
d
dzΨðz; ξ; F0ðξÞ; mðξÞÞ

)
z¼z0

ð37Þ

and because of Eq. (31), the angle θ gives the phase change
of the residue R which can be written, as a function of ξ,

RðξÞ ¼ Rð0ÞeiθðξÞ ð38Þ

since the modulus jRj can always be made invariant by an
appropriate choice of the real renormalization constant
ZðξÞ. Explicit analytical expressions for the derivative of Ψ
are reported in Eqs. (A50), (A53) of Appendix.
We observe that the angle θ is not exactly zero, so that in

general, the Nielsen identity Eq. (25) and its consequences
Eqs. (29), (32) cannot be all satisfied. However, as shown in
Figs. 5 and 6, the angle θ becomes very small, for a wide
range of ξ, if the initial constant F0ð0Þ is close to the value
F0 ≈ −0.9 which already described the lattice data very
well in the Euclidean space. In other words, the optimal
propagator in the Euclidean space is also the one that best
satisfies the Nielsen identity in the complex plane, giving
us confidence in the general accuracy of the approximation.
We must mention that averaging over Gribov copies might
break BRST invariance in the lattice. However, we are
assuming that the Nielsen identities are not seriously
affected in lattice calculations.
Reversing the argument, the expansion can be optimized

in a self-contained way, by first principles and without any
external input, by assuming that the best choice for the

initial constant F0ð0Þ is the one that makes the angle θ
smaller in a wider range of ξ. Even if there are no technical
reasons for limiting the value of the gauge parameter, we
expect that perturbation theory would be more effective
when ξ is small and the expansion might be out of control
for very large ξ ≫ 1. Prudentially, the present study is
limited to the range ξ < 1.2, including the Feynman gauge.
The minimal phase deviation is observed for the initial

value F0ð0Þ ¼ −0.876. As shown in Fig. 6, for that choice,
the phase θ fluctuates around zero in the whole range
0 < ξ < 1.2, with very small deviations which are less than
0.003. Nevertheless, no fine tuning is required since θ is
very small around F0ð0Þ ≈ −0.9 and any slight change of
F0ð0Þ can be compensated by an appropriate choice of Z
andm. In fact, as shown in Fig. 2, when the present new set
of first-principle optimal parameters are inserted in
Eq. (23), the propagator is indistinguishable from the
previous one that was obtained by a best fit of the lattice
data. Actually, the optimal initial value F0ð0Þ not only
minimizes the phase deviation θðξÞ, but also makes m2ðξÞ
stationary and maximal for any fixed ξ, as shown in Fig. 3
where the optimal curve is plotted as a red line. That is a
geometric consequence of the pole being the tangency
point in Fig. 5. Moreover, the optimal function F0ðξÞ is the

ξ=1,  ImΨ = 

ξ=1,  ReΨ = 

ξ=0,  ImΨ = 

ξ=0,  ReΨ = 
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FIG. 5. Contour plots of ReΨ ¼ 0, ImΨ ¼ 0 in the complex
plane z ¼ xþ iy for ξ ¼ 1 (solid lines) and ξ ¼ 0 (dashed lines),
with F0ð0Þ ¼ −0.876 and m0 ¼ 0.656 GeV (see Table II). The
curves are approximately tangent (i.e., θ ≈ 0) at the intersection
point z0 (the pole) whenever F0 ≈ −0.9.
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most gauge parameter invariant curve in Fig. 4 (shown as a
red line).
The optimal parameters are summarized in Table II

together with very accurate polynomial interpolation for-
mula for the optimal functions F0ðξÞ,m2ðξÞ. Extracting the
energy scalem0 ¼ mð0Þ ¼ 0.656 GeV from the lattice data
of Ref. [18] in the Landau gauge, the invariant pole is found
at x0 ¼ M ¼ 0.581 GeV and y0 ¼ γ ¼ 0.375 GeV, which
might be regarded as the physical mass and the damping
rate of the quasigluon, respectively, as discussed
in Ref. [45].

IV. THE PROPAGATOR AT ξ ≠ 0

In the Euclidean space, the gluon propagator can be
evaluated analytically by Eq. (23), for any value of the
gauge parameter ξ, inserting the optimal parameters of
Table II which enforce the gauge parameter independence
of the pole structure in the complex plane. In order to
compare with the available lattice data of Ref. [49], the
finite renormalization constant Z is fixed by the same
momentum subtraction scheme of that work, i.e., requiring
that μ2ΔðμÞ ¼ 1 for any ξ and taking the same renormal-
ization point μ ¼ 4.317 GeV. That is equivalent to taking
the constant Z in Eq. (23) to be Z ¼ Ψðiμ; ξ; F0; mÞ.
The gluon propagator is shown in Fig. 7, for several

values of the gauge parameter ξ, together with some data
points extracted from Ref. [49]. The agreement with the
data is very good in the limited range ξ < 0.5 where they
are available. For ξ ≠ 0, the propagator is slightly sup-
pressed in the IR compared with the Landau gauge. We
must mention that previous continuum studies, based on the
truncation of an infinite set of exact Dyson-Schwinger
equations, reached contrasting and ambiguous results.
While a strong dependence on the gauge parameter was
predicted in Ref. [25], with large deviations from the
Landau gauge, a qualitative agreement with the lattice
was reported in Ref. [22] by the aid of exact Nielsen
identities which seem to play a key role. The gauge
dependence was found small but no quantitative prediction

could be made and even the sign of the change was not
defined by that method.
As shown in Fig. 7, up to and beyond the Feynman

gauge (ξ ¼ 1), no dramatic change occurs and the sup-
pression of the propagator increases very smoothly with the
increasing of ξ. The change can best be seen by evaluating
the ratio between ΔðpÞ at ξ ≠ 0 and at ξ ¼ 0, as shown in
Fig. 8 together with the lattice data of Ref. [49]. Even if the
lattice calculation is plagued by large statistical errors, with
scattered data and large error bars, the optimized propa-
gator seems to be in quantitative agreement with the data
and reproduces the correct trend predicted by the lattice.
We stress that the curves are not a fit of the data and the
agreement is reached from first principles without any
adjustable parameter.

TABLE II. Set of optimal parameters, obtained by enforcing the
gauge parameter independence of the pole structure in the range
0 < ξ < 1.2. The energy scale m0 and the finite renormalization
constant Zð0Þ are determined by the data of Ref. [18] which are
shown in Fig. 2.

OPTIMIZATION BY GAUGE INVARIANCE

F0ð0Þ ¼ −0.876, m0 ¼ mð0Þ ¼ 0.656 GeV, Zð0Þ ¼ 2.684
jθðξÞj < 2.76 × 10−3, 0 < ξ < 1.2

F0ðξÞ ≈ −0.8759 − 0.01260ξþ 0.009536ξ2 þ 0.009012ξ3

m2ðξÞ=m2
0 ≈ 1 − 0.39997ξþ 0.064141ξ2

z0=m0 ¼ 0.8857þ 0.5718i, tR ¼ ImRð0Þ=ReRð0Þ ¼ 3.132
M ¼ 0.581 GeV, γ ¼ 0.375 GeV (invariant pole)
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The dressing function is shown in Fig. 9. As predicted by
the lattice [49], the maximum is basically fixed at the same
energy for any ξ. We argue that the Nielsen identity gives
the correct scale factormðξÞ=mð0Þ that keeps the maximum
fixed, at variance and in strong contrast with the continuum
calculation of Ref. [25] which might miss that important
constraint.
In the studied range of ξ, the whole principal part of the

propagator in Eq. (33) is basically invariant up to a finite
renormalization factor. The pole p0 is fixed at the value of
Table II, while the phase of the residue is ArgRðξÞ ¼
1.262þ θðξÞ where jθðξÞj < 2.75 × 10−3, yielding the
ratio tR ¼ ImRðξÞ=ReRðξÞ ¼ 3.132� 0.03. This ratio is
important for determining the explicit parameters of the
rational part Eq. (33) which has been derived at tree level by
other phenomenological models like the refined Gribov-
Zwanziger model [56–58]. Being gauge parameter inde-
pendent, the parameters of the rational part might be
directly related to physical observables or condensates
[63,64] and a recent general method has been proposed
for extracting information on the glueball masses [58].
Using the notation of Ref. [64], the principal part of the
propagator, Eq. (33), can be written as

ΔPðpÞ ¼ ZGZ
p2 þM2

1

p4 þM2
2p

2 þM4
3

ð39Þ

where

ZGZ ¼ 2ReR

M2
1 ¼ M2 − γ2 þ 2MγtR ¼ 1.562 GeV2

M2
2 ¼ 2ðM2 − γ2Þ ¼ 0.394 GeV2

M4
3 ¼ ðM2 þ γ2Þ2 ¼ 0.229 GeV4 ð40Þ

having made use of the optimized parameters of Table II.
Below 1 GeV, the masses Mi seem to be compatible with

the statistical analysis of Ref. [64], even if the simple
rational part ΔP was used in that work for a fit of the lattice
data, ignoring the corrections which are included in the
present optimized one-loop propagator. In fact, the correc-
tions are gauge dependent and very small below 1 GeV, as
already shown in the Landau gauge by a direct evaluation
of the spectral function [41,65].
The Schwinger function ΔðtÞ can be evaluated by a

numerical integration, as a function of the Euclidean time t,
according to its definition

ΔðtÞ ¼
Z þ∞

−∞

dp4

2π
eip4tΔðp⃗ ¼ 0; p4Þ ð41Þ

and is shown in Fig. 10 for different values of the gauge
parameter. In the Landau gauge, the Schwinger function is
found in qualitative agreement with the result of Ref. [66],
with a positivity violation that occurs above the point t ¼
t0 ≈ 5.8 GeV−1 where the function crosses the zero and
becomes negative. The scale t0 is roughly the size of a
hadron and in Ref. [66] it was conjuctered to be a physical
gauge-invariant scale at which gluon screening occurs.
Actually, as shown in Fig. 10, the crossing point t0 is found
to be almost gauge parameter independent. Moreover, the
large t behavior seems to be dominated by the singularities
and the whole Schwinger function is very well approxi-
mated by inserting in Eq. (41) the simple principal part
ΔPðpÞ of Eq. (33), which is gauge parameter independent,
yielding the analytical result

ΔPðtÞ¼
� jRjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2þ γ2
p �

e−Mt cos

�
γt−θþ arctan

γ

M

�
ð42Þ

which is shown in Fig. 10 as a broken line.
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We cannot end this section without a brief discussion of
the spectral function, which has attracted great interest
[54,55] even if its physical content is quite unclear in
presence of complex poles and confinement. In fact, the
usual Källen-Lehmann representation must be replaced by
the more general integral representation [65]

ReΔðp2Þ ¼ ΔPðp2Þ þ P:V:
Z þ∞

0

ρðμ2Þ
p2 − μ2

dμ2

ρðp2Þ ¼ −
1

π
ImΔðp2 þ iϵÞ ð43Þ

where the spectral function ρðp2Þ is gauge dependent and
does not contain any information on the gauge parameter
independent principal part ΔP which must be added to the
integral for reproducing the whole propagator. Moreover,
ρðp2Þ is even not positive defined for a confined particle. In
the Landau gauge, the spectral function was evaluated by
the massive expansion in Ref. [41] and the dispersion
relation of Eq. (43) was checked in Ref. [65] by a numerical
integration. The integral provides the difference between
the principal part and the whole propagator, so that the
difference can be large only if the total weight which comes
from the integration of ρðp2Þ is large. Moreover, ρðp2Þ
changes sign and the contributions arising from different
signs can partially cancel.
The one-loop spectral density can be easily evaluated by

the explicit expression of the propagator, Eq. (23), using the
optimal parameters of Table II, and is shown in Fig. 11 for
different values of the gauge parameter ξ. It has some gauge
dependent features, like a cusp at the two-particle threshold
p ¼ 2mðξÞ and a finite spike at p ≈mðξÞ. In the Landau
gauge, the spike is just a smooth maximum but is enhanced
for ξ > 0.08 by the appearance of a gauge dependent pole
near the real axis, at x ≈mðξÞ. Some details of the finite
peak on the real axis are shown in Fig. 12. Apart from the
peak, the spectral density is very small and even the peak

area gives a small contribution to the integral in Eq. (43)
because of the change of sign that occurs just at the peak, in
agreement with a confinement scenario. While the peak
resembles the spike which was observed in Ref. [59], its
physical nature is unclear and is certainly related to the
nature of the new gauge dependent pole which might be an
artifact of the one-loop approximation.
From a technical point of view, the new pole arises

because of the logarithmic divergence of the real part of
Fξð−z2=m2Þ at the branch point x ¼ m on the real axis. The
divergence occurs because of the bad IR behavior of the
crossed gluon loop,Π2c in Fig. 1, in the limit p → im, since
the denominator in Eq. (A19) becomes

k2½ðkþ pÞ2 þm2�nþ1 → k2½k2 þ 2k · p�nþ1 ∼ knþ3 ð44Þ

if there are n insertions of the counterterm in the transverse
gluon line. Thus the integral diverges in the IR and the
divergence becomes worse and worse at higher orders,
requiring some resummation which might cancel the
divergence in the exact result. For n ¼ 1 the divergence
appears as a branch point at s ¼ −1 for the logarithmic
term logð1þ sÞ of FξðsÞ in Eq. (A44). Near the branch
point, for x ≈m and any finite ξ ≠ 0, the real part of the
inverse dressing function ΨðzÞ, Eq. (34), can be written as

ReΨðzÞ ≈ ReΨregðzÞ þ ξAðmÞ log jz −mj ð45Þ

where Ψreg is the regular part and the prefactor AðzÞ of the
log is a rational function which is real on the real axis, with
AðmÞ ¼ −2=3. Then, taking z ¼ mþ reiϕ, the contour line
ReΨ ¼ 0 is given by

r ≈ exp

�
−
ReΨregðmÞ
ξAðmÞ

�
¼ e−C=ξ ð46Þ
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which is a very small circle centered at x ¼ m on the real
axis, with an exponentially small radius in the limit ξ → 0 if
C > 0. In the Feynman gauge, ξ ¼ 1, the contour line is
just visible in Fig. 5 as a small black semi-circle centered at
x ¼ mð1Þ ¼ 0.53 GeV on the real axis. It gets hardly
visible for ξ < 0.5.
At the same branch point, the imaginary part of FξðsÞ has

a large discontinuous step yielding a change of the whole
imaginary part

δðImΨÞ ≈ ξπAðmÞ ¼ −2.1 · ξ ð47Þ

which is quite larger than ImΨregðmÞ ≈ 0.17 and gives rise
to a sharp change of sign at x ¼ mðξÞ, even when ξ is small,
provided that ξ > 0.08. On the complex plane, the discon-
tinuous step is smeared out and the imaginary part ImΨ
changes sign on a contour line ImΨ ¼ 0 which originates
from the branch point x ¼ mðξÞ, just at the center of the
circle ReΨ ¼ 0. The resulting contour line ImΨ ¼ 0 is
visible in Fig. 5 as a solid red line ending at the center of the
black semicircle. The crossing point of the two contour
lines is the new pole that appears for ξ > 0.08. On the other
hand, if ξ < 0.08, the imaginary part ImΨ changes sign
below x ¼ mðξÞ, out of the circle, the contour lines do not
cross and the extra pole disappears when approaching the
Landau gauge.
By the previous analysis we conclude that the narrow

peak of the spectral function must have a very small width,
roughly given by the distance of the pole from the real axis
r ≈ expð−C=ξÞ, getting smaller and smaller when ξ ≪ 1, as
shown in Fig. 12. Moreover, ImΨ and ρðp2Þ change sign
across the peak and the overall effect of the peak on the
integral, in Eq. (43), is expected to be negligible.
It is likely that the sharp peak of the spectral function and

the gauge dependent pole get smoothed in the exact
propagator since the Nielsen identity, Eq. (25) would
forbid the existence of a pole which depends on the gauge
parameter ξ, unless the Green function GTðpÞ in Eq. (26)
has a pole at the same point. Having traced the source of the
pole and found it related to the logarithmic divergence of
the crossed graphs at p2 ¼ −m2, we cannot exclude that the
same divergence might occur in the ghost sector and in
other Green functions. Thus, in principle, we cannot rule
out that the pole might be genuine, even if probably related
to unphysical degrees of freedom of the ghost sector.

V. DISCUSSION

There is a growing consensus that QCD and Yang-Mills
theory are self-contained theories that dynamically generate
their own infrared cutoff. The numerical simulations on the
lattice have shown that the exact theory generates a
dynamical mass which screens the gluon interaction in
the IR. Therefore, any continuum first-principle study
should reproduce the same results without the aid of any
adjustable parameter, except for the overall energy scale

that must come from the phenomenology. It could be
argued that, because of Gribov ambiguity, in Rξ gauge the
Faddeev-Popov Lagrangian is just an approximation of the
full theory. The approximation works very well in the usual
perturbative approach but could be out of control in the IR
because of nonperturbative effects. A phenomenological
parameter has been introduced by several authors for
locating the Gribov horizon, yielding an interaction-
induced mass scale which screens the theory in the IR
[56–58,67–72]. However, even averaging over Gribov
copies, a dynamical mass is generated in the theory, as
shown by the gauge-fixed lattice calculations in the Landau
gauge. A recent analysis [73] has made clear that the
dynamical mass would be as effective as the Gribov
parameter for screening the theory and that its dynamical
appearance alone would eliminate the problem of Gribov
copies and complete the definition of the theory.
The same argument holds for the massive expansion

which is a screened expansion from the beginning and can
be safely used in the IR. Having changed the expansion
point, the gauge-fixed theory can be studied by plain
perturbation theory and the agreement with the lattice data
shows that, when the expansion is optimized, higher order
graphs are very small and negligible. Thus, ignoring the
Gribov ambiguity does not seem to be a problem as far as
perturbation theory works well. Again, it is a consequence
of the dynamical mass that screens the theory, yielding a
self-contained perturbative description from first principles.
It is not surprising that, without using any adjustable

parameter and without modifying the original gauge-
fixed Lagrangian, the massive expansion predicts the same
pole structure which was found by the refined Gribov-
Zwanziger model [56–58]. The two approaches are very
different but they study the same identical physical system,
so that if both are valid approximations they must reach the
same conclusions. Moreover, our analysis supports the
physical relevance of the principal part: having established
its gauge parameter independence [53], we argue that the
simple rational part ΔPðpÞ might play an important role in
the phenomenology, more than the (small) gauge depen-
dent spectral density. The conclusions of the present work
would be enforced by a comparison with position-space
lattice data, because of their sensitivity to the analytical
structure of the propagator. Unfortunately, at the moment,
for a generic covariant gauge, no such data are available.
An apparent drawback of the massive expansion is that

the BRST invariant action is arbitrarily splitted in two parts
that are not BRST invariant. The Nielsen identities cannot
be satisfied exactly at any finite order of the expansion.
However, because of the spurious dependence of the
approximation on the subtraction point μ=m, the expansion
can be optimized by enforcing the gauge parameter
invariance of the pole structure. Thus, the extension to
Rξ gauge, not only gives new information on the gluon
propagator in a generic gauge, but also provides a unique
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way to fix the optimal expansion even in the Landau gauge.
The good agreement with the available lattice data, which is
reached without any fit of adjustable parameters, increases
our confidence in the general validity of the method as a
first-principle benchmark for more phenomenological
models.
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APPENDIX: ONE-LOOP GRAPHS

In this Appendix, explicit analytical expressions are
derived for the one-loop polarization graphs of Fig. 1.
The graphs are evaluated using the free-particle (gauge-
dependent) propagator of Eq. (14) and inserting the trans-
verse counterterm of Eq. (15) as a new two-point vertex
which is shown as a cross in the figure. We refer to the
graphs with one insertion of the counterterm as crossed
graphs.

1. Graphs Π1b, Π1c, and Π1d (tadpoles)

In the Euclidean space, the constant tadpole Π1b can be
written as

Π1b ¼ −
Ng2ðd − 1Þ2

d

Z
ddk
ð2πÞd

1

k2 þm2
ðA1Þ

having dropped the longitudinal loop which is scaleless and
vanishes in dimensional regularization. Setting d ¼ 4 − ϵ,
in the MS scheme,

Π1b ¼
3

4

ð3Ng2Þ
ð4πÞ2 m2

�
2

ϵ
þ log

μ2

m2
þ C

�
ðA2Þ

where C is a constant which depends on the regularization
scheme.
The crossed graphs do not contain any longitudinal gluon

line since the counterterm δΓ is transverse in Eq. (15). The
graph Π1c can be written as a derivative

Π1c ¼−m2
∂Π1b

∂m2
¼−

3

4

ð3Ng2Þ
ð4πÞ2 m2

�
2

ϵ
þ log

μ2

m2
þC−1

�
:

ðA3Þ

As expected, the diverging terms cancel in the sum
Π1b þ Π1c. The double-crossed tadpole Π1d is finite and
including its symmetry factor it reads

Π1d ¼
1

2
m4

∂2Π1b

∂ðm2Þ2 ¼ −
3

8

ð3Ng2Þ
ð4πÞ2 m2 ðA4Þ

so that the sum of the constant graphs is

Π1b þ Π1c þ Π1d ¼
3

8

ð3Ng2Þ
ð4πÞ2 m2: ðA5Þ

2. Ghost loop Π2a

The ghost loop Π2a is a standard graph and does not
depend on ξ. In the Euclidean space it is given by the
integral [32]

Π2aðpÞ ¼ −
Ng2

ðd − 1Þ
Z

ddk
ð2πÞd

k2⊥
k2ðpþ kÞ2 : ðA6Þ

The integral is straightforward and setting d ¼ 4 − ϵ the
diverging part is

Πϵ
2aðpÞ ¼

ð3Ng2Þ
ð4πÞ2

p2

36

�
2

ϵ
þ log

μ2

m2

�
ðA7Þ

while the finite part reads

Πf
2aðpÞ ¼

ð3Ng2Þ
ð4πÞ2

m2

36
ðC0s − s log sÞ ðA8Þ

where s ¼ p2=m2 and the constant C0 depends on the
regularization scheme.

3. Gluon loop Π2b

The gluon loop Π2b can be written as

Π2bðpÞ ¼ Π0
2bðpÞ þ ξΠξ

2bðpÞ þ ξ2Πξξ
2bðpÞ ðA9Þ

where Π0
2bðpÞ is the graph in the Landau gauge, ξ ¼ 0. In

the Euclidean space, setting d ¼ 4, it reads [32]

Π0
2bðpÞ¼

Ng2

6

Z
d4k
ð2πÞ4

k2⊥F 0ðk;pÞ
ðk2þm2Þ½ðkþpÞ2þm2� ðA10Þ

where k2⊥ ¼ ½k2 − ðk · pÞ2=p2� and the kernel F 0 can be
derived by the explicit expressions of Ref. [32]

F 0ðk; pÞ ¼ 10ðk2 þ p2Þ þ ðkþ pÞ2
k2

þ p4 þ 10p2k2 þ k4

ðkþ pÞ2 :

ðA11Þ

It is useful to decompose it as

F 0ðk; pÞ
12

¼ k2 þ p2

k2
þ p2

ðkþ pÞ2 −
p2k2⊥

3ðkþ pÞ2k2 ðA12Þ

and using the identity
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1

q2ðq2 þm2Þ ¼
1

m2

�
1

q2
−

1

q2 þm2

�
ðA13Þ

the graph can be split as

Π0
2bðpÞ ¼ 2Ng2½IAðpÞ þ 2IBðpÞ þ ICðpÞ� ðA14Þ

where

IAðpÞ ¼
Z

d4k
ð2πÞ4

k2⊥ð1 − 2p2

m2 −
p2k2⊥
3m4 Þ

ðk2 þm2Þ½ðkþ pÞ2 þm2�

IBðpÞ ¼
p2

m2

Z
d4k
ð2πÞ4

k2⊥ð1þ k2⊥
3m2Þ

k2½ðkþ pÞ2 þm2�

ICðpÞ ¼ −
p2

3m4

Z
d4k
ð2πÞ4

k4⊥
k2ðkþ pÞ2 : ðA15Þ

The integrals can be evaluated analytically [40,67,68] by
dimensional regularization for d ¼ 4 − ϵ, yielding a diverg-
ing part

Π0ϵ
2bðpÞ ¼ −

3Ng2

ð4πÞ2
�
m2 −

25

36
p2

��
2

ϵ
þ log

μ2

m2

�
ðA16Þ

and a finite part

Π0f
2b ¼

3Ng2

ð4πÞ2
m2

72

�
2

s
þ C1 þ C2sþ s3 log s

− sLAðsÞ − sLBðsÞ
�

ðA17Þ

where C1, C2 are constants which depend on the regulari-
zation scheme, s ¼ p2=m2 and LA, LB are the logarithmic
functions

LAðsÞ ¼ ðs2 − 20sþ 12Þ
�
4þ s
s

�
3=2

log

 ffiffiffiffiffiffiffiffiffiffiffi
4þ s

p
−

ffiffiffi
s

pffiffiffiffiffiffiffiffiffiffiffi
4þ s

p þ ffiffiffi
s

p
!

LBðsÞ ¼
2ð1þ sÞ3

s3
ðs2 − 10sþ 1Þ logð1þ sÞ: ðA18Þ

The other terms, Πξ
2b and Πξξ

2b, arise by substituting one
and two transverse lines, respectively, with the longitudinal
ones. By the general scheme of Ref. [32], for d ¼ 4, they
follow as

Πξ
2bðpÞ ¼

Ng2

6

Z
d4k
ð2πÞ4

F 0ξðk; pÞ
ðk2 þm2Þðkþ pÞ2

þ Ng2

6

Z
d4k
ð2πÞ4

F ξ0ðk; pÞ
k2½ðkþ pÞ2 þm2� ðA19Þ

Πξξ
2bðpÞ ¼

Ng2

6

Z
d4k
ð2πÞ4

F ξξðk; pÞ
k2ðkþ pÞ2 ðA20Þ

where

F 0ξðk; pÞ ¼ ð3k2 − k2⊥Þðk2 − p2Þ2
k2ðkþ pÞ2

¼ 3ðkþ pÞ2 − ð10p2 þ k2Þk2⊥
ðkþ pÞ2

−
p4k2⊥

k2ðkþ pÞ2 − 12ðp · kÞ;

F ξ0ðk; pÞ ¼ 3k2 þ 12p2 þ 12ðk · pÞ − k2⊥

− k2⊥
�
11p2 þ 2ðk · pÞ

k2
þ p4

ðkþ pÞ2k2
�
;

F ξξðk; pÞ ¼ p4k2⊥
k2ðkþ pÞ2 : ðA21Þ

The quadratic term is trivial since the integral Πξξ
2b is

scaleless and by a dimensional argumentΠξξ
2bðpÞ ¼ const ×

p2. The constant can be absorbed by a finite wave function
renormalization and the term can be ignored.
The two integrals in Eq. (A19) must be the same, as can

be easily seen by substituting k → ð−k − pÞ in Eq. (A21).
Taking twice the explicit expression ofF ξ0, the integral can
be written as

Πξ
2bðpÞ ¼ Ng2½IξAðpÞ þ IξBðpÞ þ IξCðpÞ þ IξDðpÞ� ðA22Þ

where

IξAðpÞ ¼
Z

d4k
ð2πÞ4

1

½ðkþ pÞ2 þm2�

IξBðpÞ ¼
1

3

Z
d4k
ð2πÞ4

12p2 þ 12ðk · pÞ − k2⊥
k2½ðkþ pÞ2 þm2�

IξCðpÞ ¼ −
p4

3m2

Z
d4k
ð2πÞ4

k2⊥
ðk2Þ2ðkþ pÞ2

IξDðpÞ ¼
1

3

Z
d4k
ð2πÞ4

k2⊥½p
4

m2 − 11p2 − 2ðk · pÞ�
ðk2Þ2½ðkþ pÞ2 þm2� ðA23Þ

By dimensional regularization, taking d ¼ 4 − ϵ, the
integrals can be evaluated analytically in the MS scheme.
The first integral is the same occurring in Eq. (A2)

IξAðpÞ ¼ −
m2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2
þ CA

�
ðA24Þ

The other integrals are

IξBðpÞ¼
2m2

ð4πÞ2
��

2

ϵ
þ log

μ2

m2

��
25

24
sþ1

8

�
þCBsþC0

B

þ24sð1−s2Þ−ð1þsÞ3
24s2

logð1þsÞþ 1

24s

�
ðA25Þ
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IξCðpÞ ¼ −
m2s2

4ð4πÞ2
��

2

ϵ
þ log

μ2

m2
þ CC

�
− log s

�
ðA26Þ

IξDðpÞ¼
m2s2

4ð4πÞ2
��

2

ϵ
þ log

μ2

m2
þCC

�
þð1−s2Þ

s2
logð1þsÞ

�

þ m2

12ð4πÞ2
�
−31s

�
2

ϵ
þ log

μ2

m2
þCD

�
þC0

D

þð1þsÞð31s2−31sþ4Þ
s2

logð1þsÞ−4

s

�
ðA27Þ

where all constants CX, C0
X depend on the regularization

scheme. In Eq. (A27), the first two lines arise from the p4

term of IξDðpÞ and the diverging term cancels the corre-
sponding divergence of IξCðpÞ in Eq. (A26).
Adding up the different integrals we obtain a diverg-

ing part

Πξϵ
2bðpÞ ¼ −

Ng2

4ð4πÞ2 ð3m
2 þ 2p2Þ

�
2

ϵ
þ log

μ2

m2

�
ðA28Þ

and a finite part

Πξf
2b ¼

Ng2

ð4πÞ2
m2

4

�ð1þ sÞð1−sÞ3
s2

logð1þ sÞþ s2 logs−
1

s

�
ðA29Þ

where we have omitted the irrelevant constants.
Finally, the gluon loop has the following structure

Π2b ¼
�
Π0ϵ

2b þ ξΠξϵ
2b

�
þ
�
Π0f

2b þ ξΠξf
2b

�
: ðA30Þ

4. Standard one-loop graphs

The standard one-loop result of perturbation theory does
not contain any contribution from the crossed graphs. In a
generic linear covariant gauge, the standard one-loop
polarization Π1ðpÞ is obtained as the sum

Π1ðpÞ ¼ Π1b þ Π2aðpÞ þ Π2bðpÞ ðA31Þ

and summing up the explicit expressions reported above,
we find a diverging part

Πϵ
1ðpÞ¼

Ng2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2

��
p2

�
13

6
−
ξ

2

�
−
3

4
m2ð1þ ξÞ

�
ðA32Þ

and a finite part

Πf
1ðpÞ¼−

Ng2

4!ð4πÞ2p
2

�
Cpþ

1

s
½CmþfðsÞþξfξðsÞ�

�
ðA33Þ

where

fðsÞ ¼ s½LAðsÞ þ LBðsÞ þ ð2 − s2Þ log s − 2s−2�

fξðsÞ ¼ 6

�
s−1 − s2 log s −

ð1þ sÞð1 − sÞ3
s2

logð1þ sÞ
�
:

ðA34Þ

In the limit m → 0 the diverging part in Eq. (A32) agrees
with the well known result of perturbation theory [60]. In
the limit ξ → 0 the finite part in Eq. (A33) gives the known
result in the Landau gauge [67,68]. The constants Cm and
Cp are arbitrary since they depend on the regularization
scheme and on the arbitrary energy scale μ in Eq. (A32). In
the standard perturbation theory, they are the finite parts
resulting from the cancellation of the divergences by mass
and wave function renormalization, respectively. In pure
Yang-Mills theory, there is no mass term in the original
Lagrangian and no mass renormalization for the cancella-
tion. However, all constant mass terms cancel exactly by
inclusion of the crossed graphs.

5. Total polarization (including the crossed graphs)

All crossed graphs, containing one insertion of the trans-
verse mass counterterm, can be added to the total one-loop
polarization by a simple derivative, as discussed above, for
the tadpole. The sum of all graphs in Fig. 1 follows as

ΠtotðpÞ ¼
�
1 −m2

∂
∂m2

�
Π1ðpÞ þ Π1d: ðA35Þ

Using the identity�
1 −m2

∂
∂m2

�
¼
�
1þ s

∂
∂s
�

ðA36Þ

and adding up the terms, we obtain a total diverging part

Πϵ
totðpÞ ¼

Ng2

ð4πÞ2
�
2

ϵ
þ log

μ2

m2

�
p2

�
13

6
−
ξ

2

�
ðA37Þ

and a total finite part

Πf
totðpÞ ¼ −3

Ng2

ð4πÞ2 p
2

�
1

s

�
5

8
þ ξ

4

�

þ 1

3 · 4!
½f0ðsÞ þ ξf0ξðsÞ� þ const

�
ðA38Þ

where f0ðsÞ and f0ξðsÞ are the derivatives of the functions
fðsÞ and fξðsÞ, respectively.
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Finally, inserting the polarization in Eq. (19) and cancel-
ing the divergence by the usual wave function renormaliza-
tion, the renormalized dressed propagator reads

ΔðpÞ ¼ Z
p2½FðsÞ þ ξFξðsÞ þ F0�

ðA39Þ

where Z is an arbitrary finite renormalization factor, F0 is a
finite additive constant and the adimensional functionsF,Fξ

do not depend on any parameter and are defined as

FðsÞ ¼ 5

8s
þ 1

3 · 4!
f0ðsÞ

FξðsÞ ¼
1

4s
þ 1

3 · 4!
f0ξðsÞ: ðA40Þ

Their explicit expressions follow by the simple derivative
of Eq. (A34). The function FðxÞ was first derived in
Refs. [39,40] and it reads

FðxÞ ¼ 5

8x
þ 1

72
½La þ Lb þ Lc þ Ra þ Rb þ Rc� ðA41Þ

where the logarithmic functions Lx are

LaðxÞ ¼
3x3 − 34x2 − 28x − 24

x

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
log

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ logð1þ xÞ

LcðxÞ ¼ ð2 − 3x2Þ logðxÞ ðA42Þ

and the rational parts Rx are

RaðxÞ ¼ −
4þ x
x

ðx2 − 20xþ 12Þ

RbðxÞ ¼
2ð1þ xÞ2

x2
ðx2 − 10xþ 1Þ

RcðxÞ ¼
2

x2
þ 2 − x2: ðA43Þ

The explicit expression of FξðxÞ is

FξðxÞ ¼
1

4x
−

1

12

�
2x log x −

2ð1 − xÞð1 − x3Þ
x3

logð1þ xÞ

þ 3x2 − 3xþ 2

x2

�
ðA44Þ

and has the leading behavior in the limit x → 0

FξðxÞ ¼
1

4x
−
1

9
−
x
6
log xþOðxÞ: ðA45Þ

In the same IR limit, the transverse propagator is finite

Δð0Þ ¼ Z
M2

ξ

ðA46Þ

and the mass parameter M2
ξ is defined as

M2
ξ ¼

5m2

8

�
1þ 2

5
ξ

�
: ðA47Þ

In the limit x → ∞, the asymptotic UV behavior is

FξðxÞ ∼ −
1

6
log x

FðxÞ ∼ 13

18
log x ðA48Þ

and by Eqs. (A38), (A39), the standard one-loop behavior
is recovered in the UV for the total polarization and the
dressed propagator

Πf
totðpÞ ∼ −

Ng2

ð4πÞ2 p
2

�
13

6
−
ξ

2

�
log

p2

μ2

Z
ΔðpÞ ∼ p2

�
13

6
−
ξ

2

�
log

p2

μ2
: ðA49Þ

The discussion on gauge invariance requires the deriv-
atives of the functions FðxÞ and FξðxÞ. The derivative of
FðxÞ reads

F0ðxÞ ¼ −
5

8x2
þ 1

72
½L0

a þ L0
b þ L0

c þ RðxÞ� ðA50Þ

where the logarithmic functions L0
x, for x ¼ a, b, c, are

L0
aðxÞ¼

6x4−16x3−68x2þ80xþ144

x2ðxþ4Þ

×

ffiffiffiffiffiffiffiffiffiffi
4þx
x

r
log

� ffiffiffiffiffiffiffiffiffiffi
4þx

p
−

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffi
4þx

p þ ffiffiffi
x

p
�

L0
bðxÞ¼

4ð1þxÞ
x4

ð3x4−10x3þ10x2−10xþ3Þ logð1þxÞ
L0
cðxÞ¼−6x logx ðA51Þ

and RðxÞ is the sum of all the rational terms coming out
from the derivatives

RðxÞ ¼ 12

x
þ 106

x2
−
12

x3
: ðA52Þ

The derivative of FξðxÞ reads

F0
ξðxÞ ¼

x4 þ 2x − 3

6x4
logð1þ xÞ − 1

6
log x

þ ð1 − xÞð1 − x3Þ
6x3ð1þ xÞ þ 1

3x3
−

1

2x2
−
1

6
: ðA53Þ
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One-loop RG improvement of the screened massive expansion
in the Landau gauge
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The RG improvement of the screened massive expansion is studied at one loop in two renormalization
schemes, the momentum subtraction (MOM) scheme and the screened momentum subtraction scheme. The
respective Taylor-scheme running couplings are shown not to develop a Landau pole, provided that the
initial value of the coupling is sufficiently small. The improved ghost and gluon propagators are found
to behave as expected, displaying dynamical mass generation for the gluons and the standard UV limit of
ordinary perturbation theory. In the MOM scheme, when optimized by matching with the fixed-coupling
framework, the approach proves to be a powerful method for obtaining propagators, which are in excellent
agreement with the lattice data already at one loop. After optimization, the gluon mass parameter is left
as the only free parameter of the theory and is shown to play the same role of the ordinary perturbative
QCD scale ΛQCD.

DOI: 10.1103/PhysRevD.102.094002

I. INTRODUCTION

Being able to describe the nonperturbative regime of
QCD is of paramount importance for understanding the
low-energy phenomenology of hadrons, for predicting the
observed hadron-mass spectrum and for addressing many
unsolved problems like confinement, chiral symmetry
breaking, and dynamical mass generation [1–7]. Indeed,
almost all of the observed mass in the Universe seems to be
generated by such mechanisms. Unfortunately, since per-
turbation theory (PT) breaks down in the infrared of QCD
and in the pure-gauge Yang–Mills (YM) theory, to date a
complete analytical treatment of the nonperturbative low-
energy regime is still missing. In the last decades a
considerable amount of knowledge has been provided by
numerical methods based on lattice calculations [7–18] and
numerical integration of integral equations in the con-
tinuum [19–43]. The breakdown of PT and the lack of an
alternative analytical approach from first principles has also
motivated the study of phenomenological models, mainly
based on ad hoc modified Lagrangians [44–50].
In the last years, a purely analytical approach to the

exact gauge-fixed Lagrangian of QCD has been developed

[51–59] based on a mere change of the expansion point of
ordinary PT, showing that the breakdown of the theory may
not be due to the perturbative method itself, but rather a
consequence of a bad choice of its zero-order Lagrangian—
namely that of a massless free-particle theory—which is
good enough only in the UV because of asymptotic
freedom. In the IR, because of mass generation, a massive
free-particle theory could constitute the best expansion
point, leading to a screened perturbative expansion which
does not break down at any energy scale and is under
control if the coupling is moderately small (as it turns out to
be). Then, quite paradoxically, the nonperturbative regime
of QCD and YM theory may be accessible by plain PT.
Furthermore, in the IR and as far as the two-point functions
are concerned, the higher-order terms of the perturbative
series were shown to be minimized by an optimal choice of
the renormalization scheme [55,58,59], yielding a very
predictive analytical tool and one-loop results that are in
excellent agreement with the available lattice data for
YM theory. A remarkable feature of this optimized expan-
sion is that the method is genuinely from first principles and
does not require any external input apart from fixing the
energy units.
The screened massive expansion shares with ordinary

PT the problem of large logs that limit the validity of the
optimized expansion to a low energy range, up to about
2 GeV [59]. In this paper we show how the problem can be
solved by the renormalization group (RG), yielding an
improved screened expansion whose validity can be
virtually extended to any energy scale. Our findings
corroborate the idea that QCD is a complete theory valid
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at all energies. In what follows, the RG-improved
screened expansion is studied at one loop for the pure-
gauge YM theory in two different renormalization
schemes and is shown to be under control down to
arbitrarily small scales, even if higher-order terms become
important in the IR, where the one-loop RG-improved
results get worse than the optimized fixed-coupling
expressions. Eventually, a matching between the two
expansions provides a good agreement with the lattice
data at all energies.
It is remarkable that, at one loop, the RG equation for the

coupling can be integrated exactly in the different schemes
providing analytical expressions for the running coupling,
which merge with the universal one-loop result in the UV.
In the IR, due to the nonperturbative scale set by the gluon
mass, the coupling is scheme dependent and finite if the
flow starts from a moderate value in the UV, smaller than a
threshold value. Above that threshold the running coupling
develops an IR Landau pole.
This paper is organized as follows. In Sec. II the

optimized screened expansion is reviewed for pure YM
theory and its general renormalization and RG improve-
ment are discussed. In Sec. III the RG-improved expansion
is studied in the momentum-subtraction (MOM) scheme
and in its screened version, which we term screened MOM
(SMOM). In Sec. IV the results of the previous sections are
compared with the predictions of the optimized fixed-scale
expansion and with the available lattice data. A matching
between the two expansions provides a predictive theory,
which is in good agreement with the lattice data at all
energy scales. Finally, in Sec. V the main results are
summarized and discussed.

II. THE SCREENED MASSIVE EXPANSION
AND ITS RENORMALIZATION

IN THE LANDAU GAUGE

The screened massive expansion for the gauge-fixed
and renormalized YM Lagrangian was first developed
in Refs. [51,52], extended to finite temperature in
Refs. [56,57], and to the full QCD in Ref. [54]. The
extension to a generic covariant gauge [55,58] has already
demonstrated the predictive power of the method when the
expansion is optimized by the constraints of the Becchi-
Rouet-Stora-Tyutin (BRST) symmetry satisfied by the
Faddeev–Popov Lagrangian. The renormalization of the
screened expansion in the Landau gauge was discussed
in Ref. [59], where different renormalization schemes
were considered and analytical expressions were reported
for the beta function.
The screened expansion is obtained by a shift of the

expansion point of PT, performed after having renormal-
ized the fields and the coupling, as discussed in Ref. [59].
Following Refs. [52,55], the shift is enforced by simply
adding a transverse mass term to the quadratic part of the
action and subtracting it again from the interaction so that

the total action is left unchanged. The action term, which is
added and subtracted, is given by

δS ¼ 1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞd4xd4y; ð1Þ

where the vertex function δΓ is a shift of the inverse
propagator,

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ�; ð2Þ

and Δμν
m is a massive free-particle propagator,

Δ−1
m

μνðpÞ ¼ ð−p2 þm2ÞtμνðpÞ þ −p2

ξ
lμνðpÞ; ð3Þ

with the transverse and longitudinal projectors defined
according to

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
: ð4Þ

Adding the term δS is equivalent to substituting the new
massive propagator Δμν

m for the old massless one Δμν
0 in the

quadratic part of the action. The shift itself is motivated
a posteriori by the former being much closer to the exact
propagator in the IR than the latter and a priori by a
Gaussian effective potential (GEP) analysis of pure YM
theory [57].
In order to leave the total action unchanged, the opposite

term −δS is added in the interaction, providing a new two-
point interaction vertex δΓ. Dropping all color indices in the
diagonal matrices and inserting Eq. (3) into Eq. (2), the
vertex is just the transverse mass shift of the quadratic part,

δΓμνðpÞ ¼ m2tμνðpÞ: ð5Þ

The new vertex does not contain any renormalization
constant and is part of the interaction even if it does not
explicitly depend on the coupling. Thus the expansion itself
must be regarded as a δ-expansion, rather than a loop
expansion, since different powers of the coupling coexist at
each order in powers of the total interaction.
The self-energies and the propagators are evaluated,

order by order, by PTwith a modified set of Feynman rules
by which the gluon lines are associated to massive free-
particle propagators Δμν

m and the new two-point vertex δΓμν

is included in the graphs. Since the total gauge-fixed
Faddeev–Popov Lagrangian is not modified, and because
of gauge invariance, the exact gluon longitudinal polari-
zation is known to vanish. The exact gluon polarization can
thus be written as

ΠμνðpÞ ¼ Πðp2ÞtμνðpÞ: ð6Þ
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It follows that in the Landau gauge, ξ ¼ 0, the exact gluon
propagator is transverse,

ΔμνðpÞ ¼ Δðp2ÞtμνðpÞ; ð7Þ

and defined by the single scalar function Δðp2Þ. In the
Euclidean formalism and Landau gauge, the dressed gluon
and ghost propagators of the screened expansion can be
expressed as

Δ−1ðp2Þ ¼ p2 þm2 − Πðp2Þ;
G−1ðp2Þ ¼ −p2 − Σðp2Þ; ð8Þ

where the proper gluon polarization Πðp2Þ and ghost self-
energy Σðp2Þ are the sum of all one-particle-irreducible
(1PI) graphs in the screened expansion, including the mass
and renormalization counterterms.
It is important to keep in mind that, since the total

Lagrangian is not modified, the exact renormalization con-
stants satisfy the Slavnov–Taylor identities. Nonetheless, the
addedmass term breaks the BRST symmetry of the quadratic
part and of the interaction when these are taken apart.
Therefore, some of the constraints arising from BRST
symmetry are not satisfied exactly at any finite order of the
screened expansion. While the soft breaking has no effect on
the UV behavior or on the diverging parts of the renormal-
ization constants, some spurious diverging mass terms do
appear in the expansion at some stage. However, as discussed
in Refs. [51,52,54,55], the insertions of the new vertex δΓ,
Eq. (5), cancel the spurious divergences exactly, without the
need of any mass renormalization counterterm, as a conse-
quence of the unbroken BRST symmetry of thewhole action.
This aspect makes the screened expansionvery different from
effective models where a bare mass term is added to the
Lagrangian from the beginning. In the screened massive
expansion, the gluonmass parameter is an arbitrary and finite
quantity which is added and subtracted again in the renor-
malized action and, as such, it can be taken to be an RG
invariant.
As shown, for instance, in Ref. [52], the exact self-

energies of the screened expansion can be written as

Πðp2Þ ¼ m2 − p2δZA þ Πloopðp2Þ;
Σðp2Þ ¼ p2δZc þ Σloopðp2Þ; ð9Þ

where the tree-level contribution m2 comes from the new
two-point vertex δΓ in Eq. (5), while the tree-level terms
−p2δZA, p2δZc arise from the respective field-strength
renormalization counterterms. Observe that the vertex mass
term in Eq. (9) exactly cancels the zero-order gluon
propagator’s mass in Eq. (8): in the screened expansion,
the gluon’s mass is not a mere artifact of the choice of a
massive tree-level propagator, but rather it is dynamically
generated by the loops’ contribution to the self-energy

(more precisely, it comes from the gluon loops [51,52,55]).
Indeed, the screened expansion of QED would not
predict the existence of a mass for the photons, which
are not self-interacting.
The proper functions Πloopðp2Þ, Σloopðp2Þ are given by

the sum of all 1PI graphs containing loops. The diverging
parts of δZA, δZc cancel the UV divergences of Πloop and
Σloop, respectively. Since these divergences do not depend
on mass scales, they are exactly the same as in the standard
PT so that in the MS scheme ZA and Zc have their standard
expressions, as manifest in the explicit one-loop calculation
[51,52,59]. The finite parts of δZA, δZc, on the other hand,
are arbitrary and depend on the renormalization scheme.
Indeed, the self-energies themselves each contain an
arbitrary term of the form Cp2, where C is a constant
whose value depends on the regularization method.
To one loop, the explicit expressions for the loop self-

energies, as computed from the diagrams in Fig. 1, can be
written as

Πloopðp2Þ ¼ αp2

�
13

18

�
2

ϵ
þ ln

μ̄2

m2

�
− FðsÞ − C

�
;

Σloopðp2Þ ¼ −αp2

�
1

4

�
2

ϵ
þ ln

μ̄2

m2

�
− GðsÞ − C0

�
; ð10Þ

where

α ¼ 3Nαs
4π

¼ 3Ng2

16π2
; ð11Þ

C and C0 are constants and FðsÞ, GðsÞ are dimensionless
functions of the ratio s ¼ p2=m2, whose explicit expres-
sions were derived in Refs. [51,52] and are reported in the
Appendix. For further details on the screened expansion
we refer to [55,58,59], where explicit analytical expressions
for the propagators are reported to third order in the
δ-expansion and to one loop, also in an arbitrary covariant
gauge.
While the exact observables must be RG-invariant

and cannot depend on the renormalization scale, the

FIG. 1. Diagrams that contribute to the ghost self-energy and
gluon polarization to third order in the δ-expansion and one loop.
The crosses denote the insertions of the vertex δΓ.
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approximate one-loop expressions do depend on the scale
and on the scheme. Moreover, some exact consequences
of BRST symmetry, like the Nielsen identities [60–62],
might not be satisfied at any finite order of the screened
expansion. An optimal choice of the finite parts of the
renormalization constants provides propagators, which
are closer to the exact RG-invariant result, and can be
determined by the principle of minimal sensitivity [63]. The
resulting optimized PT is known as renormalization-
scheme optimized PT [64] and turns out to be quite
effective.
For an observable particle, the finite parts are usually

fixed on mass shell. For instance, the Nielsen identities are
satisfied at any finite order of PT for electrons and quarks
when the self-energy is renormalized on shell [62]. For the
gluons, without an observable mass at hand, the argument
can be reversed. The scheme can be defined by imposing
that the Nielsen identities are satisfied, i.e., by requiring
that the poles and residues of the propagator be gauge-
parameter independent. While this condition is not gen-
erally satisfied at one loop, in Refs. [55,59] we showed
that there exists an optimal choice of the renormalization
constants which makes the pole structure gauge invariant.
For this special choice, the higher-order terms turn out to be
minimal and negligible in the IR so that the optimized one-
loop analytical expressions provide an excellent agreement
with the available low-energy lattice data when the energy
scale is fixed by setting m ¼ 0.656 GeV. The resulting
optimized expansion is very predictive and gives valuable
quantitative information on the analytical properties in
Minkowski space even for different covariant gauges,
which are not accessible by lattice calculations.
Unfortunately, being based on an optimal choice of the

renormalization scale, the optimized expansion is not
reliable for p=m≳ 3 (corresponding to p≳ 2 GeV for
m ¼ 0.656 GeV) because of the large logs. For instance, in
Eq. (10), the ghost self-energy contains a leading term
GðsÞ ≈ lnðsÞ=4 which spoils the multiplicative renormaliz-
ability of the propagator for a finite change of scale, unless
the shift μ0 − μ ≪ m. This problem is usually solved by
integrating the RG flow, yielding an improved version of
the perturbative expansion.
The evaluation of the RG-improved gluon and ghost

propagators requires the knowledge of the respective anoma-
lous dimensions and of the beta function. In a momentum-
subtraction-like renormalization scheme defined by the
values of the propagators and coupling at the scale μ, the
calculation of the anomalous dimensions and beta function
from the explicit expressions of the self-energies in Eqs. (10)
is straightforward. At p2 ¼ μ2, using Eqs. (8) and (9), we
can write

μ−2Δ−1ðμ2Þ ¼ 1þ δZA − μ−2Πloopðμ2Þ;
−μ−2G−1ðμ2Þ ¼ 1þ δZc þ μ−2Σloopðμ2Þ; ð12Þ

so that

ZA ¼ μ−2½Δ−1ðμ2Þ þ Πloopðμ2Þ�;
Zc ¼ −μ−2½G−1ðμ2Þ þ Σloopðμ2Þ�: ð13Þ

The gluon and ghost anomalous dimensions γA and γc are
then defined as

γA ¼ 1

2

d lnZA

d ln μ
; γc ¼

1

2

d lnZc

d ln μ
: ð14Þ

As for the renormalized strong coupling constant g, this can
be defined as

g ¼ gB
ZcZ

1=2
A

Zc
1

; ð15Þ

where gB is the bare coupling, and Zc
1 is the renormalization

factor of the ghost-gluon vertex. In the Landau gauge, ξ ¼ 0,
the divergent part of the ghost-gluon vertex is known to
vanish, so that Zc

1 is finite. The simplest renormalization
condition for the vertex is, therefore, given by Zc

1 ¼ 1. The
latter defines the Taylor scheme [65–68], in which

g ¼ gBZcZ
1=2
A : ð16Þ

From the above equation we can immediately derive the beta
function:

β ¼ μ
dg
dμ

¼ gð2γc þ γAÞ: ð17Þ

Thus in the Taylor scheme the knowledge of γA and γc is
sufficient for computing β.
The RG-improved propagators renormalized at the scale

μ0 are defined in terms of the anomalous dimensions
according to

Δðp2; μ0Þ ¼ Δ̂ðp2Þ exp
�Z

p2

μ2
0

dμ02

μ02
γAðμ02Þ

�
;

Gðp2; μ0Þ ¼ Ĝðp2Þ exp
�Z

p2

μ2
0

dμ02

μ02
γcðμ02Þ

�
: ð18Þ

Here Δ̂ðp2Þ and Ĝðp2Þ are scheme-dependent functions
that are determined by the renormalization conditions:
since for any value of the initial renormalization scale

Δ̂ðμ20Þ ¼ Δðμ20; μ0Þ;
Ĝðμ20Þ ¼ Gðμ20; μ0Þ; ð19Þ

the functions Δ̂, Ĝ evaluated at p2 are simply equal to the
values of the respective propagators, renormalized at
μ2 ¼ p2, and evaluated at the same scale.
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In the next section we will investigate the behavior of the
one-loop RG-improved propagators and running coupling in
two renormalization schemes: the ordinary MOM scheme
and the SMOM scheme. In the UV, any RG-improvement of
the screened expansion must lead to the standard PT RG-
improved results since for p ≫ m the mass effects become
irrelevant. It follows that the improved screened expansion
predicts the correct asymptotic UV behavior for the propa-
gators and coupling already at one loop. On the other hand,
in the IR, where the one-loop optimized fixed-scale expan-
sion of Refs. [55,59] has already proven successful, the
RG-improved results may actually turn out to be quantita-
tively inaccurate (regardless of the value of m) when
truncated to leading order: while the higher-order terms
are minimal at the optimal scale, as the scale runs down with
the momentum the higher-loop corrections to the anomalous
dimensions can become quite large since, in the IR, the
running coupling becomes of order unity. Nevertheless,
perhaps remarkably, it turns out that already at one loop
the improvement of the screened expansion provides a
qualitatively accurate picture of the IR behavior of the
propagators with a running coupling that does not exhibit
a Landau pole. Quantitatively, we expect the accuracy of the
approximation to improve by including the higher-order
corrections to the anomalous dimensions and beta function.
The screened massive expansion introduces the gluon

mass parameter m as a spurious free parameter, whose value
cannot be determined from first principles since Yang-Mills
theory is scale invariant at the classical level. Of course, the
arbitrariness of m results in a loss of predictivity of the
method, allowing for infinitely many solutions for the YM
n-point functions, namely, one for every pair ðm2; αsðμ20ÞÞ.
In Sec. III we do not address this issue; instead, we study the
behavior of the gluon and ghost two-point functions by
expressing every dimensionful quantity in units of m and
letting αsðμ20Þ vary. When needed for comparison, we will
take m ¼ 0.656 GeV as determined, e.g., in Ref. [55], by
fitting the fixed-scale gluon propagator to the lattice data of
Ref. [18]. Then, in Sec. IV, we will present a method for
optimizing the initial value of the coupling αsðμ20Þ; the
dimensionful value of the renormalization scale μ0 itself will
depend on the mass scale set by m. With αsðμ20Þ fixed by
optimization, the redundancy in the choice of free parameters
is removed—thus restoring the predictivity of the screened
expansion—and m is left as the only free parameter to
determine the physics of the theory, playing the same role of
ΛQCD in standard perturbation theory as the fundamental
energy scale of YM theory.

III. RUNNING COUPLING AND
RG-IMPROVED PROPAGATORS

A. MOM scheme

The MOM scheme is defined by the renormalization
conditions

Δ−1ðμ2Þ ¼ μ2;

G−1ðμ2Þ ¼ −μ2: ð20Þ

When plugged into Eq. (13), these lead to the following
one-loop field strength renormalization counterterms (mod-
ulo irrelevant constants):

δZðMOMÞ
A ¼ α

�
13

18

�
2

ϵ
þ ln

μ̄2

m2

�
− F

�
μ2

m2

��
;

δZðMOMÞ
c ¼ α

�
1

4

�
2

ϵ
þ ln

μ̄2

m2

�
−G

�
μ2

m2

��
: ð21Þ

In the limit of large renormalization scales (μ2 ≫ m2,
x → ∞),

FðxÞ → 13

18
ln x;

GðxÞ → 1

4
ln x ð22Þ

(cf. the Appendix), and we recover the leading-order
counterterms of ordinary PT. From Eq. (21), the one-loop
gluon and ghost field anomalous dimensions in the MOM
scheme follow as

γðMOMÞ
A ðμ2Þ ¼ −αðμ2Þ μ

2

m2
F0ðμ2=m2Þ;

γðMOMÞ
c ðμ2Þ ¼ −αðμ2Þ μ

2

m2
G0ðμ2=m2Þ: ð23Þ

Due to the presence of the mass scale set by the gluon mass

parameterm, the anomalous dimensions γðMOMÞ
A and γðMOMÞ

c

depend explicitly on the renormalization scale, rather than
only implicitly through the running coupling αðμ2Þ. This
dependence is lost at high renormalization scales, where
F0ðxÞ and G0ðxÞ are proportional to x−1 [see Eq. (22)] and
the anomalous dimensions of ordinary PT are recovered.
To the coupling α we may associate a beta function βα,

defined as

βα ¼
dα

d ln μ2
¼ α

β

g
: ð24Þ

Using Eq. (17), βα can be computed in the MOM

scheme from the anomalous dimensions γðMOMÞ
A and

γðMOMÞ
c , yielding

βðMOMÞ
α ðμ2Þ ¼ −α2

μ2

m2
H0ðμ2=m2Þ ð25Þ

to one loop. Here the function HðxÞ, shown in Fig. 2, is
defined as
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HðxÞ ¼ 2GðxÞ þ FðxÞ; ð26Þ

and has limiting behavior [see Eq. (22)]

HðxÞ → 11

9
ln x ðx → ∞Þ: ð27Þ

From Eq. (25) we see that, along with the anomalous
dimensions, the MOM beta function of the screened
expansion also has an explicit dependence on the renorm-
alization scale μ. As we will show in a moment, this is a
most important feature of the modified perturbation theory,
bringing in mass effects which are able to prevent the
developing of a Landau pole in the running coupling.
To one loop, the differential equation for the running

coupling αðMOMÞðμ2Þ,

dαðMOMÞ

d ln s
¼ −ðαðMOMÞÞ2sH0ðsÞ; ð28Þ

(s ¼ μ2=m2) can be solved exactly. In terms of αs, its
solution is given by

αðMOMÞ
s ðμ2Þ ¼ αðMOMÞ

s ðμ20Þ
1þ 3N

4π α
ðMOMÞ
s ðμ20Þ½HðsÞ −Hðs0Þ�

; ð29Þ

where μ0 is the initial renormalization scale s0 ¼ μ20=m
2,

and αðMOMÞ
s ðμ20Þ is the value of the MOM coupling

renormalized at μ0 (initial condition of the RG flow).
This result was already derived directly from Eq. (16) in
Refs. [51,52].
In the limit of high initial and final renormalization

scales (s; s0 ≫ 1), using Eq. (27), it is easy to see that

αðMOMÞ
s ðμ2Þ reduces to the standard one-loop running

coupling,

αðMOMÞ
s ðμ2Þ → αsðμ20Þ

1þ 11N
3

αsðμ20Þ
4π lnðμ2=μ20Þ

: ð30Þ

At intermediate and low momenta, on the other hand, the

behavior of αðMOMÞ
s ðμ2Þ radically differs from that of its

counterpart in ordinary PT (see Fig. 3). Due to the explicit

dependence of βðMOMÞ
α on the renormalization scale, the

latter is allowed to vanish already at one loop for a nonzero
value of the coupling constant. The vanishing occurs at the
fixed renormalization scale μ⋆ that solves the equation

H0ðμ2⋆=m2Þ ¼ 0: ð31Þ

Numerically, one finds that

μ⋆ ≈ 1.022m ð32Þ

or μ⋆ ≈ 0.67 GeV form ¼ 0.656 GeV. Of course, since the
beta function vanishes as a function of μ, rather than for
some specific value of the coupling, the existence of a zero

for βðMOMÞ
α does not result in a fixed point of the RG flow.

Instead, it provides a mechanism by which, at scales of the
order of the gluon mass parameter, the running of the
coupling is allowed to slow down, thus making it possible

to prevent the developing of a Landau pole in αðMOMÞ
s ðμ2Þ.

Indeed, since μ2⋆=m2 is actually a minimum for HðsÞ,

HðsÞ ≥ Hðμ2⋆=m2Þ ≈ 3.090; ð33Þ

Eq. (29) implies that the one-loop MOM running coupling
remains finite at all renormalization scales, provided that its

 3

 4

 5

 6

 7

 8

 0.1  1  10

H
(x

)

x

FIG. 2. Function HðxÞ. The minimum Hðx0Þ ≈ 3.090 is found
at x0 ≈ 1.044.
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p/m

αs = 0.15
αs = 0.20
αs = 0.25
αs = 0.30
αs = 0.35
αs = 0.40

FIG. 3. N ¼ 3 one-loop running coupling of the screened
expansion in the MOM scheme for different initial values of
the coupling at the scale μ0=m ¼ 6.098. With m ¼ 0.656 GeV as
in our previous works, this corresponds to μ0 ¼ 4 GeV. The

running coupling develops a Landau pole for αðMOMÞ
s ðμ20Þ ≥

0.469.
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value renormalized at the scale μ0 is smaller than the scale-

dependent threshold value αðMOMÞ
pole ðμ20Þ defined by

αðMOMÞ
pole ðμ20Þ ¼

1

Hðμ20=m2Þ −Hðμ2⋆=m2Þ : ð34Þ

At μ0 ¼ 6.098m (corresponding to μ0 ¼ 4 GeV in physical
units), Eq. (34) yields

αðMOMÞ
pole ð6.098mÞ ≈ 0.336; ð35Þ

or, in terms of αs ¼ 4πα=3N,

αðMOMÞ
s;pole ð6.098mÞ ≈ 0.469 ð36Þ

for N ¼ 3. If αðMOMÞðμ20Þ ≥ αðMOMÞ
pole ðμ20Þ, the denominator

of Eq. (29) eventually vanishes and the running still

encounters a Landau pole: for αðMOMÞðμ20Þ ¼ αðMOMÞ
pole ðμ20Þ

the pole is found exactly at μ ¼ μ⋆, whereas for larger
values of the coupling, it is found at scales between μ⋆
and μ0.

If the initial value of the coupling is smaller than αðMOMÞ
pole ,

as the momentum decreases the one-loop running coupling
remains finite and attains a maximum at μ ¼ μ⋆, where
the beta function switches from being negative to being

positive and αðMOMÞ
s ðμ2Þ starts to decrease. The value of the

coupling at the maximum is an increasing and unbounded

function of αðMOMÞ
s ðμ20Þ. At vanishing renormalization

scales (μ2 ≪ m2), due to the limiting behavior

HðxÞ → 5

8x
ðx → 0Þ ð37Þ

(cf. the Appendix), the running coupling decreases linearly
with μ2,

αðMOMÞ
s ðμ2Þ → 32π

15N
μ2

m2
; ð38Þ

and tends to zero with a derivative that does not depend on
the initial conditions of the RG flow. As we will see, even if
the coupling vanishes at μ ¼ 0, the low-energy dynamics of
the gluons remains highly nontrivial.
Once the running coupling is known, the RG-improved

gluon and ghost propagators can be computed using
Eq. (18) by an appropriate choice of the functions
Δ̂ðp2Þ and Ĝðp2Þ. In the MOM scheme, in order to fulfill
the renormalization conditions given by Eq. (20), one
must set

Δ̂ðMOMÞðp2Þ ¼ 1

p2
;

ĜðMOMÞðp2Þ ¼ −
1

p2
ð39Þ

(see Eq. (19). The one-loop RG-improved propagators
renormalized at the scale μ0 then read

ΔðMOMÞðp2;μ20Þ¼
1

p2
exp

�
−
Z

p2=m2

μ2
0
=m2

dsαðMOMÞðsÞF0ðsÞ
�
;

GðMOMÞðp2;μ20Þ¼−
1

p2
exp

�
−
Z

p2=m2

μ2
0
=m2

dsαðMOMÞðsÞG0ðsÞ
�
;

ð40Þ

where the running coupling is expressed as a function of the
adimensional variable s ¼ μ2=m2. The one-loop improved
gluon propagator and ghost dressing function renormalized
at the scale μ0 ¼ 6.098m (corresponding to μ0 ¼ 4 GeV in
physical units) are shown, respectively, in Figs. 4 and 5 for
different initial values of the coupling constant below the

threshold value αðMOMÞ
s;pole ≈ 0.47.

Since in the high momentum limit the MOM anomalous
dimensions and running coupling reduce to their standard
one-loop perturbative expression, asymptotically1 the one-
loop RG-improved propagators behave as known fractional
powers of the running coupling divided by the momentum
squared,

 0

 2

 4

 6

 8

 10

 0.1  1  10

m
2 Δ(

p)

p/m

αs = 0.15
αs = 0.20
αs = 0.25
αs = 0.30
αs = 0.35
αs = 0.40

FIG. 4. N ¼ 3 one-loop RG-improved gluon propagator in the
MOM scheme, renormalized at the scale μ0=m ¼ 6.098 (corre-
sponding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV), and computed for
different initial values of the coupling at the same scale.

1Provided that the initial renormalization scale μ0 is much
larger than m.
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ΔðMOMÞðp2Þ → 1

p2

�
αsðp2Þ
αsðμ20Þ

�
13=22

;

GðMOMÞðp2Þ → −
1

p2

�
αsðp2Þ
αsðμ20Þ

�
9=44

: ð41Þ

At intermediate and low momenta, if the running coupling
does not develop a Landau pole, then the one-loop
improved gluon propagator attains a maximum at the
momentum p that solves the equation

1þ αðMOMÞðp2Þ p
2

m2
F0ðp2=m2Þ ¼ 0: ð42Þ

That Eq. (42) always admits a solution follows from the
asymptotic behavior

1þ αðMOMÞðsÞsF0ðsÞ → 2

45
s ln s ≤ 0 ðs → 0Þ;

1þ αðMOMÞðsÞsF0ðsÞ → 1 > 0 ðs → ∞Þ ð43Þ

(cf. the Appendix). The position of the maximum depends
on the initial conditions of the running and shifts from

higher to lower momenta as αðMOMÞ
s ðμ20Þ is decreased,

eventually coming arbitrarily close to p ¼ 0. At vanish-
ingly small momenta, due to the low energy limits

αðMOMÞðsÞF0ðsÞ → −
1

s
;

αðMOMÞðsÞG0ðsÞ → −
4

15
s ln s ð44Þ

(cf. the Appendix), the one-loop improved propagators
behave as

ΔðMOMÞðp2Þ → sek

p2
¼ ek

m2
;

GðMOMÞðp2Þ → −
ek

0

p2
; ð45Þ

where k and k0 are constants that generally depend on the
initial conditions of the running. SinceΔðMOMÞðp2Þ remains
finite as p2 → 0, in the MOM-scheme RG-improved
picture the gluons are still predicted to dynamically acquire
a mass. The ghosts, on the other hand, remain massless
(GðMOMÞðp2Þ → ∞ as p2 → 0).
The most notable feature of the one-loop RG-improved

screened expansion in the MOM scheme is the absence of
a Landau pole in its running coupling for sufficiently

small initial values of αðMOMÞ
s ðμ20Þ, a necessary condition

for the consistency of a perturbation theory which aims to
be valid at all energy scales. As we saw, instead of
growing to infinity at a finite momentum, the one-loop
MOM coupling interpolates between the standard high-
energy logarithmic behavior and a decreasing low-energy

behavior (αðMOMÞ
s ðp2Þ ∼ p2 as p2 → 0) by attaining a

maximum at the fixed scale μ⋆ ≈ 1.022m. Depending
on the initial conditions of the RG flow, the value of
the coupling at the maximum can become quite large for
the perturbative standards. As a consequence, the higher
orders of the perturbative expansion might become sig-
nificant at scales comparable to that of the gluon mass
parameter.
Since our one-loop, low-energy results evolve from a

region of generally large couplings, we should expect these
to give, at best, a good qualitative approximation of the
exact, nonperturbative behavior of Yang–Mills theory for
any given value of the pair ðm2; αsðμ20ÞÞ. In the absence of
estimates for the higher-order corrections to the propaga-
tors, the extent to which the approximation is good can be
established only a posteriori, by a comparison with non-
perturbative results such as those obtained on the lattice.
This aspect will be investigated in Sec. IV, where we will
also propose a method for fixing the value of the spurious
free parameter (either the gluon mass parameter m or the
value of the coupling at some fixed renormalization scale)
of the RG-improved screened expansion.

B. SMOM scheme

The SMOM scheme [59] is defined by the renormaliza-
tion conditions

Δ−1ðμ2Þ ¼ μ2 þm2;

G−1ðμ2Þ ¼ −μ2: ð46Þ

To one loop, these require the field strength counterterms to
be chosen (modulo irrelevant constants) according to

 1
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αs = 0.30
αs = 0.35
αs = 0.40

FIG. 5. N ¼ 3 one-loop RG-improved ghost dressing function
χðpÞ ¼ −p2GðpÞ in the MOM scheme, renormalized at the
scale μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for
m ¼ 0.656 GeV), and computed for different initial values of
the coupling at the same scale.
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δZðSMOMÞ
A ¼ m2

μ2
þ α

�
13

18

�
2

ϵ
þ ln

μ̄2

m2

�
− F

�
μ2

m2

��
;

δZðSMOMÞ
c ¼ α

�
1

4

�
2

ϵ
þ ln

μ̄2

m2

�
− G

�
μ2

m2

��
; ð47Þ

see Eq. (13). Observe that δZðSMOMÞ
A contains an Oðα0sÞ

term proportional to the gluon mass parameter m2. This
happens because in the SMOM scheme the tree-level
contribution to the gluon polarization arising from the first
single-cross diagram in Fig. 1, Πcross ¼ m2 does not get
cancelled by the equal and opposite mass term in the bare
massive gluon propagator.

Due to the presence of the Oðα0sÞ term in δZðSMOMÞ
A , a

naive application of Eq. (14) to the first of Eq. (47) would
yield an anomalous dimension that is not finite in the limit
ϵ → 0. In the SMOM scheme, in order to derive a finite γA,
one must first subtract the divergences from Eq. (47) and
then apply Eq. (14) to the resulting finite field-strength
counterterms.2 By doing so, one obtains the following one-
loop SMOM scheme anomalous dimensions:

γðSMOMÞ
A ¼ −

μ2

μ2 þm2

�
m2

μ2
þ α

μ2

m2
F0ðμ2=m2Þ

�
;

γðSMOMÞ
c ¼ −α

μ2

m2
G0ðμ2=m2Þ: ð48Þ

In Ref. [59] the same result was found by direct integration
of the RG flow. In the limit of large renormalization scales,

using Eq. (22), it is easy to see that γðSMOMÞ
A and γðSMOMÞ

c

reduce to the one-loop anomalous dimensions of ordi-
nary PT.
The one-loop SMOM beta function can be computed

from Eq. (48) and Eq. (17), yielding

βðSMOMÞ
α ¼ −

αm2

μ2 þm2
− α2

μ2

m2

�
μ2

μ2 þm2
F0ðμ2=m2Þ

þ 2G0ðμ2=m2Þ
�
: ð49Þ

As in the MOM scheme, βðSMOMÞ
α explicitly depends on the

renormalization scale μ and reduces to the ordinary
perturbative beta function for μ ≫ m. At variance with

βðMOMÞ
α , it contains an OðαsÞ term and a different scale-

dependent prefactor for the derivative F0ðsÞ.
The differential equation for the one-loop SMOM run-

ning coupling reads

dαðSMOMÞ

ds
¼ −b−1αðSMOMÞ − b0ðαðSMOMÞÞ2; ð50Þ

where s ¼ μ2=m2 and

b−1ðsÞ ¼
1

sðsþ 1Þ ;

b0ðsÞ ¼
�

s
sþ 1

F0ðsÞ þ 2G0ðsÞ
�
: ð51Þ

Equation (50) can be integrated exactly, yielding

αðSMOMÞðsÞ

¼ αðSMOMÞðs0Þe−
R

s

s0
ds0b−1ðs0Þ

1þ αðSMOMÞðs0Þ
R
s
s0
ds0b0ðs0Þe−

R
s0
s0

ds00b−1ðs00Þ
; ð52Þ

where s0 ¼ μ20=m
2 is the initial renormalization scale. With

b−1ðsÞ and b0ðsÞ as in Eq. (51), we find

exp

�
−
Z

s

s0

ds0b−1ðs0Þ
�
¼ sþ1

s
s0

s0þ1
;

Z
s

s0

ds0b0ðs0Þe−
R

s0
s0
ds00b−1ðs00Þ ¼ s0

s0þ1
½KðsÞ−Kðs0Þ�; ð53Þ

where the function KðxÞ, shown in Fig. 6, is defined as3

 3
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K
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FIG. 6. Function KðxÞ. The minimum Kðx0Þ ≈ 3.224 is found
at x0 ≈ 0.726.

2Equivalently, one could derive the anomalous dimensions by
a term-by-term matching of coefficients in the Callan–Symanzik
equation for the inverse dressed propagators. 3Li2ðzÞ is the dilogarithm, Li2ðzÞ ¼

Pþ∞
n¼1

zn

n2.
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KðxÞ ¼
Z

dx

�
H0ðxÞ þ 2

x
G0ðxÞ

�

¼ HðxÞ − 1

3

�
Li2ð−xÞ þ

1

2
ln2x

þ x3 þ 1

3x3
lnð1þ xÞ − 1

3
ln x −

1

3x2
þ 1

6x

�
ð54Þ

and differs from the HðxÞ of the MOM scheme by the
integral of 2G0ðxÞ=x, which was evaluated analytically
in Eq. (54).
Using Eq. (53), the one-loop SMOM running coupling,

Eq. (52), can be brought to the final form

αðSMOMÞðμ2Þ ¼ μ2 þm2

μ2

×

μ2
0

μ2
0
þm2 αðSMOMÞðμ20Þ

1þ μ2
0

μ2
0
þm2 αðSMOMÞðμ20Þ½KðsÞ − Kðs0Þ�

:

ð55Þ

At large renormalization scales, as long as the initial
scale μ0 is much larger than m and because of the high
energy limit

KðxÞ → 11

9
ln x ðx → ∞Þ ð56Þ

(cf. the Appendix), the one-loop SMOM running coupling
reduces to the standard perturbative coupling, Eq. (30). At
intermediate and low momenta, on the other hand, its
behavior is entirely different from that of both the ordinary
PT and MOM-scheme couplings (see Fig. 7).
At scales of the order of the gluon mass parameter, as in

the MOM scheme, the μ-dependence of the SMOM beta
function is responsible for a slowing down of the running of
the coupling. Indeed, due to the inequality

KðsÞ ≥ Kðμ02⋆ =m2Þ ≈ 3.224; ð57Þ

where μ02⋆ =m2 is the position of the minimum of KðsÞ,

μ0⋆ ≈ 0.852m; ð58Þ

αðSMOMÞðμ2Þ does not develop a Landau pole so long as
αðSMOMÞðμ20Þ is smaller than the scale-dependent threshold
value

αðSMOMÞ
pole ðμ20Þ ¼

μ20 þm2

μ20

1

Kðμ20=m2Þ − Kðμ02⋆ =m2Þ : ð59Þ

At μ0 ¼ 6.098m (corresponding to μ ¼ 4 GeV in physical
units), Eq. (59) reads

αðSMOMÞ
pole ð6.098mÞ ≈ 0.304; ð60Þ

or, in terms of αs ¼ 4πα=3N, for N ¼ 3,

αðSMOMÞ
s;pole ð6.098mÞ ≈ 0.425: ð61Þ

If αðSMOMÞðμ20Þ < αðSMOMÞ
pole ðμ20Þ, the running coupling

attains a maximum at the renormalization scale that solves
the equation

βðSMOMÞ
α ¼ 0 ⇔ 1þ αðSMOMÞðsÞs2K0ðsÞ ¼ 0: ð62Þ

That Eq. (62) always admits a solution follows from the
asymptotic limits

1þ αðSMOMÞðsÞs2K0ðsÞ → −
4s
15

ln2s < 0 ðs → 0Þ;

1þ αðSMOMÞðsÞs2K0ðsÞ → s
ln s

> 0 ðs → ∞Þ ð63Þ

(cf. the Appendix). At variance with the MOM scheme and
due to the prefactor ðμ2 þm2Þ=μ2 in Eq. (55), the position
of the maximum of the one-loop SMOM running coupling
is not fixed. Instead, it depends on the initial conditions of
the RG flow and shifts towards lower renormalization
scales as αðSMOMÞðμ20Þ is decreased. In the limit of very
small αðSMOMÞðμ20Þ’s, an expansion of the solutions of
Eq. (62) around s ¼ 0 yields

ln2 s − 6
1þm2=μ20
αðSMOMÞðμ20Þ

¼ 0: ð64Þ
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FIG. 7. N ¼ 3 one-loop running coupling of the screened
expansion in the SMOM scheme for different initial values of
the coupling at the scale μ0=m ¼ 6.098. With m ¼ 0.656 GeV,
this corresponds to μ0 ¼ 4 GeV. The running coupling develops

a Landau pole for αðSMOMÞ
s ðμ20Þ ≥ 0.425. The dashed red line

displays the limiting value αðSMOMÞ
s ð0Þ ≈ 2.234.
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Therefore, in the limit of vanishingly small initial cou-
plings, the maximum of αðSMOMÞðμ2Þ is attained at the scale

μ ¼ m exp

 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

1þm2=μ20
αðSMOMÞðμ20Þ

s !
: ð65Þ

Being its position exponentially suppressed, for small
enough initial values of the coupling, the maximum is
essentially indistinguishable from the μ → 0 limit of
αðSMOMÞðμ2Þ. The latter reads

αðSMOMÞðμ2Þ → 8

5

�
1þ 4

15

μ2

m2
ln2ðμ2=m2Þ

�
ðμ → 0Þ;

ð66Þ

so that the one-loop SMOM coupling saturates to a finite
value, given in terms of αs by

αðSMOMÞ
s ð0Þ ¼ 32π

15N
≈ 2.234 ð67Þ

for N ¼ 3.
The one-loop SMOM RG-improved propagators are

readily derived from Eqs. (18), (19), and (46). With

Δ̂ðSMOMÞðp2Þ ¼ 1

p2 þm2
;

ĜðSMOMÞðp2Þ ¼ −
1

p2
; ð68Þ

we find that, when renormalized at the scale μ0,

ΔðSMOMÞðp2; μ20Þ

¼ 1

p2 þm2
exp
�
−
Z

p2=m2

μ2
0
=m2

ds
1

sþ 1

×

�
1

s
þ αðSMOMÞðsÞsF0ðsÞ

��
;

GðSMOMÞðp2; μ20Þ

¼ −
1

p2
exp

�
−
Z

p2=m2

μ2
0
=m2

dsαðSMOMÞðsÞG0ðsÞ
�
: ð69Þ

Equivalently, the first of Eq. (69) can be expressed as

ΔðSMOMÞðp2;μ20Þ

¼ 1

p2

μ20
μ20þm2

exp

�
−
Z

p2=m2

μ2
0
=m2

ds
s

sþ 1
αðSMOMÞðsÞF0ðsÞ

�
:

ð70Þ

The improved gluon propagator and ghost dressing
function renormalized at the scale μ0 ¼ 6.098m

(corresponding to μ0 ¼ 4 GeV in physical units) are shown
in Figs. 8 and 9, respectively, for different initial values
of the coupling constant below the threshold value

αðSMOMÞ
s;pole ≈ 0.43. In the high momentum limit both the

SMOM anomalous dimensions and running coupling
reduce to the respective standard one-loop expressions.
Therefore, Eq. (41) is also verified in the SMOM scheme
for p; μ0 ≫ m. At intermediate and low momenta, the
general behavior of the SMOM propagators parallels that
of the MOM scheme. In particular, provided that the
SMOM running coupling does not develop a Landau pole,
the gluon propagator attains a maximum at the momentum
p ¼ ffiffiffi

s
p

m that solves the equation
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FIG. 8. N ¼ 3 one-loop RG-improved gluon propagator in the
SMOM scheme, renormalized at the scale μ0=m ¼ 6.098 (cor-
responding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV), and computed
for different initial values of the coupling at the same scale.
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FIG. 9. N ¼ 3 one-loop RG-improved ghost dressing function
χðpÞ ¼ −p2GðpÞ in the SMOM scheme, renormalized at the
scale μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for m ¼
0.656 GeV), and computed for different initial values of the
coupling at the same scale.
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1þ s2

sþ 1
αðSMOMÞðsÞF0ðsÞ ¼ 0: ð71Þ

Equation (71) always admits a solution since

1þ s2

sþ 1
αðSMOMÞðsÞF0ðsÞ → −

4

15
sln2s ≤ 0 ðs → 0Þ;

1þ s2

sþ 1
αðSMOMÞðsÞF0ðsÞ → 1 > 0 ðs → ∞Þ ð72Þ

(cf. the Appendix). As in the MOM scheme, the position
of the maximum depends on the initial conditions of the
RG flow and shifts to lower momenta as αðSMOMÞðμ20Þ is
decreased. In the limit of vanishing momenta, since for
s → 0

s
sþ 1

αðSMOMÞðsÞF0ðsÞ → −
1

s
;

αðSMOMÞðsÞG0ðsÞ → −
4

15
ln s ð73Þ

(cf. the Appendix), the one-loop improved propagators
again have the same behavior as in the MOM scheme,
Eq. (45). In particular, while the ghosts remain massless,
the gluons acquire a mass.
In the SMOM scheme, the one-loop running coupling

has a distinctive behavior: as we saw, after attaining a
maximum at an intermediate scale, at low momenta it
saturates to a finite value which does not depend on the

initial conditions of the RG flow, namely αðSMOMÞ
s ð0Þ ≈

2.23 (forN ¼ 3). As a consequence, regardless of the initial
conditions, in the whole range μ ≲m the values of the one-
loop SMOM running coupling become quite large for the
perturbative standards. We should then expect the higher
orders of the perturbative series to become non-negligible
at scales lower than m. The situation is somewhat worse
than in the MOM scheme: in the latter, the one-loop
running coupling at any fixed scale is an increasing

function of αðMOMÞ
s ðμ20Þ, so that, at least in principle, for

sufficiently small initial values of the coupling the one-loop
results can still provide a good approximation to the exact
propagators if the gluon mass parameter m is chosen
appropriately. In the SMOM scheme, on the other hand,
it is the fixed value of the zero-momentum coupling that

dominates over the low-energy behavior of αðSMOMÞ
s ðμ2Þ. In

particular, we should expect the perturbative series to
converge more slowly in the SMOM scheme, rather than
in the MOM scheme.

C. Comparison between the MOM
and the SMOM schemes

As shown in Secs. III A and III B, both the MOM and
the SMOM one-loop running coupling and RG-improved
propagators have the ordinary perturbative UV limit. In the

IR, the behavior of the propagators is in mutual qualitative
agreement, while that of the running couplings shows
significant differences. In order to make a quantitative
comparison between the predictions of the two schemes,
what we need to do is find a correspondence between the
values of their renormalized couplings.
The qualitative difference between the MOM and the

SMOM one-loop running couplings ultimately originates
in the prefactor ðμ2 þm2Þ=μ2 in Eq. (55). Indeed, if we
define a function α̃ðSMOMÞðμ2Þ such that

αðSMOMÞðμ2Þ ¼ μ2 þm2

μ2
α̃ðSMOMÞðμ2Þ; ð74Þ

then

α̃ðSMOMÞðμ2Þ ¼ α̃ðSMOMÞðμ20Þ
1þ α̃ðSMOMÞðμ20Þ½KðsÞ − Kðs0Þ�

ð75Þ

is formally identical to the MOM running coupling,
Eq. (29), with the substitution HðsÞ → KðsÞ. As shown
in Fig. 10, the functionsHðsÞ andKðsÞ themselves have the
same qualitative behavior.
The factor ðμ2 þm2Þ=μ2 in Eq. (74) is a by-product of

the Oðα0sÞ term in the SMOM gluon anomalous dimension,

Eq. (48), which results in the SMOM beta function βðSMOMÞ
α

containing an OðαsÞ term. This is made explicit by
computing the beta function analogue associated to
α̃ðSMOMÞðμ2Þ: to one loop

βðSMOMÞ
α̃ ¼ dα̃ðSMOMÞ

d ln μ2
¼ −ðα̃ðSMOMÞÞ2 μ

2

m2
K0
�
μ2

m2

�
: ð76Þ

The latter contains no Oðα0sÞ terms and has the same
form of the MOM beta function, Eq. (25), again with
the substitution HðsÞ → KðsÞ. At the level of the
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FIG. 10. HðsÞ and KðsÞ as functions of the ratio p=m.
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renormalization conditions that define the two schemes, the
appearance of the factor of ðμ2 þm2Þ=μ2 can be under-
stood as follows. From Eq. (16) we know that in the Taylor
scheme

αðSMOMÞðμ2Þ
αðMOMÞðμ2Þ ¼ ZðSMOMÞ

A ðμ2ÞðZðSMOMÞ
c ðμ2ÞÞ2

ZðMOMÞ
A ðμ2ÞðZðMOMÞ

c ðμ2ÞÞ2
: ð77Þ

Now, while ZðSMOMÞ
c , ZðMOMÞ

A , and ZðMOMÞ
c are all equal to

1 to Oðα0sÞ,

ZðSMOMÞ
A ðμ2Þ ¼ 1þm2

μ2
þOðαsÞ: ð78Þ

Therefore,

αðSMOMÞðμ2Þ
αðMOMÞðμ2Þ ¼ μ2 þm2

μ2
þOðαsÞ: ð79Þ

In the next section we will show that the relation
αðSMOMÞðμ2Þ¼ðμ2þm2Þ=μ2×αðMOMÞðμ2Þ is indeed exact,
although not necessarily satisfied at any finite order in
perturbation theory.
In conclusion, we find that the conversion factor between

αðSMOMÞ and αðMOMÞ is precisely ðμ2 þm2Þ=μ2: in order
to compare the two schemes, to one loop we need to
choose values of the couplings such that αðMOMÞðμ20Þ ¼
α̃ðSMOMÞðμ20Þ. At μ0 ¼ 6.098m (corresponding to 4 GeV in
physical units), this translates into

αðSMOMÞðμ20Þ ≈ 1.027αðMOMÞðμ20Þ: ð80Þ

For our first comparison, in Fig. 11 we show the
one-loop MOM and SMOM running couplings for two
different values of αs at the initial renormalization scale
μ0 ¼ 6.098m. The SMOM coupling is plotted in terms of

α̃ðSMOMÞ
s , as per Eq. (79). As discussed above, αðMOMÞðμ2Þ

and α̃ðSMOMÞðμ2Þ have the same qualitative behavior: they
both attain a maximum at a fixed scale of the order of m
and tend to zero at vanishing renormalization scales. The

position of the maximum of α̃ðSMOMÞ
s ðμ2Þ, however, lies

below that of the MOM running coupling; moreover, in the

whole range p≲m the values of α̃ðSMOMÞ
s ðμ2Þ are generally

larger than those of αðMOMÞ
s ðμ2Þ. Since ðμ2 þm2Þ=μ2 > 1,

we find that in the IR αðSMOMÞ
s ðμ2Þ > αðMOMÞ

s ðμ2Þ, enforc-
ing the idea that the SMOM perturbative series may
converge more slowly than that of the MOM scheme.
In Figs. 12 and 13 we compare the one-loop improved

gluon propagators and ghost dressing functions renormal-
ized at the scale μ0 ¼ 6.098m (corresponding to μ0 ¼
4 GeV in physical units) in the two schemes with the
correspondence between the renormalized couplings as
discussed above. As we can see, at low momenta the
propagators agree only qualitatively: at scales less than ≈m
the MOM gluon propagator is enhanced with respect to
the SMOM propagator, while the ghost dressing function
shows the opposite behavior. The relative difference
between the propagators increases with the value of the
coupling at μ0 and decreases as a function of momentum
(indeed, we know that the propagators have the same,
standard perturbative UV behavior in both the renormal-
ization schemes). In the IR and for large values of the
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FIG. 11. Comparison between the N ¼ 3 MOM and SMOM
one-loop running couplings renormalized at the scale μ0=m ¼
6.098 (corresponding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV). For
N ¼ 3, the MOM running coupling develops a Landau pole at
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FIG. 12. N ¼ 3 one-loop RG-improved gluon propagator in the
SMOM scheme, renormalized at the scale μ0=m ¼ 6.098 (cor-
responding to μ0 ¼ 4 GeV for m ¼ 0.656 GeV), and computed
for different initial values of the coupling at the same scale.
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renormalized couplings the difference between the two
schemes can become quite large.

IV. OPTIMIZED RG IMPROVEMENT AND
COMPARISON WITH THE LATTICE DATA

By removing the Landau pole from the running of the
coupling constant, the RG-improved screened massive
expansion provides us with a consistent analytical frame-
work for computing quantities at all scales in pure Yang-
Mills theory, albeit at the cost of introducing a new free
parameter, namely the gluon mass parameter m. Already at
one loop, the RG-improved gluon and ghost propagators
derived in such a framework display the correct qualitative
behavior (as found, for example, on the lattice), being able
to encode both the IR phenomenon of dynamical mass
generation for the gluons and the correct UV asymptotic
limits of standard perturbation theory.
Nevertheless, as discussed in Sec. III, the one-loop

RG-improved results are not expected to be quantitatively
reliable below scales of the order of the gluon mass
parameter m, the reason being that the one-loop running
coupling of the screened expansion either attains a maxi-
mum at μ ∼m (in the MOM scheme) or saturates to a finite
value at scales μ≲m (in the SMOM scheme), becoming
too large to justify the truncation of the perturbative series
to first order in the coupling. In the IR, it is the one-loop
fixed-scale optimized screened expansion of Refs. [55,59]
that proves successful in reproducing the lattice data for the
propagators: in Ref. [55,59] it was shown that the renorm-
alization scheme in which the pole structure of the gluon
propagator is gauge invariant also yields propagators for
which the terms of Oðα2sÞ and higher are negligible at low
energies. The fixed-scale expansion is predictive in that its

only free parameter is the energy scale of the theory, which
enters the equations through the gluon mass parameter m
itself. We then find ourselves in possession of two distinct
computational frameworks, one of which (the fixed-scale
expansion) works well in the IR, while the other (the
RG-improved expansion) works well in the UV. In the
respective domains of applicability, both of them yield
satisfactory approximations (at this stage at least qualita-
tively, as far as the RG-improved one is concerned) already
at one loop.
A natural question to ask is whether the predictions of

the two frameworks agree over some intermediate range of
momenta. In general, this may depend on which values are
chosen for the free parameters of the theory. Indeed, we
reiterate that whereas the results of the fixed-scale expan-
sion are completely determined once the energy scale is set
by the gluon mass parameterm (see Ref. [55]), those of the
RG-improved expansion also depend on the value of the
strong coupling constant at the initial renormalization
scale, αsðμ20Þ.
Actually, the fact that in the RG-improved formalism the

mass parameter m and the renormalized coupling αsðμ20Þ
can be chosen independently of one another is a major
weakness of the method: already in standard perturbation
theory, once the energy scale is set by the Yang-Mills
analogue of ΛQCD—which we denote by ΛYM—the value
of the coupling is fixed at all renormalization scales by the
equation

αsðμ2Þ ¼
12π

11N lnðμ2=Λ2
YMÞ

ð81Þ

(valid to one loop); in the fixed-scale framework the
redundancy of free parameters is dealt with by optimiza-
tion; in the formulation of the RG-improved screened PT
presented in Sec. III, no such constraint exists, resulting in a
loss of predictivity of the method.
The condition that the propagators and/or the running

coupling computed in the fixed-scale and RG-improved
frameworks match at intermediate energies can, however,
be exploited as a criterion for fixing the value of αsðμ20Þ: if
the matching singled out a value of the coupling αsðμ20Þ for
which the predictions of the two frameworks are in better
agreement, then the gluon mass parameter m—by setting
the scale for the dimensionful value of μ0—would play the
same role as the ΛYM of ordinary perturbation theory. In
particular, given some value ofm, the value of αsðμ2Þ at any
renormalization scale would be completely determined, just
as it happens in standard perturbation theory once ΛYM is
fixed. In turn, the redundancy in the free parameters of the
RG-improved framework would be removed and the
predictivity of the method would be restored.
In Sec. IVA we will show that, at least in the MOM

scheme, an optimal value of αsðμ20Þ for the matching of the
fixed-scale and the RG-improved results at intermediate
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FIG. 13. N ¼ 3 one-loop RG-improved ghost dressing function
χðpÞ ¼ −p2GðpÞ in the SMOM scheme, renormalized at
the scale μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for
m ¼ 0.656 GeV), and computed for different initial values of
the coupling at the same scale.
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scales indeed exists. The predictions that follow, with the
low energy behavior dictated by the fixed-scale expansion,
are collected under the name of optimized RG-improved
screened PT and turn out to reproduce the lattice data quite
well in the whole available range of momenta, given an
appropriate choice of the energy units (cf. Sec. IV B, where
our results are compared with the data of Ref. [18]).

A. Intermediate-scale matching of the fixed-scale
and RG-improved results

In order to determine which value of αsðμ20Þ, if any,
results in the best agreement between the IR fixed-scale and
the UV RG-improved predictions, we may investigate the
intermediate energy behavior either of the propagators or of
the strong running coupling. In what follows we choose to
work with the latter, the reason being that in the Taylor
scheme the running coupling contains immediate informa-
tion about both the gluon and the ghost propagators: from
Eq. (16) one finds that

αsðp2Þ ¼ αsðμ20Þ
ZAðp2ÞZ2

cðp2Þ
ZAðμ20ÞZ2

cðμ20Þ
; ð82Þ

where the renormalization factors ZAðμ2Þ and Zcðμ2Þ can
be obtained from the propagators through the relations

ZAðμ2Þ ¼
JBðq2Þ
Jðq2; μ2Þ ; Zcðμ2Þ ¼

χBðq2Þ
χðq2; μ2Þ ; ð83Þ

with Jðq2; μ2Þ and χðq2; μ2Þ the gluon and ghost dressing
functions renormalized at the scale μ2,

Jðq2; μ2Þ ¼ q2Δðq2; μ2Þ;
χðq2; μ2Þ ¼ −q2Gðq2; μ2Þ; ð84Þ

and JBðq2Þ and χBðq2Þ their bare counterparts,

JBðq2Þ ¼ q2ΔBðq2Þ;
χBðq2Þ ¼ −q2GBðq2Þ: ð85Þ

Plugging Eqs. (83) into Eq. (82) after setting q2 ¼ p2

yields the following expression for the Taylor-scheme
running coupling in terms of the renormalized gluon and
ghost dressing functions:

αsðp2Þ ¼ αsðμ20Þ
Jðp2; μ20Þχ2ðp2; μ20Þ
Jðp2;p2Þχ2ðp2;p2Þ : ð86Þ

In the above equation, which can be explicitly checked for
the MOM and SMOM schemes of Sec. III, the functions
Jðp2;p2Þ and χðp2;p2Þ define the renormalization of the
propagators. For instance, in the MOM scheme

JðMOMÞðp2;p2Þ ¼ χðMOMÞðp2;p2Þ ¼ 1; ð87Þ

whereas in the SMOM scheme

JðSMOMÞðp2;p2Þ ¼ p2

p2 þm2
;

χðSMOMÞðp2;p2Þ ¼ 1: ð88Þ

Apart from these functions, Eq. (86) shows that in the
Taylor scheme the running coupling is proportional to a
product of the gluon and ghost dressing functions, so that a
comparison between the couplings of different frameworks
also yields a comparison between the propagators.
Incidentally, Eq. (83) can be used to prove that Eq. (79)

is exact: taking the ratio between the field-strength renorm-
alization factors defined in the SMOM and in the MOM
scheme and setting q2 ¼ μ2, we find

ZðSMOMÞ
A ðμ2Þ
ZðMOMÞ
A ðμ2Þ

¼ μ2 þm2

μ2
;

ZðSMOMÞ
c ðμ2Þ
ZðMOMÞ
c ðμ2Þ

¼ 1: ð89Þ

Once these ratios are plugged back into Eq. (77), the
relation αðSMOMÞðμ2Þ ¼ ðμ2 þm2Þ=μ2 × αðMOMÞðμ2Þ is
recovered, with no higher-order contributions.
The Taylor scheme is also suitable for defining a running

coupling in the context of the fixed-scale perturbation
theory.4 Indeed, if we renormalize the fixed-scale
propagators in a MOM-like fashion by requiring that
Jðp2;p2Þ and χðp2;p2Þ be momentum independent, then
we can define a fixed-scale (FS) scheme Taylor running
coupling as

αðFSÞs ðp2Þ ¼ κJðFSÞðp2ÞχðFSÞðp2Þ2; ð90Þ

where at one loop, absorbing the multiplicative renormal-
ization constants of the dressing functions into the adimen-
sional constant κ,

JðFSÞðp2Þ ¼ 1

Fðp2=m2Þ þ F0

;

χðFSÞðp2Þ ¼ 1

Gðp2=m2Þ þ G0

ð91Þ

(cf. Sec. II and the Appendix). Of course, Eqs. (90) and (91)

do not fix the overall normalization of αðFSÞs ðp2Þ, which at
this stage remains undefined. The constant κ will be
determined in what follows by the matching condition.

4In the formalism of Refs. [51–58] (see also the Appendix) the
gluon and ghost propagators are expressed in an essentially
coupling-independent way, so that an explicit definition of what
αsðp2Þ is in the fixed-scale framework is still required. See also
Ref. [59] for a different definition of the coupling in the SMOM
scheme.
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The unnormalized one-loop FS running coupling is
shown in Fig. 14. Its qualitative behavior is that of the
MOM-scheme running coupling (cf. Fig. 3), as one would
expect from having chosen momentum-independent
Jðp2;p2Þ and χðp2;p2Þ. Accordingly, the comparison

between αðFSÞs ðp2Þ and the SMOM running coupling will

be carried out using α̃ðSMOMÞ
s ðp2Þ rather than αðSMOMÞ

s ðp2Þ
(cf. the discussion in Sec. III C).

With αðFSÞs ðp2Þ as in Eq. (90) and αðMOMÞ
s ðp2Þ and

α̃ðSMOMÞ
s ðp2Þ as in Eqs. (29) and (75), we must now identify

a range of momenta over which the running couplings of
the FS and RG-improved frameworks may be expected to
agree. To one loop, the latter becomes unreliable below
μ ∼m, corresponding to μ ≈ 0.7 GeV in physical units; the
matching window, therefore, should lie somewhat above
this value. Likewise, the upper limit of the matching
interval should be set by the scale at which the one-loop
results derived in the FS framework are likely to break
down; this should happen at scales larger than m but of the
same order of m.
As for the normalization of the FS running coupling,

under the hypothesis that at intermediate momenta the latter

agrees with αðRGÞs ðp2Þ—where this is taken to be either

αðMOMÞ
s ðp2Þ or α̃ðSMOMÞ

s ðp2Þ, depending on the scheme we

are interested in—we may require αðFSÞs ðp2Þ to be equal to
the RG-improved coupling at some fixed renormalization
scale p ¼ μ1 belonging to the momentum range that we
have just identified,

αðFSÞs ðμ21Þ ¼ αðRGÞs ðμ21Þ: ð92Þ

This amounts to setting

κ ¼ αðRGÞs ðμ21Þ
JðFSÞðμ21ÞχðFSÞðμ21Þ2

ð93Þ

in Eq. (90). Of course, the actual value of the so-defined
constant κ will depend not only on the matching scale μ1,

but also—through αðRGÞs ðμ21Þ—on the initial value αðRGÞs ðμ20Þ
of the RG coupling.
In Figs. 15 and 16 we show a comparison of the

normalized FS running coupling and, respectively, the
MOM-scheme and SMOM-scheme running couplings,

for N ¼ 3 and different initial values of αðRGÞs ðp2Þ renor-
malized at the scale μ0 ¼ 6.098m (corresponding to 4 GeV
in physical units). For these plots the matching scale μ1 was
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FIG. 14. One-loop running coupling of the screened expansion
in the FS scheme. The normalization of the curve is arbitrary.
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FIG. 15. N ¼ 3 intermediate-energy matching between the FS
running coupling (black curves) and the MOM running coupling
(blue curves) for different values of the MOM coupling renor-
malized at the scale μ0=m ¼ 6.098 (corresponding to μ0 ¼
4 GeV in physical units). The matching scale (see the text for
details) is set to μ1=m ¼ 1.372 (corresponding to μ1 ¼ 0.9 GeV).
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FIG. 16. N ¼ 3 intermediate-energy matching between the FS
running coupling (black curves) and the SMOM running cou-
pling (green curves) for different values of the MOM coupling
renormalized at the scale μ0=m ¼ 6.098 (corresponding to μ0 ¼
4 GeV in physical units). The matching scale (see the text for
details) is set to μ1=m ¼ 1.372 (corresponding to μ1 ¼ 0.9 GeV).
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chosen equal to 1.372m (corresponding to 0.9 GeV).

Clearly, despite the αðRGÞs ðμ20Þ-dependent matching condi-
tion contained in Eq. (93), the running couplings computed
in the two frameworks do not agree at intermediate

momenta for arbitrary values of αðRGÞs ðμ20Þ. In the MOM

scheme, the choice αðMOMÞ
s ðμ20Þ ≈ 0.39 leads to the overlap

of the running couplings at scales between p ≈m and
p ≈ 2m. In the SMOM scheme, on the other hand, no single

choice of α̃ðSMOMÞ
s ðμ20Þ results in the running couplings to

agree over a comparably wide momentum interval.5 Why
this is so can be understood in the light of the consid-
erations made at the end of Sec. III B: at scales of order m
and at one loop, the SMOM scheme is expected to be less
reliable than the MOM scheme; therefore, under the
assumption that the one-loop predictions of the FS frame-
work are nearly exact up to p ∼m, the better agreement of

αðFSÞs ðp2Þ with αðMOMÞ
s ðp2Þ, rather than with α̃ðSMOMÞ

s ðp2Þ,
could have been anticipated. In what follows we will push
no farther the comparison between the FS and the SMOM-
scheme RG-improved frameworks, limiting ourselves to
present our results for the MOM scheme.

In order to single out an optimal value of αðMOMÞ
s ðμ20Þ

for the matching, we will adopt the following criterion.
Denoting with εðp2Þ the momentum-dependent relative
difference between the MOM running coupling and the FS
running coupling [the latter normalized as in Eq. (93)],

εðp2Þ ¼ αðMOMÞ
s ðp2Þ − αðFSÞs ðp2Þ

αðFSÞs ðp2Þ
; ð94Þ

we say that αðMOMÞ
s ðμ20Þ is optimal for the matching if it

results in a MOM running coupling for which jεðp2Þj ≤ 1%
over the widest possible range of momenta in the pre-
viously identified matching interval. The matching scale μ1
itself—Eq. (92)—is fixed according to the same criterion.
In Fig. 17 we show the relative difference εðp2Þ

computed for the optimal value αðMOMÞ
s ðμ20Þ ¼ 0.391

(μ0 ¼ 6.098m, i.e., 4 GeV in physical units) obtained
for N ¼ 3 at the matching scale μ1 ¼ 1.372m (0.9 GeV)
by the criterion detailed above. The range over which
jεðp2Þj ≤ 1% has width Δp ≈ 0.9m (0.6 GeV) and extends
from p ≈ 1.1m to p ≈ 2m. In Fig. 18 the corresponding
running couplings are displayed. The combined red curve,

which we denote by αðoptÞs ðp2Þ, is obtained by gluing the
low-energy portion of the FS coupling to the high-energy
portion of the MOM coupling at p ¼ μ1. Note that αðoptÞs ðp2Þ attains a maximum at p ¼ pmax ≈ 0.847m

(corresponding to 0.556 GeV in physical units),

pmax ≈ 0.847m;

αðoptÞs ðp2
maxÞ ≈ 2.527: ð95Þ
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FIG. 17. Relative difference between the N ¼ 3 MOM run-
ning coupling and the FS running coupling for the optimal

value αðMOMÞ
s ðμ20Þ ¼ 0.391. The initial renormalization scale is

μ0=m ¼ 6.098 (corresponding to μ0 ¼ 4 GeV in physical
units), while the matching scale is μ1=m ¼ 1.372 (correspond-
ing to μ1 ¼ 0.9 GeV).
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FIG. 18. Intermediate-energy matching between the FS run-
ning coupling (black curve) and the N ¼ 3 MOM running

coupling (blue curve) for the optimal value αðMOMÞ
s ðμ20Þ ¼

0.391 (μ0 ¼ 6.098m, corresponding to 4 GeV in physical units).
The matching scale is μ1 ¼ 1.372m (0.9 GeV) and the FS
coupling is normalized by κ ¼ 1.200. The red curve is obtained
by combining the low-energy FS coupling and the high-energy
MOM coupling.

5We checked that tuning the matching scale μ1 between ≈m
and ≈2.5m does not improve this behavior: in no case were we
able to obtain an overlap between the FS and the SMOM running
coupling over a wider range of momenta without entering a
regime in which the SMOM coupling develops a Landau pole.
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In Sec. IV B the combined predictions of the FS andMOM-
scheme RG-improved frameworks will be compared with
the lattice data for N ¼ 3.

B. Comparison with the lattice data

Having found that the optimal value of αðMOMÞ
s ðμ20Þ for

the matching of the N ¼ 3 one-loop RG-improved MOM
scheme to the one-loop FS framework is 0.391 (with μ0 ¼
6.098m as the renormalization scale and μ1 ¼ 1.372m as
the matching scale), we now proceed to compare our
combined results with the lattice data of Ref. [18]. We
reiterate that once the RG-improved expansion is optimized

by fixing αðMOMÞ
s ðμ20Þ—with μ0 expressed in units of m—

the gluon mass parameter is left to stand as the only free
parameter of the theory. Being a mass scale, m plays the
same role as ΛYM in standard perturbation theory, entering
the MOM running coupling through the ratio p2=m2 in the
denominator of

αðMOMÞ
s ðp2Þ ¼ 4π

9½Hðp2=m2Þ − H̄� ðN ¼ 3Þ; ð96Þ

which is just Eq. (29) with H̄ defined as

H̄ ¼ Hðμ20=m2Þ − 4π

9½αðMOMÞ
s ðμ20Þ�optim

≈ 2.4926 ð97Þ

(having been obtained by optimization, H̄ must be regarded
as a constant; it does not depend either on m nor on μ0). As
a consequence, m must be inferred from experiments or, in
our case, from the lattice data. Since up until this point the
conversion from adimensional to physical units has been
made by taking m ¼ 0.656 GeV (as in our previous works,
see e.g., Ref. [55]), in what follows we will present our
results both for the aforementioned value of the mass
parameter and for the value that is obtained from a fit of the
combined propagators to lattice data. We remark that fitting
m to the lattice data only serves the purpose of fixing the
energy scale of the combined results, in order to be able to
compare them with the former. When all the dimensionful
quantities of the theory are expressed in units of m, unlike
the results of Sec. III—which still depended on a spurious
free parameter—the combined propagators are uniquely
determined.
In Figs. 19 and 20 the N ¼ 3 gluon propagator and ghost

dressing function renormalized at the scale μ0 ¼ 4 GeV are
shown as functions of momentum. The energy scale for the
analytical results is set by the gluon mass parameter m,
preliminarly taken to be equal to 0.656 GeV. In the figures,
the red curves are obtained by combining the high-
energy predictions of the RG-improved MOM scheme at

αðMOMÞ
s ðμ20Þ ¼ 0.391 (displayed as blue curves) with the

low-energy ones of the FS framework (displayed as black
curves), the latter normalized so as to match the former at

p ¼ μ1 ¼ 0.9 GeV. For comparison, the standard pertur-
bative one-loop results for αsðμ20Þ ¼ 0.391 (corresponding
to ΛYM ¼ 0.928 GeV) are also displayed in the figures as
orange curves. In Fig. 21 we show the N ¼ 3 gluon
dressing functions associated to the propagators of Fig. 19.
As we can see, already at one loop and for m ¼

0.656 GeV, the combined results manage to reproduce
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FIG. 19. N ¼ 3 gluon propagator renormalized at the scale
μ0 ¼ 4 GeV. The lattice data are taken from Ref. [18]. The
one-loop predictions of the MOM-scheme RG-improved

and FS frameworks, computed for αðMOMÞ
s ðμ20Þ¼0.391 and

m¼0.656GeV, are reported in blue and in black, respectively.
The red curve is obtained by their matching at μ1 ¼ 0.9 GeV.
The orange curve is the standard perturbative one-loop RG-
improved result. See the text for details.
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FIG. 20. N ¼ 3 ghost dressing function renormalized at
the scale μ0 ¼ 4 GeV. The lattice data are taken from Ref. [18].
The one-loop predictions of the MOM-scheme RG-improved

and FS frameworks, computed for αðMOMÞ
s ðμ20Þ ¼ 0.391 and

m ¼ 0.656 GeV, are reported in blue and in black, respectively.
The red curve is obtained by their matching at μ1 ¼ 0.9 GeV.
The orange curve is the standard perturbative one-loop RG-
improved result. See the text for details.
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quite well the lattice data over the whole available range of
momenta (approximately 0.1 GeV to 8 GeV), especially for
what concerns the ghost dressing function. At scales larger
than p ≈ 3 GeV, the RG-improved screened-PT propaga-
tors are indistinguishable from their standard-PT analogues
and constitute a considerable improvement over the FS
screened results, which are unable to reproduce the lattice
propagators for p > 1–3 GeV. At lower intermediate scales,
as the momentum p approaches ΛYM, the mass effects of
screened PT kick in and the screened propagators deviate
from the standard perturbative behavior, avoiding the
Landau pole and following the lattice data. Below p ≈m,
as was to be expected, the higher-order terms of the
RG-improved expansion become non-negligible, and the
one-loop improved MOM-scheme calculations no longer
provide a good approximation to the exact results. A good
approximation is nonetheless provided by the combined
results, which in this regime follow the predictions of the
FS framework.
The agreement improves further if the value of m is

determined by fitting the combined gluon propagator to the
lattice data. In Figs. 22 and 23 we show the combined gluon
propagator and ghost dressing function, respectively, com-
puted for the fitted value of the gluon mass parameter,
namely m ¼ 0.651 GeV (the curves computed for m ¼
0.656 GeV are also displayed in the figures for compari-
son). Clearly, the ever so slight decrease in the value of the
mass parameter is sufficient to enhance the gluon propa-
gator at low momenta, bringing it onto the lattice data
without spoiling either its intermediate- and high-energy
behavior, or that of the ghost dressing function.

We should remark that, for these last plots, in changing
the value of m the previously reported values of μ1 and μ0
in physical units have also changed. The matching scale
μ1 ¼ 1.372m for combining the fixed-scale results with
the MOM-scheme RG-improved ones is now equal to
0.89 GeV (instead of 0.9 GeV for m ¼ 0.656 GeV),
whereas the scale μ0 ¼ 6.098m, interpreted as the scale

at which, by optimization, αðMOMÞ
s ¼ 0.391, now equals

3.97 GeV (instead of 4 GeV). As for the renormalization
scale of the propagators—previously denoted also with μ0
and rigorously defined by Eqs. (20)—in order to compare
our results with the lattice data we had to set it back to
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FIG. 21. N ¼ 3 gluon dressing function renormalized at the
scale μ0 ¼ 4 GeV. The lattice data are taken from Ref. [18].
The one-loop predictions of the MOM-scheme RG-improved

and FS frameworks, computed for αðMOMÞ
s ðμ20Þ ¼ 0.391 and

m ¼ 0.656 GeV, are reported in blue and in black, respectively.
The red curve is obtained by their matching at μ1 ¼ 0.9 GeV.
The orange curve is the standard perturbative one-loop RG-
improved result. See the text for details.
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FIG. 22. N ¼ 3 gluon propagator renormalized at the scale
μ0 ¼ 4 GeV with the lattice data of Ref. [18]. The one-loop
predictions of the combined MOM-scheme RG-improved/FS
frameworks, computed for m¼0.656GeV and m¼0.651GeV,
are reported in red and gold, respectively. See the text for details.
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FIG. 23. N ¼ 3 ghost dressing function renormalized at the
scale μ0 ¼ 4 GeV with the lattice data of Ref. [18]. The one-loop
predictions of the combined MOM-scheme RG-improved/FS
frameworks, computed for m¼0.656GeV and m¼0.651GeV,
are reported in red and gold, respectively. See the text for details.
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4 GeV, rather than keeping it equal to the new value
3.97 GeV. Indeed, observe that the scale at which the
propagators are defined and the one at which the initial
value of the running coupling is defined do not need to
coincide, as long as the initial value of the coupling is
chosen so as to follow the RG flow. If we want to know
the value of the coupling constant at 4 GeV for
m ¼ 0.651 GeV, then we can compute it directly from
Eq. (96) using physical units: we find

αðMOMÞ
s ð4 GeVÞ ¼ 0.389 ðm ¼ 0.651 GeVÞ: ð98Þ

Of course, the difference between 0.391 and 0.389,
3.97 GeV and 4 GeV, 0.89 GeV and 0.90 GeV, etc., is
minimal; we may expect larger approximation errors to
influence the numerical outcome of our analysis. None-
theless, these calculations make explicit the role of the gluon
mass parameter as the (only) mass scale of the theory, fol-
lowing the optimization of the screened massive expansion.

V. DISCUSSION

The dynamical generation of an infrared mass for the
gluons raises questions as to whether the standard expan-
sion point of QCD perturbation theory—namely, a mass-
less vacuum for the gauge sector—is an appropriate choice
for describing the low-energy behavior of the theory. That
in the IR a massive expansion point for the gluons may
improve the QCD perturbative series is corroborated by a
GEP variational analysis of pure Yang–Mills theory: by
minimizing the vacuum energy of the latter, a massive zero-
order gluon propagator was shown [57] to bring us closer
to the exact, nonperturbative vacuum of the gauge sector.
The resulting perturbation theory—defined by a simple
shift of the kinetic and interaction Lagrangian—was termed
screened massive expansion and studied in Refs. [51–59].
In its fixed-coupling, fixed-scale formulation, the

screened massive expansion proved successful in accu-
rately reproducing the infrared lattice data for the propa-
gators of pure Yang–Mills theory already at one loop
[51,52,55]. Moreover, it was proven capable of describing
the phenomenon of dynamical mass generation for the
gluons in a nontrivial manner: whereas the zero-order gluon
propagator is massive by the definition of the method itself,
the tree-level mass terms, which appear in the dressed
propagator, cancel out so that the saturation of the gluon
propagator at zero momentum turns out to be an actual
effect of the loops, i.e., of the strong interactions between
the gluons. Nonetheless—strictly speaking—the screened
expansion alone cannot be used to prove that the gluons
acquire a mass in the infrared. Albeit it being a nontrivial
prediction of the method for any nonzero value of the gluon
mass parameterm, when the latter is set to zero the ordinary
perturbative series of YM theory is recovered so that no
mass generation occurs. In the context of the screened
expansion, that m ≠ 0 should lead to more reliable results

in the IR can only be inferred from the aforementioned
GEP analysis.
Following the optimization of the screened expansion by

principles of gauge invariance [55,59], the gluon mass
parameter m is left as the only free parameter of the theory,
playing the same role as the QCD/YM scale ΛYM of the
standard perturbative expansion, with respect to which all the
dimensionful values—including the proper gluon’s mass—
are to be measured. One could still wonder how a mass
parameter, which is added and subtracted again in the
Lagrangian, can have a physical role at all in the dynamics
of the theory. From a variational point of view, since the
optimal value of m yields the best expansion around a
Gaussian massive vacuum [57], the mass parameter itself
must be regarded as the best Gaussian approximation for the
dynamically generated mass of the full theory. Such a mass
is then subject to quantum corrections, which ultimately
determine the value of the proper gluon’s mass.
At energies larger than about 2 GeV, the fixed-scale one-

loop approximation breaks down due to the presence of large
logarithms. This can be dealt with by resorting to ordinary
RG methods, i.e., by defining a scheme-dependent running
coupling constant and integrating the RG flow for the
propagators. A second, most important, reason to study
the RG flow of the screened expansion is to address the
issues related to the strong interactions’ IR Landau pole.
From both a theoretical and a practical point of view, the
negativity of the coefficients of the standard QCD beta
function (at least to five loops [69] and for a sufficiently
small number of quarks), paired with the absence of mass
scales in the Lagrangian (other than the quark masses),
results in a strong running coupling which, in mass-
independent renormalization schemes, diverges in the infra-
red, thus making ordinary perturbation theory inconsistent at
energies of the order of the QCD scale. In order for the
screened expansion to be meaningful in the IR, the Landau
pole must be shown to disappear from the running coupling
constant when the former is used to compute the latter.
In the previous sections, the RG improvement of the

screened massive expansion was studied at one loop in
two renormalization schemes, namely, the MOM and the
SMOM schemes, with the running coupling αsðp2Þ defined
in the Taylor scheme (Zc

1 ¼ 1). In both schemes, the
existence of a nonperturbative mass scale set by the gluon
mass parameter m causes the beta function to explicitly
depend on the renormalization scale, thus providing a
mechanism by which the running of the coupling is allowed
to slow down in the infrared. The most notable feature of
the RG-improved screened expansion in the MOM and
SMOM schemes is indeed the absence of Landau poles in
their running couplings (at one loop and for sufficiently
small initial values of the coupling), a necessary condition
for the consistency of any perturbative approach which
aims to be valid at all scales. Instead of diverging, the

one-loop MOM running coupling αðMOMÞ
s ðp2Þ attains a
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maximum at the fixed scale μ⋆ ≈ 1.022m and then
decreases to zero as p2 → 0. The one-loop SMOM running

coupling αðSMOMÞ
s ðp2Þ, on the other hand, attains a maxi-

mum at a scale that depends on the initial value of
the coupling and then saturates to the finite nonzero

value αðSMOMÞ
s ð0Þ ¼ 32π=15N ≈ 2.234 for N ¼ 3. Both

αðMOMÞ
s ðp2Þ and αðSMOMÞ

s ðp2Þ have the ordinary perturba-
tive (one-loop) limit in the UV, where the mass effects due
to the gluon mass become negligible.
Since in both the renormalization schemes the one-loop

running coupling becomes quite large at scales of the order
of m, the one-loop predictions of the RG-improved
framework are expected to become quantitatively unreli-
able at low energies. In particular, for comparable initial
values of the coupling, the one-loop SMOM running
coupling is always larger than the one-loop MOM running
coupling in the IR (a feature which is mostly, but not
exclusively, due to the saturation of the former at low
momenta), so that the perturbative series is expected to
converge more slowly in the SMOM scheme than in the
MOM scheme.
The MOM and SMOM RG-improved gluon and ghost

propagators were computed at one loop, for different initial
values of the coupling constant, by numerically integrating
the respective anomalous dimensions. We found that
the improved propagators have the expected qualitative
behavior—as determined, for instance, by the lattice
calculations—showing mass generation for the gluons,
no mass generation for the ghosts, and the logarithm-to-
rational-power UV tails of ordinary perturbation theory.
Under the hypothesis that the one-loop RG-improved

results are sufficiently accurate down to p ≈m, the initial
value of the coupling αsðμ20Þ—one of the two free param-
eters of the RG-improved screened framework, together
with the gluon mass parameter—can be fixed by requiring
the improved predictions to match those of the fixed-scale
expansion at intermediate energies. The matching was
found to work better in the MOM scheme, where the

optimal choice αðMOMÞ
s ðμ20Þ ¼ 0.391 at μ0 ¼ 6.098m yields

a running coupling, which agrees to less than 1% with its
FS analogue over a momentum range of width Δp ≈m.
The optimization of the value of αsðμ20Þ, where the initial

renormalization scale μ0 itself is expressed in units of m,
leaves the gluon mass parameter as the only free parameter
of the RG-improved framework. This is, of course, highly
desirable since (modulo the renormalization conditions)
pure Yang–Mills theory has only one free parameter,
namely, the coupling or the QCD/YM scale ΛYM. In the
optimized framework, m uniquely determines the value of
the running coupling at any given renormalization scale
and, more generally, it sets the scale for the dimensionful
values of the theory. In this sense, optimization enables us
to truly regard the gluon mass parameter as the screened-
expansion analogue of ΛYM.

The predictions obtained by combining the low-energy
results (p < 1.372m) for the propagators in the FS screened
expansion with the high-energy ones (p > 1.372m) of the
optimized MOM-scheme RG-improved screened expan-
sion were compared with the lattice data of Ref. [18]
and found to be in excellent agreement if the value
m ¼ 0.651 GeV (obtained by a fit of the data themselves)
is used.
The intermediate-scale matching between the FS and

RG-improved MOM frameworks proves to be a powerful
method for quantitatively predicting the behavior of the
gluon and ghost propagators, over a wide range of
momenta and from first principles, already at one loop.
This reinforces the idea that the full dynamics of YM theory
and, perhaps, of full QCD, may be accessible by plain—
albeit optimized—PT, by a mere change of the expansion
point of the perturbative series, allowing for massive
transverse gluons at tree level.
At present, whether the optimized implementations of

the screened massive expansion yield a good approxima-
tion of the exact results beyond the two-point sector
remains an open issue. In this respect, it would be
interesting to make use of the present formalism to study
the behavior of the ghost-gluon and three-gluon vertices,
which have already been computed—for specific kinematic
configurations of the external momenta—e.g., on the lattice
[70–73] and by the numerical integration of Schwinger–
Dyson equations [28,74,75]. Encouraging signs that the
screened expansion may work in the three-point sector
come from the asymptotic analysis of the fixed-scale-
framework gluon propagator Δðp2Þ in the deep IR, where
(cf. Eqs. (A6) and (A9) in the Appendix)

ZΔΔ−1ðp2Þ → 5m2

8
þ 13

18
p2 lnðp2=m2Þ þOðp2Þ: ð99Þ

Here ZΔ is a multiplicative renormalization constant, and
the logarithmic term comes from the massless ghost loop in
the gluon polarization tensor. By the Slavnov–Taylor
identities, such a logarithm is inherited by the form factor
of the three-gluon vertex [76–78] and is responsible for
its characteristic “zero crossing”, i.e., its becoming
negative at low energies, a feature which has been con-
firmed by multiple studies. Thus the behavior of the
propagators computed in the screened expansion appears
to be consistent with what we know—both analytically and
numerically—about the three-point functions. An explicit
computation of the latter will help to clarify the extent to
which the screened massive expansion is able to describe
the full dynamics of pure Yang–Mills theory and QCD.
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APPENDIX: FIXED-SCALE SCREENED PT AND
THE FUNCTIONS HðxÞ AND KðxÞ

In Euclidean space, the renormalized one-loop gluon

polarization ΠðRÞ
loop and ghost self-energy ΣðRÞ

loop computed in
the framework of the massive screened expansion are given
by [51,52]

ΠðRÞ
loopðp2Þ ¼ −αp2ðFðsÞ þ CÞ;

ΣðRÞ
loopðp2Þ ¼ αp2ðGðsÞ þ C0Þ; ðA1Þ

where s ¼ p2=m2 (m being the gluon mass parameter),

α ¼ 3Nαs
4π

¼ 3Ng2

16π2
; ðA2Þ

and C and C0 are renormalization-scheme-dependent con-
stants. The adimensional functions F and G [51,52] are
defined as

FðxÞ ¼ 5

8x
þ 1

72
½LaðxÞ þ LbðxÞ þ LcðxÞ þ RðxÞ�;

GðxÞ ¼ 1

12
½LgðxÞ þ RghðxÞ�; ðA3Þ

where the logarithmic functions Li are

LaðxÞ ¼
3x3 − 34x2 − 28x − 24

x

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
ln

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�
;

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ lnð1þ xÞ;

LcðxÞ ¼ ð2 − 3x2Þ ln x;

LgðxÞ ¼
ð1þ xÞ2ð2x − 1Þ

x2
lnð1þ xÞ − 2x ln x; ðA4Þ

and the rational parts Ri are

RðxÞ ¼ 4

x2
−
64

x
þ 34;

RghðxÞ ¼
1

x
þ 2: ðA5Þ

The fixed-scale one-loop gluon and ghost propagators
computed in the screened expansion can be expressed as

Δðp2Þ ¼ ZΔ

p2½Fðp2=m2Þ þ F0�
;

Gðp2Þ ¼ −
ZG

p2½Gðp2=m2Þ þ G0�
; ðA6Þ

where ZΔ and ZG are multiplicative renormalization factors
and F0 and G0 are additive renormalization constants. In
Refs. [55,59], the latter were optimized by requirements of
gauge invariance and minimal sensitivity, and their optimal
value was found to be

F0 ¼ −0.876; G0 ¼ 0.145: ðA7Þ

As for the functions F and G, in the limit x → ∞, we find

FðxÞ → 13

18
ln xþ 17

18
þ 5

8x
þOðx−2Þ;

GðxÞ → 1

4
ln xþ 1

3
þ 1

4x
þOðx−2Þ: ðA8Þ

On the other hand, for x → 0,6

FðxÞ → 5

8x
þ 1

36
ln xþ 257

216
þ 389

1080
xþOðx2Þ;

GðxÞ → 5

24
−
1

6
x ln xþ 2

9
xþOðx2Þ: ðA9Þ

The function HðxÞ, whose derivative is proportional
to the beta function of the MOM running coupling, is
defined as

HðxÞ ¼ 2GðxÞ þ FðxÞ: ðA10Þ

For x → ∞ we have

HðxÞ → 11

9
ln xþ 29

18
þ 9

8x
þOðx−2Þ; ðA11Þ

whereas for x → 0

HðxÞ → 5

8x
þ 1

36
ln xþ 347

216
−
1

3
x ln xþ 869

1080
xþOðx2Þ:

ðA12Þ

The one-loop MOM running coupling αðMOMÞ
s ðp2Þ has the

following asymptotic behavior:

αðMOMÞ
s ðp2Þ → 32π

15N
p2

m2

�
1 −

2

45

p2

m2
ln

p2

m2

�
ðA13Þ

as p → 0 and

αðMOMÞ
s ðp2Þ → 12π

11N lnðp2=m2Þ ðA14Þ

as p → ∞.

6Here we correct an error in Ref. [59], where the coefficients of
x in the expansion of LaðxÞ; LbðxÞ, and FðxÞ around x ¼ 0
(Eqs. (A7) and (A8) of Ref. [59]) were reported incorrectly.
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The expressions for the SMOM scheme beta function
and running coupling involve the function KðxÞ, defined as

KðxÞ ¼
Z

dx

�
H0ðxÞ þ 2

x
G0ðxÞ

�

¼ HðxÞ − 1

3

�
Li2ð−xÞ þ

1

2
ln2x

þ x3 þ 1

3x3
lnð1þ xÞ − 1

3
ln x −

1

3x2
þ 1

6x

�
; ðA15Þ

where Li2ðzÞ is the dilogarithm Li2ðzÞ ¼
Pþ∞

n¼1
zn

n2. In the
limit x → ∞ we find

KðxÞ → 11

9
ln xþ π2 þ 29

18
þ 5

8x
þOðx−2Þ; ðA16Þ

whereas in the limit x → 0

KðxÞ → 5

8x
−
1

6
ln2xþ 5

36
ln xþ 113

72
þ

−
1

3
x ln xþ 1139

1080
xþOðx2Þ: ðA17Þ

The asymptotic limits of the one-loop SMOM running

coupling αðSMOMÞ
s ðp2Þ are computed to be

αðSMOMÞ
s ðp2Þ → 32π

15N

�
1þ 4

15

p2

m2
ln2

p2

m2

�
ðA18Þ

as p → 0 and

αðSMOMÞ
s ðp2Þ → 12π

11N lnðp2=m2Þ ðA19Þ

as p → ∞.
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Thermal extension of the screened massive expansion in the Landau gauge
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The massive screened expansion for pure SU(3) Yang-Mills theory is extended to finite temperature in
the Landau gauge. All thermal integrals are evaluated analytically up to an external one-dimensional
integration, yielding explicit integral representations of analytic functions that can be continued to the
whole complex plane. The gluon propagator is first explored in the Euclidean space by making use of
parameters obtained from first principles, which were already found to accurately reproduce the lattice data
at zero temperature. Within such a scheme, the agreement with the lattice at T ≠ 0 turns out to be only
qualitative. The description improves provided that the parameters are tuned in a temperature-dependent
way by a fit to the data, carried out separately for each component of the propagator; in particular, the
transverse component closely follows the lattice data, while the agreement of the longitudinal component
with the data is poor at small momenta and moderately high temperatures. The dispersion relations of the
quasi-gluon are then extracted from the pole trajectory in the complex plane using the fitted parameters.
A crossover is found for the mass, suppressed by temperature like an order parameter in the confined phase,
while increasing like an ordinary thermal mass in the deconfined phase.

DOI: 10.1103/PhysRevD.103.074014

I. INTRODUCTION

In the last decades, considerable efforts have been
devoted to the study of the complex behavior of quarks
and gluons under the extreme conditions which are reached
in heavy-ion collisions. In principle, the dynamical and
thermal properties of a quark-gluon plasma should descend
from the relatively simple Lagrangian of the SU(3) gauge
theory which describes QCD. However, things are not so
easy because the standard perturbative approach breaks
down in the strong-coupling IR limit and is also plagued by
further resummation problems at any finite temperature. As
a matter of fact, we still miss a full theoretical treatment of
the problem.
Even the pure gauge theory, without quarks, is not fully

understood, despite its relevance for describing the quark-
gluon plasma.Many important advances have beenmade by
the numerical simulation of the pure Yang-Mills (YM)
Lagrangian on a lattice, providing insights into the gluon
dynamics and the phase diagram. Among them, the con-
firmation of a dynamically generated gluon mass [1–8], as

predicted by Cornwall in 1982 [9], and the occurrence of a
phase transition, with the gluons that become confining
below a critical temperature [10–12].
It would be a desirable progress if the dynamical and

transport parameters, like masses, widths, dispersion rela-
tions, transport coefficients, etc., which are currently
regarded as phenomenological parameters [13–16], could
be directly evaluated from first principles. That program
might be accomplished in part if the elementary correlators
and their analytic properties were known in the Minkowski
space. Unfortunately, all lattice calculations and most
numerical works provide information in the Euclidean
space and the analytic continuation is a difficult ill-defined
problem for the numerical data [17].
In the last years, a very predictive analytical method has

been developed [18–21] by a mere change of the expansion
point of ordinary perturbation theory (PT) for the exact
gauge-fixed Becchi-Rouet-Stora-Tyutin (BRST) invariant
YM Lagrangian, yielding a screened massive expansion
which is safe in the IR while recovering the correct results
of ordinary PT in the UV. At one-loop and zero temper-
ature, the screened expansion provides analytical results
which are in excellent agreement with the lattice and can be
easily continued to Minkowski space [21–25]. Thus the
method provides a way to extract dynamical details like
masses and damping rates from first principles.
In this paper, the formalism is extended to a finite

temperature T ≠ 0, with the aim to provide a complemen-
tary tool for the study of the gluon plasma from first
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principles. As briefly discussed in Refs. [26,27], the
screened expansion can be extended to finite temperature,
providing a quasiparticle picture for the gluon which is
damped, with a very short finite lifetime, and canceled from
the asymptotic states. Here, we give a full account of the
details of the calculation and report a comprehensive
set of results for the gluon sector, including propagators,
analytic properties, poles, masses, widths and dispersion
relations. We discuss different optimization strategies and,
by a comparison with the available lattice data, we explore
how robust the screened expansion is when it is extended to
finite temperature.
While the existence of a screening mass mitigates the

effects of the hard thermal loops, several problems arise at a
finite temperature, ranging from the temperature depend-
ence of the optimal mass scale, to the analytic continuation
of the numerical integrals. Actually, even if a formal
extension to finite temperature is straightforward and based
on standard thermal Feynman graphs, the ambition to
extract analytical results requires a quite tedious and
lengthy analytical calculation of the integrals and, even
so, a final one-dimensional numerical integration cannot be
avoided. Nonetheless, the resulting numerical integrals are
shown to define analytic functions which can be evaluated
in the complex plane. Then, the poles of the gluon
propagator and the resulting dispersion relations can be
easily extracted numerically.
Overall, despite the expected difficulties, the one-loop

screened expansion seems to be reliable at low temperature,
with correct predictions which become less quantitative at
high temperature, especially for the longitudinal sector,
when compared with the lattice data.
At T ¼ 0, the one-loop approximation is quite sensitive

to the renormalization scheme and to the subtraction point,
but it can be shown to be basically tangent to the exact
result, which is approached for a special choice of the ratio
between the gluon mass parameter m and the renormaliza-
tion scale μ. Here,m is just a mass parameter which defines
the shift of the expansion point [18,19,24,25], not to be
confused with the physical mass of the gluon. It seems that,
for that special ratio μ=m, the higher order terms become
negligible, yielding very accurate analytical expressions for
the propagators. While that special ratio is scheme depen-
dent, it can be determined from first principles by mon-
itoring some identities which must be fulfilled by the exact
propagators, like the Nielsen identities, which express the
gauge invariance of the poles [21]. We must mention that,
once the ratio is optimized in the complex Minkowski
space, where the poles are defined, the propagators are
found in excellent agreement with the lattice data in the
Euclidean space. Thus, the optimized analytical expression
is not just a good interpolation formula, but a very good
approximation for the whole analytic function which is
defined in the complex plane. Moreover, at the optimal
ratio μ=m there is only one energy scale left in the

calculation, say the mass parameter m, so that its actual
value becomes irrelevant, since it can be used as energy
units and is eventually determined by a comparison with
the phenomenology. For instance, sharing the same units of
the lattice data, a value m ¼ 0.656 GeV was established in
previous works [21,24].
At a finite temperature T ≠ 0, there is a third energy

scale and the optimal parameters m, μ become two
independent functions of temperature, mðTÞ, μðTÞ, since
their optimal ratio is expected to depend on T. In principle,
one could proceed as for T ¼ 0 and fix the optimal ratio by
monitoring the gauge-invariance of the poles. However,
that would at least require a knowledge of the thermal
propagators in a generic covariant gauge, while the present
formalism has been developed only in the Landau gauge.
Moreover, no lattice data are available for a comparison in a
generic gauge and finite T. This is not a theoretical
limitation by itself, but leads to a weakening of the control
of the accuracy.
That of the gauge invariance of the poles actually is an

additional problem one encounters when extending the
theory to finite T [28–31]. Even though the poles of the
propagator are constrained to be nonperturbatively gauge-
independent by, e.g., the Nielsen identities [32], in the
thermal formalism different powers of the coupling con-
stant coexist at the same loop order when hard-thermal-
loop effects are taken into account, so that consistent
resummation schemes are needed in order to obtain truly
gauge-invariant results for the poles’ position. To first order
in the coupling, this can be shown to only affect the
imaginary part of the dispersion relations, i.e., the gluon’s
damping rate. In this work no attempt has been made to
implement such resummation schemes or to keep under
control the accuracy of the approximation with respect to
the issue of gauge invariance. Whereas at low, nonzero
temperatures the screening provided by the gluon’s mass
may somewhat suppress the effects of the required
resummed terms, at higher temperatures the latter are
expected to become non-negligible, causing our predictions
for the gluon damping rate to become less and less reliable
as the temperature is increased.
In the Landau gauge, we explored two complementary

strategies and checked that the qualitative description
which emerges is robust enough and does not depend on
the optimization choice. The first, simpler, strategy consists
in using the same m and μ parameters that work at T ¼ 0.
That choice was already made in Ref. [26] (albeit with
different values for the parameters) and makes sense at low
temperature where we expect that mðTÞ ≈mð0Þ and
μðTÞ ≈ μð0Þ. With this choice, we find the correct quali-
tative behavior without any adjustment of parameters. In
particular, the longitudinal propagator shows a non-
monotonic behavior with a crossover at T=mð0Þ ≈ 0.15.
However, the agreement with the lattice data is not
quantitative, and the predicted transition temperature is
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too small (T ≈ 100 MeV), thus indicating that we
are already outside the safe low-temperature range.
Nonetheless, the disagreement can be absorbed in part
by a temperature-dependent optimization of the expansion.
Thus, as a second strategy, we relax the constraints of m

and μ being equal to their T ¼ 0 values and regard mðTÞ
and μðTÞ as independent unknown functions. Reversing the
argument that led to their optimization at T ¼ 0, we tune
the unknown functions in the Euclidean space by looking
for the best agreement with the lattice data. Then, assuming
that the higher-order terms are smaller when the agreement
is better, the optimized propagators are continued to
Minkowski space where the pole location gives information
on the dispersion relations of the quasi-gluons at finite
temperature. We anticipate that, from a strictly quantitative
point of view, the agreement with the lattice is not
comparable with the excellent result which was reached
at T ¼ 0. Moreover, while the transverse propagator is
generally well described, the longitudinal projection
becomes very poor deep in the IR for moderately high
temperatures. Since most of the deviation occurs below
500–700 MeV, we expect that the predictions for the pole
position at high momenta might not be affected too much.
We stress that there are no data available in the Minkowski
space for a comparison, thus evidencing the power of the
method for exploring the analytic properties of the
propagators.
Irrespective of the optimization criterion, we confirm the

finding of Ref. [26] and the quasi-gluon scenario which was
described by Stingl [33], with a gluon which has a very
short finite lifetime and can only exist as a short-lived
intermediate state at the origin of a gluon-jet event.
This paper is organized as follows. In Sec. II we review

the setup and main features of the screened massive
expansion and its extension to finite temperatures. In
Sec. III we present our results for the Landau gauge gluon
propagator at T ≠ 0 and vanishing Matsubara frequency,
ω ¼ 0. In Sec. IV we derive the dispersion relations for the
quasi-gluons at finite temperatures. In Sec. V we discuss
our results and present our conclusions. In the Appendix we
explicitly compute the gluon polarization and ghost self-
energy at finite temperatures using the screened massive
expansion.

II. THE SCREENED EXPANSION AND ITS
EXTENSION TO FINITE TEMPERATURE

In a linear covariant ξ-gauge, the gauge-fixed BRST
invariant Lagrangian of pure Yang-Mills SU(N) theory is

L ¼ LYM þ Lfix þ LFP; ð1Þ

where

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ;

Lfix ¼ −
1

ξ
Tr½ð∂μÂ

μÞð∂νÂ
νÞ�; ð2Þ

and LFP is the ghost term arising from the Faddeev-Popov
(FP) determinant. The tensor operator is defined as

F̂μν ¼ ∂μÂν − ∂νÂμ − ig½Âμ; Âν�; ð3Þ

where the gauge field operators satisfy the SU(N) algebra

Âμ ¼
X
a

X̂aA
μ
a;

½X̂a; X̂b� ¼ ifabcX̂c; fabcfdbc ¼ Nδad: ð4Þ

In the standard PT formalism, the total action is split as
Stot ¼ S0 þ SI , where the quadratic part can be written as

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞd4xd4y

þ
Z

c⋆aðxÞδabG−1
0 ðx; yÞcbðyÞd4xd4y; ð5Þ

while the interaction contains three vertices

SI ¼
Z

d4x½Lgh þ L3 þ L4�; ð6Þ

L3g ¼ −gfabcð∂μAaνÞAμ
bA

ν
c;

L4g ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e;

Lccg ¼ −gfabcð∂μc⋆aÞcbAμ
c: ð7Þ

In Eq. (5), the standard free-particle propagators for gluons
and ghosts, Δ0 and G0 respectively, are defined by their
Fourier transforms

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�;

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
; ð8Þ

where the transverse and longitudinal projectors are used

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
: ð9Þ

Later, we will take the limit ξ → 0 and use the Landau
gauge which is a renormalization group (RG) fixed point
and is the most studied gauge on the lattice. In the above
equations, the fields and the coupling must be regarded as
renormalized objects and the inclusion of the usual set of
counterterms is understood in the total Lagrangian.
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The massive screened version of PT was developed
in Refs. [18–20]. At T ¼ 0 and in a generic covariant
gauge, the method is very accurate and predictive if
the expansion is optimized by the constraints of BRST
symmetry [21,24,25]. The expansion arises by a mere
change of the expansion point of ordinary PT. Following
Refs. [19,21], the new massive expansion is recovered by
just adding a transverse mass term to the quadratic part of
the action and subtracting it again from the interaction,
leaving the total action unchanged. In more detail, we add
and subtract the action term

δS ¼ 1

2

Z
AaμðxÞδabδΓμνðx; yÞAbνðyÞd4xd4y; ð10Þ

where the vertex function δΓ is a shift of the inverse
propagator,

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ�; ð11Þ

and Δm
μν is a new massive free-particle propagator,

Δ−1
m

μνðpÞ ¼ ð−p2 þm2ÞtμνðpÞ þ −p2

ξ
lμνðpÞ: ð12Þ

Adding that term is equivalent to substituting the new
massive propagator Δm

μν for the old massless one Δ0
μν in

the quadratic part. Thus, the new expansion point is a
massive free-particle propagator for the gluon, which is
much closer to the exact propagator in the IR. The mass-
shift parameter m is irrelevant in the UV, but acts as a
natural cutoff which screens the theory in the IR.
Of course, in order to leave the total action unaffected by

the change, the same term is subtracted from the inter-
action, providing a new interaction vertex −δΓ, a two-point
vertex which can be regarded as a new counterterm.
Dropping all color indices in the diagonal matrices and
inserting Eqs. (8) and (12) in Eq. (11), the vertex is just the
transverse mass shift of the quadratic part,

−δΓμνðpÞ ¼ −m2tμνðpÞ; ð13Þ

and must be added to the standard set of vertices arising
from Eq. (7). The new vertex is now part of the interaction,
even if it does not depend on the coupling. Thus, the
expansion has the nature of a δ-expansion, since different
powers of the coupling coexist at each order in powers of
the total interaction.
The proper gluon polarization and ghost self energy

can be evaluated, order by order, by the modified PT. In all
Feynman graphs, any internal gluon line is a massive
free-particle propagator Δm

μν and the new insertions of
the (transverse) two-point vertex δΓμν are denoted by a
cross, as shown in Fig. 1. For further details we refer to
Refs. [18,19,21].

Since the total gauge-fixed FP Lagrangian is not modi-
fied and because of BRST invariance, the longitudinal
polarization is known exactly and is zero. At T ¼ 0, the
exact polarization and the dressed gluon propagator are
defined by a single function,

ΠμνðpÞ ¼ ΠðpÞtμνðpÞ; ð14Þ

so that, in the Landau gauge, the exact gluon propagator is
transverse,

ΔμνðpÞ ¼ ΔðpÞtμνðpÞ; ð15Þ

and defined by the scalar function ΔðpÞ. This feature is lost
at any finite temperature T > 0, since Lorentz invariance is
broken, and two scalar functions are required instead. In
that perspective, it is convenient to maintain the Lorentz
structure explicit and to switch to the Euclidean formalism.
Then, denoting with p2 the Euclidean squared momentum,
the exact (dressed) gluon and ghost propagators can be
written as

Δ−1
μνðpÞ ¼ ðp2 þm2ÞtμνðpÞ þ

p2

ξ
lμνðpÞ − ΠμνðpÞ;

G−1ðpÞ ¼ −p2 − ΣðpÞ; ð16Þ

where tμν and lμν are the Euclidean projectors of Eq. (A5).
The proper gluon polarization Πμν and the ghost self-
energy Σ are the sum of all one-particle-irreducible (1PI)
graphs in the screened expansion, including all counter-
terms. In Fig. 1, the two-point 1PI graphs are shown up to
one-loop and third order in the delta expansion. In the exact
self-energies, we can single out the tree-level terms and
write

=Σ +

+

+= + +

++

+
(1a) (1b) (1c) (1d)

(2b) (2c)(2a)

Π

FIG. 1. Two-point graphs with no more than three vertices and
no more than one loop. The cross is the transverse mass
counterterm of Eq. (13) and is regarded as a two-point vertex.
In the Appendix, a detailed description of the calculation at finite
T is given for all the polarization graphs in the figure.
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ΠμνðpÞ ¼ m2tμνðpÞ − p2tμνðpÞδZA þ Πloop
μν ðpÞ;

ΣðpÞ ¼ p2δZc þ ΣloopðpÞ; ð17Þ

where the first termm2tμνðpÞ is the tree graph (1a) in Fig. 1
and arises from the insertion of the new two-point vertex
−δΓμν of Eq. (13). We observe that this first tree term
cancels the mass shift of the gluon propagator in Eq. (16).
Indeed, the physical mass of the gluon arises from the loops
and is not merely given by the mass-shift parameter m2.
The other tree-level terms, −p2tμνδZA, p2δZc, are not
shown in Fig. 1 and are the usual field-strength renorm-
alization counterterms. Their UV diverging parts are not
affected by the mass parameter and are the same of standard
PT [18,19]. The proper functions, Πloop

μν , Σloop, are given by
the sum of all 1PI graphs containing loops. The finite parts
of δZA, δZc are arbitrary and depend on the scheme and on
the renormalization scale μ [24,25]. The diverging parts of
δZA, δZc cancel the UV divergences of the functions
Πloop

μν =p2 and Σloop=p2 which become finite dimensionless
functions of the variable pμ=m. They are defined up to a
constant which depends on the dimensionless renormali-
zation scale parameter t ¼ μ2=m2. Thus, at T ¼ 0, there are
two energy scales in the calculation, m and μ. For instance,
in a momentum subtraction scheme (MOM) and in the
Landau gauge, the one-loop dressed propagators can be
written as

ΔðpÞ−1 ¼ p2 − Ng2½Πð1ÞðpÞ − Πð1ÞðμÞ�;
GðpÞ−1 ¼ −p2 − Ng2½Σð1ÞðpÞ − Σð1ÞðμÞ�; ð18Þ

having made explicit the dependence on N and g2 as
factors in the one-loop functionsΠð1Þ, Σð1Þ, according to the
notation of Appendix A, where all details of the calculation
are reported. In Eq. (18), an explicit choice has been made
for the finite parts of the renormalization constants δZA,
δZc. Of course, that choice depends on the scheme and on
the renormalization scale μ. A more general way to get
rid of all the scheme-dependent parameters, including
the renormalized coupling g2, was discussed in previous
papers on the screened expansion [18,19,21,24], where
two dimensionless one-loop functions were defined (see
Appendix B.1 for their explicit expressions),

π1ðp2=m2Þ ¼ −
�
16π2

3

�
Πð1ÞðpÞ

p2
;

σ1ðp2=m2Þ ¼
�
16π2

3

�
Σð1ÞðpÞ
p2

; ð19Þ

so that the one-loop propagators in Eq. (18) can be recast as
functions of the dimensionless variable s ¼ p2=m2,

p2ΔðpÞ ¼ zπ
π1ðsÞ þ π0

;

p2GðpÞ ¼ −
zσ

σ1ðsÞ þ σ0
; ð20Þ

where zπ and zσ are irrelevant normalization constants
while all the scheme-dependent parameters are embedded
in the two constants π0 and σ0. With some abuse of
language, we will refer to them as renormalization con-
stants. Equation (20) is quite general since it does not
require any specific renormalization scheme to be defined.
Of course, our ignorance about those constants reflects a
well-known weakness of the one-loop approximation
which depends on the details of the renormalization scheme
and on the actual value of the renormalization scale μ. In
this sense, we still have two scales, m and μ, and the
arbitrary choice of their ratio t ¼ μ2=m2 somehow deter-
mines the actual value of the renormalization constants π0
and σ0.
A nice feature of the one-loop result is its apparent

tangency to the exact result which is approached for special
values of the renormalization constants. Those values are
equivalent to a choice of the best renormalization scale μ,
where the approximation is more effective. It is just an
example of the optimized perturbation theory by variation of
the renormalization scheme [34,35]. There might be a
special scale μwhere the expansion converges more quickly
and the higher order terms are minimal. Thus, from first
principles, we could determine the optimal constants by
monitoring some identities which must be satisfied by the
exact propagators. For instance, in Ref. [21], the Nielsen
identities [36,37] were used, which are a direct consequence
of BRST symmetry. From the identities, one can prove the
gauge-parameter-independence of the poles and residues of
the exact gluon propagator [21]. Then, we might expect that
the renormalization constants are optimal when the poles
have a minimal sensitivity to the gauge parameter. It is
remarkable that the optimized one-loop propagators turn out
to be in excellent agreement with the lattice data in the IR.
Notably, while the comparison with the data requires an
analytic continuation to the Euclidean space, the poles are
found in the complex plane. Thus, the one-loop propagators
in Eq. (20) are not just one of the many interpolation
formulas for the data, but they provide a very accurate
analytic function in the whole complex plane. The existence
of complex poles is one of the most important predictions of
the screened expansion. While a thermal mass and a finite
damping rate are expected by PT at high temperature, the
existence of finite intrinsic values at T ¼ 0 can be regarded
as a proof of confinement as first discussed by Stingl [33].
The quasi-gluon has a finite lifetime and can only exist as a
short-lived intermediate state. However, at finite temper-
ature, the quasi-gluons play an important role for determin-
ing the thermal properties of the hot plasma. Thus, a finite
temperature extension of the screened expansion is required
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for a full study of the dispersion relationswhich emerge from
the pole location.
At a finite temperature T > 0, Eqs. (16) and (17) are still

valid, but the one-loop graphs in Fig. 1 acquire a finite
thermal part which must be added to the vacuum (diverg-
ing) contribution at T ¼ 0. The thermal parts are finite and
no further renormalization is required. We only have to add
the thermal parts to the self-energies in Eq. (17).
Wewrite the Euclidean four-vector as pμ ¼ ðp;ωÞwhere

ω ¼ p4 ¼ −ip0, while the Lorentz four-vector was ðp0;pÞ.
In the finite-temperature formalism, ω ¼ ωn ¼ 2πnT and
the Euclidean integral is replaced by a sum over n and by a
three-dimensional integration,

Z
d4p
ð2πÞ4 → T

X
n

Z
d3p
ð2πÞ3 : ð21Þ

Since Lorentz invariance is obviously broken, we
introduce a transverse projector PT

μν, orthogonal to the
fourth Euclidean direction, and its longitudinal comple-
ment PL

μν, as defined in Eq. (A4), so that the gluon
polarization and propagator in Eqs. (16) and (17) can be
written in the Landau gauge, ξ ¼ 0, as

Πμνðp; TÞ ¼ ΠLðp; TÞPL
μνðpÞ þ ΠTðp; TÞPT

μνðpÞ;
Δμνðp; TÞ ¼ ΔLðp; TÞPL

μνðpÞ þ ΔTðp; TÞPT
μνðpÞ; ð22Þ

where the projected one-loop dressed functions are

ΔTðp; TÞ−1 ¼ p2 þ p2δZA − Ng2Πð1Þ
T ðp; TÞ;

ΔLðp; TÞ−1 ¼ p2 þ p2δZA − Ng2Πð1Þ
L ðp; TÞ: ð23Þ

and Πð1Þ
L;T are the one-loop projected polarizations, evalu-

ated by projection of the one-loop graphs in Fig 1, omitting
the tree graphs. As discussed in Appendix B, each graph

contributing to Πð1Þ
L;T can be split as

Πð1Þ
L;Tðp; TÞ ¼ ½Πð1Þ

L;T �Th þ ½Πð1Þ
L;T �V; ð24Þ

where the vacuum part ½Πð1Þ
L;T �V ¼ Πð1Þ

L;Tðp; 0Þ is the same
graph evaluated at T ¼ 0 and does not depend on T, while

the thermal part, ½Πð1Þ
L;T �Th, vanishes at T ¼ 0. Thus, we can

generalize Eqs. (19) and (20) and define dimensionless
functions

½πL;Tðp; TÞ�V ¼ −
�
16π2

3

� ½Πð1Þ
L;Tðp; TÞ�V

p2
¼ π1ðsÞ;

½πL;Tðp; TÞ�Th ¼ −
�
16π2

3

� ½Πð1Þ
L;Tðp; TÞ�Th

p2
; ð25Þ

so that the projections of the one-loop propagator can be
recast as

p2ΔL;Tðp; TÞ ¼
zπ

π1ðsÞ þ π0 þ ½πL;Tðp; TÞ�Th
: ð26Þ

In this form Eq. (26) is quite general since it does not
require any specific renormalization scheme to be defined.
All the scheme-dependent parameters are embedded in the
renormalization constant π0.
It is not obvious that the same scale μ and constant π0

which were optimal at T ¼ 0 are still optimal at finite T.
Indeed, they might depend on T and even take a different
value for the different projections. Moreover, the mass
parameter m, which was the only energy scale left after
optimization at T ¼ 0, might take a value mðTÞ which
depends on T. Thus we have three energy scales: the
optimal μðTÞ, the mass parameter mðTÞ and T itself. In
other words, according to Eq. (26), at any T and in units of
mð0Þ we have two free parameters, the ratio mðTÞ=mð0Þ
and the optimal renormalization constant π0ðTÞ. Having the
role of variational parameters, to be optimized, their best
values might be different for the two projections.
While at T ¼ 0 the optimal constant π0 was determined

from first principles [21], by requiring a minimal sensitivity
of the poles to any change of the gauge parameter, here we
have the less ambitious aim of exploring if a set of optimal
parameters does exist such that the screened expansion is
able to describe the lattice data with reasonable accuracy.
Thus, we work in the Landau gauge and, for each value of
T > 0, we fix the parameters by a fit of the available lattice
data in the Euclidean space.
At low temperature, as we said, we also explored the

alternative of maintaining the parameters fixed at their
optimal value for T ¼ 0, in order to give a general descrip-
tion at finite T from first principles, without any input
from the lattice and from the known phenomenology. Of
course, this approach can only be reliable ifT is very low and
the thermal effects are small. However, even extrapolating at
higher temperatures, the qualitative predictions turn out to
be in agreement with the data. Thus, the screened expansion
is able to capture themain features of gluon thermodynamics
at finite temperature. This is a very important aspect, since
our final aim will be to extract some dynamical properties of
the quasi-gluons, like the dispersion relations, which cannot
be measured on the lattice. Moreover, even qualitative
properties, like the existence of complex poles, are of central
interest for understanding the behavior of the gluon plasma
at high temperature and its phase transition.
In order to fulfill that program, once optimized by one

of the two alternatives discussed above, the gluon propa-
gator must be continued to the complex plane. This is a
straightforward step if the one-loop graphs are expressed as
analytic functions of the Euclidean momentum. A very
detailed but tedious analytical evaluation of the integrals is
reported in the Appendix. Most of the integrals were
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encountered in a study of the Curci-Ferrari model [38].
We basically use the same method for decomposing the
integrals. However, in the screened expansion there are also
some different graphs, namely the crossed graphs in Fig. 1,
with one insertion of the mass counterterm. Their explicit
expressions are obtained by a derivative in the Appendix.
Unfortunately, at finite T, not all the multidimensional

integrals can be evaluated analytically and an external one-
dimensional numerical integration cannot be avoided for
almost all the one-loop graphs. Thus, as shown in the
Appendix, all the graphs can be written as analytic
functions which are defined by integral representations.
The remaining integration can be carried out numerically
for any complex value of the external momentum, provided
that no singularity is encountered along the integration
path. Actually, in general, the analytic continuation of
integral functions is not trivial. As discussed in Ref. [39],
we must check that the external integration on the real axis
does not cross any singular point of the logarithmic
functions. Otherwise, a modified path must be chosen
before the analytic continuation can be undertaken. As
shown in Ref. [26], by inspection of the explicit expres-
sions, the existence of singular points on the integration
path can be ruled out in the present case. For instance,
denoting with Ω ¼ p0 and pμ ¼ ðΩ;pÞ the external
momentum in Minkowski space, the analytic continuation
of the thermal integral Iαβðy;−iΩÞ is defined by the integral
representation of Eq. (B30), where y is the external three
vector modulus, y ¼ jpj. We can continue the external
energy Ω to the complex plane if there are no singular
points on the positive real axis of the integration variable.
However, some branch cuts might be present, originating at
the singular branch point of the logarithmic function in
Eq. (B29) which reads

Lβðzα; y; qÞ ¼ log

�
z2α þ ϵ2yþq;β

z2α þ ϵ2y−q;β

�
; ð27Þ

where the complex variable zα is defined as zα ¼ iΩ�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ α2

p
and ϵ2y�q;β ¼ ðy� qÞ2 þ β2. Here α and β are

masses equal to 0 or m and q is the integration variable.
Assuming the existence of a branch point at q ¼ q0 on the
real axis, the latter must satisfy

�2q0y ¼ α2 − β2 − y2 þ Ω2 � 2Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ α2

q
; ð28Þ

where the � signs are independent of each other. Taking a
complex energy Ω ¼ ReΩþ iImΩ with ImΩ > 0, the
imaginary part of Eq. (28) gives

ReΩ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ α2

q
; ð29Þ

and substituting back in the real part we obtain

ϵ2y�q0;β
þ ðImΩÞ2 ¼ 0; ð30Þ

which is never satisfied unless ImΩ ¼ β ¼ 0. Thus, if Ω is
not real, the branch point q0 cannot be real and the integral
over q, on the real axis, defines an analytic function of Ω.
The same argument holds for the other thermal integrals in
Appendix B. Thus, we can safely continue the numerical
integrals from the Euclidean space (ReΩ ¼ 0, ImΩ > 0) to
the whole upper half-plane. Moreover, in the large wave-
length limit y → 0, there are no branch points at all because
the logarithmic function can be written as Lβðzα; y; qÞ ≈
log ½1þOðyÞ� and the argument of the log does not vanish
if y is small enough.
Having ruled out the existence of singularities along the

integration path, the poles of the gluon propagator and the
dispersion relations can be easily extracted numerically in
the complex plane by the integral representation of the
thermal integrals which are derived in Appendix B.

III. THE GLUON PROPAGATOR AT FINITE T

The longitudinal and transverse projections of the polari-
zation graphs entering in Eq. (26) are decomposed as the
sumofmore basic Euclidean integrals in AppendixA, for all
the one-loop graphs of Fig. 1. The explicit thermal parts
of those integrals are presented in Appendix B by integral
representations. For any given value of the external
three-momentum y ¼

ffiffiffiffiffi
p2

p
and Euclidean frequency

ω ¼ p4 ¼ 2πnT, the one-dimensional integrals are evalu-
ated numerically by a simple integration on the real axis and
the result is inserted in Eq. (26). We will first explore the
projected propagators for π0 and m fixed at their zero-
temperature values which were determined from first prin-
ciples in Ref. [21]. Then, we will show how their values can
be optimized by a comparison with the available lattice data.

A. Expansion optimized at T = 0

In the low-temperature limit, we assume that the optimal
renormalization constant π0ðTÞ and mass parameter mðTÞ
can be replaced by their zero-temperature values π0 ¼
−0.876 and mð0Þ ¼ m0 ¼ 656 MeV, as determined in
Ref. [21] by requiring a minimal sensitivity of the pole
structure to the gauge parameter. Strictly speaking, in the
Landau gauge, that condition fixes π0, while m0 is the only
energy scale left and is fixed in order to match the energy
units of the lattice data.
Let us first explore the behavior of the gluon propagators

as a function of T in the limit ω → 0, where p2 ¼ p2,
which is the most studied case on the lattice [11,12]. The
longitudinal and transverse propagators are shown in units
of m0 in Figs. 2 and 3, respectively. The former were
multiplicatively renormalized by requiring that

ΔL;Tðp; TÞjω¼0;jpj¼μ0
¼ 1

μ20
ð31Þ
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with μ0=m0 ¼ 6.098 (corresponding to μ0 ¼ 4 GeV for
m0 ¼ 656 MeV). We observe that, because of the chosen
optimization, in the limit T → 0 the longitudinal and
transverse propagators coincide and reproduce the lattice
data extremely well [18,19,21,22,24,25], so that the low-
temperature limit can be regarded as exact. For reference, in
Table I we report the physical equivalent of the adimen-
sional temperatures T=m0 used for the plots.
We observe a crossover, in Fig. 2, with the longitudinal

propagator which increases in the IR for increasing T below
Tc ≈ 0.15 ·m0, but sharply decreases above Tc. This non-
monotonic behavior is a well-known feature which has
been reported by several lattice calculations [11,12]. The
transverse propagator in Fig. 3, on the other hand, has a
monotonic behavior, decreasing for increasing T, again in
qualitative agreement with the known predictions of the
lattice. Actually, we cannot expect a quantitative agreement
at T ≈ Tc or larger values, because we are extrapolating the

optimization condition which was valid at T ¼ 0. Thus, the
correct qualitative behavior of the propagators at high
temperature is an encouraging result. A crude estimate
of Tc is found by using the zero-temperature value m0 ¼
656 MeV for restoring the energy units, yielding at the
crossover Tc ≈ 100 MeV. This value is quite smaller than
the known transition temperature Tc ≈ 270 MeV which is
measured on the lattice [10–12]. The difference might well
be the consequence of a sub-optimal choice of the renorm-
alization constant, but it could also arise from a change of
the mass parameter with temperature or from the more
general failure of PT at high temperature. Thus, it becomes
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TABLE I. Dimensionful values of the adimensional temper-
atures T=m0 plotted in Figs. 2 and 3, given m0 ¼ 656 MeV.

T=m0 0.05 0.08 0.12 0.15

T (MeV) 32.80 52.48 78.72 98.40

T=m0 0.18 0.21 0.25 0.30 0.36 0.44

T (MeV) 118.08 137.76 164.00 196.80 236.16 288.64
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relevant to explore whether a more quantitative agreement
might be obtained by a tuning of the free parameters.

B. Optimization by a fit of data at finite T

As the temperature increases, our previous assumption,
mðTÞ ¼ mð0Þ, π0ðTÞ ¼ π0ð0Þ, becomes less valid. In what
follows, we turn to fixing the optimal value of the
parameters at T ≠ 0 by a fit of the lattice data of
Ref. [11]. Since at nonzero temperatures the projections
ΔLðp; TÞ and ΔTðp; TÞ have different behaviors with
respect to a change in T, we may expect that the optimal
values of the parameters will differ depending on which of
the two components of the lattice propagator is used for the
fit. This is indeed what we found. Of course, since in the
subtracted Lagrangian of the present formalism the gluon
mass parameter m2ðTÞ is multiplied by the full four-
dimensional transverse projector tμνðpÞ, choosing different
mass parameters/scales for the two components of the
propagators is not allowed from first principles. This issue
will be addressed at the end of this section.

In Figs. 4 and 5 we show, respectively, the longitudinal
and transverse components of the gluon propagator at
ω ¼ 0 (multiplicatively renormalized at μ0 ¼ 4 GeV), as
functions of the three-dimensional momentum jpj ¼

ffiffiffiffiffi
p2

p
,

with mðTÞ and π0ðTÞ as reported in Table II. Such values
where obtained by a separate fit of the two components to
the lattice data of Ref. [11]; the mass parameters should be
understood to have an uncertainty of about �50 MeV.
As we can see, once the parameters are tuned to fit the

data, the screened expansion is able to reproduce the lattice
propagators quite accurately down to momenta of approx-
imately 0.5 GeV. Moreover, the longitudinal propagator
still shows the characteristic non-monotonic behavior with
respect to a change in the temperature, increasing at fixed
momentum below T ¼ Tc ≈ 270 MeV and decreasing
above T ¼ Tc.
Below jpj ≈ 0.5 GeV, the transverse propagator is still in

good agreement with the data, while the longitudinal one
shows significant deviations, especially at high temper-
atures. In particular, from a qualitative standpoint, the
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FIG. 4. Longitudinal propagator ΔL at ω ¼ 0 below (top) and
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The lattice data were taken from Ref. [11].
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longitudinal propagator shows an infrared turnover as a
function of momentum which has no counterpart in the
lattice data. From a numerical point of view, the difficulty
in obtaining a good match with the data is exemplified in
Fig. 6, where we display the longitudinal propagator for
T ¼ 458 MeV and different values of the mass parameter.1

When tuning the mass parameter mðTÞ, there is a tension
between the low- and intermediate-momentum behavior of
the propagator: at lower values of m, the propagator is
enhanced (suppressed) below (above) jpj ≈ 1 GeV, so that
achieving a good match at low momenta results in a loss of
accuracy at intermediate momenta. This behavior is
actually shared by both the components of the propagator
and at every T ≠ 0, albeit being less significant for the
transverse component and at low temperatures. In particu-
lar, already at T ¼ 458 MeV the optimal longitudinal
values of the mass parameter and of the renormalization
constant strongly depend on the choice of a lower cutoff
momentum for the fit to the lattice data; for this reason, we
do not report them.
As anticipated earlier, the optimal mass parameters (and

renormalization constants) needed to reproduce the lattice
data differ for the two components of the propagator.
In Fig. 7 we plot the parameters of Table II as functions
of the temperature. With the exception of the point
T¼260MeV, which is very close to the critical temper-
ature Tc ≈ 270 MeV, the optimal mass parameter mðTÞ is
a nonincreasing function of the temperature for both
the projections. When fitted from the transverse propagator,
mðTÞ shows plateaux both at small and at large
temperatures, decreasing from mðTÞ ¼ mð0Þ ¼ 656 to
mðTÞ ≈ 450 MeV. As for the longitudinal propagator,
except for T ¼ 260 MeV, mðTÞ is approximately linear,
with a behavior which is well described by the equation

mðTÞ ≈ 656 MeV − 1.307T ðlongÞ: ð32Þ

At T ¼ 260 MeV ≈ Tc, the optimal value of mðTÞ is
nearly equal for both the projections, namely

mðTÞ¼425–450MeV. As for the renormalization constant,
except for the point at T ¼ 290 MeV ≈ Tc, the optimal
π0ðTÞ increases with the temperature when fitted from the
transverse propagator. When optimized by the longitudinal
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FIG. 6. Longitudinal propagator ΔL for ω ¼ 0, T ¼ 458 MeV
and different values of the gluon mass parameter. The lattice data
were taken from Ref. [11].

TABLE II. Parameters for the curves in Figs. 4 and 5, obtained
by a separate fit of the lattice data for the longitudinal and
transverse gluon propagator of Ref. [11].

T (MeV) mðTÞ (MeV) (long., trans.) π0ðTÞ (long., trans.)
121 550, 656 −0.89, −0.84
194 425, 550 −1.10, −0.70
260 425, 450 −1.42, −0.42
290 275, 450 −0.97, −0.48
366 150, 450 −0.60, −0.20
458 //, 450 //, þ0.21
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FIG. 7. Mass parameters (top) and renormalization constants
(bottom) of Table II, as extracted from the lattice data of Ref. [11].

1For each value of the mass parameter, the renormalization
constant π0ðTÞ was optimized so as to obtain the best fit with the
data at large momenta.
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propagator, on the other hand, it shows a nonmonotonic
behavior, decreasing below Tc and increasing again
above Tc.
The large differences in the optimal values of mðTÞ and

π0ðTÞ obtained for the two projections make it clear that, in
the present formalism, it is not possible to quantitatively
recover both the longitudinal and the transverse component
of the gluon propagator by a unique choice of parameters.
Thus at T ≠ 0 the screened expansion appears to be
suboptimal as a “variational” ansatz. At least in part, this
could be expected on the basis of what is known about the
high-temperature, low-momentum behavior of the Yang-
Mills propagators: at large temperatures and low momenta,
the gluons’ thermal mass is best described by a momentum-
and direction-dependent hard thermal loop (HTL) term in
the Lagrangian, given by [40]

ΔLHTL ¼ −
1

2
m2

elðTÞTr
�
Fμν

Z
dΩ
4π

ŷνŷλ

ðŷ ·DÞ2 F
μ
λ

�
; ð33Þ

where m2
elðTÞ ¼ g2NT2=3, ŷ is a lightlike four-vector and

the integration is over the directions of ŷ. To first order
in the coupling, ΔLHTL generates two different thermal
masses for the three-dimensional projections ΔLðp; TÞ and
ΔTðp; TÞ of the gluon propagator. By not taking into
account this difference, the screened expansion lends itself
to a breakdown at large temperatures, which can be
partially avoided if the mass parameter and renormalization
constant are tuned to separately fit the two projections.
The simplest way of solving this issue in the context of

the screened expansion, i.e., without resorting to a HTL
resummation, would be to change the expansion point of
perturbation theory in such a way that the two three-
dimensional projections of the zero-order gluon propaga-
tor,ΔT

m andΔL
m, have different masses ab initio. This can be

achieved by redefining the kernel δΓμνðp;TÞ¼m2ðTÞtμνðpÞ
of the shift of the action δS as

δΓμνðp;TÞ → m2
TðTÞPT

μνðpÞ þm2
LðTÞPL

μνðpÞ; ð34Þ

where mTðTÞ and mLðTÞ are independent mass-parameter
functions for the two projections. With such a prescription,
in a general covariant gauge the zero-order Euclidean gluon
propagator Δμν

m ðp;TÞ would read

Δmðp;TÞμν → ΔT
mðp;TÞPT

μνðpÞ þ ΔL
mðp;TÞPL

μνðpÞþ

þ ξ

p2
lμνðpÞ; ð35Þ

where

ΔT;L
m ðp;TÞ ¼ 1

p2 þm2
T;LðTÞ

ð36Þ

are the sought-after zero-order propagators. Setting-up the
perturbation theory with independent mass functions for
the two projections would give us the freedom to optimize
the former separately from first principles, according
to the behavior of the respective dressed propagators.
Implementing the shift in Eq. (35), however, is a nontrivial
task: having different longitudinal and transverse masses
running in the loops breaks the Lorentz invariance even of
the simplest vacuum integrals and, more generally, requires
a complete recalculation of the gluon polarization.

IV. DISPERSION RELATIONS AT FINITE T

Being in possession of analytical expressions (modulo a
one-dimensional integration at finite T) for the Euclidean
gluon propagator allows us to analytically continue the latter
to thewhole complex plane so as to study its singularities. As
is well known, the location of the poles of the propagator
gives us information on the dispersion relations of the
gluonic quasiparticles: the energy εT;Lðp; TÞ and damping
rate γT;Lðp; TÞof the quasiparticles, as functions of the three-
dimensional momentum p and of the temperature T, are
obtained by solving the equation

Δ−1
T;Lð−iωT;Lðp; TÞ;p; TÞ ¼ 0; ð37Þ

whereω ¼ ε − iγ (modulo a factor of i) extends the real and
discrete Matsubara frequencies ωn ¼ 2πnT to the complex
plane and the subscripts T, L refer to the components of the
propagator. At nonzero temperatures and momenta, the
poles of the two components are expected to be found at
different locations, yielding two separate branches of the
dispersion relations.
The limit T → 0 of the dispersion relations was already

studied in the framework of the screened massive expan-
sion in Refs. [20–22]. In [21] we found that the zero-
temperature gluon propagator (whose longitudinal and
transverse three-dimensional components are constrained
to be equal by Lorentz simmetry) has two complex-
conjugate poles at −p2 ¼ m2

pole; ðm2
poleÞ�, where, setting

m0 ¼ 656 MeV by sharing the same units of the lattice,

m2
R ¼ 0.197 GeV2; m2

I ¼ 0.436 GeV2; ð38Þ

with m2
pole ¼ m2

R þ im2
I . In terms of εvacðpÞ ¼

limT→0 εT;Lðp; TÞ and γvacðpÞ ¼ limT→0 γT;Lðp; TÞ—and
singling out one of the poles—, this translates into the
dispersion relations

εvacðpÞ ¼
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

RÞ2 þ ðm2
I Þ2

q
þ 1

2
ðp2 þm2

RÞ
�
1=2

;

γvacðpÞ ¼
�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

RÞ2 þ ðm2
I Þ2

q
−
1

2
ðp2 þm2

RÞ
�
1=2

:

ð39Þ
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Clearly, m2
R ¼ ðε2vac − γ2vacÞjp¼0 and m2

I ¼ 2εvacγvacjp¼0,
where

εvacð0Þ ¼ 581 MeV; γvacð0Þ ¼ 375 MeV: ð40Þ

At the other end of the spectrum, as jpj → ∞, the gluon’s
vacuum dispersion relations reduce to those of a massless
particle, εvacðpÞ → jpj, γvacðpÞ → 0.
Under the assumption that the optimal masses mðTÞ and

renormalization constants π0ðTÞ reported in the previous
section only depend on the temperature, and not on the
Matsubara frequency ωn, the finite-T dispersion relations of
the gluon quasiparticles can be easily extracted from the

screened expansion’s gluon propagator, making use of said
parameters (cf. Table II). We remark that, since at low
momenta the longitudinal projection was not found to be in
good agreement with the lattice data for any value of the
parameters, the longitudinal dispersion relations are
expected to be reliable only at sufficiently high momenta
(say above jpj ≈ 0.5–0.7 GeV).
In Figs. 8 and 9 we plot the energy εT;Lðp; TÞ and

the damping rate γT;Lðp; TÞ of the transverse and longi-
tudinal gluons at fixed T, as functions of the momentum
jpj. As we can see, below the critical temperature Tc ≈
270 MeV both the transverse energy and the transverse
damping rate (Fig. 8) are suppressed with respect to their
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FIG. 8. Transverse dispersion relations for the gluon quasiparticles. The broken lines are the vacuum dispersion relations, common to
both projections and given by Eq. (39). The gluon mass parameters mðTÞ and renormalization constants π0ðTÞ used for the plots are
reported in Table II.
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zero-temperature (vacuum) limit, with the effect being
more pronounced for εT than for γT. Above Tc this behavior
is reversed; the transverse energy starts to approach again
its vacuum limit, while the damping rate grows larger than
it. The longitudinal branch (Fig. 9) shows a more signifi-
cant suppression in both the energy and the damping rate
below Tc, with γL becoming quite small at high momenta
around the critical temperature. At higher temperatures
both εL and γL start to approach back their vacuum limit.2

In the limit p → 0 and for any nonzero ω, the
longitudinal and the transverse projection of the gluon
propagator are known to collapse to a single temperature-
dependent function; as a consequence, the corresponding
branches of the dispersion relations share the same zero-
momentum limit. The p ¼ 0 poles of the gluon propagator
are located at −iðε0ðTÞ − iγ0ðTÞÞ, where

ε0ðTÞ¼ lim
jpj→0

εT;Lðp;TÞ; γ0ðTÞ¼ lim
jpj→0

γT;Lðp;TÞ ð41Þ

are, respectively, the mass and the (zero-momentum)
damping rate of the gluon quasiparticles. With regards to
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FIG. 9. Longitudinal dispersion relations for the gluon quasiparticles. The broken lines are the vacuum dispersion relations, common to
both projections and given byEq. (39). The gluonmass parametersmðTÞ and renormalization constants π0ðTÞ used for the plots are reported
in Table II. Except for vanishingly small temperatures, these dispersion relations are not expected to be reliable below jpj ≈ 500–700 MeV.

2Here we are disregarding the low-momentum behavior of the
longitudinal dispersion relations due to their lack of reliability, as
previously discussed.
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such a constraint, the optimized framework of Sec. III B is
inconsistent: using different mass parameters for the
longitudinal and the transverse projections of the propa-
gator causes the two branches of the dispersion relations to
have unequal p → 0 limits. All the same, as previously
discussed, the low-momentum limit of the longitudinal
gluon propagator was found to be quantitatively unreliable
at temperatures which are not vanishingly small. It follows
that the p → 0 limit of the longitudinal dispersion relations
cannot be trusted regardless of the inconsistency. Since
only the screened expansion’s transverse propagator, with
the parameters in Table II, was found to reproduce the
lattice data at low momenta, in what follows we will make
use of the transverse dispersion relations to study the
behavior of ε0ðTÞ and γ0ðTÞ. From first principles, it is
understood that a good description of the long-wavelength
longitudinal gluon excitations must yield the same results.
In Fig. 10 we display the mass and the zero-momentum

damping rate of the gluon quasiparticles as functions of the
temperature. Across the critical temperature, both of them
show a characteristic behavior, decreasing below Tc and
increasing again in a linear fashion above Tc. The mass
decreases from ε0ð0Þ¼εvacð0Þ¼581 to ε0ðTcÞ≈450MeV,
whereas the zero-momentum damping rate slightly
decreases from γ0ð0Þ ¼ γvacð0Þ ¼ 375 to about 350 MeV
around Tc. The increase in the damping rate actually seems
to start somewhat below the critical temperature (see the
data point T ¼ 260 MeV in Fig. 10); we could not
determine whether this is a physically meaningful behavior
or an artifact due to uncertainties in the parameters of
Table II.
The behavior of the gluon mass in Fig. 10 confirms the

picture of a confined gluon—whose mass is dynamically
generated through the strong interactions themselves like in
the T → 0 limit—which becomes deconfined above the
critical temperature Tc ≈ 270 MeV. In the deconfined
phase, the mass of the gluon is thermal in nature and
increases linearly with the temperature. The same qualita-
tive behavior was observed in [26], where the gluon mass
and zero-momentum damping rate were studied in the
screened expansion at finite T using the same scheme of
Sec. III A, i.e., taking temperature-independent values for
both the gluon mass parameter m and the renormalization
constant π0.

V. DISCUSSION

The comparison with the available lattice data showed
that, overall, the screened expansion gives a correct
qualitative description of the gluon propagator at finite
T. The agreement improves if the renormalization constants
are tuned at each value of the temperature. At high
temperatures and deep in the IR, the failure to reproduce
the longitudinal projection might arise from the combined
effect of several issues like the need of some HTL
resummation, a poor optimization and the inadequacy of

the single-mass splitting of the action at a finite temper-
ature. Indeed, the lattice data seem to suggest that a two-
mass scheme should be introduced from the beginning for
extending the screened expansion at a finite temperature.
With the exception of an infrared turnover in the

longitudinal propagator, which has no counterpart in the
lattice data, the qualitative behavior of the propagators
seems to be correct and quite robust, irrespective of the
optimization scheme. The pole trajectories can be deter-
mined in the complex plane, yielding valuable predictions
which cannot be extracted from the lattice data in the
Euclidean space. We have reported in some detail the
dispersion relations of the quasi-gluon for several temper-
atures across the deconfinement transition.
An important feature which emerges from our study is a

crossover at the deconfinement transition. The energy of
the quasi-particle is suppressed by temperature in the
confined phase. On the other hand, above the critical
temperature, the behavior is reversed and the energy
increases as a function of temperature. The same effect
can be observed for the physical mass, defined as the long-
wavelength limit ε0ðTÞ of the pole’s real part, as shown in
Fig. 10. In the confined phase, the mass decreases like an
order parameter being suppressed by the temperature. This
behavior is consistent with that of a dynamical mass which
is related to a condensate, the latter being expected to
vanish at the transition temperature. However, at finite
temperature the quasi-gluon is also expected to acquire a
thermal mass which increases linearly, like any other
quasiparticle. The two effects might coexist across the
transition, yielding a crossover rather than a sharp tran-
sition. In the low-temperature limit the dynamical nature of
the mass dominates, while above the deconfinement
transition the mass becomes a pure thermal mass. Thus,
we argue that in the low-temperature phase the mass
suppression might be a signature of the dynamical nature
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FIG. 10. Mass ε0ðTÞ and zero-momentum damping rate γ0ðTÞ
of the gluon quasiparticles, as functions of the temperature. The
parameters used for the plot are reported in Table II under the
transverse denomination. See text for further details.
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of the gluon mass. On the other hand, as discussed in
Ref. [26], the existence of an intrinsic damping rate, which
saturates at a finite value at T ¼ 0, is a confirmation of the
quasi-gluon scenario laid out by Stingl [33]. The massive
gluon also has a very short finite lifetime and is canceled
from the asymptotic states [26], suggesting that the gluon
quasiparticles of the interacting vacuum can only travel the
short distance of about a Fermi and can only exist as
intermediate states at the origin of a gluon-jet event.
The issue of the gauge invariance of the poles at T ≠ 0

within the framework of the screened expansion remains, to
date, unexplored. One possible development of our study at
finite temperature would be to apply the guiding principles
and methods of Ref. [21] in order to monitor whether the
Nielsen identities can be satisfied in a general covariant
gauge, while fixing the values of the free parameters of the
formalism from first principles. A thorough analysis of the
matter would presumably require the explicit implementa-
tion of specific resummation schemes, as is already the case
within the framework of ordinary thermal perturbation
theory. Nonetheless, the success of the screened expansion
in reproducing the lattice data—albeit subject to a fit to the
data themselves and with the limitations discussed in the
previous sections—leads us to believe that a two-mass shift
of the expansion point of the thermal perturbative series
may prove to be a robust enough alternative scheme already
at one loop. Such a reformulation of the screened expansion
requires a full recalculation of both the thermal and vacuum
integrals involved in the definition of the propagators, and
will be left to future studies.
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APPENDIX A: ONE-LOOP GRAPHS

1. Notation

The Euclidean four-vector pμ is defined as

pμ ¼ ðp;ωÞ; ðA1Þ

where ω ¼ p4 ¼ −ip0 and the Lorentz four-vector is
ðp0;pÞ.
In the finite temperature formalism, ω ¼ ωn ¼ 2πnT

and the Euclidean integral is replaced by a sum over n and
by a three-dimensional integration

Z
d4p
ð2πÞ4 →

Z
p
¼ T

X
n

Z
d3p
ð2πÞ3 : ðA2Þ

The generic (massive) propagator GmðpÞ is

GmðpÞ ¼
1

p2 þm2
¼ 1

ω2
n þ p2 þm2

: ðA3Þ

At finite temperature, it is useful to introduce the
following orthogonal projectors

PT
μνðpÞ ¼ ð1 − δμ;4Þð1 − δν;4Þ

�
δμν −

pμpν

p2

�
;

PL
μνðpÞ ¼ tμνðpÞ − PT

μνðpÞ; ðA4Þ

beside the Lorentz projectors

tμνðpÞ ¼ δμν −
pμpν

p2
;

lμνðpÞ ¼
pμpν

p2
: ðA5Þ

The trace of the projectors is

PT
μμ ¼ 2; PL

μμ ¼ 1: ðA6Þ

The dressed Euclidean propagator of the gluon can be
written as Δab

μνðpÞ ¼ δabΔμνðpÞ where

Δ−1
μν ðpÞ¼GmðpÞ−1tμνðpÞ−Ng2ΠμνðpÞþ

p2

ξ
lμνðpÞ ðA7Þ

and the gluon polarization is Πab
μνðpÞ ¼ Ng2δabΠμνðpÞ.

Since ΠμνðpÞ is transverse, i.e., pμΠμνðpÞ ¼ 0, in the
Landau gauge (ξ → 0) the dressed propagator is also
transverse. We introduce the projected polarizations

ΠTðpÞ ¼
1

2
PT
μνðpÞΠμνðpÞ;

ΠLðpÞ ¼ PL
μνðpÞΠμνðpÞ; ðA8Þ

so that the total polarization reads

ΠμνðpÞ ¼ ΠLðpÞPL
μνðpÞ þ ΠTðpÞPT

μνðpÞ ðA9Þ

and the dressed propagator can be written as

ΔμνðpÞ ¼ ΔLðpÞPL
μνðpÞ þ ΔTðpÞPT

μνðpÞ

þ ξ

p2
lμνðpÞ; ðA10Þ

where the projected parts are

Δ−1
T ðpÞ ¼ GmðpÞ−1 − Ng2ΠTðpÞ;

Δ−1
L ðpÞ ¼ GmðpÞ−1 − Ng2ΠLðpÞ: ðA11Þ

In the Landau gauge, ξ → 0, the propagator is transverse
and its components are determined by the projected polar-
izations ΠTðpÞ and ΠLðpÞ. The graphs are evaluated in the
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Landau gauge, using the (transverse) massive free propa-
gator ½GmðpÞtμνðpÞ� in the internal gluon lines.
The dressed Euclidean propagator of the ghost can be

written as GabðpÞ ¼ δabGðpÞ, where

G−1ðpÞ ¼ −G−1
0 ðpÞ − Ng2ΣðpÞ ðA12Þ

and the ghost self energy is ΣabðpÞ ¼ δabΣðpÞ. In the
graphs, the massless free propagator −G0ðpÞ is used in the
internal ghost lines.
All the uncrossed one-loop graphs can be decoupled by

the method of Ref. [38] and written in terms of the set of
integrals

Jα ¼
Z
k
GαðkÞ;

IαβμνðpÞ ¼
Z
k
GαðkÞGβðp − kÞkμkν;

IαβðpÞ ¼
Z
k
GαðkÞGβðp − kÞ; ðA13Þ

together with their projections

IαβT ðpÞ ¼ 1

2
PT
μνðpÞIαβμνðpÞ;

IαβL ðpÞ ¼ PL
μνðpÞIαβμνðpÞ;

IαβTp ¼ 1

2
PT
μνðpÞIαβμνð0Þ;

IαβLp ¼ PL
μνðpÞIαβμνð0Þ: ðA14Þ

Explicit expressions are reported in Appendix B.
By exchanging kμ and pμ − kμ in the integrals, it is

easy to show that IαβðpÞ ¼ IβαðpÞ, while in general
IαβμνðpÞ ≠ IβαμνðpÞ. However, since pμPL;T

μν ðpÞ ¼ 0,

ðpμ − kμÞPL;T
μν ðpÞðpν − kνÞ ¼ kμkνPL;T

μν ðpÞ ðA15Þ

and the projected integrals turn out to be symmetric,
IαβL;T ¼ IβαL;T .
We note that IαβLp and IαβTp might depend on p because of

the explicit dependence in the projectors. For instance, let
us consider any constant integral

Iμν ¼
Z
k
kμkνfðkÞ ¼ δμνIμμ; ðA16Þ

which does not depend on the external momentum p. Let us
denote by IL;0, IT;0, the nonzero components that can be
written, taking kμ ¼ ðk;ωnÞ, as

I44 ¼ IL;0 ¼
Z
k
ω2
nfðk;ωnÞ;

Iii ¼ IT;0 ¼
1

3

Z
k
k2fðk;ωnÞ; i ¼ 1; 2; 3: ðA17Þ

In fact, the explicit projections IL;p, IT;p can be defined and
evaluated as in Eqs. (A14):

IT;p ¼ 1

2
PT
μνðpÞIμν ¼ IT;0;

IL;p ¼ PL
μνðpÞIμν ¼ ðIL;0 − IT;0Þ

p2

p2 þ ω2
þ IT;0: ðA18Þ

While IT;p ¼ IT;0 and does not depend on p, the longi-
tudinal projection depends on p and has the different limits

lim
p→0

IL;p ¼ IT;0; lim
ω→0

IL;p ¼ IL;0: ðA19Þ

More generally, for the integral IαβμνðpÞ, which has an
explicit dependence on p, the projections have the follow-
ing limits:

IαβL;0 ¼ lim
p→0

h
lim
ω→0

IαβL ðpÞ
i
; IαβT;0 ¼ lim

ω→0

h
lim
p→0

IαβL ðpÞ
i
;

IαβT;0 ¼ lim
p→0

h
lim
ω→0

IαβT ðpÞ
i
¼ lim

ω→0

h
lim
p→0

IαβT ðpÞ
i
; ðA20Þ

they are related to the projections of the limit Iαβμνð0Þ, as
defined in Eqs. (A14),

IαβT;p ¼ IαβT;0;

IαβL;p ¼ ðIαβL;0 − IαβT;0Þ
p2

p2 þ ω2
þ IαβT;0; ðA21Þ

where

IαβL;0 ¼ Iαβ44ð0Þ; IαβT;0 ¼ Iαβii ð0Þ: ðA22Þ

The limits in Eq. (A20) agree with the physical requirement
that transverse and longitudinal projections must coincide
for anyω in the limit p → 0, while they are different for any
finite p in the limit ω → 0.
Each crossed graph Π×, containing one insertion of the

mass counterterm, can be obtained by the corresponding
uncrossed graph Π by a simple derivative

Π× ¼ −m2
∂

∂m2
Π: ðA23Þ

Their explicit calculation requires the definition of a new
set of integrals ∂Iαβ, ∂IαβL;T , ∂Jm, ∂2Jm:
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∂IαβðpÞ ¼ ∂
∂α2 I

αβðpÞ;

∂IαβL;TðpÞ ¼ ∂
∂α2 I

αβ
L;TðpÞ;

∂Jm ¼ ∂
∂m2

Jm;

∂2Jm ¼ ∂2

∂ðm2Þ2 Jm: ðA24Þ

We note that the second argument (β) is kept fixed in the
derivative, so that ∂Iαβ ≠ ∂Iβα. When α ¼ β the derivative
must be taken twice, so that for instance

∂
∂m2

Imm ¼
� ∂
∂α2 I

αβ þ ∂
∂β2 I

αβ

�
α¼β¼m

¼ 2∂Imm: ðA25Þ

Not all the integrals are independent. For instance, it can
be easily shown that

Iαβð0Þ ¼ 1

β2 − α2
½Jα − Jβ�;

∂Jm ¼ −Immð0Þ;

∂Iαβð0Þ ¼ 1

β2 − α2
½Iαβð0Þ − Iααð0Þ�: ðA26Þ

It is useful to introduce the integrals JL;Tm which follow by
setting fðkÞ ¼ GmðkÞ in Eq. (A17),

JLm ¼
Z
k
ω2
nGmðk;ωnÞ;

JTm ¼ 1

3

Z
k
k2Gmðk;ωnÞ; ðA27Þ

so that Eqs. (A26) can be extended to the projected
integrals,

IαβL;T0 ¼
1

β2 − α2
½JL;Tα − JL;Tβ �;

∂JL;Tm ¼ −Imm
L;T0;

∂IαβL;T0 ¼ 1

β2 − α2
½IαβL;T0 − IααL;T0�; ðA28Þ

and, by Eq. (A21), the projections IαβL;Tp can be expressed in

terms of the constant integrals JL;Tm .

2. Graph 1b—(tadpole)

Setting d ¼ 4, Eq. (31) of Ref. [41] reads

Πð1bÞ
μν ðpÞ ¼ −

Z
k
½3δμν − tμνðkÞ�GmðkÞ; ðA29Þ

yielding

Πð1bÞ
μν ¼ −½2δμνJm þ Im0

μν ð0Þ�; ðA30Þ

where the integrals Jα, I
αβ
μνðpÞ were defined in Eqs. (A13)

and their explicit expressions are reported in Appendix B.
The projected polarization of graph ð1bÞ is

Πð1bÞ
T ðpÞ ¼ −½2Jm þ Im0

Tp�;
Πð1bÞ

L ðpÞ ¼ −½2Jm þ Im0
Lp�: ðA31Þ

The vacuum contribution can be extracted by evaluating the
integrals in the limit T → 0 where Im0

μν ð0Þ → 1
4
δμνJm so that

Πð1bÞ
μν ðT ¼ 0Þ ¼ −

9

4
δμνJm ðA32Þ

in agreement with the general result of Ref. [19] for d ¼ 4.

3. Graph 2b—(gluon loop)

The general explicit expression for the graph ð2bÞ has
been reported in Ref. [41], for a generic dimension d and a
generic free-particle propagator. In the Landau gauge, the
explicit expression for d ¼ 4 can be written as (see also
Ref. [38])

ΠμνðpÞ ¼
X4
i¼1

Πμν
i ðpÞ ðA33Þ

where, denoting q ¼ p − k,

Πμν
1 ðpÞ ¼ 1

2

Z
k
ðq − kÞμðq − kÞν½tλρðqÞtρλðkÞ�GmðkÞGmðqÞ;

Πμν
2 ðpÞ ¼

Z
k
tμνðkÞ½ðpþ kÞλtλρðqÞðpþ kÞρ�GmðkÞGmðqÞ;

Πμν
3 ðpÞ ¼ −

Z
k
½tμλðkÞðpþ qÞλ�½tνρðqÞðpþ kÞρ�

×GmðkÞGmðqÞ;

Πμν
4 ðpÞ ¼

Z
k
ðq − kÞμ½tνλðkÞtλρðqÞðpþ kÞρ�GmðkÞGmðqÞ

þ μ ↔ ν: ðA34Þ

All integrals can be evaluated by the method of Ref. [38]
and written in terms of the integrals in Eq. (A13).
In some detail,

Πμν
1 ðpÞ ¼ 1

2

Z
k
ðq− kÞμðq− kÞν

�
2þ ðk · qÞ2

k2q2

�
GmðkÞGmðqÞ;

ðA35Þ

and making use of the identities
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2k · q ¼ ðkþ qÞ2 − k2 − q2 ¼ p2 −GαðkÞ−1 −GβðqÞ−1 þ α2 þ β2;

GmðkÞ
k2

¼ G0ðkÞGmðkÞ ¼
1

m2
½G0ðkÞ −GmðkÞ�;

ðq − kÞμðq − kÞν ¼ 2ðqμqν þ kμkνÞ − pμpν ðA36Þ

we can write

ðk · qÞ2
k2q2

GmðkÞGmðqÞ ¼
1

4m4
½ðp2 þ 2m2Þ2GmðkÞGmðqÞ þ p4G0ðkÞG0ðqÞþ

− ðp2 þm2Þ2ðG0ðkÞGmðqÞ þ GmðkÞG0ðqÞÞ� þ
1

4
ðGmðkÞG0ðkÞ þGmðqÞG0ðqÞÞ; ðA37Þ

Z
k
ðq−kÞμðq−kÞν

ðk ·qÞ2
k2q2

GmðkÞGmðqÞ¼
1

4m4
½ðp2þ2m2Þ2ð4Imm

μν ðpÞ−pμpνImmðpÞÞþ

þp4ð4I00μνðpÞ−pμpνI00ðpÞÞ−2ðp2þm2Þ2ð2½Im0
μν ðpÞþ I0mμν ðpÞ�−pμpνIm0ðpÞÞ�þ

þ2Im0
μν ð0Þþ

1

2
pμpνIm0ð0Þ; ðA38Þ

Z
k
ðq − kÞμðq − kÞνGmðkÞGmðqÞ ¼ 4Imm

μν ðpÞ − pμpνImmðpÞ ðA39Þ

so that Eq. (A35) reads

Π1μνðpÞ ¼
p4

2m4
I00μνðpÞ þ

�
4þ ðp2 þ 2m2Þ2

2m4

�
Imm
μν ðpÞ − ðp2 þm2Þ2

2m4
ðIm0

μν ðpÞ þ I0mμν ðpÞÞ þ Im0
μν ð0Þþ

− pμpν

�
p4

8m4
I00ðpÞ þ

�
1þ ðp2 þ 2m2Þ2

8m4

�
ImmðpÞ − ðp2 þm2Þ2

4m4
Im0ðpÞ − 1

4
Im0ð0Þ

�
: ðA40Þ

The second polarization term in Eq. (A34) reads

Π2μνðpÞ ¼ 4

Z
k

h
δμν −

kμkν
k2

i�
p2 −

ðp · qÞ2
q2

�
GmðkÞGmðqÞ

¼ 4

Z
k
½δμνp2 − p2kμkνG0ðkÞ − δμνðp · qÞ2G0ðqÞ þ ðp · qÞ2kμkνG0ðkÞG0ðqÞ�GmðkÞGmðqÞ

¼ 4
h
δμνp2ImmðpÞ − p2

m2
ðI0mμν ðpÞ − Imm

μν ðpÞÞ
i
þ Π2aμνðpÞ þ Π2bμνðpÞ; ðA41Þ

where

Π2aμνðpÞ ¼ −4δμν
Z
k
GmðqÞGmðkÞG0ðkÞðp · kÞ2 ¼ −

4

m2
δμν

Z
k
GmðqÞðG0ðkÞ − GmðkÞÞðp · kÞ2;

Π2bμνðpÞ ¼ 4

Z
k
GmðkÞGmðqÞG0ðkÞG0ðqÞðp · qÞ2kμkν: ðA42Þ

Using the identities

2ðp ·kÞ¼p2þβ2−α2þG−1
α ðkÞ−G−1

β ðqÞ;
2ðp ·kÞGβðqÞGαðkÞ¼ ðp2þβ2−α2ÞGβðqÞGαðkÞþGβðqÞ−GαðkÞ;
4ðp ·kÞ2GβðqÞGαðkÞ¼ ðp2þβ2−α2Þ2GβðqÞGαðkÞþðp2þβ2−α2ÞðGβðqÞ−GαðkÞÞþ2ðp ·kÞðGβðqÞ−GαðkÞÞ; ðA43Þ

which hold for any pair k, q satisfying kþ q ¼ p, we obtain for ðα; βÞ ¼ ð0; mÞ and for ðα; βÞ ¼ ðm;mÞ, respectively,
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4ðp · kÞ2GmðqÞG0ðkÞ ¼ ðp2 þm2Þ2GmðqÞG0ðkÞ þ ðp2 þm2ÞðGmðqÞ −G0ðkÞÞ þ 2ðp · kÞðGmðqÞ −G0ðkÞÞ;
4ðp · kÞ2GmðqÞGmðkÞ ¼ p4GmðqÞGmðkÞ þ p2ðGmðqÞ − GmðkÞÞ þ 2ðp · kÞðGmðqÞ − GmðkÞÞ; ðA44Þ

so that the term Π2a can be written as

Π2aμν ¼ −
δμν
m2

½ðp2 þm2Þ2I0mðpÞ − p4ImmðpÞ −m2ðp2 þm2ÞI0mð0Þ�: ðA45Þ

Using the second of Eqs. (A36), the term Π2b can be written as

Π2bμνðpÞ ¼
4

m4

Z
k
ðp · qÞ2kμkνðG0ðkÞG0ðqÞ −G0ðkÞGmðqÞ − GmðkÞG0ðqÞ þGmðkÞGmðqÞÞ; ðA46Þ

while reversing k and q in Eq. (A43) we obtain, for α and β that take the values 0 and m,

4ðp · qÞ2G0ðkÞG0ðqÞ ¼ p4G0ðkÞG0ðqÞ þ 3p2ðG0ðkÞ −G0ðqÞÞ − 2p · kðG0ðkÞ −G0ðqÞÞ;
4ðp · qÞ2G0ðkÞGmðqÞ ¼ ðp2 −m2Þ2G0ðkÞGmðqÞ þ ð3p2 −m2ÞðG0ðkÞ −GmðqÞÞ − 2p · kðG0ðkÞ −GmðqÞÞ;
4ðp · qÞ2GmðkÞG0ðqÞ ¼ ðp2 þm2Þ2GmðkÞG0ðqÞ þ ð3p2 þm2ÞðGmðkÞ −G0ðqÞÞ − 2p · kðGmðkÞ −G0ðqÞÞ;
4ðp · qÞ2GmðkÞGmðqÞ ¼ p4GmðkÞGmðqÞ þ 3p2ðGmðkÞ −GmðqÞÞ − 2p · kðGmðkÞ −GmðqÞÞ; ðA47Þ

yielding for Π2b

Π2bμνðpÞ ¼
1

m4
½p4ðI00μνðpÞ þ Imm

μν ðpÞÞ − ðp2 −m2Þ2I0mμν ðpÞ − ðp2 þm2Þ2Im0
μν ðpÞ� þ 2I0mμν ð0Þ þ pμpνI0mð0Þ: ðA48Þ

Adding Eqs. (A45) and (A48) in Eq. (A41), the second polarization term in Eq. (A34) is

Π2μνðpÞ ¼ δμν

�
p2

m2
ðp2 þ 4m2ÞImmðpÞ − ðp2 þm2Þ2

m2
I0mðpÞ þ ðp2 þm2ÞI0mð0Þ

�
þ pμpνI0mð0Þþ

þ p4

m4
I00μνðpÞ þ

p2

m4
ðp2 þ 4m2ÞImm

μν ðpÞ − ðp2 þm2Þ2
m4

ðIm0
μν ðpÞ þ I0mμν ðpÞÞ þ 2I0mμν ð0Þ: ðA49Þ

The third polarization term in Eq. (A34) can be decomposed by observing that

½tμλðkÞðpþ qÞλ� ¼ 2

�
pμ −

p · k
k2

kμ
�
; ½tνρðqÞðpþ kÞρ� ¼ 2

�
pν −

p · q
q2

qν
�
; ðA50Þ

so that, changing the integration variable from k to q in the qνpμ term, Π3 reads

Π3μνðpÞ ¼ −4
Z
k

�
pμpν −

p · k
k2

ðkμpν þ kνpμÞ þ
ðp · kÞðp · qÞ

k2q2
kμqν

�
GmðkÞGmðqÞ

¼ −4pμpνImmðpÞ þ Π3aμνðpÞ þ Π3bμνðpÞ; ðA51Þ

where

Π3aμνðpÞ ¼ 4

Z
k
ðp · kÞðkμpν þ kνpμÞG0ðkÞGmðkÞGmðqÞ;

Π3bμνðpÞ ¼ −4
Z
k
ðp · kÞðp · qÞkμqνG0ðkÞG0ðqÞGmðkÞGmðqÞ: ðA52Þ

The first integral can be decomposed by using the identity

ðkμpν þ kνpμÞ ¼ pμpν þ kμkν − qμqν ðA53Þ
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and observing that, by the second of Eqs. (A36) and the second of Eqs. (A43),

4ðp · kÞG0ðkÞGmðkÞGmðqÞ ¼
4ðp · kÞ
m2

½G0ðkÞGmðqÞ −GmðkÞGmðqÞ�

¼ 2

m2
½ðp2 þm2ÞG0ðkÞGmðqÞ − p2GmðkÞGmðqÞ −m2G0ðkÞGmðkÞ�; ðA54Þ

yielding

Π3aμνðpÞ ¼
2

m2
pμpν½ðp2 þm2ÞI0mðpÞ − p2ImmðpÞ� þ 2

m2
ðp2 þm2ÞðI0mμν ðpÞ − Im0

μν ðpÞÞ: ðA55Þ

In the second integral Π3b we can use the identity

kμqν ¼
�
1

2
pμpν − kμkν

�
þ 1

2
ðkμ − qμÞpν; ðA56Þ

where the last term can be dropped because it is antisymmetric in the exchange of k and q and its contribution to the integral
is zero. Taking the second of Eqs. (A43) with α ¼ β ¼ m and the same equation with α ¼ β ¼ 0 and k,q interchanged, their
product can be written as

4ðp ·kÞðp ·qÞGmðkÞGmðqÞG0ðkÞG0ðqÞ¼
p4

m4
½G0ðkÞG0ðqÞþGmðkÞGmðqÞ�þ

þ
�
1−

p4

m4

�
½G0ðkÞGmðqÞþGmðkÞG0ðqÞ�−G0ðqÞGmðqÞ−G0ðkÞGmðkÞ; ðA57Þ

where the second of Eqs. (A36) has been used for decomposing the products of more than two G functions. Then, the
integral can be written

Π3bμνðpÞ ¼
p4

m4
ðI00μνðpÞ þ Imm

μν ðpÞÞ þ
�
1 −

p4

m4

�
ðI0mμν ðpÞ þ Im0

μν ðpÞÞþ

− pμpν

�
p4

2m4
ðI00ðpÞ þ ImmðpÞÞ −

�
p4

m4
− 1

�
I0mðpÞ

�
− 2I0mμν ð0Þ: ðA58Þ

Adding Eqs. (A 3) and (A58) in Eq. (A51), the third polarization term in Eq. (A34) is

Π3μνðpÞ ¼
p4

m4
ðI00μνðpÞ þ Imm

μν ðpÞÞ þ 3m4 þ 2m2p2 − p4

m4
I0mμν ðpÞ −

ðp2 þm2Þ2
m4

Im0
μν ðpÞ − 2I0mμν ð0Þþ

− pμpν

�
p4

2m4
I00ðpÞ þ p4 þ 4m2p2 þ 8m4

2m4
ImmðpÞ − ðp2 þm2Þ2

m4
I0mðpÞ

�
: ðA59Þ

The last polarization term in Eq. (A34) can be decomposed by observing that

½tνλðkÞtλρðqÞðpþ kÞρ� ¼ 2
ðk · qÞ
q2

�ðk · pÞ
k2

kν − pν

�
: ðA60Þ

Then, recalling that qμ ¼ pμ − kμ, the integral reads

Π4μνðpÞ ¼ 2

Z
k

�ðk · pÞ
k2

ðpμkν − 2kμkνÞ þ ð2kμpν − pμpνÞ
�
ðk · qÞG0ðqÞGmðkÞGmðqÞ þ μ ↔ ν: ðA61Þ

Using the identity

pμkν þ pνkμ ¼ pμpν þ kμkν − qμqν ðA62Þ
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the two pieces can be added together yielding

Π4μνðpÞ ¼ 2

Z
k

�ðk · pÞ
k2

ðpμpν − 3kμkν − qμqνÞ þ 2ðkμkν − qμqνÞ
�
ðk · qÞG0ðqÞGmðkÞGmðqÞ: ðA63Þ

The product of three G functions can be decomposed by the second of Eqs. (A36) and the two arising terms can be written
by the first of Eqs. (A36), with ðα; βÞ ¼ ðm; 0Þ and ðα; βÞ ¼ ðm;mÞ, respectively,

2ðk · qÞ½G0ðqÞGmðqÞ�GmðkÞ ¼
p2 þm2

m2
GmðkÞG0ðqÞ −

ðp2 þ 2m2Þ
m2

GmðkÞGmðqÞ −
1

m2
ðG0ðqÞ −GmðqÞÞ: ðA64Þ

The integral then reads

Π4μνðpÞ ¼ 2
p2 þm2

m2
ðIm0

μν ðpÞ − I0mμν ðpÞÞ − 2pμpνI0mð0Þ þ Π4aμνðpÞ; ðA65Þ

where

Π4aμνðpÞ ¼
1

2

Z
k
2ðk · pÞG0ðkÞðpμpν − 3kμkν − qμqνÞ

×

�
p2 þm2

m2
GmðkÞG0ðqÞ −

ðp2 þ 2m2Þ
m2

GmðkÞGmðqÞ −
1

m2
ðG0ðqÞ −GmðqÞÞ

�
: ðA66Þ

Using the first of Eqs. (A43) with α ¼ 0 and β ¼ m; 0,

2ðk · pÞG0ðkÞ ¼ ðp2 þm2ÞG0ðkÞ þ 1 −G−1
m ðqÞG0ðkÞ ¼ p2G0ðkÞ þ 1 −G−1

0 ðqÞG0ðkÞ; ðA67Þ

and decoupling the product GmðkÞG0ðkÞ by the second of Eqs. (A36), the term Π4a can be written as

Π4aμνðpÞ ¼
1

2m2

Z
k
ðpμpν − 3kμkν − qμqνÞ

�
p4

m2
G0ðkÞG0ðqÞ þ

p2ðp2 þ 2m2Þ
m2

GmðkÞGmðqÞþ

−
ðp2 þm2Þ2

m2
G0ðkÞGmðqÞ −

p4 −m4

m2
GmðkÞG0ðqÞ þm2ðG0ðkÞGmðkÞ − G0ðqÞGmðqÞÞ

�
; ðA68Þ

so that the integral reads

Π4aμνðpÞ ¼ pμpν

�
p4

2m4
I00ðpÞ þ p2ðp2 þ 2m2Þ

2m4
ImmðpÞ − p2ðp2 þm2Þ

m4
Im0ðpÞ þ I0mð0Þ

�
þ

− 2
p4

m4
I00μνðpÞ − 2

p2ðp2 þ 2m2Þ
m4

Imm
μν ðpÞ þ 2p4 þ 3m2p2 þm4

m4
I0mμν ðpÞ þ

2p4 þm2p2 −m4

m4
Im0
μν ðpÞ: ðA69Þ

Inserting the result in Eq. (A65) the fourth polarization term in Eq. (A34) is

Π4μνðpÞ ¼ pμpν

�
p4

2m4
I00ðpÞ þ p2ðp2 þ 2m2Þ

2m4
ImmðpÞ − p2ðp2 þm2Þ

m4
Im0ðpÞ − I0mð0Þ

�
þ

− 2
p4

m4
I00μνðpÞ − 2

p2ðp2 þ 2m2Þ
m4

Imm
μν ðpÞ þ 2p4 þ 3m2p2 þm4

m4
Im0
μν ðpÞ þ

2p4 þm2p2 −m4

m4
I0mμν ðpÞ: ðA70Þ
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Finally, adding up the four polarization terms in Eqs. (A40), (A49), (A59), (A70), the total graph ð2bÞ reads

Πð2bÞ
μν ðpÞ ¼ p4

2m4
I00μνðpÞ þ

�
4þ ðp2 þ 2m2Þ2

2m4

�
Imm
μν ðpÞ − ðp2 þm2Þ2

2m4
ðIm0

μν ðpÞ þ I0mμν ðpÞÞ þ Im0
μν ð0Þ

þ ðp2 þm2Þ
m2

ðI0mμν ðpÞ − Im0
μν ðpÞÞ þ δμν

�
p2

m2
ðp2 þ 4m2ÞImmðpÞ − ðp2 þm2Þ2

m2
I0mðpÞ þ ðp2 þm2ÞI0mð0Þ

�
þ

− pμpν

�
p4

8m4
I00ðpÞ þ ðp4 þ 12m2p2 þ 44m4Þ

8m4
ImmðpÞ − ðp2 þm2Þðp2 þ 5m2Þ

4m4
Im0ðpÞ − 1

4
Im0ð0Þ

�
: ðA71Þ

The transverse projections of the graph follow by the
projected integrals in Eqs. (A14). We observed that by
Eq. (A15) the projected integrals turn out to be symmetric,
IαβL;T ¼ IβαL;T . Thus, the projection of the graph follows by
dropping the longitudinal and the antisymmetric terms, and
by replacing the integrals by the projected ones according to

pμpν → 0;

ðI0mμν ðpÞ − Im0
μν ðpÞÞ → 0;

δμν → 1

IαβμνðpÞ → IαβL;TðpÞ ¼ IβαL;TðpÞ;
Iαβμνð0Þ → IαβL;Tp ¼ IβαL;Tp: ðA72Þ

4. Graph 2a—(ghost loop)

In the Landau gauge, setting d ¼ 4 and using a free-
particle propagator, the general expression of the ghost loop
(see e.g., Ref. [41]) reads

Πð2aÞ
μν ðpÞ ¼

Z
k
ðpμ − kμÞkνG0ðkÞG0ðp − kÞ: ðA73Þ

By exchanging kμ and pμ − kμ the integral shows the
symmetry Πμν ¼ Πνμ so that, using Eq. (A53), we can
replace

pμkν→
1

2
ðpμkνþkμpνÞ¼

1

2
ðkμkν−qμqνþpμpνÞ: ðA74Þ

The first two terms on the right-hand side cancel in the
integration yielding

Πð2aÞ
μν ðpÞ ¼ 1

2
pμpνI00ðpÞ − I00μνðpÞ: ðA75Þ

The projected ghost loop is just

Πð2aÞ
L;T ðpÞ ¼ −I00L;TðpÞ: ðA76Þ

5. Total (uncrossed) one-loop polarization

Adding up the uncrossed one-loop graphs ð1bÞ, ð2bÞ and
ð2aÞ, the standard (uncrossed) projected one-loop polari-
zation of Ref. [38] is recovered by the sum of Eqs. (A30),
(A71) and (A75):

Π1-loop
L;T ðpÞ ¼

�
p4

2m4
− 1

�
I00L;TðpÞ þ

�
4þ ðp2 þ 2m2Þ2

2m4

�
Imm
L;TðpÞ −

ðp2 þm2Þ2
m4

Im0
L;TðpÞ

þ p2ðp2 þ 4m2Þ
m2

ImmðpÞ − ðp2 þm2Þ2
m2

I0mðpÞ þ ðp2 þm2ÞI0mð0Þ − 2Jm: ðA77Þ

6. Ghost self-energy

In this work, the total one-loop ghost self energy is the sum of the standard one-loop graph and the crossed one, which
contains the insertion of a mass counterterm,

ΣtotðpÞ ¼
�
1 −m2

∂
∂m2

�
ΣðpÞ ðA78Þ

where ΣðpÞ is the standard one loop integral [19,41] in the Landau gauge,
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ΣðpÞ ¼ −
Z
k

k2p2 − ðk · pÞ2
k2ðk − pÞ2ðk2 þm2Þ ¼ −

Z
k
½p2GmðkÞG0ðqÞ − ðk · pÞ2G0ðkÞGmðkÞG0ðqÞ�: ðA79Þ

Using the last of Eqs. (A43) with α ¼ m and β ¼ 0, and decoupling the product GmðkÞG0ðkÞ by the second of Eqs. (A36),
we can write

4ðk · pÞ2G0ðqÞGmðkÞG0ðkÞ ¼
ðp2 −m2Þ2

m2
½G0ðkÞG0ðqÞ −GmðkÞG0ðqÞ�

þ ðp2 −m2Þ½G0ðkÞG0ðqÞ − GmðkÞG0ðkÞ� þ 2ðp · kÞ½G0ðqÞG0ðkÞ −GmðkÞG0ðkÞ�: ðA80Þ

Then using the second of Eqs. (A43) with α ¼ β ¼ 0 and dropping the vanishing integrals

Z
k
½G0ðqÞ −G0ðkÞ� ¼ 0;

Z
k
ðp · kÞGmðkÞG0ðkÞ ¼ 0; ðA81Þ

the second term of Eq. (A79) reads

Z
k
ðk · pÞ2G0ðkÞGmðkÞG0ðqÞ ¼ −

ðp2 −m2Þ2
4m2

Z
k
GmðkÞG0ðqÞ þ

p4

4m2

Z
k
G0ðkÞG0ðqÞ −

ðp2 −m2Þ
4

Z
k
GmðkÞG0ðkÞ ðA82Þ

and the (uncrossed) one-loop self energy can be written as

ΣðpÞ ¼ −
ðp2 þm2Þ2

4m2
Im0ðpÞ þ p4

4m2
I00ðpÞ þ ðp2 −m2Þ

4m2
ðJm − J0Þ; ðA83Þ

as derived in Ref. [38] by the same method.

7. Crossed graphs and total polarization

The crossed graphs ð1cÞ, ð2cÞ, ð1dÞ and the crossed one-
loop ghost self energy can be obtained by simple deriv-
atives. The sum of all graphs gives a total one-loop
polarization that can be written as

Πtot
L;TðpÞ ¼ Πða−cÞ

L;T ðpÞ þ Πð1dÞ
L;T ðpÞ; ðA84Þ

where Πða−cÞ
L;T ðpÞ is the sum of graphs ð2aÞ, ð1bÞ, ð2bÞ,

ð1cÞ, ð2cÞ and can be evaluated as

Πða−cÞ
L;T ðpÞ ¼

�
1 −m2

∂
∂m2

�
Π1-loop

L;T ðpÞ: ðA85Þ

Here Π1-loop
L;T ðpÞ is the projected one-loop polarization of

Eq. (A77) andΠð1dÞ
L;T is the doubly crossed tadpole, with two

counterterm insertions.
The derivative acts on the coefficients of the integrals

according to
�
−m2

∂
∂m2

�
½m2� ¼ −m2;

�
−m2

∂
∂m2

��
1

m2

�
¼ 1

m2
;

�
−m2

∂
∂m2

��
1

m4

�
¼ 2

m4
: ðA86Þ

The function Πða−cÞ
L;T then reads

Πða−cÞ
L;T ðpÞ ¼ Π1-loop

L;T ðpÞ þ
�
−m2

∂
∂m2

Π1-loop
L;T ðpÞ

�
I
−m2ðΠ1-loop

L;T ðpÞÞI→∂I; ðA87Þ

where the derivative of the coefficients is taken in the second term while the derivative of the integrals is considered in the
third term. Using Eqs. (A86) and (A77),

�
−m2

∂
∂m2

Π1-loop
L;T ðpÞ

�
I
¼

�
p4

m4

�
I00L;TðpÞ þ

�
p4 þ 2m2p2

m4

�
Imm
L;TðpÞ −

�
2p4 þ 2m2p2

m4

�
Im0
L;TðpÞ

þ
�
p4

m2

�
ImmðpÞ −

�
p4 −m4

m2

�
I0mðpÞ − ½m2�I0mð0Þ; ðA88Þ
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while replacing the integrals I by their derivatives ∂I, Eq. (A77) reads

−m2ðΠ1-loop
L;T ðpÞÞI→∂I ¼ −

�
8m2 þ ðp2 þ 2m2Þ2

m2

�
∂Imm

L;TðpÞ þ
ðp2 þm2Þ2

m2
∂Im0

L;TðpÞ − 2p2ðp2 þ 4m2Þ∂ImmðpÞ

þ ðp2 þm2Þ2∂Im0ðpÞ −m2ðp2 þm2Þ∂Im0ð0Þ þ 2m2∂Jm: ðA89Þ

Summing up the contributions of Eqs. (A77), (A88) and (A89) in Eq. (A87) and using Eq. (A26) we obtain

Πða−cÞ
L;T ðpÞ ¼

�
3p4

2m4
− 1

�
I00L;TðpÞ þ

�
4þ 3p4 þ 8m2p2 þ 4m4

2m4

�
Imm
L;TðpÞ −

�
3p4 þ 4m2p2 þm4

m4

�
Im0
L;TðpÞ

þ 2p2ðp2 þ 2m2Þ
m2

ImmðpÞ − 2p2ðp2 þm2Þ
m2

I0mðpÞ −
�
2p2 þ 3m2

m2

�
Jm þ

�
2p2 þm2

m2

�
J0

þ −
�
8m2 þ ðp2 þ 2m2Þ2

m2

�
∂Imm

L;TðpÞ þ
ðp2 þm2Þ2

m2
∂Im0

L;TðpÞ − 2p2ðp2 þ 4m2Þ∂ImmðpÞ

þ ðp2 þm2Þ2∂Im0ðpÞ þ ðp2 þ 3m2Þ∂Jm: ðA90Þ

Finally, the doubly crossed tadpole ð1dÞ in Eq. (A84) can
be written as [19,41]

Πð1dÞ
L;T ðpÞ ¼

m4

2

∂2

∂ðm2Þ2Π
ð1bÞ
L;T ðpÞ; ðA91Þ

and using Eq. (A31)

Πð1dÞ
L;T ðpÞ ¼ −m4∂2Jm −

m4

2
∂2Im0

L;Tp: ðA92Þ

By Eqs. (A28) the derivative ∂2Im0
L;Tp can be expressed in

terms of the integrals JL;Tm and their derivatives ∂JL;Tm ,
yielding

Πð1dÞ
L;T ðpÞ ¼ −m4∂2Jm þ 1

m2
ðJL;Tm;p − JL;T0;p Þþ

− ∂JL;Tm;p þm2

2
∂2JL;Tm;p; ðA93Þ

where

JTm;p ¼ JTm;

JLm;p ¼ ðJLm − JTmÞ
p2

p2 þ ω2
þ JTm: ðA94Þ

8. Crossed graphs and total ghost self energy

The total ghost self-energy ΣtotðpÞ can be derived by the
same method, as shown in Eq. (A78),

ΣtotðpÞ ¼ ΣðpÞ þ
�
−m2

∂
∂m2

ΣðpÞ
�

I
−m2½ΣðpÞ�I→∂I;

ðA95Þ
where the derivative of the coefficients is taken in the
second term, while the derivative of the integrals is
considered in the third term.
Replacing the integrals I by their derivatives ∂I,

Eq. (A83) gives

−m2½ΣðpÞ�I→∂I ¼
ðp2 þm2Þ2

4
∂Im0ðpÞ − ðp2 −m2Þ

4
∂Jm;
ðA96Þ

while, using Eq. (A86), the derivative of the coefficients in
Eq. (A83) gives

�
−m2

∂
∂m2

ΣðpÞ
�

I
¼ ðm4 − p4Þ

4m2
Im0ðpÞ þ p4

4m2
I00ðpÞ þ p2

4m2
ðJm − J0Þ: ðA97Þ

The total ghost self energy then follows, adding up the contributions of Eqs. (A83), (A97) and (A96) in Eq. (A95)

ΣtotðpÞ ¼ −
p2ðp2 þm2Þ

2m2
Im0ðpÞ þ p4

2m2
I00ðpÞ þ ð2p2 −m2Þ

4m2
ðJm − J0Þ þ

ðp2 þm2Þ2
4

∂Im0ðpÞ− ðp2 −m2Þ
4

∂Jm: ðA98Þ
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APPENDIX B: THERMAL INTEGRALS

By general arguments, the thermal integral IðTÞ of a
function fðkÞ ¼ fðk; k4Þ can be written as

IðTÞ ¼
Z
k
fðkÞ ¼ T

X
n

Z
d3k
ð2πÞ3 fðk;ωnÞ ¼ IV þ IThðTÞ

ðB1Þ

where, setting k4 ¼ ωn ¼ −ik0,

IV ¼ 1

2πi

Z þi∞

−i∞
dk0

Z
d3k
ð2πÞ3 fðk;−ik0Þ ¼

Z
d4k
ð2πÞ4 fðkÞ

ðB2Þ

is the Euclidean integral at T ¼ 0, denoted vacuum part
IV ¼ Ið0Þ, while the thermal part IThðTÞ is

IThðTÞ ¼ −
Z

d3k
ð2πÞ3

X
Resid:

�
2Rfðk; ik0Þ
eβk0 − 1

�
Rek0>0

ðB3Þ

where the sum is over the residues in the right complex
plane of k0 and the symbol Rf is defined as

Rfðk; ik0Þ ¼
fðk; ik0Þ þ fðk;−ik0Þ

2
: ðB4Þ

We observe that if fðkÞ is a complex function, then RfðkÞ
is not the true real part RefðkÞ. The thermal part vanishes in
the limit T → 0.
Many of the thermal integrals were evaluated in great

detail in Ref. [38]. In the next sections we collect the same
results and, by the same method, we add the explicit
evaluation of all the remaining integrals that are required in
the present work.

1. Vacuum integrals

The vacuum parts of all the one-loop graphs were
evaluated in Ref. [19]. They can be made finite by wave
function renormalization. After subtraction, the sum of all
the gluon polarization graphs in Eq. (A84) and of all ghost
self-energy graphs in Eq. (A98) give the following vacuum
terms at T ¼ 0:

Πtot
V ðsÞ ¼ −

3m2s
ð4πÞ2 ½π1ðsÞ þ π0�;

Σtot
V ðsÞ ¼ 3m2s

ð4πÞ2 ½σ1ðsÞ þ σ0�; ðB5Þ

where s ¼ p2=m2, the constants π0, σ0 are arbitrary
renormalization constants, depending on the subtraction
point, and π1ðsÞ, σ1ðsÞ are the explicit analytical functions

π1ðxÞ ¼
5

8x
þ 1

72
½La þ Lb þ Lc þ Ra þ Rb þ Rc�;

σ1ðxÞ ¼
1

12
½Lg þ Rg�; ðB6Þ

written in terms of the logarithmic functions Lx

LaðxÞ ¼
3x3 − 34x2 − 28x − 24

x

×

ffiffiffiffiffiffiffiffiffiffiffi
4þ x
x

r
log

� ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p
−

ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffi
4þ x

p þ ffiffiffi
x

p
�
;

LbðxÞ ¼
2ð1þ xÞ2

x3
ð3x3 − 20x2 þ 11x − 2Þ logð1þ xÞ;

LcðxÞ ¼ ð2 − 3x2Þ logðxÞ;

LgðxÞ ¼
ð1þ xÞ2ð2x − 1Þ

x2
logð1þ xÞ − 2x logðxÞ ðB7Þ

and of the rational parts Rx

RaðxÞ ¼ −
4þ x
x

ðx2 − 20xþ 12Þ;

RbðxÞ ¼
2ð1þ xÞ2

x2
ðx2 − 10xþ 1Þ;

RcðxÞ ¼
2

x2
þ 2 − x2;

RgðxÞ ¼
1

x
þ 2: ðB8Þ

2. Thermal part of Jm and JL;Tm

The integral Jm is defined in Eq. (A13) and has the
general form of Eq. (B1) with

fðk; ik0Þ ¼ Gmðk; ik0Þ ¼
1

ϵ2k;m − k20
; ðB9Þ

having denoted by ϵk;m the positive square root

ϵk;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: ðB10Þ

The thermal part, Eq. (B3), takes a contribution at the pole
k0 ¼ ϵk;m, yielding

ðJmÞTh ¼ −
Z

d3k
ð2πÞ3

��
−2

ϵk;m þ k0

��
1

eβk0 − 1

��
k0¼ϵk;m

;

ðB11Þ

and denoting by nðϵÞ the Bose distribution,

nðϵÞ ¼ ½eβϵ − 1�−1; ðB12Þ

we obtain
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ðJmÞTh ¼
Z

d3k
ð2πÞ3

nðϵk;mÞ
ϵk;m

¼
Z

∞

0

x2dx
2π2

nðϵx;mÞ
ϵx;m

; ðB13Þ

with the obvious notation ϵx;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

p
.

In the special case m ¼ 0,

ðJ0ÞTh ¼
Z

∞

0

xdx
2π2

nðxÞ: ðB14Þ

The thermal parts of the integrals JLm, JTm, as defined in
Eq. (A27), follow immediately by replacing fðkÞ →
−k20fðkÞ and fðkÞ → 1

3
k2fðkÞ, respectively, in Eq. (B9).

Following the same steps as before, the thermal parts read

ðJLmÞTh ¼ −
Z

∞

0

x2dx
2π2

ϵx;mnðϵx;mÞ;

ðJTmÞTh ¼
Z

∞

0

x4dx
6π2

nðϵx;mÞ
ϵx;m

: ðB15Þ

3. Thermal part of IαβðpÞ
The integral IαβðpÞ is also defined in Eq. (A13) and has

the general form of Eq. (B1) with

fðkÞ ¼ GαðkÞGβðp − kÞ

¼ 1

ðϵ2k;α − k20Þ½ϵ2p−k;β − ðp0 − k0Þ2�
; ðB16Þ

where ϵp−k;β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − kÞ2 þ β2

p
and −ip0 ¼ p4 is the

external frequency. The poles are at k0 ¼ �ϵk;α and
k0 ¼ p0 � ϵp−k;β. The residues are readily evaluated:

R�
α ¼ ∓ 1

2ϵk;α
Gβðp − k; ip0 ∓ iϵk;αÞ;

R�
β ¼ ∓ 1

2ϵp−k;β
Gαðk; ip0 � iϵp−k;βÞ; ðB17Þ

and we can write

fðk; ik0Þ ¼
X
�

R�
α

k0 ∓ ϵk;α
þ
X
�

R�
β

k0 − p0 ∓ ϵp−k;β
¼ Aαβðk;p − k; ik0; ip0Þ þ Aβαðp − k;k; ip0 − ik0; ip0Þ; ðB18Þ

where

Aαβðk;p − k; ik0; ip0Þ ¼
1

2ϵk;α

�
Gβðp − k; ip0 þ iϵk;αÞ

k0 þ ϵk;α
−
Gβðp − k; ip0 − iϵk;αÞ

k0 − ϵk;α

�
: ðB19Þ

It can be easily shown that for any external frequency ω0
n ¼ −ip0 ¼ 2πTn0 and momentum p, the integral over k and the

sum over ωn ¼ −ik0 ¼ 2πTn have the property

T
X
n

Z
d3k
ð2πÞ3 Aαβðk;p − k; ik0; ip0Þ ¼ T

X
n

Z
d3k
ð2πÞ3 Aαβðp − k;k; ip0 − ik0; ip0Þ; ðB20Þ

which follows by replacing k → p − k and k0 → p0 − k0 in the integral and in the sum. Thus, we can replace in Eq. (B3)

Rfðk; ik0Þ ¼ fR½Aαβðk;p − k; ik0; ip0Þ� þ α ↔ βg: ðB21Þ
Moreover, since Gmðp; ip0Þ ¼ Gmðp;−ip0Þ, by inspection of Eq. (B19), we observe that Aαβðk;p − k;−ik0; ip0Þ ¼
Aαβðk;p − k; ik0;−ip0Þ, so that

R½Aαβðk;p − k; ik0; ip0Þ� ¼
1

2
½Aαβðk;p − k; ik0; ip0Þ þ Aαβðk;p − k; ik0;−ip0Þ�: ðB22Þ

Hereafter, the last equation is taken as the definition of the symbol R for any generic function of ip0.
In Eq. (B3), the poles at k0 ¼ ϵk;α, ϵk;β have the residues ½−nðϵk;αÞ=ϵk;α�RGβðp − k; ip0 − iϵk;αÞ and

½−nðϵk;βÞ=ϵk;β�RGαðp − k; ip0 − iϵk;βÞ, respectively, yielding in terms of the external frequency ω ¼ p4 ¼ −ip0

½Iαβðp;ωÞ�Th ¼
Z

d3k
ð2πÞ3

�
nðϵk;αÞ
ϵk;α

RGβðp − k;ωþ iϵk;αÞ þ α ↔ β

�
: ðB23Þ

Finally, we observe that since Gmðp; ip0Þ ¼ Gmðp;−ip0Þ, then

RGβðp − k; ip0 − iϵk;αÞ ¼
1

2
½Gβðp − k;ωþ iϵk;αÞ þ Gβðp − k;ω − iϵk;αÞ�: ðB24Þ
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The angular integral in Eq. (B23) can be evaluated exactly
by writing

Gαðp − k; zÞ ¼ 1

gαðz;p2;k2Þ − 2p · k
; ðB25Þ

where, denoting x ¼
ffiffiffiffiffiffi
k2

p
and y ¼

ffiffiffiffiffi
p2

p
, the function

gαðz; x2; y2Þ is given by

gαðz; y2; x2Þ ¼ z2 þ α2 þ x2 þ y2 ðB26Þ

and does not depend on the angles. Moreover, we observe
that

gαðz; y2; x2Þ � 2xy ¼ z2 þ ϵ2y�x;α; ðB27Þ

where

ϵy�x;α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� xÞ2 þ α2

q
; ðB28Þ

so that the integral over the angles can be written in terms of
the function

Lαðz; y; xÞ ¼ log
z2 þ ϵ2yþx;α

z2 þ ϵ2y−x;α
ðB29Þ

and an elementary integration gives

½Iαβðy;ωÞ�Th ¼
Z

∞

0

xdx
8π2y

�
nðϵx;αÞ
ϵx;α

RLβðωþ iϵx;α; y; xÞ þ α ↔ β

�
: ðB30Þ

It might be useful to evaluate the leading behavior in the long wavelength limit p → 0 (i.e., y → 0):

z2 þ ϵ2y�x;β ¼ ðz2 þ ϵ2x;βÞ
�
1� 2xy

z2 þ ϵ2x;β
þ y2

z2 þ ϵ2x;β

�
; ðB31Þ

Lβðz; y; xÞ ¼
4xy

z2 þ ϵ2x;β
−

4xy3

ðz2 þ ϵ2x;βÞ2
þ 16x3y3

3ðz2 þ ϵ2x;βÞ3
þOðy5Þ; ðB32Þ

½Iαβðy → 0;ωÞ�Th ≈
Z

∞

0

x2dx
2π2

�
nðϵx;αÞ
ϵx;α

R
1

ðωþ iϵx;αÞ2 þ ϵ2x;β
þ α ↔ β

�
: ðB33Þ

Moreover, in the limit ω → 0, using Eq. (B13),

lim
ω→0

lim
y→0

½Iαβðy;ωÞ�Th ¼
Z

∞

0

x2dx
2π2

�
nðϵx;αÞ
ϵx;α

1

β2 − α2
þ α ↔ β

�
¼ ðJαÞTh − ðJβÞTh

β2 − α2
; ðB34Þ

in agreement with the first of Eqs. (A26). The same limit is
obtained by setting ω ¼ 0 from the beginning and explor-
ing the leading behavior when y → 0.

4. Thermal part of IαβL;TðpÞ
The projected integrals IαβL;TðpÞ were defined in

Eq. (A14) and have the general form of Eq. (B1) with

fðkÞ ¼ GαðkÞGβðp − kÞ kμkν
cL;T

PL;T
μν ðpÞ; ðB35Þ

where cL ¼ 1 and cT ¼ 2. The function fðkÞ is the same
found for the integral IαβðpÞ in Eq. (B16), multiplied by a
factor

fðkÞ → fðkÞ
�
kμkν
cL;T

PL;T
μν ðpÞ

�
: ðB36Þ

The new factor has no poles in the complex k0 plane and
does not depend on the masses α, β. Thus, fðkÞ has the
same pole structure of Eq. (B18) with residues multiplied
by the same factor. Moreover, we observe that because of
Eq. (A15), we can still exchange k and p − k in the integral
without affecting the multiplied factor. Then, Eq. (B21) still
holds with the function Aαβ just multiplied by the same
factor of Eq. (B36), which by an explicit calculation reads

½kμkνPL
μνðpÞ� ¼

½ðk · pÞωþ ik0p2�2
ðp2 þ ω2Þp2

ðB37Þ
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and

�
kμkν
2

PT
μνðpÞ

�
¼ 1

2

�
k2 −

ðk · pÞ2
p2

�
; ðB38Þ

to be evaluated at the poles k0 ¼ ϵk;α and k0 ¼ ϵk;β, yielding

½IαβL ðp;ωÞ�Th ¼
Z

d3k
ð2πÞ3

�
nðϵk;αÞ
ϵk;α

R

�ððk · pÞωþ iϵk;αp2Þ2
ðp2 þ ω2Þp2

Gβðp − k;ωþ iϵk;αÞ
�
þ α ↔ β

�
;

½IαβT ðp;ωÞ�Th ¼
1

2

Z
d3k
ð2πÞ3

�
k2 −

ðk · pÞ2
p2

��
nðϵk;αÞ
ϵk;α

RGβðp − k;ωþ iϵk;αÞ þ α ↔ β

�
; ðB39Þ

where the symbol R denotes an average over �ω or, equivalently, an average over �iϵk;α.
The angular integrals can be evaluated exactly [38]. In the transverse projection, we can write

Z
d3k
ð2πÞ3

�
k2 −

ðk · pÞ2
p2

�
Gαðp − k; zÞ ¼

Z
∞

0

x4dx
4π2

Z
1

−1
d cos θ

1 − cos2θ
gαðz; y2; x2Þ − 2xy cos θ

¼
Z

∞

0

x2dx
8π2y2

�
gαðz; y2; x2Þ −

ð½gαðz; y2; x2Þ�2 − 4x2y2Þ
4xy

Lαðz; y; xÞ
�
: ðB40Þ

Then, denoting by LT
α the transverse logarithmic function

LT
αðz; y; xÞ ¼ ðz2 þ ϵ2yþx;αÞðz2 þ ϵ2y−x;αÞLαðz; y; xÞ ðB41Þ

and using Eq. (B27), we can write

½IαβT ðy;ωÞ�Th ¼ −
Z

∞

0

xdx
64π2y3

�
nðϵx;αÞ
ϵx;α

½RLT
β ðωþ iϵx;α; y; xÞ − 4xyðω2 þ y2 þ β2 − α2Þ� þ α ↔ β

�
: ðB42Þ

In the longitudinal projection, the angular integration reads

Z
d3k
ð2πÞ3

�ððk · pÞωþ ðz − ωÞp2Þ2
p2

�
Gαðp − k; zÞ

¼
Z

∞

0

x2dx
4π2

Z
1

−1
d cos θ

½xω cos θ þ yðz − ωÞ�2
gαðz; y2; x2Þ − 2xy cos θ

¼
Z

∞

0

ω2xdx
32π2y3

��
gαðz; y2; x2Þ þ 2y2

�
z
ω
− 1

��
2

Lαðz; y; xÞ − 4xygαðz; y2; x2Þ −
16xy3ðz − ωÞ

ω

�
: ðB43Þ

Denoting by LL
α the longitudinal logarithmic function

LL
α ðz; y; xÞ ¼

�
z2 þ ϵ2x;α þ y2

�
2z
ω

− 1

��
2

Lαðz; y; xÞ; ðB44Þ

using Eq. (B26) and observing that Rðz − ωÞ vanishes when evaluated at z ¼ ω� iϵx;α, we can write

½IαβL ðy;ωÞ�Th ¼
ω2

ðy2 þ ω2Þ
Z

∞

0

xdx
32π2y3

�
nðϵx;αÞ
ϵx;α

½RLL
β ðωþ iϵx;α; y; xÞ − 4xyðω2 þ y2 þ β2 − α2Þ� þ α ↔ β

�
: ðB45Þ
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5. Thermal part of ∂Jm, ∂JL;Tm , ∂2Jm and ∂2JL;Tm

The thermal parts of ∂Jm and ∂JL;Tm can be obtained by a
simple derivative of the thermal parts of Jm and JL;Tm ,
respectively, according to the definition of the integrals in
Eq. (A24). For a function of ϵx;m

∂
∂m2

¼ 1

2ϵx;m

∂
∂ϵx;m ¼ 1

2x
∂
∂x ; ðB46Þ

so that it might be useful to integrate by parts, using
Eq. (B13):

ð∂JmÞTh ¼ ∂
∂m2

Z
∞

0

x2dx
2π2

nðϵx;mÞ
ϵx;m

¼
Z

∞

0

xdx
4π2

∂
∂x

�
nðϵx;mÞ
ϵx;m

�

¼ −
Z

∞

0

dx
4π2

nðϵx;mÞ
ϵx;m

: ðB47Þ

A plain further derivative gives

ð∂2JmÞTh ¼
Z

∞

0

dx
8π2

nðϵx;mÞ
ϵ3x;m

−
1

T
Jnn=ϵϵm ; ðB48Þ

where

Jnn=ϵϵm ¼
Z

∞

0

dx
8π2

�
nðϵx;mÞnð−ϵx;mÞ

ðϵx;mÞ2
�
: ðB49Þ

By the same method, using Eq. (B15),

ð∂JLmÞTh ¼
Z

∞

0

dx
4π2

ϵx;mnðϵx;mÞ;

ð∂JTmÞTh ¼ −
Z

∞

0

x2dx
4π2

nðϵx;mÞ
ϵx;m

¼ −
1

2
ðJmÞTh; ðB50Þ

and by a plain further derivative

ð∂2JLmÞTh ¼ −
1

2
ð∂JmÞTh þ 1

T
Jnnm ;

ð∂2JTmÞTh ¼ −
1

2
ð∂JmÞTh; ðB51Þ

where

Jnnm ¼
Z

∞

0

dx
8π2

nðϵx;mÞnð−ϵx;mÞ: ðB52Þ

6. Thermal part of ∂IαβðpÞ
The thermal part of ∂IαβðpÞ can be obtained by a

derivative of the thermal part of IαβðpÞ, using the explicit
expression of Eq. (B30)

½∂Iαβðy;ωÞ�Th ¼
Z

∞

0

xdx
8π2y

� ∂
∂α2Aþ ∂

∂α2 B
�
; ðB53Þ

where

A ¼ nðϵx;αÞ
ϵx;α

RLβðωþ iϵx;α; y; xÞ;

B ¼ nðϵx;βÞ
ϵx;β

RLαðωþ iϵx;β; y; xÞ: ðB54Þ

Using ϵx;α as independent variable, with ϵx;αdϵx;α ¼ xdx,

we can write x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2x;α − α2

q
and eliminate the explicit

dependence on x in the function A. The total derivative of
A reads

dA
dϵx;α

¼
� ∂A
∂ϵx;α

�
x
þ
�∂A
∂x

�
ϵx;α

�
dx
dϵx;α

�
; ðB55Þ

and observing that

� ∂A
∂ϵx;α

�
x
¼ 2ϵx;α

�∂A
∂α2

�
;

�
dx
dϵx;α

�
¼ ϵx;α

x
; ðB56Þ

it can be written as

dA
dϵx;α

¼ 2ϵx;α

�∂A
∂α2

�
þ ϵx;α

x

�∂A
∂x

�
ϵx;α

; ðB57Þ

so that the first derivative in Eq. (B53) follows as

∂A
∂α2 ¼

1

2ϵx;α

dA
dϵx;α

−
1

2x

�∂A
∂x

�
ϵx;α

: ðB58Þ

Moreover, observing that

�∂A
∂x

�
ϵx;α

¼ 2x

� ∂A
∂ϵ2yþx;β

þ ∂A
∂ϵ2y−x;β

�

þ 2y

� ∂A
∂ϵ2yþx;β

−
∂A

∂ϵ2y−x;β
�
; ðB59Þ

we find, explicitly,

1

2x

�∂A
∂x

�
ϵx;α

¼ nðϵx;αÞ
ϵx;α

R

�
1

z2α þ ϵ2yþx;β

−
1

z2α þ ϵ2y−x;β

�

þ
�
y
x

�
nðϵx;αÞ
ϵx;α

R

�
1

z2α þ ϵ2yþx;β

þ 1

z2α þ ϵ2y−x;β

�

ðB60Þ
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where zα ¼ ωþ iϵx;α. On the other hand, a simple derivative gives

∂B
∂α2 ¼

nðϵx;βÞ
ϵx;β

R

�
1

z2β þ ϵ2yþx;α
−

1

z2β þ ϵ2y−x;α

�
; ðB61Þ

where zβ ¼ ωþ iϵx;β. Finally, inserting Eq. (B58) in Eq. (B53) and changing the integration variable xdx ¼ ϵx;αdϵx;α in the
first term, the integral of the total derivative gives a vanishing contribution at x ¼ ∞ and x ¼ 0, since Lβ → 0. Collecting
the other terms, we find

½∂Iαβðy;ωÞ�Th ¼ −
Z

∞

0

dx
8π2

nðϵx;αÞ
ϵx;α

R

�
1

ðωþ iϵx;αÞ2 þ ϵ2yþx;β

þ 1

ðωþ iϵx;αÞ2 þ ϵ2y−x;β

�
þ

þ
Z

∞

0

xdx
8π2y

�
nðϵx;βÞ
ϵx;β

R

�
1

ðωþ iϵx;βÞ2 þ ϵ2yþx;α
−

1

ðωþ iϵx;βÞ2 þ ϵ2y−x;α

�
− ðα ↔ βÞ

�
; ðB62Þ

where the second integral is zero if α ¼ β.

7. Thermal part of ∂IαβL;TðpÞ
The thermal part of the projected integrals ∂IαβL;TðpÞ can be obtained by a derivative of the thermal part of IαβL;TðpÞ, using

the explicit expressions of Eqs. (B45) and (B42):

½∂IαβL ðy;ωÞ�Th ¼
ω2

ðy2 þ ω2Þ
Z

∞

0

xdx
32π2y3

� ∂
∂α2 AL þ ∂

∂α2 BL

�
;

½∂IαβT ðy;ωÞ�Th ¼ −
Z

∞

0

xdx
64π2y3

� ∂
∂α2AT þ ∂

∂α2 BT

�
; ðB63Þ

where

AL;T ¼ nðϵx;αÞ
ϵx;α

½RLL;T
β ðωþ iϵx;α; y; xÞ − 4xyðω2 þ y2 þ β2 − α2Þ�;

BL;T ¼ nðϵx;βÞ
ϵx;β

½RLL;T
α ðωþ iϵx;β; y; xÞ − 4xyðω2 þ y2 þ α2 − β2Þ�: ðB64Þ

Because of the explicit dependence on α, Eq. (B58) is modified as

∂AL;T

∂α2 ¼ 4xy
nðϵx;αÞ
ϵx;α

þ 1

2ϵx;α

dAL;T

dϵx;α
−

1

2x

�∂AL;T

∂x
�

ϵx;α

; ðB65Þ

while Eq. (B61) becomes

∂BL

∂α2 ¼ nðϵx;βÞ
ϵx;β

�
R

��
1

z2β þ ϵ2yþx;α
−

1

z2β þ ϵ2y−x;α

��
z2β þ ϵ2x;α þ y2

�
2zβ
ω

− 1

��
2

þ

þ 2

�
z2β þ ϵ2x;α þ y2

�
2zβ
ω

− 1

��
Lαðzβ; y; xÞ

�
− 4xy

�
;

∂BT

∂α2 ¼ nðϵx;βÞ
ϵx;β

fR½ð2z2β þ ϵ2y−x;α þ ϵ2yþx;αÞLαðzβ; y; xÞ� − 8xyg; ðB66Þ

where zβ ¼ ωþ iϵx;β. Moreover, an explicit calculation gives
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−
1

2x

�∂AL

∂x
�

ϵx;α

¼ −
1

2x
nðϵx;αÞ
ϵx;α

�
R

�
4x

�
z2α þ ϵ2x;β þ y2

�
2zα
ω

− 1

��
Lβðzα; y; xÞ

þ 2

�
z2α þ ϵ2x;β þ y2

�
2zα
ω

− 1

��
2
�

xþ y
z2α þ ϵ2yþx;β

−
x − y

z2α þ ϵ2y−x;β

��
− 4yðω2 þ y2 þ β2 − α2Þ

�
;

−
1

2x

�∂AT

∂x
�

ϵx;α

¼ −
nðϵx;αÞ
ϵx;α

fR½ð2z2α þ ϵ2y−x;β þ ϵ2yþx;β − 4y2ÞLβðzα; y; xÞ� − 4xyg; ðB67Þ

where zα ¼ ωþ iϵx;α.
Inserting Eqs. (B65) and (B66) in Eq. (B63) and dropping the integral of the total derivative which gives a vanishing

contribution, we find

½∂IαβL ðy;ωÞ�Th ¼−
ω2

y2ðy2þω2Þ
Z

∞

0

dx
32π2

nðϵx;αÞ
ϵx;α

R

��
1

z2αþ ϵ2yþx;β

þ 1

z2αþ ϵ2y−x;β

��
z2αþ ϵ2x;βþy2

�
2zα
ω

−1

��
2
�
þ

þ ω2

y2ðy2þω2Þ
Z

∞

0

dx
16π2

nðϵx;αÞ
ϵx;α

½ω2þy2þβ2−α2�þ ω2

y2ðy2þω2Þ
Z

∞

0

x2dx
8π2

�
nðϵx;αÞ
ϵx;α

−
nðϵx;βÞ
ϵx;β

�
þ

þ ω2

y3ðy2þω2Þ
�Z

∞

0

xdx
16π2

nðϵx;βÞ
ϵx;β

R

��
z2βþ ϵ2x;αþy2

�
2zβ
ω

−1

��
Lαðzβ;y;xÞ

�
− ðα↔ βÞ

�
þ

þ ω2

y3ðy2þω2Þ
�Z

∞

0

xdx
32π2

nðϵx;βÞ
ϵx;β

R

��
z2βþ ϵ2x;αþy2

�
2zβ
ω

−1

��
2
�

1

z2βþ ϵ2yþx;α
−

1

z2βþ ϵ2y−x;α

��
− ðα↔ βÞ

�
;

½∂IαβT ðy;ωÞ�Th ¼−
1

y

Z
∞

0

xdx
16π2

nðϵx;αÞ
ϵx;α

RLβðzα;y;xÞþ
1

y2

Z
∞

0

x2dx
8π2

�
nðϵx;βÞ
ϵx;β

−
nðϵx;αÞ
ϵx;α

�
þ

þ 1

y3

�Z
∞

0

xdx
32π2

nðϵx;αÞ
ϵx;α

R½ðz2αþβ2þx2þy2ÞLβðzα;y;xÞ�− ðα↔ βÞ
�
; ðB68Þ

where, as before, zα ¼ ωþ iϵx;α and zβ ¼ ωþ iϵx;β. We
observe that most of these integrals are antisymmetric in the
mass arguments α, β and their contribution is zero
if α ¼ β ¼ m.
It is instructive to explore the leading behavior in the

limit p → 0. According to Eq. (A20), the longitudinal
projection ∂IαβL tends to the value ∂IαβL;0 if ω is set to zero
first and the limit y → 0 is studied afterwards. Setting
ω → 0 in Eq. (B68), the only terms of ∂IαβL that do not
vanish are those containing the factor ð2z=ωÞ2. Observing
that z2α → −ϵ2x;α and that, in the limit y → 0,

1

z2α þ ϵ2yþx;β

þ 1

z2α þ ϵ2y−x;β
→

2

β2 − α2
;

1

z2α þ ϵ2yþx;β

−
1

z2α þ ϵ2y−x;β
→

−4xy
ðβ2 − α2Þ2 ; ðB69Þ

we obtain the leading behavior

½∂IαβL;0�Th ¼
ð∂JLα ÞTh
β2 − α2

þ ðJLα ÞTh − ðJLβ ÞTh
ðβ2 − α2Þ2 ; ðB70Þ

having made use of the explicit expressions of ðJLmÞTh,
ð∂JLmÞTh as reported in Eqs. (B15) and (B50). The result is
in agreement with the general relations of Eq. (A28).
The transverse projection, ∂IαβT , tends to a different

value, ∂IαβT;0, in the same limit. Using Eq. (B32),

ðz2 þ ϵ2x;β þ y2ÞLβðzα; y; xÞ ≈ 4xyþ 16x3y3

3ðz2 þ ϵ2x;βÞ2
þOðy5Þ

Lβðzα; y; xÞ ≈
4xy

ðz2 þ ϵ2x;βÞ
þOðy3Þ; ðB71Þ

and inserting the expansions in ∂IαβT , in Eq. (B68), the
terms y−2 cancel exactly while the leading term is of order
∼y0, so that we can safely take the limit y → 0. The leading
term reads

½∂IαβT ð0;ωÞ�Th
¼−

Z
∞

0

x2dx
4π2

nðϵx;αÞ
ϵx;α

R
1

ðz2αþϵ2x;βÞ

þ
Z

∞

0

x4dx
6π2

�
nðϵx;αÞ
ϵx;α

R
1

ðz2αþϵ2x;βÞ2
−ðα↔βÞ

�
: ðB72Þ
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The expansion holds for any value of ω, even ω ¼ 0,
so that we can exchange the limits for the transverse
projection. Setting ω ¼ 0 and z2α ¼ −ϵ2x;α, we can simply
write ðz2α þ ϵ2x;βÞ ¼ ðβ2 − α2Þ and the leading term
reads

½∂IαβT;0�Th ¼
ð∂JTαÞTh
β2 − α2

þ ðJTαÞTh − ðJTβ ÞTh
ðβ2 − α2Þ2 ; ðB73Þ

having made use of the explicit expressions of ðJTmÞTh,
ð∂JTmÞTh as reported in Eqs. (B15) and (B50). Again,
the result is in agreement with the general relations of
Eq. (A28).
On the other hand, the limits cannot be interchanged for

the longitudinal projection ∂IαβL which tends to the same
limit of the transverse projection, ∂IαβT;0, if y is set to zero
first and the limit ω → 0 is taken afterwards. Taking ω
finite, we can write in the limit y → 0

R

��X
�

1

z2α þ ϵ2y�x;β

��
z2α þ ϵ2x;β þ y2

�
2zα
ω

− 1

��
2
�
≈ 2ðω2 þ y2 þ β2 − α2Þ þ 8x2y2R

1

ðz2α þ ϵ2x;βÞ
þOðy4Þ; ðB74Þ

then, using the expansion

�
1

z2β þ ϵ2yþx;α
−

1

z2β þ ϵ2y−x;α

�
≈ −

4xy
ðz2β þ ϵ2x;αÞ2

þ 8xy3

ðz2β þ ϵ2x;αÞ3
−

16x3y3

ðz2β þ ϵ2x;αÞ4
þOðy5Þ; ðB75Þ

we can write

R

��
z2βþ ϵ2x;αþy2

�
2zβ
ω

−1

��
2
�

1

z2βþ ϵ2yþx;α
−

1

z2βþ ϵ2y−x;α

��
≈R

�
−4xy−

16xy3ðzβ−ωÞ
ωðz2βþ ϵ2x;αÞ

−
16x3y3

ðz2βþ ϵ2x;αÞ2
þOðy5Þ

�
; ðB76Þ

and finally, using Eq. (B32),

R

�
2

�
z2β þ ϵ2x;α þ y2

�
2zβ
ω

− 1

��
Lαðzβ; y; xÞ

�
≈R

�
8xyþ 16xy3ðzβ − ωÞ

ωðz2β þ ϵ2x;αÞ
þ 32x3y3

3ðz2β þ ϵ2x;αÞ2
þOðy5Þ

�
: ðB77Þ

Inserting the expansions in ∂IαβL , in Eq. (B68), again the negative powers of y cancel exactly. We can safely set y ¼ 0 and
the same identical expression of Eq. (B72) is recovered, yielding

½∂IαβL ð0;ωÞ�Th ¼ ½∂IαβT ð0;ωÞ�Th ðB78Þ

for any finite ω, as expected in the long wavelength limit, where no special direction in space is defined, in agreement with
Eq. (A20).
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Screened massive expansion of the quark propagator in the Landau gauge
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The infrared behavior of the quark propagator is studied at one loop and in the Landau gauge (ξ ¼ 0)
using the screened massive expansion of full QCD and three different resummation schemes for the quark
self-energy. The shift of the expansion point of perturbation theory, which defines the screened expansion,
together with a nonstandard renormalization of the bare parameters, proves sufficient to describe the
dynamical generation of an infrared quark mass also in the chiral limit. Analytically, the scale for such a
mass is set by a mass parameter M, whose value is fixed by a fit to the lattice data for quenched QCD. The
quark mass function Mðp2Þ is shown to be in very good agreement with the lattice results. The quark Z
function, on the other hand, shows the wrong qualitative behavior in all but one of the studied resummation
schemes, where its behavior is qualitatively correct, but only at sufficiently high energies.

DOI: 10.1103/PhysRevD.104.074020

I. INTRODUCTION

In the Standard Model of particle physics, the light
quarks acquire their masses dynamically through two
separate and complementary mechanisms. The first one
is the spontaneous breaking of the electroweak gauge
symmetry Uð1ÞY × SUð2ÞL, induced by a nonvanishing
vacuum expectation value (VEV) for the Higgs field. Due
to the former, a quark mass Mq is generated which is
proportional to the product of the quark-Higgs Yukawa
coupling and the Higgs field VEV. The second mechanism
is a remnant of the violation of global chiral symmetry. In
this context, the violation is caused by the strong inter-
actions and manifests itself in a nonzero VEV for the quark
mass operator ψ̄ψ, i.e., of the quark condensate, which
would be constrained to vanish in the presence of chiral
symmetry. In turn, the quark condensate triggers the
nonvanishing of the quark mass function Mðp2Þ in the
chiral limit, as can be proven by an operator product
expansion (OPE) of the quark propagator. Despite being
obeyed by the massless quarks only, limited to the light
quarks (Mq ≪ ΛQCD, where ΛQCD is the QCD scale), chiral

symmetry is still a good approximate symmetry of the QCD
Lagrangian; the mechanism that underlies its violation
leads to the dressing of the light Higgs-generated masses,
greatly enhancing their effective values in the infrared (IR)
regime.
Studying the origin of the quark effective masses in the

IR is of paramount importance for understanding the
experimentally observed hadron spectrum. This is rooted
in the fact that the measured values of the light Higgs-
generated masses—Mu ≈ 2.2 MeV, Md ≈ 4.7 MeV, Ms ≈
93 MeV for the up, down, and strange quarks, respectively,
[1]—do not compare well with the observed values of the
(unflavored) baryon masses, which are of the order of
1 GeV. The infrared enhancement, induced by the violation
of chiral symmetry, is a good candidate for filling the gap
between those masses. Unfortunately, mainly because of
the nonperturbative nature of dynamical mass generation,
no purely analytical and fully predictive description of the
latter in the framework of first principles QCD is available
to date.
In the context of the strong interactions, dynamical mass

generation has been an active field of research for decades
now. The development of chiral perturbation theory in the
1960s and 1970s offered a framework in which the large
observed masses of the hadrons could be understood to be a
consequence of chiral symmetry violation. In the gauge
sector, the hypothesis that the gluons might acquire an
infrared mass as a result of their self-interactions was
advanced by Cornwall in 1982 [2] and confirmed by lattice
studies in the 2000s [3–15]. In the continuum, considerable
progresses have been made by the numerical integration of
integral equations [16–28], by variational methods [29–39],
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and by physically motivated phenomenological models
[40–51]. For a recent review on the subject, see
Ref. [52]. The generation of a mass for the gluons is of
special interest from a theoretical point of view, since gauge
invariance in the framework of ordinary perturbation theory
(PT) forbids the gluons to acquire a mass.
While, in principle, the failure of ordinary PT to describe

the gluon’s infrared mass could be attributed to its break
down at low energies, in recent years a new approach to the
perturbation theory of pure Yang-Mills (YM) theory has
shown that most of the nonperturbative content of the
gluon dynamic—at least as far as the two-point functions
are concerned—can be absorbed into a shift of the
expansion point of the Yang-Mills perturbative series.
This approach, termed the screened massive expansion
[53–64], is a simple extension of ordinary PT, formulated in
such a way as to treat the transverse gluons as massive
already at tree level while leaving the total action of the
theory unchanged. The screened expansion has proven to
be self-consistent to one loop—since it is renormalizable
and leads to an infrared-finite and moderately small
running coupling constant [63]—and predictive when
optimized by principles of gauge invariance [60]; it yields
two-point functions which are in excellent agreement with
the lattice data in the Landau gauge [60,63].
The main objective of this paper is to extend the

formalism of the screened massive expansion to full
QCD with one flavor of quark, with the aim of studying
the infrared behavior of the quark propagator. The method
was already applied in Refs. [58,59] to describe some of
the low-energy features of the quark dynamics in the chiral
limit; here, we refine its definition, implement some of our
latest findings on the gauge sector, extend the study to
nonchiral quarks, and use a new set of lattice data as a
benchmark for comparison and in order to fix some of the
free parameters in our expressions.
Our treatment of the quark sector closely follows what

we did in pure Yang-Mills theory for the gluons; namely,
we shift the expansion point of the perturbative series by
introducing a new mass parameter M for the zero-order
quark propagator. The motivation for the shift lies in the
phenomenon of dynamical mass generation for the light
quarks. As previously discussed, due to the strong inter-
actions, at low energies the light quarks propagate with a
mass which is greatly enhanced with respect to their tree-
level (Lagrangian) value; since this effect cannot be
captured by ordinary perturbation theory, some kind of
nonordinary and nonperturbative resummation of the quark
self-energy is needed in order to successfully describe the
infrared quark dynamics. This is precisely what the shift
does; by replacing the mass contained in the standard zero-
order propagator with an enhanced mass parameter, it
optimizes the expansion point of perturbation theory so
that the quarks propagate with an effective infrared mass of
the order of the QCD scale ΛQCD, rather than with the mass

contained in the Lagrangian, which would be more relevant
to the high energy regime. The same is done for the
transverse gluons, which at tree level are set up to propagate
with a finite nonzero mass.
The shift is performed in such a way as to leave the total

action of the theory unchanged. As a result, three new two-
point interaction vertices arise which are proportional to the
quark mass parameter M and bare mass MB and to the
gluon mass parameter m2. Since the expansion cannot be
carried out exclusively in powers of the coupling constant,
the approach is nonperturbative in nature; nonetheless, the
calculations are done using standard Feynman diagram
techniques, so that the method is still perturbative in the
widest sense of the word.
As we shall see in the following sections, our analysis

still has major theoretical limitations. First and foremost,
the value of the quark mass parameterM introduced by the
shift needs to be fixed from external inputs in order to
obtain definite quantitative results. At variance with pure
Yang-Mills theory, where the method was optimized based
on principles of gauge invariance and the redundancy in the
number of free parameters was effectively eliminated (see
Ref. [60] and the discussion in Sec. II), at this moment no
such procedure is available for full QCD. Because of this,
in order to test the strength of the screened expansion of
QCD, we resort to fitting the free parameters of the
expansion using the lattice data; for reasons which are
discussed in a later section, the fit is done using a set of data
for quenched QCD.
Our study of the quark propagator makes use of three

different resummation schemes for the quark self-energy:
the minimalistic, vertex-wise, and complex-conjugate
schemes (to be defined in Sec. III). The first and second
ones are a variation on the same theme and only differ by
the number of gluon mass counterterms (i.e., two-point
mass vertices, see the next section) included in the
computation of the self-energy. The complex-conjugate
scheme, on the other hand, uses the fully dressed gluon
propagator (or, to be precise, an approximation thereof) in
place of the zero-order gluon propagator as the internal
gluon line of the self-energy. Each of these schemes has
strengths and weaknesses which are discussed. For the
moment, we anticipate that the three resulting mass
functions Mðp2Þ do not show significant differences
and are in very good agreement with the lattice data
(provided of course that the values of the free parameters
are chosen appropriately). The quark Z functions, con-
versely, show the wrong qualitative behavior in all but the
complex-conjugate scheme; when computed using the
latter, Zðp2Þ is qualitatively correct at sufficiently high
energies, but fails nonetheless at low energies.
Ultimately, we were not able to quantitatively reproduce

the lattice Z function using the method presented in this
study. However, it must be kept in mind that, in the Landau
gauge, the divergent part of the Z function is exactly zero at
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one loop, and above 1.0–1.5 GeV the finite contribution to
Zðp2Þ − 1 is quite small, yielding an almost constant
Zðp2Þ ≈ 1. Thus, the Z function seems to be very sensitive
to corrections coming from higher loops [65], thermal
effects [66], neglected nonperturbative terms, and—on the
lattice side—even artifacts which may affect the actual
result found in the numerical simulations.
This paper is organized as follows. In Sec. II, we review

the setup and results of the screened expansion of pure
Yang-Mills theory. In Sec. III, we formalize the screened
expansion of full QCD with one flavor of quark, discuss its
renormalization, and define the resummation schemes
which we use for the computation of the one-loop quark
self-energy. In Sec. IV, we present our results for the quark
propagator, fitting the free parameters of the expansion
from the lattice data. In Sec. V, we discuss our results and
present our conclusions.

II. THE SCREENED MASSIVE EXPANSION OF
PURE YANG-MILLS THEORY

The screened massive expansion for the gauge-fixed,
renormalized Faddeev-Popov Lagrangian was developed in
Refs. [53,54] and extended to finite temperature in [55–57]
to full QCD in [58,59] and to a generic covariant gauge in
[60,61]. Its renormalization in the Landau gauge was
discussed in Refs. [62,63], where different renormalization
schemes were considered and analytical expressions were
reported for its beta function. The method has proven to be
self-consistent and predictive when optimized by principles
of gauge invariance [60,63].
In what follows, we give a brief review of the setup and

main results of the screened expansion of pure Yang-Mills
theory in the Landau gauge. Both of these are functional to
our analysis of full QCD.

A. Setup of the method

The bare Faddeev-Popov (FP) Lagrangian for pure SU(N)
Yang-Mills theory in a general covariant gauge is given by

L ¼ LYM;B þ Lfix;B þ LFP;B; ð1Þ

where

LYM;B ¼ −
1

2
TrðFBμνF

μν
B Þ;

Lfix;B ¼ −
1

ξB
Trð∂μA

μ
B∂νAν

BÞ;

LFP;B ¼ ∂μc̄aBD
μ
Bc

a
B: ð2Þ

Here, we have defined the bare gauge field Aμ
B as

Aμ
B ¼ Aaμ

B Ta; ð3Þ

where the Ta’s are SU(N) generators, chosen so that

TrðTaTbÞ ¼
1

2
δab: ð4Þ

ξB is the bare gauge parameter defining the covariant gauge,
and Fμν

B is the bare field-strength tensor,

Faμν
B ¼ ∂μAaν

B − ∂νAaμ
B þ gBfabcA

bμ
B Acν

B ; ð5Þ

with

½Ta; Tb� ¼ ifcabTc: ð6Þ

The bare covariant derivative Dμ
B acting on the ghost and

antighost fields caB; c̄
a
B reads

ðDμ
BÞac ¼ δac∂μ þ gBfabcA

bμ
B : ð7Þ

L can be renormalized by introducing suitable renormaliza-
tion factors ZA, Zc, and ZAc̄c for the gauge and ghost fields
and for the coupling constant, respectively, and by defining
new, renormalized gauge and ghost fields Aa

μ, ca, and c̄a, a
renormalized coupling g and a renormalized gauge param-
eter ξ, according to

Aμ
B ¼ Z1=2

A Aμ; ξB ¼ ZAξ;

caB ¼ Z1=2
c ca; c̄aB ¼ Z1=2

c c̄a;

g2 ¼ g2B
ZAZ2

c

Z2
Ac̄c

: ð8Þ

In terms of the renormalized fields, the Faddeev-Popov
Lagrangian reads

L ¼ LYM þ Lfix þ LFP þ Lc:t:; ð9Þ

where

LYM ¼ −
1

2
TrðFμνFμνÞ;

Lfix ¼ −
1

ξ
Trð∂μAμ∂νAνÞ;

LFP ¼ ∂μc̄aDμca; ð10Þ

and Lc:t: contains the renormalization counterterms. The
renormalized field-strength tensor Fa

μν and covariant deriva-
tive Dμ are defined as

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcA

b
μAc

ν;

ðDμÞac ¼ δac∂μ þ gfabcA
b
μ: ð11Þ

We note that Lc:t: does not contain a counterterm for the
gauge-fixing term Lfix; indeed, the Slavnov-Taylor iden-
tities ensure that the bare gauge parameter ξB can be
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multiplicatively renormalized by the gauge field renorm-
alization factor ZA alone.
Ordinary perturbation theory is defined by a split of the

renormalized Lagrangian,

L ¼ L0 þ Lint þ Lc:t:; ð12Þ

where L0 ¼ limg→0 L is taken to be the noninteracting limit
of L,

L0 ¼
1

2
Aa
μ½iΔμν

0abðpÞ−1�Ab
ν þ c̄a½iG0abðp2Þ−1�cb: ð13Þ

Here, the ordinary zero-order gluon and ghost propagators
Δab

0μν and Gab
0 read

Δab
0μνðpÞ ¼

−iδab

p2
ðtμνðpÞ þ ξlμνðpÞÞ;

Gab
0 ðp2Þ−1 ¼ iδab

p2
; ð14Þ

where tμνðpÞ and lμνðpÞ are the transverse and longitudinal
projectors defined as

tμνðpÞ ¼ ημν −
pμpμ

p2
; lμνðpÞ ¼

pμpν

p2
: ð15Þ

The interaction term Lint contains a three-gluon, four-
gluon, and ghost-gluon interaction,

Lint ¼ L3g þ L4g þ Lc̄cg; ð16Þ

where

L3g ¼ −gfabc∂μAa
νAbμAcν;

L4g ¼ −
1

4
gfabcf

a
deA

b
μAc

νAdμAeν;

Lc̄cg ¼ gfabc∂μc̄aAb
μcc: ð17Þ

On the other hand, the term Lc:t: contains the field and
coupling renormalization counterterms,

Lc:t:¼−
1

2
δAδabp2tμνðpÞAa

μAb
νþδcδabp2c̄acbþ��� ; ð18Þ

where δA ¼ ZA − 1 and δc ¼ Zc − 1. In particular, the
gluon field renormalization counterterm is completely
transverse.
At low energies, the ordinary perturbation theory of

pure YM theory is known to be inconsistent due to the
presence of an IR Landau pole in the running of the strong
coupling constant. Moreover, constraints due to gauge
invariance—when applied in the framework of ordinary
perturbation theory–prevent the generation of an IR
dynamical mass for the gluons, a phenomenon which

by now has been well established mainly thanks to lattice
calculations [4–15]. Addressing these issues is the main
objective of the screened massive expansion.
The screened massive expansion of pure YM theory is

defined by a shift of the expansion point of the Yang-Mills
perturbative series, performed in such a way as to treat the
transverse gluons as massive already at tree level [53,54].
Explicitly, a shifting term δL is added to the zero-order
(kinetic) part of the gauge-fixed, renormalized Fadeev-
Popov Lagrangian and subtracted back from its interaction
part,

L0
0 ¼ L0 þ δL;L0

int ¼ Lint − δL: ð19Þ

δL is chosen so that the zero-order transverse gluon
propagator contained in L0

0 is replaced by a massive
one; in momentum space

δL ¼ 1

2
Aa
μðpÞi½iΔ−1μν

mab ðpÞ − iΔ−1μν
0ab ðpÞ�Ab

νð−pÞ; ð20Þ

where

Δμν
mabðpÞ ¼ δab

�
−itμνðpÞ
p2 −m2

þ ξ
−ilμνðpÞ

p2

�
ð21Þ

is the new, massive zero-order gluon propagator. Since δL
is added to and subtracted from the FP Lagrangian, the shift
does not not modify the full action of Yang-Mills theory.
Instead, it introduces a new free mass parameter m2 and
changes the Feynman rules of YM theory in two respects.
First of all, since the new zero-order Lagrangian L0

0 reads

L0
0 ¼

1

2
Aa
μ½iΔ−1μν

mab �Ab
ν þ c̄a½iG−1

0ab�cb; ð22Þ

the transverse gluons propagate with a massive propagator
rather than with a massless one, see Eq. (21). Second of all,
the interacting part of the Lagrangian, L0

int, contains a new
two-point interaction, namely,

−δL ¼ −
1

2
Aa
μðpÞiδΓμν

gabðpÞAb
νð−pÞ; ð23Þ

where the vertex δΓμν
gabðpÞ is given by

δΓμν
gabðpÞ ¼ −im2tμνðpÞδab: ð24Þ

We refer to the latter as the gluon mass counterterm, not to be
confused with the renormalization counterterms contained in
Lc:t:. Neither the remaining interaction vertices—spelled out
in Eq. (17)—nor the renormalization counterterms are
affected by the shift.
The quantities of physical interest can be computed in

the framework of the screened expansion using the
Feynman rules described above. Since the vertex δΓg is
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not proportional to the coupling constant, diagrams with an
arbitrary number of vertices—termed crossed diagrams if
they contain at least one gluon mass counterterm—coexist
at any given loop order. For this reason, the screened
expansion is intrinsically nonperturbative.
The crossed diagrams can be computed as derivatives of

noncrossed diagrams with respect to the gluon mass
parameter. This easily follows from the equality [64]

½ΔmðpÞ · ðδΓgðpÞ · ΔmðpÞÞn�μνab
¼ −ið−m2Þn

ðp2 −m2Þnþ1
tμνðpÞδab

¼ ð−m2Þn
n!

∂n

∂ðm2Þn Δ
μν
mabðpÞ; ð25Þ

which is valid for every n ≥ 1 and in any covariant gauge
and carries over to the loop integrals.
Due to the massiveness of the zero-order gluon propa-

gator in the screened expansion, new UV divergences arise
in the loop integrals which are proportional to the gluon
mass parameterm2. These divergences do not invalidate the
renormalizability of the n-point functions of the theory,
since they cancel as soon as crossed diagrams with a higher
number of crossed vertices are taken into account [54,64].
The removal of mass divergences can (and indeed must) be
adopted as a criterion for fixing the minimum number of
crossed loops to be included when computing some
quantity at a given loop order [54,64].
To one loop, the one-particle-irreducible (1PI) gluon

polarization Πab
μνðpÞ and ghost self-energy Σabðp2Þ were

computed from the diagrams in Fig. 1. The crossed vertices
in the figure represent the gluon mass counterterm δΓg.
Diagrams (1c) and (2c) in the gluon polarization are required
in order to eliminate the mass divergences that arise from
diagrams (1b) and (2b), respectively; they have a total of
three vertices. To one loop, there are two more diagrams with
the same number of vertices, namely, diagram (1d) and the
crossed diagram in the ghost self-energy (top right diagram

in Fig. 1); these were also included in the one-loop
calculation for consistency.
Since the shift that defines the screened expansion does

not change the total action of pure YM theory, the full 1PI
gluon polarization is known to be transverse by the
Slavnov-Taylor identities. Therefore, we can write

Πab
μνðpÞ ¼ Πðp2ÞtμνðpÞδab; ð26Þ

where Πðp2Þ is the gluon’s scalar polarization. After the
resummation of the 1PI diagrams, the transverse-gluon and
ghost dressed propagators Δðp2Þ and Gðp2Þ can then be
expressed as

Δðp2Þ ¼ −i½p2 −m2 − Πðp2Þ�−1;
Gðp2Þ ¼ i½p2 − Σðp2Þ�−1; ð27Þ

where Σðp2Þ is the ghost self-energy. Diagram (1a) in Fig. 1
is easily shown to contribute to the gluon polarization with
a constant term ΔΠ ¼ −m2,

Πðp2Þ ¼ −m2 þ ΠðloopsÞðp2Þ; ð28Þ

where ΠðloopsÞðp2Þ is the loop contribution to the polari-
zation—diagrams (1b)–(2c) in Fig. 1. It is then easy to see
that the tree-level mass term inherited from the shift cancels
out with ΔΠ, so that the dressed propagator itself can be
expressed as

Δðp2Þ ¼ −i½p2 − ΠðloopsÞðp2Þ�−1: ð29Þ

From the above equation it is clear that in the screened
expansion, rather than being a trivial effect of the shift of
the expansion point, the gluon mass must come from the
loops and is thus genuinely dynamical in nature; it does not
coincide with the gluon mass parameter m2, which at this
stage is just an undetermined dimensionful scale.
Quite interestingly, the existence of a finite mass-scale in

YM theory has been derived in the Gaussian approximation
from first principles [56,64], but, of course, the actual value
of that scale can only arise from the phenomenology, since
there is no energy scale in pure YM theory. The best
variational Gaussian vacuum was shown to be the vacuum
of a massive gluon, and the present screened expansion
emerged has the perturbative loop expansion around that
best massive vacuum [56]. While fermions have also been
incorporated in the Gaussian formalism in the past [67], it is
not clear if the screened expansion of full QCD, as is
discussed in the present paper, can also be regarded as a
loop expansion around a variational Gaussian vacuum
which breaks the chiral symmetry.

=Σ +

+

+= + +

++

+Π

FIG. 1. Two-point graphs with no more than three vertices and
no more than one loop. The cross is the transverse mass
counterterm of Eq. (24) and is regarded as a two-point vertex.
The renormalization counterterms are not shown in the figure.
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B. Optimization and results in the Landau gauge

In a general renormalization scheme and in the Landau
gauge, thedressedgluonpropagatorΔðp2Þ canbeexpressedas

Δðp2Þ ¼ −iZΔ

p2ðFðsÞ þ F0Þ
; ð30Þ

where s ¼ −p2=m2 and ZΔ and F0 are, respectively, a
multiplicative and an additive renormalization constant.1

The function FðsÞ was computed to one loop and third order
in the number of vertices from the diagrams in Fig. 1; its
analytical expression is reported in Ref. [54]. The zero-
momentum limit of FðsÞ reads

FðsÞ → 5

8s
ðs → 0Þ; ð31Þ

so that

Δðp2Þ → i8ZΔ

5m2
ðp2 → 0Þ; ð32Þ

implying that the screened expansion’s gluon propagator is
indeedmassive in the infrared.Wereiterate that thegluonmass,
as defined, for instance, andnonunivocally, by iΔð0Þ−1, comes
from the loops and is thus dynamical in nature.
Together with the gluon mass parameter m2, ZΔ and F0

are the only free parameters determining the gluon propa-
gator in the screened expansion. The multiplicative con-
stant ZΔ can of course be fixed by renormalizing the
propagator at some specified renormalization scale
p2 ¼ −μ2, i.e., by requiring that

Δð−μ2Þ ¼ −i
−μ2

: ð33Þ

The value of the additive renormalization constant F0, on
the other hand, was optimized and fixed in Ref. [60]

according to principles of gauge invariance. In more detail,
it was shown that there exists a value of F0 in the Landau
gauge, namely, F0 ¼ −0.876, which, when evolved to a
general covariant gauge (ξ ≠ 0), yields gauge-invariant
poles p2

0 for the gluon propagator whose residues are also
gauge invariant in phase to less than 0.3% [68–70].
In the same context (and in previous papers also, see,

e.g., [55,58]), we found that the screened expansion’s gluon
propagator has two complex-conjugate poles, whose adi-
mensional positions z20 ¼ p2

0=m
2 and z̄20 were determined in

[60] from first principles. The existence of complex-
conjugate poles has been related in the literature to the
issue of the violation of positivity of the gluon spectral
function and, more generally, to that of confinement
[71,72]. The poles and phases of the residues of the gluon
propagator, as computed in the (optimized) screened
expansion, are reported in Table I.
Of particular relevance to this paper is the fact that the

principal part of the gluon propagator, i.e., the term which
contains its poles, well-approximates the full propagator
itself [64], provided that the former is multiplied by a factor
of 0.945. This is shown in Fig. 2.
With ZΔ and F0 fixed, the gluon mass parameter m2 is

left as the only free parameter of the theory (at least as far as
the gluon two-point function is concerned). m2 sets the
energy units for the dimensionful quantities in the theory;
as such, it cannot be determined from first principles and
must be fixed from phenomenology. In this respect, the
gluon mass parameter plays the same role as the QCD scale
ΛQCD of ordinary perturbation theory.2 The propagator

TABLE I. Results of the screened massive expansion of pure
YM theory, obtained by imposing the gauge-parameter inde-
pendence of the poles and of the phases of the residues of the
gluon propagator in a general covariant gauge. From left to right:
the additive renormalization constant F0 in the Landau gauge, the
adimensional position z20 ¼ p2

0=m
2 of the poles of the gluon

propagator in the Landau gauge, the gauge-invariant phases φ of
the residues of the gluon propagator, and the gauge-invariant
dimensionful positions of the poles of the propagator, assuming
m ¼ 0.6557 GeV in the Landau gauge (the � signs are inde-
pendent from each other).

F0 z20 φ p0 (GeV)

−0.876 0.4575� 1.0130i �1.262 �0.5810� 0.3571i

 0

 0.5

 1

 1.5

 2

 0.1  1

m
2

Δ(
p)

p/m

Full propagator
Principal part (norm.)

FIG. 2. Transverse gluon propagator in the Landau gauge
(ξ ¼ 0) and in Euclidean space, computed in the screened
expansion of pure YM theory. Black line: full one-loop propa-
gator. Blue line: principal part of the one-loop propagator,
normalized by a factor of 0.945.

1The strong coupling constant αs was absorbed into the
definition of ZΔ and F0 and makes no explicit appearance in
what follows.

2For a lengthy discussion on the conceptual similarities
between the gluon mass parameter m2 and the QCD scale
ΛQCD, see Ref. [63], where the issue was addressed in the
context of the renormalization group improvement of the
screened expansion.
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defined by Eq. (30), with F0 ¼ −0.876 optimized by
principles of gauge invariance, was found to accurately
reproduce the Euclidean lattice data of Ref. [15], provided
that the energy units of the screened expansion are set by
choosing m ¼ 0.6557 GeV (see Fig. 3). Once the value of
the gluon mass parameter is determined, the dimensionful
values of the poles of the propagator can be computed; they
are reported in the last column of Table I.

III. THE SCREENED MASSIVE EXPANSION OF
FULL QCD

In this section, we extend the screened massive expan-
sion to full QCD with one flavor of quarks. As we will see,
our formalism is able to describe the nonperturbative
generation of an infrared dynamical mass both for the
chiral and the light quarks.
Our starting point is the formalism laid out in Sec. II A.

After introducing the quarks in the Faddeev-Popov
Lagrangian of pure Yang-Mills theory, we perform a
nonordinary renormalization and split of the quark
Lagrangian into a kinetic and an interaction term plus
renormalization counterterms. The procedure parallels
what we previously did for the gauge sector, but has a
new feature, namely, the nonrenormalization of the quark’s
bare mass. The motivation and consistency of such a choice
are discussed in Sec. III A. In Sec. III B, we define three
resummation schemes for the dressed quark propagator,
which differ by how the internal gluon line is treated in the
quark self-energy.

A. Setup and renormalization

The Lagrangian of full QCD with one flavor of quarks is
given by

LQCD ¼ Lþ Lq;B; ð34Þ

where L is the Faddeev-Popov Lagrangian of pure Yang-
Mills theory—Eq. (1)—and Lq;B is the quark Lagrangian
expressed in terms of the bare fields, mass, and coupling,

Lq;B ¼ ψ̄Bði=DB −MBÞψB: ð35Þ

Here, MB is the quark’s bare mass, while DB is the bare
covariant derivative acting on the bare quark field ψB,

Dμ
B ¼ ∂μ − igBA

aμ
B Ta: ð36Þ

In order to renormalize the quark Lagrangian, we
introduce a quark field renormalization constant Zψ such
that

ψB ¼ Z1=2
ψ ψ ; ð37Þ

where ψ is the renormalized quark field. Then, Lq;B can be
expressed as

Lq;B ¼ ψ̄ði=D −MBZψÞψ þ Lq;c:t:; ð38Þ

where D is the renormalized covariant derivative acting on
the renormalized quark field,

Dμ ¼ ∂μ − igAa
μTa; ð39Þ

with g and Aa
μ being the renormalized coupling and gluon

field defined as in Sec. II A, while Lq;c:t: contains the
quark’s field strength and quark-gluon vertex renormaliza-
tion counterterms.
At this point, if the quark is not massless (i.e., MB ≠ 0),

one usually introduces a renormalized quark mass through
a kinetic term of the form −MRψ̄ψ and includes the
corresponding mass renormalization counterterm −δMψ̄ψ
into Lq;c:t:. In ordinary perturbation theory,MR andMB are
understood to be proportional and related to each other by
radiative corrections which can be computed perturbatively
at any given loop order. Due to dynamical mass generation,
however, in the IR the light quarks acquire a mass which is
much larger than their renormalized mass MR and non-
proportional to it; indeed, the former would be nonzero
(and of the order of the QCD scale ΛQCD) also in the case of
chiral quarks (MB ¼ 0). Clearly, choosing MR as the mass
of the zero-order propagator around which to expand the
perturbative series is not optimal for the purpose of
exploring the low-energy dynamics of the quark sector.
On the other hand, the situation could improve if an

effective mass scale, mimicking the dynamically generated
IR quark mass, was used in place of the renormalized mass
MR. Our setup, therefore, employs the following scheme.
As in ordinary perturbation theory, we add to the quark
Lagrangian a mass term of the form −Mψ̄ψ . However, we
do not interpret M as the renormalized counterpart of MB.
Instead, we regard the former as being a nonperturbative

 0

 2

 4

 6

 8

 10

 12

 0.1  1

Δ(
p)

 (
G

eV
-2

)

p (GeV)

Lattice: Duarte et al.
Screened exp.

FIG. 3. Transverse dressed gluon propagator in the Landau
gauge (ξ ¼ 0) and in Euclidean space, computed in the screened
expansion of pure YM theory by optimizing the additive
renormalization constant F0 based on principles of gauge
invariance. The lattice data are taken from Ref. [15].
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mass scale arising from the low-energy dynamics of the
theory and leaveMB unrenormalized. Explicitly, we rewrite
the quark Lagrangian as

Lq;B ¼ ψ̄ði=D −MÞψ þ ψ̄ðM −MBZψÞψ þ Lq;c:t: ð40Þ

and treat M and MB as independent mass parameters; the
difference MBZψ −M, which in ordinary perturbation
theory would correspond to the mass renormalization
counterterm δM, is not taken to be proportional to the
coupling constant (i.e., small in the perturbative sense) nor
is it regarded as fixed by the renormalization of the quark
propagator. We anticipate that an appropriate choice of the
diagrams to include in the one-loop quark propagator
preserves the renormalizability of the theory also when
using this nonstandard scheme.
The quark Lagrangian is now split into a kinetic (zero-

order) term Lq;0,

Lq;0 ¼ ψ̄ði=∂ −MÞψ ; ð41Þ

in which M appears as the mass in the zero-order quark
propagator; an interaction term Lq;int,

Lq;int ¼ ψ̄ðg=AaTa þM −MBZψÞψ ; ð42Þ

which contains the quark-gluon vertex and two new
quadratic terms, proportional to M and MB; and a renorm-
alization term Lq;c:t:,

Lq;c:t: ¼ ψ̄ðiδψ=∂ þ gδg=AaTaÞψ ; ð43Þ

which contains the quark field strength renormalization
counterterm δψ ¼ Zψ − 1 and a renormalization counter-
term δg for the quark-gluon vertex.
The addition and subtraction of the mass term −Mψ̄ψ

from the quark Lagrangian parallels what we did in the
gluon sector of pure Yang-Mills theory. This is best seen in
the chiral limit (MB → 0), where the addition of a mass
term of the form −MRψ̄ψ would be meaningless, since
MR ∝ MB ¼ 0. As a nonperturbative mass parameter not
directly related to MB, M has the same status of the gluon
mass parameter m in the screened expansion of YM theory
and is allowed to remain finite also in the chiral limit. For
this reason, we refer to M as the chiral mass of the quark.
As in the screened expansion of YM theory, the shift of

the quark Lagrangian changes the Feynman rules of the
theory. First of all, the chiral mass M now figures as the
tree-level mass in the zero-order quark propagator SMðpÞ,

SMðpÞ ¼
i

=p −M
: ð44Þ

Second of all, two new two-point vertices δΓq;1 and δΓq;2

arise in the interaction,

δΓq;1ðpÞ ¼ iM; δΓq;2ðpÞ ¼ −iMBZψ : ð45Þ

We reiterate that in our framework these are treated as
independentvertices.Thequark-gluon interactionandrenorm-
alizationvertices, on the other hand, are left unchanged, except
for the quark mass renormalization counterterm, which must
not be included in the calculation.
These Feynman rules must of course be supplied with

those of the gluon sector, which were derived in Sec. II A
in the context of pure YM theory. In particular, the
transverse gluons propagate with a massive zero-order
propagator—Eq. (21)—and a third two-point vertex, the
gluon mass counterterm of Eq. (24), is included in the
interaction.
As a consequence of the new Feynman rules, the

screened expansion of full QCD is nonperturbative in
nature. Like in pure YM theory, this is due to the two-
point vertices δΓg, δΓq;1, and δΓq;2, which are proportional
to the gluon and the quark mass parametersm2,M, andMB,
and are not taken to be proportional to the strong coupling
constant.
Let us now turn our attention to how to compute the

quark propagator in the new framework. The dressed quark
propagator SðpÞ can be expressed in terms of the 1PI quark
self-energy ΣðpÞ3 as

SðpÞ ¼ i
=p −M − ΣðpÞ : ð46Þ

Due to the shift of the expansion point, ΣðpÞ receives tree-
level contributions not only from the quark field strength
renormalization counterterm δψ ¼ Zψ − 1, but also from
the new vertices δΓq;1 and δΓq;2—diagrams (1a) and (1b) in
Fig. 4. We have

ΣðpÞ ¼ −δψ=p −M þMBZψ þ ΣðloopsÞðpÞ; ð47Þ

where ΣðloopsÞðpÞ is the self-energy contribution coming
from the loops. It follows that

FIG. 4. 1PI diagrams for the screened expansion one-loop
quark self-energy. The crosses denote insertions of the mass
counterterms. The subscripts 1 and 2 label the vertices δΓq;1 and
δΓq;2 in Eq. (45). The renormalization counterterms are not
shown in the figure.

3Not to be confused with the ghost self-energy of Sec. II A.
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½−iSðpÞ�−1 ¼ Zψ=p −MBZψ − ΣðloopsÞðpÞ: ð48Þ

As in pure YM theory, the mass M introduced by the shift
of the quark Lagrangian disappears from the propagator,
and the bare mass is restored at tree level, up to field-
strength renormalization. In order to define the quark mass
function Mðp2Þ and Z function Zðp2Þ, we first subdivide
ΣðloopsÞðpÞ into a vector and a scalar term,

ΣðloopsÞðpÞ ¼ =pΣVðp2Þ þ ΣSðp2Þ; ð49Þ

and then define two scalar functions Aðp2Þ and Bðp2Þ,

Aðp2Þ ¼ Zψ − ΣVðp2Þ;
Bðp2Þ ¼ MBZψ þ ΣSðp2Þ: ð50Þ

In terms of Aðp2Þ and Bðp2Þ, the functions Mðp2Þ and
Zðp2Þ read

Zðp2Þ ¼ 1

Aðp2Þ ; Mðp2Þ ¼ Bðp2Þ
Aðp2Þ : ð51Þ

Moreover, Eq. (46) can be rewritten as

SðpÞ ¼ iZðp2Þ
=p −Mðp2Þ : ð52Þ

From Eqs. (50) and (51), we see that in the chiral limit
(MB → 0), despite the absence of a tree-level mass for the
quark propagator, the quark mass functionMðp2Þ does not
vanish; thanks to the finiteness of the nonperturbative scale
M, one finds that ΣSðp2Þ ≠ 0, which makes Bðp2Þ ≠ 0 and
thus Mðp2Þ ≠ 0, also for vanishing MB. Since ΣSðp2Þ
comes from the loops, the mass of the quark is genuinely
dynamical, a feature that was already highlighted in Sec. II
for the gluons in pure YM theory. For nonchiral quarks the
situation is similar, the only difference being that Bðp2Þ
also contains one additional tree-level term which is
proportional to the bare mass MB of the quark. As we
will see in a moment, the fact that this term is not
renormalized poses no issue of consistency.
To one loop, an infinite number of diagrams contributes

to the 1PI quark self-energy. These have the structure of
the ordinary one-loop diagram of standard perturbation
theory—diagram (2a) in Fig. 4—with an arbitrarily large
number of insertions of the gluon mass counterterm δΓg
and of the quark mass counterterms δΓq;1 and δΓq;2. In
order to chose a truncation scheme for this infinite series,
let us have a look at the first few such diagrams.
The simplest one-loop self-energy diagram is the ordi-

nary uncrossed loop—denoted by (2a) in Fig. 4. In a
general covariant gauge, diagram (2a) has divergences in
both its vector component and in its scalar component,

Σð2aÞðpÞ ¼ ðc2aV=pþ c2aSMÞ 2
ϵ
þ � � � ; ð53Þ

where c2aV and c2aS areOðg2Þ coefficients, ϵ ¼ 4 − d is the
regulator of dimensional regularization, and the dots denote
finite self-energy terms. While the vector divergence can be
straightforwardly absorbed into the renormalization con-
stant Zψ—see the first of Eq. (50)—in order to remove the
mass divergence c2aS, we would need to define a renor-
malized mass MR in terms of which

MB ¼ Z−1
ψ

�
MR − c2aSM

2

ϵ
þ scheme-dep: consts:

�
; ð54Þ

see the second of Eq. (50). A relation like this mixes
infrared entities (namely, the chiral massM) to UV features
(the divergence and the renormalization of the bare mass)
with no apparent logic, aside from the mathematical
convenience of it. Moreover, this type of renormalization
cannot be employed in the chiral limitMB → 0, when there
is no bare mass in which to absorb the divergence. For these
reasons, it must be rejected.
We note that, having been introduced through a term

which is added and subtracted in the Lagrangian, the mass
parameter M cancels in the total action; as a consequence,
any divergence proportional to M must disappear when
diagrams with a different number of mass counterterms are
resummed at the same loop order.
In fact, diagram (2b) in Fig. 4 is easily shown to contain

the same mass divergence of diagram (2a) with an opposite
sign; since the crossed quark line in the diagram can be
expressed as a derivative with respect to the quark’s chiral
mass,

i
=p −M

ðiMÞ i
=p −M

¼ −M
∂
∂M

i
=p −M

: ð55Þ

The self-energy contribution from diagram (2b), Σð2bÞðpÞ,
can be obtained as a derivative of Σð2aÞðpÞ,

Σð2bÞðpÞ ¼ −M
∂
∂M Σð2aÞðpÞ: ð56Þ

It follows that

Σð2bÞðpÞ ¼ −c2aSM
2

ϵ
þ � � � ; ð57Þ

that is, Σð2aÞðpÞ and Σð2bÞðpÞ have opposite mass diver-
gences. As a consequence, the sum of diagrams (2a) and
(2b) only contains a divergence in the vector component,
coming entirely from Σð2aÞðpÞ. This divergence can be
shown to be the same as the one found in ordinary
perturbation theory and is to be absorbed into the definition
of Zψ , as we saw earlier.
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Now, in the Landau gauge (ξ ¼ 0), the divergence
contained in Σð2aÞðpÞ is known from ordinary perturbation
theory to vanish. Therefore, not only does the sum
Σð2aÞðpÞ þ Σð2bÞðpÞ not contain mass divergences, but in
the Landau gauge it is also fully finite. In particular, if we
truncate the perturbative series to diagrams (2a) and (2b) in
Fig. 4 and limit ourselves to the Landau gauge, then the
term MBZψ that appears in the Bðp2Þ function—see
Eq. (50)—can be taken to be a finite constant. In other
words, no renormalization of divergent constants or masses
is required in the screened expansion of the Landau gauge
quark propagator, provided that the latter is truncated to
diagrams (2a) and (2b).
On the other hand, if ξ ≠ 0, the vector divergence in

Σð2aÞðpÞ þ Σð2bÞðpÞ still needs to be absorbed into Zψ . For
nonchiral quarks (MB ≠ 0), if MB were taken to be finite,
this would leave us with a divergent MBZψ term inside
Bðp2Þ. Therefore, for ξ ≠ 0 and MB ≠ 0, a renormalized
massMR must still be introduced, even when truncating the
quark self-energy to diagrams (2a) and (2b).
It is easy to see that a renormalized mass of the form

MR ¼ MBZψ would not have the ordinary behavior of a
running mass under the renormalization group (RG).
Indeed, if the RG equations were employed in the scheme,
MR would run exclusively with the anomalous dimension
of the quark field, rather than with the full anomalous
dimension of the quark mass. This happens because we
have left out one further divergent diagram from the
calculation, namely, diagram (2c) in Fig. 4. The latter
can be obtained from diagram (2a) by using the equality

i
=p −M

ð−iMBZψÞ
i

=p −M
¼ MBZψ

∂
∂M

i
=p −M

; ð58Þ

which can be exploited to write

Σð2cÞðpÞ ¼ MBZψ
∂
∂M Σð2aÞðpÞ: ð59Þ

In particular,

Σð2cÞðpÞ ¼ c2aSMBZψ
2

ϵ
þ � � � : ð60Þ

As we can see, diagram (2c) has a scalar divergence
proportional to MBZψ . When the latter is summed to the
tree-level term in Bðp2Þ, one finds

Bðp2Þ ¼ MBZψ

�
1þ c2aS

2

ϵ

�
þ � � � : ð61Þ

By simple dimensional arguments, it is easy to show that
the remaining one-loop diagrams in the quark self-energy
are finite. Therefore, the above expression spells out the
complete divergent term of the scalar component of the

one-loop self-energy, obtained by summing the divergences
of diagrams (2a) to (2c) in Fig. 4. Such a term can indeed be
equated, modulo finite constants, to a renormalized mass
MR which would run like an ordinary quark mass if the RG
equations were to be used, leaving us with

Bðp2Þ ¼ MR þ finite terms: ð62Þ

Beyond the Landau gauge, then, consistency with the
renormalization group requires us to include diagram
(2c) in the calculation. In the Landau gauge, on the other
hand, diagram (2c) is not needed, in principle, since to one
loop the sum of diagrams (2a) and (2b) already results in a
finite quark 1PI self-energy.
Despite being necessary for theoretical consistency, if

the renormalized quark mass MR is much smaller than the
chiral mass M, the inclusion of diagram (2c) in the quark
self-energy turns out not to be essential from a quantitative
point of view. This is easily seen as follows. Let

Σð2a;2b;2cÞ
f ðpÞ be the finite parts of the self-energy diagrams

(2a), (2b), and (2c). Using Eqs. (56) and (59),

Σð2bÞ
f ðpÞ þ Σð2cÞ

f ðpÞ ¼ −ðM −MBZψÞ
∂
∂M Σð2aÞ

f ðpÞ: ð63Þ

Modulo higher-order corrections, we can set MB ¼ MR,
Zψ ¼ 1 in the above equation, so that

Σð2bÞ
f ðpÞ þ Σð2cÞ

f ðpÞ ¼ −ðM −MRÞ
∂
∂M Σð2aÞ

f ðpÞ: ð64Þ

It is then clear that, as long as MR ≪ M, the contribution
of diagram (2c) is completely negligible with respect to
that of diagram (2b). In other words, for the light quarks,
diagram (2c) can be taken to contribute only to the
divergent part of the self-energy, i.e., to the renormaliza-
tion of the bare mass.4

To summarize, in every linear covariant gauge, diagram
(2b) in Fig. 4 is needed in order to remove the mass
divergence in diagram (2a). This mass divergence has no
counterpart in ordinary perturbation theory, since it is
proportional to the quark chiral mass M. Diagram (2c) is
essential to renormalize the bare mass MB in compliance
with the standard RG equations. Nonetheless, its finite part
is completely negligible in the case of light quarks. Finally,
in the Landau gauge the sum of diagrams (2a) and (2b)

4For the sake of completeness, we note that there is one catch
in this argument; at high energies, the scalar part of the sum of
diagrams (2a) and (2b) can be shown to vanish, see, e.g., Sec. IV
A, so that, instead of being negligible, diagram (2c) actually
makes up for the whole scalar self-energy. As long as we limit
ourselves to low and moderate energies, this issue does not arise.
At large energies, however, diagram (2c) and appropriate RG
techniques are needed to account for the correct asymptotic
behavior of the quark mass function.
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results in a finite self-energy. Since for the light quarks
diagram (2c) is quantitatively negligible, in the Landau
gauge one can simply exclude it from the self-energy and
interpret the free parameters MB and Zψ as bare but finite
quantities.
In the next section, we carry on with our analysis of the

resummation of the one-loop quark propagator. Our main
focus is on exploring different ways to treat the finite
diagrams in Fig. 4.

B. Resummation schemes for the quark propagator

Up to this point, we have discussed the self-energy
diagrams which contribute to the divergent part of the one-
loop quark propagator, namely, diagrams (2a) to (2c) in
Fig. 4. Using simple dimensional arguments, it is easy to
show that, to one loop, other insertions of the gluon and
quark two-point mass counterterms indeed yield conver-
gent diagrams. As an example, consider diagram (2d)
in Fig. 4. This diagram has a superficial degree of
divergence D

D ¼ d − 1 − 2 − 2 → −1 < 0; ð65Þ
where the −1 and the −2’s come from the internal quark
and gluon lines, respectively, making diagram (2d) UV-
finite in the limit d → 4. Equivalently, observe that diagram
(2d) can be expressed as a derivative of diagram (2a) with
respect to the gluon mass parameterm2; using Eq. (25) with
n ¼ 1, we find that

Σð2dÞðpÞ ¼ −m2
∂

∂m2
Σð2aÞðpÞ: ð66Þ

Since the divergent part of Σð2aÞðpÞ does not depend onm2,
Σð2dÞðpÞ is again shown to be finite.
While divergent diagrams are included in the one-loop

calculation based on principles of renormalizability, assess-
ing which finite diagrams should be included as well is far
more tricky. One option could be to adopt a minimalistic
point of view and limit oneself to the one-loop diagrams
needed for consistency, i.e., diagrams (2a) to (2b) or (2c) in
Fig. 4. Yet another option could be to retain all the one-loop
diagrams with a maximum of three vertices, as we did for
the gluon propagator in Sec. II; in practice, this amounts to
also including diagram (2d) in the self-energy. These two
resummation schemes differ by how the internal gluon line
is treated—explicitly, by whether the internal zero-order
gluon propagator is corrected with its own mass counter-
term or not. We refer to them as the minimalistic and the
vertex-wise schemes, respectively. Schemes with a larger
number of crossed diagrams (not shown in Fig. 4) are not
considered in this paper.
In the next section, we fit and compare the results obtained

in the minimalistic and vertex-wise schemes with the
quenched lattice data of Ref. [73]. The reason for using

quenched rather than unquenched lattice data is to exploit
our previous results for pure YM theory and fix ab initio the
value of the gluon mass parameter m2 that appears in the
quark propagator—thus reducing the number of free param-
eters to be fitted. Indeed, observe that, to one loop, the quark
self-energy diagrams for the quenched and unquenched
theories coincide. Hence, in principle, our results could be
used for comparisons with both quenched and unquenched
data. However, in the framework of the screened massive
expansion, the value of the gluonmass parameterm2 running
in diagrams (2a)–(2d) (Fig. 4) can receive corrections from
the quark loop in the gluon polarization (Fig. 5), which is
only present in the unquenched theory. Thus, we expect the
value of m2 to be different depending on which theory
(quenched or unquenched) we are trying to fit. In order to
reduce the freedom in the choice of free parameters, we
decide not to make a new determination of the gluon mass
parameter, but rather to use the quenched lattice data for our
fits. The value m ¼ 0.6557 GeV was obtained in [60] by a
fit of the lattice data of Ref. [15] for pure YM theory. Withm
fixed, the remaining free parameters of the quark propagator
are the chiral mass M, the quark bare mass MB or
renormalized mass MR, and the renormalization constants.
As we will see, the minimalistic and vertex-wise schemes

are practically equivalent from the point of view of the fit, the
only difference being in the values of the parameters needed
to achieve the match with the lattice data. Both of them
succeed in quantitatively reproducing the lattice mass
function Mðp2Þ with very good precision. On the other
hand, in none of the two the Z function has the behavior
displayed by the lattice data; Zðp2Þ is found to be a
decreasing function of momentum, at variance with the
lattice. To one loop, such a mismatch is not unseen, having
been reported for another massive model, namely, the Curci-
Ferrari model of Ref. [45].
One interesting question to ask is whether higher-order or

nonperturbative corrections to the internal gluon line in the
quark self-energy can sensibly change the behavior of the Z
function. Indeed, as we noted in the Introduction, in the
Landau gauge, to one loop and at sufficiently high energies,
Zðp2Þ ≈ 1, making the Z function sensitive to all kinds of
contributions beyond the leading perturbative order. The
near vanishing of the perturbative contribution makes the Z
function a valid benchmark for investigating the role of
condensates by the OPE. Indeed, the slightly increasing
behavior which is observed on the lattice has been modeled

FIG. 5. Quark loop in the unquenched gluon polarization. To
one loop, its inclusion affects the value of the gluon mass
parameter m2 and the position and residue of the poles of the
gluon propagator.
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by OPE [74–76] and shown to be consistent with the
existence of a dimension-2 gluon condensate of the form
hA2i. In order to explore these issues, we introduce a third
resummation scheme, which we term the complex-conjugate
(CC) scheme for reasons that will become apparent in a
moment.
In the CC scheme, instead of only summing the zero-

order gluon propagator (minimalistic scheme) or its coun-
terterm-corrected counterpart (vertex-wise scheme), we use
the fully dressed gluon propagator as the internal gluon line
of the one-loop quark self-energy (see Fig. 6). Switching to
the dressed gluon propagator allows us to account for the
full nonperturbative dynamics of the gluon, when comput-
ing the quark propagator.
While, in principle, using the dressed propagator would

require us to resum and integrate an infinite number of
higher-order diagrams, in practice we know that—in pure
Yang-Mills theory—the principal part of the screened
expansion’s one-loop gluon propagator provides a very
good approximation to the dressed propagator, modulo a
multiplicative factor (see Sec. II B, in particular, Figs. 2 and
3). Therefore, in the CC scheme, we use a zero-order gluon
propagator which—in Euclidean space and in the Landau
gauge—reads

Δðc:c:Þ
μν ðpÞ ¼

�
R

p2 þ p2
0

þ R̄

p2 þ p2
0

�
tμνðpÞ: ð67Þ

Here, p2
0 and p2

0 are the complex-conjugate poles of the
dressed gluon propagator (hence, the name CC scheme) in
the complexified Minkowski space, and R and R̄ are their
normalized residues. The value of the modulus jRj—which
depends both on the renormalization conventions for the
dressed gluon propagator and on a multiplicative factor that
converts between the full propagator and its principal part
—does not actually affect the results for the quark propa-
gator, provided that the free parameters are suitably
redefined. Indeed, to one loop, the internal gluon line in
the quark self-energy is multiplied by a factor of the strong
coupling constant αs, so that jRj can be absorbed into the
definition of the latter. Our convention for the definition of
jRj (and thus also αs in the CC scheme) is discussed in

Sec. IV C. As for p2
0 and the phase of R, we use the values

reported in Table I (Sec. II B). These were obtained in pure
Yang-Mills theory and are thus suitable for calculations in
the quenched theory, in line with our discussion on the
gluon mass parameter m2 in the minimalistic and vertex-
wise schemes.
As we show in Appendix B, despite the poles p2

0 and p2
0

being complex, as long as the external momentum p2 ∈ R,
the loop integrals in the CC scheme can be computed by
employing the usual machinery of Feynman parameter
integrals and gamma functions. In particular, if we denote

with ΣðloopsÞ
m: ðpÞ the loop contribution to quark self-energy

computed in the minimalistic scheme—diagrams (2a) to
(2c) in Fig. 4—then we can express the corresponding self-

energy term ΣðloopsÞ
c:c: ðpÞ in the CC scheme as

ΣðloopsÞ
c:c: ðpÞ¼RΣðloopsÞ

m: ðpÞjm2¼p2
0
þR̄ΣðloopsÞ

m: ðpÞj
m2¼p2

0

ð68Þ

or equivalently

ΣðloopsÞ
c:c: ðpÞ ¼ 2RefRΣðloopsÞ

m: ðpÞjm2¼p2
0
g: ð69Þ

As we will see, the Z function computed in the CC
scheme indeed turns out to have a qualitatively different
behavior than those computed in the minimalistic or vertex-
wise scheme, closer to the one displayed by the quenched
lattice data at moderately large momenta.

IV. THE QUARK PROPAGATOR
IN THE LANDAU GAUGE

In this section, we report our results for the quark
propagator in the Landau gauge using the screened massive
expansion of full QCD in the minimalistic, vertex-wise, and
complex-conjugate resummation schemes introduced in
Sec. III B. As previously discussed, we use the lattice data
of Ref. [73] for quenched QCD in order to test the validity of
the expansion and fit the free parameters that appear in the
propagator. These parameters are defined in what follows.
In general, see Eqs. (50) and (51), the quark mass and Z

function can be expressed as

Mðp2Þ ¼ MBZψ þ ΣSðp2Þ
Zψ − ΣVðp2Þ ;

Zðp2Þ ¼ ½Zψ − ΣVðp2Þ�−1: ð70Þ

Here, ΣVðp2Þ and ΣSðp2Þ are the vector and scalar
components of the loop contribution to the quark self-
energy,MB is the quark bare mass, and Zψ is the quark field
renormalization constant. In the Landau gauge and to one
loop, as we saw in Sec. III, ΣVðp2Þ is UV convergent. As a
consequence, we can write

FIG. 6. 1PI diagrams for the quark self-energy in the
complex-conjugate (CC) scheme. The double lines represent
the fully dressed gluon propagator, which in the CC scheme is
approximated by the principal part of the one-loop gluon
propagator (Sec. II).
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ΣVðp2Þ ¼ αs
3π

σVðp2Þ; ð71Þ

where σVðp2Þ is a finite function. Nonetheless, the value
of Zψ still needs to be fixed. We decide to do so by
renormalizing the Z function in the momentum-subtraction
(MOM) scheme at a specified renormalization scale μ2.
Namely, we set

Zðμ2Þ ¼ 1 ⇔ Zψ − ΣVðμ2Þ ¼ 1; ð72Þ

or, equivalently,

Zψ ¼ 1þ αs
3π

σVðμ2Þ; ð73Þ

where we take μ to be equal to 4 GeV. As we will see in a
moment, as far as the fits are concerned, this choice is
inessential to our results.
At variance with ΣVðp2Þ, the scalar component ΣSðp2Þ

can be either UV divergent or UV convergent depending on
whether diagram (2c) in Figs. 4 and 6 is included or not in
the self-energy, respectively. In the absence of diagram
(2c), ΣSðp2Þ can be expressed as

ΣSðp2Þ ¼ αs
π
σSðp2Þ; ð74Þ

where σSðp2Þ is a finite function. In particular, it follows
from the first of Eq. (70) thatMB must be taken to be finite.
If we now define two finite constants h0 and k0,

h0 ¼
3π

αs
Zψ ;

k0 ¼
π

αs
MBZψ ; ð75Þ

then the mass function Mðp2Þ reads

Mðp2Þ ¼ 3½k0 þ σSðp2Þ�
h0 − σVðp2Þ : ð76Þ

Here, αs and MB have been absorbed into the definition of
h0 and k0.
While the exact propagator should not depend on the

scale μ, apart from a renormalization factor, the approxi-
mate one-loop function Mðp2Þ still has an implicit
spurious dependence on μ through the parameters h0, k0,
according to Eqs. (75) and (73). Thus, the one-loop result
can be optimized by a wise choice of the parameters; fixing
h0 and k0 amounts to choosing an optimal renormalization
—together with the corresponding coupling and bare mass
—for the quark mass function.
As discussed in Sec. II B, for the gluon propagator such

an optimization can be achieved from first principles in
pure YM theory. Here, we just assume the existence of an

optimal value of the parameters and determine them by a
comparison with the lattice data. Thus, h0 and k0 are
regarded as free parameters which depend on the scale
ambiguity of the loop expansion.
For our fits, we use h0, k0 and the chiral mass M as the

primary free parameters. It follows that our choice of the
MOM scheme with μ ¼ 4 GeV as the renormalization
scale has no impact on the results of the fit. What the
renormalization scheme actually determines is the value of
αs, which can be computed at fixed h0 and M by using
Eq. (73) and the first of Eq. (75),

αs ¼ 3π½h0 − σVðμ2Þ�−1: ð77Þ

From the above equation, αs could be interpreted as the
strong coupling constant defined at the renormalization
scale μ ¼ 4 GeV. However, it must be kept in mind that the
renormalization prescription we chose is fully arbitrary.
Actually, if the Z function computed in the screened
expansion is not well behaved, which is the case here as
we have anticipated, then taking Zðμ2Þ ¼ 1 as the starting
point for measuring αs could lead to meaningless values for
the coupling constant. For the same reason, while, in
principle, the lattice data for the Z function could be used
to fit at least some of the parameters of the expansion, we
instead fully rely on the lattice data for the quark mass
function to perform the fit.
For completeness, we also report our results in terms of

the renormalized mass MR. As we saw in Sec. III A, the
latter must be introduced as soon as diagram (2c) is
included in the quark self-energy. This is due to the fact
that, in the presence of said diagram, ΣSðp2Þ contains a
divergence proportional to MBZψ . Namely, for N ¼ 3, in
the minimalistic and vertex-wise schemes,5

ΣSðp2Þ ¼ αs
π

�
σSðp2Þ þMBZψ

2

ϵ

�
: ð78Þ

Since, when MR ≪ M, the finite part of diagram (2c) is
negligible—see the discussion in Sec. III—the function
σSðp2Þ in Eq. (78) can be taken to be very same as the one
in Eq. (74).6 A renormalized mass MR can then be defined
by absorbing the mass divergence of diagram (2c) intoMB,

MR ¼ MBZψ

�
1þ αs

π

2

ϵ

�
: ð79Þ

With MR as above, Eq. (76) still holds in the presence of
diagram (2c), with the constant k0 defined as

5For the complex-conjugate scheme see ahead, Sec. IV C.
6The same goes for Eq. (71); ΣVðp2Þ is the same function both

in the presence and in the absence of diagram (2c), with σVðp2Þ
unchanged.
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k0 ¼
π

αs
MR ð80Þ

and h0 defined in the first of Eq. (75). Of course, whether
we express our results in terms of MB or of MR has no
quantitative impact on our fits, since these are performed
using h0 and k0, which as free parameters are more general
than the masses and coupling themselves.
In the next sections, our focus is on quarks whose lattice

masses Mlat ¼ 18, 36, 54, 72, 90 MeV are small with
respect to the QCD scale. Nonetheless, we also present
some results for heavier quarks.

A. Minimalistic scheme

In the minimalistic resummation scheme, the loop
diagrams included in the quark self-energy are those
denoted by (2a), (2b), and, for the purpose of defining a
renormalized mass MR, (2c) in Fig. 4. The quark mass
function Mðp2Þ can be expressed as

Mðp2Þ ¼ 3½k0 þ σðm:Þ
S ðp2Þ�

h0 − σðm:Þ
V ðp2Þ

; ð81Þ

where the analytic expressions for the scalar functions

σðm:Þ
S ðp2Þ and σðm:Þ

V ðp2Þ are reported in Appendix A. By

fixing m ¼ 655.7 MeV as discussed in Sec. III B and
fitting the quenched lattice mass functions of Ref. [73]
for the lattice masses Mlat ¼ 18, 36, 54, 72, 90 MeV, we
obtained the values of h0 and k0 reported in Table II. In
Table III, we list the corresponding values of αs, MB, and
MR, computed by employing the definitions in Eqs. (73),
(75), and (80).
As we can see from Fig. 7, the mass functions computed

in the minimalistic scheme show a very good agreement
with the lattice data. For all but one of the considered lattice
masses—namely, Mlat ¼ 18 MeV, which we discuss sep-
arately in a moment—the fitted values of the chiral massM
are found to be in the range 320–337 MeV, while the bare
massesMB are found to increase withMlat, always keeping
close to the latter.
The fact that MB ≈Mlat can be easily explained by

looking at the high-momentum limit of the functions

σðmÞ
V ðp2Þ and σðmÞ

S ðp2Þ. For p2 ≫ m2;M2 we have

σðmÞ
V ðp2Þ → −1 −

3m2

4p2
þ 3m2

2p2
ln

p2

m2
→ −1;

σðmÞ
S ðp2Þ → 2M2

p2
ln

p2

M2
→ 0: ð82Þ

Therefore, in terms of MB and αs,

Mðp2Þ → MBZψ

Zψ þ αs
3π

≈MBðp2 ≫ m2;M2Þ; ð83Þ

where the approximation holds provided that the coupling
is sufficiently small. The above equation shows that the
scale of the high-momentum limit of the mass function is
set by the bare massMB; since on the lattice the same role is
played by the lattice mass Mlat, we expect MB ≈Mlat as
long as our function fits well the lattice data.

TABLE II. Fit parameters for the quark mass function Mðp2Þ
in the minimalistic scheme.Mlat,M, and k0 are expressed in MeV.
The lattice data are taken from Ref. [73]. The asterisked row was
obtained at fixed MB, see Table III.

Mlat M h0 k0

18 368.6 2.132 −10.3
18⋆ 318.1 1.791 6.0
36 330.8 1.967 14.1
54 320.0 2.073 38.1
72 330.7 2.341 62.4
90 336.9 2.504 88.6

TABLE III. Fit parameters for the quark mass function Mðp2Þ
in the minimalistic scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV). Mlat, M, MB, and MR are
expressed in MeV. The lattice data are taken from Ref. [73]. The
asterisked row was obtained at fixed MB.

Mlat M αs MB MR

18 368.6 3.139 −14.4 −10.2
18⋆ 318.1 3.542 10 6.7
36 330.8 3.322 21.5 14.9
54 320.0 3.202 55.2 38.9
72 330.7 2.935 79.9 58.3
90 336.9 2.793 106.1 78.8
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FIG. 7. Quark mass functionMðp2Þ in the Euclidean space and
in the Landau gauge for different values of the lattice mass Mlat.
Points: quenched lattice data from Ref. [73]. Curves: one-loop
mass functions computed in the minimalistic resummation
scheme using the parameters in Table II (equivalently, Table III).
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In the limit of vanishing momenta, regardless of the
lattice mass, the data saturate to a finite value of about 350–
450 MeV.7 The approximate independence of the saturation
value fromMlat is expected on the basis that, in the infrared,
the light quarks acquire most of their mass through the
strong interactions, whose scale is much larger than the
quark mass contained in the Lagrangian, and thus domi-
nates over the latter. The mass function computed in the
minimalistic scheme does reproduce this feature, provided
that the chiral massM is comparable in value for the lattice
masses under consideration (as is the case in our fits).
In Table III, the value of the bare mass MB fitted for

Mlat ¼ 18 MeV stands out for being negative (this is a direct
consequence of k0 < 0 in Table II). Presumably, this
physically meaningless result is an artifact of the fit caused
by the highly oscillatory tail of the MB ¼ 18 MeV lattice
mass function; the oscillations themselves are most likely
due to discretization errors, as suggested by the large error
bars in the original data (see Ref. [73]). A constrained fit
forcing MB ≥ 0 is not able to fix this issue, since, in the
presence of the constraint, the fitting routine still tries to push
MB to negative values, which implies that the lower
boundary of the fitting interval, namely, MB ¼ 0, is inevi-
tably hit. Thus, no meaningful result for MB is obtained by
constraining the latter to be non-negative. Cutting the data at
large momenta in order to avoid the oscillations (which
begin at approximately 2.5–3 GeV), as well, would not
improve the situation; since at low momenta the quark mass
function is not very sensitive to the value ofMB (provided, of
course, that we assume MB ≪ M), employing a cut dataset
would make it impossible to meaningfully establish the
value of the bare mass by a fit. As an alternative, to test our
results, we checked that fixing the value of MB by hand,
instead of fitting it from the lattice data, still yields a mass
function which—modulo oscillations—is in good agreement
with the lattice. Some examples are shown in Fig. 8, where
we plot the data for Mlat ¼ 18 MeV together with our
minimalistic scheme mass function. Here, MB is set to
0,10,18 MeV, while the rest of the free parameters (reported
in Table IV) are still obtained by fitting the data.
Remarkably, as soon as the bare mass is fixed to small
but positive values, the values of the parameters M and αs
obtained from the constrained fit get closer to those found for
Mlat ¼ 36–90 MeV (Table III), further evidence that MB >
0 is a more consistent choice when compared to the raw
result of the fit.
Being in possession of analytic expressions which give a

good description of the quark mass function in the
Euclidean space, we are in a position to extend the quark
propagator to the complexified Minkowski space and look
for its poles p2

0. These are defined as the solutions to the
equation

p2
0 −M2ðp2

0Þ ¼ 0; ð84Þ

where the argument p2 of the function Mðp2Þ is a
complexified Minkowski momentum squared, at variance
with the convention used in this section, where we used the
Euclidean momentum. For all the considered lattice
masses, using the parameters in Tables II and III, we found
that the quark propagator has a pair of complex-conjugate
poles in the variable p2 (equivalently, two pairs in the
variable p ¼

ffiffiffiffiffi
p2

p
); their positions p0 are reported in

Table V. In the literature, the existence of complex-con-
jugate poles has been interpreted as proof of confinement,
since the imaginary part of the poles has the effect of
removing the particles from the asymptotic states of the
theory [55,60,71]. In the minimalistic scheme, the real part
of the poles was found to be between 388 and 424 MeV,
while their imaginary part is roughly half these values,
having been found in the range from 174 to 194 MeV.
Fixing MB ¼ 10 MeV by hand for the lattice mass Mlat ¼
18 MeV yields p0 ¼ �373.7� 202.3i MeV, a result
which is more consistent with those of the other lattice
masses, when compared with the one obtained from the raw
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FIG. 8. Mlat ¼ 18 MeV quark mass function in the Euclidean
space and in the Landau gauge. Points: quenched lattice data from
Ref. [73]. Curves: one-loop mass functions computed in the
minimalistic resummation scheme. The parameters for the curves
with MB ¼ 0, 10, 18 MeV are reported in Table IV; those for the
curve labeled as “full fit” are reported in Table III.

TABLE IV. Fit parameters for the quark mass function Mðp2Þ
in the minimalistic scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV), given Mlat ¼ 18 MeV and
MB fixed to three different values. Mlat, MB, M, and MR are
expressed in MeV. The lattice data are taken from Ref. [73].

Mlat MB M αs MR

18 0 338.1 3.373 0.0
18 10 318.1 3.542 6.7
18 18 302.7 3.679 11.9

7Note that this value is larger for the heavy quarks, as we show
later on in Fig. 10.
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fit. Indeed, we note that jReðp0Þj increases withMlat, while
jImðp0Þj decreases with it. We checked that using small but
positive values of MB for Mlat ¼ 18 MeV yields similar
poles to those reported above.
In Fig. 9, we show an example of the Z function

computed in the minimalistic scheme using the parameters
in Table III, compared with the lattice data for a quark with
mass Mlat ¼ 54 MeV. As we can see, the behavior of
Zðp2Þ is the complete opposite of that found on the lattice;
while on the lattice the Z function increases with momen-
tum, in the minimalistic scheme it decreases. This behavior
is independent of the considered lattice mass, and we
checked that it does not change if the parameters are fixed
by fitting the Z function itself rather than the mass function.
We believe that the mismatch with the lattice data may be
due to the fact that, at least at sufficiently high energies,
Zðp2Þ ≈ 1, making the Z function very sensitive to higher-
order and even nonperturbative corrections. This is sup-
ported by the results we obtained in the complex-conjugate
resummation scheme, which show an improved agreement
at large momenta (see Sec. IV C) and by recent findings
reported in Ref. [65], where the Z function is computed in

the context of the Curci-Ferrari model and shown to change
its behavior at two loops.
While up to this point our main focus has been on the

light quarks, it may be interesting to see what happens if we
try to apply the screened expansion to heavier quarks.
Therefore, to end this section, we compare the minimalistic
scheme mass function with the lattice data for quarks of
mass Mlat ¼ 126, 181, 271 MeV. The outcome is shown in
Fig. 10; as in Fig. 7, the free parameters are fitted from the
data themselves. It should be noted that whenMB becomes
of the same order as M, as is the case in these fits, the
approximation that we employed throughout this paper,
namely, to neglect the finite part of diagram (2c) in Fig. 4,
becomes less justifiable, and the diagram should be fully
included in the quark self-energy. Nevertheless, it appears
that the mass functions in the minimalistic scheme still
manage to fit well the lattice data. As for the light quarks,
the Z functions computed in the minimalistic scheme for
the heavier quark do not match the lattice data and are thus
not reported.

B. Vertex-wise scheme

In the vertex-wise resummation scheme, the loop dia-
grams included in the quark self-energy are those denoted
by (2a), (2b), (2d), and, for defining a renormalized mass
MR, (2c) in Fig. 4. The quark mass functionMðp2Þ can be
expressed as

Mðp2Þ ¼ 3½k0 þ σðv:ÞS ðp2Þ�
h0 − σðv:ÞV ðp2Þ

; ð85Þ

where the analytic expressions for the scalar functions

σðv:ÞS ðp2Þ and σðv:ÞV ðp2Þ are reported in Appendix A. As in
Sec. IVA, we fixed m ¼ 655.7 MeV and performed a fit to
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TABLE V. Poles p0 of the quark propagator derived in the
minimalistic scheme, using the parameters in Tables II and III.
Both Mlat and p0 are in MeV; the � signs in p0 are independent
from one another. The asterisked row was obtained at fixed MB.

Mlat p0

18 �404.9� 187.5i
18⋆ �373.7� 202.3i
36 �388.0� 194.2i
54 �390.7� 185.6i
72 �407.7� 174.9i
90 �424.4� 177.3i
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the quenched lattice mass functions of Ref. [73] for the
lattice massesMlat ¼ 18, 36, 54, 72, 90 MeV. The results of
the fit are reported in Table VI, while in Table VII we list
the corresponding values of αs, MB and MR.
No significant change was found in the behavior of the

mass and Z functions computed in the vertex-wise scheme
when compared to the minimalistic scheme, the main
difference between the two being the fitted values of the
free parameters. For this reason, in what follows we keep
the discussion to a minimum and limit ourselves to
reporting our results. We refer to Sec. IVA for details.
In Fig. 11, we show the mass functionMðp2Þ computed

in the vertex-wise scheme together with the lattice data. As
we can see, the mass functions have the same behavior as in
the minimalistic scheme and fit very well the data. Like in
the former scheme, the fitted values of the bare masses MB
are close to Mlat, as expected upon inspection of the high-
momentum limit p2 ≫ m2;M2, which in the case of the
vertex-wise scheme reads

σðvÞV ðp2Þ → −1þ 3m2

2p2
→ −1;

σðvÞS ðp2Þ → m2

p2
ln

p2

m2
þ 2M2

p2
ln

p2

M2
→ 0; ð86Þ

again yielding

Mðp2Þ → MBZψ

Zψ þ αs
3π

≈MBðp2 ≫ m2;M2Þ: ð87Þ

In the vertex-wise scheme, the fitted values of the chiral
mass M turn out to be smaller than those reported in
Sec. IVA, being found in the range 221–249 MeV.
Together with the values of the coupling constant αs,
which are larger in the minimalistic scheme, this is by
far the biggest difference between the two schemes.
Like in the minimalistic scheme, the bare massMB fitted

from the lattice dataset Mlat ¼ 18 MeV is negative. Again,
as shown in Fig. 12, small but positive values ofMB yield a
mass function which fits well the lattice data and whose
parameters M, αs, and MR are closer to those extracted
from the other fits (Table VII).

TABLE VI. Fit parameters for the quark mass function Mðp2Þ
in the vertex-wise scheme.Mlat,M, and k0 are expressed in MeV.
The lattice data are taken from Ref. [73]. The asterisked row was
obtained at fixed MB, see Table VII.

Mlat M h0 k0

18 268.0 2.656 −16.9
18⋆ 197.6 2.051 6.8
36 228.7 2.418 11.5
54 221.4 2.577 40.0
72 238.4 2.977 70.1
90 249.0 3.207 102.5

TABLE VII. Fit parameters for the quark mass functionMðp2Þ
in the vertex-wise scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV). Mlat, M, MB, and MR are
expressed in MeV. The lattice data are taken from Ref. [73]. The
asterisked row was obtained at fixed MB.

Mlat M αs MB MR

18 268.0 2.605 −19.1 −14.0
18⋆ 197.6 3.128 10 6.8
36 228.7 2.788 14.3 10.2
54 221.4 2.663 46.6 33.9
72 238.4 2.393 70.7 53.4
90 249.0 2.261 95.9 73.8
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FIG. 11. Quark mass function Mðp2Þ in the Euclidean space
and in the Landau gauge for different values of the lattice mass
Mlat. Points: quenched lattice data from Ref. [73]. Curves: one-
loop mass functions computed in the vertex-wise resummation
scheme using the parameters in Table VI (equivalently,
Table VII).
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FIG. 12. Mlat ¼ 18 MeV quark mass function in the Euclidean
space and in the Landau gauge. Points: quenched lattice data from
Ref. [73]. Curves: one-loop mass functions computed in the
vertex-wise resummation scheme. The parameters for the curves
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In Table IX, we report the position of the poles of the
vertex-wise scheme quark propagator, obtained by using the
parameters in Table VII. These have real parts in the range
from 371 to 410 MeVand imaginary parts between 167 and
185 MeV, slightly less than their minimalistic scheme
analogues. At variance with the minimalistic scheme, we
found that jImðp0Þj is smaller for Mlat ¼ 72 MeV than for
Mlat ¼ 90 MeV, the difference being of few MeVs. Given
the generally decreasing behavior of jImðp0Þj with Mlat, we
believe that this result maybe a glitch of the fit. Indeed, we
checked that slightly changing the values of the free
parameters for either of the two quark masses yields both
a decreasing jImðp0Þj and mass functions which still fit well
the lattice data. As for the Mlat ¼ 18 MeV quark, if we fix
MB to 10MeV likewe did in Sec. IVA, the poles are found at
p0 ¼ �349.2� 193.1i MeV. Again, this result is consistent
with the increasing (respectively, decreasing) behavior of
jReðp0Þj (respectively, jImðp0Þj) with Mlat, and choosing
other small but positive values for MB does not change the
picture.
The Z function computed in the vertex-wise scheme,

displayed in Fig. 13 for the lattice mass Mlat ¼ 54 MeV,
shows the same behavior as its minimalistic scheme
counterpart, being a decreasing function of momentum.
In particular, the change of scheme does not manage to
solve the mismatch with the lattice data.
Finally, as in Sec. IVA, the mass functions obtained from

a fit of the heavier quarks, Mlat ¼ 126, 181, 271 MeV, see
Fig. 14, are in good agreement with the lattice data, despite
having neglected the finite part of diagram (2c) in Fig. 4.

We conclude that, when used to compute the quark
propagator in the Landau gauge, the minimalistic and
vertex-wise resummation schemes are practically equiva-
lent; albeit with different values of the free parameters, they
both yield mass functions which are found to be in good
agreement with the lattice, while not being able to repro-
duce the correct behavior of the lattice Z function. As we
shall see in the following section, the complex-conjugate
scheme offers a partial solution to the latter issue.

C. CC scheme

Before reporting the results of the fits in the complex-
conjugate resummation scheme, let us address one final
aspect of its definition. Recall that in the CC scheme the
free gluon propagator (internal gluon line) Δðc:c:Þ

μν ðpÞ is
defined modulo the absolute value of the residue R of the

TABLE VIII. Fit parameters for the quark mass function
Mðp2Þ in the vertex-wise scheme, in terms of αs and MB or
MR (renormalization scale: μ ¼ 4 GeV), given Mlat ¼ 18 MeV
and MB fixed to three different values. Mlat, MB, M, and MR are
expressed in MeV. The lattice data are taken from Ref. [73].

Mlat MB M αs MR

18 0 220.9 2.931 0.0
18 10 197.6 3.128 6.8
18 18 179.7 3.300 11.9

TABLE IX. Poles p0 of the quark propagator derived in the
vertex-wise scheme, using the parameters in Tables VI–VII. Both
Mlat and p0 are in MeV; the � signs in p0 are independent from
one another. The asterisked row was obtained at fixed MB.

Mlat p0

18 �387.4� 180.9i
18⋆ �349.2� 193.1i
36 �371.7� 185.4i
54 �375.2� 177.2i
72 �392.9� 167.6i
90 �410.8� 170.2i
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FIG. 13. Quark Z function Zðp2Þ in the Euclidean space and in
the Landau gauge for Mlat ¼ 54 MeV, renormalized at
μ ¼ 4 GeV. Points: quenched lattice data from Ref. [73]. Curve:
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quenched lattice data from Ref. [73]. Curves: one-loop mass
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corresponding dressed propagator at its poles. As discussed
in Sec. III B, since to one loop jRj is multiplied to the
coupling constant αs, a change in the former can be always
compensated by a change in the latter. Therefore, fixing the
value of jRj actually amounts to choosing a definition for
the coupling. In order to choose our conventions for R and
αs, let us inspect the divergences of the CC scheme. From
Eq. (68) we know that, to one loop and in the Landau
gauge, the only divergence that arises in the CC scheme
comes from the scalar part of the quark self-energy and, in
particular, from diagram (2c) in Fig. 6. Using Eq. (78), it is
easy to show that in the presence of diagram (2c),

Σðc:c:Þ
S ðp2Þ¼αs

π

�
σðc:c:ÞS ðp2ÞþMBZψðRþ R̄Þ2

ϵ

�
; ð88Þ

where Σðc:c:Þ
S ðp2Þ is the scalar part of the loop self-energy in

the CC scheme and

σðc:c:ÞS ðp2Þ ¼ Rσðm:Þ
S ðp2Þjm2¼p2

0
þ R̄σðm:Þ

S ðp2Þj
m2¼p2

0

; ð89Þ

where σðm:Þ
S ðp2Þ is the minimalistic scheme scalar function

defined in Sec. IVA. As we can see, for general values of

R ¼ jRjeiθ, the divergence in Σðc:c:Þ
S ðp2Þ is not the standard

one-loop divergence of QCD; a factor of ðRþ R̄Þ ¼
2jRj cos θ appears in front of the ordinary result. This is
not an inconsistency by itself. As explained in Sec. III B,
the CC scheme is to be interpreted as a resummation of
higher-order gluon polarization diagrams, so that the
structure of its divergent part does not need to coincide
with what we would expect from one-loop standard
perturbation theory. Nonetheless, we can exploit the free-
dom in the choice of jRj to make the scalar divergence look
like a standard one-loop divergence. This can be achieved
by setting

Rþ R̄ ¼ 2jRj cos θ ¼ 1: ð90Þ

With R normalized as such, we have that

Δðc:c:Þ
μν ðpÞ → −itμνðpÞ

p2
ð91Þ

in the UV (p2 ≫ m2), as in standard perturbation theory.
We remark that this choice is not dictated by any profound
principle that needs to be satisfied in order for the scheme to
be consistent. It must be interpreted as a convention by
which we fix the value of the strong coupling constant αs.
Having fully defined the CC scheme, let us now turn to

the results of the fit. As in Secs. IVA and IV B, the quark
mass function Mðp2Þ computed in the complex-conjugate
scheme can be expressed as

Mðp2Þ ¼ 3½k0 þ σðc:c:ÞS ðp2Þ�
h0 − σðc:c:ÞV ðp2Þ

; ð92Þ

where σðc:c:ÞS ðp2Þ is given by Eq. (89) and

σðc:c:ÞV ðp2Þ ¼ Rσðm:Þ
V ðp2Þjm2¼p2

0
þ R̄σðm:Þ

V ðp2Þj
m2¼p2

0

; ð93Þ

where σðm:Þ
V ðp2Þ has been defined in Sec. IVA. In order to

fix the value of the free parameters k0 and h0, we fitted the
quenched lattice mass functions of Ref. [73] for the quark
masses Mlat ¼ 18, 36, 54, 72, 90 MeV, using m ¼
655.7 MeV as the gluon mass parameter. The results of
the fit are reported in Tables X and XI.
In Fig. 15, we show the complex-conjugate scheme mass

functions Mðp2Þ together with the lattice data. As in the
minimalistic and vertex-wise schemes, our analytic func-
tions are in very good agreement with the data. The chiral
massM is found in the range from 405 to 450 MeV, and the
values of MB increase with Mlat, having set 2jRj cos θ ¼ 1
makes Eqs. (82) and (83) hold also in the CC scheme. For
the Mlat ¼ 18 MeV quark, which by a raw fit, as in the
previous schemes, is found to have negative bare mass,
fixingMB to small but positive values still results in a mass
function which fits well the lattice data—see Table XII
and Fig. 16.

TABLE X. Fit parameters for the quark mass function Mðp2Þ
in the complex-conjugate scheme. Mlat, M, and k0 are expressed
in MeV. The lattice data are taken from Ref. [73]. The asterisked
row was obtained at fixed MB, see Tab. XI.

Mlat M h0 k0

18 449.9 6.294 −4.6
18⋆ 405.9 5.467 18.2
36 406.6 5.701 49.0
54 405.2 6.166 108.0
72 431.9 7.216 176.3
90 449.8 7.801 248.3

TABLE XI. Fit parameters for the quark mass function Mðp2Þ
in the complex-conjugate scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV). Mlat, M, MB, and MR are
expressed in MeV. The lattice data are taken from Ref. [73]. The
asterisked row was obtained at fixed MB.

Mlat M αs MB MR

18 449.9 1.252 −2.2 −1.8
18⋆ 405.9 1.407 10 8.2
36 406.6 1.359 25.8 21.2
54 405.2 1.273 52.6 43.8
72 431.9 1.115 73.3 62.6
90 449.8 1.043 95.5 82.4
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The CC quark propagator has a pair of complex-
conjugate poles, whose positions are reported in
Table XIII. With MB fixed to example value of 10 MeV,

jReðp0Þj is found in the range from 423 to 478 MeV,
increasing with Mlat, while jImðp0Þj lies between 186 and
157 MeV, decreasing with it. The former are quite larger
than those of the minimalistic and vertex-wise schemes,
while the latter are somewhat smaller. In other words, the
ratio jImðp0Þ=Reðp0Þj tends to be smaller in the CC
scheme in comparison to the other schemes.
Along with some differences in the fitted values of the

free parameters and in the position of the quark poles, the
mass functions computed in the CC scheme also show a
small change in shape, when compared to their analogues
in the minimalistic and vertex-wise schemes. This is
displayed in Fig. 17, where we plot the mass functions
obtained in the three schemes for the example value of
Mlat ¼ 54 MeV. As a result of the change, the CC scheme
mass function is somewhat more suppressed in the p → 0
limit. The effect, however, is very small and might not be
meaningful.
The radical departure of the complex-conjugate scheme

from the minimalistic and vertex-wise schemes concerns
the Z function. In Fig. 18, we plot Zðp2Þ for the example
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TABLE XII. Fit parameters for the quark mass functionMðp2Þ
in the complex-conjugate scheme, in terms of αs and MB or MR
(renormalization scale: μ ¼ 4 GeV), given Mlat ¼ 18 MeV and
MB fixed to three different values. Mlat, MB, M, and MR are
expressed in MeV. The lattice data are taken from Ref. [73].

Mlat MB M αs MR

18 0 441.6 1.279 0.0
18 10 405.9 1.407 8.2
18 18 379.5 1.519 14.4

TABLE XIII. Poles p0 of the quark propagator derived in the
complex-conjugate scheme, using the parameters in Tables X and
XI. Both Mlat and p0 are in MeV; the � signs in p0 are
independent from one another. The asterisked row was obtained
at fixed MB.

Mlat p0

18 �448.8� 167.9i
18⋆ �423.8� 186.0i
36 �428.5� 182.4i
54 �434.2� 172.5i
72 �457.1� 155.7i
90 �477.7� 157.6i

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Μ
(p

) 
(G

eV
)

p (GeV)

Minimalistic scheme

Vertex-wise scheme

Complex-conj. scheme

FIG. 17. Quark mass function Mðp2Þ in the Euclidean space
and in the Landau gauge for Mlat ¼ 54 MeV. Points: quenched
lattice data from Ref. [73]. Curves: one-loop mass functions
computed in the minimalistic, vertex-wise, and complex-
conjugate resummation schemes.

COMITINI, RIZZO, BATTELLO, and SIRINGO PHYS. REV. D 104, 074020 (2021)

074020-20

280 Appendix C: Published papers



value of Mlat ¼ 54 MeV together with the lattice data. As
we can see, at variance with the previous two schemes and
consistent with the lattice, the CC scheme Z function
increases with momentum for p⪆1 GeV. Moreover, above
this cutoff value, our analytical expression is also in fair
quantitative agreement with the lattice data.8 At low
momenta, on the other hand, the agreement is lost, since
Zðp2Þ changes behavior and starts to increase with decreas-
ing p. This picture holds for any of the lattice masses
considered in this section.
It appears that, at sufficiently large momenta, computing

the quark Z function with the fully dressed gluon propa-
gator (or, to be more precise, its CC scheme approximation)
as the internal gluon line of the quark self-energy solves the
mismatch between the screened expansion and the lattice
data. As discussed in Sec. III B, this may be due to the
dressed gluon propagator containing nonperturbative con-
tributions (e.g., from the condensates, consistent with the
OPE studies [74–76]) which a bare massive propagator
does not.
To end this section, as we did in Secs. IVA and IV B, in

Fig. 19 we compare the mass function with the lattice data
for heavier quarks,Mlat ¼ 126, 181, 271 MeV. We see that
also in the CC scheme our analytic expressions fit well
the data.

V. DISCUSSION

The present work was motivated by the ambitious aim of
developing a reliable analytical approach to nonperturba-
tive QCD from first principles. In this paper, important
progresses have been made by the inclusion of quarks in the

successful framework of the screened expansion, which
was first introduced for pure YM theory in [53,54]. Here,
we have shown that, without any change to the gauge-fixed
Faddeev-Popov Lagrangian, by a wise choice of the
expansion point and by a reasonable setting of the scheme
and parameters, perturbation theory gives a quantitative
agreement with the available lattice data for the quark mass
function—albeit in the quenched case until now. This
constitutes an improvement over the results of a previous
analysis, which led to an only qualitative description of the
quark sector [58].
Because of the agreement which is reached with the lattice

in the Euclidean space, we believe that the analytic proper-
ties of the mass function might be reliable in the whole
complex plane up to moderately high energies. Thus, the
explicit one-loop analytical expressions are not just good
interpolation formulas, but they also unveil important
analytic features of the propagators, like the existence of
complex-conjugate poles, pointing to a confinement scenario
which is rooted in those peculiar features which make quarks
and gluons unobservable, yielding a dynamical mechanism
for their exclusion from the asymptotic states.
While the existence of complex-conjugated poles might

not be a direct proof of confinement [72], their existence
would be ruled out if quarks were present in the asymptotic
states. Actually, the usual Källen-Lehmann relations do not
hold if there are complex poles, and the relative spectral
densities do not satisfy the usual positivity conditions.
We must note that in Ref. [58]—which used the same

formalism of the present paper, albeit in a different scheme, to
study the chiral limit of QCD—the quark propagator was
found to have a unique pole on the real axis. In that work, as
we said, the agreement with the lattice data was only
qualitative: the data themselves showed large error bars
and fluctuations, so that any comparison with the analytic
result could not be conclusive. Having attained a much better
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μ ¼ 4 GeV. Points: quenched lattice data from Ref. [73]. Curve:
one-loop Z-function computed in the complex-conjugate resum-
mation scheme using the parameters in Table XI.
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8Observe that in Fig. 18 the Z-function is plotted on an
enlarged scale: for p > 1.0–1.5 GeV the difference between the
function computed in the CC scheme and the lattice data is at
most around 10–20%.
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match with the lattice now leads us to revisit our previous
results.
Unfortunately, our main aim is far from being fully

achieved yet, and, despite the good quantitative description
of the quark mass function, many aspects must still be
addressed. First of all, we must still find a way to fix from
first principles the two spurious parameters which arise
from the approximation, namely, an arbitrary additive
constant which emerges from the renormalization of the
one-loop quark self-energy and the ratio M=m between the
quark and the gluon mass scales, which are arbitrary up to
an overall choice for the energy units.
In pure YM theory, by enforcing some constraints of

Becchi-Rouet-Stora-Tyutin (BRST) symmetry, like the
Nielsen identities [68–70], the expansion can be optimized
yielding a fully predictive method which does not require any
external input and does not contain any spurious parameter
[60]. In the quark sector, we still have to fix the spurious
parameters by a fit of the available lattice data. While it is
encouraging to see that an optimal choice of the parameters
does exist which describes the quark mass function data very
well for any given lattice mass, we still expect that the
spurious parameters might be fixed by enforcing some
constraints from first principles, like we did for pure YM
theory.
Of course, if carried out by employing the Nielsen

identities or similar exact methods, this program would
require a fully consistent calculation for the interacting
quark-gluon theory. In the present approach, we instead
used the optimized parameters of pure YM theory and
investigated the quark sector in a quenched approximation.
Even at one loop, the existence of quarks modifies the
gluon polarization by a quark loop which was not included
in the gluon optimization. Thus, we expect that the removal
of all spurious parameters by first principles like in [60] will
require a fully consistent, unquenched calculation.
Another important issue is the truncation of the expansion,

which, in the absence of a unique smallness parameter, like
the coupling in ordinary perturbation theory, might appear
quite arbitrary. In principle, the method allows us to carry out
the calculations perturbatively, by adding higher-order cor-
rections; however, in order to do so, a general criterion for the
order-by-order truncation of the expansion is required. In this
work, we have shown that the ambiguity can only arise for
finite graphs, since the cancellation of spurious divergences
requires a well defined set of graphs to be retained at each
order. Moreover, at one loop, the residual ambiguity seems to
be compensated by a change in the values of the spurious free
parameters, with basically no residual effect on the quark
propagator. Even in the complex plane, the pole position is
quite robust, with only a few percent change when going
from a truncation scheme to the other. In this respect, the
weak dependence of the pole position on the resummation
scheme can be regarded as an estimate of the accuracy of the
method.

Despite the difficulties, the available data for light
quarks remain the most important benchmark for our
predictions, since the nonperturbative effects, like
dynamical mass generation and chiral symmetry breaking,
become less evident for heavier quarks. Nonetheless, we
checked that the agreement with the data is very good
even for lattice masses in the range 100–300 MeV.
A nonperturbative feature which is not captured by

either the minimalistic or the vertex-wise scheme is the
slightly increasing tail of the Z function shown by the
lattice data. This behavior can be understood by the OPE,
which predicts a powerlike behavior for Zðp2Þ, with a
coefficient proportional to the dimension-2 gluon con-
densate hA2i [77]. It is a pure nonperturbative effect
which the present one-loop expansion fails to predict,
unless some kind of resummation is performed; the same
mismatch has been observed in other massive models,
like the Curci-Ferrari model [45]. We note that, in the tail,
the effects of the interactions on the lattice Z function are
very small, so that Zðp2Þ ≈ 1. Thus, the observed devia-
tions are not very relevant for the overall description of
the quark propagator, which at moderately high energies
is basically determined by the mass function alone.
Actually, the one-loop contribution to Zðp2Þ, too, is
finite and very small, explaining why the Z function is
so sensitive to higher-order corrections [65] and thermal
effects [66]. In the context of the Curci-Ferrari model
[65], it has been shown that the two-loop self-energy is
enough to correct the behavior of the Z function over the
whole momentum range.
On the other hand, the almost vanishing perturbative

contributions make Zðp2Þ a very interesting benchmark
for investigating nonperturbative effects and the role of
the gluon condensate through the OPE at large energies. It
is remarkable that, if the gluon line is resummed inside
the one-loop quark self energy, replacing the free-gluon
propagator with the dressed one-loop gluon line, an
increasing Z function is found at large momenta, just
where the OPE result should hold. Since the main feature
of the nonperturbative resummation is the existence of
complex-conjugated poles in the dressed gluon propaga-
tor, instead of the real pole of the undressed propagator,
we argue that the complex gluon poles might be related
with the existence of a nonvanishing gluon conden-
sate [78].
Overall, we can say that, when optimized, the screened

massive expansion provides a quantitative and analytical
tool for investigating the infrared limit of the full QCD,
at least in the quenched approximation. The results are
very encouraging and suggest that in a fully consistent
unquenched calculation, even the residual free parameters
might be fixed by the general constraints of BRST
symmetry, yielding a more complete analytical descrip-
tion of nonperturbative QCD from first principles.
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APPENDIX A: QUARK SELF-ENERGY

In this Appendix, we report the relevant functions for the
screened expansion’s quark propagator in the minimalistic
and vertex-wise resummation schemes. As discussed in
Sec. III B, the corresponding complex-conjugate scheme
functions are easily derived from the minimalistic scheme;
this is proven in Appendix B.

1. Diagrams (2a), (2b), and (2d)

In Euclidean space, the self-energy contribution Σð2aÞðpÞ
due to the uncrossed quark loop, i.e., diagram (2a) in Fig. 4,
can be divided into a vector and a scalar component,

Σð2aÞ
V ðp2Þ and Σð2aÞ

S ðp2Þ, as

Σð2aÞðpÞ ¼ i=pΣð2aÞ
V ðp2Þ þ Σð2aÞ

S ðp2Þ: ðA1Þ

The two components can be expressed in terms of two

scalar functions σð2aÞV ðp2Þ and σð2aÞS ðp2Þ as

Σð2aÞ
V ðp2Þ ¼ αs

3π
σð2aÞV ðp2Þ;

Σð2aÞ
S ðp2Þ ¼ αs

π
M
�
2

ϵ
− ln

M2

μ̄2
þ σð2aÞS ðp2Þ

�
; ðA2Þ

where ϵ ¼ 4 − d and μ̄ is an arbitrary scale introduced by
dimensional regularization. If we define two adimensional
variables s and x, representing the Euclidean momentum p2

and the quark chiral mass M,

s ¼ p2=m2; x ¼ M2=m2; ðA3Þ

then, the functions σð2aÞV and σð2aÞS can be put in the form

σð2aÞV ¼ CR lnRþ Cx ln xþ Cxs ln
x

xþ s
þ C0;

σð2aÞS ¼ t
s
lnR −

t − s − xþ 1

2s
ln x; ðA4Þ

where the coefficient functions CR; Cx; Cxs, and C0 read

CR ¼ t
2s2

½ðxþ sÞ2 þ ðx − sÞ − 2�;

Cx ¼ −
1

2
CR þ 1

4s2
½ðxþ sÞ3 − 3ðx − sÞ þ 2�;

Cxs ¼ −
ðxþ sÞ3
2s2

;

C0 ¼
x − 2

2s
−
1

2
; ðA5Þ

while R is defined as

R ¼ t − sþ x − 1

tþ sþ x − 1
: ðA6Þ

In Eqs. (A4)–(A6), t is itself a function of s and x, defined
as

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ sÞ2 þ 2ðs − xÞ þ 1

q
: ðA7Þ

The expressions reported above agree with those computed
in the one-loop Curci-Ferrari model [45].
As discussed in Sec. III, diagrams (2b) and (2d) in Fig. 4

can be computed as derivatives of diagram (2a),

Σð2bÞðpÞ ¼ −M
∂
∂M Σð2aÞðpÞ;

Σð2dÞðpÞ ¼ −m2
∂

∂m2
Σð2aÞðpÞ: ðA8Þ

Once split into a vector and a scalar component,

Σð2bÞðpÞ ¼ i=pΣð2bÞ
V ðp2Þ þ Σð2bÞ

S ðp2Þ;
Σð2dÞðpÞ ¼ i=pΣð2dÞ

V ðp2Þ þ Σð2dÞ
S ðp2Þ; ðA9Þ

Σð2bÞðpÞ and Σð2dÞðpÞ can be expressed in terms of four

scalar functions, σð2bÞV;S ðp2Þ and σð2dÞV;S ðp2Þ,

Σð2bÞ
V ðpÞ ¼ αs

3π
σð2bÞV ðp2Þ;

Σð2bÞ
S ðpÞ ¼ αs

π
M

�
−
2

ϵ
þ ln

M2

μ̄2
þ σð2bÞS ðp2Þ

�
;

Σð2dÞ
V ðpÞ ¼ αs

3π
σð2dÞV ðp2Þ;

Σð2dÞ
S ðpÞ ¼ αs

π
Mσð2dÞS ðp2Þ: ðA10Þ

Using Eqs. (A8) and (A2), it is easy to compute these

functions as derivatives of σð2aÞV and σð2aÞS ; for diagram (2b),
we have
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σð2bÞV ¼ −M
∂
∂M σð2aÞV ;

σð2bÞS ¼ −
∂
∂M ½Mσð2aÞS � þ 2

¼ −σð2aÞS −M
∂
∂M σð2aÞS þ 2; ðA11Þ

whereas for diagram (2d)

σð2dÞV ¼ −m2
∂

∂m2
σð2aÞV ;

σð2dÞS ¼ −m2
∂

∂m2
σð2aÞS : ðA12Þ

Note that the 2 on the right-hand side of σð2bÞS comes from
the derivative of lnM2 inside the brackets in Eq. (A2).
In what follows, we report the explicit self-energy

functions computed in the minimalistic and vertex-wise
resummation schemes.

2. Self-energy in the minimalistic and vertex-wise
resummation schemes

Recall that in the minimalistic scheme we only keep the
self-energy diagrams (2a) and (2b), whereas in the vertex-
wise schemewe also include diagram (2d). Let us start from
the first one.
In the minimalistic scheme, the loop contribution

ΣðmÞðpÞ to the quark self-energy is given by

ΣðmÞðpÞ ¼ Σð2aÞðpÞ þ Σð2bÞðpÞ: ðA13Þ

If we split ΣðmÞðpÞ into a vector and a scalar component,

ΣðmÞðpÞ ¼ i=pΣðmÞ
V ðp2Þ þ ΣðmÞ

S ðp2Þ; ðA14Þ

then, ΣðmÞ
V ðp2Þ and ΣðmÞ

S ðp2Þ can be expressed in terms of

two scalar functions σðmÞ
V ðp2Þ and σðmÞ

S ðp2Þ, as

ΣðmÞ
V ðp2Þ ¼ αs

3π
σðmÞ
V ðp2Þ;

ΣðmÞ
S ðp2Þ ¼ αs

π
MσðmÞ

S ðp2Þ: ðA15Þ

Here,

σðmÞ
V ¼ σð2aÞV þ σð2bÞV ;

σðmÞ
S ¼ σð2aÞS þ σð2bÞS : ðA16Þ

Going back to Eq. (A11), the derivatives with respect to M
can be traded with derivatives with respect to x ¼ M2=m2,

M
∂
∂M ¼ 2x

∂
∂x : ðA17Þ

Then, σð2bÞV;S can be expressed as the following derivatives of

σð2aÞV;S :

σðmÞ
V ¼

�
1 − 2x

∂
∂x

�
σð2aÞV ;

σðmÞ
S ¼ −2x

∂
∂x σ

ð2aÞ
S þ 2: ðA18Þ

A straightforward albeit tedious calculation leads to the
result

σðmÞ
V ¼CðmÞ

R lnRþCðmÞ
x lnxþCðmÞ

xs ln
x

xþs
þCðmÞ

0 ;

σðmÞ
S ¼−

2xðxþs−1Þ
st

lnR−
xðt−x−sþ1Þ

st
lnx; ðA19Þ

where the coefficient functions CðmÞ
R ; CðmÞ

x ; CðmÞ
xs , and CðmÞ

0

read

CðmÞ
R ¼ 1

2s2t
fðs − 5xÞ½ðsþ xÞ3 þ ðs2 − x2Þ� − 3ðs2 − x2Þ

− 4sx − 5s − x − 2g;

CðmÞ
x ¼ −

1

2
Cðm:Þ
R þ 1

4s2
½ðs − 5xÞðxþ sÞ2 þ 3ðxþ sÞ þ 2�;

CðmÞ
xs ¼ −

ðxþ sÞ2
2s2

ðs − 5xÞ;

CðmÞ
0 ¼ −

5xþ 2

2s
−
1

2
: ðA20Þ

Similarly, in the vertex-wise scheme, by including
diagram (2d) to obtain the loop contribution Σðv:ÞðpÞ to
the self-energy,

ΣðvÞðpÞ ¼ Σð2aÞðpÞ þ Σð2bÞðpÞ þ Σð2dÞðpÞ; ðA21Þ

we can write

ΣðvÞðpÞ ¼ i=pΣðvÞ
V ðp2Þ þ ΣðvÞ

S ðp2Þ; ðA22Þ

and express ΣðvÞ
V ðp2Þ and ΣðvÞ

S ðp2Þ in terms of two scalar

functions σðvÞV ðp2Þ and σðvÞS ðp2Þ,

ΣðvÞ
V ðp2Þ ¼ αs

3π
σðvÞV ðp2Þ;

ΣðvÞ
S ðp2Þ ¼ αs

π
MσðvÞS ðp2Þ: ðA23Þ

Clearly,

σðvÞV ¼ σð2aÞV þ σð2bÞV þ σð2dÞV ;

σðvÞS ¼ σð2aÞS þ σð2bÞS þ σð2dÞS : ðA24Þ
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Using the previous results for σð2bÞV;S , together with Eq. (A12)
and

m2
∂

∂m2
¼ −s

∂
∂s − x

∂
∂x ; ðA25Þ

it is easy to show that the scalar functions σðvÞV;S can be

computed as the following derivatives of σð2aÞV;S :

σðvÞV ¼
�
1 − x

∂
∂xþ s

∂
∂s

�
σð2aÞV ;

σðvÞS ¼
�
−x

∂
∂xþ s

∂
∂s

�
σð2aÞS þ 2: ðA26Þ

A lengthy calculation yields [58]

σðvÞV ¼ CðvÞ
R lnRþ CðvÞ

x ln xþ CðvÞ
xs ln

x
xþ s

þ CðvÞ
0 ;

σðvÞS ¼ −
sð2xþ 1Þ þ ð2x − 1Þðx − 1Þ

st
ln

Rffiffiffi
x

p þ 1 − 2x
2s

ln x;

ðA27Þ

where the coefficient functions CðvÞ
R ; CðvÞ

x ; CðvÞ
xs , and CðvÞ

0

read

CðvÞ
R ¼ 1

s2t
fðs − 2xÞ½ðxþ sÞ3 þ ðs2 − x2Þ�

þ ðs − xþ 1Þð1 − 3xÞ þ 2sxg;

CðvÞ
x ¼ −

1

2
Cðv:Þ
R þ 1

2s2
½ðxþ sÞ2ðs − 2xÞ þ 3x − 1�;

CðvÞ
xs ¼ −

ðs − 2xÞðxþ sÞ2
s2

;

CðvÞ
0 ¼ 1 − 2x

s
: ðA28Þ

APPENDIX B: LOOP INTEGRALS IN THE CC
SCHEME

The complex-conjugate (CC) scheme for the quenched
one-loop quark propagator is defined by the internal gluon
lines in Fig. 6 being set equal to the principal part of the
fully dressed gluon propagator; in Euclidean space,

Δðc:c:Þ
μν ðpÞ ¼

�
R

p2 þ p2
0

þ R̄

p2 þ p̄2
0

�
tμνðpÞ; ðB1Þ

where the values of p2
0, R, and of their complex conjugates

p2
0 and R̄ are derived in the framework of the screened

expansion of pure Yang-Mills theory9 (see Sec. III B and
Table I in Sec. II B).
The loop diagrams (2a) to (2c) in Fig. 6 can be computed

by employing the usual machinery of Feynman parameter
integrals and gamma functions. In order to see this, first
note that the Feynman parameter formula

1

AB
¼

Z
1

0

dx
1

½xAþ ð1 − xÞB�2 ðB2Þ

remains valid for complex A and B. As a consequence, in
Euclidean space, all the loop integrals can be expressed in
terms of double integrals I of the form

I ¼
Z

1

0

dx
Z

ddq
ð2πÞd

ðq2Þn
ðq2 þ ΔÞ2 ; ðB3Þ

where n is equal to either 0 or 1. In the above equation, at
variance with the standard case,

Δ ¼ xp2
0 þ ð1 − xÞM2 þ xð1 − xÞp2 ðB4Þ

is a complex, nonreal quantity due to p2
0 itself being

complex with Imðp2
0Þ ≠ 0 (here, we are assuming that

the external momentum p2 ∈ R). The angular integration
in Eq. (B3) can be readily performed, yielding

I ¼ Ωd−1

ð2πÞd
Z

1

0

dx
Z þ∞

0

dqqd−1
ðq2Þn

ðq2 þ ΔÞ2

¼ Ωd−1

2ð2πÞd
Z

1

0

dx
Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ; ðB5Þ

where Ωd−1 is the volume of the (d − 1)-dimensional unit
sphere, and on the last line, we have changed the variable of
integration to y ¼ q2. The integrand in Eq. (B5) has a
complex pole outside of the domain of integration, i.e., the
positive real axis, at y ¼ −Δ. The integral over the y
variable can be expressed as the limit

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ lim
Λ→þ∞

Z
Λ

0

dy
yd=2−1þn

ðyþ ΔÞ2 : ðB6Þ

We can now change the contour of integration of the
definite integral on the right-hand side by setting

9The value of jRj is actually inessential in our calculation, see
Sec. III B.
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Z
Λ

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼
I
γ
dy

yd=2−1þn

ðyþ ΔÞ2 þ

−
Z
γ2

dy
yd=2−1þn

ðyþ ΔÞ2 −
Z
γΛ

dy
yd=2−1þn

ðyþ ΔÞ2 ;

ðB7Þ
where γ ¼ γ1 þ γΛ þ γ2 and the contours γ1; γΛ, and γ2 are
displayed in Fig. 20. In particular, γ2 is chosen so that y ∈ γ2
is opposite to −Δ with respect to the origin of the complex
plane. Since the integral over the closed contour γ in Eq. (B7)
is zero by analyticity, we have

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ lim
Λ→þ∞

Z
−γ2

dy
yd=2−1þn

ðyþ ΔÞ2 ; ðB8Þ

where the integral over γΛ drops out in the limit Λ → þ∞.10

Moreover, by construction, the argument of y ∈ −γ2 satisfies
argðyÞ ¼ argðΔÞ. Therefore, we can write

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ ðei argðΔÞÞd=2−2þn

Z þ∞

0

dy
yd=2−1þn

ðyþ jΔjÞ2 :

ðB9Þ

One last change of integration variables from y to y=jΔj
leaves us with

Z þ∞

0

dy
yd=2−1þn

ðyþ ΔÞ2 ¼ ðjΔjei argðΔÞÞd=2−2þn

Z þ∞

0

dy
yd=2−1þn

ðyþ 1Þ2
¼ Δd=2−2þnΓðd=2þ nÞΓð2 − d=2 − nÞ:

ðB10Þ

The latter is the very same result found for Δ ∈ R. Hence the
integral I can be computed as if Δ were a real number or,
equivalently, as if p2

0 were real.
Finally, since the diagrams for the CC scheme (Fig. 6)

are identical to those of the minimalistic scheme [Fig. 4,
diagrams (2a) to (2c)] except for the fact that the internal
gluon propagator is made up of two terms, each multiplied
by a factor of R or R̄, by considering each of these two
terms separately we find that

ΣðloopsÞ
c:c: ðpÞ
¼ RΣðloopsÞ

m: ðpÞjm2¼p2
0
þ R̄ΣðloopsÞ

m: ðpÞj
m2¼p2

0

; ðB11Þ

where ΣðloopsÞ
c:c: ðpÞ and ΣðloopsÞ

m: ðpÞ are the loop contributions
to the 1PI quark self-energies computed, respectively, in the
CC scheme and in the minimalistic scheme, and m2 is the
gluon mass parameter introduced by the screened
expansion.
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One-loop explicit expressions are derived for the gluon Nielsen identity in the formalism of the screened
massive expansion for Yang-Mills theory. The gauge-parameter-independence of the poles and residues is
discussed in a strict perturbative context and, more generally, in extended resummation schemes. No exact
formal proof was reached by the approximate resummation schemes, but some evidence is gathered in
favor of an exact invariance of the phase, consistently with previous numerical studies.
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I. INTRODUCTION

Confinement and dynamical mass generation are among
the most important open problems of contemporary phys-
ics. The quantum field theories which describe the inter-
actions of quarks and gluons, QCD and pure Yang-Mills
theory, are believed to be fully consistent theories, at all
scales, containing a dynamical cutoff in the IR. But
unfortunately, we are still far from a full understanding
of the confinement mechanism which seems to be some-
how related to the dynamical generation of almost all the
mass which is observed in the universe. Lattice and
continuous studies [1–47] have ruled out the existence
of a Landau pole and supported the existence of a finite
coupling, which is not too large even deep in the IR. On the
other hand, the important role of the analytic properties of
the Green functions, and their relation with the dynamics, is
still largely unexplored because of the breakdown of
ordinary perturbation theory and of the lack of alternative
analytical tools in the continuous.
Quite recently, by a change of the expansion point, a new

perturbative approach has been developed [48–58], a
screened massive expansion which is perfectly sound in
the IR and has the usual merits of ordinary perturbation
theory: calculability, analytical outputs and a manifest
description of the analytic properties in the complex plane.
The method gives direct and quantitative predictions for the

poles of the gluon propagator which appear as complex
conjugated polar singularities [50,56,57].
The existence of complex conjugated poles was pre-

dicted by several models, like the refined Gribov-
Zwanziger model [59–63], and their deep effects on the
dynamical properties of the gluon and on the confinement
of color have been discussed by many authors [64–67].
Moreover, a pair of complex conjugated poles invalidates
the existence of the Källen-Lehmann representation [68],
raises important questions on the correct analytic continu-
ation of the gluon propagator and jeopardizes the analytic
properties of Dyson-Schwinger equations, unless some
compensation arises from the unknown structure of the
exact vertices [69].
On the physical meaning of the complex poles there are

different, contrasting, opinions. A recent formal approach
[67] has embraced the view that the complex poles would
emerge from unphysical zero-norm states which should be
removed from the Hilbert space, giving rise to a confine-
ment mechanism. However, the formal removal of quarks
and gluons from the physical states does not seem a
satisfying solution for the problem of confinement, which
would miss a more physical and dynamical explanation.
Moreover, according to that formal approach, the analytic
continuation of the gluon propagator does not exist [67],
raising serious issues on the physical content of the theory.
A more physical approach [56,65] relies on the idea that

quarks and gluons do exist, as internal degrees of freedom
of the theory, but their phenomenological appearance is
damped by a very short lifetime which confines them. In
that view, the complex poles would play a physical
dynamical role in confinement, besides having to do with
the dynamical mass which is observed in the IR. That
approach is corroborated by the discovery that, not only the
poles, but even the phases of the complex residues appear
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to be gauge-parameter-independent. The whole principal
part of the gluon propagator seems to be gauge invariant:
the phase of the residue is found to change less than
3 × 10−3 when the gauge parameter goes from ξ ¼ 0 to
ξ ¼ 1.2 [52]. On the other hand, in a modified Källen-
Lehmann representation, in presence of zero-norm states,
the phase of the residues could be the direct consequence of
a complex spectrum, and the invariance of the phase could
be itself related to the gauge invariance of the spectrum.1

The same principal part seems to give the main contribution
to a dimension-two condensate [70] and to the short-range
linear raising potential which emerges from the Fourier
transform of the propagator at the leading order. Thus,
many arguments would favor the gauge invariance of the
phase of the residues if the gluons are believed to be
confined but still physical degrees of freedom. Here, by
“physical” we mean that the zero-norm states and their
complex energies might play a role as intermediate steps in
the building of physical excitations, like in the i-particle
scenario of Ref. [71].
From a formal point of view, a proof of gauge invariance

would require the study of the Nielsen identities [72–74],
exact identities which determine the gauge dependence of
the propagator in a covariant gauge. The identities are a
direct consequence of the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry which is displayed by the Faddeev-
Popov Lagrangian of QCD and Yang-Mills theories. There
is a growing interest in the role of the Nielsen identities for
determining the properties of the propagators in a generic
covariant gauge [75] and for their explicit numerical
evaluation [76].
In this paper, the Nielsen identity for the gluon propa-

gator is evaluated by an explicit one-loop calculation in the
framework of a screened perturbative expansion. Here, our
primary interest is in the screened massive expansion, but
the explicit one-loop expressions might be useful for other
screened theories, like the Curci-Ferrari model [77–83].
Moreover, the result can be pushed beyond a strict one-loop
expansion by some resummation of infinite classes of
graphs.
Because of the soft breaking of BRST which occurs in

the screened expansion at any fixed order, the Nielsen
identities are not expected to be fulfilled at one loop in our
framework. Nonetheless, it is instructive to explore how the
results change when going from the strictly perturbative
expressions to those obtained by an approximate resum-
mation of the internal gluon lines. The detailed study of the
analytic properties of the latter seems to suggest that the
phase might be exactly invariant, as expected both numeri-
cally [52] and by physical arguments—if the gluon

principal part is to play a genuine physical role on the
dynamics of the strong interactions. Thus, enforcing the
pole and phase invariance turns out to be a consistent
criterion for the optimization of the screened expansion
from first principles, as was done in [52] with remarkably
good results.
Besides the perturbative, partially resummed, context,

we are still not able to provide an exact formal proof for the
invariance of the phases of the residues.
This paper is organized as follows: the massive screened

expansion is briefly reviewed in Sec. II, in order to fix the
notation; in Sec. III the Nielsen identity for the gluon
propagator is derived and its relation with the polarization
function is discussed; in Sec. IV the explicit one-loop
expression of the identity is derived by the screened
expansion; in Sec. V the one-loop result is discussed both
in the perturbative context and by using different resum-
mation schemes. A detailed account of the explicit steps
leading to the evaluation of the one-loop graphs is reported
in the Appendix.

II. THE SCREENED EXPANSION

The massive, screened expansion was first developed in
Refs. [48,49] and related to the Gaussian effective potential
in Refs. [41,42]. It is based on a change of the expansion
point of ordinary perturbation theory.
In the pure gauge sector, the gauge-fixed Lagrangian can

be written as

L ¼ LYM þ Lfix þ LFP; ð1Þ

where LYM is the Yang-Mills term

LYM ¼ −
1

2
TrðF̂μνF̂

μνÞ; ð2Þ

LFP is the ghost term arising from the Faddeev-Popov
determinant and Lfix is a covariant gauge-fixing term,

Lfix ¼ −
1

ξ
Tr½ð∂μÂμÞð∂νÂνÞ�: ð3Þ

Usually, the total action is split as Stot ¼ S0 þ SI where
the quadratic part can be written as

S0 ¼
1

2

Z
AaμðxÞδabΔ−1

0
μνðx; yÞAbνðyÞd4xd4y

þ
Z

c̄aðxÞδabG−1
0 ðx; yÞcbðyÞd4xd4y; ð4Þ

while the interaction contains the three terms

SI ¼
Z

ddx½Lgh þ L3 þ L4�; ð5Þ

1As discussed in Ref. [67], the existence of zero-norm states
gives rise to complex conjugated eigenvalues if the Hamiltonian
is Hermitian. Complex residues follow from the existence of a
complex spectrum even if we assume that the Hamiltonian is
Hermitian.
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which read

L3 ¼ −gfabcð∂μAaνÞAμ
bA

ν
c;

L4 ¼ −
1

4
g2fabcfadeAbμAcνA

μ
dA

ν
e;

Lgh ¼ −gfabcð∂μc̄aÞcbAμ
c: ð6Þ

In Eq. (4), Δ0 and G0 are the standard free-particle
propagators for gluons and ghosts, respectively, and their
Fourier transforms are

Δ0
μνðpÞ ¼ Δ0ðpÞ½tμνðpÞ þ ξlμνðpÞ�;

Δ0ðpÞ ¼
1

−p2
; G0ðpÞ ¼

1

p2
; ð7Þ

having used the transverse and longitudinal projectors

tμνðpÞ ¼ gμν −
pμpν

p2
; lμνðpÞ ¼

pμpν

p2
: ð8Þ

The screened massive expansion is obtained by a change
of the quadratic expansion point, adding a transverse mass
term to the quadratic part of the action and subtracting it
again from the interaction, thus leaving the total action
unchanged.2 We add and subtract the action term

δS ¼ 1

2

Z
AaμðxÞ δab δΓμνðx; yÞAbνðyÞd4 xd4y; ð9Þ

where the vertex function δΓ is a shift of the inverse
propagator,

δΓμνðx; yÞ ¼ ½Δ−1
m

μνðx; yÞ − Δ−1
0

μνðx; yÞ�; ð10Þ

and Δm
μν is a new massive free-particle propagator,

Δm
μνðpÞ ¼ ΔmðpÞtμνðpÞ þ

ξ

−p2
lμνðpÞ; ð11Þ

with a massive transverse component

ΔmðpÞ ¼
1

−p2 þm2
: ð12Þ

Adding that action term is equivalent to substituting the
new massive propagatorΔm

μν for the old massless oneΔ0
μν

in the quadratic part.
Of course, in order to leave the total action unaffected by

the change, we must include the new interaction vertex, δΓ,
among the standard interaction terms. Dropping all color
indices in the diagonal matrices and inserting Eqs. (7) and
(11) into Eq. (10), the vertex is just the transverse mass shift
of the quadratic part,

δΓμνðpÞ ¼ m2tμνðpÞ: ð13Þ

The proper gluon polarization Π and ghost self-energy Σ
can then be evaluated, order by order, by perturbation
theory. In all Feynman graphs the internal gluon lines are
replaced by the massive free-particle propagator Δm

μν

while the new two-point vertex can be regarded as a
new (transverse) mass counterterm, δΓμν, to be inserted
in order to compensate the shift of the quadratic term in the
action. The new two-point vertex is usually represented by
a cross, like other counterterms, and we will refer to the
graphs with one ore more crosses as crossed graphs.
Since the total gauge-fixed FP Lagrangian is not modi-

fied and because of gauge invariance, the longitudinal
polarization is known exactly and is zero, so that the total
polarization is transverse,

ΠμνðpÞ ¼ ΠðpÞtμνðpÞ; ð14Þ

and the (exact) dressed propagators read

ΔμνðpÞ ¼ ΔðpÞtμνðpÞ þ ΔLðpÞlμνðpÞ;
G−1ðpÞ ¼ p2 − ΣðpÞ; ð15Þ

where the transverse and longitudinal parts are given by

Δ−1ðpÞ ¼ −p2 þm2 − ΠðpÞ;

ΔLðpÞ ¼ ξ

−p2
: ð16Þ

At tree level, the polarization is given by the counterterm
δΓ of Eq. (13), so that the tree-term Πtree ¼ m2 just cancels
the mass in the dressed propagator Δ of Eq. (16), giving
back the standard free-particle propagator of Eq. (7).
Summing up the loops, the transverse dressed propagator

can be written as

ΔðpÞ ¼ ½−p2 − ΠloopðpÞ�−1; ð17Þ

where ΠloopðpÞ ¼ ΠðpÞ −m2 is the sum of the transverse
part of all the polarization graphs containing loops (that is,
excluding the tree-level term).
The diverging integrals are made finite by dimensional

regularization and can be evaluated in the Euclidean
space, by setting d ¼ 4 − 2ϵ. An important feature of
the massive expansion is that the crossed graphs cancel
all the spurious diverging mass terms exactly, so that no
mass renormalization is required. At one-loop, as shown in
Refs. [48,49,52], in the MS scheme, the diverging part of
the proper transverse polarization can be written as

Πϵ
loopðpÞ ¼ −p2

Ng2

ð4πÞ2
1

ϵ

�
13

6
−
ξ

2

�
; ð18Þ2This is actually done after renormalizing the Lagrangian. The

details can be found e.g., in [53].
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which is the same identical result of standard perturbation
theory [84].
As usual, the diverging part can be canceled by wave

function renormalization, by subtraction at an arbitrary
point. Of course, a finite term ∼const: × p2 arises from the
subtraction and cannot be determined in any way: it
depends on the regularization scheme and on the arbitrary
renormalization scale μ, so that its actual value remains
somehow arbitrary. When the coupling is absorbed into an
overall finite multiplicative renormalization constant for the
propagator and the gluon mass m is used to fix the energy
scale of the theory (see [49] for details), such a term is left
as the only spurious free parameter of the approximation.
The fixed-scale approach, as opposed to its RG-

improved counterpart [53], has the advantage of providing
analytical expressions which are in excellent agreement
with the lattice data below 2 GeV—see Fig. 1 (solid black
curve)—and can be easily continued to the whole complex
plane [50,52,55,56]. The success of the method would
suggest that, in the infrared, a mere constant, inserted in the
factor of p2 in Eq. (18), can mimic the effects of higher-
order terms.
The agreement can be achieved from first principles by

using a sort of optimization by variation of the renormal-
ization scheme, a method that was proven to be very
effective for the convergence of the expansion [85,86]. In
this framework, the const: × p2 term—or, equivalently in
MOM-like schemes, the dimensionless subtraction scale
μ=m–, is fixed by requiring that some properties related to
gauge invariance, and more precisely the gauge invariance
of the poles and phases of the residues, are satisfied by the
approximate one-loop expression of the gluon propagator
[52,54]. When such properties are enforced [52], the
optimized one-loop analytical expression again provides

an excellent agreement with the lattice, as shown in Fig. 1
(dashed green curve).
The gauge invariance of the gluon poles [73] is an exact

property which easily follows from the BRST invariance of
the Yang-Mills Lagrangian. Using the BRST symmetry, a
Nielsen identity [72]

∂

∂ξ

1

ΔðpÞ ¼ 2F ðpÞ
�

1

ΔðpÞ
�
2

; ð19Þ

where F ðpÞ is the transverse component of another Green
function (more on this in the next section), can be derived
[74]. Since the Yang-Mills Lagrangian is not modified as a
whole by our shift of the expansion point, we know that,
provided that the BRST symmetry is not broken non-
perturbatively, a sufficiently accurate approximation of the
gluon propagator must have gauge-invariant poles.
Nonetheless, due to the soft breaking of BRST symmetry

caused by the introduction of a mass term in the kinetic and
interaction terms of the Lagrangian, the gluon propagator
computed in the screened expansion does not automatically
fulfill such a constraint, for general values of the free
parameters. The poles of the gluon propagator were found
to be complex [49], coming in a complex-conjugate pair at
p2 ¼ p2

0; ðp2
0Þ⋆, with Imðp2

0Þ ≠ 0. While the poles, being
the solution of the ξ-dependent equation Δ−1ðp; ξÞ ¼ 0,
can in general depend on the gauge parameter ξ, the free
parameters of the expansion—that is, the constant in the
const: × p2 term and the gluon mass parameter m2 itself—
can be tuned with the gauge so as to make the poles
ξ-independent [52], thus complying with the Nielsen
identities. The additional requirement that the phase of
the residues be gauge-invariant was found to be sufficient to
fix the value of the spurious free constant in the Landau
gauge [52] and yielded a gluon propagator which is
remarkably close to the free fit obtained from the lattice
data, and to the lattice results themselves.
While the gauge invariance of the poles is a trivial

consequence of the Nielsen identities, and must hold even
when the poles are complex, the gauge invariance of the
phase of the residues is less obvious. As discussed in
Ref. [52], because of the square on the right-hand side of
Eq. (19), the phase of the complex residues is invariant if
the Green function F does not have a pole at the same
position as the gluon propagator ΔðpÞ.
Thus, the discovery of Ref. [52], that the gauge invari-

ance of the phase of residues (in the complex plane)
provides an optimal agreement with the lattice data (in
the Euclidean space), might lead to two different inter-
pretations: either the function F has no poles at the same
position as the gluon propagator, and the gauge invariance
of the phase of the gluon residues is an exact property, or
the change of the phase with the gauge is an accidentally
small higher-order effect which is not seen at one-loop.
Actually, due to the arbitrariness in the renormalization of

 0
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FIG. 1. The one-loop gluon propagator computed in the Landau
gauge (ξ ¼ 0) within the framework of the fixed-scale screened
massive expansion, together with the lattice data of Ref. [18].
Free fit (solid black curve) and optimized calculation (green
dashed curve). The energy scale is set by taking m ≈ 0.65 GeV.
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the gluon residue, there is also a third possibility, which will
be discussed in the next section.
A more detailed analysis of the point motivates the

explicit derivation of the Nielsen identity, Eq. (19), in
the special context of the screened expansion. This will be
the content of the next two sections.

III. THE NIELSEN IDENTITIES

The Nielsen identities [72] are a set of equations which
determine the gauge dependence of the exact Green
functions of a gauge theory. They can be derived using
BRST symmetry, under the hypothesis that the latter is not
broken in the vacuum. For the propagators of QCD, the
identities were fully discussed and derived by a functional
method in Ref. [74]. In that work, a detailed calculation was
reported for the explicit one-loop identities, in the frame-
work of standard perturbation theory.
In this section, we give a quite straightforward derivation

of the identities and discuss their relation with the polari-
zation function. A detailed derivation of the explicit one-
loop expressions, in the framework of the screened massive
expansion, will be discussed in the next section.
We start by reintroducing the Nakanishi-Lautrup aux-

iliary field Ba in the Yang-Mills action and writing the
gauge-fixing term in Eq. (3) as

Lfix ¼
ξ

2
BaBa þ Bað∂ · AaÞ: ð20Þ

Integrating out the Nakanishi-Lautrup field is equivalent to
solving the equation of motion Ba ¼ −ð∂ · AaÞ=ξ.
When expressed in terms of the B-field, the total Yang-

Mills Lagrangian satisfies the usual BRST invariance
property

δθL ¼ 0; ð21Þ

where

δθA
μ
a ¼ θDμca;

δθc̄a ¼ θBa;

δθca ¼ −
g
2
fabcθcbcc;

δθBa ¼ 0; ð22Þ

and θ is a Grassmann parameter.
The field B also determines the gauge-parameter depend-

ence of the total Lagrangian, since the derivative of the
latter with respect to ξ is given by

∂L
∂ξ

¼ 1

2
BaBa: ð23Þ

Using Eq. (23), the average hOi of any operator O,

hOi ¼
R
O exp ði R LÞR
exp ði R LÞ ; ð24Þ

is easily seen to satisfy

∂

∂ξ
hOi ¼

�
O
�
i
Z

∂L
∂ξ

��
− hOi

��
i
Z

∂L
∂ξ

��

¼ i
2

�
O
Z

BaBa

�
: ð25Þ

The last equality follows from Eq. (23) and from the
Slavnov-Taylor identity

0 ¼ hδθðc̄aBaÞi ¼ hδθc̄aBai ¼ hBaBai; ð26Þ

which holds provided that the vacuum is BRST-invariant,
so that

hδθO0i ¼ 0 ð27Þ

for any operator O0.
For the case of the exact gluon propagator

Δμν
abðx; yÞ ¼ −ihAμ

aðxÞAν
bðyÞi; ð28Þ

we can denote by 2F the Green function

2F μν
abðx; yÞ ¼

∂

∂ξ
Δμν

abðx; yÞ

¼ 1

2

Z
d4zhAμ

aðxÞAν
bðyÞBcðzÞBcðzÞi; ð29Þ

or in a more compact notation

∂Δ
∂ξ

¼ 1

2

�
AA

Z
B2

�
¼ 2F : ð30Þ

Denoting by Γ ¼ −Δ−1 the two-point vertex function, the
Nielsen identity for Γ reads

∂Γ
∂ξ

¼ Δ−1 ·
∂Δ
∂ξ

· Δ−1 ¼ Γ · ð2F Þ · Γ; ð31Þ

where the dot products are functional productswhich become
ordinary products when the Fourier transform is taken.
Strictly speaking, Eq. (31) becomes the Nielsen identity

only when an independent and direct evaluation of the
Green function F is provided by the Slavnov-Taylor
identities, as shown below. While the Green function F
seems to have two gluon legs (hence a double gluon pole in
the Fourier transform) in Eq. (29), one of the legs is eaten
up as a result of BRST symmetry, so that according to
Eq. (31) the Fourier transform of the function F has a
single pole at most. This follows from the Slavnov-Taylor
identity
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0 ¼ hδθðAAc̄BÞi ¼ hðDcÞAc̄Bi þ hAðDcÞc̄Bi þ hAABBi;
ð32Þ

which yields

2F μν
abðx; yÞ ¼ −

1

2

�Z
d4zhDμcaðxÞAν

bðyÞc̄cðzÞBcðzÞi

þ ðx ↔ y; a ↔ bÞ
�
: ð33Þ

The equivalence of the function F in Eq. (33) and in
Eq. (29) is the core of the Nielsen identity for the gluon
propagator.
The presence of a single gluon leg in Eq. (33) ensures

that at least one of the two Γ factors survives on the right-
hand side of Eq. (31) and that a zero occurs at the pole
position p ¼ p0 in the derivative of the Fourier transforms:

�
∂Γ
∂ξ

�
p¼p0

¼
�
∂Π
∂ξ

�
p¼p0

¼ 0 if Γðp0Þ ¼ 0: ð34Þ

As a consequence, the position of the pole is gauge-
parameter-independent in the exact gluon propagator, as
can be explicitly seen from the equations

0 ¼ d
dξ

Γðp2
0ðξÞ; ξÞ

¼ ∂Γ
∂ξ

ðp2
0ðξÞ; ξÞ þ

∂Γ
∂p2

ðp2
0ðξÞ; ξÞ

dp2
0

dξ
ðξÞ

¼ ∂Γ
∂p2

ðp2
0ðξÞ; ξÞ

dp2
0

dξ
ðξÞ ⇒ dp2

0

dξ
¼ 0; ð35Þ

given that in order for Γ to have a zero at p2
0, ð∂Γ=∂p2Þp0

must be finite. Here, a transverse projection is understood
for all the functions, since the longitudinal parts are known
exactly and, in that case, the invariance of the pole is trivial,
being the longitudinal pole unshifted from p ¼ 0 in
any gauge.
The discovery that the phase of the complex residue may

be gauge-invariant [52] has led to the claim that the Green
function F might have no pole at all in p ¼ p0. Then, the
double zero on the right-hand side of Eq. (31) due to the Γ’s
would be enough for ensuring that

∂

∂ξ

�
∂Γ
∂p2

�
p¼p0

¼ 0; ð36Þ

yielding a proof of gauge invariance for the residue [52],
see ahead. Going back to Eq. (31), the claim is equivalent to
assuming that the derivatives ∂Γ=∂ξ and ∂Π=∂ξ have a
double zero at the pole position.
Actually, the invariance of the modulus of the residue

would not make much physical sense, since the modulus is

defined up to an arbitrary—potentially gauge-dependent—
real renormalization factor. What emerged in Ref. [52]
was the invariance of the phase of the residue, which
would be enforced by a weaker condition: denoting by
R ¼ jRj expðiθÞ the complex residue at the pole p2 ¼ p2

0,
the transverse projection of the two-point function reads

Γðp2Þ ¼ ðp2 − p2
0Þ
e−iθ

jRj þ…; ð37Þ

and because of the gauge invariance of the pole p0, the
logarithmic derivative gives

∂θ

∂ξ
¼ −Im

�
1

Γ
∂Γ
∂ξ

�
p¼p0

¼ −Im½ð2F ÞΓ�p¼p0
; ð38Þ

where the second equality follows from Eq. (31) and a
transverse projection is understood in all the functions on
the right hand side. Thus, the vanishing of the imaginary
part, on the right-hand side, would be enough for ensuring
that the phase is invariant.
While the invariance of the modulus of the residue seems

to be unnecessary in view of renormalization, the invari-
ance of the phase makes sense in presence of complex
poles: the phase determines the shape of the principal part
of the propagator—which, as shown in [52], makes up for
the largest contribution to ΔðpÞ—and has an effect on all
related observable objects, like the Fourier transform of the
propagator which at large momenta could be seen as a
short-distance approximation for the quark-quark potential.
On the other hand, the invariance of the phase has always
been expected whenever the pole and residue were real,
since then, trivially, θ ¼ 0 for any ξ.
It is instructive to explore the content of Eq. (29) in terms

of diagrams of the screened expansion and, more generally,
of perturbation theory. We will be interested in the Fourier
transform

2δabF μνðpÞ≡ 2F μν
abðp;−pÞ; ð39Þ

where

2F μν
abðp; qÞð2πÞ4δð4Þðpþ qÞ

¼ 2

Z
d4xd4yF μν

abðx; yÞeip·xþiq·y: ð40Þ

We first recover, by the equations of motion,

hBaA
μ
bi ¼ −

1

ξ
hð∂ · AaÞAμ

bi; ð41Þ

yielding the exact result

Z
d4xeip·xhBað0ÞAμ

bðxÞi ¼
−ipν

ξ
iΔνμ

abðpÞ ¼
δabpμ

−p2
; ð42Þ
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which is valid to all orders [74] because of Eq. (16). All
graphs contributing to the right hand side of Eq. (29) can be
obtained by the insertion of the two-point local vertex B2

a in
the graphs of the gluon propagator. At tree level, there is
only one term given by the product hABihBAi with a
symmetry factor of 2, yielding

2F μνðpÞ ¼
�
pμ

−p2

��
−pν

−p2

�
¼ −

pμpν

p4
: ð43Þ

Inserting this longitudinal term in Eq. (31), together with
the exact longitudinal part Γμν ¼ lμνp2=ξ, the identity is
easily seen to be satisfied exactly. Thus, we predict that all
loop contributions toF must be transverse [74]. In fact, this
is the case, since they can all be derived by insertion of a
vertex

R
B2 in all graphs for the gluon polarization, which is

transverse.
In more detail, denoting by πðnÞ a polarization graph with

n internal gluon lines, all the corresponding graphs for the
function F , in Eq. (29), are obtained by substituting the
longitudinal term hABihBAi for one of the n internal gluon
lines and restoring the external gluon legs. The inserted
longitudinal term is just the tree-level graph for 2F and is
equal to ΔLlμν=ξ ¼ ∂Δμν

m =∂ξ according to Eqs. (11), (16)
and (43). Thus, we are just replacing a gluon line by its
longitudinal part, divided by ξ. Now, this is precisely what
we get by taking the derivative ∂πðnÞ=∂ξ. Summing over n,
we get a direct proof of Eq. (29), since the dependence on ξ
is in the internal lines, while the external legs are projected
on the transverse polarization and do not depend on ξ. This
argument holds both for the screened expansion (m ≠ 0)
and for standard perturbation theory (m ¼ 0), since it
only depends on the transversality of the exact gluon
polarization.
While the content of Eq. (29) is trivial in terms of

diagrams, its equivalence to Eq. (33) is not immediate and
there is no one-to-one correspondence of diagrams.
Eq. (33) follows from the overall BRST symmetry of
the Lagrangian and the equivalence to Eq. (29) holds for the
exact functions. As shown in Ref. [74], in ordinary
perturbation theory, if both functions are correctly
expanded in powers of the coupling, they must agree at
any finite order. On the other hand, the addition and
subtraction of a gluon mass term that defines the screened
massive expansion causes the soft breaking of BRST
invariance at any finite order. Thus, we expect the
Nielsen identities not to hold perturbatively in the screened
expansion. This does not imply, however, that the screened
expansion’s gluon poles are not gauge-invariant. As dis-
cussed in the last section, the freedom in the choice of the
spurious free parameters is still enough to enforce their
invariance, once an explicit expression for the gluon
propagator has been obtained at finite order.
At any finite order, deviations from the exact BRST

symmetry are a measure of the accuracy of the truncated

expansion [52,54,55]. Thus, it is not a case that the screened
expansion gives an excellent agreement with the lattice data
when optimized by the constraints of pole (and phase)
invariance, since these are the conditions which minimize
the deviations between one-loop and exact results.
On the other hand, we might wonder if the gauge-

invariance of the phase of the residue is an exact property of
Yang-Mills theory. To date, we have not been able to reach
a formal proof. For what concerns the screened expansion,
due to the previously discussed soft breaking of BRST
invariance, the perturbative expression for ∂θ=∂ξ cannot be
trusted as is at any finite order. Nonetheless, a nonpertur-
bative resummation of the gluon graphs in the Nielsen
identity might give us hints as to whether the phase is really
invariant. This will be discussed in Sec. V.

IV. ONE LOOP EXPLICIT CALCULATION

The Green function F , in Eq. (33), can be directly
evaluated in the framework of the screened massive
expansion, order by order. Here, we give the explicit result
up to one-loop.
At tree level, there is only one graph contributing to

Eq. (33) which factors as hð∂μcÞc̄ihBAνi yielding

2F μνðpÞ ¼ −ð−ipμÞ
�

i
p2

��
−pν

−p2

�
¼ −

pμpν

p4
ð44Þ

in agreement with the exact result in Eq. (43). There are no
crossed graphs at tree level because any insertion of the
transverse mass vanishes in the longitudinal tree term. As
discussed above, since Eq. (44) gives the whole longi-
tudinal contribution, the sum of all higher order terms must
be transverse. In fact, the uncrossed one-loop graphs which
contribute to Eq. (33) are the first three pairs reported in
Fig. 2, and each pair gives a pure transversal term. More
generally, all loop graphs occur in pairs, with the structure
displayed in Fig. 3, arising from the splitting of the
covariant derivative in two terms,

Dμca ¼ δab∂
μcb þ gfabcA

μ
bcc; ð45Þ

and from the insertion of a ghost-gluon vertex ðc̄AcÞ in the
first of these. The expressions of the graphs of type (1) and
(2) have the following general form, respectively,

2F μν
abð1ÞðpÞ ¼ −ihð∂μcaÞðgfdef∂αc̄dAα

ecfÞ � � �i

¼ ð−ipμÞ
�
1

p2

�
ðipαÞgfaef

Z
Δm

αβ
eg � � � ;

2F μν
abð2ÞðpÞ ¼ −hðgfaefAμ

ecfÞ � � �i

¼ −gfaef
Z

Δm
μβ
eg � � � ; ð46Þ

and their sum is a manifestly transverse contribution
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2F μν
abð1þ2ÞðpÞ ¼

�
gμα −

pμpα

p2

�
gfeaf

Z
Δm

αβ
eg � � � : ð47Þ

As we said, these three pairs give the transverse one-loop
contribution for any expansion with a mass in the free
propagator, Δm. While our main interest is on the screened
massive expansion of Sec. II, their explicit expressions
might be of some interest for other theories, like Curci-
Ferrari model in the Landau gauge. We must mention that,
in massive theories, there is a class of anomalous graphs,
not shown in Fig. 2, contributing to the longitudinal part of
F . These arise from polarization insertions in the external
gluon leg of the longitudinal tree-level graph. While
individual polarization terms might have a nonvanishing
longitudinal part in massive theories, their exact resumma-
tion is zero in the screened massive expansion, ensuring
that the tree-level term still provides the total longitudinal
contribution, as required by the BRST symmetry. Thus, we
might neglect the anomalous terms entirely.
The third pair of graphs in Fig. 2, (c1) and (c2), have a

longitudinal leg on the right side. Then, their sum is zero
according to Eq. (47), because of the transverse projector

coming from the loops on the left. The second pair, graphs
(b1) and (b2), are basically the same as in the standard
perturbation theory, since no massive propagator occurs in
the loop. The only difference arises from the bare gluon leg
on the right side, which must be replaced by the massive
free propagator Δm in the screened expansion. The first
pair, graphs (a1) and (a2), differs from the standard result
because of the internal massive gluon line. The explicit
calculation is straightforward and the detailed steps are
reported in the appendix. The sum of all the uncrossed one-
loop graphs can be written as

2F μνðpÞ ¼ g2N
64π2

tμνðpÞ
p2 −m2

Fð−p2=m2Þ; ð48Þ

where the diverging function FðsÞ, with s ¼ −p2=m2, is
regularized by setting d ¼ 4 − 2ϵ and reads

FðsÞ ¼ 2

ϵ
− 3LðsÞ þ logðsÞ − 2ξþ const:; ð49Þ

while the logarithmic function LðsÞ, which is derived in
Eq. (A34), can be recast as

LðsÞ ¼ −
1

3s
þ
�
1 −

1

s
þ 1

3s2

�
log s

þ
��

sþ 1 −
1

s
þ 1

3s2

�
log

�
1þ 1

s

�
− 1

�
ð50Þ

and shows the leading behavior LðsÞ ∼ log s in the limit
s → ∞, which occurs when the mass is set to zero in order
to recover the result of standard perturbation theory.
Actually, as shown in the appendix, graphs (a) and (b) agree
with the known results in that limit [74]. Moreover, in the
same limit, the diverging part can be checked by a direct
comparison with the explicit one-loop diverging term of the
polarization, which is well known and is reported in
Eq. (18). By a direct calculation of the derivative and by
inserting it in Eq. (31), with the tree-level two-point
function, ΓðpÞ ¼ p2, the diverging part of the transverse
one-loop function F reads

2F ¼ 1

Γ2

∂Γ
∂ξ

¼ 1

Γ2

∂Π
∂ξ

∼
�
1

p2

�
2
�
−p2

Ng2

ð4πÞ2
�
−1
2ϵ

��

¼ g2N
64π2

1

p2

�
2

ϵ

�
; ð51Þ

in perfect agreement with Eqs. (48) and (49). That is
important for the renormalization of the function F , since
all the divergences must be absorbed by the wave function
renormalization of the gluon propagator in order to make

(1)

(2)

FIG. 3. General structure of each pair of graphs contributing to
the function F in Eq. (33). For each pair, the sum of graph (1) and
graph (2) gives a transversal term, as shown in Eqs. (46) and (47).

(b1)(a1)

(a2) (b2)

(c1)

(c2)

(d1)

(d2)

FIG. 2. One-loop graphs contributing to the function F , as
defined in Eq. (33), in the screened expansion. The mixed line is
the longitudinal function hBAi, while the solid cross is the
transverse mass counterterm.
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sense of the Nielsen identity, Eq. (31), when the finite,
renormalized propagator is considered.
It is instructive to see how the divergence cancels in the

renormalized functions. In the MS scheme, the wave
function renormalization constant ZA follows from the
divergence of the polarization in Eq. (18) and reads

ZA ¼ 1þ g2N
ð4πÞ2

�
1

ϵ

��
13

6
−
ξ

2

�
; ð52Þ

while the logarithmic derivative of the renormalized (trans-
verse) vertex function, ΓR ¼ ZAΓ, can be written as

1

ΓR

∂ΓR

∂ξ
¼ 1

ZA

�
∂ZA

∂ξ

�
þ 1

Γ
∂Γ
∂ξ

¼ −
g2N

2ð4πÞ2
�
1

ϵ

�
þ g2N
64π2

FðsÞ

¼ g2N
64π2

�
FðsÞ − 2

ϵ

�
; ð53Þ

where the second term in the second line arises from the
Nielsen identity, Eq. (31), and from the insertion of the one-
loop result, Eq. (48), neglecting higher order terms.
According to Eqs. (37) and (38), the real and imaginary
part of the logarithmic derivative are the gauge-parameter
derivative of the modulus and phase, respectively, of the
residue. They are made finite by the subtraction of
the diverging term which occurred in Eq. (49). But, while
the modulus still depends on an arbitrary (real) constant
which arises from the subtraction and regularization
schemes, as it should, the phase of the residue is finite
anyway and does not depend on the renormalization up to
higher order corrections. In fact, we can write

∂θ

∂ξ
¼ −Im

�
1

Γ
∂Γ
∂ξ

�
p0

¼
�
g2N
64π2

�
Im½FΓΔm�p0

; ð54Þ

where p0 is the pole position and, neglecting higher order
corrections, Γ can be taken at tree level, so that ΓΔm ≈ −1,
which is real. Thus, when computing the derivative of the
phase, we can drop all constants and real additive terms in
the one-loop function F, which simplifies as

FðsÞ → logðsÞ − 3LðsÞ: ð55Þ

At one loop, in principle, there are other graphs con-
tributing to F in the screened expansion: the crossed graphs
which contain one or more insertions of the transverse mass
counterterm, such as diagrams (d1) and (d2) in Fig. 2.
These are higher order graphs by vertex counting, but still
one-loop if the powers of g2 are considered. Thus, their
inclusion must be discussed in the framework of the
detailed approximation scheme which is used. For instance,
the inclusion of an infinite set of graphs with any number of

mass counterterms is equivalent to a Dyson resummation of
the constant polarization term Π ¼ m2. The effect is that, in
any gluon line, the massive gluon propagator is replaced by
the bare massless one, restoring the ordinary standard
perturbation theory. That is not what we would aim to,
of course. The inclusion of a finite number of mass
counterterms, up to a given order, turned out to be the
best choice for canceling the spurious divergences without
falling into a trivial resummation [49]. Here, no spurious
divergence is found and the inclusion of a finite number of
crossed graphs will be discussed case by case.
The crossed graphs can be easily evaluated by deriva-

tives of the standard one-loop graphs [48–50]. For instance,
the fourth pair of graphs in Fig. 2, graphs (d1) and (d2),
contain one insertion of the transverse mass counterterm in
the internal gluon line which is replaced by the transverse
chain Δm ·m2 · Δm

1

−p2 þm2
→

1

−p2 þm2
m2

1

−p2 þm2

¼ −m2
∂

∂m2

�
1

−p2 þm2

�
: ð56Þ

Thus, after amputating the external leg, the inclusion of the
crossed graphs (d1) and (d2) follows from the correspond-
ing uncrossed graphs, (a1) and (a2), as

ΓmF ðaÞ þ ΓmF ðdÞ ¼
�
1 −m2

∂

∂m2

�
½ΓmF ðaÞ�: ð57Þ

That is equivalent to replacing the logarithmic function
LðsÞ with a new function LCðsÞ in Eqs. (49) and (55),
defined as

LCðsÞ ¼
�
1þ s

∂

∂s

�
LðsÞ − 1; ð58Þ

where the added constant, −1, arises from the derivative of
1=ϵ̂ according to Eq. (A16). The explicit calculation yields

LCðsÞ ¼ 1

3s
−

4

3ð1þ sÞ þ
�
1 −

1

3s2

�
log s

þ
��

2sþ 1 −
1

3s2

�
log

�
1þ 1

s

�
− 2

�
: ð59Þ

The manifest leading behavior LCðsÞ ∼ LðsÞ ∼ log s, in the
limit s → ∞, confirms that the contribution of the crossed
graphs is zero in the limit m → 0.

V. DISCUSSION

We would like to discuss the invariance properties of the
principal part of the gluon propagator. Our starting point is
Eq. (54), which gives the explicit one-loop gauge depend-
ence for the phase of the residue at the pole of the gluon
propagator, as computed in the screened expansion by the
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Nielsen identities. WithΔmΓ ¼ −1 at tree level, the identity
simplifies as

∂θ

∂ξ
¼ −Im

�
1

Γ
∂Γ
∂ξ

�
p0

¼ −
�
g2N
64π2

�
Im½F�p0

: ð60Þ

As previously discussed, since BRST invariance is
broken in the screened expansion at any finite order, we
may expect Im½F�p0

to be different from zero even if the
phase were exactly gauge-invariant. This is indeed the case,
as we show in Fig. 4 by plotting the ImfFð−p2=m2Þg ¼ 0
contour in the complex p-plane. We find a continuous line
of zeros for the imaginary part, but quite far away from the
pole position (asterisk-shaped point in the figure), which
was found at p0=m ¼ 0.8857þ 0.5718i in Ref. [52] by the
optimized one-loop expansion. The line does not cross the
pole, but we would not expect that to happen at one-loop.
Inserting a finite number of mass counterterms in the

internal gluon lines would not change the result too much.
For instance, by including the crossed graphs (d1) and (d2)
we obtain, by Eq. (59), the contour plot shown in Fig. 5.
Again, we find a line of zeros, but the distance from the
pole is even larger.
A more accurate approximation of the exact result would

consist in the resummation of all the one-loop polarization
insertions in the internal gluon line. This would be
equivalent to replacing the bare gluon propagator Δm with
the one-loop function −ΓðpÞ−1 inside the integrals in
graphs (a1) and (a2), so that, in addition, the diagrams
themselves would contain information on the position of
the poles. The one-loop function Γðp2Þ is known analyti-
cally, but the integrals would be prohibitive. On the other
hand, they can be easily evaluated if the propagator is

approximated by its principal part,

ΔPðpÞ ¼ −
R

p2 − p2
0

−
R⋆

p2 − ðp2
0Þ⋆

; ð61Þ

as was done in Ref. [58] to study the infrared behavior of
the quark propagator. The principal part ΔPðpÞ is the
largest contribution to the one-loop gluon propagator of
Fig. 1, and by a slight renormalization it provides a very
good approximation of the exact propagator in the IR [52].
It is also equivalent to the leading order propagator of the
refined Gribov-Zwanziger effective theory [59–63].
In graphs (a1) and (a2), an approximate resummation of

all the polarization insertions in the internal gluon line can
be achieved very easily, without having to evaluate new
integrals, by replacing Δm → ΔP under the sign of integral
and using a trick which was discussed in Ref. [58]. Using
the linearity of the one-loop graphs, the result follows by
analytic continuation of the mass parameter m in the
complex plane. If we denote by Δp0

a bare propagator
Δm with the mass m replaced by p0, then the principal part
can be written as

ΔP ¼ 1þ i tan θ
2

Δp0
þ 1 − i tan θ

2
Δp⋆

0
; ð62Þ

where as before θ is the phase of the residue and the overall
normalization of ΔP is fixed so that ΔPðpÞ ∼ ΔmðpÞ in the
UV, thus ensuring that the divergent part of the integral
does not change. Denoting by s0 ¼ p2

0=m
2 the adimen-

sional pole position, we can then define a modified
resummed logarithmic function LR as

LRðsÞ ¼ 1þ i tan θ
2

Lðs=s0Þ þ
1 − i tan θ

2
Lðs=s⋆0Þ; ð63Þ

to replace the function LðsÞ in Eq. (55). A rigorous proof of
the procedure is given in Ref. [58].

∗

−

+

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
Re[p/m]

 0

 0.2

 0.4

 0.6

 0.8

 1

Im
[p

/m
]

FIG. 4. Contour plot of the equation ImfFð−p2=m2Þg ¼ 0 in
the complex plane of p, in units of m. The asterisk is the gluon
pole p0, Re½p0=m� ¼ 0.8857, Im½p0=m� ¼ 0.5718, as found in
Ref. [52]. A continuous line of zeros is found for the imaginary
part of F. Because of the symmetry Fð−p2⋆=m2xÞ ¼
Fð−p2=m2Þ⋆, only the first quadrant is shown. The plain
Eq. (55) is used for the calculation, without any insertion of
crossed graphs or resummations.
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4
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 0.8

 1

Im
[p

/m
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FIG. 5. Same as Fig. 4, but with the inclusion of the crossed
graphs (d1) and (d2). Equation (59) is used for the calculation
instead of Eq. (50).
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The analytic properties of the function F change dra-
matically when the internal gluon line is replaced by the
principal part, with complex poles, using Eq. (63) instead
of Eq. (50) in Eq. (55). As shown in Fig. 6, the line of zeros
of the imaginary part is strongly modified and reaches a
point very close to the pole. In more detail, the line of zeros
merges with a branch cut which—albeit not clearly visible
in the plot—originates at the pole itself. In the figure, the
branch cut is depicted as a wavy line, along which the
function changes sign without going to zero.3

The branch cut is explained by the existence of a
logarithmic divergence at the pole. In Fig. 7, this logarithmic
divergence is displayed by plotting the function Im½F� with
the real part Re½p=m� kept fixed at the pole value,
Re½p0=m� ¼ 0.8857, while changing the imaginary part,
Im½p=m�, across the pole, which occurs at Im½p0=m� ¼
0.5718. The logarithmic divergence arises from the diver-
gence of LðsÞ at s ¼ −1 in Eq. (50); it follows the pole and
moves to s ¼ −s0 in Eq. (63), as L gets replaced by LR.
The divergence does not spoil the invariance of the pole,

since it is anyways canceled by the zero of Γ in Eq. (31). On
the other hand, at the level of the derivative ∂θ=∂ξ, the
phase of the residue would receive an unphysical diverging
term if the logarithm were not compensated by an extra
zero at the pole. In other words, if the branch cut is a true
feature of the exact result, then the Nielsen identity for the
phase is well-defined only if the exact line of zeros reaches
the pole. We may then expect that vertex and higher order
corrections, when included, would drive the imaginary part
of F toward an exact zero at p0, in order to reconcile the
identity with the expectation of a finite phase change for the
residue. The vanishing of the derivative of the phase would
then follow.

More generally, if the logarithmic divergence were
genuine—with no zero to tame it in F—the diverging
phase would be the sign of a branch point at the zero of Γ.
p0 would not then be a true pole of the propagator, and the
steps which led to Eqs. (38) and (54) would be invalidated.
The Nielsen identity would still hold, but its relation to the
phase would be lost, because there would not be a well-
defined residue in the first place. Of course, in this scenario,
the gluon propagator would have no principal part at all,
which is in contrast with what was found by the screened
expansion at one loop. This is quite unlikely, if we look at
the excellent agreement which is found with the lattice data
in Fig. 1.
At the same time, it has been recently shown that without

a knowledge of the exact vertex structure, nothing can
prevent a wild proliferation of unphysical branch cuts,
order by order, when complex-conjugated poles are present
in the propagator [69]. Thus, the logarithmic divergence
and associated branch cut might just be a consequence of
the missing resummation of vertex corrections. In the
complete absence of a logarithmic divergence at p0,
Im½F�p0

would be finite with a line of zeros passing
remarkably close to it. Thus, again, our resummed results
point to either the derivative ∂θ=∂ξ being exactly zero, or at
least to it being very small.
We are far from having reached a formal proof of the

vanishing of the gauge-derivative of the phase, of course.
Nonetheless, we argue that the exact gauge-parameter-inde-
pendence of the phase θ is the only reasonable assumption
which could avoid any conflict between the exact Nielsen
identity and the results of the screened expansion. Were the
conflict an artifact of the expansion itself, we argue that there
are good indications from our results that the derivative of the
phase is at least very small, if not exactly zero.
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−
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4
Re[p/m]

 0

 0.2

 0.4

 0.6

 0.8

 1

Im
[p

/m
]

FIG. 6. Same as Fig. 4, but with a full resummation of the
internal gluon line by the principal part, according to Eq. (63),
which is used for the calculation instead of Eq. (50). The wavy
line is a branch cut where the function changes sign without
crossing the zero.

 0
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FIG. 7. Logarithmic divergence of the function F at the pole,
according to the resummation scheme of Eq. (63). The imaginary
part, ImfFð−p2=m2Þg is evaluated by Eq. (63) as a function of
Imðp=mÞ across the pole, with Rep=m kept fixed at the pole
value, Rep=m ¼ 0.8857.

3As such, the branch cut should not be viewed as being part of
the contour ImfFð−p2=m2Þg ¼ 0, of course.
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APPENDIX: ONE-LOOP GRAPHS

1. Graphs (a1) and (a2)

The first graph, (a1) in Fig. 2, reads

2F μν
abðpÞ ¼ −ð−ipμÞ

�
i
p2

�
pαgfdac

Z
d4k
ð2πÞ4 iΔ

αβ
m ðkÞ½gfdcbVβσλðp; kÞ�

�
i

ðk − pÞ2
��ðp − kÞσ

ðp − kÞ2
�
iΔλν

m ðpÞ; ðA1Þ

where the three-gluon vertex structure is

Vβσλðp; kÞ ¼ gβσðp − 2kÞλ þ gσλðk − 2pÞβ þ gλβðkþ pÞσ; ðA2Þ

while the ghost and mixed propagators are hcc̄i ¼ i=p2 and hBAμi ¼ pμ=p2, respectively, according to Eqs. (7) and (42).
The massive gluon propagator Δm was defined in Eq. (11). As a countercheck of sign consistence we can use the Slavnov-
Taylor identity 0 ¼ hδθðAμc̄Þi ¼ hðDμcÞc̄i þ hAμBi leading to hAμBi ¼ −hð∂μcÞc̄i ¼ −ð−ipμÞði=p2Þ ¼ −pμ=p2 as
g → 0. The sum over color indices gives fdacfdcb ¼ −Nδab and dropping the delta

2F μνðpÞ ¼ −ig2N
pμpα

p2

Z
d4k
ð2πÞ4Δ

αβ
m ðkÞVβσλðp; kÞ

ðp − kÞσ
ðp − kÞ4 Δ

λν
m ðpÞ: ðA3Þ

According to Eq. (47), the sum of the first pair of graphs, (a1) and (a2) in Fig. 2, can be written as

2F μν
ða1þa2ÞðpÞ ¼ ig2NtμαðpÞΔλν

m ðpÞ
Z

d4k
ð2πÞ4Δ

αβ
m ðkÞVβσλðp; kÞ

ðp − kÞσ
ðp − kÞ4 ; ðA4Þ

and by a bit of algebra

2F μν
ða1þa2ÞðpÞ ¼ −g2NtμαðpÞIαλðpÞΔλν

m ðpÞ; ðA5Þ

where the integral IαλðpÞ is

IαλðpÞ ¼ i
Z

d4k
ð2πÞ4

Δαβ
m ðkÞ

ðp − kÞ4 ½k
2tβλðkÞ − p2tβλðpÞ�: ðA6Þ

We need the transverse part of the integral to be inserted in
Eq. (A5). Thus, replacing tβλðpÞ by gβλ and using the
identity

1

k2ðk2 −m2Þ ¼
1

m2

�
1

k2 −m2
−

1

k2

�
; ðA7Þ

the integral reads

IαλðpÞ ¼
m2 − p2

m2
Jαλðp;mÞ þ p2

m2
Jαλðp; 0Þ þ ξp2KαλðpÞ;

ðA8Þ

where

Jαλðp;mÞ ¼ −i
Z

d4k
ð2πÞ4

k2gαλ − kαkλ
½ðk − pÞ2�2ðk2 −m2Þ ;

KαλðpÞ ¼ i
Z

d4k
ð2πÞ4

kαkλ
½ðk − pÞ2k2�2 : ðA9Þ

By Feynman parametrization and neglecting odd terms in
the numerator, the first integral splits as

Jαλðp;mÞ ¼ J̃αλðp;mÞ þ p2tαλðpÞJðp;mÞ; ðA10Þ

where

J̃αλðp;mÞ ¼ 2

Z
1

0

xdx
Z

d4Eq
ð2πÞ4

ðq2δαλ − qαqλÞ
ðq2 þM2

x;mÞ3
;

Jðp;mÞ ¼ −2
Z

1

0

x3dx
Z

d4Eq
ð2πÞ4

1

ðq2 þM2
x;mÞ3

; ðA11Þ

and the integrals are in the Euclidan space where qα is
defined, while the mass function M2

x;m is
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M2
x;m ¼ ð1 − xÞ½m2 − xp2�: ðA12Þ

By the same notation, dropping a longitudinal term, the
integral Kαλ reads

Kα
λðpÞ ¼ ð3!Þ

Z
1

0

xð1 − xÞdx
Z

d4Eq
ð2πÞ4

qαqλ
ðq2 þM2

x;0Þ4
:

ðA13Þ

The integral J̃ is evaluated by dimensional regularization
with d ¼ 4 − 2ϵ and an arbitrary scale factor μ2ϵ

J̃αλðp;mÞ¼2δαλ

�
d−1

d

�Z
1

0

xdx
μ2ϵ

2d−1πd=2Γðd=2ÞðMx;mÞd−4

×
Γðd=2þ1ÞΓð2−d=2Þ

2Γð3Þ ; ðA14Þ

yielding

J̃αλðp;mÞ ¼ 3δαλ
32π2

Z
1

0

xdx

�
1

ϵ̂
−
2

3
− log

M2
x;m

m2

�
; ðA15Þ

where the diverging part is

1

ϵ̂
¼ 1

ϵ
− γ þ log

4πμ2

m2
; ðA16Þ

while Jðp;mÞ and Kα
λðpÞ are finite in the UV,

Jðp;mÞ ¼ −2
Z

1

0

x3dx

�
1

32π2
1

M2
x;m

�
;

Kα
λðpÞ ¼

ð3!Þδαλ
4

Z
1

0

xð1 − xÞdx
�

1

ð3!Þ8π2
1

M2
x;0

�
: ðA17Þ

The remaining integrals are elementary:

Z
1

0

xdx ¼ 1

2Z
1

0

x logð1 − xÞdx ¼ −
3

4Z
1

0

x logð1þ sxÞdx ¼ 1

2

�
L1ðsÞ −

1

2

�
Z

1

0

sx3

ð1 − xÞð1þ sxÞ dx ¼ s
1þ s

�
lim
η→0

Z
1−η

0

x2

ð1 − xÞ dx −
Z

1

0

x2

ð1þ sxÞ dx
�

¼ s
1þ s

�
L2ðsÞ −

3

2
− log ηþOðηÞ

�
; ðA18Þ

where the limit η → 0 must be taken at the end of the
calculation in order to deal with the spurious IR divergence
which arises in the first integral of the last line. The
logarithmic functions L1, L2 are defined as

L1ðsÞ ¼
1

s
þ s2 − 1

s2
logð1þ sÞ;

L2ðsÞ ¼
1

s2
−

1

2s
−

1

s3
logð1þ sÞ; ðA19Þ

where the variable s is the Euclidean squared momentum
s ¼ −p2=m2 in units of the mass parameter m. Inserting
these explicit expressions, the integrals J̃, J and K read

J̃αλðp;mÞ ¼ 3δαλ
64π2

�
1

ϵ̂
þ 4

3
− L1ðsÞ

�

p2Jðp;mÞ ¼ 2

32π2

�
s

1þ s

��
L2ðsÞ −

3

2
− log η

�

p2Kα
λðpÞ ¼ −

δαλ
32π2

: ðA20Þ
We observe that, in the limit s → ∞, which is equivalent to
m → 0, the logarithmic functions L1ðsÞ, L2ðsÞ have the
asymptotic behavior

L1ðsÞ ¼ logðsÞ þ 2

s
þOðs−2Þ;

L2ðsÞ ¼ −
1

2s
þOðs−2Þ → 0: ðA21Þ

Then, we can write
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ð1þ sÞJ̃αλðp;mÞ − sJ̃αλðp; 0Þ ¼ δαλ
3

64π2

�
1

ϵ̂
þ 4

3
− ð1þ sÞL1ðsÞ þ s log s

�
;

ð1þ sÞp2Jðp;mÞ − sp2Jðp; 0Þ ¼ 4

64π2
½sL2ðsÞ�: ðA22Þ

Because of the transverse projector in Eq. (A5), we can
replace tαλðpÞ by δαλ in Eq. (A10) and insert it in Eq. (A8)
which reads

IαλðpÞ ¼
δαλ

64π2

�
3

ϵ̂
− 3ð1þ sÞL1ðsÞ þ 3s log s

þ 4sL2ðsÞ − 2ξþ 4

�
: ðA23Þ

Finally, the first pair of graphs, (a1) and (a2) in Fig. 2, give
the pure transverse sum

2F μν
ða1þa2ÞðpÞ ¼

g2N
64π2

tμνðpÞ
p2 −m2

�
3

ϵ̂
− 3ð1þ sÞL1ðsÞ

þ 3s log sþ 4sL2ðsÞ − 2ξþ 4

�
: ðA24Þ

We notice the presence of the transverse part of the bare
massive propagator ΔmðpÞ, as a factor which arises from
the external gluon leg. As a check, in the limit m → 0,
which is equivalent to s → ∞, we recover the same result—
modulo irrelevant constants—that was found in Ref. [74]
by standard perturbation theory, namely

½2F μν
ða1þa2ÞðpÞ�m¼0

¼ g2N
64π2

tμνðpÞ
p2

×

�
3

ϵ̂
− 3 logð−p2=m2Þ − 2ξ − 4

�
:

ðA25Þ

2. Graphs (b1) and (b2)

The second pair of graphs, (b1) and (b2) in Fig. 2, have no
internal gluon lines and there are no masses in the internal
propagators. Thus, the result is the same as for standard
perturbation theory, apart from the external bare gluon line.
As a check of consistence, herewe recover the explicit result
of Ref. [74] by our notation. The graph (b1) gives

2F μν
abðpÞ ¼ −ð−ipμÞ

�
i
p2

�
pαgfdac

Z
d4k
ð2πÞ4

�
−
ðp − kÞα
ðp − kÞ2

�

×

�
i
k2

��
i

ðp − kÞ2
�
½kλgfbcd�iΔλν

m ðpÞ; ðA26Þ

and dropping the δab which arises from the sum over color
indices

2F μνðpÞ¼−ig2N
pμpα

p2

Z
d4k
ð2πÞ4

ðp−kÞαkλ
ðp−kÞ4k2Δ

λν
m ðpÞ: ðA27Þ

According to Eq. (47), the sum of the second pair of graphs,
(b1) and (b2) in Fig. 2, can be written as

2F μν
ðb1þb2ÞðpÞ ¼ ig2NtμαðpÞΔλν

m ðpÞ
Z

d4k
ð2πÞ4

ðp − kÞαkλ
ðp − kÞ4k2

¼ g2NtμαðpÞTα
λðpÞΔλν

m ðpÞ; ðA28Þ

where, dropping a longitudinal term, the integral Tα
λðpÞ is

Tα
λðpÞ ¼ −i

Z
d4k
ð2πÞ4

kαkλ
ðp − kÞ4k2 : ðA29Þ

ByFeynman parametrization and, again, neglecting odd and
longitudinal terms, the integral can be evaluated in the
Euclidean space and reads

Tα
λðpÞ ¼ 2

Z
1

0

xdx
Z

d4Eq
ð2πÞ4

qαqλ
ðq2 þM2

x;0Þ3

¼
�

1

d − 1

�
J̃αλðp; 0Þ: ðA30Þ

Bydimensional regularization, adding the factor ðd − 1Þ−1≈
ð1=3Þð1þ 2ϵ=3Þ and using the asymptotic behavior of
L1ðsÞ, Eq. (A21), the integral follows from the first line
of Eq. (A20),

Tα
λðpÞ ¼

δαλ
64π2

�
1

ϵ̂
þ 2 − logðsÞ

�
; ðA31Þ

and by insertion in Eq. (A28) we obtain the final result

2F μν
ðb1þb2ÞðpÞ ¼ −

g2N
64π2

tμνðpÞ
p2 −m2

�
1

ϵ̂
− logð−p2=m2Þ þ 2

�
;

ðA32Þ

which agrees with Ref. [74], apart from the denominator,
p2 −m2, which arises from the external gluon leg and is
replaced by the bare denominator, p2, in the standard
perturbation theory.
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3. Total one-loop contribution

The sum of all the uncrossed one-loop graphs in Fig. 2 gives

2F μνðpÞ ¼ g2N
64π2

tμνðpÞ
p2 −m2

�
2

ϵ̂
− 3Lð−p2=m2Þ þ logð−p2=m2Þ − 2ξ − 6

�
; ðA33Þ

where the logarithmic function LðsÞ is defined as

LðsÞ ¼ ð1þ sÞL1ðsÞ − s log s − 2 −
�
4s
3
L2ðsÞ þ

2

3

�

¼ 1þ s
s

þ ð1þ sÞðs2 − 1Þ
s2

logð1þ sÞ − 2 − s log s −
4

3

�
1

s
−

1

s2
logð1þ sÞ

�
ðA34Þ

and has the leading behavior LðsÞ ∼ log s in the limit s → ∞ or m → 0.
In the limit m → 0, modulo an irrelevant constant, we recover the result of standard perturbation theory [74]

½2F μνðpÞ�m¼0 ¼
g2N
64π2

tμνðpÞ
p2

�
2

ϵ̂
− 2 logð−p2=m2Þ − 2ξ − 6

�
: ðA35Þ
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A note on the figures

Most of the figures displayed in Chapters 3 and 4 were reproduced from the published
papers already cited in the introductions to those chapters and within the text (see Ap-
pendix C).
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