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The combined derangements in mitochondria network, function and dynamics can affect
metabolism and ATP production, redox homeostasis and apoptosis triggering,
contributing to cancer development in many different complex ways. In hematological
malignancies, there is a strong relationship between cellular metabolism, mitochondrial
bioenergetics, interconnections with supportive microenvironment and drug resistance.
Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress
by increasing mitochondrial biogenesis. In other hematological disorders such as
myeloma, on the contrary, bioenergetics changes, associated to increased
mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the
bone marrow niche, a reverse Warburg effect has been recently described, consisting in
metabolic changes occurring in stromal cells in the attempt to metabolically support
adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria
transfer, between tumor cells and their supporting stromal microenvironment has been
described to sustain oxidative stress associated to proteostasis maintenance in multiple
myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to
acquisition of new mitochondria transferred by mesenchymal stromal cells results in
augmented ATP production through increased oxidative phosphorylation (OX-PHOS),
higher drug resistance, and resurgence after treatment. Accordingly, targeting
mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or
mitochondrial fatty acid transport increases therapy efficacy. In this review, we
summarize selected examples of the mitochondrial derangements in hematological
malignancies, which provide metabolic adaptation and apoptosis resistance, also
supported by the crosstalk with tumor microenvironment. This field promises a rational
design to improve target-therapy including the metabolic phenotype.

Keywords: OX-PHOS, mitochondria, multiple myeloma, acute myeloid leukemia, chronic lymphatic leukemia, lymphoma
December 2020 | Volume 10 | Article 6041431

https://www.frontiersin.org/articles/10.3389/fonc.2020.604143/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.604143/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.604143/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.604143/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:d.tibullo@unict.it
mailto:sandrina.romano@gmail.com
https://doi.org/10.3389/fonc.2020.604143
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.604143
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.604143&domain=pdf&date_stamp=2020-12-21


Barbato et al. OX-PHOS in Hematological Malignancies
INTRODUCTION

Since the first description by Rudolf Albrecht von Kölliker in
1857, scientists have explored the essential roles of mitochondria
in cell biology, as the powerhouse of the cells able to produce
comparing weight to weight, thousands of times more energy per
second as compared to sun production (1). Mitochondria can
fuel cellular energy demands by using as substrate pyruvate,
arising from glycolysis or lipolysis coupled to b-oxidation of fatty
acids (FA), in the oxidative-phosphorylation (OX-PHOS)
process coupled to the electron transport chain (ETC).

The combined derangements in mitochondria network
function and dynamics can affect metabolism and ATP
production, redox homeostasis and apoptosis triggering,
contributing to cancer development in many different complex
ways (2). In cancer, there is a gap in knowledge about the protein
composition, structure and dynamics of lipid droplet–
mitochondria structures and how bidirectional FAs exchange
occur, even if the strong relationship between cellular
metabolism, mitochondrial bioenergetics, and tumorigenesis
development is an established emerging hallmark (2, 3).

There is a growing evidence that the metabolic
reprogramming required in cancers to fuel the increased
energy demand is coupled to the increased ability to evade
apoptosis (2, 4). Modulating ATP availability might be an
essential strategy in inducing cell resistance and sustaining
cancer progression and growth (4). Recent findings have
demonstrated that cancer cells take advantage of high
OXPHOS, including leukemias, lymphomas, pancreatic ductal
adenocarcinoma, melanoma, and endometrial carcinoma (5–16),
while mitochondria can modulate their morphology regulating
FIGURE 1 | Schematic representation of Mitochondrial involvement in drug restistan
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the intrinsic apoptotic pathway and participating in the
resistance of cancer cells to apoptotic stimuli (17–27).

In this review, we will summarize the most advanced body of
knowledge about the mitochondrial derangements in
hematological malignancies which provide metabolic
adaptation and apoptosis resistance, with a particular focus on
the implication of novel relevant targets to reduce the risk of
recurrence (Figure 1).
MITOCHONDRIA AND CANCER CELL
BIOENERGETICS

Mitochondria and ATP Production:
The Oxidative-Phosphorylation Process
The oxidative-phosphorylation (OX-PHOS) process is the
electron transfer chain (ETC) driven by substrate oxidation
(e.g pyruvate) coupled to the synthesis of ATP through an
electrochemical transmembrane gradient. OX-PHOS is carried
in the internal mitochondrial membrane (IMM) where four big
multi-protein complexes, that contain flavins, iron-sulfur
clusters, heme proteins, copper (Cu) structures, are organized
to provide energy transformations in the ETC, namely Complex
I, Complex II, Complex III Complex IV, as described in recent
review for more details (20–22, 28–30), which operate together to
generate water and a proton gradient, in presence of oxygen. The
energy accumulated in the form of electrochemical proton
gradient is used by F0-F1 ATP synthase (called Complex V
also) to produce ATP from ADP and phosphate (4, 28, 31, 32).

Complex I (NADH–CoQ reductase), the largest respiratory
complex, catalyzes the electron transfer from NADH to the CoQ
ce in hematological malignancies.
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(ubiquinone), thus to regenerate NAD+ levels oxidizing the
NADH, which is formed both during the tricarboxylic acid
(TCA) cycle and b-oxidation of fatty acids (31, 33). Complex
moves four protons from the mitochondrial matrix to the
intermembrane space generating a potential decrease of 360
mV (33).

Complex II (succinate dehydrogenase or succinate-
ubiquinone oxidoreductase), a membrane-bound component
of the Krebs cycle, permits the oxidation of the metabolite
succinate to fumarate, transferring two protons to CoQ, trough
the FAD/FADH2 coenzymes, thus to coupling the ETC and TCA
cycle (34, 35).

Complex III (coenzyme Q: cytochrome c-oxidoreductase)
catalyzes the reduction of cytochrome c, provides two protons
to the CoQH2, originating from complex I and II to regenerate
the CoQ, and pumps 4 protons from the mitochondrial matrix
to the intermembrane space. The resulting so-called Q cycle
allows the formation of a proton gradient across the membrane:
oxidation of CoQ pumps four protons into the intermembrane
space (positive side), two protons are taken up from the matrix
(negative side) and two electrons are transferred from the
ubiquinol to the ubiquinone, via two cytochrome c
intermediates, to complete the cytochrome c reduction (36).

Complex IV (cytochrome c oxidase) transfers electrons from
cytochrome c to oxygen to generate water and a proton gradient;
its assembly and deregulation has been extensively reviewed
recently (37).

Complex V consists of two main subunits: F0 is the
transmembrane unit that works like a proton-driven turbine;
F1 is the catalytic subunit located on the mitochondrial matrix
side (38).

As a whole, OX-PHOS couples energy demands to the
structural integrity of mitochondria within the cells. The
membrane potential is essential for mitochondrial functions
for cell survival and is well used by cancer cells to trigger
molecular changes to make mitochondria network more
efficient to provide energy requirements and resilience to
changes in the redox status, induced by increased proliferation
rate, and consequent increased nucleotide and lipid synthesis
and/or drug exposure.

Mitochondria Network and Response to
Dynamic Energy Demand: Fusion, Lipid
Droplets (LDs) Trafficking, and Fission
Mitochondria are small organelles devoted to homeostasis and
redox status maintenance within the cell, through cellular
respiration, with consequent ATP production, heat production,
biosynthesis of lipids and iron-containing prosthetic group heme
enzymes, and apoptosis control (39, 40). These processes happen
simultaneously in different compartments, identifiable by
ultrastructural hallmarks, including double lipid membranes
and inner membrane folds forming “cristae”. The outer
mitochondrial membrane (OMM) is a double phospholipid
membrane separating the inside of the organelle from the rest
of the cell while the inner mitochondrial membrane (IMM),
Frontiers in Oncology | www.frontiersin.org 3
separates the inter-membrane space from the central matrix, the
site of the electron transport chain (ETC). The IMM and the
OMM enclose the intermembrane space (IMS) of mitochondria.

The adaptation of mitochondrial morphology to cellular
bioenergetics occurs at IMM by remodeling of mitochondrial
cristae (5, 17, 41). The number of mitochondria in the cell and
their distribution in the mitochondrial networks is regulated by
two interconnected and highly dynamic processes: the fusion,
which allows the merge of two mitochondria into one, and the
fission, which allows the division of one mitochondrion in two
daughter mitochondria, in response to ATP request or to release
of cytochrome C, leading to cell death (18, 20–22, 42).

Inmetabolic active cells, mitochondrial fusion is tightly regulated
by three GTP-ase enzymes of the dynamin superfamily: Mfn1
(Mitofusin-1), Mfn2 (Mitofusin-2), localized on the OMM, and
OPA1 (optic atrophy 1), associated with the IMM.

In highly-energy demanding cells not all mitochondria work
with the same efficiency (43, 44) and a balance between
fluctuating energy demands, energy storage in LDs and
utilization in mitochondria is required. Indeed, “peridroplet”
mitochondria, characterized by elevated Krebs cycle activity but
low FA oxidation capacity, support LDs biogenesis and protect
the cell from lipotoxicity, while non-lipid droplet-bound
cytoplasmic mitochondria are addressed to FA oxidation and
energy production (43). The presence of two kind of
mitochondria networks become relevant when starvation
occurs and autophagy, which leads to bulk release of FAs, is
triggered. In these scenarios, LDs provide a lipid buffering system
that sequesters FAs released during the autophagic degradation
of membranous organelles, reducing mitochondria lipotoxicity.
In turn, FAs are removed by cytoplasmatic lipases to enable their
transfer to mitochondria to provide an “on-demand” source of
fatty acids for bulk ATP production (44), only in highly fused
peridroplet mitochondria. If mitochondrial fusion is prevented,
FAs could not be efficiently metabolized and are re-associated
with LDs and fluxed. Thus, relevant to cancer metabolism,
mitochondrial fusion dynamics ensures maximum oxidative
metabolism and avoids FA toxicity in starved cells (44). As
shown in murine brown adipose cells, lack of Mfn2 induces
LDs accumulation and mitochondrial dysfunction (45). Indeed,
mitochondrial fusion is required for b-oxidation of fatty acids
(FA) and mitochondrial respiration (46); otherwise, LDs
accumulate and FA efflux into neighboring cells (44).

The trafficking of FA between mitochondria and LDs is
bidirectional, regulated by the lipid droplet-coating proteins
PLIN1 and PLIN5 that, if overexpressed, promote clustering of
mitochondria around LDs, by binding Mfn2 (43). In basal state,
Plin1 and Plin5 participate to accumulate palmitate into
triglycerides to limit its utilization by the mitochondria, by
inhibiting hydrolysis and stabilizing the lipid droplet. In
starvation, as consequence of protein kinase A-stimulated
triggering, LD hydrolysis inhibition is lifted, and FAs are
released from LDs to undergo b-oxidation in mitochondria
(47, 48). This is associated to a transcriptional signaling, as
well. Indeed, in response to starvation-induced lipolysis and
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protein kinase A-dependent translocation and enrichment of
PLIN5 in the nucleus, transcriptional complexes with sirtuin 1
(SIRT1) and peroxisome proliferator-activated receptor g
co-activator 1a (PGC1a) can activate Nrf2-ARE system and
promote transcription of target genes involved in mitochondrial
biogenesis and oxidative metabolism (49). Finally, during
starvation and autophagy activation, LDs can remove damaged
lipids and proteins from mitochondria, to delay mitochondria
fission and apoptosis triggering (43, 44, 49–52).

In resting cells, when metabolic requirements are reduced or
when there is an insult leading to increased oxidative stress (e.g.,
oxidative damage, overcharge of ROS levels), mitochondrial
fission is carried out by multi proteins machineries, such as the
GTP-molecules Fis1 (Mitochondrial fission protein 1), which is
integrated into the OMM, and Drp1 (Dynamin-related protein
1). Fis1 allows Drp1 to shuttle from the cytosol to the OMM,
where it forms a ring that drives the division of the organelle,
changing its function and structure, including mitochondrial
outer membrane permeabilization, calcium influx and
cytochrome c release. The resulting modifications occurring in
both proteins and lipids damage mitochondria structures and
induce the collapse of the mitochondrial membrane potential.
The increased number of fragmented organelles in the
mitochondrial network can then to be removed by a
specialized form of autophagy, called mitophagy (13, 22, 26,
42, 53). Thus, mitophagy It plays a major role in maintaining a
proper mitochondrial turnover by degrading damaged organelles
and promoting a stable cellular pool of excellent working
organelles (20, 27, 54), leading to ineffectiveness of drugs
impairing mitochondrial function and consequently to
chemotherapy resistance in cancer.

Warburg Effect and its Relationship
to Mitochondrial Metabolism
In cancer cells, the rate of glucose uptake is dramatically
increased with consequent high secretion of lactate to support
malignant cell proliferation. This process, known as Warburg
Effect, occurs in the presence of oxygen and performing
mitochondria (55). Indeed, in the recent decade it has been
demonstrated that while glycolysis is drastically increased in
tumor cells, mitochondria fitness continues to operate normally
(PMID: 25277420). This upregulation of glycolysis is not just for
ATP production, but also for synthesis of biomass and the
production of NADPH to reduce ROS and oxidative stress.

A symbiotic relationship exists among tumor and cancer-
associated fibroblasts (CAFs). In this “two-compartment”model,
cancer cells and CAFs become metabolically coupled (reverse
Warburg effect). High production of ROS in tumor cells
promotes the oxidative stress in CAFs inducing their metabolic
reprogramming associated to increased aerobic glycolysis and
production of energy-rich fuels such as pyruvate, lactate and fatty
acids, which in turn support the OX-PHOS in cancer cells (56).
Conversely, cancer cells take up these energy-rich metabolites,
which in turn enter in the tricarboxylic acid (TCA) pathway,
sustain ATP production by OX-PHOS, and in overall increase
cell fitness for cell growth and migration (57–63).
Frontiers in Oncology | www.frontiersin.org 4
Relevant for hematological malignancies, in the bone marrow
there is a physiological dynamic, inverse metabolic state, based on
mitochondria transfer, between hematopoietic stem and progenitor
cells and their supporting stromal microenvironment during
quiescence, proliferation and differentiation of these two
populations (64, 65), in response to lactate in the extracellular
space (66).

This mitochondrial transfer has been described to sustain
oxidative stress associated to proteostasis maintenance in
multiple myeloma (67, 68) and acute myeloid leukemia,
associated to drug resistance and disease recurrence (39, 69–74).
INCREASED OX-PHOS IN HODGKIN
LYMPHOMA IS ASSOCIATED TO
REVERSE WARBURG EFFECT
PROMOTING DRUG RESISTANCE

Hodgkin lymphoma (HL) is a hematopoietic neoplasm
generated from B-cells, affecting secondary lymphoid tissues
such as lymph nodes and spleen. Despite recent advances in
the biological knowledge and targeted therapy, almost a quarter
of lymphoma patients relapse, due to the complex interactions
between residual neoplastic cells and the microenvironment, and
the emergence of metabolic adaptive responses which mediate
drug resistance and contribute to clonal selection, at different
times and in the different sites of the same patient (75–79).

In classic HL (cHL) a few neoplastic cells (Hodgkin and Reed-
Stenberg HRS cells) are surrounded by an inflammatory
microenvironment of accessory myeloid and lymphoid cells (80–
86). Compared to the normal counterpart of B cells deriving from
(post-)germinal center (GC) cells, HRS have more mitochondrial
mass, e.g., more TOMM20 (Transporter of the outer mitochondrial
membrane 20) and mitochondrial biogenesis proteins, upregulate
some OX-PHOS key proteins (11), have dismal lactate production
(87), but increased expression of lactate importer MCT1
(monocarboxylate transporter 1) (11). As consequence, HRS
metabolic profile is characterized by high ATP production, as
consequence of high OX-PHOS (87).

Increased OX-PHOS is associated to increased basal
autophagy flux and increased mitochondrial turnover via
mitophagy, which provides to maintain high quality
mitochondria and metabolic intermediates conveying drug
resistance (88). Carbon skeletons can be further provided by
the supportive microenvironment, since the surrounding cells in
HL exhibit high-glycolytic activity, associated to increased lactate
dehydrogenase activity and lactate release, with increased lactate
exporter MCT4 expression (11). The induction of Warburg effect
in the microenvironment and the reverse Warburg effect in HRS
cells could mediate drug resistance to chemotherapy drugs that
disrupt OX-PHOS function such as doxorubicin or affect the
cellular redox state (11, 89).

Drugs commonly used in the first-line treatment, such as
bleomycin, doxorubicine, and vinblastine, part of ABVD
regimen (85, 90–92), generate large amount of reactive oxygen
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species, causing oxidative stress and apoptosis (93), but
increasing at the same time the expression of antioxidant
enzymes that could contribute to chemoresistance in HRS cells.
Bur et al., assessed expression of peroxiredoxin (Prx) II, Prx III,
Prx V, Prx VI, and manganese superoxide dismutase (MnSOD)
in 99 cases of uniformly treated HL. Prxs I–VI participate in
cellular antioxidant defense by reducing alkyl hydroperoxides
and hydrogen peroxide to the corresponding alcohol and water,
while MnSOD catalyzes the dismutation of superoxide to
hydrogen peroxide and oxygen and is the most important
antioxidant enzyme in mitochondria, where oxidative stress is
most evident under physiological circumstances, owing to
oxidative phosphorylation (94). Data reported by Bur et al.,
suggest that the induction of mitochondrial located antioxidant
enzymes (MnSOD and Prx III) in both HRS cells and in reactive
cellular infiltrate is significantly induced in the most aggressive
cases. The evidence of a low rate of complete response to ABVD
treatment in patients with low Prx V expression is therefore in
line with the role of oxidative stress in the mechanism of action
of these drugs. More precisely, all patients with low cytoplasmic
Prx V expression in RS cells achieved CR, whereas the CR rate
was highly low in those with high cytoplasmic Prx V expression
in RS cells (95). Thanks to their mitochondria, HRS can sustain
substantial amount of oxidative stress, and, in line with this,
mitochondrial Prx V expression is related to a poor response to
ABVD chemotherapy.

The reverse Warburg effect in cHL could be overcome by drugs
which target glycolysis in the microenvironment (e.g., arsenic or
metformin) which become synergic with other agents directed
against the crosstalk between neoplastic cells and the
environment, like check-point inhibitors (96, 97). The high-
glycolytic activity in HL microenvironment is clinically relevant,
since and associated to prognostic meaning of 18-FDG-PET
persistent positivity after first cycles of chemotherapy (81–83, 98).

Taken together these data reflect the high involvement of
mitochondria in the resistance to the drugs commonly used for
the treatment of cHL, making them a highly favorable target for
therapeutic manipulation via biguanides and metformin (99).
OX-PHOS IDENTIFIES METABOLIC
SUBTYPES OF B-CELL NON-HODGKIN
LYMPHOMAS

Non-Hodgkin lymphoma (NHL) includes quite heterogeneous
group of blood neoplasms that differ for metabolism, cell of
origin, clinical course, and response to treatment (79, 100–102).
The relationship between metabolic pathway differences and
drug resistance has led to an increasing interest in metabolic
mechanisms important for lymphoma cells surviving.

A recent in vitro study about nine different B cell NHL cell lines
has revealed their capacity to use glucose or glutamine as source of
energy to sustain high proliferative rate. The capacity to use different
substrates is related to differences in metabolic pathways.
Frontiers in Oncology | www.frontiersin.org 5
Particularly, glutamine-addicted cells use mitochondrial
metabolism, while glucose-addicted cells have glycolytic
metabolism also in presence of oxygen (Warburg effect), while
cells that can use glutamine or glucose equally have a higher
metabolic plasticity that allows them to use one or another
pathway depending on the substrates availability (103).

In diffuse large B cell lymphoma (DLBCL), metabolic
diversity is related to different expression profiles identified as
a three-consensus cluster today used for DLBCL classification: B
cell receptor (BCR)/proliferation cluster (BRC-DLBCL),
oxidative phosphorylation cluster (OX-PHOS DLBCL), and
host response (HR) cluster (102). Indeed, BCR-DLBCLs shows
a higher expression of many component of the BCR signaling
(102, 104, 105) and it is linked to the downstream PI3K/AKT/
mTORC1 pathway involved in regulation of pro-survival factors,
glucose acquisition, and glycolysis flux activation (14, 106, 107).
Conversely, OX-PHOS DLBCLs shows an increase in
mitochondrial activity and mitochondrial fatty acid oxidation
(14). However, lymphoma cells show an important metabolic
plasticity, and acute inhibition of BCR signaling increases
glutamine catabolism fuelling the TCA cycle and palmitate-
induced mitochondrial oxygen consumption (14). Increased
contribution of mitochondria for energy production is related
to differential activity or efficiency of mitochondrial ETC
complexes which are encoded by nuclear and mitochondrial
independently transcribed and translated genomes, with the
exception of complex II (9, 14). The high expression of
components of mitochondrial translation machinery is
fundamental for OX-PHOS cells maintenance, so inhibition of
mitochondrial translation machinery causes ROS production
responsible of cell death (9). Moreover, lymphoma cell lines
are able to regulate their metabolic activity in relation of oxygen
availability. Indeed, OX-PHOS DLBCL can become resistant to
hypoxic stress thanks to an increasing of Hexokinase II (HK2)
expression upon eIF4E1 and HIF1a regulation, related to a high
involvement of glycolysis pathway (108, 109). Gu and colleagues
found that rituximab resistance in cell lines of lymphoma (110,
111) was associated to the impaired glucose metabolism, due to
overexpression of HK2, which interacts with the protein of the
mitochondrial outer membrane VDAC (voltage-dependent
anion channel), to repress the mitochondrial membrane
potential and increase the mitochondrial apoptosis threshold
(112). Targeting HK2 resulted in decreased mitochondrial
membrane potential, ATP production, cell viability, and re-
sensitization to chemotherapy agents, suggesting that
overexpression of HK2 could be a novel potential therapeutic
target in rituximab-refractory lymphomas (111). Analysis of
expression profile of newly diagnosed DLBCL has showed that
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is related
to metabolic profile of lymphoma cells. Particularly, GAPDH
expression is significantly correlated with the percentage of ATP
generated from glycolysis, so low GAPDH level is related to
oxygen consumption in OX-PHOS -DLBCL while high
GAPDH level is related to lactate production in BCR-DLBCLs.
Moreover, the increased activation of mTORC1 activity in
December 2020 | Volume 10 | Article 604143
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OX-PHOS-DLBCL is associated with the increase in glutamine
transport rate, reduction of intracellular metabolites involved in
glycolysis (G6P, G3P, and lactate) and non-oxidative arm of the
pentose phosphate pathway (113).

The not-uniform metabolic behavior of DLBLC has clinical
implications: first, the limited role of early PET positivity during
treatment, that could reflect residual glycolytic activity of
neoplastic versus microenvironment cells, based on cell of
origin; second, the suboptimal results of lymphoma treatment,
as shown by the association between relation between gene
expression related to mitochondrial energetic function and R-
CHOP resistance (113); third, the metabolic rewiring associated
to the residual activity of the B-cell receptor. Casola and
colleagues demonstrated that the two lymphoma clusters have
a different fitness. Indeed, BCR+ cell lines have a higher
competitive fitness than BCR- counterparts thanks to BCR/
PI3Kd axis activation, which induces glycogen synthase kinase-
3b phosphorylation (114) and regulates the transcriptional
program, under MYC control, for the expression of OX-PHOS
genes, which use carbon-skeleton of glutamine to fuel TCA cycle.
Indeed, the competitive advantage of BCR- clones on BCR+
clones was due to increased glutamine catabolism, that could be
observed also in absence of BCR/PI3Kd axis through a
constitutive activation of RAS/MAPK pathway (115).
METABOLIC REWIRING IN CHRONIC
LYMPHATIC LEUKEMIA

Chronic Lymphocytic leukemia (CLL) is due to the clonal
expansion and accumulation of malignant B-cell lymphocytes
in the blood stream and in homing tissues, such as bone marrow
and lymphoid organs. Circulating CLL lymphocytes are
quiescent and dependent on intrinsic survival factors and
proliferate when they enter homing tissues, revealing a
challenge for the design of therapeutic interventions that target
intrinsic survival pathways (116). Circulating and homing
require a plastic metabolic rewiring that allows cells to modify
their metabolism and fulfill the requirements needed to sustain
survival, differentiation or proliferation (117, 118). To this end,
the number of mitochondria, the total mitochondrial mass,
biogenesis, bioenergetics (basal, maximal, and ATP-linked
respiration rates), membrane potential and ROS are increased
in CLL cells compared to naïve B-lymphocytes (119). As
discussed above, also CLL cells use preferentially the reverse
Warburg effect, relying primarily on OX-PHOS for generating
energy (120). Clinically relevant, 18-FDG-PET is not always
informative to evaluate disease burden and it is indicated only
when Richter’s Syndrome or transformation to another
aggressive B-cell lymphoma is suspected (121).

Using NanoString technology, it was shown that CLL
lymphocytes display heightened expression of mitochondrial
IDH3 and citrate transporter (SLC25A1) which yield a-
ketoglutarate from isocitrate and cytoplasmic export of citrate
respectively (122). ZAP-70+ CLL cells exhibited significantly
Frontiers in Oncology | www.frontiersin.org 6
higher bioenergetics than B lymphocytes or ZAP-70- CLL cells
and were more sensitive to the uncoupler, carbonyl cyanide-p-
trifluoro-methoxyphenylhydrazone (FCCP). Univariable and
multivariable linear regression analysis demonstrated that
ZAP-70+ predicted increased maximal respiration. ZAP-70+
is a surrogate for B cell receptor (BCR) activation and can
be targeted by ibrutinib, which is a clinically approved
Bruton’s tyrosine kinase (BTK) inhibitor. Ibrutinib-treated
patients exhibit decreased oxygen consumption rates (OCR)
of CLL cells. similar to control B lymphocytes, suggesting that
drug treatment resets the mitochondrial bioenergetics (117).
Increased OX-PHOS is a resistance mechanism to BCL-2
inhibitor venetoclax, suggesting that the implementation
of combinatorial therapy with metabolic modulators may
overcome drug resistance (123).
MITOCHONDRIAL FITNESS MEDIATES
RESISTANCE TO BORTEZOMIB
IN MULTIPLE MYELOMA

Multiple Myeloma (MM) is a neoplastic plasma cell disorder
characterized by a complex array of clinical manifestations,
including hypercalcemia, renal dysfunction, anemia, and bone
lesions (collectively known as CRAB symptoms), in a wide
spectrum of clinical variants ranging from benign MGUS and
smoldering/indolent MM, to more aggressive, disseminated
forms of MM and plasma cell leukemia (124). There is no a
unique driver genetic event in MM onset, but a complex variety
of chromosomal and genomic rearrangements (125), occurring
at different timepoints in response to external driving forces (e.g.,
exposure to microbes, chronic antigen stimulation, oxidative
stress). Among the most frequent mutated genes, FAM46C has
been involved in both mitochondrial and bioenergetics
dysfunction associated to drug resistance (126), proteostasis
(127), and disease onset.

Physiologically, in the plasma cell (PCs) ontogeny,
immunoglobulin synthesis and survival of competitive clones
relies on preserved cell bioenergetics. In response to increased
poli-ubiquitinated proteins requiring autophagy triggering (128),
long-lived PCs robustly engage pyruvate-dependent respiration
and rely on OX-PHOS whereas their short-lived counterparts
could not (129). Thus, the transition from plasmablast to short-
lived and long-lived PCs is associated to increased autophagy
fluxes to allow removal of damaged mitochondria and lipid
droplets accumulation to maintain protein and lipid
homeostasis (44). Several groups have recently showed that
integrity of mitochondrial function relies on p62 to limit
oxidative stress, and conversely, lack of p62 is associated with
inhibited complex I mitochondrial respiration. As consequence,
reduced efficiency of electron transport chain (ETC) is associated
to metabolic derangement inducing pentose phosphate pathway
and increased cytosolic reduced glutathione (GSH) levels.
Conversely, complex I inhibition resulted in lower
mitochondrial membrane potential and higher cytosolic ROS
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production. Pharmacological activation of transcription factor
Nrf2 increased mitochondrial NADH levels and restored
mitochondrial membrane potential in p62-deficient cells (130).

Relying on the detoxifying mitochondrial function is
consequence of other two aberrant metabolic changes
occurring in MM: the oxidative stress, consequence of the
aberrant protein synthesis of incomplete immunoglobulins
with defective glycosylation (131), and the lack of glutamine
synthetase which confers increased ammonium production and
requires nitrates detoxification (132).

In relapsed and refractory patients MM PCs overexpress
mitochondrial biogenesis signatures regulated by the cellular
iron content (133). The consequent loss of integrity of redox
balance, with the nuclear compartmentalization of heme-
oxygenase 1 is associated to drug resistance and genomic
instability (134). MM can intake iron to increase their
scavenger antioxidant-related genes and mitochondrial mass.
Iron trafficking, by modifying energetic metabolism of cancer
cells and impairing inflammatory status of macrophages in the
microenvironment, is a critical regulator to reshape the MM
tumor niche (135). However, to make the picture more complex,
MM cell lines are characterized by distinct ferritin levels, which
directly correlate with bortezomib resistance and pre-treatment
with ferric ammonium citrate (FAC) decreased bortezomib
sensitivity in vitro (135).

Bioenergetics changes, associated to increased mitochondrial
biomass and function, can be elicited as part of the adaptive
response to treatment (135–138). In vitro, human MM cell lines
resistant to bortezomib or dexamethasone have higher
concentrations of ATP, NADH/NADPH ratio, associated to
hyperpolarization of mitochondrial membrane leading to
impaired drug response (137, 139). In vitro, pre-treament with
the OX-PHOS inhibitor tigecycline can increase bortezomib
sensitivity (Alejandra Ortiz-Ruiz, ASH 2019, poster 4408)
(140). Similarly, inhibition of PGC-1a (SR18292), relevant for
OX-PHOS, significantly impaired the proliferation and survival
of MM cells due to the energy exhaustion and oxidative damage
(141). These and other preclinical studies confirm OX-PHOS as
possible targets for sensitization to chemotherapy treatment in
MM (142), including the efficacy of Venetoclax (BCL-2
inhibitor) that could be used independently from the genetic
lesion (143). Further steps could include a metabolic
classification of MM subtypes based on mitochondria number
and OX-PHOS quantification (143).

Our group has recently disclosed that TLR4 acts as a
mitochondria protective factor against bortezomib-induced
mitochondria damage and apoptosis (144). Targeting TLR4
signaling in bortezomib resistant cells damages mitochondrial
fitness and increases mitophagy leading to apoptosis. As TLR4
pathway is also activated in MM mesenchymal stromal cells
(MSCs) driving their commitment toward a pro-inflammatory
and pro-tumor behavior (145), TLR4 inhibition could be an
adjuvant therapy to interrupt the self-reinforcing stromal
changes in MM microenvironment. Taken together, changes in
microenvironment composition (146) and REDOX status can
Frontiers in Oncology | www.frontiersin.org 7
affect sensitivity to novel agents (147) and should be taken in
account in designing novel combinations.
MITOCHONDRIAL METABOLISM
DEPENDENCY IN ACUTE MYELOID
LEUKEMIA AND NOVEL THERAPEUTIC
TARGETS

Acute myeloid leukemia (AML) is a heterogeneous disease
characterized by a blockade in differentiation of hematopoietic
stem cells with a clonal proliferation of myeloid blast in BM and
peripheral blood. Due to the high relapse rate and poor clinical
outcome, overcoming chemoresistance remains the most
important goal in AML patients. Changes in cell metabolism
and metabolic adaptation are a hallmark of many cancers,
including AML, supporting tumor initiation, growth, and
response to therapeutics. The discovery of enzymes deficiency
and mutations in key metabolic enzymes has highlighted the
importance of metabolism in cancer biology and how these
changes might constitute a weakness for cancer treatment.

A study carried out by Chen et al., reported that some
metabolites such as pyruvate and lactate were specifically
enriched in the serum of patients at diagnosis compared to
healthy controls and demonstrated prognostic value in
cytogenetically normal AML (CN-AML) patients as it could
predict poor survival for these patients (148). Interestingly,
deletions of the two glycolytic enzymes PKM2 and LDHA,
which catalyze the production of cytosolic pyruvate and
lactate, respectively, inhibit leukemia initiation in vivo in AML
mice models.

It has also been reported that a wide percentage of AML
patients are deficient in arginosuccinate synthetase-1 (ASS1), an
enzyme that allows the conversion of citrulline and aspartate into
argininosuccinate (149). The loss of ASS1 has also been found in
other tumor types where it is required to support cell
proliferation and nucleotide synthesis by sustaining the
intracellular aspartate level (150). A decrease in ASS1 can also
lead to a dependence on arginine, which has been explored as a
potential vulnerability in different cancer types, including
AML (151).

Recent advances in cancer genetics have found mutations in the
isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) genes occur
frequently in a variety of human cancers, including AML. Wild-
type IDH1 and IDH2 are important metabolic enzymes catalyzing
the oxidative decarboxylation of isocitrate to generate a-
ketoglutarate (aKG) and CO2. IDH1 represents the peroxisomes
and cytosol isoform, while IDH2 is localized in mitochondria. The
common function of IDH1/2 active-site mutations is a new enzyme
activity that catalyzes the conversion of aKG to D-2-
hydroxyglutarate (D2HG). Under physiological conditions,
cellular D2HG accumulation is limited due to the actions of the
endogenous D2HG dehydrogenase (D2HGDH), which catalyzes
the reverse reaction from D2HG to aKG.
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D2HG has been demonstrated to inhibit aKG-dependent
dioxygenases that are involved in the regulation of epigenetics
and differentiation and is thought to induce epigenetic
dysfunction inhibiting normal cellular differentiation.
Specifically, elevated D2HG levels competitively inhibit aKG-
dependent lysine demethylases, resulting in elevated levels of
histone methylation in a variety of cell line models (152, 153).
Consequently, inhibition of cellular differentiation by D2HG is
thought to promote the pathological self-renewal of stem-like
progenitor cells, which may create a cellular state prone to
malignant transformation.

Evidence from AML patients and preclinical models strongly
suggests that IDH1 and IDH2mutations are oncogenic drivers of
AML and myelodysplastic syndrome and that targeting IDH
mutant neomorphic activity in this context may provide
therapeutic benefit by promoting the differentiation of
malignant myeloid cells. Research attempts have been made to
identify small molecule inhibitors of mutant IDH enzymes and
to develop these molecules as drugs for anti-cancer
therapy (153).

In addition to targeting metabolic enzymes, targeting OX-
PHOS turned out to be a promising strategy to improve the
treatment outcomes of AML. Indeed, leukemic cells have higher
copy number of mitochondrial DNA, more mitochondria and
increased oxygen consumption in comparison to normal
hematopoietic stem cells, without a concomitant increase in
respiratory chain complex activity, which confers increased
susceptibility to oxidative stress (154). Acquisition of
chemoresistance is associated to a shift toward a high OX-
PHOS status characterized by increased mitochondrial fitness
and high levels of ROS (155). Mechanistically, this can be due to
increased SIRT3 expression, which significantly decreased
nicotinamide adenine dinucleotide phosphate (NADP)/reduced
NADP ratio and increased reduced glutathione/oxidized
glutathione ratio, associated to OX-PHOS induction (156).

For those cancers, like AML, that rely on OX-PHOS, its
inhibition could represent an effective therapeutic strategy. In
solid cancers OH-PHOS inhibitors, including biguanides and
metformin, are currently under investigation in several trials,
designed to evaluate the combination of metformin with
chemotherapy, as recently reviewed (157, 158). Several drugs,
including biguanides, metformin, atovaquone, and arsenic
trioxide, are used at clinical level for non-oncologic
indications, but growing evidences indicate their potential use
as OX-PHOS inhibitors (8). The detrimental effect of metformin
is emerging in AML, alone (159) or in combination with
cytarabine (160), and Venetoclax induced cell-cycle arrest
leading to clinical trials.

CPI-613, designated as orphan drug for the treatment of
peripheral T-cell lymphoma, is a lipoate analog that blocks
pyruvate dehydrogenase (PDH) and a-ketoglutarate
dehydrogenase (KGDH), induces collapse of mitochondrial
function associated to large, tumor-specific production of
mitochondrial ROS (161). Based on encouraging results in
phase I clinical studies (162, 163), a phase III randomized
study is ongoing in the setting of refractory/relapsing AML to
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compare the efficacy of standard chemotherapy supplemented or
not with CPI-613. Similarly, phase I trials disclosed promising
results using IACS-010759, is an ECT inhibitor, acting against
complex I in AML and NHL (164).

Taken together, ongoing trials in AML and other
hematological malignancies show that targeting OX-PHOS is a
promising strategy to induce a metabolic rewiring leading to
chemo-sensitization.
CONCLUSIONS

Mitochondria play many important roles in cell functions and
homeostasis, including the production of ATP, the release of
death-promoting factors upon apoptotic stimuli and a variety of
metabolic pathways. Contrary to conventional wisdom,
functional mitochondria are essential for cancer cells. Although
mutations in mitochondrial genes are common in cancer cells,
they do not inactivate mitochondrial energy metabolism but
rather alter the mitochondrial bioenergetic and biosynthetic
state. These alterations activate out-of-context programs that
are important in the onset and the development of malignancies.
However, different cancer cell types undergo different
bioenergetic alterations, some to more glycolytic and others to
more oxidative, depending in part on the developmental state of
the cell undergoing neoplastic transformation (165).

In most hematological malignancies, cancer cells show greater
basal mitochondrial activity compared to healthy counterparts
leading to higher levels of oxidative stress. ROS, adaptation to
ROS, and mitochondrial biogenesis appear to form a self-
amplifying feedback loop to sustain recurrence, as shown in
CLL (119). However, in other settings, like MM, bioenergetics of
tumor cells can change, as consequence of increased
mitochondrial biomass and function, as part of the adaptive
response to drug-induced stress (139).

In particular, interactions between cancer cells and surrounding
microenvironment highly affect the growth, metabolism, metastasis
and progression of cancer. The so-called reverse Warburg effect
has been proposed to reconsider bioenergetics of cancer cells and
stromal cells become metabolically coupled (56, 58, 59). In a vicious
circle, neoplastic cells induce oxidative stress in neighboring
microenvironment to undergo aerobic glycolysis and generate
high level of energy-rich fuels (such as pyruvate, ketone bodies,
fatty acids, and lactate) that fuel mitochondrial OX-PHOS in
cancer cells and are utilized for efficient ATP production (56). In
addition, microenvironment can contribute through horizontal
mitochondrial transfer, when neoplastic cells become incapable
of aerobic respiration due to defective or deleted mtDNA
(166), Taking up functional mitochondria derived from the
microenvironment can increase mitochondrial mass to improve
metabolic fitness of neoplastic cells and conferring drug resistance.

It is probably that in next years “mitochondrial medicine” will
play an active role to design effective therapeutic strategies to
target the interplay between microenvironment and neoplastic
cells to tailor the metabolic phenotype and not only the genomic
aberrancies, with novel targets for selective anti-cancer therapy.
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et al. Oxidative phosphorylation inhibition induces anticancerous changes in
Frontiers in Oncology | www.frontiersin.org 13
therapy-resistant-acute myeloid leukemia patient cells. Mol Carcinog (2019)
58:2008–16. doi: 10.1002/mc.23092

161. Stuart SD, Schauble A, Gupta S, Kennedy AD, Keppler BR, Bingham PM,
et al. A strategically designed small molecule attacks alpha-ketoglutarate
dehydrogenase in tumor cells through a redox process. Cancer Metab (2014)
2:4. doi: 10.1186/2049-3002-2-4

162. Pardee TS, Lee K, Luddy J, Maturo C, Rodriguez R, Isom S, et al. A phase I
study of the first-in-class antimitochondrial metabolism agent, CPI-613, in
patients with advanced hematologic malignancies. Clin Cancer Res (2014)
20:5255–64. doi: 10.1158/1078-0432.CCR-14-1019

163. Pardee TS, Anderson RG, Pladna KM, Isom S, Ghiraldeli LP, Miller LD, et al.
A Phase I Study of CPI-613 in Combination with High-Dose Cytarabine and
Mitoxantrone for Relapsed or Refractory Acute Myeloid Leukemia. Clin
Cancer Res (2018) 24:2060–73. doi: 10.1158/1078-0432.CCR-17-2282

164. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An
inhibitor of oxidative phosphorylation exploits cancer vulnerability.Nat Med
(2018) 24:1036–46. doi: 10.1038/s41591-018-0052-4

165. Wallace DC. Mitochondria and cancer. Nat Rev Cancer (2012) 12:685–98.
doi: 10.1038/nrc3365

166. Guerra F, Arbini AA, Moro L. Mitochondria and cancer chemoresistance.
Biochim Biophys Acta Bioenerg (2017) 1858:686–99. doi: 10.1016/
j.bbabio.2017.01.012

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The handling editor declared a past co-authorship with one of the authors FR.

Copyright © 2020 Barbato, Scandura, Puglisi, Cambria, La Spina, Palumbo,
Lazzarino, Tibullo, Di Raimondo, Giallongo and Romano. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
December 2020 | Volume 10 | Article 604143

https://doi.org/10.1038/nature15529
https://doi.org/10.1016/j.ccell.2018.04.011
https://doi.org/10.1016/j.ccell.2018.04.011
https://doi.org/10.1038/embor.2011.43
https://doi.org/10.1016/j.ccr.2010.12.014
https://doi.org/10.1182/blood-2014-08-594408
https://doi.org/10.1158/2159-8290.CD-16-0441
https://doi.org/10.1111/bjh.16044
https://doi.org/10.3390/cancers10090337
https://doi.org/10.3390/cancers11020260
https://doi.org/10.1182/blood-2010-02-269837
https://doi.org/10.1182/blood-2010-02-269837
https://doi.org/10.1002/mc.23092
https://doi.org/10.1186/2049-3002-2-4
https://doi.org/10.1158/1078-0432.CCR-14-1019
https://doi.org/10.1158/1078-0432.CCR-17-2282
https://doi.org/10.1038/s41591-018-0052-4
https://doi.org/10.1038/nrc3365
https://doi.org/10.1016/j.bbabio.2017.01.012
https://doi.org/10.1016/j.bbabio.2017.01.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview
	Introduction
	Mitochondria and Cancer Cell Bioenergetics
	Mitochondria and ATP Production: The Oxidative-Phosphorylation Process
	Mitochondria Network and Response to Dynamic Energy Demand: Fusion, Lipid Droplets (LDs) Trafficking, and Fission
	Warburg Effect and its Relationship to Mitochondrial Metabolism

	Increased OX-PHOS in Hodgkin Lymphoma is Associated to Reverse Warburg Effect Promoting Drug Resistance
	OX-PHOS Identifies Metabolic Subtypes of B-Cell Non-Hodgkin Lymphomas
	Metabolic Rewiring in Chronic Lymphatic Leukemia
	Mitochondrial Fitness Mediates Resistance to Bortezomib in Multiple Myeloma
	Mitochondrial Metabolism Dependency in Acute Myeloid Leukemia and Novel Therapeutic Targets
	Conclusions
	Author Contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


