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INTRODUCTION 
 

Amyotrophic lateral sclerosis (ALS) is a progressive 

neurodegenerative disease that affects upper and lower 

motoneurons [1, 2]. Although the main ALS hallmark is 

motoneuronal loss due to motoneuron vulnerability, 

resident glial cells play a crucial role in ALS pathogenesis. 

In particular, during the disease progression, a robust 

neuroinflammation, glial activation and misfolded protein 

accumulation can be observed, together driving 

progressive neuronal loss and persistent disabilities [3, 4]. 

Recent evidence on neurodegenerative/inflammatory 

disorders have highlighted a key role of neuroglial cross-

talk, which substantially contributes to neuronal suffering 

and degeneration [3, 4]. 

 

Gap junctions (GJs) are characterized by the juxtaposition 

of two hemichannels (HCs) of adjacent cells, and allow the 
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ABSTRACT 
 

Amyotrophic lateral sclerosis (ALS) is one of the most common motoneuronal disease, characterized by 
motoneuronal loss and progressive paralysis. Despite research efforts, ALS remains a fatal disease, with a survival 
of 2-5 years after disease onset. Numerous gene mutations have been correlated with both sporadic (sALS) and 
familiar forms of the disease, but the pathophysiological mechanisms of ALS onset and progression are still largely 
uncertain. However, a common profile is emerging in ALS pathological features, including misfolded protein 
accumulation and a cross-talk between neuroinflammatory and degenerative processes. In particular, astrocytes 
and microglial cells have been proposed as detrimental influencers of perineuronal microenvironment, and this 
role may be exerted via gap junctions (GJs)- and hemichannels (HCs)-mediated communications. Herein we 
investigated the role of the main astroglial GJs-forming connexin, Cx43, in human ALS and the effects of focal 
spinal cord motoneuronal depletion onto the resident glial cells and Cx43 levels. Our data support the hypothesis 
that motoneuronal depletion may affect glial activity, which in turn results in reactive Cx43 expression, further 
promoting neuronal suffering and degeneration. 
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exchange of ions, metabolites, and other mediators < 1 

kDa between intracellular fluids (i.e. GJs-mediated 

intercellular communication) or between intracellular and 

extracellular compartment (i.e. HCs-mediated 

communication) [5, 6]. GJs are aggregates in defined 

plasma membrane regions of adjacent cells forming the so-

called GJs plaques, in which GJs are rapidly assembled, 

disassembled or remodelled [6]. Previous evidence 

demonstrated that connexins (Cxs), the core GJs- and 

HCs-forming proteins, exert a prominent role in 

maintaining physiological functions and promoting 

reactive activation of glial cells [7]. Indeed, previous 

reports on transgenic mouse models of ALS, showed an 

early Cx43-reactive expression on spinal cord 

microenvironment. This evidence was also observed in 

aging and in major neurodegenerative disorders, including 

spinal cord injury and Alzheimer’s disease [8–10]. It 

seems likely that ALS has a focal onset in the central 

nervous system, where microenvironmental conditions are 

particularly hostile and mediate neurodegeneration spread 

and progression [2, 11, 12]. Thus, we developed a mouse 

model of focal removal of lumbar spinal cord motoneurons 

using retrograde suicide transport of saporin, conjugated to 

cholera toxin-B subunit (CTB-Sap) [13, 14]. 

 

Herein we investigated Cx43, the most abundant GJs- 

and HCs-forming protein of the central nervous system, 

and its possible role in human ALS, as well as in the 

CTB-Sap model [13, 14]. We have shown that Cx43-

reactive expression may represent the biological 

substrate underlying reactive glial activation and 

neuronal suffering in neurodegenerative diseases. 

RESULTS 
 

Correlation between GJA1 and GFAP in human ALS 

 

We first tested the hypothesis of a potential role of Cx43 

in human ALS analysing the z-score of mRNA 

expression levels in the central nervous system of 

control and sporadic (s)ALS patients. We used the  

NCBI Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/) to select human 

healthy and ALS gene expression dataset. We analysed 

the GFAP (encoding for the glial fibrillary acidic 

protein) and GJA1 (encoding for Cx43) expression 

levels in central nervous system biopsies of healthy and 

sALS patients. Our analysis revealed that in sALS 

patients both GFAP and GJA1 mRNA levels were 

significantly increased as compared to the healthy 

counterpart (Figure 1A, 1B). We then moved to analyse 

a potential correlation between GFAP and GJA1 

performing a linear regression analysis, finding a 

positive correlation between tested genes in human 

sALS central nervous system (r2 = 0.4765, p-value < 

0.0001, Figure 1C). 

 

CTB-Sap-induced motoneuronal depletion mediates 

behavioural impairment in mice 

 

In order to analyse the effects of motoneuronal loss and 

its impact on behavioural and neuropathological signs 

in vivo, we established a model of spinal motoneuronal 

depletion induced by the neuronal targeting toxin CTB-

Sap, which is retrogradely transported throughout axons 

 

 
 

Figure 1. Expression levels of GFAP and GJA1 encoding for Cx43 in human sALS biopsies. (A, B) mRNA expression levels of GFAP 

(A) and GJA1 (B) in the central nervous system of sALS patients versus healthy control levels. Data are expressed as z-score intensity 
expression levels and presented via standard Box and whiskers plot. ****p-value < 0.0001 and *p-value < 0.05 versus healthy control group. 
(C) Linear regression analysis of GFAP and GJA1 z-scores in sALS group. 

http://www.ncbi.nlm.nih.gov/geo/
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to the spinal cord. We evaluated the behavioural impact 

of motoneuronal loss at 0, 7, 21 and 42 days post-lesion 

(dpl), performing an open field grid walk test (Figure 

2A), tracking the distance covered by mice during the 

task with a tracking camera, and the number of footfalls 

over meter with a counting camera (Figure 2A). We 

found that both healthy control and CTB-Sap lesioned 

mice were active in the performance and covered an 

average distance of 3.2 ± 0.5 and 4.2 ± 1.0 meters, 

respectively (p-value > 0.444, Figure 2B). We also 

found that CTB-Sap lesioned mice showed a significant 

increase of the rate of errors as soon as 7 dpl and that 

such motor coordination impairment was retained up to 

42 dpl (Figure 2C). We confirmed this evidence 

evaluating the clinical impairment during the time 

course of disease. Our data indicate that lesioned mice 

presented a stable impairment and a clinical score of 

about 2 (Figure 2D), showing leg extension towards the 

lateral midline and also affected stepping during 

locomotion test. 

 

CTB-Sap induces typical electromyographic signs of 

denervation 

 

In order to better characterize the denervation in CTB-

Sap-injected mice, we performed an electromyographic 

recording into the left gastrocnemius muscle to find 

signs of denervation and spontaneous electrical activity. 

The results of our analysis are reported in Figure 3A, 

3B and show that CTB-Sap induces muscle denervation, 

as suggested by a relevant number of positive sharp 

waves, fibrillations, fasciculations and neuromyotonia 

(Figure 3B). Of note, our electromyographic analysis 

found no obvious signs of myopathy. 

 

 
 

Figure 2. Motor impairment in spinal motoneuronal depleted CTB-Sap mice. (A) Experimental setting of open field grid walk 

behavioural platform. (B, C) Representative tracks (B) and quantification of the number of footfalls over meter (C) of healthy (black) and CTB-
Sap lesioned (red) mice at 0, 7, 21 and 42 days post-lesion (dpl); data are mean ± SEM; **p-value < 0.01 and *p-value < 0.05 versus healthy 
control group. (D) Clinical score of CTB-Sap-lesioned mice in the time course of lesion; data are mean ± SEM. 
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Spinal cord neuropathological analysis 

 

We then moved to analyse the neuropathological 

effects of CTB-Sap, by quantifying the impact onto the 

resident motoneuronal populations. Our analysis 

revealed a striking reduction of left over right 

motoneuron number in Rexed lamina IX of CTB-Sap 

lesioned mice versus healthy control (Figure 3C, 3D). 

This depletion is also evident in Figure 3D, which 

shows representative images of cresyl violet-positive 

motoneurons in left Rexed lamina IX of healthy 

control and CTB-Sap mice. 

 

Cx43-mediated coupling in Rexed lamina IX glial cells 

 

The relevance of astroglial Cx43 in human ALS 

prompted us to evaluate a potential involvement of this 

Cx in a reductionist model of spinal motoneuronal loss 

induced by CTB-Sap. We assessed Cx43 expression in 

our model, by measuring the Cx43 mean fluorescence 

 

 
 

Figure 3. Electromyographic signs and neuropathological analysis of CTB-Sap lesioned mice. Quantification (A) and 

representative profile of electromyographic activity of gastrocnemius muscle in CTB-Sap lesioned mice. (B) positive sharp waves (PSW), 
fibrillations, fasciculation and neuromyotonia (NMT); data in (A) are expressed as mean events per minute ± SEM. (C) Quantification of the 
number of neurons in left (L) over right (R) ventral horn of CTB-Sap lesioned mice versus healthy control; data are expressed as mean ratio L 
over R ± SEM; **p-value < 0.01 versus healthy control. (D) Representative images of cresyl violet stained motoneurons in left Rexed lamina IX 
of healthy control and CTB-Sap lesioned mice. Scale bar: 100 μm. MNs: motoneurons. 
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intensity (MFI) in the spinal cord of healthy control and 

CTB-Sap mice, finding a significant MFI increase in 

GFAP and Cx43 levels in Rexed lamina IX of 

motoneuronal depleted spinal cord (Figure 4A, 4B). 

Such an increase was coupled with morphological 

changes in astroglial (i.e. GFAP positive) and 

microglial (i.e. IBA1 positive) cell populations (Figure 

4B). Finally, we analysed the profile plot of GFAP, 

IBA1 and Cx43 in the spinal cord of healthy control 

(Figure 5A) and CTB-Sap-lesioned (Figure 5B) mice, 

confirming an increased colocalization between Cx43 

and GFAP/IBA1 (Figure 5A, 5B). 

 

 
 

Figure 4. Increase of Cx43 in the spinal cord cell populations of motoneuron-depleted spinal cord. (A) Quantification of mean 

fluorescence intensity (MFI) of GFAP and Cx43 in the left lamina IX of healthy control and CTB-Sap lesioned mice; data are expressed as mean 
± SEM; **p-value < 0.01 and *p-value < 0.05 versus healthy control. (B) Representative confocal images of Cx43 (red) immunofluorescence 
analysis in lamina IX of healthy control and CTB-Sap lesioned mice; images show also markers for astroglial cells (GFAP, green) and microglia 
(IBA1, white); scale bar 20 µm. 
 

 
 

Figure 5. Cx43-based channels profile in microglial/astroglial milieu in motoneuron-depleted spinal cord. Profile plot of MFI of 

IBA1 (black plot), GFAP (green plot), and Cx43 (red plot) and plots overlay (bottom panel) in Rexed lamina IX of healthy control (A) and CTB-
Sap lesioned mice (B); data are MFI arbitrary units (a.u.) of spinal confocal acquisitions. 
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DISCUSSION 
 

It is known that glial cells, both astrocytes and 

microglia, hold key physiological roles in the central 

nervous system, such as immunological surveillance, 

blood brain barrier function, synaptic activity, neuronal 

trophism and metabolic support [1, 14–18]. In the last 

decades, advances have come to suggest a critical role 

of neuroglial cross-talk and related microenvironmental 

modulation during neurodegenerative disorders [7, 19, 

20]. Such a role, besides being an attractive target due 

to its pathophysiological importance, also opens new 

scenarios to develop potential effective therapeutic 

strategies. 

 

Several in vitro and in vivo models of main neurological 

conditions such as stroke, multiple sclerosis, 

Alzheimer’s disease and ALS, demonstrated that 

reactive astrocytes and microglia amplify 

neuroinflammation and neurodegeneration through 

aberrant GJs/HCs communication [21]. It is noteworthy 

that even in aging models, dysregulation of astroglial 

population and Cx43 dynamic expression profile may 

be one of the responsible mechanisms for Aβ deposits 

in the brain [9, 22, 23]. 

 

Notably, an abnormal increase in Cx43 expression has 

been described as one of the mechanisms for astrocyte-

mediated toxicity in both SOD1(G93A) mice and in the 

central nervous system of ALS patients [20]. 

 

Herein, we first analysed available data on NCBI GEO 

database to select human ALS transcriptome dataset (E-

MTAB-2325) in order to verify whether astrogliosis and 

reactive Cx43 expression, which are both reported in 

ALS neuropathology, were positively correlated. Such 

analysis suggested that astrocytes represent the leading 

cell population in showing Cx43 expression, and that 

human astroglial reactive Cx43 finds a correspondence  

in mice model of motoneuronal diseases. Astroglial cells 

are able to communicate with each other through Cxs-

based GJs, mainly expressing Cx43 [7]. This direct 

astrocyte-to-astrocyte communication is involved in 

homeostatic processes within the complex intercellular 

network they form, allowing metabolites, small 

molecules and second messengers trafficking. During 

neurodegenerative disease, central nervous system 

microenvironment is substantially affected by 

inflammatory cytokines released by reactive microglia 

also acting on astroglial cells. Astrogliosis and 

concomitant reactive Cx43 expression contribute to 

homocellular and heterocellular communication, also 

releasing reactive oxygen species and inflammatory 

mediators. Therefore, such unbalanced communication 

fosters neurotoxic and proinflammatory loop of 

neurodegenerative disease [24, 25]. 

We also assessed a toxin-based model of motoneuronal 

depletion established using CTB-Sap [14, 26, 27], 

which selectively targets axon terminals and kills 

motoneurons by retrograde suicide transport [28, 29], 

thus inducing both muscular denervation and 

behavioural impairment of motor performance. Our 

reductionist in vivo model of motoneuronal disorders 

showed functional deficits and electromyographic signs 

typical of both transgenic ALS mouse model and  

human ALS patients [30–32]. In particular, our 

electromyography data revealed that CTB-Sap-induced 

motoneuronal ablation does not induce myopathy. 

Indeed, no obvious signs of myopathy were found in 

motoneuronal depleted mice. In myopathic diseases, in 

addition to apparent fibrillation potentials and positive 

sharp waves, normal or early recruitment is found, 

whereas in our animal model we found profuse 

fibrillation potentials and positive sharp waves 

associated with reduced recruitment, that is a typical 

pattern found in neuropathy and also observed in ALS 

patients [33, 34]. 

 

In CTB-Sap induced motoneuronal depletion, we have 

therefore observed typical ALS electromyographic 

signs of denervation, thus supporting this model as a 

valuable tool to study neurodegeneration and central 

effects of reduced motoneuronal pool. 

 

A significant aspect of our model is the evidence of 

reactive astrocytes expressing Cx43, which suggested an 

increase in intercellular communication. Our evidence 

does not support a relationship between neuronal 

ablation efficiency and glial cells activation, although a 

potential relationship between spared motoneurons 

modulating the activation and function of both microglia 

and astrocytes, may occur. Moreover, enhanced Cx43 

expression also activates a positive-loop conditioning 

ventral horn microenvironment that likely exerts a 

detrimental effect on spared motoneurons. Accordingly, 

negative effects induced by Cx43 overexpression have 

been reported in experimental models of ALS, showing 

that increased glial Cx43-channels significantly affect 

neuronal activity and wellness [20]. In particular, 

experimental evidence supports the hypothesis that Cx43 

could exert such a detrimental role when assembled as 

HCs and exposed to cell membrane. Such an effect may 

be linked to increased excitotoxic calcium release, 

reactive oxygen species, glutamate and ATP, thus 

further inducing neuronal distress and death [1, 25, 35–

37]. The role of microglial cells during 

neurodegeneration is also of importance, in particular for 

their role as master regulators of inflammatory cytokine 

release. Microglia modulates astroglial functions 

releasing IL-1β and TNFα that have been linked to an 

overall increase of Cx43-based HCs activity, further 

sustaining neuronal suffering [38, 39]. 
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In the present report, we found an altered glial activity 

in an experimental model of motoneuronal depletion, 

resulting in a reactive Cx43 expression. Further studies 

will help to characterize the molecular mediators and 

the role of selective silencing and/or pharmacological 

modulation of Cx43 function. GJs- or HCs-forming 

protein in CTB-Sap induced focal motoneuronal 

depletion may also offer the opportunity to evaluate a 

potential discrepancy of Cx43 biological meaning in the 

early versus the late stage of disease. Crucial 

information may be derived by Cx43 knockout models 

upon neurodegenerative insults, even if potential cross-

modulation among Cxs may take place. Of note, the 

role of microglial GJs and HCs is still matter of debate, 

in particular on the heterocellular (i.e. microglia-

astrocytes) GJs composition. A deeper investigation on 

the role of Cx43 in microglial cell population and on the 

crucial role of HCs in neuroglial crosstalk will help to 

elucidate biological substrates and to highlight potential 

therapeutic targets in neurodegenerative diseases. 

 

MATERIALS AND METHODS 
 

Human ALS data 

 

For human ALS data, we used the NCBI Gene 

Expression Omnibus (GEO) database (http://www.ncbi. 

nlm.nih.gov/geo/) to select human ALS central nervous 

system transcriptome dataset (E-MTAB-2325) analysing 

the GFAP (encoding for the glial fibrillary acidic 

protein) and GJA1 (encoding for Cx43) expression 

levels. Mesh terms “central nervous system”, “ALS” and 

“Human” were used to identify potential datasets of 

interest. Healthy control tissues were matched for age, 

post-mortem (PM) delay and central nervous system 

region. The samples characteristics are available in 

Table 1. The analysis of microarray data by Z-score 

transformation was performed using MultiExperiment 

Viewer (MeV) software (The Institute for Genomic 

Research (TIGR), J. Craig Venter Institute, USA), in 

order to allow the comparison of microarray data 

independent of the original hybridization intensities and 

reduce the noise of original intensity signal [40–42]. 

 

Animal model 

 

All experiments were performed in accordance with the 

principle of the Basel Declaration as well as with the 

European Communities Council directive and Italian 

regulations (EEC Council 2010/63/EU and Italian 

D.Lgs. no. 26/2014). The protocol was approved by the 

Italian Ministry of Health (auth. no. 1133/2016-PR). All 

efforts were made to replace, reduce, and refine the use 

of laboratory animals. Experiments were performed on 

8–12 weeks old male 129S2/SvPasCrl (Charles River 

Laboratories, Calco, Italy), as previously described  

[13, 14]. Briefly, a total number of 16 animals were used 

in this study, randomly assigned to the HC group (n = 8) 

or the CTB-Sap (12 μg injected into the left 

gastrocnemius muscle) lesioned group (n = 8). For CTB-

Sap injection, mice were anesthetized with isoflurane 

(4% for induction, 2% for maintenance). Mice were 

then observed for up to 42 days post lesion (dpl) 

evaluating the clinical score based on the following 

criteria: 0 = healthy; 1 = collapse or partial collapse of 

leg extension towards the lateral midline during the  

tail suspension test; 2 = toes curl under at least twice 

during walking of 30 cm or any part of the foot is 

dragging along the cage bottom/table; 3 = rigid 

paralysis or minimal joint movement, foot not being 

used for generating forward motion; 4 = mouse cannot 

straighten itself within 30 s after being placed on either 

side. 

 

Electromyography 

 

Electromyographic recording was performed as 

previously described [14]. Briefly, at 42 dpl mice were 

anesthetized with isoflurane and CTB-Sap injected 

gastrocnemius muscle was exposed and examined by a 

portable two-channel EMG device (Myoquick, 

Micromed S.p.A., Mogliano Veneto, Treviso, Italy) 

using 1 bipolar concentric needle electrode inserted in 

the gastrocnemius and 1 grounded electrode. 

 

Open field grid walk test 

 

Open field grid walk test was performed at 0, 7, 21, and 

42 dpl using a platform equipped with a tracking 

camera and a counting camera. Animals were placed in 

the arena and were free to move and to explore during 

the behavioural test. Each performance was recorded for 

2 minutes and matched tracking and counting video 

were analysed off-line using Ctrax tracker software 

version 0.5.18 for Mac. 

 

Ex vivo tissue processing 

 

At 42 dpl, spinal cord isolation, cryo-sectioning and 

immunofluorescence analysis were performed as 

previously described [43]. Briefly, isolated spinal cords 

were post-fixed with 4% paraformaldehyde overnight 

at 4 °C. Samples were then cryo-protected with 30% 

sucrose in PBS overnight at 4 °C and then embedded in 

Optimum Cutting Temperature medium. Embedded 

samples were snap frozen in liquid nitrogen and cut 

into 20 μm-thick cryosections. Sections were collected 

on SuperFrost slides and stored at - 80 °C until use. 

Before performing experiments, sections were dried at 

room temperature for 45 minutes and then washed in 

deptH2O and PBS 2 times for 5 minutes at room 

temperature. 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Table 1. Characteristics of healthy control and sALS human samples. 

Sample Age Male Female 

Healthy control 55.1±14.4 9 1 

ALS 56.70±9.94 20 11 

 

Cresyl violet 

 

For cresyl violet staining, spinal cord sections were 

dehydrated with increasing ethanol (70%, 95% 100%) 

in deptH2O for 3 minutes and then in xylene for 5 

minutes. Dehydrated sections were then homogenously 

rehydrated and stained with a solution of 0.2% sodium 

acetate, 1% cresyl violet, 3% glacial acetic acid in 

deptH2O for 10 min at room temperature. Sections were 

then washed in water, dehydrated in increasing ethanol 

concentrations, clarified in xylene and coverslipped. 

 

Immunofluorescence 

 

Immunofluorescence was performed as previously 

described [43–46]. Briefly, samples were incubated 

overnight at 4 °C with mouse monoclonal anti-GFAP 

(BD Biosciences, Cat# 610566, RRID: AB_397916, 

1:500), rabbit polyclonal anti-Cx43 (Cell Signaling 

Technology, Cat# 3512, RRID: AB_2294590, 1:200), 

goat polyclonal anti-IBA1 (Novus Biologicals, Cat# 

NB100-1028, RRID: AB_521594, 1:500). The 

following day, sections were washed in 0.1% Triton X-

100 in PBS 3 times at room temperature and then 

incubated 1 hr at room temperature with appropriate 

combination of secondary antibodies: goat polyclonal 

anti-mouse (Alexa Fluor 488, Thermo Fisher Scientific, 

Cat# A-11001, RRID: AB_2534069, 1:1’000), goat 

polyclonal anti-rabbit (Alexa Fluor 564, Molecular 

Probes, Cat# A-11010, RRID: AB_143156, 1:1’000) 

and donkey anti-goat (Alexa Fluor 647, Thermo Fisher 

Scientific, Cat# A-21447, RRID:AB_2535864). Nuclei 

were counterstained with DAPI (1:10’000, Invitrogen) 

for 5 min at room temperature and then mounted with 

BrightMount mounting medium (Abcam). Profile plots 

for immunofluorescence images were obtained as 

previously described [43]. 

 

Statistical analysis 

 

All tests were performed in GraphPad Prism (version 

5.00, GraphPad Software) or RStudio (version 1.0.153, 

RStudio Inc.). Data were tested for normality using a 

D’Agostino and Pearson omnibus normality test and 

subsequently assessed for homogeneity of variance. 

Data that passed both tests were further analyzed by 

two-tailed unpaired Student’s t-test for comparison of n 

= 2 groups. For comparison of n ≥ 3 groups, one-way or 

two-way ANOVA was used where appropriate, and 

associations between variables were analysed by linear 

regression and correlation. 
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