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A B S T R A C T

An effective and performing hysteresis model, based on a deep neural network, with the capability to reproduce
the evolution of magnetization processes under arbitrary waveforms of excitation is here presented. The
proposed model consists of a standalone multi-layer feed-forward neural network, with reserved input neurons
for the past values of both the input (H) and output (M), aiming at the reproduction of the storage mechanism
typical of hysteretic systems. The training set has been opportunely prepared starting from a set of simulations,
performed by the Preisach hysteresis model. The optimized training procedure, based on multi-stage check
of the model performance, will be comprehensively discussed. The comparative analysis between the neural
network-based model, implemented at low level of abstraction, and the Preisach model covers additional
hysteresis processes, different from those involved in the training. The mild/moderate memory requirement
and the significant computational speed make the proposed approach suitable for a future coupling with
finite-element analysis.
. Introduction

The development and testing of performing hysteresis models, for
he electromagnetic simulation of magnetic components and devices,
re still an active and interesting field of research. Indeed, despite the
arge number of approaches already proposed in the literature, still
owadays none of them has been successfully and stably embedded in
ommercial computer-aided design programs. The material constitutive
aw is often approximated by means of bijective relations, such as the
nverse tangent or the Langevin equation, neglecting the dependence
n the past history (Viana et al., 2010). The lack of a general hysteresis
odel, which can be effectively coupled with Finite-Element Analysis

FEA) regardless the specific material and/or application, is due to strict
equirements. According to FEA, the magnetic core is discretized in a
-D or multi-dimensional mesh, and the hysteresis model is used to
ompute the constitutive law for each element. As a consequence, in
ddition to the accuracy, the reliability and the robustness, which are
asic features, the models must be also efficient from the point of view
f the computational time and the memory allocation. For each class of
pproaches already available, only a subset of the requirements listed
bove can be met successfully, and acceptable performances can be
ttained partially. For instance, the hysteron-based approaches turned
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E-mail address: riganti@uniroma3.it (F. Riganti-Fulginei).

out to be very accurate and robust, since they model the material
using an arbitrarily large number of operators, suitably distributed and
weighted (Lin et al., 2017; Leite et al., 2007; Cardelli et al., 2016a;
Sarker et al., 2020). The Preisach Model (PM) is an example of well-
established approach for the reproduction of hysteresis cycles in a
wide excitation range (series of symmetric loops up to saturation)
and with generic types of waveforms (in presence of sub-loops or
DC bias), exploiting a constant hysteron distribution (Antonio et al.,
2021b; Sarker et al., 2020; Salvini et al., 2003). Unfortunately, the
large number of operators, required to produce smooth hysteresis loops
in the full excitation range, reflects in a relevant increase of both
the computational time and the memory allocation, which may be
unacceptable for FEA. Some formulations have been proposed for the
hysteron-based approaches to reduce the number of operators. An
effective solution is offered by the Energy-Based Model (EBM) (Antonio
et al., 2021b; Longhitano et al., 2019; Steentjes et al., 2017; Jacques
et al., 2018), which is based on the Play-type hysteron. Unfortunately,
despite the model identification leads to a minimal number of Play
operators, a non-negligible loss of accuracy occurs in the reproduction
of minor loops (Antonio et al., 2021b). An improvement of the EBM,
proposed in Upadhaya et al. (2020), consists in the introduction of a
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phenomenological coefficient to account for the inter-domain coupling.
It allows a better reproduction of minor loops, but the calculation of the
model output, that requires an iterative procedure, is more complex
and less efficient from the computational view point. Globally, that
formulation is less suitable for coupling with Finite Element equations.
The Jiles–Atherton (JA) model (Jiles and Atherton, 1986) belongs to
the class of approaches based on analytic equations, and it is perhaps
the most famous of them. The original JA is based on a differential
equation that has to be solved numerically, with five parameters to
be identified from experimental data. The model is relatively simple
and cheap from the point of view of the computational resources
to be allocated, however some drawbacks make it not convenient
for direct coupling with finite element analysis. Indeed, the original
JA presents a high numerical accommodation, which is not found in
many soft magnetic alloys for engineering applications. The numerical
accommodation leads to a loss of accuracy in computing hysteresis
cycles with minor loops (Leite et al., 2009; Laudani et al., 2014;
Hussain and Lowther, 2017). In addition, it turns out that the re-
production of a family of symmetric hysteresis loops with different
amplitudes cannot be effectively achieved by means of constant pa-
rameters (Fulginei and Salvini, 2005). Great improvements have been
obtained by successive extension of the original JA, mostly exploiting
magnetization-dependent parameters (Fulginei et al., 2015), increasing
the complexity in coupling the model equation in FEA. More recently,
novel approaches have been developed to reproduce the hysteresis
loop branches via either polynomial interpolation techniques (Ram
and Kulkarni, 2019) or rational and power functions (Mirzaei et al.,
2021). These analytical methods are computationally efficient tools
that turned out to be successfully applicable for different soft magnetic
materials. Although they are relatively easy to identify from experimen-
tal data, they can only deal with purely symmetric hysteresis cycles
and it is not easy to extend their formulation in case of non-sinusoidal
and/or non symmetric excitations. The neural network-based models
constitute another class of phenomenological approaches for compu-
tational magnetics (Adly and Abd-El-Hafiz, 2014; Chen et al., 2021;
Makaveev et al., 2001; Laudani et al., 2015; Adly and Abd-El-Hafiz,
1998; Cirrincione et al., 2002; Sixdenier et al., 2008; Kuczmann and
Ivanyi, 2002; Cardelli et al., 2016b; Antonio et al., 2021a) that attracts
a lot of interest for their intrinsic high calculation speed coupled with
poor memory request. The main issue in modeling hysteretic systems
via neural networks (NNs) is the way to account for the past history.
According to the theory of dynamic systems, a hysteresis model can
be described in terms of two relations: the input-state equation, which
implements the dependence on the past history, and the state-output
equation, which is a memory-less function. The recurrent NNs have
intrinsically the memory dependence, but they are difficultly adequate
in modeling magnetic hysteresis, for the complexity of the training
procedure (Adly and Abd-El-Hafiz, 2014; Chen et al., 2021; Makaveev
et al., 2001). On the other hand, most of the NN-based models exploit
the feed-forward architectures (FFNNs), which are well-established,
extensively studied and some standard training algorithm are fully
developed and available (Laudani et al., 2015). Several techniques have
been developed to include the memory-storage mechanism. On one
hand hybrid models have been proposed, in which the neural network,
used to compute the memoryless state-output equation, is coupled with
a hysteron-based model, which provides the memory dependent input-
state equation (Adly and Abd-El-Hafiz, 1998; Cirrincione et al., 2002).
In practice, the role played by the NN is alternative to the role played
by the weight function, hence, the resulting model has more or less
the same computational efficiency and requires the same amount of
memory than the hysteron based model alone. For this reason, other
approaches, seldom available in the literature, avoid the coupling of
the NN with hysteresis models and exploit suitable algorithm to account
for the past history dependence (Makaveev et al., 2001; Sixdenier et al.,
2008; Kuczmann and Ivanyi, 2002). The model proposed in Kuczmann

and Ivanyi (2002) consists of three FFNNs, a matrix containing some

2

information related to the turning points of the first-order reversal
curves and an algorithm that manages the selection of the neural
network at each simulation step. More recently, we have proposed
an algorithm based on the ‘‘transplantation method’’, that allows the
NN model to reproduce stable minor loops (Antonio et al., 2021a).
Again, the dependence on the past history is artificially modeled by
an algorithm. In order to give a contribution in this field of research,
we have developed a hysteresis model based on a standalone neural
network, capable to solve arbitrary sequences of applied magnetic
fields without any additional algorithms or computational strategies to
account for the memory dependence. The neural network is a multi-
layer (deep) FFNN, with reserved input neurons for the past values
of both the magnetic field (input) and the magnetization (output).
In this way the dependence on the past history is directly embedded
in the neural network, whose architecture is again of feed-forward
type, thus allowing the use of traditional learning algorithms. It has
been found out that the generation of the training set by a hysteresis
model, suitably identified from a series of measured loops, is more
convenient than directly training the FFNN on the experimental data.
In particular, exploiting the PM, few quasi-static symmetric hysteresis
loops, measured under sinusoidal magnetic inductions, are sufficient to
train the FFNN successfully (Antonio et al., 2021a). The main scope
of this work is to present a hysteresis model based on a standalone
deep FFNN with intrinsic memory dependence, capable to reproduce
the PM simulations under various types of excitations, seeking more
at a general methodology rather than a specific application. For this
reason, the parameters of the PM are not identified for a given material,
they are instead chosen to produce generic smooth hysteresis loops,
with coercivity and remanence similar to those of the Fe-based soft fer-
romagnetic alloys. The Preisach model is here adopted to generate both
a suitable training set and other data set to be used for the validation of
the NN-based model, including symmetric hysteresis cycles, saturation
cycle with sub-loops and DC biased magnetization loops. The soft
ferromagnetic materials are indeed subjected to this types of excitations
in several equipment and devices for power electronics (Corti et al.,
2019; Locorotondo et al., 2019; Antonio, 2019; Coco et al., 2013). A
detailed description of the PM formulation and an overview on the
computations performed are shown in Section 2. To model the memory-
dependence, a suitable architecture of the FFNN has to be identified,
in particular: the number of hidden layers and the number of neuron-
per-layer, the types of inputs and output. The architecture has been
determined experimentally, checking the evolution of the training error
and defining the under- and over-training limits. The past history is
here taken into account by some input neurons which are dedicated
to the current and the previous values of both the input magnetic
field H and the output magnetization M. The training set adopted
here is a saturation (major) loop with equally-spaced sub (minor)
loops distributed along its branches. Each minor loop individuates a
sector of first-order reversal curve (FORC) and a sector of second-order
reversal curve (SORC). Furthermore, the inversion points that belong
to the major loop branches can be reached in two different ways:
either along the branch of the major loop or along the closing branch
(SORC) of an inner loop. Training the neural network on this process
allows to distinguish the future value of M dependently on the past
values of both H and M, i.e. to model the dependence on the past
history. Section 3 reports the formulation of the NN-based model and
the optimized technique developed to train it. After that the FFNN has
been successfully trained, the simulation of other magnetization loops,
different from those previously obtained by the PM for the training, is
made with the aim to verify the capability to generalize the patterns
applied and to reproduce generic hysteresis processes. The robustness
and the computational stability of the model is also checked by the
simulation of hysteresis loops obtained undersampling the sequence of
the applied magnetic field. The comparison of the results, presented
and discussed in Section 5, also covers the computational cost of the
two models, both implemented in Matlab® computing environment at

low level of abstraction.
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Table 1
Hysteresis properties assumed: coercive field, remanence, magnetization values
corresponding to 𝐻 = 1000 A/m and 𝐻 = 2000 A/m , respectively.
𝐻𝑐 [A/m] 𝜇0𝑀𝑟 [T] 𝜇0𝑀1000 [T] 𝜇0𝑀2000 [T]

30 0.75 1.50 1.59

2. Preisach model simulations

The classic Preisach model has been utilized to generate a series
of hysteresis processes for the training and validation of the proposed
NN-based model. The data sets obtained by PM simulations represent
the reference magnetization loops we are interested to reproduce and
they can be effectively considered as virtual experiments. This approach
was preferred not only because the simulated processes are easier to
obtain and cleaner respect to those directly measured on a device, but
also because the PM can be identified successfully from a minimal set
of experimental loops and can be eventually involved as intermediated
stage for the FFNN training from measured data (Antonio et al., 2021a).
Here, the characteristic features of the PM are set to reproduce a virtual
material having the magnetic properties reported in Table 1.

At first, the PM has to be discretized by means of a suitable
numerical distribution of Preisach operators on the magnetic field axis.
Here, the two degrees of freedom chosen to represent univocally each
operator are the ‘‘interaction field’’ Hi, i.e. the magnetic field at which it
is centered, and its intrinsic coercivity u. The points of the grid relative
to the interaction field follow the rule described by the equation below:
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𝑛 = 1, 2,…
𝑁𝐻
2

𝐻𝑖(𝑛) = −𝐻𝑖
(

𝑁𝐻 − 𝑛 + 1
)

(1)

here 𝐻𝑚𝑎𝑥 = 104 A∕m, 𝑁𝐻 = 2000, 𝛽𝐻 = 1.7. According to the power
aw (1) the points are dense nearby the origin, where most of the
arkhausen jumps occur, and become sparser for increasing values of
he interaction field. Similarly, the progression of the coercive field
alues is

(𝑛) =
[

𝑛
𝑁𝑈

𝑢1∕𝛽𝑈𝑚𝑎𝑥

]𝛽𝑈
𝑛 = 1, 2,… , 𝑁𝑈 (2)

where 𝑢𝑚𝑎𝑥 = 500 A∕m, 𝑁𝑈 = 500, 𝛽𝑈 = 2. The maximum number of
perators is 𝑁𝐻 × 𝑁𝑈 = 106, whilst the saturation field (i.e. the field
t which the last Barkhausen jump occurs) is 𝐻𝑆𝐴𝑇 = 𝐻𝑚𝑎𝑥 + 𝑢𝑚𝑎𝑥 =

10 500 A∕m. After that the grid (𝐻𝑖, 𝑢) is defined, the value of the weight
associated to each point of the grid 𝑃 (𝐻𝑖, 𝑢) has to be determined. Here,
the weight function, called also distribution function, is approximated
with Lorentzian probability distributions, applying the principle of
variable separation, as follows:

𝑃 (𝐻𝑖, 𝑢) =
[

𝛼𝐿𝐻1(𝐻𝑖) + (1 − 𝛼)𝐿𝐻2(𝐻𝑖)
]

𝐿𝑈 (𝑢) (3)

where 𝛼 is the parameter of the linear combination, to be identified,
while the functions 𝐿𝐻1, 𝐿𝐻2 and 𝐿𝑈 are the 1-D Lorentzian functions
listed below.

𝐿𝐻1,2(𝐻𝑖) =
1
𝜋
⋅

𝜎𝐻1,2

(𝐻2
𝑖 + 𝜎2𝐻1,2)

, 𝐿𝑈 (𝑢) =
1
𝜋
⋅

𝜎𝑈
(𝑢 − 𝑢0)2 + 𝜎2𝑈

(4)

The dependence of 𝑃 (𝐻𝑖, 𝑢) on the magnetic interaction field is re-
produced by a linear combination of two Lorentzian functions centered
at the origin of Hi axis, having different parameters, in order to have
more degrees of freedom in defining the hysteron distribution with
respect to Hi. On the other hand, a single Lorentzian function with
offset u0 is applied to represent the hysteron distribution with respect
to the intrinsic coercivity. The quantity u0 is the most probable value
of the hysteron intrinsic coercive field. The parameters 𝜎𝐻1, 𝜎𝐻2, 𝜎𝑈 , 𝑢0
nd 𝛼, have been determined to comply with the properties shown in
3

Table 2
Parameters of the weight function identified by the GA.
Parameter 𝜎𝐻1 𝜎𝐻2 𝜎𝑈 𝜇0 𝛼

Value 15 A/m 500 A/m 45 A/m 22 A/m 0.7 A/m

Table 1 using the genetic algorithm (GA), described in Antonio (2019),
which returns the values listed in Table 2. The properties shown in
Table 1 are not for a specific material but they are assumed by the
authors. The numerical magnetization obtained as the weighted sum
of the contributions of all the hysterons is scaled such that the value of
𝜇0𝑀 = 1.59 T for 𝐻 = 2000 A∕m.

The identified weight function is plotted in Fig. 1. One can note that
the maximum value of P is found for (𝐻𝑖 = 0, 𝑢 = 𝑢0). The simulation
of all the magnetization loops always starts from the non-magnetized
state: the first magnetization curve is traced from 0 to the maximum
magnetic field in a number of samples 𝑁𝑓𝑚𝑐 = 25, after that two
periods are simulated in order to complete the loop and let its first and
last points coincide. A detailed description of the hysteresis processes
simulated by the Preisach model is reported in the following.

• DATASET 1: major loop with extreme values ±𝐻𝑒𝑥𝑡𝑟 = 2000 A∕m,
having 36 inner loops equally distributed along its ascending
and descending branches. The inversion points, in A/m, on the
descending branch of the major loop, from Hextr to –𝐻𝑒𝑥𝑡𝑟 are
described by 𝐼𝑃 𝑑𝑒𝑠 = [525,187,53,16,4.5,−4,−11.5,−17.5,−24,
−31.5,−40,−49,−60,−77,−104,−158,−268,−602]. The inversion
points along the ascending branch are 𝐼𝑃 𝑎𝑠𝑐 (𝑖) = –𝐼𝑃 𝑑𝑒𝑠(𝑖) for
𝑖 = 1, 2,… , 18. The sequence of the applied field H(k) is linear
between each couple of local maximum and minimum points and
the number of samples per period is SPP = 5652.

• DATASET 2: major loop with 𝐻𝑒𝑥𝑡𝑟 = 2000 A∕m and 12 inner loops
equally distributed along its ascending and descending branches.
The inversion points do not coincide with the ones of the previous
data-set, indeed 𝐼𝑃 𝑑𝑒𝑠 = [6,−6,−20,−22,−27,−200]. Again, the
behavior of 𝐻(𝑘) is linear between each couple of maximum and
minimum points, while SPP = 4040.

• DATASET 3: family of 7 symmetric hysteresis loops with the
following extreme values of the magnetic field 𝐻𝑒𝑥𝑡𝑟 = [20,35,57,
100,220,562,1000]. The behavior of 𝐻(𝑘) is triangular and SPP
= 1000.

• DATASET 4: family of DC-biased magnetization loops. The mag-
netic field sequence consists of a constant bias value superim-
posed to a sinusoidal component having different amplitudes:

𝐻(𝑘) = 𝐻𝐷𝐶 +𝐻𝐴𝐶 ⋅ 𝑐𝑜𝑠
(

2𝜋
[ 𝑘 − 1
𝑆𝑆𝑃 − 1

])

(5)

with SPP = 400, 𝐻𝐷𝐶 = 800 A∕m and 𝐻𝐴𝐶 = 200,300,400,500,
600,700 A∕m.

• DATASET 5: the sequence has a sinusoidal shape with
exponentially-decreasing amplitude, starting from 𝐻𝑒𝑥𝑡𝑟 = 1000
A∕m. The mathematical expression of the sequence is reported
below.

𝐻(𝑘) = 𝐻𝑒𝑥𝑡𝑟 ⋅ 𝑒

[

−2𝜋
𝜏

⋅
𝑘 − 1

𝑆𝑃𝑃 − 1

]

⋅ 𝑐𝑜𝑠
(

2𝜋 𝑘 − 1
𝑆𝑆𝑃 − 1

)

(6)

with 𝑘 = 1, 2,… , 𝑛𝑝 ⋅ 𝑆𝑃𝑃 and 𝜏 = 4𝜋.

The number of periods traced is 𝑛𝑃 = 10, while SPP = 600. By
observing the structure of the Preisach model and its equations, you
easily understand what are the critical points to consider for a practical
application. Indeed, to obtain good results in terms of simulation, this
model needs of a quite large number of hysterons. This means a high
memory footprint that must contain all the states (frozen state or not
frozen state) characterizing the distribution of hysterons. Moreover, be-
cause the algorithm must consider all hysterons everytime it calculates
a single value of magnetization, the computational costs are very high
(for more details regarding this aspect, please see Scorretti et al., 2022).
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Fig. 1. 2-D plot of the weight function.

3. Neural network model: Definition and training

The NN-based model has been developed with the aim to include
the past history dependence directly on the network, which should be
able to reproduce arbitrary hysteresis processes without any additional
algorithm or computational strategy.

3.1. Model definition

The architecture that we considered is a deep feedforward with
4 hidden layers, each one having 12 artificial neurons. The memory
dependence is modeled by reserving four inputs to represent the current
(at sample step k) and the past (at sample step k − 1) magnetization
states of the system, which are given in terms of the coordinates on
the H-M plane. The model has totally five inputs: H(k), M(k), H(k −
1), M(k − 1), plus the next value of the magnetic field applied H(k
+ 1). The output is the current susceptibility 𝜒(𝑘), from which the
future value of the magnetization can be easily obtained: 𝑀(𝑘 + 1) =
(𝑘) ⋅ [𝐻(𝑘 + 1) − 𝐻(𝑘)] + 𝑀(𝑘). Fig. 2 shows the functional block
iagram of the NN-based model. As one can note, a FIFO buffer is used
o store the current value (Mcur) and the previous value (Mold) of the
agnetization, which must be sent back as inputs for the next iteration.
hen the future value M(k + 1) is calculated, Mcur shifts on the left and

ecomes the old value, while M(k + 1) is stored as Mcur. The ‘‘closed
oop’’ configuration we have described is the typical operation mode
uring the simulations.

In order to exploit in a convenient way the capabilities of the
roposed architecture, a suitable training procedure must be carried
ut, starting from the definition of the training set. For example, a
amily of FORCs, that turned out to be effective to train conventional
FNNs, is not appropriate in our case. Indeed, the FORCs do not carry
ny information about the possibility to reach a given point of the H-

plane from different directions. The inversion points (IPs) on the
ain loop branch, from which the FORCs originate, are not relevant

ecause the two different magnetization values that can be reached
re characterized by opposite sign of the increment dH. It has been
een that, when the sign of dH changes, the future M is calculated
xploiting the symmetry on the M-H plane rather than directly by the
FNN (Kuczmann and Ivanyi, 2002; Antonio et al., 2021a; Coco et al.,
013). A more suitable dataset for training must contain few points
eached by different direction without any change of the sign of dH.
he principle of memory dependence on which the NN-model is based,

s represented in Fig. 3.
In addition, each curve of the training set must not give redundant

nformation with any of the others, and the total information supplied
4

should be sufficient to let the FFNN reproduce conventional hysteresis
processes, such as the symmetric cycles and the first magnetization
curve. The solution proposed here is to use a major hysteresis cycle with
a series of inner loops. In this way, each inversion point on the main
cycle branch can be reached from either along the main cycle branch
itself or along the sector of SORC that is the closure branch of the inner
loop. In both the cases, the magnetic field does not change direction.
Among the PM simulations, only the DATASET 1 has been involved
in the training of the FFNN, while all the others have been used to
validate the model. The magnetization curves relative to the DATASET
1 cannot be immediately used. First of all, it is convenient to normalize
both the magnetic field and the magnetization to 1. The normalized
quantities are indicated with lowercase letters. Furthermore, thanks to
the antisymmetric character of the susceptibility, only the part of the
training curves with the same sign of dH can be considered. In facts, if
the magnetic field changes direction, the value of the susceptibility can
be calculated as |𝜒(𝐻,𝑀, 𝑑𝐻)| = |𝜒(−𝐻,−𝑀,−𝑑𝐻)|. For this reason,
the final sequences h(k) and m(k), applied for the training, have been
obtained from the normalized data by selecting only the descending
branches of the curves, reducing to 2826 the number of points, as
illustrated in panel (a) of Fig. 4. The sequence 𝜒(𝑘), displayed in the
panel (b) of the same Figure, is calculated as [𝑚(𝑘 + 1) − 𝑚(𝑘)]∕[ℎ(𝑘 +
) − ℎ(𝑘)] for each 𝑘 = 1, 2,… , 2825.

.2. Optimized training procedure

The input sequences ℎ𝑐𝑢𝑟(𝑘), 𝑚𝑐𝑢𝑟(𝑘), ℎ𝑜𝑙𝑑 (𝑘), 𝑚𝑜𝑙𝑑 (𝑘) have been de-
ined from the training set sequences h(k), m(k) already described,
electing the samples either from 3 to 2826 (current fields values)
r from 2 to 2825 (old field values). On the other hand, the output
equence 𝜒(𝑘), to represent the current value of the susceptibility at
ach sample k, has to be truncated from 2 to 2825. The conventional
ethods for the training of feedforward networks consist of running

raditional algorithms for a given number of epochs, appropriately
imensioned on the basis of the net size and architecture (number of
idden layers and neurons). The evaluation of the training performance
s based typically on the behavior of the error function, such as the
ean absolute error (MAE) or the mean squared error (MSE), with

espect to the epochs. However, the performance of the trained FFNN
annot be described only in terms of the mean error, first of all, because
he same mean value may result from very different distributions of
he error along the sequence, err(k). Furthermore, the value of indices
̃ such that 𝑒𝑟𝑟(�̃�) is maximum should be also taken into account,
ince very different results are found if the maximum error occurs
n the linear region or at the ‘‘knee’’ of the hysteresis loop, or again
t the saturation region. It must be further noticed that each run of
he training algorithm, for a given number of epochs, is independent
nd the weights and biases finally obtained are generally relative to a
ocal minimum of the error function. A common way to determine the
ptimum network consists in launching the training algorithm multiple
imes, checking the progression of the error function and comparing
he network response with the curves of the training set. The final
alues of the weights and biases are found after an arbitrary large
umber of training-test stages. The limits and the critical aspects of
his empirical approach are further exacerbated if the model presents
feedback loop, like in our case. It turns out that the network at the

‘closed loop’’ configuration (for which the actual and the old values of
at the input are those computed by the FFNN itself in the previous

teps) is potentially unstable. In order to speed up and to improve the
dentification of the optimum network, we have developed a dedicated
raining procedure, in which the algorithm is launched automatically
y an iterative routine. At each iteration, after that the weights and bi-
ses are determined by the algorithm, a series of multiple verifications,
ncluding the stability check, are made. The success of any verification
llows to proceed with the successive one, while the failure is sufficient
o immediately repeat the training, thus starting a new iteration. The
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Fig. 2. Functional block diagram representing the NN-based hysteresis model.
Fig. 3. Illustration of the past history dependence in the NN-based model: from the
oint H(k), M(k) possible future states can be reached depending on the old M.

irst verification made is based on the evaluation of the MSE returned
y the algorithm, which is compared with an error threshold 𝐸𝑇𝐻 set

by the user. If the MSE is smaller than the threshold, the training
set is simulated in ‘‘closed loop’’ configuration and performances are
again checked. The MSE is calculated from the simulation results and
it is compared with the one returned by the algorithm, that has been
obtained in ‘‘open loop’’ configuration. The model is considered stable
if the MSE at the ‘‘closed loop’’, 𝑀𝑆𝐸𝐶𝐿, is smaller than an error
btained by multiplying a certain parameter 𝜆, set by user, by the MSE
f open loop configuration, 𝑀𝑆𝐸𝑂𝐿. Indeed, the difference between
pen and close loop is that the second one is affected by the error of
he NN output and it could make the solution divergent. Since training
he NN in open loop is easier, then it is necessary to continue training
he NN in close loop, starting from the one obtained in open loop, and
ope that the error at the output is smaller than a certain parameter 𝜆
et by user. The final verification consists in the computation of the area
n the m-h plane enclosed by the hysteresis curve, computed by the
FNN in ‘‘closed loop’’ configuration, and the comparison with the one
btained by the training set. If the relative percentage error between
he areas of the training set loop, 𝑒𝑟𝑟𝐴%, is smaller than the threshold
𝑟𝑟𝐴%,𝑇𝐻 , the network is saved and the routine terminates. The flow
f operations performed by the computer program for the optimum
etwork identification is represented in Fig. 5.

The training procedure has been utilized at first for the identifi-
ation of the best network architecture, the number of hidden layers
5

and the number of neurons per each layer. The limits of the under-
and over-training have been also experimentally determined. From this
preliminary analysis we have concluded that the optimum architecture,
relatively to the training set adopted, should be based on 4 hidden
layers. Furthermore, it has been found out that if the number of neurons
per each layer is balanced, for the same total number of neurons, the
MSE is minimized. Finally, the total number of neurons should be
comprised between 36 and 60. We have then defined a FFNN with 4
hidden layers and 12 neurons per layer, for which the total number of
neurons is 𝑁𝑇𝑂𝑇 = 4(𝑖𝑛) + 12 ∗ 4(ℎ𝑖𝑑𝑑𝑒𝑛) + 1(𝑜𝑢𝑡) = 53. The transfer
function of the neurons belonging to the input layer and the hidden
layers is the hyperbolic-tangent sigmoid, defined as

𝑓𝑡𝑟(𝑥) = 2∕(1 + 𝑒−2𝑥) − 1 (7)

The 4 input neurons have unitary weights and are unbiased. Accord-
ing to the developed implementation at low level of abstraction, the
weights of the hidden neurons are represented as a matrix 𝐿𝑊𝑗 for each
layer j = 1,2,3,4. The dimensions of 𝐿𝑊𝑗 are: 12 × 4 for j = 1, 12 × 12
for all the others. In practice the number of rows coincides with the
number of neurons in the layer, whilst the number of column coincides
with the number of synaptic connections of each neuron, which are
equal to the number of neurons of the previous layer. On the other
hand, to allow the computation of the network output as a series of
matrix products, the bias values of the hidden neurons are collected
in a series of 12 × 1 matrices 𝐿𝐵𝑗 (column vectors). Conclusively, the
output neuron is represented by the 1 × 12 weight matrix OW and a
single scalar output bias OB. In this way, the calculation of the network
output 𝑦𝑁𝑁 is very fast:

𝑦1 = 𝑓𝑡𝑟(𝐿𝑊1 ∗ 𝑥𝑁𝑁 ) + 𝐿𝐵1 (8)
𝑦𝑗 = 𝑓𝑡𝑟(𝐿𝑊𝑗 ∗ 𝑦(𝑗−1)) + 𝐿𝐵𝑗𝑓𝑜𝑟𝑗 = 2, 3, 4 (9)

𝑦𝑁𝑁 = 𝑓𝑡𝑟(𝑂𝑊 ∗ 𝑦4) + 𝑂𝐵 (10)

where 𝑥𝑁𝑁 is the input vector and 𝑦𝑗 is the output of the 𝑗th hidden
layer. The model has a poor memory request, since the neural net-
work is defined by only 541 floating-point variables, which are 492
weights and 49 biases. In addition, the formulation proposed allows
an eventual future coupling with FEM solvers based on Coco et al.
(2013). This FFNN has been trained according to the procedure pre-
viously described, using the parameters listed in Table 3. The obtained
weights and bias values can be viewed in Appendix, where the com-
puter programs that implements the NN-based model is shared by the
authors.

It is interesting to notice that the proposed methodology can be
generally applied also to other network architectures and with different
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Fig. 4. Construction of the training set. Panel (a): Sequences h(k), m(k) plotted on the H-M plane, obtained from the DATASET 1, after the normalization (blue continuous line)
and after the successive selection of the points with dh < 0 (black dots). Panel (b): values of the susceptibility applied for the training.
Fig. 5. Block scheme representing the operation flow for the optimum neural network
identification.

Table 3
Parameters of the training program.
𝑒𝑝𝑜𝑐ℎ𝑠𝑛𝑜 Method 𝐸𝑇𝐻 𝜆 err

105 Scaled-conjugate gradient 0.8 1.5 1.5%

training sets, and that it allows to obtain a network under controlled
upper limits of the specifications. Indeed, more strict requirements,
respect to those reported in Table 3, could be in principle set, with
a consequent increase of the training time.

4. Discussion and results comparison

For a better exploration of the possible neural network configura-
tions that had as good as possible simulations in terms of low errors
on magnetization prediction, different learning algorithms have been
considered. In Table 4 . The best result of the FFNN training, thus, can
be summarized by the final value of the mean squared error returned
by the scaled-conjugate gradient learning algorithm, 𝑀𝑆𝐸𝑂𝐿 = 0.677,
the ratio 𝑀𝑆𝐸 ∕𝑀𝑆𝐸 = 1.29 and the relative percentage error of
𝐶𝐿 𝑂𝐿

6

Fig. 6. Simulation of the training set curve performed by the FFNN in closed loop
configuration and comparison with normalized data.

the loops area 𝑒𝑟𝑟𝐴% = 0.69%. The effectiveness of the training process
is confirmed by the comparison between the training set curve and
the one obtained by the FFNN simulation in closed loop configuration
applying the same input sequence of the normalized magnetic field. The
curves are displayed in Fig. 6.

After the verification of the training accuracy, the NN-based model
is finalized by resizing the input and the output to express the magnetic
field in Ampere per meter and the magnetization, actually the polariza-
tion 𝜇0𝑀 , in Tesla. Let us firstly examine the capability of the model
to generalize the type of hysteresis process already ‘‘seen’’ during the
training. The simulation of the saturation loop with some inner loops, in
different position respect to those of the training set, is then performed,
applying the magnetic field sequence of the DATASET 2. In Fig. 7, the
hysteresis loop obtained by the NN-based model is plotted together
with the one produced by the Preisach model. A very good agreement
has been found in the whole range of the applied magnetic field, even
for the minor loops that intersect with each other. This feature is not
trivial, since the minor loops of the training set do not have any point
in common.

The magnetic losses per unit of volume have been evaluated from
the simulated hysteresis loops and the relative percentage error found
was equal to 1.67%, confirming the effectiveness and the robustness
of the neural network-based model. Another issue that is interesting
to consider in neural network modeling is the analysis of the model
response when the number of samples of the input sequence is reduced.
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Table 4
Comparison among different learning algorithms.
𝑒𝑝𝑜𝑐ℎ𝑠𝑛𝑜 Method 𝑀𝑆𝐸𝑂𝐿 𝑀𝑆𝐸𝐶𝐿∕𝑀𝑆𝐸𝑂𝐿 Percentage error of the

loops area

105 Scaled-conjugate gradient 0.677 1.29 0.69
105 Levenberg–Marquardt 0.777 2.05 1.45
105 SBFGS Quasi-Newton 0.689 1.74 0.97
105 Resilient Backpropagation 0.715 2.19 4.75
105 Polak-Ribiére Conjugate Gradient 0.250 12.05 14.12
105 Resilient Backpropagation 0.786 1.85 2.63
Fig. 7. Hysteresis loop of the DATASET 2 computed by the PM is compared with the
one obtained by the NN simulation.

Indeed, if two adjacent points are not sufficiently close, the response
may be inaccurate or even unstable. For this reason, as second step
of the model validation we have examined the network output when
the input sequence of the DATASET 2 is under-sampled. The under-
sampling factor (USF) was varied between 1 and 6, and the reduced
sequences of the magnetic field have been applied to the input of both
the PM and the NN. As expected, the curves computed by the PM
are practically independent on USF, while those obtained by the NN
simulations are progressively getting worse, as one can see in Fig. 8,
where the inner loop with inversion point (−5 A/m, 0.59 T) is shown.

However, even if the sequence of the applied magnetic field is
ather coarse (for USF = 6, the minor loop shown in the figure consists
f only 12 points) the neural network produces a closed curve that
s not affected by the typical numerical accommodation phenomenon
hat occurs in most of the FFNN architectures (Antonio et al., 2021a).
he main negative effect is the progressive reduction of the loop area,
hich leads to an underestimation of the energy loss. The energy

osses obtained by evaluating the area of the hysteresis loops simulated
y the PM for each value of USF are almost identical, since the
ndersampling affects only the resolution. Contrarily, the energy loss
redicted by the NN is a decreasing function of UFS. The two energy
oss curves and their relative percentage error have been plotted against
he undersampling factor in Fig. 9.

For 𝑈𝑆𝐹 < 5 the reproduction of the energy losses by the NN-model
s accurate, being the relative error respect to the values obtained by
he PM smaller than 7%. However, for very coarse sequences the loss
rediction becomes incorrect, since the error jumps from about 10% to
bout 30% if USF increases from 5 to 6. After that the capability of the
eural network to generalize the training patterns has been successfully
erified and the robustness respect to the undersampling has been
xamined, the next validation step consists in the analysis of the model
esponse to magnetic field sequences the materials are subjected to in
ractical applications. The simplest working condition that is important
o investigate is based on the replication of symmetric hysteresis cycles,
7

taking into consideration different levels of magnetization. The family
of loops of the DATASET 3 have then been simulated by the NN-based
model. As for the PM simulations, each loop has been traced two times
to ensure that the computed curve is closed, but two initial conditions
have been investigated, starting from either one vertex or the origin of
the H-M plane. It has been found out that the same stable hysteresis
loop is produced, regardless the choice of the starting point for the
magnetic field and the magnetization. This feature should not be taken
for granted since neither the first magnetization curve, nor the branches
of any inner symmetric loops, have been taken into consideration for
the model training. The comparison between the symmetric hysteresis
loops simulated by the neural network and those obtained by the PM
computations is shown in Fig. 10 with the related extreme values of the
magnetic field applied.

If 𝐻𝑒𝑥𝑡𝑟 < 100 A∕m the extreme value of the magnetization com-
puted by the NN is slightly smaller than the one produced by the PM.
The loop branch is less smooth and its slope at the remanence is also
a little lower. The coercivity of the inner loops is overestimated, but
the function HC(Hextr) is always increasing, i.e. the loops are nested
without any intersection. On the other hand, for higher values of the
magnetic field applied the accuracy of the NN-based model increases
and the magnetization curves are practically coincident with the ones
simulated by the Preisach model. The relevant quantities derived from
the major loop, such as the coercivity, the remanence and the maximum
susceptibility, are correctly reproduced. The energy losses per unit
of volume, displayed in Fig. 11, are in this case evaluated for each
symmetric loop and plotted against the peak value of the magnetic
polarization. The comparison indicates a substantial agreement, since
the maximum absolute error found was just of 18 J per m3.

In many power electronics applications, the magnetic materials are
subjected to hysteresis processes which are more complex than the
symmetric hysteresis loops. For instance, DC biased magnetizations are
found in devices supplied by semiconductor-based power supply, small-
signal transformers and filtering inductors. Therefore, the test of the NN
model also covers the reproduction of magnetization loops in presence
of DC bias. The magnetic field sequences defined by the DATASET 4
have been applied as input to the NN and the predicted hysteresis loops
have been compared with the ones obtained by the PM simulations. A
quite good agreement has been found in all the cases, having different
value of the AC components, as it can be viewed in Fig. 12. The loss
prediction, shown in Fig. 13, is also noticeably effective.

As last example of the comparative analysis discussed in the paper,
the reproduction of a demagnetization pattern, obtained by a cosine
wave with exponentially-decreasing amplitude, is here illustrated. This
type of hysteresis process may be found during transients of can be
exploited to bring the magnetic devices to the unmagnetized state.
In the latter case, the way the peak value of H is reached does not
matter, whilst the decreasing from the peak to 0 has to be opportunely
designed. The magnetic field sequence of the DATASET 5 is shown in
the left panel of Fig. 14, while the comparison between the polarization
sequences simulated by the PM and the NN-base model is shown in
the right panel. During the first four periods moving from the peak
value, the magnetic field drops from 1000 A/m to about 136 A/m, and
the calculated sequences of the polarization are practically overlapping
with each other. During the successive four periods, at the end of which
the magnetic field is equal to 18 A/m, the magnetization calculated by
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Fig. 8. DATASET 2: minor loop along the descending branch at 0.6 T simulated by both the PM and the NN-model for different values of USF.
Fig. 9. Plot of the energy losses and relative percentage error as a function of the
ndersampling factor relative to the simulation, performed by both the PM and the
N-model, of the hysteresis loop of the DATASET 2.

Fig. 10. Symmetric hysteresis loops of the DATASET 3 simulated by both the PM and
he NN-based model for different extreme values of the applied magnetic field.
8

Fig. 11. Energy losses obtained by both the PM and the NN simulations versus the
peak values of the magnetic polarization.

the NN tends to decrease more rapidly than the one obtained by the
PM, with a maximum absolute deviation close to 0.2 T. In the final two
periods the agreement between the simulated waveforms is recovered.

The computational cost of the FFNN architecture described here,
and the amount of RAM memory occupied, can be expressed in terms
of the number 𝑁 of hidden neurons, equal to 48 in our case, as
indicated in Antonio et al. (2021a) and Corti et al. (2019). The low level
calculation of the network output requires 𝑁∕4(9𝑁+5) = 492 sums and
products, plus 𝑁 calls to the neuron activation function. The variables
of the FFNN to be stored in memory are totally 541 floats subdivided
into 𝑁∕4(9𝑁 + 5) weights and N + 1 biases. On the other hand, the
computation of the output of the PM, according to the formulation
used here, requires the same number 𝑁 = 106 (that now indicates the
number of hysterons) of sums, products, calls to the weight function,
plus 2N threshold comparison, which are the most expensive operations
at low level of abstraction. The intrinsic variables of the PM to be
stored in memory are 3N floats, subdivided into 𝑁 values of 𝐻𝑖, 𝑁
values of u and 𝑁 values of the previous magnetic state. Although
the computational complexity of the neural network-based model is
𝑜(𝑁2), while it is linear with 𝑁 for the Preisach model, it is much faster
because the value of 𝑁 required to obtain smooth hysteresis loop in the
excitation range considered is much smaller (49 total neurons against



S. Quondam-Antonio, F. Riganti-Fulginei, A. Laudani et al. Engineering Applications of Artificial Intelligence 121 (2023) 105940
Fig. 12. DC biased magnetization loops obtained with HDC = 800 A/m and different amplitudes of the AC component: comparison between PM and NN simulations.
c

Fig. 13. Energy losses calculated by both the PM and the NN as a function of the
amplitude of the AC magnetic field component.

Fig. 14. Simulations of the DATASET 5: magnetic field sequence (a) and magnetic
polarization sequences (b) calculated by both the PM and the NN-based model.

106 hysterons). In addition, for each Preisach operator two threshold
comparisons must be performed, whilst the artificial neurons only
require sums and multiplications. The computational speed estimated
for the PM is 31.2 samples/s, while for the NN 29.7 ksamples/s, about
three orders of magnitude higher. All the simulations described in the
paper have been performed by the same computer, equipped with a
CPU Intel® Core™ i7–2670QM @ 2.20 GHz, 8 GB of RAM memory,
under a 64-bit operating system.
9

5. Conclusions

A novel approach to model hysteresis processes for soft ferromag-
netic materials based on a ‘‘standalone’’ deep neural network has been
presented. The architecture of the model has been designed to account
for the past history dependence, allowing the reproduction of hysteresis
loops under generic supply excitations without the need to couple the
neural network with other models or algorithms. A suitable training
procedure, based on an iterative algorithm, helps the identification
of the network parameters under fixed performances. The Preisach
model, that can be easily identified starting with the minimal material
data usually provided by the manufacturers, has been adopted here
to generate an appropriate training set and other generic hysteresis
processes for the model validation. The neural network-based model
turns out to be able to replicate the magnetization loops obtained by
the PM and to predict the energy losses with acceptable accuracy in
the entire range of excitations. Furthermore, the implementation of
the model at low level of abstraction led to a considerable gain in
terms of simulation time, about three orders of magnitude lower respect
to the PM (also implemented at low level). The great computational
and memory efficiency of the model (i.e. little memory used and low
computational costs for each trained DNN) makes it suitable for future
matching with finite element analysis. Indeed, as is well known, finite
element analysis requires many nodes in which the fields must to be
calculated and each node needs of a hysteresis model: in our case, each
node may use a trained DNN.
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Appendix

The source code relative to the main computer program and the function that implements the NN model, are here shared by the authors. The
main program starts with the definition of the sequence of the applied magnetic field, that has a triangular shape between — Hmax and Hmax.
The sequence starts with a first magnetization curve, to reach the value of Hmax from the un-magnetized state, and then the triangular wave is
replicated for np periods. The magnetization is processed at sample step, calling the function Nnmodel_fast.m, and stored in the vector 𝑀𝑛𝑛. At
the end of the iterative loop the computational speed is evaluated and displayed in the screen. Both the sequences of the magnetic field and the
magnetization are truncated to the last period and the area enclosed by the resulting hysteresis loop is computed and displayed to the screen.
Conclusively, the loop is plotted and the sequences of H and M are saved in ‘‘.dat’’ format.

% Main program for the simulation of hysteresis loops with DeepNetwork Model
% Program written by Simone Quondam Antonio on 30th April 2021

clear all; close all; clc;

opengl software

% Define input magnetic field sequence and initialise matrices %
H_max = 100; % maximum magnetic field [A/m]
np = 2; % number of periods
SPP = 600; % samples per period
H_des = linspace(H_max,-H_max+4*H_max/SPP,SPP/2) '; % descending branch
H_asd = linspace(-H_max,H_max -4*H_max/SPP,SPP/2) '; % ascending branch
H_loop = [H_des;H_asd]; H_loop = repmat(H_loop,np,1);
H_fmc = linspace(0,H_max-H_max/100,100) '; % first magnetization curve
H_test = [H_fmc;H_loop]; % add first magnetization curve
clear H_loop H_asd H_des H_fmc % release memory
max_points_test = size(H_test ,1);
M_nn = zeros(size(H_test)); % initialization of output matrix

M_nn(1) = 0; % first sample (unmagnetised state)

% Sample-by-sample computation %
tic
for ct=2:max_points_test -1
dH = H_test(ct+1)-H_test(ct);
[M_nn(ct+1)] = NNmodel_fast(dH,H_test(ct),M_nn(ct),H_test(ct-1),M_nn(ct-1));
end

CS = (max_points_test -1)/toc;
disp(strcat( ' Computational speed: ' ,num2str(CS), ' samples/s ' ));
clear CS;

% Selection of last loop period %
M_nn = M_nn(end-SPP+1:end);
H_test = H_test(end-SPP+1:end);

% Calculation of loop area %
AloopNN = polyarea(H_test,M_nn)
disp(strcat( ' Loop area = ' ,AloopNN, ' J/m^3 ' ));

% Plot hysteresis loop %
figure(1);
plot(H_test,M_nn, ' - ' );
xlabel( ' H [A/m] ' ); ylabel( ' \mu_0M [T] ' );

% Save in and out vectors to .dat file %
fidH = fopen( ' H_nn ' , ' a ' )
fprintf(fidH, ' %d\n ' ,length(H_test));
for(i = 1:length(H_test));

fprintf(fidH, ' %f\n ' ,H_test(i));
end
fclose(fidH);

fidM = fopen( ' M_nn ' , ' a ' )

fprintf(fidM, ' %d\n ' ,length(M_nn));

10
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for(i = 1:length(H_test));
fprintf(fidM, ' %f\n ' ,M_nn(i));

end
fclose(fidM);

The function NNmodel_fast is called at each step to solve the future value of the magnetization Mfut as a function of the actual and the previous
values of both H and M, and the actual increment dH. In order to speed up the simulations, the weights and the bias values which characterize
the trained NN-based model are defined locally in the function.

%% NN-based model: implementation at low level of abstraction %%
%% INPUTS: IN = [dH,H,M,Hold,Mold] %%
%% OUTPUT: Mfut (future value of M) %%
%% Developed by Simone Quondam Antonio on 29th April 2021 %%

function [Mfut] = NNmodel_fast (dH,H,M,Hold,Mold);
Hmax = 2000; Mmax = 1.590; %% Scaling
in_min_map = [-0.9883,-0.9994,-0.9883,-0.9994];
in_max_map = ones(size(in_min_map));
out_min_map = 0.0030;
out_max_map = 33.2705;
IN = zeros(4,1); % Input vector
if(dH < 0);

IN = [H/Hmax,M/Mmax,Hold/Hmax,Mold/Mmax ] ';
else

IN = [-H/Hmax,-M/Mmax,-Hold/Hmax,-Mold/Mmax ] ';
end

%% Normalization of input vector %%
IN_norm = zeros(size(IN));
for(i = 1:length(IN));

IN_norm(i) = 2*(IN(i)-in_min_map(i))/(in_max_map(i)-in_min_map(i))-1;
end

%% Bias values %%
HB = [
2.8255 -1.8326 1.5807 1.8762 % neuron 1 lay 1 to 4

-3.1997 1.2556 2.1759 0.9550 % neuron 2 lay 1 to 4
-1.6598 -1.0174 1.1006 -0.9980
-0.1057 -0.9303 0.8733 1.4184
-1.8805 0.1419 -0.0004 1.2312
-0.1627 0.0320 -0.2732 -0.3987
-0.0963 -0.0295 0.0594 -0.3758
0.3058 -0.5342 -0.2539 0.1387
1.4029 1.0549 -0.8857 0.2458

-1.7912 0.9910 -0.9196 0.9346
-2.1124 1.3677 0.8981 1.4900
2.3198 1.7903 -1.8867 2.0456];
OB = 1.6941834e+00; % bias of the output neuron

%% Neuron Weights %%
% Hidden LAY 1: 12 neurons with 4 weights %

LW1 = [
-1.7056 1.7137 0.2698 0.5109 % neuron 1
0.6873 -1.8701 -0.9129 -2.3873 % neuron 2
1.0553 0.0908 0.8318 2.7299 % ...

-2.5534 0.2790 -3.4273 -1.9708
0.2309 -0.1816 -1.7513 -1.6246
2.3944 0.8186 3.4641 -2.2951

-2.5739 0.8953 -4.8557 -0.8050
1.3825 1.6555 1.8037 -1.7973
1.9804 -2.5189 0.6911 0.0233

-1.6130 1.6311 1.5672 0.8540
-0.9159 -0.5805 2.2727 0.6202
1.1119 -0.8285 -1.9111 -1.3061]; % neuron 12

% Hidden LAY 2: 12 neurons with 12 weights %
LW2 = [
11
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0.1958 0.4285 -0.3212 -1.0349 -0.6069 0.3770 -0.6538 0.5905
0.0964 0.6630 -0.2877 -0.4846

-0.8554 -1.4324 0.6909 0.6460 -0.9497 -0.5832 0.2866 -0.2655
-0.3076 0.4295 0.5345 -0.0216

0.7003 -0.7307 0.8311 -1.3918 -0.2911 0.4770 -0.1628 0.1218
-0.9451 0.0693 -0.2421 -0.6417

-0.0488 0.5699 0.3455 0.7820 0.0698 0.1786 -0.4111 -0.7473
0.3064 0.7202 0.2608 -0.5728

-0.4203 1.0835 -0.5066 0.9134 0.0672 -2.7198 2.3125 -2.0815
0.8676 -1.0476 0.3197 0.2823

0.5527 -0.0172 0.9353 -0.5655 -0.4336 -0.4412 -0.3444 -0.2715
-1.1957 0.9722 0.3348 -0.6194

-0.0212 0.6749 0.2675 -2.3715 -0.5489 2.3950 -2.9587 1.1929
1.2529 0.4968 0.2996 -0.4387

-0.0976 -0.5852 -0.8828 1.5270 -0.9375 -2.0251 1.5456 -0.5112
-1.2609 0.0913 0.4746 -0.7330

0.7721 0.7316 -0.0339 -0.3454 1.1929 1.9022 -1.0431 -0.1632
0.3388 -0.8358 0.4739 0.3188

0.6417 -0.7394 -0.0171 -0.4743 -0.5231 0.0653 -0.8503 -0.2327
0.3854 0.8315 0.2352 -0.0246

0.2450 0.3380 -0.8824 -1.4678 1.0958 0.4850 -1.5172 -1.2754
0.7105 -0.7690 0.8216 0.2520

0.2602 -0.4691 1.6366 -0.4038 0.5863 -0.3638 1.6298 -0.3243
0.2781 0.0440 0.5810 0.4117];

% Hidden LAY 3: 12 neurons with 12 weights %
LW3 = [
-0.3285 1.1156 0.6798 0.1839 -1.1876 -0.4033 -0.1448 -0.5414

-1.2473 -0.2880 -0.8320 0.2037
0.2241 0.8620 1.1002 -0.9206 2.9690 0.4312 -3.5206 -0.4567

-0.2767 -0.1644 -0.1363 1.8558
-0.0661 -0.5449 -0.3549 -0.5132 -0.5800 -0.4233 -0.5669 0.5229

-0.2346 0.5540 0.5054 0.2982
-0.6671 -0.2867 -0.3773 -0.1886 0.3477 -1.2085 0.7003 -0.4778

0.1478 0.2861 1.1715 0.9932
-0.3830 -1.0794 -0.3597 0.0962 1.0783 -0.1105 -3.2098 1.4509

-2.2032 -1.0649 -1.4903 -0.6602
0.4287 -0.7779 0.0314 0.5469 -1.2519 -0.4021 0.8197 -0.1429

0.7765 -0.4858 0.5102 -1.2608
0.6393 0.9519 -1.2447 0.7010 -0.9377 -0.1940 -1.2089 0.2252

-0.4808 0.1347 -0.8428 0.4357
-0.5079 -0.7960 0.8791 -0.2367 -0.3378 -0.9301 2.2311 -1.8267

-0.4956 0.5105 0.5960 -0.5383
-0.0299 -0.4856 0.0442 -0.3706 2.1319 -0.6284 -1.3033 -1.3416

-0.2204 -0.7586 0.7628 0.0853
-1.0812 0.2882 -1.2577 0.1397 0.3612 -0.2256 -1.2300 1.9147

0.0897 -0.6627 -0.6614 -0.1379
0.8943 0.2945 0.1349 0.1647 0.5166 1.2561 -1.1566 0.6283

-0.5368 0.4687 -0.8601 0.2680
0.0452 0.7521 -0.4944 -0.1205 1.8067 1.3554 -2.0949 0.9744

-0.9474 0.8894 -2.3356 0.5771];

% Hidden LAY 4: 12 neurons with 12 weights %
LW4 = [
-0.3434 -0.1178 0.3471 -0.5749 0.3302 -0.1977 0.3508 -1.1425

-0.8719 0.9148 -0.9428 -1.3124
-1.5154 -0.5008 -0.6542 -0.8312 1.1576 -0.7050 0.3418 1.5964

-0.9919 -2.0236 -1.6925 -0.1587
1.3749 -0.7816 0.2230 -0.7894 -1.0885 -0.7719 0.6102 -0.7602

-1.1155 0.2368 -0.9731 0.6548
-0.8081 -0.0050 0.4411 0.8400 -2.7981 -0.7577 -0.0178 0.7388

-0.7345 -1.3307 -1.9633 -2.4118
-0.4941 0.9496 0.3375 0.0741 -3.4038 -1.3266 -1.6440 1.3793

-0.0617 -2.3320 -1.7215 -3.6927
0.4257 0.5231 0.0467 -0.1124 0.0376 0.2832 0.6261 0.2506

-0.7543 0.2852 -0.5125 -0.1051
12
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-1.4292 -0.6672 0.1818 -0.4437 0.2712 -0.4533 -0.5216 -0.6502
0.3339 0.1007 -0.4520 -0.6287

0.1381 1.0086 -0.5386 -1.1454 0.4312 0.2992 0.7978 0.7578
0.3842 -0.3569 1.6854 -0.0933

0.3227 1.9018 -1.3730 0.3132 -0.8732 -1.1639 0.8515 -0.2337
1.2468 1.0582 -0.7716 0.2015

-0.0847 1.0014 0.1531 0.0695 -0.3549 0.2710 -1.0226 0.1968
1.0787 0.1826 -0.6443 0.8825

0.5481 -1.5357 0.0357 0.6214 -0.7136 0.2061 0.5887 -1.8545
0.2530 0.1751 0.4965 -0.3849

0.1723 -2.4616 -0.0961 0.5424 0.1351 0.6888 -0.4049 0.2261
-0.8002 0.6786 0.4581 0.2621];

% Out LAY: weights of the output neuron %
OW = [
0.9586 1.9879 0.8295 -1.5228 -2.5074 -1.1458 -0.3219 1.0737

-1.5995 1.3707 2.1713 -2.1054];

%% Compute NN output %%
inop = tansig(LW1*IN_norm+HB(:,1));
outop=purelin(OW*tansig(LW4*tansig(LW3*tansig(LW2*inop+HB(:,2))+HB(:,3))+...
HB(:,4))+OB);

chi = (outop+1)/2*(out_max_map -out_min_map)+out_min_map; % de-normalise chi
Mfut = (chi*Mmax/Hmax)*dH + M; % future value of mu0*M in [T]
end
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