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Chapter 1
Introduction

An Active and Healthy Ageing (AHA) society would be a resource from
which everyone can benefits. The development of AHA scenario is gain-
ing more and more interest all over the world. The European Union
(EU) only, with its conglomerate of more than 500 million people, posses
around 19.2% (approximately 100 million) of older adults [1]. Europeans
are now living longer than ever before and the age profile of the entire
society is rapidly changing.

Population ageing is a long-term development that has been evident
for several decades in Europe. This process is being driven by historically
low fertility rates, increasing life expectancy and, in some cases, migra-
tory patterns. Projections suggest that the ageing of the EU’s population
will quicken in the coming decades, with a rapid expansion in the num-
ber and share of older people.

The total population of the EU is projected to increase from 512 million
in 2018 to peak at 525 million by 2044, before falling marginally through
to 2050. The population of older people (those aged 65 years or more) will
increase significantly, rising from 101 million at the start of 2018 to reach
149 million by 2050. During this period, the number of people in the
EU aged 75-84 years is projected to expand by 60.5%, while the number
aged 65-74 years is projected to increase by 17.6%. In contrast, the latest
projections suggest that there will be 9.6% fewer people aged less than 55
years living in the EU by 2050 [2].

Such developments are likely to have profound implications, not only
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for individuals, but also for governments, business and civil society, im-
pacting more than ever the health and social care systems.

These findings highlight several questions from both an individual
and public perspective. Who will take care of the current generation as
we become older? What types of health and social organisations should
we develop to preserve the quality of life of an ageing population and
sustain our health care systems over the medium and long term? The
growing number of older people has been perceived by many as a threat
to Europe’s economy and competitiveness, in particular when it comes to
the sustainability of its healthcare systems.

Supporting an Active and Healthy Ageing is one answer to these ques-
tions. Maintaining a healthy ageing population may lower the demands
for health care services while being supportive to their fellow generation.

To face this challenging situation, the EU Commission has launched
several initiatives to promote active ageing across Europe.

These initiatives, such as the European Innovation Partnership on Ac-
tive and Healthy Ageing (EIP-AHA), the Active and Assisted Living Joint
Programme (AAL JP) as well as the Knowledge and Innovation Commu-
nity (KIC) on Health and Active Ageing, aim to ensure that this genera-
tion of elderly can benefit from healthier lives, receive appropriate care as
well as live independently.

The topics involved are vast and multidisciplinary but, from a techni-
cal perspective, what can be done? Which are the main issue that can be
addressed?

Focusing on health-related problems, a primary threat is represented
by the progressive impairment in performing Activities of Daily Liv-
ing (ADL), representing a measure of functional decline associated with
frailty [3, 4]. Frailty is often linked to the loss of autonomy in performing
ADLs as well as health-related problems requiring an institutionalisation,
and/or hospitalisation, with direct influences on the quality of life.

From a public health perspective, frailty is a multidimensional issue
resulting from changes in physical and mental health and functional sta-
tus as well as lack of social and economic resources. Functional decline
is associated with lower psychosocial status, namely social isolation, mal-
nutrition, and comorbidity, which are all determinants of frailty. Among
the indicators of frailty, falls and precursive behaviours, such as postural
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CHAPTER 1. INTRODUCTION

instabilities, are major contributors. They both contribute in a substantial
way to the limitation of mobility and premature hospitalization. Statis-
tical analysis prove that one-third of people over the age of 65 who live
in the community fall each year and this proportion increases to 50% of
those aged 80 years and older. Those residing in care or nursing settings
have an even greater risk of falls and fractures. Approximately 30% of
falls require medical treatment, often resulting in emergency department
visits and subsequent hospitalisations [5]. Annually there are more than
30.000 fall related deaths amongst people aged 65 years and older within
the EU region [6]. Falls are far more common than strokes or heart at-
tacks, and can be just as serious in their consequences. Even falls without
injury can lead to post-fall anxiety, fear and subsequent dependency on
family carers or even admittance into nursing care facilities.

Elderly are not the only players being affected by falls and postural in-
stabilities. People suffering from neurodegenerative diseases, such as the
Parkinson’s disease, also suffer from postural instabilities and consequent
falls within one year from the onset of the disease.

A range of falls prevention interventions have been developed within
both research and practice. These include clinical assessment and treat-
ment of fall risk factors such as exercise programs that focus on balance
and muscle strength, medication management and vision checking. Al-
though big progresses have been made through the years, falls are still a
serious issued nowadays. How can technology play a central role in this
context?

A possible way is to provide solutions aiming at the prevention, or
early detection, of falls and falls precursors.

Those points are the baseline of many European, national and regional
strategies.

It is therefore clear how the development of technologies for improv-
ing the quality of life does play a fundamental role both at national and
European level.

For this reason, this Ph.D. thesis aims at providing a deeper under-
standing of aging-related issues with a specific focus on falls, postural
instabilities, and the effect of the user’s habits in prevention; moreover,
rigorous methodologies for the detection and classification of these phe-
nomena will be presented.
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Concerning falls detection and classification, event-driven approaches
(i.e. based on advanced template matching techniques) exploiting differ-
ent methods to evaluate the similarity between pre-defined templates and
unknown events (cross-correlation and Dynamic Time Warping), as well
as different classification strategies specifically designed for their imple-
mentation in power-limited devices, are proposed. Main novelties intro-
duced may summarized as follow:

• event-driven approach: makes the methodology robust against un-
desired dynamics;

• pattern normalization: makes the method robust against users’ char-
acteristics;

• similarity measurement: based on cross correlation and Dynamic
Time Warping (DTW);

• event-driven classification: the classifier uses values defined upon
similarity rather than amplitude;

• use of ROC curves for optimal threshold identification.

Regarding postural instabilities, the following activities have been ad-
dressed: the validation of a low-cost wearable device for real-time classifi-
cation of postural status and a classification strategy using time-frequency
features built upon the Wavelet transform. In particular, the wearable de-
vice is fully validated through a thorough comparison with a Gold Stan-
dard while, the method based on time-frequency features, uses the Dis-
crete Wavelet transform (DWT) exploiting a K-Nearest Neighbour clas-
sifier. Main novelties introduced by this activity are summarized in the
following:

• development of a postural classification methodology using inertial
systems;

• device validation by means of a Gold Standard;

• assessment of the classification strategy;
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CHAPTER 1. INTRODUCTION

• definition of a performance index rating the reliability of the classi-
fication outcome;

• use of the Wavelet theory for the postural classification task.

In the context of user’s habits monitoring, a system based on a Radio
Frequency Identification (RFID) technology is introduced to monitor the
right intake of nutrient, in terms of both nutrition and hydration, as well
as the user’s interaction with home appliances, exploitation of indoor en-
vironments and activity rate. The solution has been developed in the
context of an Interreg project called NATIFLife [7]. The project aims at
developing an innovative framework of assistive home automation sys-
tems which could improve elderly autonomy. The development of an
integrated platform of assistive technology, which is open to the integra-
tion of traditional and innovative solutions, can produce an improvement
of the quality of life of elderly and people with mobility impairments.
In detail, the project aims at the assessment of the user’s habits, activity
rate, nutrition and hydration, as well as the use of home appliances. The
RFID system aims at integrating, in the NATIFLife platform, functionali-
ties such as food/beverage monitoring as well as a unique identification
of the user living the environment. Advantages of the adopted solution
as respect to others, are related to its low invasiveness, good flexibility
in terms of tags distribution, re-allocation and quantity, ease of use and
installation. All the above-mentioned features are mandatory while ad-
dressing effective assistive devices.

Within each application, the assessment and reliability of the solutions
have a cardinal role. When dealing with solutions of assistive technology,
it must be pointed out that the final goal is the adoption of these tech-
nologies by end-users. For the solutions to be fully accepted, they must
strictly adhere to the requirements of reliability and robustness. To this
end, the assessment procedures proposed in the thesis are used to verify
the usability of the solutions for the addressed applications, as well as
validating the reliability of the decision-making processes.

Although not strictly related to the activity carried on during the
PhD, two important aspects have to be taken into account while dealing
with the development of Assistive Technology: the User Centered Design
(UCD) approach and the assessment by end-users. Regarding the fall
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detection activity, the dangerous nature of the events did not allow the
involvement of end-users for the assessment. That is why a public avail-
able dataset has been used for this task. Regarding the UCD approach,
event though a first trails has been done on integrating the fall detection
methodology in hardware, the latter was just meant to verify the feasibil-
ity of the embedded implementation and hence any optimization on the
basis of real users’ requirements has been done.

Similar conclusion in case of postural monitoring; since the dataset
has been acquired by healthy users simulating postural instabilities (sim-
ulation validated by neurologists), the development of the hardware did
not require the UCD approach. In this particular case, end-users could
not be involved based on the regulations of the laboratory ethics commit-
tee (the solution still had to be validated). Future efforts will be focused
to the study of the user’ acceptability by means of real end-users during
their daily activities.

The development of the RFID solution, conversely to the others, was
primarily meant to design and validate the requirements’ conformity dic-
tated by the NATIFLife project.

Main novelties of this thesis compared with the state of the art may be
summarized in:

• development of methodologies for pattern identification and classi-
fication easily implementable into low power embedded device;

• search for the optimal combination between features, similarity mea-
sures and classification techniques;

• analysis of the models ability to generalize to an independent dataset
(Cross Validation)

• introduction of reliability measures.

The remaining of the thesis is divides as follow, in Section 2 are
given basic theoretical concepts which are used in the development of
the methodologies, Section 3 provides a review of the state of the art for
fall detection along with the proposed methodology, Section 4 deal with
the fall detection strategy assessment, in Section 5 is given a review of the
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state of the art for postural analysis along with the two proposed method-
ologies, Section 6 presents the RFID research results developed within the
NATIFLife project while Section 7 provides a synthesis of the solutions
addressed in this thesis along with some final remarks.
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Chapter 2
Theoretical Tools

2.1 Correlation

One of the most common ways of quantitatively comparing two func-
tions is through the use of the correlation operator. Correlation attempt
to quantify how much one function is like another. The linear correla-
tion between two functions or signals can be obtained using the Pearson
correlation coefficient defined as:

rxy =
1

(N − 1)σxσy

N

∑
n=1

(xn − x̄)(yn − ȳ) (2.1)

where rxy represents the correlation between the signal x and the refer-
ence function y; x̄ and ȳ the mean values of signals x and y, and σx σy
the standard deviations of x and y respectively. In this form, the equation
scales the correlation coefficient rxy to be between [-1,1]. In case the x̄ and
ȳ are equal to zero, and we are not concerned with the scale a simpler
equation can be used:

r∗xy =
1
N

N

∑
n=1

x[n]y[n] (2.2)

where r∗xy represent the unscaled correlation between the signal x and the
reference function y. If continuous functions are involved, the summa-
tion becomes an integral and the discrete functions x[n] and y[n] become
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continuous functions x(t) and y(t):

r∗xy =
1
T

∫︂ T

0
x(t)y(t)dt (2.3)

The integration (or summation) and scaling simply takes the average of
the product over its range. Both Equations 2.2 and 2.3, will not range
between ±1, but they do give relative values that are proportional to the
linear correlation. The correlation have the largest possible positive value
when the two functions are identical and the largest negative value when
the two functions are opposites. In case Equations 2.2 and 2.3 should be
normalized between [−1, 1] it is enough to divide by the product of the
standard deviations:

rxy =
rxy

σxσy
(2.4)

Mathematical correlation does a pretty good job in evaluating the sim-
ilarity but, in some circumstances, signals that are very much alike may
have a mathematical correlation of zero. This issue can be easily repro-
duced considering the correlation of two sequences x = sin(ωt + 0◦) and
y = sin(ωt + 90◦) as shown in Figure 2.1. Sine and cosine have zero

Figure 2.1: The figure shows two identical temporal sequences phase
shifted. The correlation is equal to 0

correlation even though they describe the same signal but phase-shifted.
Intuitively this is explained considering that any positive correlation be-
tween them, over one portion of a cycle, is canceled by a negative correla-
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tion over the rest of the cycle. This shows that correlation does not always
measure general similarity.

Cross-Correlation provides a solution in this sense.

2.1.1 Cross-Correlation

The mathematical dissimilarity between identical but time/phase shifted
sequences, represent a real problem when trying to determine similarity
between signals. To get around this problem, an efficient solution is that
of performing the correlation for many different time/phase shifts. The
equation for cross-correlation is derived from Equation 2.2 by introducing
a variable shift into one of the two functions. Regardless which function
is shifted with respect to the other, the result does not change. The cross-
correlation operation is then a series of correlations over different time
shifts k:

rxy[k] =
1
N

N

∑
n=1

x[n]y[n + k] k = 0, 1, 2, ...K (2.5)

where k is the shift, or lag, and specifies the number of shifted samples
for a given correlation. The K value depends on how the end points are
treated. The value of K may be as long as the length of the signal but,
more often, length is extended with zeros to enable correlations at all
possible shift positions: positive and negative. In such cases, K would be
the combined length of the two signals minus one. Extending a signal
with zeros is called "zero padding".

For continuous functions, the time shifting is continuous and the cor-
relation becomes a continuous function of a continuous time shift:

rxy(τ) =
1
T

∫︂ T

0
x(t)y(t + τ)dt (2.6)

where variable τ is a continuous variable of time that specifies the time
shift of x(t) with respect to y(t). The variable τ is analogous to the lag
variable k.

An example of cross-correlation between two functions is given in
Figure 2.2.
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Figure 2.2: An example of cross-correlation between 2 identical time
shifted sequences (blue and black curves). The cross-correlation (red
curve) succeed in providing a measure of similarity between the two se-
quences.

2.1.1.1 Sequences Alignment

The cross-correlation tool provides an interesting property when dealing
with sequence alignment. Since every time shift (or lag in case of discrete
signals) is addressed when computing the cross-correlation, the time in-
stant, corresponding to the highest value, match to the time lag ϕ between
the two sequences. To clarify it, let us consider Figure 2.2. The P0 signal is
5 units of time ahead of P1 signal. Looking at the time shift corresponding
to the highest cross-correlation value (red one), this information is clearly
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available. In mathematical terms this is translated into:

ϕ = max
τ

rxy(τ) = max
τ

1
T

∫︂ T

0
x(t)y(t + τ)dt (2.7)

in case of continuous signals, and in

ϕ = max
k

rxy[k] = max
k

1
N

N

∑
n=1

x[n]y[n + k] k = 0, 1, 2, ...K (2.8)

in case of discrete signals.
This property opens to automatic algorithm for signal alignment.

2.1.2 Complexity

In computer science, the time complexity describes the amount of time re-
quired by an algorithm to run. Time complexity is commonly estimated
by counting the number of elementary operations performed by the al-
gorithm, supposing that each elementary operation takes a fixed amount
of time to perform. Thus, the amount of time taken and the number of
elementary operations performed by the algorithm are taken to differ by
at most a constant factor.

Since an algorithm’s running time may vary among different inputs
of the same size, one commonly considers the worst-case time complex-
ity, which is the maximum amount of time required for inputs of a given
size. The time complexity is generally expressed as a function of the size
of the input. Since this function is generally difficult to compute exactly,
and the running time for small inputs is usually not consequential, one
commonly focuses on the behavior of the complexity when the input size
increases—that is, the asymptotic behavior of the complexity. Therefore,
the time complexity is commonly expressed using big O notation, typi-
cally O(n) , where n is the input size in units of bits needed to represent
the input.

Algorithmic complexities are classified according to the type of func-
tion appearing in the big O notation. For example, an algorithm with
time complexity O(n) is a linear time algorithm and an algorithm with
time complexity O(nα) for some constant α > 1 is a polynomial time
algorithm.
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In case of simple correlation and sequence length N the time complex-
ity is O(N).

In case of cross-correlation with k number of lags (or time shift) and
sequence length N the time complexity is O(kN).

2.2 Dynamic Time Warping

DTW algorithm has earned its popularity as the time-series similarity
measure minimizing the effects of shifting and distortion in time by al-
lowing non-linear warping of time series in order to detect similar shapes
with different phases.

The objective of DTW is to compare two (time-dependent) sequences
X := (x1, x2, ..., xN) of length N ∈ N, and Y := (y1, y2, ..., yM) of length
M ∈ N. These sequences may be discrete signals (time-series) or, more
generally, feature sequences sampled at equidistant points in time. The
latter is the only constrain imposed to the sequences (this problem can be
simply overturned by re-sampling).

Given a feature space Φ, then xn, ym ∈ Φ for n ∈ [1 : N] and m ∈ [1 :
M]. In order to compare two different features x, y ∈ Φ, a local distance
measure must be defined:

c : Φ × Φ −→ R ≥ 0 (2.9)

Intuitively c(x, y) has a small value when sequences are similar and
large value if they are different. In some text the distance function may
be referred as "local cost function". Evaluating the local cost function for
each pair of elements of the sequences X and Y, one obtains the cost ma-
trix C ∈ RN×M defined by c(n, m) := c(xn, ym) representing all pairwise
distances between X and Y: It is defined as:

C ∈ RM×N : c(n, m) = ||xn − ym||, n ∈ [1 : N], m ∈ [1 : M] (2.10)

Once the local cost matrix is built (an example is provided in Figure
2.3), the algorithm finds the alignment path which runs through its low-
cost areas (Figure 2.4). This produce an alignment having minimal overall
cost.
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Figure 2.3: Example of construction of a local cost matrix.

Figure 2.4: Example of a possible low-cost path in the local cost matrix.

An alignment path (or warping path) is defined as follow:
An (N, M)-warping path is a sequence of points s = (s1, s2, ..., sL) with

sl = (nl , ml) ∈ [1 : N] × [1 : M] for l ∈ [1 : L] satisfying the following
criteria.

• Boundary condition: s1 = (1, 1) and sP = (N, M). The boundary
condition enforces that the first elements of X and Y as well as the
last elements of X and Y are aligned to each other. In other words,
the alignment refers to the entire sequences X and Y.

• Monotonicity condition: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤ m2 ≤ ... ≤
mK. The monotonicity condition reflects the requirement of faithful
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timing: if an element in X precedes a second one this should also
hold for the corresponding elements in Y, and vice versa.

• Step size condition: sp+1 − sp ∈ {(1, 1), (1, 0), (0, 1)} .This criteria
constrain the alignment path from long jumps while aligning the
two temporal sequences expressing a kind of continuity condition:
no element in X and Y can be omitted and there are no replications
in the alignment.

Note that the step size condition implies the monotonicity condition. Fig-
ure 2.5 illustrates the three criteria.

The total cost function cp(X, Y) of a warping path p between X and Y
with the respect to the local cost measure c is defined as:

cp(X, Y) =
L

∑
l=1

c(xnl , yml) (2.11)

Finally, an optimal warping path, p∗ between X and Y is a warping path
having minimal total cost among all possible warping paths.The DTW
distance DTW(X, Y) between X and Y is then defined as the total cost of
p∗:

DTW(X, Y) = cp∗(X, Y) (2.12)
= min(cp(X, Y) | p is an (N, M)-warping path)

To find the optimal warping-path p∗, a possible way is to test every
possible path between X and Y. Such a procedure, however, leads to a
computational complexity that is exponential the length of N and M. An
algorithm, whose time complexity equals to O(NM), is now introduced.
Its primary aim is to avoid an exponential dependency on N and M size.
Let us start defining sequences X(1 : n) := (x1, x2, ..., xn) for n ∈ [1 : N]
and Y(1 : m) := (y1, y2, ..., ym) for m ∈ [1 : M] and set:

D(n, m) := DTW(X(1 : n), Y(1 : m)) (2.13)

The values D(n, m) define a N × M matrix D, which is also called accu-
mulated cost matrix. In the following, each matrix entry, whether for the
cost matrix C or for the accumulated cost matrix D, will be referred to
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(a) (b)

(c) (d)

Figure 2.5: Example of path for some sequence X of length N = 9 and
some sequence Y of length M = 7. (a)Warping path satisfying every
criteria. (b)Boundary condition is violated. (c) Monotonicity condition is
violated. (d)Step size condition is violated.
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as a cell. An efficient computation for the D matrix is provided in the
following theorem:

The accumulated cost matrix D satisfies the following identities: D(n, 1) =

∑n
k=1 c(xk, y1) for n ∈ [1 : N], D(1, m) = ∑m

k=1 c(x1, yk) for m ∈ [1 : M], and

D(n, m) = min{D(n − 1, m − 1), D(n − 1, m), D(n, m − 1)}+ c(xn, ym)
(2.14)

for 1 < n < N and 1 < m < M. In particular, DTW(X, Y) = D(N, M) can
be computed with O(NM) operations.

The proof is left to dedicated textbook.
The provided theorem makes easier a recursive computation of the

matrix D. The initialization can be simplified by extending the matrix
D with an additional row and column and formally setting D(n, 0) = ∞
for n ∈ [1 : N], D(0, m) = ∞ for m ∈ [1 : M], and D(0, 0) = 0. Then
the recursion of Equation 2.14 holds for n ∈ [1 : N] and m ∈ [1 : M].
Furthermore, note that D can be computed in a column-wise fashion,
where the computation of the m−th column only requires the values of
the (m − 1)−th column. This implies that if one is only interested in the
value DTW(X, Y) = D(N, M), the storage requirement is O(N). Simi-
larly, one can proceed in a row-wise fashion, leading to O(M). However,
note that the running time is O(NM) in either case. Furthermore, to
compute an optimal warping path p∗, the entire (N × M)−matrix D is
needed.

Various modifications have been proposed in order to speed up DTW
computations as well as to better control the possible routes of the warp-
ing paths. These and other aspects are left to dedicated textbooks.

2.2.1 Complexity

Given X = (x1, x2, ...xN) with N ∈ N, and Y = (y1, y2, ...yM) with M ∈ N,
the algorithm has a complexity, in the worst case, of O(MN).
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2.3 Receiver Operating Characteristic (ROC)

A ROC graph is a technique for visualizing, organizing and selecting
classifiers based on their performance. It has been widely used in signal
detection theory, to depict the tradeoff between hit rates and false alarm
rates of classifiers, and for use in visualizing and analyzing the behav-
ior of diagnostic systems. This is why, the medical community has an
extensive literature on the use of ROC graphs for diagnostic purposes.

Recently, ROC graphs have been adopted by the machine learning
community, due in part to the realization that simple classification accu-
racy is often a poor metric for measuring performance.

ROC graphs are conceptually simple, but there are some non-obvious
complexities that arise when they are used in research. Since the ROC
theory has been around for a long time and extensive literature has been
published since then, in the following sections only a brief overview
of main properties will be addressed with specific attention to aspects
needed in the remaining of the thesis.

2.3.1 Classifier performance

Let us start with a very simple classification problem using only two
classes where, an instance I, is mapped to one element of the set {p, n}
of positive and negative class labels.

A classification model is a function mapping instances to predicted
classes. Some classification models produce a continuous output, others
produce a discrete class label indicating only the predicted class of the
instance. To differentiate actual and the predicted class, the set {Y, N} is
used for the class prediction produced by a model.

Given a classifier and an instance, there are four possible outcomes.
If the instance is positive and it is classified as positive, it is counted as
a TP (true positive); if it is classified as negative, it is counted as a FN
(false negative). If the instance is negative and it is classified as negative,
it is counted as a TN (true negative); if it is classified as positive, it is
counted as a FP (false positive). Given a classifier and a set of instances
(the test set), a two-by-two confusion matrix (shown in Figure 2.6) can
be constructed representing the dispositions of the set of instances. The
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numbers along the major diagonal represent the correct decisions made,
and the numbers of the other diagonal represent the errors between the
various classes. Using this matrix, different metrics can be defined, such

Figure 2.6: Confusion matrix.

as the true positive rate (TPR - also called hit rate, recall or sensitivity):

TPR =
TP

TP + FN
(2.15)

the false positive rate (FPR - or false alarm rate):

FPR =
FP

FP + TN
(2.16)

the specificity:

Sp =
TN

TN + FP
= 1 − FPR (2.17)

precision:

Precision =
TP

TP + FP
(2.18)

accuracy:

Acc =
TP + TN

TP + FN + FP + TN
(2.19)

and F1:

F1 =
TP

TP + 1
2(FP + FN)

(2.20)

Each of these metrics, can be used to quantify a classifiers’ perfor-
mances.
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Figure 2.7: Example of a ROC graph showing 4 discrete classifiers.

2.3.2 ROC space

ROC curves are two-dimensional curves in which TPR is plotted in the y
axis and the FPR on the x axis. In essence, a ROC curve depicts relative
tradeoffs between benefits (TPR) and cost (FPR).

A discrete classifier is one that outputs only a class label. Each discrete
classifier produces an FPR-TPR pair corresponding to a single point in the
ROC space (points A, B, C and D in Figure 2.7 are an example).

Some of these possible points have specific meaning. The point with
coordinate (0,0) (point A in Figure 2.7), represents a classifier that never
issue a positive classification and consequently no FP errors. The point
with coordinate (1,1) (point D in Figure 2.7), represents a classifier issuing
always positive classification with a consequent increase in the FP errors.
The upper left corner, coordinate (0,1), represents the perfect classification
(point B in Figure 2.7). In a practical way, one point in the ROC curve is
better than another if more Northwest than the first.

The diagonal line y = x represents a classifier randomly guessing a
class (point C in Figure 2.7). A random classifier will produce a ROC
point that "slides" back and forth on the diagonal based on the frequency
with which it guesses the positive class.
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Although any point has been shown in the lower right triangle of the
graph, actually, if a classifier performs even worse than random guessing,
a point on that area may appear.

2.3.3 Considerations on the Classifier’s Output

Some consideration must be done on the output of a classifier. Basically,
a classifier can have a discrete or a continuous valued output. The nature
of the output have a direct effect on what is shown in the ROC graph.

2.3.3.1 Binary vs Non-Binary Classifiers

Many classifiers, such as decision trees or rule sets, are designed to pro-
duce only a class decision, i.e., a Y or N on each instance. When such
a discrete classifier is applied to a test set, it yields a single confusion
matrix, which in turn corresponds to one ROC point. Thus, a discrete
classifier produces only a single point in ROC space. Some others classi-
fiers, such as a logistic regression or neural network, produces probability
or score, a numeric value that represents the degree to which an instance
is a member of a class. Such a ranking or scoring classifier may be used
with a threshold to produce a binary classifier: if the score is above the
threshold, the classifier produces a Y, else a N.

2.3.3.2 ROC Curves

As previously stated, in case a classifier outputs a continuous-valued
score, a threshold can be used to force a binary classifiers. Varying the
threshold within a given range, a ROC curve can be build in the ROC
space. An example of a possible ROC curve is provided in Figure 2.8.
Specifically, moving from the left most point to the right most one, thresh-
olds values are the lowest and highest respectively.

The shape of the curve can be smooth in case the number of addressed
instances is big, or can looks like a step function in the opposite case.

Although ROC curves are primary used to compare classifiers’ per-
formances, the possibility to evaluate all the metrics introduced so far for
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Figure 2.8: Example of a ROC curve where each point has been computed
for a given threshold value.

different threshold values allows to find an optimal threshold maximizing
a specific metric.

2.3.4 Using ROC Theory for Optimal Threshold Identifi-
cation

ROC graphs can be successfully used for the identification of threshold
maximizing a given metric. For each threshold value, TP, FP, TN, FN
indexes are computed to obtain the TPR and FPR metrics needed for the
curve. However, same indexes can be used to calculate all other metrics
defined in Section 2.3.1.

Different methods can be adopted for the identification of the optimal
thresholds and some of them will be introduced.

2.3.4.1 Method 1

A first technique is based on the Youden Index (YI), which represents the
vertical distance between the 45◦ line and the point on the ROC curve.
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The formula for the Youden index is:

YI = Se + Sp − 1 (2.21)

where higher values are better than lower.
To find the optimal threshold, we can look for the higher obtainable

YI value.

2.3.4.2 Method 2

This second method is based on the distance to corner. The distance to
the top-left corner of the ROC curve for each threshold value is given by:

d =
√︂
(1 − Se)2 + (1 − Sp)2 (2.22)

where lower distances to the corner are better than higher distances.
To find the optimal threshold, we can look for the lower obtainable

distance value.
This method has been used in Section 5.2.4.

2.3.4.3 Method 3

This method is based on the positive likelihood ratio. It is basically the
ratio of the true positive rate (Se) to the false positive rate (1 – Sp). This
likelihood ratio statistic measures the value of the test for increasing cer-
tainty about a positive diagnosis and it is defined as:

PLR =
TPR
FPR

(2.23)

where higher values are better than lower.
To find the optimal threshold, we can look for the lower obtainable

PLR value.

2.3.4.4 Method 4

This method is based on the maximization of both Se and Sp.
For the optimal threshold determination, the intersection between the

Se and Sp is used. An example of a curve built using this two metrics, for
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Figure 2.9: Se VS Sp metrics for different threshold values.

different threshold values, is shown in Figure 2.9. For this given example,
the optimal threshold (according to the specific requirement) is 0.92.

This method has been used in Section 3.2.5.1.
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Chapter 3
A Fall Detection Strategy for The
Assistive Technology Context

The fall detection algorithms belong to the general class of Event De-
tection strategies. The term Event Detection (ED) refers to a vast class of
strategies aiming at the detection of the occurrences of specific events and
categorize them. Solutions may drastically differ as a function of the na-
ture of the event under analysis. Are we dealing with audio signals, video
streams or inertial data? Which is the frequency range? What about the
variability of the event? Does it suffer from time warping and/or transla-
tion? If dealing with pictures, which are the resolution involved? Should
the method be translation or rotation invariant? Which power constrain
does the application have?

It is evident that a unique detection strategy cannot be realized but
rather this must be strictly defined according to the specific nature of
the addressed events. For this reason, in the remainder of this thesis,
we will only refer to events that are common in the context of Assistive
Technology (AT), such as the ones coming from falls, postural instabilities,
and related.
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3.1 On the Implementation of a Fall Detection
System

Before introducing the work, it is worth to deepen the knowledge on the
general solutions provided in the literature. This is a mandatory step
devoted to properly justify and understand the methodologies covered in
this thesis.

As for falls and ADLs detection systems, interesting solutions have
been widely proposed and described by the scientific community. Those
solutions cover both the hardware and algorithm implementation.

To provide a clear analysis, during this brief review, the classification
structure provided in [8] will be adopted. In particular, falls event detec-
tors are divided into wearables, non-wearables (ambient sensors, vision
sensors, and radio-frequency sensors), and hybrid systems.

3.1.1 Wearable Solutions

Different approaches have been proposed for falls and ADLs detection
in the Active Assisted Living contexts using wearable solutions. Two
primary category are addressed: customized devices [9, 10, 11, 12] and
smartphone-based platforms [13, 14, 15, 16, 17].

3.1.1.1 Customized Systems

As for customized systems, inertial-based solutions have been widely pre-
ferred by researchers and scientist as a practical and non-intrusive way to
monitor people’s activities, while preserving their privacy. Such systems
show good performances in detecting and classifying falls, ADLs, and
physiological parameters. Focusing on falls detection systems, some ex-
amples are presented in the following.

In [9] the authors introduce an algorithm for fall detection. The sys-
tem adopts a triaxial accelerometer and a supervised clustering approach,
implemented through a one-class support vector machine classifier. Re-
sults show that the approach is invariant to age, weight, height of peo-
ple, and to the relative positioning area of the measurement system thus
allowing to overpower typical drawbacks arising from threshold-based
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methodologies such as the need to adjust several parameters depending
on the user’s characteristics. Although preliminary results are encourag-
ing, the inclusion of an FPGA suggests that the algorithm may require a
significant computational power. Moreover, tests have been done using a
relatively small dataset.

In [18] a multisensor data fusion approach is investigated for the sake
of falls and human activities classification with particular regard on elders
and people with neurological diseases. The working principle consists of
an advanced signal processing technique carried out on data acquired us-
ing an accelerometer and a gyroscope. Specifically, the presented system
can recognize critical events such as falls or prolonged inactivity, to mon-
itor the user posture, and to notify alerts to caregivers. A major outcome
of this work relies on the information provided by the system, which can
be useful to monitor the evolution of the user’s pathology with a particu-
lar interest in rehabilitation tasks. The mean value of the sensitivity index
computed across different classes of falls and ADLs considered through
the paper is 0.81%, while the average value of the specificity index is
0.98%.

In [19] a system based on an automatically adjustable threshold value
for a pre-impact fall detection system is presented. Several experiments
have been conducted evaluating performance such as sensitivity, speci-
ficity, and accuracy. The method can differentiate pre-impact fall from
normal activities of daily living with 99.48% sensitivity, 95.31% specificity,
and 97.40% accuracy with 365.12 ms of lead time.

A fall detection system, based on an instrumented insole is presented
in [20]. Since high-acceleration activities are the one with a higher risk
for falls, four low-acceleration activities, four high-acceleration activi-
ties, and eight types of high-acceleration falls have been investigated.
A Support Vector Machine with a Leave-One-Out cross-validation pro-
vides a fall detection sensitivity of 99.6%, specificity of 100%, and accu-
racy of 99.9%. The classification results are comparable to other fall detec-
tion models in the State-of-the-art, while also including high-acceleration
ADLs to challenge the classification model.

In [21], the authors propose a fall detection methodology based on
a non-linear classification feature and a Kalman filter with a periodicity
detector to reduce the false-positive rate. The methodology requires a
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sampling rate of only 25 Hz, it does not require large computations or
memory and it is robust among devices. The system has been tested
using the SisFall dataset achieving 99.4% of accuracy.

3.1.1.2 Smartphone-Based Solutions

Although different surveys seem to reveal that smartphone-based assis-
tive devices are not fully accepted by elderly, due to apparent request of
technological skills, it must be considered that the monitoring of falls and
human activities do not require any action by the user, thus habilitating
fully smartphone-based solutions as a convenient way to perform such
tasks [22].

A first example is the one shown in [23]. It exploits a two-step algo-
rithm to monitor and detect fall events using the embedded accelerom-
eter. The proposed solution uses techniques to properly detect fall-like
events (such as lying on a bed or sudden stop after running) based on a
multiple kernel learning support vector machine along with a threshold-
based strategy. Experimental results reveal that the system detects falls
with high accuracy (97.8% and 91.7%), sensitivity (99.5% and 95.8%),
and specificity (95.2% and 88.0%) when placed around the waist and
thigh, respectively. The system also achieves a false alarm rate of 1 alarm
per 59 hours of usage.

In [24] the authors propose a fall detection algorithm made up of a
feature extraction and recognition processing. Six features were analyzed
where, four of them, were related to the gravity vector extracted from ac-
celerometer data. During the testing phase, a set of six features was clus-
tered by a support vector machine. The main feature contains the vertical
directional information and provides a distinct pattern of fall-related ac-
tivity. This feature acts as a trigger-key in recognition processing to avoid
false alarms which leads to excessive computation. The results show that
the algorithm achieve a sensitivity of 96.67% and specificity of 95%.

Another interesting work is the one discussed in [25]. The paper pro-
poses a fall classification strategy consisting of different approaches (de-
tection of inactivity, detection of falls by thresholds analysis, detection of
falls by device orientation analysis and detection of falls with decision
trees algorithm) merged, in order, to improve the efficiency and accuracy
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of the fall detection process. Through the databases Mobifall, Mobifall2
and a custom database, tests performed with the proposed methodology
showed 87.65% of specificity and 95.45% of sensitivity, with maximum
detection delay of 3 seconds.

3.1.2 Non-Wearable Solutions

These types of systems try to propose a different perspective on the fall
detection issue. In this area, camera-based systems are the most adopted
approaches. Nowadays, cameras are becoming increasingly common
among consumers and can be employed in many different contexts, such
as the active assisted living ones and for security. A major advantage of
these systems rely on their capability to monitor more complex behaviors
with respect to wearable solutions.

Although analyzing visual streams from cameras to automatically de-
tect users’ behavior is a challenging task [26], since it implies the need to
differentiate users from the environment where the users operate, human
activities and falls analysis has anyway attracted considerable attention in
the computer vision and image processing communities [27, 28, 29, 30].

As an example, in [27], Messing et al. have used a particular tech-
nique for daily activity recognition, based on the velocity histories of
tracked key points. The solution exploits a generative mixture model
for video sequences, which shows similar performance compared to lo-
cal spatio-temporal features on the KTH activity recognition dataset (a
dataset provided by KTH Royal Institute of Technology in Stockholm).

In [28] the authors discuss a solution based on the use of an RGB-D
(Kinect-style) cameras for fine-grained recognition of kitchen activities.
The system developed combines depth (shape) and color (appearance)
to solve several perception problems fundamental for smart space ap-
plications: locating hands, identifying objects and their functionalities,
recognizing actions and tracking object state changes through actions.
The system can robustly track and recognize different activities of daily
living.

A key challenge in the computer vision context deals with the detec-
tion and classification of falls based on variations in human silhouette
shape. In order to face this problem, the study presented in [31] pro-
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poses a multivariate exponentially weighted moving average (MEWMA)
monitoring scheme, which is effective in detecting falls since sensitive to
small changes. In order to distinguish real falls from some fall-like ges-
tures, a classification stage based on a support vector machine (SVM) is
applied to detected sequences. The methodology has been validated us-
ing the University of Rzeszow fall detection dataset (URFD) and the fall
detection dataset (FDD). The results of the MEWMA-based SVM are com-
pared with three other classifiers: neural network (NN), naïve Bayes and
K-nearest neighbor (KNN). Results show the capability of the developed
strategy to distinguish fall events.

In [32] a vision-based solution using Convolutional Neural Networks
to detect falls in a sequence of frames is proposed. To model the video
motion, and to make the system independent on the considered scenario,
an optical flow images as input to the networks followed by a novel three-
step training phase is introduced. The method has been evaluated in three
public datasets achieving state-of-the-art results.

3.1.3 Hybrid System

In many application scenarios, there is a need to differentiate activities
characterized by similar motions or gestures but corresponding to dif-
ferent behaviors. Typically, these situations can arise from actions like
carrying a glass of water or carrying a pillbox, or when an object is used
or simply carried around.

A solution for the aforementioned problems is discussed in [33], where
an approach based on direct motion measurements with inertial sen-
sors and detection of object interaction with RF-ID for high-level activ-
ity recognition is proposed. The system uses a sensor fusion strategy
based on different levels of abstraction for simultaneously integrating
many channels of heterogeneous sensor data. This approach was evalu-
ated with one Activity of Daily Living (ADL) breakfast scenario and one
home care scenario where the proposed approach reached an accuracy of
97% and 85% respectively.

A paper discussing the performance limitations of using individual
wearable sensors instead of hybrid solutions, especially for the classifi-
cation of similar activities, is presented in [34]. This is mainly based
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on a data fusion strategy of features extracted from experimental data
collected by different sensors: a tri-axial accelerometer, a micro-Doppler
radar, and a depth camera. Preliminary results show that combining in-
formation from heterogeneous sensors improves the overall performance
of the system. The classification accuracy attained using this fusion ap-
proach improves by 11.2% compared to radar-only use, and by 16.9%
compared to the accelerometer. Furthermore, adding features extracted
from an RGB-D Kinect sensor, the overall classification accuracy increases
up to 91.3%.

3.1.4 Discussion

The cited solutions highlight the huge number of alternatives when deal-
ing with falls and ADLs detectors.

The choice of one or another solution is usually driven by the appli-
cation, performance requirements, user skills, invasivity, computational
power requirements, and many more. But focusing on elderly people
or people with neurological disease, solutions based on wearable devices
prove to be the most effective. Although, in general, better performances
can be achieved using different approaches, none of them can guarantee
all the specifications defining a reliable, robust and user-centered system.
Wearable systems, and especially the one based on inertial devices, if ap-
propriately designed, can guarantee continuous monitoring, no matter
where, can run the algorithms in standalone mode, avoiding blind spot
in the detection phase and preserve, natively, their privacy. Of course, all
these advantages come with a cost: resource-hungry algorithms cannot be
easily embeddable in such low power devices. For this reason, a specific
effort has been made to develop an efficient and reliable algorithm whose
integration into a wearable low power device could have been feasible.

These conclusions are at the base of every choice and considerations
throughout the entire thesis.
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3.2 Event-Driven Methodology for Fall Detec-
tion and Classification

The proposed methodology for falls and ADLs detection exploits an event-
driven approach that is able to guarantee high robustness against exoge-
nous dynamics and a normalization phase improving the system robust-
ness against users’ characteristics. These results are obtained through a
cautious design of the entire pre-processing chain.

3.2.1 The Event-Driven Classification Methodology

The detection methodology, schematized in Figure 3.1, is based on an
event-driven template matching technique where "template", called "Sig-
nature" from now on, represents the core of the entire event detection
technique. It is based on the consideration that ADLs and falls are both
characterized by a typical shape in the time evolution of the events [35].
It is straightforward to deduce that different events have slightly different
signatures. Signatures may be built using different mathematical models
starting from the raw inertial measurements, and the two adopted ones
will be introduced in Section 3.2.2.2.

The evaluation of how close an event is to a given signature (template)
is demanded to a function measuring their similarity employing either a
cross-correlation or a Dynamic Time Warping (DTW) technique. Cross-
correlation is known to be one of the most powerful, yet computationally
manageable, methods for similarity measurements thanks to the invari-
ance to the translations and the robustness to the additive noise of the
signal. DTW instead is one of the algorithms for measuring similarity
between two temporal sequences, which may vary in speed. For instance,
similarities in walking could be detected using DTW, even if one person
walks faster than the other, or in presence of accelerations and decelera-
tions during an observation. One of the advantages of the DTW technique
relies on the possibility to adopt the same signatures in different inertial
systems, where quantities, such as the sampling frequency, may slightly
change the shape in time of two identical time series.

Finally, two classifiers will be investigated for the sake of fall detection.
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Figure 3.1: The Event-Driven Classification Methodology

In total, 8 different combinations of features, similarity measurements
and classifiers will be investigated.

3.2.2 Pre-processing

The pre-processing step prepares the raw measurements for optimal use
inside the method. A carefully designed pre-processing is mandatory for
optimal extraction of useful information from the data. From now on
when referring to "inertial data" or "raw data" will we indicate only the
acceleration components of any of the possible inertial quantities that can
be acquired using an inertial system. The reason behind that relies on
a reduced complexity of the method itself, since dealing with a reduced
number of quantities, and, in the meantime, reduce the amount of infor-
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mation that should be processed by an embedded device.
In the following sections, the details of each of the steps involved in

the pre-processing phase will be presented along with examples of the
related output.

3.2.2.1 Filtering Stage

Many variables must be taken into account when designing a proper filter
(Figure 3.2). One of these is the frequency range.

Figure 3.2: Filtering stage properties.

The human motion frequency range belongs to the range [0, 12] Hz
[36, 37, 38]. According to this, a low-pass filter with a cut-off frequency fc
of 12 Hz is required to remove both electronic noises, arising at a higher
frequency, and unwanted variation due to phenomenons which are not
directly associated with human motion. In particular, a 4th order Butter-
worth filter has been selected due to its simplicity, as it present similar
results than more elaborated IIR and FIR filters. An interesting property
of this kind of filter relies on its maximal band flatness (no ripples) at the
expense of a wide transition band. A reduction of the transition band
can be achieved by increasing the filter order which in turn introduces an
excessive ripple in the passband and a higher delay in the filtered signal.

An example of a 4th order Butterworth filter with a cut-off frequency,
fc, of 12 Hz and a sampling frequency, fs, of 200 Hz is given in Figure
3.3. The normalized frequency, fn, given in Figure 3.3 is related to fs and
fc according to equations from 3.1 to 3.5.
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Figure 3.3: Bode plot of a 4th order Butterworth filter.

fn =
fc

fs
(3.1)

Equation (3.1) is a number (no units) showing how many sampling peri-
ods with frequency fs are in the sampled signal fc. However, according
to Nyquist-Shannon theorem, the sampling frequency is always at least
two times the frequency fc. Thus (3.1) is never larger than 1/2. To have
fn in the range [0, 1], we multiply (3.1) with a factor 2 (3.2):

fn = 2
fc

fs
(3.2)

and hence:

fc =
ωc

2π
(3.3)

fn = 2
fc

fs
=

ωc
π

fs
(3.4)
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multiplying both side of (3.4) by π:

π fn =
ωc

fs

rad
sample

(3.5)

fn as a unit equal to [π rad
sample ] as shown in Figure 3.3.

Since the procedure is based on signatures, which represents the "time"
evolution of an event, the DC components can be removed by subtracting
the mean value from each axes.

An output of this stage is shown in Figure 3.4 where are given respec-
tively the raw acceleration in the three axes, the output of the Butterworth
filter and the same signal with mean value removed.

3.2.2.2 Feature Extraction

Several features have been used by the scientific community for fall de-
tection experiments. A detailed list is given in [39] where it emerges that
features like mean, standard deviation, sum vector magnitude and tilt
angles, due to its simplicity, yet informative, are commonly used features
in existing fall detection experiments. This is explained considering that
generic equations such as mean, standard deviation and variance can be
applied to any motion sensors.

The choice of the specific feature extraction tools has been done ac-
cording to [40] where a deep features comparison is provided using the
SisFall dataset. The adopted features are:

SVMc[K] =
√︂

a2
x[k] + a2

y[k] + a2
z[k] (3.6)

SDMc[K] =
√︂

σ2
x [k] + σ2

y [k] + σ2
z [k]; with σi = std(˜︁ai[k]) (3.7)

where SVM stands for Sum Vector Magnitude while SDM stands for Stan-
dard Deviation Magnitude; the subscript c stands for "complete" indicat-
ing the use of all the acceleration components.

Here, one sample of acceleration in the three axis is defined as the
vector −→a = [ax, ay, az]T ∈ R, the sliding window used for computing the
dynamic features is denoted with ˜︁a[k] = [−→a T[k − Nv + 1], ...,−→a T[k]]T ∈
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(a)

(b)

(c)

Figure 3.4: Steps involved in the filtering process of a test event: (a) Raw
acceleration; (b) Butterworth filter output; (c) Filtered output with mean
value removed. Data 1 to data 3 represent respectively the x, y and z axes.
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RNvx3 at time sample k, where Nv is the number of samples in the selected
window. The standard deviation operator is defined as σ(·).

If the measurements system (i.e the wearable system) is placed in the
center of mass of the body (Figure 3.5), the acceleration vertical axis can
be neglected from the computation of both features. This helps reduce
the number of false positives caused by the high accelerations achieved
in the vertical axis with many ADLs [39]. The equations becomes:

Figure 3.5: Position of the center of mass of human body (indicated in
yellow).

SVM[K] =
√︂

a2
x[k] + a2

y[k] (3.8)

SDM[K] =
√︂

σ2
x [k] + σ2

y [k]; with σi = std(˜︁ai[k]) (3.9)

if az is the vertical axis.
As it will be proved in Section 4.2.3, the SDM produces a signature

better representing the whole classes of fall which has been proved to be
more effective in the class discrimination phase.

For the sake of clarity, two examples of features, one built with the
SVM and another with the SDM are presented in Figure 3.6 and 3.7. Both
are computed using the same test event.

3.2.2.3 Normalization

As previously introduced, we are interested in the time evolution of an
event rather than its amplitude. This is a first reason behind the normal-
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Figure 3.6: SVM feature built on a test event.

Figure 3.7: SDM feature built on a test event.

ization phase. Another reason is based on the well know physic relation
relating body mass and its acceleration. The acceleration module of a
falling body may change consistently as a function of weight and height.
For this reason, since the methodology should be as much as possible
independent from these quantities, a normalization is then suggested.
Those two reasons underlie the need for normalizing.

The normalization procedure constrains signals in the range [0, 1],
thus preserving the signal’s dynamics, while assuring the generalization
of the classification strategy.

Figure 3.8 shows the obtained output, after the normalization phase,
for one of the features presented in Section 3.2.2.2.
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Figure 3.8: Normalized SDM test feature.

3.2.3 Signature: Definition and Building Process

A signature is defined as a typical time evolution of an inertial event
uniquely describing a specific event. As it will be clarified in the follow-
ing, to build a reliable set of signatures (one per each addressed class
of events), a high-quality dataset, including several observations for each
class of falls and ADL is required.

The signatures building process (Figure 3.9) shares the same pre-processing,
described in Section 3.2.2, along with two more phases: 1) features align-
ment and 2) averaging.

The signals alignment is based on the time delay between patterns, es-
timated by computing the cross-correlation between signals (more details
on this theoretical tool are given in Section 2.1).

Given the aligned features x1, x2, ..., xn, with n number of events in the
adopted dataset, the signature X at instant k, obtained by averaging, is
computed as shown in Equation 3.10.

X[k] =
1
n

n

∑
i=1

xi[k] (3.10)

The alignment phase and relative averaging are shown in Figure 3.10.
Since the process is based on the averaging of the aligned features, the

dataset choice plays a decisive role. A dataset with a reduced number of
events, both in terms of observations and type, can results in an overfitted
template not fully representing the class of interest. The danger of such
an outcome is related to the deceiving results of any performance evalu-
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Figure 3.9: Signature building process.

ation of detectors based on these templates. The actual performances of
the method can result to be much lower when tested with dataset with a
bigger data variance (in terms of subjects involved, number of observa-
tions, type of events, and so on.)

It must be specified that the signatures building process is only re-
quired once and need to be performed offline employing a dedicated al-
gorithm. Once built, signatures are not subjected to any changes. This is
a relevant advantage when addressing a method integration in low power
hardware.
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(a)

(b)

(c)

Figure 3.10: Signature building process. (a) Non aligned SDM test fea-
tures; (b) aligned SDM test features; (c) signature obtained by averaging
the aligned test features. Data 1 to data 5 represent 5 different features
computed using 5 different observations.
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3.2.4 Similarity Measurement

The similarity measurement is the procedure giving rise to the scores
vector which is afterward passed to the classification block.

In statistics and related fields, a similarity measure (or similarity func-
tion) is a real-valued function that quantifies the similarity between two
objects. In its general definition, if the distance is small, two objects are
very similar whereas if the distance is large we will observe a low degree
of similarity. In real applications, whether high similarity is associated
with small distance or with big ones, strictly depends on the adopted
metric or algorithm.

3.2.4.1 Cross-Correlation Based Similarity Measurement

A widely used similarity function is the cross-correlation function (more
detail are given in Section 2.1). In signal processing, the cross-correlation
is a measure of similarity of two series as a function of their relative
displacement. This is also known as a sliding dot product or sliding
inner-product. It finds applications in pattern recognition, single particle
analysis, case-based reasoning, audio signal processing, event recognition
and more [41, 42, 43, 44, 45, 46].

The equation for cross-correlation can be derived from the basic corre-
lation equation, by introducing a variable shift into one of the two func-
tions (Equation 3.11). It does not matter which function is shifted with
respect to the other, whether the signal x or y, the results would be the
same. The correlation operation of Equation 3.11 is a series of correlations
over different time shifts, k.

r∗xy[k] =

⎧⎪⎨⎪⎩
N
∑

n=1
x[n] · y[n + k] k ≥ 0

rxy[−k] k < 0
(3.11)

In order to constrain the cross-correlation in the range [−1, 1], the nor-
malized cross-correlation, r̂xy, is used (Equation 3.12)

r̂xy[k] =
rxy[k]√︂

rxx[0]ryy[0]
(3.12)
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where rxx[0] and ryy[0] indicate the auto-correlations at zero lag of the
signals x and y.

In order to extract a single score value, the maximum absolute value
is taken from r̂xy. If value is small (−→ 0) then the signals are uncorre-
lated (low similarity). If value is high (−→ 1) then the signals are highly
correlated (high similarity).

The cross-correlation operator requires signals sampled at the same
frequency.

3.2.4.2 DTW Based Similarity Measurement

Dynamic time warping (DTW) is a well-known technique to find an op-
timal alignment between two given (time-dependent) sequences under
certain restrictions (see Section 2.2 for more details). Intuitively, the se-
quences are warped in a non-linear way to match each other.

DTW has been applied to temporal sequences of video, audio, and
graphics data [47, 48, 49]. In practice, any data that can be turned into a
linear sequence can be analyzed with DTW. An advantage of the DTW al-
gorithm relates to its ability to cope with time deformations and different
speeds associated with time-dependent data.

In time series analysis, dynamic time warping (DTW) has also been
used for measuring similarity between two temporal sequences, which
may vary in speed, or sampled differently [50]. This enables the possibil-
ity to use signatures built on a dataset with different sampling frequencies
than the one using in the test, or different than the sampling frequency
of the fall detection device. This property is an advantage compared to
the cross-correlation technique which requires signals equally sampled.
For instance, similarities in walking could be detected using DTW, even
if one person walks faster than another, or in case of accelerations and
decelerations during an observation.

The temporal sequences are "warped" non-linearly in the time dimen-
sion to determine a measure of their similarity independent of certain
non-linear variations in time. This sequence alignment method is at the
base of time series classification techniques.

The use of a non-linear approach for the similarity measure involves
a greater complexity compared to one involved in the cross-correlation.
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The DTW algorithm intrinsically computes the "distance" between the
two temporal sequences (whose metrics can be chosen) whose value is a
measure of the similarity. If value is low (−→ 0) then the signals are highly
correlated (high similarity). If value is high (−→ ∞) then the signals are
highly uncorrelated (low similarity).

3.2.5 Classification

Classification is the final step in the entire falls and ADLs detection strat-
egy. It must decide whether a given event belongs to a class or another.
Historically, classification algorithm in the AAL context using low power
wearable devices, have been primarily based on empirically found thresh-
olds acting on some type of amplitude level (typically linear and angular
acceleration amplitude) [51, 52, 53, 54, 55] or just on the analysis on the
user position after fall. Although extensively used, thresholds acting just
on amplitude levels, are strongly influenced by the characteristic of the
user (if a user is particularly tall or obese, this many results in acceleration
level beyond the thresholds even in the absence of a fall event), exogenous
factor and poor selectivity. The ones based on static user’s position suf-
fer from false-negatives since they can be easily triggered by ADL having
axes direction compatible with a fall type.

These disadvantages are sophistically removed thanks to the intrinsic
nature of the score value: they are based on a measure of similarity rather
than a simple amplitude. This allows the adoption of simple classification
algorithms for the detection phase.

Two classifiers are now introduced. It must be underlined that ma-
jor advantages of what is going to be described rely on their low com-
putational demand and adaptability to several different application con-
texts. The classification strategies have been specifically thought for their
implementation in a real power-limited embedded system where, more
complicate classification approaches, such as the ones based on machine
learning techniques, can be hardly implemented.
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3.2.5.1 Threshold-Based

The threshold-based classification algorithm (abbreviated as TH) com-
pares the extracted scores with threshold values, to define the potential
class or classes to which the unknown event belongs. An event is classi-
fied as belonging to a specific class if the score value overpasses, or not,
a predefined threshold. Whether we control the threshold’s overpass or
it’s opposite, depends on the nature of the score value. If the score is
computed using the cross-correlation (high similarity is associated with
high score value) the threshold’s overpass is considered. If the score is
computed using the DTW (high similarity is associated with low score
value) values that do not overpass thresholds are considered.

To define optimal threshold values for each class of the addressed
events, the ROC theory has been used (see Section 2.3). The ROC curve
theory provides theoretical support to the classification problem where
a classifier is required to map each instance to one of two classes [56].
The general strategy adopted by the ROC theory allows us to identify
thresholds maximizing a selected performance index (Sensitivity, Speci-
ficity, Accuracy and so on) assessing the classification methodology. In
this application, the intersection between the specificity and sensitivity
curves has been adopted as the selection criteria for threshold identifica-
tion [35].

It must be observed that the result of the classification strategy above
described can lead to multiple classifications (an unknown pattern could
be recognized as belonging to different classes) and unclassified events
(an unknown pattern could be classified as not belonging to any of the
considered classes of events).

3.2.5.2 Absolute Minima Value

This classifier is the easiest classifier one can design and implement.
To understand this classifier, some considerations should be made.

The TH classifier is totally able to work even in the presence of a single
score value. Using Table 3.1 as an example, a TH classifier can say if
Event 1 or Event N belongs to the class expressed by Signature 1 only by
comparing the score value with the threshold. In the case of the Absolute
Minima Value (AMV) classifier, the event having the highest similarity
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Table 3.1: Example of a score vector built having N events and 1 signature.

Signature 1
Event 1 Score1
Event 2 Score2
...
Event N ScoreN

Table 3.2: Example of a score vector built having N events and M signa-
tures.

Signature 1 Signature 2 ... Signature M
Event 1 Score11 Score12 Score1M
Event 2 Score21 Score22 Score2M
...
Event N ScoreN1 ScoreN2 ScoreNM

value, among the M signatures, is defined as belonging to that class. To
clarify, let us use Table 3.2. Event 1 is said to belong to the class defined
by Signature 2 if Score12 is:

• The highest value in the row in case of similarity based on cross-
correlation

• The lowest value in the row in case of similarity based on DTW

It is now clear that, for this method to fully work, an unknown event
must be compared to multiple signatures.
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Chapter 4
Assessment of the Fall Detection
Strategy

This chapter features results obtained by means of the classification method-
ology presented in Section 3. Results coming from this section will prove
the goodness and reliability of the proposed methodology by also using
dedicated metrics, such as Sensitivity, Specificity, Accuracy, and F1-Score.

4.1 Falls and ADLs Dataset

Many falls and ADLs datasets can be found in the literature. In order to
select a proper one, some basic requirements have been imposed for the
selection:

1. all activities must be well documented;

2. raw data must be freely available;

3. must contain both falls and ADLs;

4. reported in a peer-reviewed paper.

Following these requirements, four datasets have been identified:

1. MobiFall [57]: twenty-four volunteers having age between 22 and
42 years old performed nine types of ADLs and four types of falls
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4.1. FALLS AND ADLS DATASET

using a Samsung Galaxy smartphone. Only nine subjects performed
falls and ADLs, while the remaining 15 performed only falls (three
times each);

2. tFall [58]: only ten participants between 20 and 42 years old. It
is made up of eight types of falls (503 total recordings with two
smartphones), and one week of continuous ADL recordings with all
participants carrying smartphones in the pockets or in an handbag;

3. DLR [59]: sixteen subjects between 23 and 50 years old. It is made of
six types of ADLs, and the authors did not specify the conditions of
the falls (they belong to a single group). Acquisitions are too short
for a consistent analysis.

4. Project gravity [60]: three participants (ages 22, 26, and 32) per-
formed 12 types of falls and seven types of ADLs with a smartphone
in the pocket;

5. SisFall [40]: thirty-eight volunteers divided into elderly people and
young adults. The elderly people group (age between 60 and 75
years old) was formed by 15 participants (8 male and 7 female),
and the young adults group (age between 19 and 30 years old) was
formed by 23 participants (11 male and 12 female). In total have
been acquired 34 types of events, 15 falls and 19 ADLs, with several
trials each, for a total of 2706 ADL and 1798 falls.

The SisFall dataset is the one containing more participants, types of ac-
tivities and recordings than all the other publicly available datasets. More
specifically, none of the other datasets includes elderly people, which is
a big drawback, and the variety of activities and the number of subjects
is limited compared to the SisFall. Additionally, all the other datasets
have been acquired using smartphones in the pocket, which is a different
approach compared to the methodology under assessment. The SisFall
instead has been built using a belt buckle sensor node.

Those properties made this dataset suitable for our assessment.
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4.1.1 SisFall Dataset

In this section, more details on the adopted dataset are provided.
All the acquisitions were recorded with an embedded device integrat-

ing an ADXL345 accelerometer (configured for ±16 g, 13 bits analog to
digital converter), a MMA8451Q accelerometer (±8 g, 14 bits ADC) and
an ITG3200 gyroscope (±2000◦/s, 16 bits ADC). Nevertheless, only accel-
eration data acquired with the ADXL345 sensor (sampling frequency fs
of 200 Hz) was used in the assessment phase. The device was fixed to
the waist of the participants whose orientation of the sensor (Figure 4.1)
presents the positive z-axis in the forward direction, the positive y-axis in
the gravity direction, and the positive x-axis pointing to the right side of
the subject.

Figure 4.1: Position of the measurement system on the human body.

4.1.1.1 Types of Fall

As previously stated, 15 different types of fall have been acquired in the
SisFall dataset. Falls are of major interest in this work since they represent
the dangerous events that must be promptly detected. Working with a
large set of falls for the system assessment, is a huge advantage since the
reliability of the fall detector can be evaluated in a robust way. A detailed
list of the falls included in the dataset is given in table 4.1.
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Table 4.1: Types of falls included in the SisFall dataset. Data from [40].

Code Activity Duration Trials
F01 Fall forward while walking caused by a slip 15 s 5
F02 Fall backward while walking caused by a slip 15 s 5
F03 Lateral fall while walking caused by a slip 15 s 5
F04 Fall forward while walking caused by a trip 15 s 5
F05 Fall forward while jogging caused by a trip 15 s 5
F06 Vertical fall while walking caused by fainting 15 s 5

F07
Fall while walking, with use of hands in a table
to dampen fall, caused by fainting

15 s 5

F08 Fall forward when trying to get up 15 s 5
F09 Lateral fall when trying to get up 15 s 5
F10 Fall forward when trying to sit down 15 s 5
F11 Fall backward when trying to sit down 15 s 5
F12 Lateral fall when trying to sit down 15 s 5

F13
Fall forward while sitting, caused by fainting
or falling asleep

15 s 5

F14
Fall backward while sitting, caused by fainting
or falling asleep

15 s 5

F15
Lateral fall while sitting, caused by fainting
or falling asleep

15 s 5

4.1.1.2 Types of ADLs

The 19 types of ADLs were selected based on activities that are similar
(in acceleration waveform) to falls, and activities with high acceleration
that can generate false positives. Also in this case, a detailed list of the
acquired ADLs is given in Table 4.2. A large set of ADLs allows to ver-
ify the capability of the algorithm to reliably distinguish common daily
activities from falls.

4.1.1.3 Participants

The database was generated with the collaboration of 38 volunteers: 15
elderly and 23 young adults. Table 4.3 shows age, weight, and height of
each group. The elderly group was made up of healthy and independent

66



CHAPTER 4. ASSESSMENT OF THE FALL DETECTION STRATEGY

Table 4.2: Types of ADLs included in the SisFall dataset. Data from [40].

Code Activity Duration Trials
D01 Walking slowly 100 s 1
D02 Walking quickly 100 s 1
D03 Jogging slowly 100 s 1
D04 Jogging quickly 100 s 1
D05 Walking upstairs and downstairs slowly 25 s 5
D06 Walking upstairs and downstairs quickly 25 s 5

D07
Slowly sit in a half height chair, wait a moment,
and up slowly

12 s 5

D08
Quickly sit in a half height chair, wait a moment,
and up quickly

12 s 5

D09
Slowly sit in a low height chair, wait a moment,
and up slowly

12 s 5

D10
Quickly sit in a low height chair, wait a moment,
and up quickly

12 s 5

D11
Sitting a moment, trying to get up, and collapse
into a chair

12 s 5

D12
Sitting a moment, lying slowly, wait a moment,
and sit again

12 s 5

D13
Sitting a moment, lying quickly, wait a moment,
and sit again

12 s 5

D14
Being on one’s back change to lateral position,
wait a moment, and change to one’s back

12 s 5

D15 Standing, slowly bending at knees, and getting up 12 s 5

D16
Standing, slowly bending without bending knees,
and getting up

12 s 5

D17
Standing, get into a car, remain seated and get out
of the car

25 s 5

D18 Stumble while walking 12 s 5

D19
Gently jump without falling (trying to reach a
high object)

12 s 5
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Table 4.3: Age, height and weight of the participants. Data from [40].

Sex Age Height (m) Weight (kg)

Adults
Male 60-71 1.63–1.71 56–102
Female 62-75 1.50–1.69 50–72

Elderly
Male 19-30 1.65–1.83 58–81
Female 19-30 1.49–1.69 42–63

subjects, and none of them presented gait problems.
Young adults performed ADLs and falls. Elderly people did not per-

form falls and activities D06, D13, D18, and D19 due to physician rec-
ommendations. Additionally, some elderly people did not perform some
activities due to personal impairments. One single subject, 60 years old,
simulated both falls and ADLs.

4.2 Assessment Strategy

The proposed assessment strategy is depicted in Figure 4.2. Some steps
are already familiar since introduced and explained in Section 3. In addi-
tion to that, some new functions, specifically implemented for the assess-
ment, have been included:

1. K-fold cross validation;

2. Definition and analysis of the method performances;

The implementation of the K-fold cross-validation has been done ac-
cording to the leave-one-out strategy using K = 10.

To graphically validate each step of the methodology, up to the final
classification, four events, two falls and two ADLs, are used as a reference.
The selected falls are F01 and F02, respectively a type of forward and
backward fall. The selected ADLs are D03 and D10, respectively a type
of jogging and a type of sitting. It must be specified that those events will
be the one graphically shown in the work, but all the events are used in
the assessment.

Another points to be clarified regards the different acquisition length
of some events. While each fall has an equal sample length, ADLs do
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Figure 4.2: General structure of the adopted assessment strategy.
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not. Events from D01 to D06 are periodic activities and hence, reduc-
ing their dimension, still preserve the nature of the event itself. To make
compliant the ADLs dimension with the falls ones, every ADL has been
reduced/extended to 15s. The signal extension has been done by append-
ing zeros at the end of the vectors.

4.2.1 Pre-Processing Results

The pre-processing is made up of the filtering, features extraction and
normalization stages.

Starting from the raw accelerations, the output of each step is shown
from Figure 4.3 to Figure 4.6. The normalization is not shown since it just
produces a scaling of the feature and its result has already been included
in Section 3.2.2.3. Notes on the accelerations figures: the 3 axes, x, y and
z are referred as data1, data2 and data3.

As anticipated, features built using SDM are less prone to over-fitting,
which is a wanted result when one needs to adequately capture the un-
derlying structure of the inertial data. This conclusion will be supported
by numerical results later on in this chapter.

4.2.2 Cross Validation

Cross-validation is a statistical method generically used to estimate the
skill of a model to generalize to an independent dataset. It is commonly
used to compare and select a model for a given predictive modeling prob-
lem because it is easy to understand, easy to implement, and results in
estimates that generally have a lower bias than other methods.

The goal of cross-validation is to test the model’s ability to predict
new data while avoiding problems like overfitting or selection bias.

Cross-validation involves partitioning a dataset into complementary
subsets, performing the analysis on one subset, the training set, and val-
idating the analysis on the other subset, the testing set. This procedure
can be repeated K times, using different partitions. If cross-validation is
repeated K times, then it takes the name K-fold cross-validation. Finally,
the validation results are averaged to give an estimate of the model’s pre-
dictive performance.
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(a)

(b)

(c) (d)

Figure 4.3: F01 event. (a) Raw acceleration; (b) filtered and zero centered;
(c) SDM feature; (d) SVM feature.
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(a)

(b)

(c) (d)

Figure 4.4: F02 event. (a) Raw acceleration; (b) filtered and zero centered;
(c) SDM feature; (d) SVM feature.
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(a)

(b)

(c) (d)

Figure 4.5: D03 event. (a) Raw acceleration; (b) filtered and zero centered;
(c) SDM feature; (d) SVM feature.
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(a)

(b)

(c) (d)

Figure 4.6: D10 event. (a) Raw acceleration; (b) filtered and zero centered;
(c) SDM feature; (d) SVM feature.

74



CHAPTER 4. ASSESSMENT OF THE FALL DETECTION STRATEGY

In this work, K has been fixed to 10 and used the leave-one-out ap-
proach.

The K-fold cross-validation has been implemented in the following
way (see Figure 4.2):

1. Each class of event (F01 – D19) has been divided into 10 Folds (sub-
set);

2. Roughly every subset contain the same number of event (division
doesn’t always result in integer numbers);

3. K-1 folds are used as a training set and the signature/template is
built on that;

4. A similarity measurement is performed;

5. Classification;

6. Performance indexes are calculated;

7. Steps from 3 to 6 are repeated 10 times (since K = 10) changing
training and test subset;

8. Performance indexes are finally averaged.

4.2.3 Events’ Signatures

Events’ signatures for the 34 classes included in the dataset have been
computed following the steps given in Section 3.2.3: 1) alignment and 2)
averaging.

The alignment process for each of the four selected class of events, is
given Figure 4.7 to Figure 4.10.

It must be specified that, for the sake of clarity, only 10 features have
been shown in the figures.

Since the SDM is less prone to data overfitting, in the sense that it
produces a waveform having smoother variations compared to the SVM,
it facilitates the alignment process in all circumstances. The presence
of feature oscillations in the SVM waveform, before the fall occurrence,
contribute negatively to the alignment phase which, just to remind, is
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(a) (b)

(c) (d)

Figure 4.7: F01 signature generation process. (a) Misaligned SVM feature;
(b) aligned SVM feature; (c) misaligned SDM feature; (d) aligned SDM
feature.

based on the cross-correlation. The adoption of the SDM-based feature
produces a signature that is less "representative" of a specific class of
fall but well generalizes an entire set of possible falls. This property
of "generalization" improves consistently the capability of the method to
distinguish falls from ADLs.

The complete list of signatures, for a given K (K coming from the K-
fold cross-validation), are shown from Figure 4.11 to Figure 4.14.

The property of "generalization" of the SDM features is now clearly
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(a) (b)

(c) (d)

Figure 4.8: F02 signature generation process. (a) Misaligned SVM feature;
(b) aligned SVM feature; (c) misaligned SDM feature; (d) aligned SDM
feature.

evident. All the 15 classes of addressed falls (Figure 4.11) show simi-
lar shapes although representing different falls. Same conclusion can be
drawn from the 19 classes of ADLs (Figure 4.13). Periodic events, such
as jogging and walking, have basically the same signature, as well as sit-
ting events. On the contrary, SVM features show more specific shapes
(Figure 4.12 and Figure 4.14). Also, in some cases, ADLs SVM features
show similar shapes to some type of falls contributing negatively during
classification.
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(a) (b)

(c) (d)

Figure 4.9: D03 signature generation process. (a) Misaligned SVM feature;
(b) aligned SVM feature; (c) misaligned SDM feature; (d) aligned SDM
feature.

4.2.4 Similarity Measurements and Classification

The similarity measurement is the procedure giving rise to the scores
vector the classification algorithm will use. The implemented similarity
measures are based on cross-correlation and DTW. In both cases, the mea-
sure outputs a single number measuring the degree of similarity between
signatures and an unknown event (more specifically, the feature of the
unknown event). Unlike cross-correlation, which is normalized, DTW-
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(a) (b)

(c) (d)

Figure 4.10: D10 signature generation process. (a) Misaligned SVM fea-
ture; (b) aligned SVM feature; (c) misaligned SDM feature; (d) aligned
SDM feature.

based scores are not constrained between [−1, 1] thus producing scores
reaching high values. To clearly understand how both techniques work
when applied to features, examples of score matrices computed either
through cross-correlation (on both the SDM and SVM feature) or through
DTW (on both the SDM and SVM feature) are shown from Table 4.4 to
Table 4.7.

Let us focus on the SDM and SVM based scores. Under the same
similarity measure, SDM-based scores produce a much clear separation
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 4.11: SDM-based signatures. From (a) to (o) are mapped events
from F01 to F15.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 4.12: SVM-based signatures. From (a) to (o) are mapped events
from F01 to F15.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure 4.13: SDM-based signatures. From (a) to (s) are mapped events
from D01 to D19.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure 4.14: SVM-based signatures. From (a) to (s) are mapped events
from D01 to D19.
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between falls and ADLs. Common similarity values between falls and
falls’ signatures are greater than 0.9 (using cross-correlation) while be-
tween falls and ADLs’ signatures are generically lower than 0.7. Similar
considerations can be done in the case of DTW. This clear separation is
blurred in the case of SVM-based scores.

These findings have a direct impact on the classification performances.
Classification rules have been based on the type of separation the method
wants to highlight:

• Falls vs Non-Falls (C1): we are only interested in detecting a fall,
no matter the type, and be able to differentiate them from ADLs;

• Inter-Class (C2): we are interested in detecting a specific type of
event, no its general class. If an F01 event occurs we want to be
able to classify it as belonging to the F01 class. Since this represents
a challenging task, classes addressed in this scenario are reduced
only to falls and, specifically, to three classes of fall: FF (forward
falls), BF (backward falls) and LF (lateral falls). Since most classes
are representative of similar events, such as F01, F04 and F05, they
have been grouped together.

Adopted classification techniques are:

• Absolute Minima Value (AMV)

– DTW similarity: it assigns an unknown event to the class show-
ing the lowest score value;

– Cross-correlation similarity: it assigns an unknown event to the
class showing the highest score value;

• Threshold based (TA): this introduces a level of complexity com-
pared to the previous one. An optimal threshold is determined
using the ROC curves theory.

– DTW similarity: it assigns an unknown event to the class hav-
ing a score value lower than the threshold;

– Cross-correlation similarity: it assigns an unknown event to the
class having a score value greater than the threshold;
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While the AMV classifier does not require any further computation,
the TH one requires the threshold definition. In case the C1 rule is used,
only one threshold is required while, in case rule C2 is used, three differ-
ent thresholds are needed. As depicted in Section 2.3, for the ROC curves
to work, a positive and negative distribution must be defined. Both dis-
tributions have been defined taking the maximum score value row-wise
using only the fall columns as shown in Table 4.8. Those are the distri-
butions on which the thresholds have been identified for each run of the
cross-validation.
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CHAPTER 4. ASSESSMENT OF THE FALL DETECTION STRATEGY
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Table 4.8: Table showing how the positive and negative distribution have
been defined. For each row, but only including scores produced by fall
signatures (red values), the maximum value has been found. Maximum
coming from falls rows are defined as positive distribution while maxi-
mum coming from ADLs rows as negative. The included values refers to
the cross correlation similarity measurement using the SDM feature.

F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 D01 ... D09

F01 0,99 0,98 0,99 0,97 0,98 0,98 0,96 0,95 0,96 0,95 0,55 0,60
F02 0,98 0,98 0,96 0,98 0,95 0,98 0,88 0,87 0,87 0,87 0,68 0,62
D01 0,61 0,62 0,58 0,59 0,64 0,60 0,43 0,43 0,41 0,42 0,99 0,98
D09 0,62 0,61 0,61 0,57 0,59 0,60 0,63 0,60 0,58 0,58 0,98 0,99

4.3 Discussion

Before presenting the obtained results, let us provide some definitions. In
case of a generic event class E, the following quantities can be defined:

• TP (true positive): events of type E correctly recognized as belong-
ing to class E;

• FN (false negative): events of type E recognized as belonging to a
class different than E;

• TN (true negative): events different from type E correctly recog-
nized as belonging to a class different than E;

• FP (false positive): events different from type E recognized as be-
longing to class E.

In case the C1 rule (falls vs non-falls) is adopted for the classifier, only two
classes are considered: 1) Falls and 2) ADLs. If any fall event is classified
as belonging to any of the addressed fall classes, then this is a positive
event classified as positive: TP. If any ADL event is classified as belong-
ing to any of the addressed ADLs classes, then this is a negative event
classified as negative: TN. If any fall event is classified as belonging to
any of the addressed ADLs classes, then this is a positive event classified
as negative: FN. If any ADL event is classified as belonging to any of the
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addressed falls classes, then this is a negative event classified as positive:
FP.

In case the C2 rules (inter-class) is adopted for the classifier, three
classes are used. If an event of type x is classified as belonging to the x
class, then this is a positive event classified as positive: TP. If an event
different that type x is classified as belonging to any other classes than
the x class, then this is a negative event classified as negative: TN. If an
event of type x is classified as belonging to any other classes than the x
class, then this is a positive event classified as negative: FN. If an event
different that type x is classified as belonging to the x class, then this is a
negative event classified as positive: FP.

Using the so calculated quantities, the following performance indexes
will be used:

• Sensitivity (Se): defined as the capability of the classifier to properly
classify the events belonging to the positive distribution;

Se =
TP

TP + FN
(4.1)

• Specificity (Sp): defined as the capability of the classifier to properly
classify the events belonging to the negative distribution;

Sp =
TN

TN + FP
(4.2)

• Accuracy (Ac): defined as the number of correct decisions among
the total number of test examples;

Ac =
TP + TN

TP + TN + FP + FN
(4.3)

• F1-Score (F1): defined as the weighted average of "precision" (the ra-
tio of correctly predicted positive observations to the total predicted
positive observations) and Se;

F1 =
TP

TP + 1
2(FP + FN)

(4.4)
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Table 4.9: Performances of both classifiers using the cross-correlation as
similarity measure (C1 rule).

Classifier -> AMV TH

Feature -> SVM SDM SVM SDM

Se 0,82 0,99 0,79 0,97
Sp 0,96 0,97 0,80 0,98
Acc 0,90 0,98 0,79 0,97
F1 0,87 0,97 0,76 0,97

Table 4.10: Performances of both classifiers using DTW as similarity mea-
sure (C1 rule).

Classifier -> AMV TH
Feature -> SVM SDM SVM SDM
Se 0,68 0,98 0,98 0,99
Sp 0,97 0,89 0,91 0,87
Acc 0,85 0,92 0,50 0,92
F1 0,79 0,91 0,61 0,91

It is worth recalling that, the aim of the assessment approach is to esti-
mate the method performances in terms of reliability in fall classification.

To provide a fast and synthetic way to present the performances of
the fall detector, taking into account all the discussed methods, compar-
ative tables have been built. Starting with results coming from the C1
classification rule, Table 4.9 and Table 4.10 are provided.

Considering the C1 classification rule, independently of the adopted
similarity measure, and classification type, the SDM feature always per-
forms better than the SVM one. Moreover, the AMV classifier is gener-
ically slightly better than the TH ones, both with the cross-correlation
and DTW similarity measures. However, it must be pointed out that the
TH classifier can be even used with a single class of events to work (this
advantage has been already explained in Section 3.2.5.2) while the AMV
requires a representative list of both falls and ADLs classes. In case the
method must be embedded into a physical device, this property can be
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very helpful since the memory requirements can be optimized. Last, fo-
cusing on the SDM feature with the AMV classifier, the cross-correlation
similarity is the one showing the highest performances.

The same analysis has been conducted for the C2 classification rule
and obtained results are shown from Table 4.11 to Table 4.14.

Table 4.11: Performances of both classifiers using the SVM feature and
the cross-correlation similarity measure (C2 rule)

Classifier AMV Classifier TH

FF BF LF FF BF LF

Se 0,64 0,36 0,35 0,68 0,80 0,73
Sp 0,64 0,47 0,44 0,83 0,67 0,53
Acc 0,64 0,44 0,41 0,76 0,70 0,59
F1 0,62 0,23 0,26 0,72 0,55 0,52

Table 4.12: Performances of both classifiers using the SDM feature and
the cross-correlation similarity measure (C2 rule).

Classifier AMV Classifier TH

FF BF LF FF BF LF

Se 0,74 0,26 0,22 0,72 0,75 0,73
Sp 0,75 0,46 0,41 0,86 0,66 0,54
Acc 0,75 0,41 0,35 0,81 0,67 0,57
F1 0,72 0,17 0,17 0,79 0,51 0,51

Similarly to what previously done with the C1 rule, also in this case
it is possible to highlight a proper selection of feature, similarity and
classifier leading to the best possible results. In particular, once again
the SDM-based feature proves to be the optimal choice along with the
use of cross-correlation as similarity measure but, conversely to what ob-
tained before, optimal results are obtained using the TH classifier. Even
if performances are not as good as the one obtained using the C1 rule, al-
though acceptable, it must pointed out that this second analysis is always
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Table 4.13: Performances of both classifiers using the SVM feature and
the DTW similarity measure (C2 rule).

Classifier AMV Classifier TH

FF BF LF FF BF LF

Se 0,85 0,15 0,13 0,70 0,63 0,49
Sp 0,85 0,43 0,37 0,61 0,54 0,40
Acc 0,85 0,37 0,30 0,66 0,58 0,44
F1 0,84 0,10 0,10 0,67 0,60 0,47

Table 4.14: Performances of both classifiers using the SDM feature and
the DTW similarity measure (C2 rule).

Classifier AMV Classifier TH

FF BF LF FF BF LF

Se 0,69 0,25 0,29 0,75 0,72 0,55
Sp 0,72 0,46 0,45 0,54 0,51 0,35
Acc 0,70 0,41 0,40 0,69 0,62 0,45
F1 0,68 0,17 0,23 0,67 0,65 0,50

preceded by the first; to be more clear, once the general classification is
done (fall vs non-fall) this second classification provides an additional
information on the specific type of fall.

Finally, it can be affirmed that the proposed method guarantees in-
credible reliability and robustness in the fall detection task also when
tested with common activity of daily life. Specifically, the optimal set-
tings, which are the one made up of the SDM feature with the cross-
correlation similarity measure and with both AMV and TH classifiers,
are completely compliant with their integration in a low power embed-
ded device.

Even if not discussed in this thesis, a first attempt of integration of
the methodology in a low power embedded architecture, has been carried
out in collaboration with the company STMicroelectronics, and published
in [61]. In particular, the implemented functionalities are: SVM feature
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along with a cross-correlation based similarity measurement and an AMV
classifier. However, it must be specified that during that attempt, a cus-
tom made dataset has been used for testing purposes making impossible
a one-to-one comparison with results obtained in this thesis. Since the
aim was just to verify the feasibility of the embedded implementation,
any optimization on the basis of real users’ requirements has been done.
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Chapter 5
Assistive Solutions for Postural
Instabilities Analysis

In the introduction of this thesis, some hints on possible outcomes asso-
ciate with an aging population have been given. Among them, we have
seen falls, and a solution for their detection has been already proposed,
and postural instabilities. Both events contribute substantially to the lim-
itation of mobility and premature hospitalization and hence needs to be
properly addressed.

Given the possible outcomes associated with postural instabilities,
which are most of the time falls’ precursors, solutions for their analysis
and classification are then necessary.

Typical approaches are based on the analysis of variation of the body’s
Center Of Pressure (COP) in time while more advanced and specific tech-
niques are based on the use of optical systems.

Using the COP variation in time, different features have been adopted
by the scientific community to extrapolate useful information on the user
postural status. Those features are totally independent from the hardware
adopted for the construction of the COP.

Basically then, it must be made a distinction between the methodol-
ogy for the postural analysis and the hardware (measurement system)
adopted for data acquisitions.

For the sake of comprehension, an overview of the main adopted hard-
ware and methods are proposed in the following section.
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5.1 Approaches for Postural Sway Analysis - An
Overview

The state of the art regarding solutions for postural analysis can be di-
vided as a function of the hardware and signal processing solutions. Since
a huge amount of methodologies are completely independent from the
hardware, they are discussed separately.

5.1.1 Adopted Hardware

Hardware architectures for postural sway analysis may be divided as a
function of the physical principle they use to reconstruct the COP or,
more in general, the dynamics of the users while standing.

5.1.1.1 Force Platform

A first and more common solution is based on Force Platform.
Force platforms (Figure 5.1) measure the forces exerted by a subject

during the execution of motor tasks (static and/or perturbed posture)
in a fixed reference system in order to quantify balance, gait, and other
biomechanical parameters. They may use different types of transducer,
such as load cells, piezoelectric sensors, or capacitance gauge, to measure
forces. Beyond vertical force, some force plates can measure shear forces
(i.e. lateral and horizontal forces) [62].

(a) (b)

Figure 5.1: Examples of two commercial force plates. (a) Kistler 9260AA;
(b) A-Tech OPT400600.
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Some examples of applications of force platform for postural analysis
are the ones presented in [63, 64, 65, 66, 67, 68].

Although largely adopted for their capability to provide clinically pre-
cise and accurate measurements, these systems are very expensive (the
actual price may depend on the number of measured components) and
hence not affordable for end-users which require constant postural eval-
uation.

5.1.1.2 Sensorized Insoles

Measurement systems based on sensorized insoles may be differentiated
according to the number and sensor’s distribution inside them. The num-
ber of sensors has a direct influence on the type of analysis they can
perform. As an example, we may find insoles providing a granular eval-
uation of the user’s pressure distribution, by means of a large number of
sensors (matrix), or just an evaluation of the vertical reaction forces (low
number of sensors).

Advantages coming from the adoption of a large number of sensors
rely on the possibility to properly analyze the plantar pressure distribu-
tion, to easily reconstruct the COP by a weighted average of the single
pressure points, and to also measures the ground reaction forces.

Sensorized insoles have been widely used/developed in postural re-
lated researches [69, 70, 71, 72, 73] as much as produced by companies
[74, 75, 76, 77]. Two examples of commercially available devices are
shown in 5.2

5.1.1.3 Vision Systems

Visual systems are nowadays considered a Gold Standard in the area of
motion analysis, with specific regards to gait analysis. This technology
has been widely used in sports [78], neuroscience [79, 80], validation and
control of computer vision [81] and robotics [82]. In the area of postural
analysis, vision systems are always used in conjunction with other devices
(force platforms, inertial systems, or similar) to have a complete motion
analysis ranging from dynamical to static properties [83, 84, 85, 86].

Their working principle is based on the use of reflective markers (in
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(a) (b)

Figure 5.2: Examples of two commercial senzorized insoles by (a) Moticon
and (b) Retisense .

the infrared frequencies) to reconstruct users’ movements, in the 3-D
space, with an incredible resolution and accuracy. These systems are
capable of measuring movements of the whole body; they can measure
both gait and postural control, are highly accurate and precise, and hence
widely used to compare new tools as well as to evaluate the benefit
of therapeutic interventions (e.g., surgical procedures, pharmacological
therapies, assistive devices, and exercise training programs). However,
the high cost, long preparation time, and need for specialist staff to op-
erate these systems are barriers to their wholesale adoption within rou-
tine clinical care [87]. Furthermore, even when clinically implemented,
the choices regarding protocols such as different marker sets and biome-
chanical models, which are needed to quantify kinetics and kinematics,
combined with the complexity of the outputs, can greatly influence the
outcome and decisions based on the data collected [88]. That is why, very
often, these systems are largely limited to research settings.

An example of commercial system produced by BTS (BTS Bioengi-
neering) is shown in Figure 5.5 in Section 5.2.1.2

5.1.1.4 Inertial Systems

The use of wearable inertial sensors to monitor postural instability has
been long recognized as a valuable and advantageous alternative to tra-
ditional solutions [89]. Examples are given in [90, 91, 92, 93, 94, 95, 96].
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Since they are not yet recognized as robust clinical tools, compared
with solutions based on vision or force plates, inertial solutions are often
prone to validation [95, 97, 98, 99, 100].

As an example, in [95], the authors use an inertial sensor positioned
on a belt and secured on the posterior trunk at the level of L5 lumbar
vertebrae and the validation of the inertial solution has been performed
using both a force plate and a motion capture system. Bivariate corre-
lation analysis between data from the above systems and a study of the
inertial sensor’s sensitivity in case of different balance tasks have been
presented.

Another is the one described in [97]. This study investigated the con-
current validity of one inertial motion sensor system (ViMove) for its abil-
ity to measure lumbar inclination motion, compared with the Vicon mo-
tion capture system. The authors found a clinically acceptable level of
agreement between these two methods for measuring standing lumbar
inclination motion in these two cardinal movement planes.

5.1.2 Methods

As previously stated, a primary way to clinically assess the postural sta-
tus of a subject is to look at the variation of the COP in time. Classical
clinical systems, such as the force platforms, or the instrumented insoles,
are able to reconstruct the COP by only looking at the ground reaction
forces. Systems based on vision must reconstruct the movements of the
body’s center of mass by kinematic models, similar to what happens in
the case of inertial systems. Independently of the adopted technology a
COP variation in time (an example is shown in Figure 5.3) is obtained.
The COP variation in time is called Stabilogram. To be specific, the COP
is built considering the relative variation of the Medio-Lateral (ML) and
Antero-Posterior (AP) movements.

Main addressed features in the literature are the one from Equation
5.1 to Equation 5.10 [101, 102].

• Mean Velocity, defined as:

MV =
1

N − 1

N

∑
i=1

v(i) (5.1)
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Figure 5.3: An example of a stabilogram. The x axis contains the ML
displacement while the y axes the AP displacement.

which represents the average velocity of the body’s center of mass.
The term v(i) is the instantaneous velocity defined as:

v(i) =
|dp(i + 1)− dp(i)|

T
(5.2)

where T represents the sampling period of the adopted measure-
ment system. It basically provides information about the rate of
change of the displacement, with respect to the time, without any
reference to the direction of the movement;

• Rectangular area:

Ar = (Dmax
AP − Dmin

AP )(Dmax
ML − Dmin

ML ) (5.3)

where DAP and DML are the AP displacement and ML displace-
ment.

• Root Mean Square (RMS) displacement:

DRMS =

√︄
∑N

i=1 dp(i)2

N
(5.4)

102



CHAPTER 5. ASSISTIVE SOLUTIONS FOR POSTURAL INSTABILITIES
ANALYSIS

where dp(i) represents the distance between two adjacent points on
the stabilogram;

• Displacement Range of the projection of the center of mass:

DR = max(dp)− min(dp) (5.5)

• Total Displacement:

TD =
N

∑
i=1

|dp(i + 1)− dp(i)| (5.6)

• Elliptical area which includes 95% of the stabilogram plot:

CEA95% = πab (5.7)

where the terms a and b represent the two semi-axes of the ellipse
and can be evaluated as it follows:

a = CSFσAP (5.8)
b = CSFσML (5.9)

where CSF is a Confidence Scaling Factor whose value, in the case
of the 95% ellipse, is 2.4477 while σAP and σML are the standard
deviations of DAP and DML, respectively, estimated by considering
the dispersion of the two signals on the time windows of 10s shifted
by 200ms.

• Total Power (TP) [103]:

TP =
N

∑
i=1

Sx(i) (5.10)

where Sx is the power spectral density of the COP signal.

Another interesting theory which has been applied to postural analy-
sis is based on the Wavelet transform [104, 105, 106, 107, 108, 109] (a com-
plete theoretical background can be found in [110, 111, 112]). This theory
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has been extensively used in many scientific areas, ranging from physics
studies to audio signal processing, denoising, compression/decompression,
or for their ability to be localized in both time and frequency. The lat-
ter property, in particular, enable the possibility to discover non-periodic
variations (i.e. abrupt changes) inside a signal, which make this theory
interesting for signal processing algorithms.

As an example, in [104], the Wavelet theory is used to quantitatively
analyze the postural status of a subject, comparing obtained results with
control ones (obtained from healthy users), while no classification is given
on the basis of that results. In [105] the wavelet theory has been exploited
for the detection of the "critical point interval (CPI)" indicating a variation
of the user’s postural control strategy.

Wavelet theory in the context of postural analysis is hence primarily
used only to quantify the subject’s motor properties while final conclu-
sions and remarks are demanded to physicians.

5.1.3 Discussion

Although brief, this review of the state of the art allows making some
conclusions.

One of the first things to focus on, is the utility, or final target, of
an assistive solution addressing postural instabilities. Clearly, for a so-
lution to be really assistive, it must have a direct effect on the subjects,
by increasing their safety during everyday life. For this reason, wearable
solutions are the most appropriate. Although from a clinical standpoint,
vision systems or force platforms are the preferred architectures, these
cannot provide a direct effect on the user but can only help neurologists
in assessing the user pathology in structured environments. Conversely,
wearable systems, i.e inertial solutions, may provide continuous moni-
toring of the user’s postural sway during everyday life. This is a big
advantage compared to other solutions since it allows to monitor im-
provements/aggravations of the user status, in real-time, thus enabling
the possibility to also validate pharmacological therapy and/or medical
directives.

From a methodology point of view, most of the reported features have
proved to have a good capability in providing an estimation of the user’s
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postural status. Nevertheless, since wearable solutions are the most con-
venient, attention must be given to power requirements. Also, the use
of the Wavelet theory for the classification task, for classes such as stable
and unstable, is worth to be investigated since there is a lack of researches
addressing this problem.

Moreover, discussed approaches, with particular regard to the vali-
dation (assessment) of inertial solutions, mainly focus on the compari-
son between the proposed solution and reference systems (e.g. based on
vision motion tracking solutions or on force plates) or against a clinical
score [113], while any or poor attention is given to the comparison of pos-
sible classification results. The validity of the proposed approaches is, in
general, assessed by using different bivariate correlation-based method-
ologies adopting different indexes like the Pearson and the Intraclass Cor-
relation Coefficient (ICC).

For this reason, part of the doctoral activity has been devoted to the
problem of postural analysis. In particular, two main activities will be
presented: a system for postural instability analysis, with relative vali-
dation through a Gold Standard, and a Wavelet-based approach for pos-
tural classification. In the former case, features computed on top of the
COP graph are used, with a consequent classification based on thresholds
while, in the latter, features are built on top of the transformed signals and
classified by mean of a K-Nearest Neighbour classifier.

5.2 A System for Postural Analysis

The advantages coming from the possibility to monitor the user’s pos-
tural instabilities (especially in case of patients affected by neurological
disorders) have been already introduced many times. This could be of
extreme importance for the neurologists, to promptly intervene by refin-
ing the administered therapies, and for every elderly to evaluate the risk
of falls, especially for hospitalized subjects. A continuous monitoring of
the postural sway of hospitalized patients provides the experts a way to
gain a lot of information on the user’s pathology progression and appro-
priately calibrate the therapies.

Typically, clinical maneuvers for the evaluation of the motor aspects
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and postural instabilities involve test such as the Timed Up and Go (TUG)
[114], the Pull Test (PT) [115], and the Tandem Walk (TW) [116].

However, the assessment of the postural status via the TUG, PT and
TW tests require the interaction between the user and the neurologist,
and hence it may be performed at discrete times, few times per year.
Moreover, some tests require dedicated laboratory space and instrumen-
tation to be used by specialized operators. Conversely, the continuous
monitoring of the patient’s postural behavior while performing the daily
activities would be of strategic interest for the neurologist to achieve real-
time information allowing the assessment of the user status evolution.

For this reason the use of a wearable inertial sensors to monitor postu-
ral instabilities has been proposed along with main adopted features and
relative assessment.

The system would act like a "Holter" for the monitoring of the user
postural sway while performing the daily activities at home. In particu-
lar, the system uses a sensing device that has to be worn by the user at
the chest through a belt. The device adopts an inertial sensor to monitor
the postural sway along the two main directions, AP and ML. A dedi-
cated algorithm has been developed to extract a class of features from
the stabilogram plot, obtained by combining the measured AP and ML
displacements, useful for the assessment of postural behavior through a
dedicated signal processing.

Two main advantages of the proposed methodology can be highlighted:

1. The possibility for neurologists to continuously monitor the pa-
tient’s postural behavior while performing the daily activities;

2. No need for neither structured environments, such as dedicated lab-
oratories and set up, nor specialized operators.

5.2.1 The Inertial Systems

As introduced, this activity aims to realize a reliable solution for the con-
tinuous monitoring of the user postural sway. In this scenario, both the
measurement system and methodology need to be accurately tested.

Dealing with a wearable device, measurements and methods are strictly
dependent and hence need to be assessed together.
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The assessment phase is based on the results’ comparison between the
wearable inertial system, which will run the signal processing algorithm,
and a reference system (or Gold Standard). The same methodology is
applied to data acquired with both systems and results are compared.

Both system are now introduced.

5.2.1.1 Wearable Inertial Measurement System

The realized prototype is shown in Figure 5.4a. It is equipped with a
low-power 3-axis digital accelerometer (Analog Devices ADXL345) set
at ±2 g with a full resolution of 10 bit and a sensitivity of 256 LSB/g.
A microcontroller (Arduino Pro Mini exploiting an Atmel ATMega328P
microcontroller at 8 MHz) has been adopted to acquire data from the
accelerometer by the Inter-Integrated Circuit, I2C, protocol through the
native Two Wire Interface (TWI).

(a) (b)

Figure 5.4: (a) Schematization of the user node (IEEE, 2019). (b) The lab-
scale prototype of the sensor node worn by the user with the reflecting
markers used for the trajectories reconstruction by the reference motion
capture system.

To speed up the development and debug of both the system and
methodology, data is acquired and transmitted to a PC running a ded-
icated NI LabVIEW Virtual Instrument (VI) implementing the methodol-
ogy.

The communication between the node and the PC takes place by a
Bluetooth (BT) connection. Data from the accelerometer is acquired with
a sampling frequency of 40 Hz and transmitted via BT. The device is
powered by a rechargeable 3.7 V Lithium Polymer (LiPo) battery with a
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capacity of 1400 mAh. The sensor node embeds also the battery charging
unit. As shown in Figure 5.4b, the node must be worn tightly on the chest
through a belt.

It should be pointed out that, to evaluate the inertial system reliability
in quantifying postural instability in both clinical settings and home en-
vironments, the validation of the inertial sensor node by using a reference
standard is mandatory.

5.2.1.2 Reference System: the Gold Standard

Experiments aimed at the assessment of the inertial system have been per-
formed in the Gait Analysis facilities of the University Hospital Policlin-
ico of Catania, Italy, through the system for motion analysis BTS GAIT-
LAB (BTS Bioengineering) representing the gold standard in this domain.
The reference system, shown in Figure 5.5, integrates a high precision
SMART-DX 6000 Optoelectronic System and a sensorized floor.

For the validation, only the optoelectronic system has been used. The
system adopts 6 infrared digital cameras with a maximum resolution of
2.2 Mpixel, an acquisition frequency at the maximum resolution of 340 fps
and an accuracy lower than 0.1 mm in the monitoring volume of 4x3x3
m3. During tests, images have been acquired with a frequency of 100 Hz.
The volume monitored by the reference system has been defined, during
the calibration phase, following the procedure indicated by the manufac-
turer. In particular, a volume of 4x1.5x3 m3 has been considered which
refers to the central part of the carpet, as shown in Figure 5.5. The system
accuracy, estimated by accomplishing the calibration procedure, is better
than 0.1 mm. This result is compliant with the information reported by
the manufacturer.

The system reconstructs the 3D trajectories of passive markers reflect-
ing the infrared light radiated by the illuminators placed on the cameras.
During experiments, three markers have been placed on the sensor node
(shown in Figure 5.4b). Data from the optoelectronic system have been
acquired and pre-processed by using the BTS Smart Capture, BTS Smart-
Tracker and BTS Smart-Analyzer tools which allows the management of
the process of system calibration, data acquisition and motion analysis.
The reconstructed displacements of the sensor node have been then ex-
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Figure 5.5: The reference system Smart-DX (BTS Bioengineering) installed
in the Gait Analysis Lab of the University Hospital Policlinico of Catania,
Italy, used for the sensor node assessment.

ported in text files for post-processing.

5.2.1.3 Synchronization Between Systems

To synchronize both systems, during the assessment phase, a trigger
event has been expressly generated at the beginning of each trial asking
the user to move the trunk up and down. The evaluation of the features
from data acquired by the worn device starts at the end of such an event.
In particular, the end of the variation of the position of the marker along
the vertical direction has been then used as a starting point to process,
offline, the data acquired from the reference system.

Nevertheless, it should be considered that the comparison between the
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two systems has been performed by comparing features extracted from
the two related stabilograms which make this approach quite insensitive
to slight time mis-synchronization between the two systems.

5.2.2 Features for Postural Analysis

The adopted methodology for the continuous postural behavior monitor-
ing uses inertial data from the sensor node to reconstruct the movements
of the user’s trunk in the two main directions: AP and ML. The displace-
ments, DAP and DML, are then combined to reconstruct the trajectories
(stabilogram) of the sensor node’s center of mass. An example of ob-
tained displacements, in both AP and ML directions, are shown in Figure
5.7.

The methodology is based on a clinically validated theory, typically
applied to COP reconstructed by means of force platforms, where users’
COP variation has been evaluated projecting the body’s center of mass
under the feet while the user maintains an upright posture [117].

It must be highlighted that postural sway should be assessed during
the static posture of the user and hence the effects of dynamics introduced
by the daily activities performed by the user, such as walking, must be
properly considered and removed.

With the aim to perform continuous monitoring with fast detection
of the instability dynamics, a continuous data processing has been de-
veloped in order to compute a suitable set of features on time windows
of 10s shifted by 200ms one to each other. The selected time window is
in line with the state of the art [101, 102, 118], while the window over-
lap has been defined empirically by observing the system behavior for
time shifts belonging to [25, 500] ms. The adopted value does not intro-
duce a significant delay: a 200ms shift has been observed to represent a
good compromise between the computational demanding and the need
for a continuous postural sway monitoring, without affecting a reliable
detection of potentially unstable dynamics.

To assess the user postural behavior a set of features has been ex-
tracted from the stabilogram plots. To such aim, the filtered accelerations
measured by the sensor node are used to estimate the user’s chest angular
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displacements, θpitch and θroll:

θpitch = arctg

⎛⎝ az√︂
a2

y + a2
z

⎞⎠ (5.11)

θroll = arctg

(︄
ay√︁

a2
x + a2

z

)︄
(5.12)

and then AP and ML displacements, DAP and DML, respectively, as fol-
lows:

DAP = H1tan
(︁
θpitch

)︁
(5.13)

DML = H2tan (θroll) (5.14)

where: ax, ay and az are the accelerations along the x, y and z axes of the
reference system, in line with the ones of the inertial system (as shown in
Figure 5.6), H1 and H2 are the height of the sensor node with respect to
the user’s ankles and waist, respectively.

Stabilograms, related to the reference system, are reconstructed from
the measured displacements of the reflective marker. In addition to DAP
and DML, main features considered in the present work, which have been
extracted from the stabilogram plots, are the one introduced in Equation
5.1 to Equation 5.9.

The above features have been selected among others available because
of their simplicity which make them suitable to be easily implemented on
a microcontroller platform.

5.2.3 Experimental Assessment

The experimental assessment is extremely important to quantify the qual-
ity of the adopted solution and for identifying features that maximize its
performance. Each of the features previously introduced has been used
and compared along with the others. In the following, some details re-
garding users and obtained features’ values are given.
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(a) (b)

Figure 5.6: The reference system adopted for the evaluation of the user’s
chest AP (a) and ML (b) displacements.

5.2.3.1 Users Involved

The assessment has been conducted with subjects having age in the range
of [23, 60] years with an average age of 34 years. The height of partici-
pants ranged between 1.62 and 1.89 m, with a mean value of 1.73 m. In
this first phase of the system assessment, users in good health conditions
have been involved. It is worth noting that, although results reported in
this work are related to a set of "healthy" users miming instability dy-
namics under the supervision of the neurologists, the main targets of this
activity deal with fundamental and mandatory steps aimed at investigat-
ing both the wearable unit and the classification methodology, as well as
the definition of a performance index rating the reliability of the classifi-
cation outcome. All the above investigations are mandatory before con-
ducting experiments with real users. Moreover, the involvement of real
patients in the assessment of the continuous postural sway monitoring
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strategy with instability dynamics requires a long procedure of approval
by the hospital’s ethics committee and the recruitment of patients with
their manifestation of consent.

5.2.3.2 Experimental Rules

The users have been requested to worn the sensor node with the reflec-
tive markers attached and perform different trials, standing still and sim-
ulating typical postural instabilities in the AP or/and ML directions, ob-
served in real unstable patients. To this aim, non-physician participants
were instructed by neurologists which have supervised all trials.

Features have been evaluated on data with a time length of 60 s. To
this aim, a first calibration phase of the inertial system is performed to
evaluate the offset on the output voltage of each axis by asking the user
to stand still upright maintaining the balance for 10 s. The raw acceler-
ation data were then filtered with a band-pass filter in the range [0.01,
0.60] Hz to remove the higher frequency dynamics not attributable to
the chest sway due to the postural instability. The filter has been em-
pirically defined by observing the acceleration signals, in the frequency
domain, and selecting the range of frequencies which allows reconstruct-
ing a stabilogram showing similar trajectories to the one obtained by the
reference system with compatible displacement ranges (in both AP and
ML directions). In particular, data from the accelerometer have been fil-
tered through a zero-phase digital filtering process aimed to preserve the
signal characteristics using a 2nd order band-pass Butterworth Infinite Im-
pulse Response (IIR) digital filter. In order to properly design the filter,
the spectral contents of acquired signals has been analysed, leading to
a frequency band of [0.01, 0.6] Hz. The obtained results are shown in
Figure 5.7.

A total of 48 trials have been considered valid for the sake of system
performance assessment.

5.2.3.3 Discussion

For each trial, features have been computed by the stabilograms recon-
structed from data provided by both the inertial and the reference system.
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Figure 5.7: DAP and DML distances before and after the filtering process.
Both distances are obtained using an unstable case.

Figure 5.8 shows the values of features evaluated for each trial for both
the inertial (left column) and the reference system (right column). For
clarity, trials have been organized in classes of simulated dynamics (sta-
ble behavior, AP or ML instabilities, as well as a combination of AP-ML
dynamics) as indicated in Figure 5.8a. The cases of stable postural behav-
iors and unstable postural behaviors have been represented by different
markers, in order to highlight the possibility to adopt a threshold-based
methodology for the classification between stable and unstable.

It should be observed that differences in the absolute value of the
features, estimated by the two systems, are due to the different method-
ologies (one from optical signals and one from accelerations) adopted to
reconstruct the user dynamics. As can be observed by the results pre-
sented in Figure 5.8, trends estimated by the wearable and the reference
systems, in terms of clustering stable and unstable behaviors, agree.

The features values, or scores, can now be given as input to the classi-
fier.

5.2.4 The Postural Classification

As introduced for the fall detection methodology, one of the easiest clas-
sification techniques one can realize in the case of a low-power embedded
device is based on thresholds.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8
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(g) (h)

(i) (j)

(k) (l)

Figure 5.8
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(m) (n)

Figure 5.8: The values of the features evaluated for each trial for both the
inertial (left column) and the reference system (right column).

To implement a threshold-based classification strategy, optimal thresh-
old values, for each of the considered features, have been defined by the
Receiver Operating Characteristic (ROC) theory (see Section 2.3 for more
details) where TP, TN, FP and FN, have been defined using the following
rule: a TP if a stable case is classified as stable, a TN if an unstable case
is classified as unstable, a FP if a stable case is classified as unstable and
a FN if an unstable case is classified as stable.

The optimal threshold value has been estimated adopting an analyti-
cal approach searching for the minimum distance, d, between the upper
left corner, having coordinates (0, 1) and the points on the ROC curve
[113]:

min
d

d =
√︂
(1 − TPR)2 + FPR2 (5.15)

where TPR and FPR represent the True Positive Rate (Sensitivity) and the
False Positive Rate (1-Specificity), respectively. The so computed thresh-
olds, Jth, for each of the considered features are given in Table 5.1.

Features have been compared with thresholds thus obtaining a set
of binary features, J f ,bin, where the symbols 0 and 1 have been used to
indicate that the value of the considered feature, for the specific trial, is
lower or higher than the threshold, respectively. Just as a reference, two
examples of obtained binary features for the DAP and DML features are
shown in Figure 5.9.
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Table 5.1: Optimal estimated thresholds for the considered features for
both the inertial and the reference systems.

Index
Optimal Threshold
Inertial Device BTS SMART DX

DAP 70.96 mm 29.66 mm
DML 28.33 mm 14.27 mm
Ar 2397.20 mm2 513.11 mm2

CEA 3586.70 mm2 894.32 mm2

RMS 0.75 m 0.06 m
MV 19.02 mm/s 4.68 mm/s
DR 1.67 mm 0.25 mm

Subsequently, to have a synthetic index for the postural behavior clas-
sification (where classes are stable and unstable) the average value of the
binary features, J f ,bin, for each trial, has been computed. The adopted
rule for the sake of classification considers as belonging to the class of
unstable behaviors the trials showing at least 50% of features with values
higher than the respective thresholds.

It should be observed that DAP and DML features are very specific for
instabilities along the AP and ML directions, respectively. Specifically, the
DAP binary feature is 0 in the case of instabilities only in the ML direction

(a) (b)

Figure 5.9: Two examples of binary features. (a) DML and (b) DAP.
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and vice-versa, which could lead to misclassification. Consequently, these
two indexes have been combined by a logic OR operator before evaluating
the average binary index.

By comparing the average binary index with the 0.5 threshold, the
following stability index, Js, has been defined:

Js =

{︄
0 J f ,bin < 0.5
1 J f ,bin > 0.5

(5.16)

The behavior of Js, estimated for the inertial device, is shown in Figure
5.10, where the predicted postural behavior is compared with the a priori
knowledge of users dynamics recorded during the trials. As it clearly
emerges the classification task performs very well. In order to assess the

Figure 5.10: The index Js, estimated for the inertial device. The predicted
postural behavior is compared with the a priori knowledge of users dy-
namics recorded during the trials.
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classification performance the following index can be adopted:

Jc% = 100

(︄
1 − 1

N

N

∑
i=1

(Js,i − Jk)

)︄
(5.17)

where N is the number of trials and Jk is the binary array of the a priori
knowledge of user dynamics recorded during the trials. The above index
evaluates the percentage normalized error of the proposed strategy in
performing the classification task. In particular, the higher is the value
of the above index, the higher is the performance of the classification
methodology with Jc% = 100 in case all the trials have been correctly
classified.

As can be observed, full classification success has been obtained. Once
again, although results are related to a set of "healthy" users, it should be
considered that the main target of this activity is the development of a
methodology for the assessment of the continuous postural sway moni-
toring strategy, concerning both the wearable unit and the classification
methodology, as well as the definition of a performance index rating the
reliability of the classification outcome.

5.2.4.1 Reliability of the Classification Outcome

To rate the quality of the classification outcome, a reliability index, RI, has
been defined as schematized in Figure 5.11. It is important to underline
that, being RI aimed to rate the reliability of the classification outcome,
in this case, the a priori knowledge about the user dynamic cannot be
exploited.

The procedure starts by evaluating, for each trial, the normalized dis-
tance, JF, between features J f , and the related optimal thresholds Jth. JF is
an array where each element (one per each considered feature) provides
an estimation of the feature robustness in performing the classification
task.

Consequently, the vector Jp is built as the product by the JF and J f ,bin
for each of the addressed features. In case of n number of features, the
Jp vector is of size 1 × n. It must be recalled that, since DAP and DML
features are very specific, an OR operation could be necessary: if both
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Figure 5.11: The processing algorithm aimed at the evaluation of the reli-
ability index, RI.

binary features are equal then their average is computed otherwise the
OR operation is done.

An index of reliability, RI, for each trial, can be obtained by averaging
values in Jp:

RI% = 100Jp (5.18)

This index aims to define a "quality index", associated with the classi-
fication results, in order to evaluate the reliability of the information pro-
vided by each specific test. This performance index is useful to declare
the "rate of truth" of each pattern classified as stable or unstable. This
could be an interesting information for a neurologist in order to assess
the reliability of the specific test (not of the methodology).

Figure 5.12a shows the RI index obtained for the wearable device
while, the RI index evaluated for the reference system, is shown in Figure
5.12b. It is easy to see that results obtained from the investigated system
are consistent with information provided by the reference system thus
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(a) (b)

Figure 5.12: The reliability index, RI, obtained for (a) the wearable device,
(b) the reference system.

confirm the viability of the proposed approach.
As can be observed by results shown in Figure 5.12, the RI index

assumes high values for many of the test patterns, while for some cases,
values in the range [40, 60]% have been achieved. Overall estimation of
the reliability of the proposed approach can be evaluated by averaging
the RI for the set of trials considered through this work obtaining average
reliability of about 70% for the classification outcomes. The latter result
states that some of the performed postural sway observations (showing a
low value of the reliability index) merit to be repeated or extended.

As it emerges, two trials (specifically two cases of instabilities along
the AP direction), highlighted in Figure 5.12a, show a lower value of the
RI index: 0.23 and 0.32, respectively. The same two trials show lower
values of RI also for the reference system as indicated in Figure 5.12b.
Using a graphical representation of the considered trials in a DAP vs
DML plot, as shown in Figure 5.13a, it easily emerges that the two trials
with lower RI reside at the very close border of the stability region. The
stability region has been represented as a circle including all the trials
with stable dynamics and radius equal to the maximum estimated value
of the displacement along the AP and ML directions. For the sake of
comparison, the same plot for the reference system is shown in Figure
5.13b. It is possible to observe that results obtained from both the two
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(a) (b)

Figure 5.13: Scatter plot of the DAP vs DML for (a) the wearable device
and (b) the reference system.

systems are clustered in a similar way and that the two considered trials
are at the border area between the stability and instability zones.

It is worth to underline that, considering the reliability of the classifi-
cation outcome, a comparison with the state of the art is not easy to be
performed. In fact, from what emerges from a literature search, available
papers addressing the problem of postural instability monitoring through
the use of inertial devices mainly focus on the comparison between the
proposed solution and reference systems (e.g. based on vision motion
tracking solutions or on force-plates) or against a clinical score [113]. The
validity of the proposed approach is, in general, assessed by using differ-
ent bivariate correlation-based methodologies adopting different indexes
like the Pearson and the Intraclass Correlation Coefficient (ICC).

Assessment approaches reported in the literature mainly aim to com-
pare the trajectories of the user body reconstructed with the proposed
solution with that measured by the reference system. The reliability in-
dex (Equation 5.18) proposed through this work is intended to define
a "quality index" associated with the classification output and aimed to
evaluate its reliability.

Finally, it should be considered that the solution presented in this
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work does not claim to replace traditional high-cost solutions aimed at
the clinic postural instability assessment but to support the neurologist
with information about postural dynamics of the monitored patient while
performing the normal activities of the daily living. Such information is
now not available to the neurologist. In this perspective, although the
proposed solution needs further investigations, the obtained results are
very encouraging.

5.2.5 Conclusions

The main target of the solution proposed was to realize an automatic real-
time wearable device aimed at the continuous monitoring of the user’s
postural behavior while performing daily activities. The device could be
of strategic interest for the physicians to gain continuous information on
the user pathology or its progression/ regression as a consequence of the
pharmacological therapy or the rehabilitation tasks.

The sensing node could also be considered a node of a network of as-
sistive devices installed at home or in care facilities, aimed at the monitor-
ing and assistance of the user to improve his quality of life. In particular,
the work primarily focused at the experimental assessment of the device
by using a gold standard addressing the following novel aspects, which
represent also a valuable advancement concerning solutions proposed in
the State of the Art:

• The methodology developed for the classification of stable and un-
stable postural behaviors;

• The experimental assessment of the device;

• The assessment of the postural sway monitoring strategy;

• The definition of a performance index rating the reliability of the
classification outcome.

Results shows the possibility to use the inertial device for the moni-
toring of postural sway and the developed classification algorithm, based
on the evaluation of a set of features obtained from the stabilogram plots,
with good performances. In particular, in the case addressed through this
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work a full classification success has been obtained with overall reliability
of about 70%.

Future efforts would be dedicated to the assessment of the device
performance with a larger number of tests involving also real patients
affected by postural instabilities. Moreover, while in this phase data pro-
cessing and classification are in charge of a tool developed in LabVIEW,
efforts to implement the processing algorithm on board of the wearable
node are in progress.

5.3 A Wavelet-Based Approach to Postural Clas-
sification

In the brief review of the state of the art has been shown that there is
a growing interest in the use of metrics based on frequency analysis and
non-linear tools [119, 120]. This growing interest is mainly due to research
suggesting that increased CoP movements do not necessarily indicate an
impending postural destabilization [121, 122, 123]. Therefore, alternative
measures may be useful to reliably characterize postural sway. To ad-
dress the limitations coming from the linear measures of sway (that only
examine the magnitude of postural movements), studies have started to
use time-dependent non-linear measures to analyze CoP data with inter-
esting results [124, 125, 126, 127]. Although non-linear time-dependent
measures have proven to be a valuable tool in assessing the health of the
postural system they do not provide information regarding specific body
reactions involved in the postural control [108].

Wavelet decomposition, since can examine many different timescales
at different time instants, may provide useful results to identify changes
in posture control, due to aging or disease, leading to metrics enabling a
more robust way to classify postural status. Since pieces of information
on the posture control are hidden in different timescales, the DWT is
adopted for the proposed methodology.

In this Section, the DWT is exploited on the COP signals to evaluate
postural instability during quiet standing.
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5.3.1 Proposed Methodology

A general overview of the proposed method is given in Figure 5.14.

Figure 5.14: General structure of the wavelet-based methodology.

Since public dataset for postural instabilities researches are not yet
available, the dataset acquired in Section 5.2.3 has been also used for the
validation of this methodology. To be specific, during the experimental
assessment presented in Section 5.2.3 only a subset of the entire acqui-
sitions has been used; some of the acquisitions were discarded due to a
synchronization issue between the reference system and the inertial one.
Since no validation with a reference system is addressed in this section,
the entire dataset can be used. It is made of 72 acquisitions divided into
28 stable cases (ST) and 44 unstable cases (IS) acquired by subjects having
age in the range of [23, 60] years with an average age of 34 years. The
height of participants ranged between 1.62 and 1.89 m, with a mean value
of 1.73 m.

After the extraction of the acceleration components and relative fil-
tering, the DAP and DML distances are computed as shown in Section
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5.2.2.
Now, the DWT is applied to the just calculated DAP and DML dis-

tances; the DWT can be only computed on time-dependent function and
hence can be only used on the single directions (AP or ML) rather than
the entire stabilogram. In particular, a 5-level DWT is used.

Using each level of the transformation, 3 different features, namely
Mean Value (MV), Standard Deviation (STD), and Energy (E) content have
been used; these features are computed in both the transformed DML and
DAP distances. Giving the wavelet transform T(a, b) =

∫︁ +∞
−∞ x(t)ψa,b(t)dt,

where x(t) represents the time series data and ψa,b(t) represents a wavelet
at timescale ta and time instant b, features are defined as follow:

MV(a) =
1

K(a)

K(a)

∑
k=0

T(a, k) (5.19)

STD(a) =

⌜⃓⃓⎷ 1
K(a)− 1

K(a)

∑
k=0

(T(a, k)− MV(a))2 (5.20)

E(a) =
K(a)

∑
k=0

T(a, k)2 (5.21)

at timescale a and K number of samples in the transformed signal.
Since we are interested in a complete evaluation of the user’s postural

status, i.e. in both in the AP and ML directions, the obtained features
are added one by one; as an example, the STD of the transformed DML
is added along with the STD of the transformed DAP. The final result of
this procedure is the creation of a score matrix that will later be passed to
the classifier (see Section 5.3.3 for more details).

Finally, some indexes are computed to evaluate the classification per-
formances of the classifier.

5.3.2 Obtained Results

An example of a result coming from the DAP and DML computation of
an unstable case, with relative filtering, has been already presented in
Figure 5.7.
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Starting from the filtered DAP and DML distances, the 5-level DWT
is computed for both stable and unstable cases. Two examples of relative
output, for a stable and an unstable case, are presented in Figure 5.15 and
Figure 5.16 respectively.

It can be noticed how the Wavelet Coefficients (WCs) have greater
amplitude for lower frequencies (detail WCs d5, d4, and d3) than for
higher (detail WCs d2 and d1); this result is directly reflected on the
computed features that consequently will show bigger value for those
WCs having a higher amplitude and lower for the WCs having smaller
amplitude.

Since obtained features cannot be all graphically represented, just two
examples will be provided, representing respectively, features’ value for a
specific user in case of stable and unstable postural sway simulations (Fig-
ure 5.17). Once again, although users are simulating postural instabilities,
these have been validated by neurologists which constantly overviewed
the entire acquisitions.

As previously introduced, all the features show higher value in the
case of d3, d4, and d5. It must be specified that, at this point of the analysis,
features computed on the transformed DAP and DML distances have
been already summed together. That is why, since detail WCs d1 and d2
do not contribute substantially compared with the others, these levels are
then neglected in the remaining consideration.

An aspect that deserves to be pointed out, relies on the nomenclature
reported in Figure 5.17. In case of instabilities, the figure uses the name
IS, AP and ML; although we are always addressing postural instabilities,
different names have been given to differentiate instabilities which have
been simulated in a preferential direction (AP or ML) or not (both AP
and ML). A consequence of a preferential direction in the simulation of
the instability has to do with the amplitude of the values of the features
which are lower than what it could be obtainable in case of instabilities
simulated in all directions. Nevertheless, all the addressed instabilities
are considered as belonging to a single class throughout the analysis.

Finally, all computed features for each of the 72 simulations, are com-
pared together in Figure 5.18.

Figure 5.18 allows to make the following conclusion: any clear sep-
aration can be highlighted just looking at one single feature, no matter
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(a)

(b)

Figure 5.15: 5-level DWT for both DAP (a) and DML (b) distances in case
of a stable case.
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(a)

(b)

Figure 5.16: 5-level DWT for both DAP (a) and DML (b) distances in case
of an unstable case.
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(a)

(b)

Figure 5.17: Bar plot of the DAP + DML features for (a) stable simulations
and (b) unstable simulations.
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Figure 5.18: Computed features for each of the 72 simulations where
detail d1 and d2 have been neglected
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the WC level; although the E feature is the one resulting in a slightly
more clear distinction between stable and unstable cases (in accordance
to [104]), this is not sufficient for a reliable classification. Moreover, a di-
rect consequence of the absence of a separation between the classes just
based on the amplitude of the features, involves the impossibility to use a
simple classifier, such as the ones based on thresholds. A more complex
classifiers needs then to be used.

Even though the use of the DWT may appear too complex to be per-
formed on a low-power microcontroller, different works have proved the
opposite [128, 129, 130].

5.3.3 Classification and Performance Indexes

The possibility to use a simple threshold-based classifier for the classifica-
tion task has been denied due to the behavior of the adopted metrics. The
choice of alternative solutions must be done taking into account proper-
ties such as computational power and memory requirements.

A good trade-off between the above-mentioned properties can be ob-
tained by a K-Nearest Neighbors (KNN) algorithm.

K-Nearest Neighbors essentially relies only on the most basic assump-
tion underlying all prediction: that observations with similar character-
istics will tend to have similar outcomes. Nearest Neighbor methods
assign a predicted value to a new observation based on the plurality of
its K "Nearest Neighbors" in the training set. KNN classification is one of
the most fundamental and simple classification methods where the out-
put depends on whether KNN is used for classification or regression: in
classification, the output is a class membership. An object is classified
by a plurality vote of its neighbors, with the object being assigned to the
class most common among its K nearest neighbors. In regression, the
output is the property value for the object. This value is the average of
the values of K nearest neighbors.

The neighbors are taken from a set of objects for which the class (for
classification) or the object property value (for regression) is known. This
can be thought of as the training set for the algorithm, though no explicit
training step is required. For more details refer to [131].

A reason why this specific classifier has been chosen for this appli-
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cation relies on the possibility to generalize the distance measure from
the K nearest neighbour to a distance measure from a specific cluster or
region (built collecting altogether the instances of a specific class); since
these regions may be defined off-line through a training set, the classifica-
tion can be only performed by computing simple distance measurements
between the unknown set and the class regions. This advantage is partic-
ularly convenient in case of its implementation in a low power embedded
device.

The KNN classifiers offer a certain amount of flexibility in terms of
adopted metrics, for the distance computation, and the number of neigh-
bours; these are called hyperparameters. MATLAB provides an efficient
tool for the optimization of this hyperparameters through a function
called "fitcknn". This function analyzes the effect of different metrics and
different values of K on an objective function to minimize.

Another parameter to be defined has to do with the number of score
values. In total, the score matrix is made up of 72 rows (72 events) and 9
columns (where each column is a specific feature computed on a specific
detail coefficient - 3 features by 3 selected detail coeff.). One may right
away declare that the more features are included the more robust the clas-
sification will be. This is not always right since some type of features may
contribute negatively in the capability of the classifier to discriminate the
addressed classes. Moreover, many of the features could be redundant.

To methodically verify the above-introduced problem, we optimally
train (using the fitcknn function) a KNN classifier, using all the possi-
ble combination of the score matrix, employing two objective functions
to maximize; these combinations starts from the use of a single column
ending with the use of the entire matrix. The used objective functions are
based on typical metrics adopted in the case of binary classifier: Sensi-
tivity Se and Specificity Sp. For the sake of the Se and Sp computation,
TP, TN, FP and FN, have been defined using the following rule: a TP if
a stable case is classified as stable, a TN if an unstable case is classified
as unstable, a FP if a stable case is classified as unstable and a FN if an
unstable case is classified as stable.

The optimization procedure is listed below:

• having the score matrix of size 72x9 a list of all the possible combi-

134



CHAPTER 5. ASSISTIVE SOLUTIONS FOR POSTURAL INSTABILITIES
ANALYSIS

nations of 1, 2, ..., 9 columns is built. This procedure results in 511
combinations;

• for each combination, the optimal hyperparameters are computed,
producing an optimal KNN model (metric + K value);

• the optimal model is used to classify each event in the combination;

• compute Se and Sp;

The output of this procedure gives the value of the Se and Sp for each
possible combination. As previously stated, the described optimization
procedure allows to conclude that some features produce a deterioration
of the classifier’ performances and some of them are even redundant.

Many combinations results to behave optimally leading to Se = 1 and
Sp = 1. Among the combinations behaving optimally, the one obtained
with the lowest number of combinations is used; specifically, detail d3
of the STD and d5 of the E are selected. Optimal hyperparameters are:
euclidean distance with K=1.

Using the so defined score matrix, the following steps are used to
assess the performance of the classifier:

• the score matrix is divided into a training set and a test set;

• the optimal KNN model is trained on the training set;

• obtained model is used to classify the test set;

• compute Se and Sp;

Results obtained show a Se = 0.9 and Sp = 1 which makes this classi-
fier suitable for the postural classification task.

5.3.4 Conclusion

The Wavelet transformation has been addressed for the sake of postural
sway classification since can highlight important postural control mecha-
nisms in the human body. From an engineering point of view, this inter-
esting property makes the wavelet transformation suitable for the identi-
fication of postural instabilities.
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In particular, a 5-level DWT is used to decompose the computed dis-
tances and 3 main metrics have been defined on that.

This adopted metrics, computed for each timescale, are used to build
the score matrix to be given to the classifier. Since no distinction between
stable and unstable cases could be done just looking at features’ ampli-
tudes, a slightly more complex classifier needs to be used rather than a
simple threshold-based one. In particular, a KNN classifier has been used
since it allows the possibility to define regions (where each region repre-
sents a specific class) and to perform a distance measurement based on
that. Moreover, to further reduce the computational burden of the entire
classification procedure, the size of the score matrix has been optimized
and the optimal classifier’s hyperparameters have been found.

Results show the suitability of the developed methodology for the
classification between stable and unstable dynamics, also from a compu-
tational point of view.

Further efforts need to be done in the full integration of the methodol-
ogy in an embedded device and to provide a reliability index quantifying
the reliability of the single classification.
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Chapter 6
An Assistive Solution for the
User’s Habits Monitoring

6.1 Introduction

Dietary habits and a wrong lifestyle have been widely associated with
age-related functional decline [132, 133, 134, 135, 136].

A direct consequence of a wrong lifestyle in terms of intake of nutri-
ents, water and physical activity, leads to an increase of the probability
to incur in mobility and physical decline with a consequent augmented
fatigue and dependency in daily activities [137].

Constant monitoring of these subjects, through relatives or caregivers,
is not always possible nor economically sustainable in the long run. For
this reason, different technological solutions have been proposed by the
scientific community aiming at monitoring users in terms of activity rate,
nutrition, and hydration quality [138]. Those aspects are particularly im-
portant since a proper activity (in terms of an active lifestyle) and a correct
nutrition/hydration can reduce the incidence of age-related trauma such
as fall and postural instability.

Regarding falls, both exercise and an active lifestyle have a relevant
effect on improving older people’s balance with a consequent reduction
in the risk of falling [139]. Nevertheless, very often, the elderly tend to
forget, or neglect, the physical activity they have been asked to perform.
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Usually, the responsibility to monitor the elderly has always been asso-
ciated with caregivers, both professionals and family members, while,
nowadays, automatic solutions for the daily activities monitoring, based
on low-cost wearable devices, have been proposed. The primary aim of
these solutions is to control fundamental parameters (especially geriatric
parameters) such as the patient’s mobility, the activity rates, user’s habits,
and ADL (Activity of Daily Living) [140].

Another area in which technology has an important role deals with
solutions aiming at increasing awareness or providing reminders to eat
and drink regularly. Both app or wearable systems have been proposed
for the sake of monitoring wrong hydration or nutrition. These solutions
provide a mechanism to monitor abnormal user’s behavior, which might
indicate nutrition or dehydration scarcity and, according to that, provide
reminders to users and caregivers. Obli is one example. It is a balance
meant to measure the fluid intake by weighing a bottle placed on top
of it [141]. It uses visual and auditory signals in order to provide feed-
back when the fluid intake is not adequate. The authors have proved
that the use of Obli increase the average fluid intake both 6 weeks and
6 months after the interventions began. Major drawbacks of this kind of
solution consist of the inability to monitor more users sharing the same
environments but using different or private bottles, and it is just meant
to monitor hydration.

In the field of Active Assisted Living radio-frequency identification
(RFID) technology has found increasing applicability. Examples of its use
are the one discussed in [142, 143, 144, 145, 146].

Focusing on applications involving the user’s habits monitoring, de-
vices presented in [141], [145] and [147] are very interesting. The solution
in [141] can provide an acoustic and visual alert, in case the fluid intake
is inadequate, but it requires a static and fixed balance. Moreover, it does
not provide the possibility to monitor more users sharing the same envi-
ronments but using different or private bottles. The solution in [145] uses
RFID for monitoring the arm activity in daily life. The system can read
tags manipulated with one specific arm while does not consider handled
object with the other hand. This strongly reduces the usability of this sys-
tem for real applications. The architecture proposed can be used in the
case of single users in a home environment while does not provide a way
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to monitor simultaneously more users. Moreover, there is not any associ-
ation between the handled object and user. The solution in [147] allows
to monitor deviations from normal patterns of behavior which might in-
dicate nutrition or dehydration scarcity but it does not allow to monitor
the intake of nutrients, handled objects, or explored areas.

Concerning the aforementioned issues, an RFID based system, de-
signed to monitor user’s habits, such as the use of food/beverage/drugs
is presented and assessed in this chapter. Also, the same solution can be
effectively applied to monitor home appliances, exploitation of the indoor
environment, and the activity rate.

To properly contextualize this activity, it must be considered that the
presented device is a key component of the NATIFLife project [7]. The
project aims at developing an innovative framework of assistive devices
which could improve elderly autonomy. The development of an inte-
grated platform of assistive technology, which is open to the integration
of traditional and innovative solutions, can produce an improvement of
the life quality of elderly and people with mobility impairments. In de-
tail, the project aims at the assessment of the user habits, activity rate,
nutrition and hydration, as well as the use of home appliances.

The RFID system aims at integrating, in the NATIFLife platform, func-
tionalities such as food/beverage monitoring as well as a unique identi-
fication of the user living the environment. The main idea is to monitor
the interaction between the user and generic targets (food, beverage, etc.)
positioned in front of the user. To such aim, the user has to wear the RFID
reader, while each target of interest is labeled by a passive tag.

Advantages of the adopted technology as respect to other solutions,
such as vision systems, switches, or other sensors, are related to its low in-
vasiveness, good flexibility in terms of tags distribution, re-allocation and
quantity, ease of use and installation. All the above-mentioned features
are mandatory while addressing effective assistive devices. It must be un-
derlined that similar applications in literature make us of static devices,
to be placed in the environment, or uses device-dependent measurement
systems(in case of water intake, some propose the use of sensorized bot-
tle or the use of inertial sensors in the bottle itself). As previously stated,
those solutions do not provide a flexible way to monitor user’s behavior
nor they provide a way to understand which user is doing what.
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In order to properly design this AT device, and successively assess the
solution in a real scenario, specific attention has been given to the opti-
mization of the system characteristics, in terms of physical dimensions,
power consumption, and reading range. Moreover, since the monitor-
ing of the user should not be subjected to high false-positive behavior,
resulting in a miss-confidence of the solution from the user, a measure-
ment campaign has been specifically performed to define objects’ position
constraints removing the multiple objects identification when the device
is used in a real context. Finally, an assessment procedure is presented
aiming at testing the system reliability when it is used in a scenario sim-
ulating a common domestic area.

6.2 The RFID System

The system is made up of an embedded architecture including an RFID
reader (M6E-MICRO by Thing Magic), a power management system, a
1400 mAh rechargeable battery (3,7 V), and a Serial to Bluetooth con-
verter (RN42XVP-I/RM 2.1) for device-smartphone communication. A
schematization of the system is given in Figure 6.1.

Each item/furniture to be monitored is provided with flexible passive
tags that represent an easy and economical way to provide objects with a
basic level of identification.

Figure 6.1: Block diagram of the hardware architecture

In the case considered of an assistive device supporting frail people in
homelike environments, the device architecture is somehow constrained
by the application. In particular, dimensions should be compatible with
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a comfortable and wearable device, tags must be non-invasive and cheap
and the power budget should allow a reasonable device’s operation time.
Based on the above consideration, the following choices have been done:

• Antenna maximum dimension has been fixed to 3 cm by 3 cm;

• Selected tags are: AD-227m5 (Avery Dennison).

To properly operate the system, an Android App has been developed.
It handles different routines specifically developed to guarantee continu-
ous communication with the RFID reader and a Graphical User Interface
that allows users to manage/associate unknown tags, check device tem-
perature, and errors. Being more specific, it allows associating with each
detected tag a unique nickname (generally the nickname identify the de-
tected objects) and the possibility to share tag EPC (Electronic Product
Code), associate nickname, and detection time with an HTTP server.

The device, specifically prototyped for this application, is shown in
Figure 6.2 while the final appearance of the system and its use by a real
user are shown in Figure 6.3.

Figure 6.2: A real view of the device components.
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(a) (b)

Figure 6.3: This figure shows (a) the final appearance of the device and
(b) the system worn by a real user.

6.2.1 Integration in the NATIFLife Project

As previously stated, the device is a key component of the NATIFLife
project and it specifically aims at the assessment of user habits and ac-
tivity rate, by monitoring user’s exploitation and navigation of indoor
environments, as well as the use of equipment such as furniture and
food/beverage related tools. Without an identification system, the NAT-
IFLife platform cannot either associate the use of specific equipment to
a specif user nor it can monitor the exploitation of the environment of a
user. Moreover, beverages and food monitoring will allow us to estimate
the user’s habits in terms of nutrition intake and hydration. These re-
quirements highlight the great importance of this assistive solution in the
context of the project.

6.3 System Characterization

As previously introduced, the main goal of the RFID system is to detect
the end-user proximity to furniture and/or food and drink in a homelike
environment. This is fundamental to assess the user’s activity rate, habits,
hydration and nutrition.

In order to correctly detect the target - furniture, a tool, food or drink,
or a location - the user is interacting with, two main aspects need to be
addressed: the maximum operating range of the system in terms of the
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maximum allowable distance between the antenna, worn by the user, and
the tag applied to the target; the minimum distance between two tags
(identifying two different targets) thus avoiding any cross detection of
multiple tags in a specific reading range. The idea behind this system
is to assess the user’s habits and to monitor its actions; basically, if the
user is using a cooking tool or handing a bottle of water. Each object is
labeled by a dedicated TAG with a unique code in such a way the user
interaction with that object can be identified. The problem arises when
more objects are in the same area and the RFID system detects them
(multi-object detection) simultaneously; the system will not be able to
understand which is the object the user is interacting with and that is the
reason behind the need of avoiding cross detection.

It must be underlined that objects are not supposed to be positioned
in specific locations. The only constraint to be fulfilled is the minimum
distance between two tags, allowing for reliable tags discrimination.

The above features are usually constrained by needs coming from the
practical use of the device. In particular, for the addressed application,
the target operating range of the device (antenna-tag distance) has been
fixed to 30 cm, which is the typical range where an object is easily used
by hands, while the minimum inter-tag distance will be fixed based on
the characterization results (see Section 6.3.2).

The solution developed offers different degrees of freedom to fulfill
the above specifications, such as the antenna dimensions, the tag type,
and the reader output power. In the following section, measurement
strategies adopted to fix the optimal reader’s output power, fulfilling the
antenna-tag distance specification, are presented.

6.3.1 Reading Range vs Reader’s Output Power

This analysis aims to assure the target reading range while assuring the
lowest device’s power consumption. The RSSI (Received Signal Strength
Indication) is used for the sake of identifying the areas in which the irra-
diated power is sufficiently high to power up the passive tag. Specifically,
4 different values of the reader’s output power have been investigated,
namely: 25 dBm, 20 dBm, 15 dBm, and 10 dBm.
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Figure 6.4: Selected measurements points for the system’s reading range
evaluation.

6.3.1.1 Experimental Setup

Measurements have been taken along the grid shown in Figure 6.4. In de-
tail, each point in the chart, for a given angle, is spaced from the previous
of 5 cm. Addressed distances range from 5 cm to 50 cm. The addressed
angles are in the range of [0, 180]◦ with a step of 15◦. In total, 130 mea-
surement points (intersections) have been investigated. The reasons why
the measurements have been taken just along a semi-circumference rather
than the total circumference reside in two main reasons: 1) the back ra-
diation gain of the adopted antenna is negligible as respect to the front
radiation gain and 2) the final application does not expect readings for
objects placed at the back of the user wearing the device.

The measurement protocol consists of the following steps:

1. Fixing the reader’s output power, starting with the maximum value
(25 dBm);

2. Placing the tag at a fixed distance from the antenna (e.g. 5 cm,
combination 1-C);

3. Moving the tag on each of the 13 angular positions while keeping
the distance from the reader antenna (e.g. 1-A, 1-B, . . . , 1-M);
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4. Measuring the tag emitted power for each measurement point;

5. Increasing the distance from the emitter by 5 cm and repeat points
3 and 4;

6. Repeating every step with a different reader’s output power, de-
creasing by 5 dBm until the requirements are not met.

This procedure allows for building an irradiation diagram represent-
ing the output power as a function of the angle/distance parameters,
guaranteeing the detection of the tag placed in every of the measurement
points. This strategy has led to the identification of the minimum power
guaranteeing the desired reading range of ∼ 30 cm with a detection an-
gular range of ±45◦. Such an operating domain has been defined by the
specific application, considering a typical user-target interaction area in
case of handled objects (food, beverage, drugs).

This preliminary phase, which was conducted in a laboratory set-up,
has been carried out taking into account all the necessary steps to avoid
interfering material to be placed between reader and tag or strong elec-
tromagnetic interference in the surrounding area.

6.3.1.2 Experimental Results and Device’s Operation Time

Obtained results have been arranged in such a way to show the tag ir-
radiated power when it is placed in the measurement points shown in
Figure 6.4, thus facilitating the comprehension of the combination of an-
gle/distance allowing a reliable tag detection.

Results obtained for each of the considered power are shown in Figure
6.5. This figure is built as an interpolation of the RSSI measures as a
function of the reader power, reader-tag distance, and angle.

An analysis of the plots reported in Figure 6.5 allows us to draw the
following conclusions:

• 25 dBm (Figure 6.5a): this power value produces a reading range
up to 50 cm in the whole cone of acceptance (±45◦), as indicated by
the bold line highlighted in the plot;

• 20 dBm (Figure 6.5b): this power setting shows similar behavior
compared to the previous one;
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(a) (b)

(c) (d)

Figure 6.5: Characterization results. (a) shows the tag irradiated power
when the output power is fixed to 25 dBm, (b) when fixed to 20 dBm, (c)
when fixed to 15 dBm and (d) when fixed to 10 dBm.

• 15 dBm (Figure 6.5c): analyzing the target range, which is the one
highlighted by the bold line (30 cm), full coverage is guaranteed in
the entire angular range of operation (±45◦). Nevertheless, greater
distances, namely 40 cm, 45cm e 50 cm can still be achieved; how-
ever, it must be clarified that those values are not guaranteed in the
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desired angular range but are spotted measures within the measure-
ments’ points. These results make the following power the optimal
choice for the application’s requirements. For the sake of clarity, the
plot reports only results related to a distance range of 25 cm to 50
cm.

• 10 dBm (Figure 6.5d): this last power has been investigated trying
to understand if a further power reduction could have been possible
or not. As clearly visible by the bold line, the target reading range
is not guaranteed within the angular range of operation.

In conclusion, it can be affirmed that the optimal reader’s output
power, covering the desired interaction area, is equal to 15 dBm, which
allows a suitable user-target interaction in the whole operation area (de-
fined by a distance of 30 cm, in the range [−45◦, 45◦]). Moreover, both
from a theoretical analysis and test, with the selected power of 15 dBm,
the battery life has been estimated to be around 5 hours. The power re-
quired by the RFID module, in reading mode, is around 1 Wh. Using a
battery of 1400 mAh with 3.7 V the total available power is 5 Wh. Never-
theless, it must be pointed out, that any smart control has been integrated
into the device taking into account prolonged inactivity (resting or sleep-
ing) which could drastically improve battery life.

The first conclusion can hence be summarized as follows: in case the
end-user handles objects in the above-defined working range, the system
assures the identification of user-targets interaction. Of course, the above
working range has been defined conservatively, assuring a full range of
tag identification. As can be observed by results obtained, in the central
area of the working range the system can detect tags positioned up to
50 cm. This consideration allows affirming that in a real scenario, where
the interaction between end-users and items (beverage, food, etc. posi-
tioned on a working table) have to be monitored, it would be suggested
to put targets at a minimum distance of 50 cm from the line of action of
a potential end-user.
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6.3.2 Multiple-Objects-Identification (MOI)

As already described, an aspect worthy of consideration during assistive
devices development is the maximization of the user confidence and trust.
Consequently, the reliability of the system is a mandatory characteristic
to avoid users’ miss-confidence. One of the peculiar characteristics which
should be fulfilled by the system under investigation is high robustness
against MOI. Basically, in order to guarantee the expected reliability in
following user activities inside the living environment, the system should
identify just one tag at a time and MOI must be avoided.

In particular, the above investigation is mandatory in case the RFID
system would be used to identify objects positioned next to the end-user,
e.g. just to notify the user of the proximity of the target or to monitor the
closeness to specific targets (user traceability). In this case, the user is not
required to necessarily handle the target.

It is hence necessary to analyze the system behavior in the presence of
more than one tag in the working range of the system, to determine the
minimum distance between tags assuring high selectivity of the identifi-
cation procedure. This is mandatory to properly set the position of tags
associated with different services or tools in a real scenario.

6.3.2.1 Experimental Setup

The measurement survey has been performed by a dedicated set-up rep-
resented by the working area shown in Figure 6.6.

The experiment consists in observing the system behavior in case two
tags are positioned within the rectangular area. The main task to be
achieved is the estimation of the minimum inter-tag distance avoiding
MOI.

Circles represent the measurement points, shifted one from another
by 10 cm. The black triangle at the bottom defines the reader’s position.
For each measurement, one tag (labeled as "#1") is fixed in the position
defined by (Row (i), Column(j)), chosen as the reference position, and a
second tag (labeled as "#2") is moved along all the other points belonging
to the same Row. For the sake of completeness, it must be underlined that
only combinations of tags belonging to the same row (lines of operation
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Figure 6.6: Working area adopted to assess the system behaviour in terms
of MOI. Dimensions are 100 cm by 50 cm with each step measuring 10
cm.

in front to the user) have been investigated, which represents the worst
case in terms of MOI.

6.3.2.2 Experimental Results

Obtained results, in terms of detected or missed readings, are given in
Figure 6.7.

As an example, Figure 6.7a shows results related to the case in which
measurement surveys have been accomplished by positioning succes-
sively the fixed tag #1 in the first column of each row meanwhile the
tag #2 is moved on the corresponding row from column 2 to column 11.
For each of the combination produced employing this strategy the plot
reports a "0" in case the system does not detect the presence of tags, a "1"
or a "2" in case the system detects one of the two tags, and a "1/2" in case
both tags are detected (MOI). The dark vertical cells show the position of
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(a) (b)

(c) (d)

Figure 6.7: Results showing the tag detection area as a function of the 2
tags position. In particular, tag #1 is fixed on the black cell of each row,
chosen as the reference position, while tag #2 is moved along all the other
positions of the same row. The position of the reader is marked by the
arrow.

the fixed tag #1.
Since the aim of this measurement procedure is to identify the areas in

which MOI can occur, our attention must be focused on spots labeled as
"1/2", representing the conditions in which a cross detection of multiple
tags has been detected. To avoid the MOI incidence those combinations
should be avoided.

As expected, in the case of tag #1 is out of the reader working range,
only tag #2 is detected (see Figure 6.7a). In case of tag #1 is positioned
close to the working area some MOI may occur (see Figure 6.7b), while
in case of tag #1 is positioned inside the working range, a lot of MOIs are
identified. As already evidenced in the previous analysis, tags positioned
within a cone smaller than ±45◦ can be detected also if the reader-to-tag
distance is greater than 30 cm.
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Although few exceptions have been highlighted by the performed in-
vestigation, obtained results confirm the need to keep the inter-tag dis-
tance higher than 60 cm to avoid MOIs.

Asymmetries in the device behavior can be assumed to be dependent
on the asymmetric irradiation diagram shown in Figure 6.5, which is due
to intrinsic asymmetries of the device.

It must be underlined that these results are not related to the need of
detecting objects handled by end-users, rather than with the opportunity
to use the proposed technology to detect and recognize targets (services,
landmarks, etc) next to end-users.

6.4 System Assessment in Real Scenarios

To validate the operating conditions defined during the system charac-
terization, the system must be tested when it is used in a scenario simu-
lating a homelike environment. In particular, two different scenarios are
addressed: user handling objects and detecting tags next to the user.

6.4.1 Handling Tagged Objects

As already mentioned, one of the tasks to be assessed is the monitoring of
the interaction between objects and user handling such objects. A typical
scenario is a user standing in front of a table (working area), grabbing
and using objects positioned on the table (water, drugs, food, etc.). In
this case, the line of sight between tags and the antenna is guaranteed by
a convenient positioning of the reader antenna on the user body and by
avoiding shielding layers between tags and the reader.

The homelike environment has been simulated by considering a work-
ing surface (e.g. a table) on which two targets are positioned. The users
have been asked to stand still in front of the table, with objects placed at
a distance greater/equal of 50 cm from the user’s hip (the RFID reader is
worn on the right side of the user’s hip while the objects are represented
by two bottles of water), and to grasp and use them, one after another,
5 times each. For each use, the system output has been acquired and
the following cases have been addressed: the system detects the handled
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object (this case has been considered as a true positive TP), the system
does not detect any object (a false negative FN) and the system detect the
wrong object (a false positive FP). A schematization of the experimental
setup is shown in Figure 6.8.

Figure 6.8: A schematization of the experimental setup which has been
used for the assessment of the device in case of handled objects.

In particular, in order to assure that the system only detects the tag
during the real user-target interaction and not while the user is approach-
ing the table, tagged objects have been positioned at a minimum distance
from the user line of action of 50 cm. Considering that the reader has
been worn at the right side of the user’s hip, objects have been positioned
a distance greater than 45 cm from the table end. During the experiment
users emulate typical actions associated with that specific object; as an
example, if the object under investigation is a bottle, the action associate
includes the opening of the bottle and the subsequent water pouring.
Clearly, the device does not know if the user is really drinking or not, but
is based on the idea that, if the user takes the bottle he intends to do it.
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For this first assessment, 10 users (aged between 22 and 39, with dif-
ferent height and weight) were involved, all of whom have repeated the
experiments 5 times per object. Users have been lightly instructed about
how to mimic gestures typically performed by frail people, fulfilling the
need of bringing the object within the system operating range (30 cm,
±45◦). This phase is extremely important since, gestures normally com-
puted by healthily and young people, may fall outside the reading area
of the device.

The object detection is monitored through the Android application
already introduced. Results for this experiment are shown in Figure 6.9.

Figure 6.9: TP-FN behaviour in case of the experiment aiming at monitor-
ing user handling of tagged objects. The number on top of each column
represents the total number of occurrences for that specific index.

As first, as evidenced by Figure 6.9, no false positive (FP) and have
been identified. This is explained considering that the experimental set-
up has been realized according to rules defined in Section 6.3.1: placing
the objects at a distance greater than 50 cm from the user assures their
detection only during their use. Moreover, the low number of FN demon-
strates that only a few times tags have not been detected during their use.

The above results confirm the reliability of the system, in case objects

153



6.4. SYSTEM ASSESSMENT IN REAL SCENARIOS

to be handled are positioned by fulfilling constraints defined in Section
6.3.1.

6.4.2 Detecting Items Next to End-Users

The main goal of this assessment is not related to the need of detecting
objects handled by end-users, rather with the opportunity to use the pro-
posed technology to detect and recognize targets (services, landmarks,
etc) next to end-users. That is why a second assessment has been con-
ducted by analyzing the system capability to detect the correct item when
two or more targets are positioned in the user surrounding area.

In order to mimic a possible scenario in which the aforementioned
situation can occur, the following two possible scenarios have been con-
sidered:

• The user is exploring an area where appliances to be monitored can
be close to each other;

• There’s the need to monitor the user activity by detecting his/her
transition to "target" placed throughout the environment.

Although different in appearance, both scenarios share the same problem:
two or more tags can be possibly placed close to each other, increasing
the probability to incur in MOI.

To address this issue, an experimental scenario has been prepared
(Figure 6.10).

Tags have been placed on a wall with a fixed height (1 m from the
ground) and with changing inter-tag distance (∆T). The ∆T distances
addressed are 60 cm, 50 cm, 40 cm. The experiments were conducted as
follow:

• The device was positioned in the users’ hip in such a way to direct
the antenna toward the tag;

• Users, always starting from the same tag, follow a path (highlighted
in the room’s floor) keeping a constant distance of 40 cm from the
wall (and hence from the tag) while keeping a slow pace;
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Figure 6.10: A schematization of the scenario adopted for the sake of the
second assessment.

• For each transition through a target an experimental supervisor was
taking note of the following cases:

– Tag read: considered as TP;

– Tag not read: considered as a FN;

– Tag correctly read and consecutive/previous tag read as well:
considered both as a TP and a FP.

During the walk between two consecutive tags, an experimental su-
pervisor was taking note of the occurrence of "any tag read" that has
been considered as true negative (TN).

Users involved in these experiments are the same involved during the
previous assessment. Each of them has repeated the experiment 5 times
for each ∆T combination.
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Since we are dealing with a binary classification, the following indexes
has been used to assess the system performances:

• Sensitivity (Se):

Se =
TP

TP + FN
(6.1)

• Specificity (Sp):

Sp =
TN

TN + FP
(6.2)

Moreover, in order to also evaluate the incidence of the MOI in the system
functionalities, the Specificity index has been normalized in the following
way:

SpN =
TN

TN + FP
(1 − MOI

TT
) (6.3)

where TT stands for Total Trials.
Results concerning the aforementioned indexes are given from Figure

6.11 to Figure 6.12.

Figure 6.11: Raw indexes for each inter-tag distance addressed.

Figure 6.11 allows making an immediate comparison with the results
discussed in Section 6.3.2. In particular, as the inter-tag distance is re-
duced, there is a clear increment in the FN, FP and MOI values, while
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Figure 6.12: Sensitivity, Specificity and normalized Specificity for each
considered ∆T.

the TP decreases. This can be interpreted as a general deterioration in the
system capability to detect and recognize targets next to end-users. This
trend is further confirmed by results shown in Figure 6.12, where a gen-
eral deterioration of the system performances, as the inter-tag distance is
reduced, can be noticed.

In conclusion, results coming from the assessment strategy make eligi-
ble the adoption and further assessment of this system in the NATIFLife
living lab, also by involving real elderly users.

6.5 Conclusions

The population aging is leading to an exponential growth of serious
health issues, including mobility and physical decline. Many solutions
have been proposed for the sake of reducing the social effect of such
phenomena, such as gait training, in case of falls, or reminder in case
of nutrition and hydration. Those aspects are particularly important
since a proper activity (in terms of an active lifestyle) and a correct nu-
trition/hydration can reduce the incidence of age-related traumas such
as fall, postural instability, and, more in general, physical decline. In
these scenarios, the use of technology improves the general outcome of
the physical decline since they provide an objective estimation of user’s
habits, activity rates, or the use of tools/foods/equipment.

As a possible advance in this domain, an RFID based system, whose
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goal is to monitor user’s habits, such as the use of food/beverage/drugs,
uses of equipment, exploitation of the indoor environment and the activ-
ity rate has been realized and assessed.

The advantages coming from the adoption of the proposed system
relies on its low invasivity, flexibility, and intrinsic user identification fea-
ture.

For the scenario the solution is meant for, specific attention has been
reserved for the optimization of the system characteristics, in terms of the
physical dimension, power consumption, and reading range. Moreover,
to avoid miss-identification, resulting in a miss-confidence of the solution,
an assessment procedure has been conducted aiming at evaluating the
system reliability when used in a scenario simulating a domestic area.
Specificity, Sp, and Sensitivity, Se, indexes have proved the robustness
and reliability of the solution.
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Chapter 7
Conclusions and Final Remarks

The European population aging poses various challenges, especially in
the health care scenario. This situation has been perceived by many as
a threat to Europe’s economy and competitiveness, in particular when it
comes to the sustainability of the healthcare systems.

Therefore, the following questions arise: Who will take care of the
current generation as we become older? What types of health and social
organizations should we develop to preserve the quality of life of an aging
population and sustain our health care systems over the medium and
long term? To face this challenging situation, the EU Commission has
launched several initiatives to promote active aging across Europe.

From a technical point of view, the greatest risks associated with a pro-
gressive increase of the population frailty, concern the onset of falls, often
associated or preceded by postural instability, and the loss/reduction of
autonomy. Often, these phenomena are further stressed by wrong habits
in terms of nutrition and mobility.

These are then addressed problems within this PhD thesis.
In particular, the applications addressed by the following thesis are:

detection and classification of falls, analysis and classification of postural
instabilities, analysis and detection of user’s habits. These three applica-
tions are intrinsically connected.

Concerning falls, an event-driven methodology, based on template
matching techniques was proposed, analyzed, and validated where the
adopted metrics and related classifiers, were selected to reduce the algo-
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rithm computational complexity. One of the main objectives, common to
all the presented activities, is the development of methodologies that can
be easily integrated into low power microcontroller platforms. The re-
sults obtained in terms of classification between fall and non-fall events,
as much as the classification among the specific falls, allow us to quantify
the goodness of the proposed solution, also by comparing it with more
complex methodologies present in the state of the art. Besides, a first ex-
ploratory implementation of some of the functionalities presented in the
methodology was evaluated in collaboration with the company STMicro-
electronics, demonstrating the feasibility of the integration.

In the context of postural instabilities, the use of inertial platforms
has been validated against clinical solutions, such as force platforms and
vision systems, through a careful analysis of results obtained by the com-
parison between the proposed solution and a reference system. Further-
more, in addition to the metrics qualifying the ability of the classifier to
predict whether a given event belongs to the correct class, a reliability
index has been defined and used to quantify the quality of the individ-
ual classification process (i.e. how much you need to trust that specific
classification). The results obtained demonstrate the feasibility of using a
low-cost inertial platform for the continuous analysis of postural condi-
tions, even during normal daily operations.

A further proposal, in the context of instabilities, has been based on
the use of the Wavelet transform. This particular mathematical trans-
formation has been widely used in the literature for the analysis of the
postural conditions of the subjects, with specific reference to the evalua-
tion of posture control mechanisms. However, it should be specified that
the results obtained from the analysis are rarely used to classify postu-
ral conditions. For this reason, the proposed methodology makes use of
the Wavelet transform, in particular the discrete Wavelet transform, on
which output features are calculated. A detailed analysis was made on
the contribution made by each individual feature and, based on obtained
results, it was possible to define the specifications of the needed classifier.
In particular, a K-Nearest Neighbor classifier was employed. This choice
was based on specific properties that make the classifier easily embed-
dable into microcontroller platforms. Also, in this case, obtained results,
in terms of Sensitivity and Specificity, show the validity of the proposed
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solution.
Finally, having shown how good habits in terms of nutrition and mo-

bility can have a positive effect on a subject’s conditions, a further appli-
cation, concerning the development and characterization of a device for
user’ habits monitoring based on RFID technology, has been presented.
In particular, the device was developed within an Interreg project (NATI-
FLife) which aimed at the development of an innovative framework of
assistive devices that could improve elderly autonomy. The develop-
ment of an integrated platform of assistive technology, which is open
to the integration of traditional and innovative solutions, can produce
an improvement of the life quality of the elderly and people with mo-
bility impairments. In detail, the project aims at the assessment of the
user habits, activity rate, nutrition and hydration, as well as the use of
home appliances. The RFID system aims at integrating, in the NATIFLife
platform, functionalities such as food/beverage monitoring as well as a
unique identification of the user living the environment.

Conducted experiments were mainly aimed at the optimization of the
system characteristics, in terms of physical dimension, power consump-
tion, and reading range. Moreover, to avoid miss-identification, resulting
in a miss-confidence of the solution, an assessment procedure has been
conducted aiming at evaluating the system reliability when used in a sce-
nario simulating a domestic area. Also, in this case, the adopted metrics
have proved the robustness and reliability of the proposed solution.

Although not strictly related to the activity carried out during the
PhD, two important aspects in the development of Assistive Technology
have to do with the User-Centered Design (UCD) approach and the as-
sessment by end-users. Both aspects are fundamental to increase accep-
tance by end-user and hence are mandatory before being actually adopted
by real frail users. The activities presented in this thesis were mainly fo-
cused on the methodology development and, where real hardware has
been used, this was neither optimized nor designed having in mind the
end-users. Both aspects need to be further addressed in future works.

All the activities, therefore, have a single common goal: improving the
living conditions of fragile subjects, increasing self-confidence and rela-
tive autonomy. Results obtained in all the presented applications, many
of which have been already published in journals, allow us to conclude
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that a major innovative contribution has been introduced through this
thesis.
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