
PhD programme in physics

Jinbiao Wei

Structure and cooling of (hybrid) neutron stars based on

microscopic equations of state

PhD thesis

Supervisors:
Prof. V. Greco

Dr. G. F. Burgio

Dr. H.-J. Schulze

academic year 2020/2021



2



Contents

1 Introduction 7
1.1 What makes neutron stars so interesting? . . . . . . . . . . . 7
1.2 Structure of neutron stars . . . . . . . . . . . . . . . . . . . . 9
1.3 Astrophysical observations . . . . . . . . . . . . . . . . . . . 13

1.3.1 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 Mass measurements . . . . . . . . . . . . . . . . . . . 19
1.3.4 Radius measurements . . . . . . . . . . . . . . . . . . 21
1.3.5 Multimessenger era . . . . . . . . . . . . . . . . . . . 24

1.4 Equation of state of dense matter . . . . . . . . . . . . . . . . 27

2 Modeling the equation of state 31
2.1 Nuclear equation of state . . . . . . . . . . . . . . . . . . . . 31
2.2 Quark matter equation of state . . . . . . . . . . . . . . . . . 33

2.2.1 Field correlator theory . . . . . . . . . . . . . . . . . . 33
2.2.2 Dyson-Schwinger quark model . . . . . . . . . . . . . 35

2.3 EOS of dense matter in beta equilibrium . . . . . . . . . . . 39

3 Constraints on the equation of state 45
3.1 Constraints from neutron star systems . . . . . . . . . . . . . 46

3.1.1 M-R relations and tidal deformability . . . . . . . . . 46
3.1.2 Modeling binary neutron star systems . . . . . . . . 52

3.2 Hints from the nuclear symmetry energy . . . . . . . . . . . 58

3



4

3.3 Correlations between neutron-star and
nuclear-matter observables . . . . . . . . . . . . . . . . . . . 63

4 The essential physics of neutron star cooling 69
4.1 Equations of thermal evolution . . . . . . . . . . . . . . . . . 70
4.2 Neutrino emissivity . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 NSCOOL code . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Thermal evolution of neutron stars 79
5.1 Cooling of nucleonic stars . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Structure and composition . . . . . . . . . . . . . . . 80
5.1.2 Cooling diagrams of non-superfluid stars . . . . . . . 82
5.1.3 Cooling diagrams of superfluid stars . . . . . . . . . 84
5.1.4 Neutron star mass distributions . . . . . . . . . . . . 88

5.2 Cooling of hybrid stars . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1 Structure and composition . . . . . . . . . . . . . . . 92
5.2.2 Cooling reactions in a hybrid star . . . . . . . . . . . 94
5.2.3 Cooling diagrams with unpaired quark matter . . . . 98

Conclusions 103

Bibliography 106

Acknowledgements 123



Abstract

Neutron stars (NSs) are the most compact objects in the Universe. The
average mass of a NS is about 1.4 solar mass and its radius is about
10 km, hence the inner density can reach about 10 ρ0, being ρ0 the nuclear
saturation density (ρ0 = 2.8 × 1014 gcm−3). This makes a NS the natural
‘laboratory’ for studying the four fundamental interactions, especially a
unique environment for the study of the strongly interacting components
at high densities. The equation of state (EOS) is a key ingredient in the
NS study, however, it still suffers from the scarce knowledge of the strong
interaction. This leads to the constructions of EOSs which are derived
from different theoretical approaches, and being used to analyze many
properties of NSs, e.g., the mass-radius relation, the moment of inertia
and cooling properties in the evolutionary process. On the other hand,
the observation of NSs allows us to constrain the EOS of the dense matter
well beyond the densities available in earth laboratories. For example,
observations of the NS mass, radius and the tidal deformability can be
compared with the theoretical results, and from these the NS EOS can
be inferred with some uncertainty. With this purpose, we employ the
Brueckner-Hartree-Fock (BHF) theory for nuclear matter and two models
(Field correlator and Dyson-Schwinger quark model) for quark matter, to
study the properties of NSs, especially for the tidal deformability.

Besides the astrophysical observations, heavy-ion collisions could also
give rise to certain constraints on nuclear-matter properties, for instance,
the binding energy per baryon at saturation, the symmetry energy and
the incompressibility. One may think that there are correlations between
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constraints of nuclear matter properties and of a gravitational wave event.
Based on this idea, we investigate properties of nuclear matter and exam-
ine possible correlations with NS observables for a set of microscopic
nuclear EOSs derived within the BHF formalism employing compatible
three-body forces. We find good candidates for a realistic nuclear EOS up
to high density and confirm strong correlations between NS radius, tidal
deformability, and the pressure of beta-stable matter. No correlations are
found with the saturation properties of nuclear matter.

Another possible way that could be used in the study of dense matter
properties is NS cooling. A NS is born hot ( ∼ 1011 K) in a supernova
explosion. Afterwards, it cools through three stages, i.e., thermal relax-
ation, neutrino cooling stage and photon cooling stage. Most NSs are
supposed to be in the neutrino cooling stage since this stage lasts ∼ 105

years. A simulation of NS cooling basically requires more quantities from
the EOS, which we hope is able to reveal more facts about the dense mat-
ter. Therefore, we study the cooling of NSs and extend the work to the
case of hybrid stars. We find that all BHF EOSs feature strong Direct Urca
processes which lead to a too fast cooling. Accordingly, the pairing gaps,
especially the proton 1S0 gap, are necessary and enough to describe well
the current set of cooling data for isolated NSs. In all possible scenarios
with and without quark matter, the possibility of a neutron 3P2 gap can
be excluded.



Chapter 1
Introduction

1.1 What makes neutron stars so interesting?

A NS is one of the most compact objects in the Universe. In general, the
typical mass of a NS is 1.4 solar mass with the radius about 10 km. This
makes the mean density of NSs able to reach 2 − 3 times saturation den-
sity ρ0 (= 3 × 1014 gcm−3 ∼ 0.17 fm−3), while the average solar density is
only about 1.4 gcm−3. At such high density, the matter turns out to be the
strongly compressed nuclear matter or deconfined quark matter (or hy-
peronic matter) at even higher density in the core. These states of matter
are currently impossible to reproduce in terrestrial laboratories, which
means we have no method to study this dense matter in a experimen-
tal way. Furthermore, trying theoretical methods (for instance starting
from a QCD calculation) to understand dense matter properties is also ex-
tremely difficult since the lack of a precise relativistic many-body theory
of strongly interacting particles [1]. Although there are many difficulties
in studying NSs, they are popular because of the extreme environments
they present.

NSs possess enormous gravitational energy, GM2/R ≈ 5 × 1053 erg [2],
and one has to treat them as relativistic objects. Strong gravity makes
the space-time curved within and around them. Accordingly, a spinning
NS could be a kind of source of gravitational waves although the signal
of a single NS is too dim to be observed. However, the NSs in a binary
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NS system are able to emit a strong enough gravitational wave to be
observed when they merge with each other. In August 2017, the first
gravitational wave from a binary NS merger, GW170817, was detected
by Ligo/Virgo [3, 4, 5]. More observations of gravitational waves from
binary NSs are announced since the third observational run (O3) of the
LIGO/Virgo Collaborations has started [6].

Weak interaction is another important interaction which has signifi-
cant effects on NSs. They are born with T ∼ 1011 K from supernova explo-
sions. Then, the stars cool down by emitting neutrinos and this process
is going to last about 105 years before they enter a photon cooling era. As
we know, the main engine of neutrino emission is baryon beta decay and
inverse beta decay in the core. Currently, more NSs’ surface temperatures
can be measured although most cooling data has large uncertainty. A
comparison can be make comparisons can be made between theoretical
results (from cooling simulations) and observational data. This could be
a useful tool to reveal the internal structure of NSs, which is also one
important purpose to study the cooling evolution of NSs.

In addition, a NS may have a strong magnetic field on the surface, pos-
sibly inherited from the supernova. The surface magnetic field, B ∼ 108 G,
is a billion times stronger than the magnetic field surrounding the earth
(∼ 0.6 G ). A magnetar has even more powerful magnetic fields of ∼ 1013

to 1015 G. The origin and evolution of NS magnetic fields is still a compli-
cated problem that needs to be solved. One popular hypothesis suggested
that the fields may be inherited from presupernova stars and amplified
during the gravitational collapse owing to magnetic flux conservation [1].
Regarding the magnetars, the magnetic field could be simply inherited
from stars with unusually high magnetic fields [7, 8]. The advantage of
the strong magnetic field is that of making NSs able to be spotted in as-
tronomical observations. In fact, NSs are sources of electromagnetic radi-
ation in all wavelengths, from radio to hardest gamma rays, which show
up in the observation as radio pulsar, X-ray pulsar, soft-gamma repeater
and so on [2].

Due to the reasons stated, NSs have become good experimental "labo-
ratories" for testing various theories, especially a unique environment for
the study of the strongly interacting systems at high density, as we will
study in this thesis.
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Figure 1.1: The structure of neutron stars and the theoretical predictions
of the phases in the core, cited from Ref. [9].

1.2 Structure of neutron stars

A typical NS can be divided into four internal parts: the outer crust,
inner crust, outer core and inner core. Otherwise, outside the NS, there
is a surrounding atmosphere layer . A sketch of NS structure is shown in
the Fig. 1.1.

The atmosphere is a plasma layer about 10 cm thickness. Its ingredients
change if accretion happens. The atmosphere could be composed of hy-
drogen or helium as heavier elements (56Fe) are expected to be destroyed
if there is accretion after the NS formation, otherwise, heavy elements are
expected [10, 11]. Compared to the internal parts, the contribution of the
atmosphere to the mass and radius is completely negligible. However, it
is the place where the spectrum of thermal electromagnetic NS radiation
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is formed. The spectrum, beaming and polarization of emerging radiation
can be determined theoretically by solving the radiation transfer problem
in atmospheric layers [1], which is upmost important for the interpreta-
tion of X-ray observations. For example, through the analysis of the X-ray
spectra of quiescent low-mass X-ray binaries hosted in globular clusters,
one could estimate the possible range of the NS radius, RNS = 9 − 11 km
[12, 13, 14, 15]. Besides, the radiation from the atmosphere also contains
valuable information on the NS masses and the parameters of the surface
layer including effective surface temperature, surface gravity, chemical
composition, strength and geometry of the surface magnetic field.

The outer crust is the layer with the density range from 104 gcm−3 to
neutron drip density ρd ≈ 4 × 1011 gcm−3. Its depth is about several hun-
dreds meters. At very low density, Fe nuclei arranged in a lattice is the
ground state of matter and thus a iron envelope is formed at the bottom
of the atmosphere. As the density increases, the electron Fermi energy
increases. At ρ ≳ 8 × 106 gcm−3, electrons are energetic enough to be
captured by Fe nuclei and then produce neutrinos [16]. This induces
that the energy can be lowered by the neutrino emission which makes
Fe no longer the ground state. The capture of electrons makes nuclei be-
come more neutron-rich, and eventually at the bottom of the outer crust
(ρ ≈ 4 × 1011 gcm−3) the neutrons start to drip out of the nuclei and form
a free neutron gas.

The inner crust is thicker than the outer crust, and has a depth of sev-
eral kilometers. Its density ranges from ρ = ρd to about ρ = 0.5ρ0. Besides
the neutron-rich nuclei and degenerate electrons, one new ingredient ap-
pearing in this layer is the free neutron. As more neutrons drip out from
the nuclei, they may form a so-called superfluid.

The outer core and crust are separated by a layer of density ρ ∼ 0.5ρ0
where the nuclei entirely melt into neutrons and protons. Accordingly
the main difference between core and crust is that nuclei are no longer
present in the core. Core matter is comprised of neutrons, protons, elec-
trons and more massive leptons (muons) as the density continues to in-
crease. A superfluid of protons is also supposed to appear in the core.
Superfluidity is a phenomenon occurring on the Fermi surface; the order
of the corresponding pairing gaps is about several MeV [17], which causes
only a slightly effect on the EOS and thus on the mass and radius of NSs.
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However, the superfluidity is important for the NS cooling evolution. It
can suppress the neutrino emission from the core, for example, the fast
neutrino reaction - direct Urca process - can be strongly suppressed by
superfluidity of either neutrons or protons [18]. On the other hand, the
superfluidity opens new channels for neutrino emission - Cooper pair
breaking and formation processes.

The inner core is a region with the density ρ ≳ 2ρ0, which is not able
to be created at terrestrial laboratories. Its central density can be as high
as 10 − 20ρ0 [1] and thus provides a high-pressure environment in the
core. In such an extreme environment, numerous subatomic particle pro-
cesses are possible, from the generation of hyperons and baryon reso-
nances (Σ,Λ,Ξ,∆) to quark (u, d, s) deconfinement to the formation of bo-
son condensates (π−, K−, H-matter) [9], which leads to many conjectures
about the compositions inside the core. As shown in Fig. 1.1, the main
hypotheses are [1, 9, 19]:

i) Firstly, the state of matter in the inner core remains unchanged but
contains higher fractions of proton and leptons (e, µ). This triggers a fast
neutrino reaction - the Direct Urca process, and causes a very fast cooling
of NSs [20, 21].

ii) A hyperon core could appear in the central region. At high den-
sity the neutron with large chemical potential µn can decay via the weak
interactions into Λ hyperons and form a new Fermi sea for this hadronic
species with µΛ = µn [22]. Other hyperons (for instance Σ) can be formed
with similar weak processes. However, the presence of hyperons reduces
the system pressure and makes it difficult to achieve ∼ 2M⊙ of resulting
NSs. This is the so-called "hyperon puzzle" [22, 23, 24]. One straightfor-
ward solution is making the hyperonic EOS stiff, i.e., increase the pressure
of the hyperon core. With this purpose, the authors of Refs. [25, 26, 27, 28]
employed a multi-pomeron-exchange potential model to introduce a uni-
versal three-body repulsion in the hyperonic matter. They showed that
the hyperonic EOSs can reach a maximum mass which is compatible
with the largest currently measured (∼ 2M⊙) NS masses, however, with a
higher density threshold for appearance of hyperons. A similar method
to introduce an additional repulsion among hyperon by including the
vector ϕ meson is proposed in the relativistic mean field (RMF) method
[29, 30]. Accordingly, the NS with hyperon core is able to achieve ∼ 2M⊙.
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iii) The appearance of π condensation was firstly proposed by Bah-
call and Wolf [31]. The condensates soften the EOS and thus reduce the
maximum mass [20]. In the meanwhile, a new reaction of direct Urca is
allowed by pion condensation.

iv) The fourth hypothesis, proposed by Kaplan and Nelson [32], as-
sumes K− condensation could appear in the NS. Because of the nonzero
mass (∼ 150 MeV) of strange quarks, strange particles are not supposed to
be present at low density. When the density is high enough to make the
chemical potential of a strange quark greater than its mass, strange par-
ticles are possible to appear. In the normal state, there is a possibility of
Λ and Σ− being present [33]. However, as suggested by Kaplan and Nel-
son, the energy of K− could be lowered by the interaction with nucleons,
therefore favoring K− condensation in the core.

v) Deconfined quark matter may appear in the center of heavy NSs
since the central particle density could reach values larger than 1 fm−3,
where in fact quark degrees of freedom are expected to appear at a macro-
scopic level. This possibility has been extensively studied in many publi-
cations, e.g., [9, 34, 35, 36, 37]. According to the analysis of observational
data from the NS EXO 0748–676, Özel concluded that quark matter prob-
ably does not exist in the centre of NSs [38]. However, as suggested in
Ref. [39], this conclusion is based on a limited set of possible equations of
state for quark matter. Thus, the authors considered a more comprehen-
sive set of proposed quark matter equations of state from the literature,
and concluded that the presence of quark matter in EXO 0748–676 is not
ruled out [39]. Another recent study shows the evidence of quark mat-
ter appearing in the core of massive NS [40]. In principal, only the light
quarks are supposed to appear in the core, while heavy quarks are diffi-
cult to form because of their large effective masses.

Moreover, the presence of deconfined quark matter could be another
possible solution of the "hyperon puzzle" as suggested in Ref. [41]. How-
ever, this requires a early phase transition preventing the presence of
hyperons, and in particular a sufficiently stiff quark matter EOS which
allows a NS mass ≳ 2M⊙. A successful model has been discussed in
[42, 43], where the authors considered the lowest-order constrained vari-
ational method for hadronic matter and described the quark matter by
a nonlocal Nambu-Jona-Lasinio model. The vector interactions are in-
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cluded in quark matter so as to stiffen the EOS. As shown in [42, 43, 44],
the stiff quark-matter EOS eases the request on the onset of a phase transi-
tion to quark matter. It could even happen with hyperons present, which
means the NS can be made of hypernuclear matter in the outer core and
quark matter in the inner core.

One special kind of star, the so-called strange quark star, is completely
comprised of deconfined quark matter covered with a thin iron envelope
or without any envelope. The idea originated from Witten’s hypothesis
that strange quark matter is the true ground state of QCD [45]. There-
fore, strange quark matter can be more stable than hadronic matter and
thus the entire star will convert to strange quark matter eventually. So far,
there is no evidence from observation that strange quark stars exist, while
there is also no evidence that could rule out this possibility. It is difficult
to distinguish wether a pulsar is a NS or a quark star with iron envelope
because they have similar properties (radius, mass and surface magnetic
field) [34]. Since quark matter is more dense, strange quark stars have
smaller radii than normal NSs with the same gravitational mass, espe-
cially the bare quark stars which have no crust structure. If, in the future,
a NS with small radius (≲ 10 km) is observed, it could be a (bare) strange
quark star.

1.3 Astrophysical observations

In 1934, Baade and Zwicky proposed that NSs are formed in the cen-
ter of a supernova explosion. Then, Oppenheimer and Volkov assumed
that a NS is composed of a high-density ideal neutron gas, and obtained
its structural Tolman-Oppenheimer-Volkoff (TOV) equation. But it was
neglected by scientists for the next 30 years. The reason is simply the
limitation of observational technique. It is difficult to find such celestial
bodies whose radii are only around 10 km and meanwhile the nearest
one is at least a few dozen light years away. Therefore, the only available
optical method to discover NSs at that time, was obviously doomed to
failure.

In astronomical observations, NSs are detected as pulsars, which is,
NSs with a stable rotating speed. The first pulsar was discovered by Jo-
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celyn Bell on August 6, 1967, named PSR B1919+21.2. She found a weak
variable radio source but with strictly periodic pulses. The pulse period,
1.3373012s, was accurately measured after four months of its finding and
turned out to be wonderfully stable [1]. Gold [46] suggested that the pul-
sar was a rotating magnetized NS and it turned out that his idea is true.
This is already about thirty years after physicists theoretically predicted
the existence of such stars.

With the development of observational technique, it has become possi-
ble to detect NSs. More than 2800 pulsars have been observed so far [47].
NSs are emitters of electromagnetic emission in all wavelengths, from ra-
dio to gamma rays. Thus, pulsars can be characterized by the spectral
range where pulsations are observed, for example, the first observed pul-
sar was a radio pulsar which emitted radio waves. Among the pulsars
observed, the most are in fact the radio pulsars (∼ 2700). Since the radio
wave has large wavelength and is able to pass through the atmosphere of
earth, the observations are conducted with ground-based telescopes such
as the Arecibo Radio Telescope, the Five-hundred-meter Aperture Spheri-
cal radio Telescope (FAST) and the world’s largest and most capable radio
telescope (under construction)- the Square Kilometre Array (SKA).

X-rays and gamma-rays are easily absorbed by the atmosphere, thus
their observations have to rely on space telescopes. This is more diffi-
cult than the detection of radio pulsars, which is also the reason why
there are less X-ray/gamma-ray pulsars observed so far. There are al-
ready some well-known space observatories such as the Chandra X-ray
Observatory (CXO), the XXM-Newtonian satellites, the Athena X-ray Ob-
servatory and the Fermi Gamma-ray Space Telescope for the detection of
gamma-rays from outer space. With the improvement of technique, more
pulsars could be observed, especially when the FAST, SKA and Athena
X-ray Observatory will be fully operational. This, accordingly, will cause
great progress in understanding NSs, e.g. their mass, radius, frequency
and so on.

1.3.1 Frequency

Compared to the other properties of a NS, its rotational frequency is easy
to be observed. Based on the frequency (period), pulsars can be divided
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Figure 1.2: Distribution of frequency for 2510 pulsars (from Ref. [48]). All
information of pulsars could be found in the Australia Telescope National
Facility Pulsar Catalog [47].

into ordinary pulsars, whose rotational period is of the order of a few
seconds, and millisecond pulsars, whose rotation period is p ≲ 30 ms. A
histogram of the rotational frequency of observed pulsars is shown in Fig.
1.2. As shown, most pulsars (∼ 90%) have a low frequency, especially the
range of 0 − 10 Hz with over 2000 pulsars. Currently, the fastest spinning
pulsar J1748-2446ad, observed by Hessels on November 10 of 2004, has a
frequency of 716 Hz (period of 1.4ms) [49]. It is possible that NSs possess
even higher frequency (for instance 1000 Hz) due to their extremely strong
gravity. It had been claimed that XTE J1739-285 is the fastest spinning
pulsar with the frequency f = 1122 Hz [50]. However, this is under doubt
since this result could not be reproduced.
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1.3.2 Luminosity

The luminosity of NSs, which could be observed, is basically the pho-
ton luminosity since the neutrino luminosity is difficult to be detected
directly. However, it is difficult to get accurate results of photon lumi-
nosities. The data is usually with large error bars caused by the unknown
composition of the NS atmosphere, the distance or interstellar absorption.
Hence, the same object analysed by different model, e.g., the black body
model and H atmosphere model, could have different result varying by a
factor of a few [51, 52, 53]. Even so, these data are still important, espe-
cially the thermal luminosity of isolated NSs, which could put constraints
on the theoretical study of NS cooling. Of course, for that also the ages of
NSs need to be known. They can be extracted from the spin period and its
time derivative, which determine the characteristic age tc = P/2Ṗ [54], or
from kinetic properties of the stars (proper motion for instance), that are
the kinetic ages tkin. As in Ref. [55], the kinetic ages are favoured where
possible, and characteristic ages, in most cases, are treated as upper lim-
its. In Table. 1.1 we present the recent collection of cooling data [53],
where the characteristic ages tc, the kinetic ages tkin, the redshifted bolo-
metric luminosities L∞ and redshifted surface temperatures T∞ of 55 NSs
are given.

The descriptions of each object listed in the table are shown in Ref. [53].
We just remind here two most extreme objects, XMMU J1731-347 and
CXOU J2332327.8+584842 (Cas A NS). XMMU J1731-347 is a compact
thermal x-ray source in supernova remnant with a extremely high lumi-
nosity, and is indeed supposed to have a carbon atmosphere [51, 56, 57,
58]. Cas A NS is a central compact object in the supernova remnant Cas
A. It is a very young NS with tkin ∼ 300 yr. According to Ref. [10, 59, 60]
Cas A experienced a rapid temperature decrease by ∼ 4 − 5% over 8
years (from 2010 to 2018), which could impose strong constraints on NS
cooling. This has been studied in detailed in many publications,.e.g.,
Refs. [61, 62, 63, 64, 65]. However, Posselt & Pavlov [66, 67] suggested
that this rapid cooling caused by instrument effect. They employed a
different instrument setup (Chandra ACIS subarray mode) and did not
find a statistically significant temperature decrease[67]. This difference
has not been explained so far.
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Recently the Atacama Large Millimeter Array (ALAM) radio telescope
found a the red blob in the remnant of SN1987 which has high possibility
to be a NS (NS 1987A). If correct, this NS would be the youngest star
observed with 33 years. This provides an unprecedented opportunity to
follow its early evolution, especially for the NS cooling behaviour at early
stage [68, 69].

Table 1.1: The ages, thermal luminosity and effective
temperatures for several isolated NSs. From Ref. [53].

Name tc (kyr) tkin(kyr) L∞(1032 erg s−1) kBT∞(eV)
I. Weakly magnetized thermal emitters

1E 0102.2-7219 - 2.1 ± 0.6 110+160
−50 210+40

−30
RX J0822.0-4300 2.54 × 105 4.45 ± 0.75 50 ± 11 276 ± 15/455 ± 20
CXOU J085201.4-461753 - 2.1 − 5.4 20 ± 10 90 ± 10
2XMM J104608.7-594306 - 11 − 30 0.8 − 6 40 − 70
1E 1207.4-5209 3.01 × 105 714

−5 13.1+4.9
−1.6 90 − 250

1RXS J141256.0+792204 285 - 2 − 50 65 − 210
CXOU J160103.1-513353 - 0.8 ± 0.2 58 ± 2 118 ± 1
1WGA J1713.4-3949 - 1.608 ∼ 20 − 120 138 ± 1
XMMU J172054.5-372652 - 0.6 − 1.2 150 − 270 161 ± 9
XMMU J1731-347 - 2 − 6 174+19

−39 153+4
−2

CXOU J181852.0-150213 - 3.4+2.6
−0.7 84+68

−42 130 ± 20
CXOU J185238.6+004020 1.92 × 105 6.0+1.8

−2.8 104+24
−20 133 ± 1

CXOU J232327.8+584842 - 0.320 − 0.338 61 − 94 123 − 185

II. Ordinary pulsars
PSR J0205+6449 5.37 0.819 1.9+1.5

−1.1 49+5
−6

PSR J0357+3205 541 200 − 1300 0.15+0.25
−0.11 36+9

−6
PSR J0538+2817 620 40 ± 20 10.9+2.7

−4.6 91 ± 5
CXOU J061705.3+222127 10 − 100 ∼ 30 2.6 ± 0.1 58.4+0.6

−0.4
PSR J0633+0632 59.2 - 1.5+2.5

−0.9 53 ± 4
PSR J0633+1746 342 - 0.88+2.1

−0.39 42 ± 2
PSR B0656+14 111 - 6.7+2.1

−1.5 64 ± 4/123+6
−5

PSR B0833-45 11.3 17 − 23 4.24 ± 0.12 57+3
−1

PSR B1055-52 535 - 1.0+1.0
−0.7 68 ± 3

PSR J1357-6429 7.31 - 3.6 ± 0.7 64 ± 4
PSR B1706-44 17.5 - 7.1+1.6

−6.5 71+140
−30

PSR J1740+1000 114 - 1.9+3.1
−1.0 67 ± 11

PSR J1741-2054 386 - 3.1+1.4
−1.0 60 ± 2
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Table 1.1: continued

Name tc (kyr) tkin(kyr) L∞(1032 erg s−1) kBT∞(eV)
PSR B1822-09 233 - 0.26+0.12

−0.09 83 ± 4
PSR B1823-13 21.4 - 4.5 ± 0.9 97+4

−5
PSR J1836+5925 1.833 - 0.014+0.016

−0.006 15.9+3.3
−2.2

PSR B1951+32 107 64 ± 18 1.8+3.0
−1.1 130 ± 20

PSR J1957+5033 870 - 0.012 − 0.11 ∼ 13 − 25
PSR J2021+3651 17.2 - 5+3

−2 63+6
−3

PSR B2334+61 40.6 ∼ 7.7 0.47 ± 0.35 38+6
−9

III. High-B pulsars
PSR J0726-2612 186 - 4.0+4.4

−1.0 74+6
−11

PSR J1119-6127 1.61 4.2 − 7.1 19+19
−8 ∼ 80 − 210

PSR B1509-58 1.56 - 90 ± 20 142+7
−9

PSR J1718-3718 33.2 - 4+5
−2 57 − 200

PSR J1819-1458 120 - 30+50
−22 138+3

−25

IV. The Magnificent Seven
RX J0420.0-5022 1.98 × 103 - 0.06 ± 0.02 45.0 ± 2.6
RX J0720.4-3125 1.90 × 103 850 ± 150 1.9+1.3

−0.8 90 − 100
RX J0806.4-4123 3.24 × 103 - 0.16 − 0.25 ∼ 90 − 100
RX J1308.6+2127 1.46 × 103 550 ± 250 3.3+0.5

−0.7 ∼ 50 − 90
RX J1605.3+3249 - 440+70

−60 0.07 − 5 35 − 120
RX J1856.5-3754 3.76 × 103 420 ± 80 0.5 − 0.8 36 − 63
RX J2143.0+0654 3.7 × 103 - 0.5 − 1.7 40/100

V. Upper limits
PSR J0007+7303 13.9 ≈ 9.2 < 0.3 < 200
PSR B0531+21 1.26 0.954 < 300 < 180
PSR B1727-47 80.5 50 ± 10 < 0.35 < 33
PSR J2043+2740 1.20 × 103 - < 0.4 < 80
PSR B2224+65 1.13 × 103 - < 1.7 < 110

VI. Hot spots
PSR B0114+58 275 - 0.044 ± 0.003 170 ± 20
PSR B0943+10 4.98 × 103 - 0.001 − 0.005 82+3

−9 − (∼ 220)
PSR B1133+16 5.04 × 103 - 0.0003+0.0017

−0.0002 190+40
−30

PSR J1154-6250 7.99 × 103 - 0.017 ± 0.05 210 ± 40
PSR B1929+10 3.11 × 103 - 0.0084+0.0034

−0.0022 300+20
−30
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Figure 1.3: Masses measured from pulsar timing. From Ref. [70].

1.3.3 Mass measurements

The precise measurement of a NS mass could be performed using timing
of radio pulsars located in binary systems. All current methods rely on
precise tracking of orbital motions through the arrival times of the ob-
served pulsations, and allow extremely precise mass measurements [15].
As an example, the mass of the pulsar PSR J1829+2456 was measured to
be 1.295 ± 0.011M⊙ with 95% confidence [71].

In a binary system, orbital motions can be described by the Keplerian
parameters: the binary orbital period Pb, the projection of the semi-major
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axis onto observer’s line of sight xPSR = aPSR sin i/c (where aPSR is the
semi-major axis, i is the angle between the orbital plane and observer’s
line of sight), the eccentricity e, and the time and longitude of periastron,
T0 and ω0. These parameters are related to the pulsar and companion
masses, MPSR and Mc, through the binary mass function

f ≡
Mc sin i3

MT
2 =

4π2

T⊙

x3
PSR

P2
b

, (1.1)

where MT = MPSR+Mc is total mass of the binary system, and the constant
T⊙ = GM⊙/c3 = 4.925490947 µs. Clearly, only Eq. 1.1, which has three
unknowns quantities (i,MPSR and Mc), is not enough to determine the
masses in the binary system; one needs more information from pulsars.
If the observations of pulsar timing (arrival time of pulses) are accurate
enough, the measurements of post-Keplerian (PK) parameters, that are,
the rate of advance of periastron ω̇, the “Einstein delay” γ, the orbital
period decay Ṗb and the range r and the shape s of Shapiro delay, will be
allowed. In general relativity, the expressions of the PK parameters are
given by [72]

ω̇ = 3(
Pb

2π
)−5/3(T⊙MT )2/3(1 − e2)−1, (1.2)

γ = e(
Pb

2π
)1/3T⊙2/3M−4/3

T Mc(MPSR + 2Mc), (1.3)

Ṗb = −
192π

5
(

Pb

2πT⊙
)−5/3(1 +

73
24

e2 +
37
96

e4)

× (1 − e2)17/2MPSRMcM−1/3
T , (1.4)

r = T⊙Mc (1.5)

s = sin i = xPSR(
Pb

2π
)−2/3T−1/3

⊙ M2/3
T M−1

c . (1.6)

Thus, combining Eq. 1.1 with any pair of PK parameters could be suffi-
cient to determine the masses of pulsar and companion. As an example,
the pulsar PSR J1614-2230 shows a strong Shapiro delay signature and
its orbital period and projected semi-major axis are observable, which are
Pb = 8.6866194196(2) days and xPSR = 11.2911975(2) light-seconds, respec-
tively. With two additional PK parameters obtained from Shapiro delay,
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s = 0.999894(5) and r/T⊙ = 0.500(6)M⊙, the mass of PSR J1614-2230 was
calculated to be 1.97 ± 0.04M⊙, which has only a ∼ 2% error [73].

Fig. 1.3 shows the measured masses of pulsars in different binary
systems. The mass measurement in a double NSs binary system may
achieve extremely high precision. The masses of NSs distribute over a
wide range from 1.17M⊙ to 2M⊙, although the majority of NSs have a
mass ∼ 1.4M⊙. The recently observed most massive pulsar J0740+6620
with M = 2.14+0.10

−0.09M⊙ [74], which is not yet included in the figure, is
slightly heavier than J0348+0432 (M = 2.01 ± 0.04M⊙) [75]. The result of
J1748-2021B with the mass M = 2.74 ± 0.21M⊙ (1σ confidence) [76] is un-
der debate, accordingly one still considers J0740+6620 as the observed
most massive NS, which imposes a lower limit on the maximum mass
of NSs. Note also that the source of GW190814 has a companion which
is supposed to be a black hole or a NS with mass M = 2.59+0.08

−0.09M⊙ [77].
There is hardly any realistic EOS that could give static TOV masses of
about 2.6M⊙ if the companion star is a NS. One possible case suggested
in several works [78, 79, 80] is that that object could be a leftover of an
extremely fast rotating NS as the fast (Keplerian) rotation increases the
maximum mass by about 20% [81, 82].

The masses of isolated NSs, which account for 90% of the known NSs,
are currently unable to be observed, since all methods rely on the binary
system.

1.3.4 Radius measurements

Radius measurements are more difficult than the one of masses. Nearly
all methods that are currently used rely on the detection of thermal emis-
sion from the surface of the star either to measure its apparent angular
size or detect the effects of NS spacetime on this emission to extract the
radius information [15]. And thus the major approaches can be divided
into spectroscopic and timing measurements.

The spectroscopic measurements of radius rely on detecting the angu-
lar size of the NS,

Robs

D
= (

Fbol

σBT4
eff

)2, (1.7)

where Robs is the observed radius, D is the distance between the source
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Figure 1.4: The combined constraints at the 66% confidence level on the
NS mass and radius obtained from all NSs in low-mass X-ray binaries
during quiescence (Left) and all NSs with thermonuclear bursts (Right).
From Ref. [15].

and the observer, σB is the Stefan-Boltzmann constant, and the bolometric
flux Fbol and effective temperature Teff can be determined through analy-
sis of the spectra. Since this approach relies on the detection of flux and
effective temperature, the same factor could affect the precision of radius
measurement, including the composition of atmosphere, the strength of
the magnetic field, the distance, no-thermal component and the interstel-
lar absorption. For isolated NSs, these quantities are extremely difficult
to determine accurately. Accordingly, radius measurements of isolated
NS suffer from a large uncertainty.

Quiescent X-ray transients in low-mass X-ray binaries (QLMXBs) are
promising sources for radius determinations. Because in the quiescent
phase the accretion of matter from the companion is ceased or strongly
reduced and the observations of thermal emission from the stellar surface
become possible. Furthermore, the atmosphere is likely to be composed
of light elements (H or He) and the magnetic field is low due to the
accretion of matter. Regarding the distance D, it could be well known
if the objects are located in globular clusters. Fig. 1.4 shows the possible
ranges of NS radii by analyzing the spectra of several QLMXBs. The error
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of radii is mass-dependent, which arises from Robs =
√

(1 − 2GM/R)R.
Based on the same data, Guillot suggested a small radius of NSs, R =
9.4 ± 1.2km [12, 13].

A phenomenon in LMXBs could be used to determine the radius,
which is the so-called thermonuclear X-ray burst. Two observables re-
lated to bursts are the apparent surface area A and the Eddington flux
Fedd, defined as

A =
R2

D2 f 4
c

(1 −
2GM

R
)−1, (1.8)

Fedd =
GM

kesD2 (1 −
2GM

R
)

1
2 , (1.9)

where kes is the electron scattering opacity in the stellar atmosphere and
fc is the color correction factor that takes into account the distortions
in the spectrum due to the stellar atmosphere. A detailed description
of these parameters is given in Ref. [83]. Remind that the Eddington
flux is evaluated when the photosphere touches the stellar surface. This
approach has been applied to several NSs in LMXBs, and the results are
shown in the right panel of Fig. 1.4. These results indicate a common
range of about 9 − 11 km, which is consistent with the results obtained
from the analyses of QLMXBs.

Timing measurement (modeling pulse profile) is usually applied to the
rotation-powered millisecond pulsars (MSP). The amplitudes and shapes
of the pulsations are determined by both the brightness contours on the
stellar surface and the degree of strong-field gravitational lensing that
photons experience on their paths to the distant observer [84]. There-
fore, modeling the pulse profile can probe the stellar spacetime and thus
determine the mass and radius. The Neutron Star Interior Composition
Explorer (NICER) is able to observe the X-ray pulsation from MSP. Con-
fident observations of X-ray pulsations for 5 MSP observed by NICER
are reported in Ref. [85]. In addition, the mass and radius of the pul-
sar PSR J0030+0451 M = 1.44+0.15

−0.14M⊙ and R = 13.02+1.24
−1.06 km [86], or M =

1.36+0.15
−0.16M⊙ and R = 12.71+1.14

−1.19 km [87], are obtained.
The measurements of radius have progressed with the improvement of

techniques. For example, the NICER , ATHENA+ and the Large Observa-
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Figure 1.5: Signal of the gravitational-wave event GW170817 from the
binary NS spiral, observed by the LIGO-Hanford (left), LIGO-Livingston
(middle), and Virgo (right) detectors. Times are shown relative to August
17, 2017 12:41:04 UTC. From Ref. [88].

tory for X-ray Timing (LOFT) high-precision detectors narrow down the
possible range of NS radius. Additionally, the detectable gravitational-
wave signals from binary NS mergers put a new constraint on the radius.
However, the precision of radius measurements is still not high enough
and unable to impose a stringent limit on the structure of NSs and thus
the EOS inside the core of NSs.

1.3.5 Multimessenger era

On 17th August 2017, the first gravitational wave emitted by a binary
NS merger was detected by the Ligo and Virgo observatories. This ob-
servation is so special although it is not the first time that gravitational
wave effects were observed. The former observations are usually origi-
nating from black holes mergers, which are dark and have no electromag-
netic counterparts that can be detected. Unlike a binary black hole, the
NS merger simultaneously emits gravitational waves and electromagnetic
waves, from gamma-ray, X-ray, optical, infrared, to radio, and neutrinos.
It is like a candle in the dark which can be seen by many detectors in
different bands. Accordingly, the binary NS event GW170817 initiates the
multimessenger era which means the study of one object through the var-
ious messages and bands by different observations from the same source.
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Figure 1.6: Timeline of the discovery of GW170817, GRB 170817A,
SSS17a/AT 2017gfo, and the follow-up observations are shown by mes-
senger and wavelength relative to the time of the gravitational-wave
event. From Ref. [89].
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At 60 s before the merger, the gravitational wave from the inspiraling
NSs started to appear in Ligo-Virgo data. At 0 s, 12:41:04 UTC, the two
stars merged and an accompanying gamma-ray burst is discovered by the
Fermi satellite 1.7 s after merger. Fig. 1.5 shows the time-frequency signal
of the gravitational wave GW170817, observed by the Ligo-Hanford, Ligo-
Livingston and Virgo detectors. The signal clearly shows in the data of
the first two detectors, while it is not visible in the data of Virgo. This is
due to the lower binary NS horizon and the direction of the source with
respect to the detector’s antenna pattern [3].

However, the Virgo data is significant for the localization of the source
although it cannot contribute to other parameters of GW170817. Thanks
to the invisible signal in Virgo, the sky location of the event quickly
mapped to an area of 28 deg2 from the one of 190 deg2 with only Ligo
data [3]. And this is just 5 hours after the binary NS merger. The fast
mapping of the source location allowed the detection of the follow-up
electromagnetic counterparts. All telescopes turned to the direction of
the gravitational wave event after Ligo-Virgo determined its location. The
timeline of discovery of each signal is shown in Fig. 1.6. The first opti-
cal detection was reported by the Swope Telescope 11 hours after merger.
Five other observatories, including DLT40, VISTA, MASTER, DECam and
Las Cumbres, took independent images of the event within an hour after
the Swope, as shown in Fig. 1.6. X-ray data from the event have been
detected by the Chandra satellite during 9 days and the radio emission
was also detected by the Very Large Array observatory during 15 days.

From the gravitational wave signal, one could get the general informa-
tion of the binary system, assuming the components with low spin. The
values of obtained parameters are shown in Table. 1.2. Firstly, the best
measured parameter is the chirp mass Mchirp ≡ (m1m2)3/5(m1 + m2)−1/5 =

1.188+0.004
−0.002M⊙. The ranges of the component masses m1 and m2 are m1 =

1.36 − 1.60M⊙ and m2 = 1.17 − 1.36M⊙, respectively. The corresponding
mass ratio q = m2/m1, where m1 ≥ m2, is between 0.7 and 1.0. The total
mass of the system is given as 2.74+0.004

−0.001M⊙. In addition, a particular quan-
tity, tidal deformability, that describes how much a body is deformed by
the external gravitational field, can be constrained by the gravitational
wave event. Based on the analysis of GW170817, the tidal deformability
of a NS with 1.4M⊙, Λ1.4, is between 70 and 580 [4]. The average tidal
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Table 1.2: The source properties of GW170817 with low-spin priors.

Parameter Value
Chirp mass Mchirp 1.188+0.004

−0.002M⊙ [3]
Primary mass m1 1.36 − 1.60M⊙ [3]
Secondary mass m2 1.17 − 1.36M⊙ [3]
Mass ratio q = m2/m1 0.7 − 1.0 [3]
Total mass mtot 2.74+0.004

−0.001M⊙ [3]
Average tidal deformabilityΛ̃ 70 − 720 [5]
Dimensionless tidal deformability Λ1.4M⊙ 70 − 580 [4]

deformability, defined by

Λ̃ =
16
13

(1 + 12q)Λ1 + (q + 12)Λ2

(1 + q)5 + (1↔ 2), (1.10)

is about 70− 720 [5]. Also, combining with an analysis of the electromag-
netic counterpart with kilonova, a higher lower limit is deduced, Λ̃ > 400
[90]. Recently, this value was updated to Λ̃ > 300 [91, 92], although this
lower bound has been disputed [93].

1.4 Equation of state of dense matter

The EOS indicating the relation of the thermal quantities, for instance,
the equation of pressure and energy density p(ϵ ), is the key ingredient of
theoretical study of NSs. By using the TOV equation,

dp
dr
= −

mε
r2

(
1 + p/ε

) (
1 + 4πr3p/m

)
1 − 2m/r

,
dm
dr
= 4πr2ϵ, (1.11)

one can uniquely determine the mass-radius relation of NSs as sketched
in the Fig. 1.7. A stiff EOS which means one with higher pressure for a
given energy density, causes a higher maximum mass of NSs, since higher
pressure is able to overcome the stronger gravity and prevents the mas-
sive stars from collapsing to black holes. A soft EOS, accordingly, yields
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Figure 1.7: Two examples of EOSs of NSs and the corresponding R-M
relations. The stiff EOS (blue curve) features a higher pressure P for a
given energy density ϵ , and achieves a higher maximum TOV mass of
NSs. On the contrary, the soft EOS (red curve) with lower pressure is not
able to maintain too massive NSs due to the stronger gravity inside. The
small branches after the point of maximum mass represent the unstable
NSs which collapse to black holes in the end.

a lower maximum mass compared to the stiff EOS. We are interested in
the maximum mass because a low limit on the maximum mass can be
determined by the most massive NS observed. This low limit would be a
useful constraint on the selection of the EOS.

In principal, there is only one ’true’ EOS for NSs, and thus only one
unique M (R) relation exists. However, the scarce knowledge of the strong
interaction leads to a bunch of EOSs based on various theoretical models.
Quantum chromodynamic (QCD), a well-founded theory of the strong
interaction, is supposed to determine the ’true’ EOS. Within the current
experiments and theoretical predictions, one can estimate the possible
phases of QCD depending on the temperature T and chemical potential
µ (or density). As shown in Fig. 1.8, the white sector is the region of
the hadronic phase, while the outside of the sector represents the region
of the deconfined quark phase. At high density, accurate calculations of
the EOS (for the QGP) are obtained due to the asymptotic freedom of
QCD. For the lower-energy area where the chromodynamic is no longer
weakly coupled, lattice QCD provides a useful method to calculate the
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Figure 1.8: QCD phase diagram, cited from Ref. [94].

EOS at nonzero T ; however, there are no ab-initio QCD calculations for
dense matter available at the finite chemical potential branch (including
the region where NSs locate) [95].

With intensive efforts, a large set of possible EOSs have been proposed.
For nuclear matter, the approaches can be divided into two categories
in general, phenomenological approaches and ab-initio approaches, de-
pending on the choice of the interaction and many-body method.

Phenomenological approaches are based on effective interactions with
a small number of parameters (of the order 10) fitted to nuclei proper-
ties. For example, the meson-exchange forces in the relativistic mean-field
theory models and the Skyme and Gogny forces in the nonrelativistic cal-
culations [95]. The advantage of phenomenological approaches is that
they usually have a simple functional form, which may be used in several
applications. Ab-initio approaches start from two- and three-body real-
istic nucleon interaction. Nucleon interactions are fitted to experimental
data of nucleon-nucleon (NN) scattering in vacuum and the properties
of bound nucleon systems. Because of the large amount of experimental
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data, the precision of NN interactions has reached a very high degree.
Regarding the descriptions of quark matter, they presently resort to

more or less phenomenological models, such as the MIT bag model [96],
Nambu-Jona-Lasino model [97], field correlator method [98, 99] and Dyson-
Schwinger quark model [36, 100]. These models inevitably contain sev-
eral free-adjusted parameters. By adjusting them, almost every quark
model could meet the constraints from the current observations of NSs.
Furthermore, terrestrial nuclear experiments could put additional con-
straints on the nuclear EOSs, while there is no such experimental data
able to limit quark-matter EOSs. Accordingly, many quark-matter EOSs
are allowed and constraints on quark-matter EOSs more rely on the the-
oretical aspects. Although the quark-matter EOS remains uncertain, it is
still interesting to discuss the effects of quark matter on NSs. As more
properties of NSs have been observed, for instance, the tidal deforma-
bility and the cooling data, firm constraints on the EOS of quark matter
could be obtained.

Note that the perturbative QCD is not a very good approach for de-
scribing the EOS of quark matter in the core of NSs, although quark
matter appears at high density. The highest core density of NSs is around
20ρ0, however, the relative uncertainty of perturbative QCD is already
±24% at ρ = 40ρ0 (µB = 2.6 GeV) [40]. The covered density range inside
NSs is in the region where the perturbative QCD is valid.



Chapter 2
Modeling the equation of state

In this chapter, several EOSs used for describing the dense matter in-
side NSs are introduced. For the description of nuclear matter, we con-
sider the microscopic EOS derived within Brueckner-Hartree-Fock many-
body theory with realistic two-body and three-body forces. The possibil-
ity of exotic matter, quark matter, is also studied, thus we present two
quark models in this chapter, including field correlator model (FCM) and
Dyson-Schwinger quark model (DSM).

2.1 Nuclear equation of state

The construction of the hadronic EOS is based on the BHF many-body
theory with realistic two-body and three-body nucleonic forces. BHF the-
ory is a widely used method developed by Brueckner and Bethe in the
1950s, aimed to solve many-body problems. In fact, it can be derived from
the Brueckner-Bethe-Goldstone hole-line expansion, and the ground-state
energy of a many-body system can be evaluated by truncating the expan-
sion at two-hole-line level. An extensive discussion of this method is
present in Ref. [101]. Within the BHF theory, the energy per nucleon of
nuclear matter is given in terms of the solution of the Bethe-Goldstone

31
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equation for the in-medium interaction G[W ; ρ],

B
A
=

3
5

k2
F

2m
+

1
2ρ

∑
k,k ′<kF

⟨
kk′��G[e(k) + e(k′); ρ]��kk′

⟩
A , (2.1)

where the form of G[W ; ρ] is given by

G[W ; ρ] = V +
∑

ka,kb>kF

V
��ka, kb

⟩
Q
⟨
ka, kb��

W − e(ka) − e(kb)
G[W ; ρ] . (2.2)

V is the bare nucleon-nucleon (NN) interaction, ρ is the nucleon number
density, and W the starting energy. The single-particle energy

e(k) = e(k; ρ) =
k2

2m
+U (k; ρ) (2.3)

and the Pauli operator Q determine the propagation of intermediate baryon
pairs. The BHF approximation for the single-particle potential using the
continuous choice is

U (k; ρ) =
∑

k ′≤kF

⟨
kk′��G[e(k) + e(k′); ρ]��kk′

⟩
A . (2.4)

Due to the occurrence of U (k) in Eq. (2.3), the above equations consti-
tute a coupled system that has to be solved in a self-consistent manner
for several momenta of the particles involved, at the considered densities.
The only input quantities of the calculation are the NN two-body po-
tentials, for instance, the Argonne V18 [102] potential supplemented with
phenomenological Urbana three-body forces.

For the calculation of the energy per nucleon of asymmetric nuclear
matter, we use the so-called parabolic approximation [103]

B
A

(ρ, x) =
B
A

(ρ, x = 0.5) + (1 − 2x)2Esym(ρ) , (2.5)

where x = ρp/ρ is the proton fraction and Esym(ρ) is the symmetry en-
ergy, which can be expressed in terms of the difference of the energy per
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nucleon of pure neutron matter (x = 0) and symmetric matter (x = 0.5):

Esym(ρ) =
B
A

(ρ, x = 0) −
B
A

(ρ, x = 0.5) . (2.6)

For practical use the results of the energy per nucleon of pure neutron and
symmetric matter are fitted by an analytic form with four parameters:

B
A

(ρ) = aρ+ bρc + d. (2.7)

The parameterized results with different interactions can be found in
Refs. [104, 105].

Once we obtain the energy per nucleon of asymmetric nuclear matter,
then the total energy density of nuclear matter as a function of the density
can be written as

εnucl(ρ, x) = ρmN + ρ
B
A

(ρ, x), (2.8)

where mN is the nucleon mass. Once the energy density is known, the
chemical composition of the beta-equilibrated matter can be calculated
and finally the EOS,

pnucl = ρ
2 d(B/A)

dρ
����A

. (2.9)

2.2 Quark matter equation of state

2.2.1 Field correlator theory

The FCM has already been used in the description of hybrid stars with
the aim of determining the mass-radius relation of the star, and deducing
possible constraints on the parameters of the model [35, 106, 107, 108,
109]. In this approach, discussed in detail in [110], the description of the
strong interaction dynamics is performed in terms of Gaussian correlators
of color-electric, DE (x), DE

1 (x), and color-magnetic fields, DH (x), DH
1 (x).

The confinement mechanism is performed through the correlator DE (x).
In this method, the disappearance of DE (x) indicates the deconfinement
phase transition at T ≥ Tc [98]. The correlators DE

1 (x), DH (x) and DH
1 (x)

describe the dynamics of the deconfined phase.
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Since we are interested in the high-density matter existing in the NS
core, the extension of the FCM to finite density (and temperature) is re-
quired, which was derived in [98, 99, 111] in the single-line approxima-
tion, where the leading contribution is given by the interaction of single
quark and gluon lines with the vacuum. The resulting pressure of the
quark matter phase,

pQM = pV + pg +
∑

q=u,d,s

pq , (2.10)

is the sum of the vacuum pV , gluon pg and quark pq contributions, which
are reported below.

pq =
T4

π2

[
ϕν
( µq −V1/2

T

)
+ ϕν
(
−
µq +V1/2

T

)]
(2.11)

is the quark pressure, where pq is intended for each single flavor (consid-
ering u, d and s quarks) with bare quark mass mq (ν = mq/T) and chemical
potential µq, V1 is the large-distance static quark-antiquark potential, and

ϕν (a) =
∫ ∞

0
du

u4
√

u2 + ν2

1

exp (
√

u2 + ν2 − a) + 1
. (2.12)

The vacuum pressure representing the pressure difference between the
vacua in the deconfined and confined phases, is given by

pV = −
(11 − 2N f /3)

32
G2

2
, (2.13)

where N f = 3 is the number of flavors, G2 is the gluon condensate which
is sharply reduced by half at the transition observed at the critical tem-
perature [112, 113].

Apart from the external parameters µq and T (and the quark masses
mq), pQM depends on two parameters that are peculiar to the model,
namely V1 and G2. The parameter V1 at zero temperature and density
is expressed in terms of an integral of a fundamental QCD correlator
[110], but is not directly measured. The gluon condensate G2 is estimated
from QCD sum rules, G2 ≈ 0.012 GeV4, but with an uncertainty of about
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50%. In addition, from Eq. (2.13) we notice that G2 has the same role as
the bag constant of the MIT bag model and thus, if one sets V1 = 0, the
quark pressure pq becomes the pressure of free quarks and the model re-
duces to the simplest version of the bag model. Therefore V1 represents
the main correction to the free quarks dynamics inside the bag.

Although there exist some speculations on the temperature depen-
dence of V1 and G2 and on their estimates at the critical temperature
[35, 98, 99, 107], not much is known about their dependence on the bary-
onic density, which is certainly relevant for the description of the inner
core of NSs. Therefore, for our purpose, it is preferable to avoid specific
assumptions about the temperature and density dependence and to treat
V1 and G2 as free parameters. In this spirit, some indications on the phe-
nomenologically acceptable ranges of V1 and G2, that predict maximum
hybrid star masses compatible with the observational limits, have been
obtained in [108, 109], suggesting large values of the interaction strength,
V1 ∼ 100 − 200 MeV and rather small values of the gluon condensate,
G2 ∼ 0.002 − 0.006 GeV4.

2.2.2 Dyson-Schwinger quark model

The Dyson-Schwinger equation is the equation of motion of QCD, which
is rigorously derived from the generating functional under the framework
of continuum field theory. In Euclidian space, the generating functional
Z reads

Z [ j] =
∫

Dϕ exp(−SE + jiϕi), (2.14)

where ϕi = q, q̄, Aa
µ, c, c̄ are various fields, ji = η̄, η, Ja

µ , ω̄, ω represent
external sources,

jiϕi =

∫
d4x[η̄(x)q(x) + q̄(x)η(x) + Ja

µ (x) Aµa (x) + ω̄(x)c(x) + c̄(x)ω(x)],

(2.15)
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and the action SE can be written as

SE =

∫
d4x(L0 + L1), (2.16)

L0 =

Nf∑
f=1

q̄ f (γµ · Dµ +m f
0 )q f +

1
4

∫
Fa
µνF

a
µν, (2.17)

L1 = −
1

2ξ0
[∂µAa

µ(x)]2 + ∂µω̄a (x)[δab − g0 f abc Ac
µ(x)]ωb(x), (2.18)

with Dµ = ∂µ + igAa
µ
λa

2 and field-strength tensor Fa
µν = ∂µAa

ν − ∂νA
a
µ +

g0 f abc Ab
µAc
ν.

The trivial boundary condition gives

0 =
∫

Dϕ
δ

δϕi
exp(−SE + jiϕi), (2.19)

and starting with Eq. 2.19, one could get the identity related to the quark
propagator S(x, y), which is

δ(x − y) = (γ · ∂ +m0)S(x, y) (2.20)

+g2γµta
∫

d4z1d4z2d4z3Da,b
µν (z1, x)Γb

ν (z1, z2, z3)S(z2, y)S(x, z3),

where Dab
µν (x, y) is the dressed gluon propagator and Γa

µ is the dressed
quark-gluon vertex. They are defined as

S(x, y) ≡
δ2W [ j]
δη(y)δη̄(x)

, (2.21)

Dab
µν (x, y) ≡

δ2W [ j]

δJb
µ (y)δJa

µ (x)
, (2.22)

−igΓa
µ(z1, z2, z3) ≡

δ3Γ[ϕc]

δAa
µ(z1)δq(z2)δq̄(z3)

, (2.23)

with W [ j] = ln(Z [ j]) and Γ[ϕc] = −W [ j] + ϕc
i ji. By performing a Fourier

transform of Eq. 2.20, one can obtain the quark propagator in momentum
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Figure 2.1: Quark propagator.

space

S(p)−1 = Z2iγ · p +m0 + Z1

∫ Λ

q
g2Dρσ (k)

λa

2
γρS(q)Γa

σ (q, p), (2.24)

where p is the four momentum, k = p − q, and Z1 and Z2 are renormal-
ization constants. The complete derivation is shown in Ref. [100].

In general, the Dyson-Schwinger equation of the n-point Green’s func-
tion contains the Green’s function of n+1 points, for instance, Eq. 2.24 is
a equation for the 2-point Green’s function (quark propagator), which
contains a 3-point Green’s function (quark-gluon vertex). Its Feynman
diagram is shown in Fig. 2.1. Thus, the Dyson-Schwinger equation is a
equation coupling Green’s functions of all orders. In order to solve the
equation, truncations for the quark-gluon vertex and gluon propagator
are necessary. For the vertex we use the bare one, i.e., Γa

σ =
λa

2 γσ. For
the dressed gluon propagator, we employ the scheme with an infrared-
dominant interaction [36],

g2Dρσ (k) = 4π2d
k2

ω6 e−
k2

ω2
(
δρσ −

kρkσ
k2

)
. (2.25)

The parameters ω and d in this equation are discussed in [114, 115]: ω
represents the energy scale in nonperturbative QCD, like ΛQCD, and d
controls the effective coupling strength. Their values as well as the quark
masses are obtained by fitting light (π and K) meson properties and the
chiral condensate in vacuum [114, 115], and we use the set ω = 0.5 GeV
and d = 1 GeV2. Regarding the quark masses, we choose mu,d = 0 and
ms = 115 MeV.
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In order to reduce complexity of calculation, we rewrite the quark
propagation in a general form with vector part and scalar part, which is

S(p)−1 = iγpA(p2) + B(p2). (2.26)

The calculation of the quark propagator amounts to solving for the two
scalar functions A(p2) and B(p2). They satisfy

A(p2) = Z2 +
4

3p2

∫ Λ d4q
(2π)4

4πG(k2)
k2

(p · q + 2 p·kq·k
k2 ) A(q2)

A2(q2)q2 + B2(q2)
, (2.27)

B(p2) = Z4m +
4
3

∫ Λ d4q
(2π)4

4πG(k2)
k2

3B(q2)
A2(q2)q2 + B2(q2)

. (2.28)

Note that it is difficult to solve the equations analytically, only numerical
results are available.

We are interested in the description of quark matter in the NS core.
For this purpose, the extension of the Dyson-Schwinger equation to finite
chemical potential µ is made, and reads

S(p; µ)−1 = Z2[iγp + iγ4(p4 + iµ) +mq]

+ Z1

∫
d4q

(2π)4g
2(µ)Dρσ (k; µ)

λa

2
γρS(q; µ)Γa

σ (q, p; µ) . (2.29)

For solving this equation, one can follow a similar procedure as in the
case of zero chemical potential. Note that the gluon propagator is also
extended to finite chemical potential,

g2(µ)Dρσ (k, µ) = 4π2d
k2

ω6 e−
αµ2

ω2 e−
k2

ω2
(
δρσ −

kρkσ
k2

)
. (2.30)

In order to model the reduction rate of the effective interaction with in-
creasing chemical potential, a phenomenological parameter α was intro-
duced. Obviously, α = ∞ corresponds to a noninteracting system at finite
chemical potential, i.e., a simple version of the MIT bag model. Larger α
corresponds to a stiffer quark-matter EOS.

Once the quark propagator is obtained, the thermal quantities are easy
to be derived. Assuming there is no interaction between different flavors
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of quarks, the quark q = u, d, s momentum distribution function is ob-
tained as

fq(|p|; µ) =
1

4π

∫ ∞

−∞

dp4 trD[ − γ4Sq(p; µ)] , (2.31)

and the number density and pressure can be calculated as follows

nq(µ) = 6
∫

d3p
(2π)3 fq(|p|; µ) , (2.32)

p(µu, µd, µs) = −BDS +
∑

q=u,d,s

∫ µq

µ0
q

dµ nq(µ) , (2.33)

where the bag constant BDS is another important parameter in our model.
As discussed in [36, 116], BDS ≈ 90 MeV fm−3 can be obtained from the
vacuum pressure in the massless two-flavor quark-matter (2QM) case in
our model, but there are ambiguities when including strange quarks. In
this work we treat it as a further phenomenological parameter like the
reduction rate α. We notice that BDS cannot be arbitrarily low, as one
has to ensure that the pressure (energy density) of 2QM should be lower
(larger) than that of symmetric nuclear matter at low density [1, 116].

2.3 EOS of dense matter in beta equilibrium

The dense matter in the core of NSs is supposed to be under beta equilib-
rium and charge neutrality. Starting with nuclear matter, the component
particles are nucleons (n, p) and leptons (e, µ). Neutrinos escape fast from
the core of NSs, so the condition of beta equilibrium can be written as

µe = µn − µp = µµ, (2.34)

where µi denote the chemical potential of the particle species i = n, p, e, µ.
Taking into account the parabolic approximation of the energy per nu-
cleon of asymmetric nuclear matter, one has

µe = −
∂B/A

x
����ρ
= 4Esym(ρ)(1 − 2x), (2.35)
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which is dependent on the proton fraction and the nuclear symmetry
energy. Combining with the charge neutrality (ρp = ρe + ρµ), one can
determine the composition of nuclear matter with a given baryon density
ρ. Thus, the total pressure and the total energy density are given by

p = pnucl + plep, (2.36)

ε = εnucl + εlep = ρ
B
A
+ ρmN + εlep, (2.37)

where mN is the nucleon mass, plep and εlep are the leptonic contributions
to the total pressure and energy density. The leptons here are treated as
free particles.

Similarly, the fractions of each particle species (u, d, s, e, µ) in quark
matter can be determined by the conditions of beta-stability and charge
neutrality,

µu + µe = µu + µµ = µd = µs , (2.38)
2ρu − ρd − ρs

3
− ρe − ρµ = 0 . (2.39)

Then the total pressure and energy density are the sum of the contribu-
tions of all particle species.

The phase transition from hadronic matter to quark matter is expected
at high density. However, the mechanism of phase transition remains un-
certain, which could be a first-order phase transition or a crossover like
the phase transition at high temperature [117]. One phenomenological
method to construct the phase transition through interpolation, is the so-
called three-windows modeling [118, 119, 120, 121]. The EOS at ρB < ρ0
is described as nuclear-matter EOS, while at ρB > 5ρ0 it is described as
quark-matter EOS. The baryon density from 2ρ0 to 5ρ0 is the crossover
regime where the EOS is constructed by interpolation. More dedicated
phase transitions have been studied in Refs. [122, 123, 124, 125, 126], as-
suming a first-order phase transition between hadronic matter and quark
matter; also a finite-size effects (for instance the surface and Coulomb en-
ergies) are taken into account. This results in a mixed phase with a pasta
structure between hadronic and quark phases.

The Maxwell and Gibbs constructions correspond to the two extreme
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cases of infinite and zero surface tension, respectively. In the Maxwell
construction, hadronic matter and quark matter are separated and satisfy
local charge neutrality due to the infinite surface tension. The pressure
remains constant when the phase transition proceeds, thus a mixed phase
is forbidden inside NSs. This also produces a jump in energy density,
which often leads to an unstable branch in the mass-radius diagram. For
a soft quark-matter EOS, there could be no stable hybrid-star branch or
only a tiny one [36, 37, 97, 109].

In this work we consider another extreme case, the Gibbs construction,
which disregards the finite-size effects. The basic idea of the Gibbs con-
struction is that both nuclear and quark matter coexist in a mixed phase
with local beta equilibrium and global charge neutrality (both phases are
charged separately) [127]. These conditions can be expressed as

µu + µe = µu + µµ = µd = µs , (2.40)
µp + µe = µn = µu + 2µd , (2.41)

χρQ
c + (1 − χ)ρH

c = 0 , (2.42)

where ρQ
c and ρH

c are the charge densities of the quark and nuclear phases
and χ indicates the volume fraction occupied by quark matter in the
mixed phase. In addition, the mechanical balance between nuclear matter
and quark matter in the mixed phase gives

pH = pQ = pM, (2.43)

where pH (pQ) is the pressure of nuclear (quark) matter, which is also
equal to the pressure of the mixed phase. Then the total baryon density
and total energy density of the mixed phase are given as

ρM = χρQ + (1 − χ)ρH , (2.44)
εM = χεQ + (1 − χ)εH . (2.45)

In Fig. 2.2 we present the numerical results of some EOSs for the cases
discussed. More precisely, for nuclear matter (left panel), we show several
BHF EOSs based on different nucleon-nucleon potentials, the Argonne V18
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Figure 2.2: Pressure as a function of energy density for nuclear matter (left
panel) and quark matter (right panel) under β equilibrium. The dotted
curves are plotted for the DSM, dashed curves for the FCM approach.
The solid squares indicate the points where the speed of sound becomes
larger than the speed of light.

[102], the Bonn B (BOB) [128, 129], and the Nijmegen 93 (N93) [130, 131],
and compatible three-nucleon forces as input. The BOB and N93 are
supplemented with microscopic three-body forces employing the same
meson-exchange parameters as the two-body potentials [132, 133, 134],
whereas V18 is combined either with a microscopic or a phenomenolog-
ical three-body force, the latter consisting of an attractive term due to
two-pion exchange with excitation of an intermediate ∆ resonance, and
a repulsive phenomenological central term [135, 136, 137]. They are la-
belled as V18 and UIX, respectively. EOS BOB is the stiffest among these
results, and is supposed to achieve higher maximum mass of NSs. How-
ever, at large density it breaks the causality condition, which means that
the speed of sound, cs =

√
dp/dϵ , is higher than the speed of light. The

other three EOSs also show a superluminar speed of sound at very large
energy density, as discussed in Ref. [138].
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Figure 2.3: Pressure vs energy density of hybrid star matter under the
Gibbs phase transition for the different models. The solid circles indicate
the onset of pure quark matter.

The EOSs of quark matter within FCM and DSM approaches are shown
in the right panel of Fig. 2.2. In the FCM, we fix the value of G2 =

0.006 GeV4 and choose parameter values V1 = 100, 150, 200 MeV (labeled
as FCM100, FCM150, FCM200). Similarly, we describe the quark phase in
the DSM with a parameter α = 1, 3, 4 and fixed BDS = 90 MeVfm−3. As
we can see, most quark-matter EOSs show a good linear relation between
pressure and energy density, except EOS DS1 having an exotic behavior at
lower energy density. Actually this is due to the appearance of s quarks.
For the DS1, the threshold chemical potential is about µs = 500 MeV [36].
This nonlinear region indicates the conversion of two-flavor quark matter
to three-flavor quark matter. A common conclusion that can be obtained
from both DSM and FCM is that the quark-matter EOS becomes stiff
when the system tends to be noninteracting. Remind that in the FCM
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(DSM), the parameter V1 = 0 (α = ∞) corresponds to a noninteracting
system.

In Fig. 2.3, we present the hybrid-star EOSs constructed under the
Gibbs phase construction. The solid dots indicate the onset of pure quark
matter. It is clear that the appearance of quark matter softens the EOS.
However, the soft quark-matter EOS does not result in a soft hybrid-star
EOS. In fact, a stiff quark-matter EOS has a lower phase transition point,
which reduces the fraction of nuclear matter and makes the overall EOS
soft. For example, FCM100 is the stiffest one among the three FCM EOSs,
but the corresponding hybrid-star EOS is the most soft one.



Chapter 3
Constraints on the equation of
state

EOSs can be constrained by different observables, for instance, the obser-
vations from NSs. Currently, the main constraints originate from three
aspects [95]: observations in astronomy, laboratory measurements of nu-
clear properties and reactions and theoretical ab-initio calculations. In
this chapter, we discuss these constraints on the EOSs introduced in
Chapter 2. We first discuss the constraints from NSs, in particular the con-
straints from GW170817, on the EOSs for both nuclear matter and quark
matter. Regarding the EOSs of nuclear matter, additional constraints can
be obtained from the properties of nuclear matter at saturation density. In
the last section, we investigate the correlations between NS and nuclear-
matter observables.

This chapter is a modified version of the following articles:

[1] G. F. Burgio, A. Drago, G. Pagliara, H.-J. Schulze, and J. -B. Wei,
Are Small Radii of Compact Stars Ruled out by GW170817/AT2017gfo?, As-
trophys. J . 860, 139 (2018).

[2] J. -B. Wei, J.-J. Lu, G. F. Burgio, Z. H. Li, and H.-J. Schulze, Are
nuclear matter properties correlated to neutron star observables?, Eur. Phys. J.
A 56, 63 (2019).

45
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3.1 Constraints from neutron star systems

3.1.1 M-R relations and tidal deformability

The tidal deformability λ, or equivalently the tidal Love number k2 of a
NS [139, 140, 141], has recently been acknowledged to provide valuable
information and constraints on the related EOS. In general relativity, it
can be calculated along with the TOV equations for pressure p and en-
closed mass m of a static NS configuration. The only input required is the
EOS. More specifically, the Love number can be obtained by solving the
equations

k2 =
3
2
λ

R5 =
3
2
β5λ =

8
5
β5z
F
, (3.1)

z ≡ (1 − 2β)2[2 − yR + 2β(yR − 1)] ,

F ≡ 6β(2 − yR) + 6β2(5yR − 8) + 4β3(13 − 11yR)

+ 4β4(3yR − 2) + 8β5(1 + yR) + 3z ln(1 − 2β) ,

(with Λ ≡ λ/M5 and β ≡ M/R being the compactness) along with a
system of three coupled first-order differential equations [142], namely

dp
dr
= −

mε
r2

(
1 + p/ε

) (
1 + 4πr3p/m

)
1 − 2m/r

, (3.2)

dm
dr

= 4πr2ε , (3.3)

dy
dr
= −

y2

r
−

y − 6
r − 2m

− rQ ,

Q ≡ 4π
(5 − y)ε + (9 + y)p + (ε + p)/c2

s

1 − 2m/r
−

[
2(m + 4πr3p)

r (r − 2m)

]2

,(3.4)

with the EOS ε(p) as input, and boundary conditions given by

[p,m, y](r = 0) = [pc, 0, 2] , (3.5)
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Figure 3.1: Mass-radius relations for different EOSs. Solid (dashed)
curves are plotted for microscopic (phenomenological) EOSs. The thin
curves indicate hybrid stars in the DSM and FCM approaches. Some ex-
perimental constraints from NICER (blue area [86] or green area [87]),
GW170817 (red bar) [4] and currently observed maximum mass (grey
area) [74] are also shown. The red horizontal line indicates the pre-
dicted upper limit of Mmax < 2.16 M⊙ [82]. The additional constraints
from GW170817 on radius, R1.6 > 10.8km [143] and R1.4 < 13.5 km [144]
(updated to 13 km), are not shown.

being yR ≡ y(R), and the mass-radius relation M (R) provided by the
condition p(R) = 0 for varying pc.

In Table 3.1, the properties of the various NS configurations con-
structed with the considered EOSs are listed, including the value of the
maximum mass, the corresponding radius, the radius of the 1.4M⊙ con-
figuration and its tidal deformability Λ1.4.

In addition to the BHF EOSs discussed for nuclear matter, we also
compare with the often-used results of the Dirac-BHF method (DBHF)
[151, 152, 148], which employs the Bonn A potential, and the APR EOS
based on the variational method [147, 153] and the V18 potential. The
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Table 3.1: Properties of NSs listed according to the considered EOSs. See
text for details. From Ref. [145].

EOS Mmax[M⊙] RMmax [km] R1.4 [km] Λ1.4 Type Ref.
BOB 2.51 11.32 12.85 584 nucleonic [104]
BOB+DS1 2.30 12.13 12.85 584 hybrid [36]
BOB+DS2 2.02 11.95 12.85 584 hybrid [36]
BOB+DS3 1.79 11.72 12.75 539 hybrid [36]
BOB+DS4 1.60 11.38 12.12 346 hybrid [36]
BOB+FCM100 2.08 12.09 12.85 584 hybrid [109]
BOB+FCM150 2.25 12.17 12.85 584 hybrid [109]
BOB+FCM200 2.36 12.10 12.85 584 hybrid [109]
V18 2.34 10.63 12.33 419 nucleonic [104]
V18+DS1 2.16 11.34 12.33 419 hybrid [36]
V18+DS2 1.93 11.15 12.33 419 hybrid [36]
V18+DS3 1.75 10.95 11.96 320 hybrid [36]
V18+DS4 1.61 10.74 11.36 215 hybrid [36]
V18+FCM100 1.98 11.28 12.33 419 hybrid [109]
V18+FCM150 2.12 11.38 12.33 419 hybrid [109]
V18+FCM200 2.22 11.32 12.33 419 hybrid [109]
N93 2.13 10.49 12.68 474 nucleonic [104]
N93+DS1 2.00 11.17 12.68 474 hybrid [36]
N93+DS2 1.80 10.76 12.64 459 hybrid [36]
N93+DS3 1.67 10.48 11.76 250 hybrid [36]
N93+DS4 1.58 10.31 11.05 162 hybrid [36]
N93+FCM100 1.84 10.89 12.68 474 hybrid [109]
N93+FCM150 1.96 11.13 12.68 474 hybrid [109]
N93+FCM200 2.05 11.14 12.68 474 hybrid [109]
UIX 2.04 10.02 12.03 340 nucleonic [146]
UIX+DS1 1.98 10.59 12.03 340 hybrid [36]
UIX+DS2 1.82 10.63 12.03 340 hybrid [36]
UIX+DS3 1.69 10.44 11.81 10 hybrid [36]
UIX+DS4 1.59 10.30 11.22 6 hybrid [36]
UIX+FCM100 1.84 10.53 12.03 340 hybrid [109]
UIX+FCM150 1.93 10.48 12.03 340 hybrid [109]
UIX+FCM200 1.99 10.35 12.03 340 hybrid [109]
APR 2.20 9.92 11.59 274 nucleonic [147]
DBHF 2.31 11.29 13.10 681 nucleonic [148]
LS220 2.04 10.67 12.94 542 nucleonic [149]
SFHO 2.06 10.31 11.93 334 nucleonic [150]
V18(N+Y) 1.65 9.00 11.92 302 hyperonic [23]
BOB(N+Y) 1.37 11.07 − − hyperonic [36]



49

9 10 11 12 13 14
1

10

100

1000

 LS220
 SFHo

R [km]

 1.4M
 Mmax

 BOB
 V18
 N93
 UIX
 APR
 DBHF

Figure 3.2: Tidal deformability vs radius for different EOSs. Solid
(dashed) curves are plotted for microscopic (phenomenological) EOSs.
The open circles and squares indicate configurations of M = Mmax and
M = 1.4M⊙, respectively. The grey band represents the constraint on
Λ1.4 [4].

LS220 [149] and SFHo [150] phenomenological RMF EOSs are also used
for comparison. Two hyperonic EOSs obtained within the BHF approach
are also included, which are labeled as BOB(N+Y) [154, 155, 156] and
V18(N+Y) [23].

Regarding the hybrid stars, we have chosen the interaction param-
eter α = 1, 2, 3, 4 in the DSM and matched with each BHF EOSs un-
der the Gibbs construction, see Sec. 2.3. This yields 16 different EOSs
(BOB, V18, UIX, N93) ⊗ (DS1, DS2, DS3, DS4) for hybrid stars. The
same construction is made for the one of FCM, but with the parameter
V1 = 100, 150, 200 MeV. We remind that the gluon condensate parameter
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G2 is set to G2 = 0.006 GeV4 for all choices of V1.
We observe that most models give values of the maximum mass larger

than 2 M⊙, and therefore are compatible with current observational data
[73, 74, 157, 158]. Hybrid stars can achieve 2 M⊙ by adjusting models
parameters, i.e. α in DSM and V1 in FCM. However, no firm conclusions
can be drawn on quark models since the hybrid star EOS also depends
on the nucleonic EOS. For example, the hybrid star EOS constructed with
BOB is able to give an upper limit of the parameter α ≲ 2 due to the
2 M⊙ constraint, while there is no value of α allowed if we adapt UIX for
describing the nuclear matter in the hybrid star. Furthermore, the two
hyperonic EOSs do not fulfill the observational limit. We nevertheless
include them in our analysis in order to see whether they reveal irregular
features elsewhere. Some recent analyses of the GW170817 event indicate
an upper limit of the maximum mass of about 2.2 M⊙ [159, 160, 82], with
which several of the microscopic EOSs would be compatible.

We now turn to discuss the mass-radius relations of the different EOSs
we consider. They are shown in Fig. 3.1, where results obtained with mi-
croscopic (phenomenological) EOSs are displayed as thick solid (dashed)
curves. Moreover we consider the nine EOSs for hybrid stars with Mmax >

2 M⊙ in Table 3.1, obtained by performing a Gibbs phase transition be-
tween the BOB, V18, or N93 hadronic EOS and the DSM (FCM) EOS
characterized by different values of α = 1, 2 (V1 = 100, 150, 200 MeV). They
are displayed as thin broken curves.

According to Fig. 3.1 (see also Table 3.1), the predicted radii for a
M = 1.4 M⊙ NS span a range 11.6 ≲ R1.4 ≲ 13.1 km. Those values are
in agreement with the ones reported in Ref. [144], where an analysis of
the results of GW170817 was performed by using a general polytropic
parametrization of the EOS compatible with perturbative QCD at very
high density. In Ref. [144] it has been shown that the tidal deformability
limit of a 1.4M⊙ NS, Λ1.4 < 800, as found in GW170817, implies a ra-
dius R1.4 < 13.6 km. This has been updated to R1.4 < 13 km with a new
constraint of Λ1.4 < 580 [4].

For a better illustration, we present the tidal deformability Λ for the
considered EOSs as a function of radius in Fig. 3.2. The grey band rep-
resents the constraints of Λ1.4 as discussed. The bold curve segments
indicate the NS mass interval of 1 < M/M⊙ < 2. We also point out the
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configurations at 1.4M⊙ with open squares. As shown, we may exclude
the EOSs BOB and DBHF due to the condition 72 < Λ1.4 < 580. This
improves the prediction of R1.4 to 11.6 ≲ R1.4 ≲ 12.9 km. Note that hybrid
stars are not shown here simply because the hybrid branches set in at
high mass, above 1.7M⊙.

Interpretation of the GW170817 event also allowed to establish lower
limits on the NS radius: The condition of (meta)stability of the produced
hypermassive star after merger allowed to exclude very soft EOSs [159]
and to set thus a lower limit on the radius, R1.6 > 10.7 km [143], confirmed
by similar recent analyses [161, 162] in which R1.4 > (11.5 − 12) km. An
even higher lower limit R1.4 > 12.55 km [163] has been deduced from
the measurement of the neutron skin of 208Pb in the PREX experiment
[164]. Simulations with several different EOSs set also a lower limit on
the effective deformability Eq. (1.10), Λ̃1.4 > 400 [90], related to the black
hole formation time and the accretion disk mass of material left out of the
black hole. The latter was constrained from optical/infrared observations
of the remnant AT2017gfo [165, 166, 167, 168, 169]. Small values of Λ1.4
and therefore small values of R imply very fast black hole formation and
little material left in the disk, which is incompatible with observation. A
correlated lower limit R1.4 ≳ 12 km is obtained in this way.

On the other hand, as discussed in Sec. 1.3.4, smaller radii than these
lower limits were deduced from observations of thermal emission from
accreting NSs in quiescent LMXBs. By analyzing their X-ray spectra, the
observations seem to suggest for stars of mass about (1.4 − 1.5) M⊙ a ra-
dius in the range (9.9 − 11.2) km [15]. Those results have been criticized
in [170, 171, 172]: in particular the estimates of the radii are affected by
the uncertainties of the composition of the atmosphere. If the atmosphere
contains He, significantly larger radii are extracted. More recently [173]
it was shown that when allowing for the occurrence of a first-order phase
transition in dense matter (Model C), R1.4 is smaller than 12 km to 95%
confidence. However, R1.4 could be larger if NSs have uneven tempera-
ture distributions. Clearly, no firm conclusions can yet be reached and
we need to wait for new data such as the ones collected by the NICER
mission, in order to obtain independent and precise information on NS
radii.

We remark that this clash between large radii from GW170817 and
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small radii from quiescent LMXBs (if confirmed) could be resolved in the
two-families or twin-star scenarios, which we discuss in the following.

3.1.2 Modeling binary neutron star systems

In the case of an asymmetric binary system, (M, R)1 + (M, R)2, with mass
asymmetry q = M2/M1, and known chirp mass

Mc =
(M1M2)3/5

(M1 + M2)1/5
, (3.6)

the effective deformability is given by

Λ̃ =
16
13

(1 + 12q)Λ1 + (q + 12)Λ2

(1 + q)5 + (1↔ 2) (3.7)

with
[M1,M2]

Mc
=

297
250

(1 + q)1/5[q−3/5, q2/5] . (3.8)

We remind that the analysis of the GW170817 event [3] provided the
data Mc/M⊙ = 1.188+0.004

−0.002 (corresponding to M1 = M2 = 1.365 M⊙ for a
symmetric binary system), q = M2/M1 = 0.7 − 1 [corresponding to max-
imum asymmetry (M1,M2) = (1.64, 1.15) M⊙], and Λ1.4 < 580, being dis-
cussed before, from the phase-shift analysis of the observed signal. The
limit on Λ̃ was recently updated to 70 < Λ̃ < 720 [5]. A higher lower
limit can be deduced, Λ̃ > 400, combining with an analysis of the electro-
magnetic counterpart with kilonova [90]. In order to constrain EOSs with
these observational data we model binary systems with the considered
EOSs. The modeling of binary systems can be carried out in three differ-
ent scenarios, that are one-family, two-families and twin-stars scenarios,
based on the different types of component stars, see Table 3.2.

Let us start by constructing the standard one-family scenario assum-
ing both NSs in the binary system are hadronic stars. We choose the same
set of EOSs as shown in Fig. 3.2, i.e. BOB, V18, N93, UIX, DBHF, APR,
LS220 and SFHO.

For the two-families scenario, the massive component star (M1) is a
strange-quark star, while the hadronic star is assumed to be the one with
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Table 3.2: Three different scenarios for constructing a binary NS system.
The considered EOSs for each type of star are shown.

Scenario Heavy component M1 Light component M2

One family
Hadronic star

(BOB, V18, N93, UIX, DBHF, APR, LS220, SFHO)

Two families Quark star
(QS, QS2)

Hyperonic star
(SFHO+HD,SFHO+HD2)

Twin stars Hybrid star
(DBHF+CS,DBHF+CS2)

Hadronic star
(DBHF)

lower mass (M2). In fact, here we consider the hadronic star as hyperonic
NS, using the SFHO EOS with inclusion of delta resonances and hyper-
ons (SFHO+HD) [174]. In particular, we consider two parameterizations
corresponding to two different values for the coupling of the delta res-
onances with the sigma meson: xσδ = 1.15 (SFHO+HD) and xσδ = 1
(SFHO+HD2), while we set the couplings with the omega and the rho
meson to xωδ = x ρδ = 1. Concerning the quark matter EOS for the quark
stars, we adopt a simple parametrization of a strange-quark-matter EOS
(SQM) encoding both the non-perturbative phenomenon of confinement
and the perturbative quark interactions [175]. Two parameter sets are
considered: the set QS with B1/4

eff = 137.5 MeV and a4 = 0.7 whose maxi-
mum mass is Mmax = 2.1 M⊙, and the set QS2 with B1/4

eff = 142 MeV and
a4 = 0.9 whose maximum mass is also Mmax = 2.1 M⊙

In the twin-star scenario, a constant-speed-of-sound EOS (DBHF+CS),
which is characterised by the speed of sound cs, the pressure ptrans and
the discontinuity in energy density ∆ϵ at the transition, has been applied
to model hybrid stars. Here we take the results of [108] for the DBHF nu-
cleonic EOS and we set (ptrans/ϵ trans, ∆ϵ/ϵ trans, c2

s ) =(0.1, 1, 1) and (0.095,
0.0, 2/3) for the comparison. One needs to choose a speed of sound satu-
rating the causal limit, because with more normal values it is impossible
to obtain Mmax ≥ 2 M⊙ and R1.4 ≤ 12 km. Still a strong fine-tuning of the
parameters is needed in order to satisfy all constraints.

In Fig. 3.3 we display the mass-radius relations for the EOSs here
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Figure 3.3: Mass-radius relations for different EOS, indicating also values
of the tidal deformability Λ. Solid (dashed) curves for microscopic (phe-
nomenological) EOS, see text. Markers indicate the q = 0.7 configurations
for the two-families (•) and twin-star (■) scenarios. From Ref. [176].

adopted and we encode also the information on the tidal deformabili-
ties. Assuming that GW170817 was a symmetric system, one can convert
the constraint of 400 < Λ̃ < 720 [5] into 400 < Λ1.365 < 720, which predicts
12 km ≲ R1.5 ≲ 13 km, in agreement with the analysis of [144].

Note that the chosen hyperonic EOSs do not satisfy the two-solar-mass
limit, in particular SFHO-HD with a small maximum mass Mmax ≈ 1.6 M⊙
and a compact configuration, R1.5 < 11 km. Such EOSs would be excluded
within the standard one-family scenario in which all compact stars be-
long to the same family: in that scenario there is a one-to-one correspon-
dence between the mass-radius relation and the EOS. However, they are
allowed if one adopts the two-families scenario in which the heaviest stars
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q = M2/M1 for a binary NS system with fixed chirp mass Mc = 1.188M⊙
for different EOS. The shaded area is constrained by the GW170817 event
interpretation [5]. From Ref. [176].

are interpreted as quark stars, whereas the lighter and smaller stars are
hadronic stars [177, 178, 179, 180].

To constrain the EOS by the data of the event GW170817, we fix now
the chirp mass Mc = 1.188 M⊙ and compute Λ̃, Eq. (3.7), as a function
of mass asymmetry q = M2/M1 (q = 0.7 − 1), corresponding to a maxi-
mum asymmetry (M1,M2) = (1.64, 1.15)M⊙. The results are displayed in
Fig. 3.4. The one-family EOSs predict an effective deformability nearly
independent of asymmetry q, while there is a strong dependence for the
radii-asymmetric two-families and twin-star constructions. We remind
that when calculating Λ̃ within the two-families scenario, we assume that
the binary system is a mixed system with a light hyperonic star and a
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Figure 3.5: Smaller R1.5 radius of an asymmetric binary NS system and
possible range of Λ̃ with fixed chirp mass Mc = 1.188M⊙ and varying
q = 0.7 − 1 for different EOS. From Ref. [176].

heavy quark star. Similarly, within the twin-stars scenario we assume that
the most massive star is the hybrid star, see Table 3.2. The configurations
corresponding to maximum asymmetry q = 0.7 are indicated by markers
in Fig. 3.3 for both scenarios. In particular the twin-star configuration fea-
tures a very large radial asymmetry in this case: (R1, R2) = (10.7, 13.0) km,
which allows to achieve concurrently a very small radius R1 and a suf-
ficiently large Λ1.4 ≈ 600. Notice that in both of these scenarios, a non-
negligible dependence of Λ on q is found.

In Fig. 3.5, we display for the different EOSs here adopted the correla-
tion between the possible values of Λ̃ (for fixed Mc = 1.188M⊙ and varying
q in the range 0.7−1) and R1.5. In the case of the two-families or twin-stars
scenarios R1.5 denotes the radius of the most compact component. Within



57

the one-family scenario, one observes a very tight correlation between R1.5
and Λ̃1.4, where all the EOSs which fulfill the constraint Λ̃1.4 > 400 from
[90] lead to R1.5 > 11.8 km. This feature is violated if a second branch
of compact stars exists, as in the case of the two families or of the twin
stars. Moreover, for some choice of the parameters, it is possible to satisfy
Λ̃1.4 > 400 and obtain stellar configurations with R1.5 significantly smaller
than 12 km.

Within the twin-stars scenario, an extremely detailed parametric anal-
ysis was already performed in [108] by using the nucleonic EOSs DBHF
and BHF [138]. There, it was stressed that to obtain R1.5 smaller than
12 km, c2

s must be significantly larger than one third. In Fig. 3.5, we
have implemented an example (DBHF+CS2) for which R1.5 = 11.6 km, ob-
tained by fixing c2

s = 2/3. To reach smaller values of R1.5, even larger
sound speeds should be assumed. In the causal limit, c2

s = 1, one obtains
R1.5 = 10.7 km. We have considered here only the nucleonic EOS DBHF
because BHF is a rather soft EOS, and it would not be possible to satisfy
the limit Λ̃ > 400. In conclusion, the twin-stars scenario allows one to
reach radii smaller than 12 km while satisfying the limit on Λ̃, only for a
very small parameter space.

Conversely, for the two-families scenario, the parameter space is larger.
We can fulfill the limit Λ̃ > 400 with both the hadronic EOSs SFHO+HD
and SFHO+HD2, which lead to R1.5 = 10.6 km and to R1.5 = 11.2 km, re-
spectively. Only when combining the soft hadronic EOS SFHO+HD with
the soft quark EOS QS2, the limit on Λ̃ is not satisfied. Notice that in both
quark EOSs c2

s ∼ 1/3.
Let us now compare the two-families and twin-stars scenarios. In the

two families, the low-mass objects are made of hadrons and the presence
of delta resonances and/or hyperons allows one to reach small radii (and
very small values of Λ) for masses in the range (1.4–1.5)M⊙. The more
massive stars are instead quark stars and their radii are not extremely
small (their Λ has an intermediate value). In the twin-stars scenario, the
low-mass objects are made of nucleons and have large radii and large
Λ, while the most massive stars are hybrid stars with a very large quark
content and small radii and Λ. Note how in both these scenarios the
GW170817 event needs to be interpreted as a “mixed case”, in which
one of the objects is made only of hadrons and the other contains de-
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confined quarks. While these two scenarios are both able to interpret
the GW170817 event and to have very small values for R1.5, the differ-
ences in their mass–radius relation and composition will provide differ-
ent and testable outcomes for the three cases of mergers they are able to
produce: hyperonic star - hyperonic star, hyperonic star - quark star, and
quark star - quark star in the case of the two-families and hadronic star-
hadronic star, hadronic star-hybrid star, and hybrid star-hybrid star in the
case of the twin-stars. For instance, in the case of a merger of two light
compact stars, e.g., 1.2M⊙ + 1.2M⊙, the twin-stars scenario predicts very
large values of Λ̃, while for the two-families scenario, Λ̃ is significantly
smaller. This difference can easily be tested both through the GW signal
and through the kilonova.

3.2 Hints from the nuclear symmetry energy

It is very important that any property of the adopted EOS can be tested at
the saturation density ρ0 ≈ 0.17 fm3 of symmetric nuclear matter (SNM)
[N = Z , being N (Z ) the neutron (proton) number], where information
from laboratory data on finite nuclei is available. In general, in the vicin-
ity of the saturation point the binding energy per nucleon can be ex-
pressed in terms of the density parameter x ≡ (ρ− ρ0)/3ρ0 and the asym-
metry parameter δ ≡ (N − Z )/(N + Z ) as

E(ρ, δ) = ESNM(ρ) + Esym(ρ)δ2 , (3.9)

ESNM(ρ) = E0 +
K0

2
x2 , (3.10)

Esym(ρ) = S0 + Lx +
Ksym

2
x2 , (3.11)

where K0 is the incompressibility, S0 ≡ Esym(ρ0) is the symmetry energy
coefficient at saturation, and the parameters L and Ksym characterize the
density dependence of the symmetry energy around saturation. The in-
compressibility K0 gives the curvature of E(ρ) at ρ = ρ0, whereas S0
determines the increase of the energy per nucleon due to a small asym-
metry δ. These parameters are defined as
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K0 ≡ 9ρ2
0

d2ESNM

dρ2 (ρ0) , (3.12)

S0 ≡
1
2
∂2E
∂δ2 (ρ0, 0) ≈ EPNM(ρ0) − ESNM(ρ0) , (3.13)

L ≡ 3ρ0
dEsym

dρ
(ρ0) , (3.14)

Ksym ≡ 9ρ2
0

d2Esym

dρ2 (ρ0) . (3.15)

Properties of the various considered EOSs are listed in Table 3.3, namely,
the value of the saturation density ρ0, the binding energy per particle E0,
the incompressibility K0, the symmetry energy S0 [note that we use the
second definition involving the energy of pure neutron matter (PNM)
for the values in the table], and its derivative L at ρ0. The curvature of
the symmetry energy Ksym is only loosely known to be in the range of
−400 MeV ≲ Ksym ≲ 100 MeV [181, 182], and therefore will not be exam-
ined in the following. In Table 3.3 we have also included the experimental
ranges for the nuclear parameters and the data available so far from as-
trophysical observations.

We notice that all the adopted EOSs agree fairly well with the empiri-
cal values. Marginal cases are the slightly too low E0 and K0 for V18, too
small/large S0 for LS220/N93, and too low K0 for UIX and FSS2GC. The
L parameter does not exclude any of the EOSs.

An important test for the EOS has to do with the symmetry energy,
for which the experimental constraints are abundant at saturation density
(see, e.g., [187, 188, 189]). We show in Fig. 3.6 a set of different experimen-
tal constraints together with the values of (S0, L) predicted by the various
theoretical models considered in this paper. More in detail,
– the label “HIC" (blue region) corresponds to the constraints inferred
from the study of isospin diffusion in heavy ion collisions (HICs) [190];
– the label “Polarizability" (violet region) represents the constraints on
the electric dipole polarizability deduced in [191];
– the label “Sn neutron skin" (grey region) indicates the constraints de-
duced from the analysis of neutron skin thickness in Sn isotopes [192];
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Figure 3.6: Correlations between symmetry energy S0 and its slope L
at the saturation density. The markers represent the predictions of the
considered EOSs. See text for details on the various constraints. From
Ref. [105].

– the label “FRDM" (rectangle) corresponds to the values of S0 and L in-
ferred from finite-range droplet mass model calculations [193];
– the label “IAS +∆rnp” (green diagonal region) indicates the isobaric-
analog-state (IAS) phenomenology combined with the skin-width data,
and represents simultaneous constraints by Skyrme-Hartree-Fock calcu-
lations of the IAS and the 208Pb neutron-skin thickness [194];
– the horizontal band (in red color) labeled “Neutron stars” is obtained
from a Bayesian analysis of mass and radius measurements of NSs by
considering the 68% confidence values for L [195];
– the dashed curve is the unitary gas bound on symmetry energy param-
eters derived in Ref. [181]: only values of (S0, L) to the right of the curve
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Table 3.3: Saturation properties and NS observables predicted by the
considered EOSs. See text for details. From [105].

EOS ρ0[fm3] −E0[MeV] K0[MeV] S0[MeV] L[MeV]
BOB 0.170 15.4 238 33.7 70
V18 0.178 13.9 207 32.3 67
N93 0.185 16.1 229 36.5 77
UIX 0.171 14.9 171 33.5 61

FSS2CC 0.157 16.3 219 31.8 52
FSS2GC 0.170 15.6 185 31.0 51
DBHF 0.181 16.2 218 34.4 69
APR 0.159 15.9 233 33.4 51

LS220 0.155 15.8 219 27.8 68
SFHO 0.157 16.2 244 32.8 53
Exp. ∼ 0.14–0.17 ∼ 15–16 220–260 28.5–34.9 30–87
Ref. [183] [183] [184, 185] [95, 186] [95, 186]

are permitted.

All considered constraints are not simultaneously fulfilled in any area
of the parameter space, and this is probably due to the model dependen-
cies that influence the derivation of constraints from the raw data, besides
the current uncertainties in the experimental measurements. Given this
situation, at the moment no definitive conclusion can be drawn and, ex-
cept for models predicting values of the symmetry energy parameters
outside the limits given in Table 3.3 (like the LS220 or the N93 EOS), no
theoretical models can be ruled out a priori on this basis.

A further crucial point in the understanding of the nuclear symmetry
energy is its high-density behavior, which is among the most uncertain
properties of dense neutron-rich matter. Its accurate determination has
significant consequences in understanding not only the reaction dynam-
ics of heavy-ion reactions, but also many interesting phenomena in astro-
physics, such as the explosion mechanism of supernovae and the prop-
erties of NSs. In fact several aspects of the NS structure and dynamics
depend crucially on the symmetry energy, e.g., the composition and the
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onset of the direct Urca cooling reaction, which is a threshold process de-
pendent on the proton fraction controlled by the symmetry energy. This
will be discussed in Sec. 5.1.1.

A big experimental effort has been devoted during the last few years
to constrain the high-density symmetry energy using various probes in
HICs at relativistic energies. Fig. 3.7 displays some constraints deduced
for the density dependence of the symmetry energy from the ASY-EOS
data [196] (green band) and the FOPI-LAND result [197] (blue band) as a
function of the density. The results of Ref. [190] are reported in the grey
area (HIC Sn+Sn), whereas the dashed contour labeled by IAS shows
the results of Ref. [194]. We observe that the experimental results ex-
hibit a monotonically increasing behavior with increasing density, and
that several microscopic EOSs turn out to be compatible with experi-
ments, except LS220 around saturation density, whereas N93, FSS2CC,
and FSS2GC above the saturation density are only marginally compatible
with the data.
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3.3 Correlations between neutron-star and
nuclear-matter observables

The extraction of the gross properties of the nuclear EOS from HICs data
has been one of the main objectives in terrestrial nuclear experiments in
the last two decades. In fact HICs at energies ranging from few tens to
several hundreds MeV per nucleon produce heavily compressed nuclear
matter with subsequent emission of nucleons and fragments of different
sizes. The experimental analysis has been performed using the trans-
verse flow as an observable, since it strongly depends on the pressure
developed in the interaction zone of the colliding nuclei at the moment of
maximum compression. The fireball density reached during the collision
can also be probed by subthreshold K+ production, since this depends
on its incompressibility, as shown by the data collected by the KaoS col-
laboration [198]. A combined flow and kaon production analysis was
presented in Ref. [199], where a region in the pressure vs. density plane
was identified, through which a compatible EOS should pass.

That analysis is displayed in Fig. 3.8 (left panels) as a grey box for
the flow data by the FOPI collaboration [201], and as a brown box for
the KaoS collaboration [198]. Those results point in the direction of a soft
EOS, with values of the incompressibility in the range 180 ≤ K ≤ 250 MeV
close to the saturation density. We observe that almost all considered
EOSs are compatible with the experimental data, except the BOB, V18,
and DBHF EOS, which are too stiff at large density, where the analysis
could however be less reliable due to the possible appearance of other
degrees of freedom besides nucleons. Such densities are actually never
reached in HICs. For completeness, we display in the central panels (b)
the pressure for the PNM case.

The EOS governs also the dynamics of NS mergers. In fact, the possi-
ble scenarios of a prompt or delayed collapse to a black hole or a single
NS, following the merger, do depend on the EOS, as well as the amount
of ejected matter which undergoes nucleosynthesis of heavy elements.
During the inspiral phase, the EOS strongly affects the tidal polarizabil-
ity Λ, Eq. (3.1). The first GW170817 analysis for a 1.4 M⊙ NS [3] gave
an upper limit of Λ1.4 < 800, which was later improved to Λ1.4 = 190+390

−120
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Figure 3.8: Pressure vs. baryon density for the considered EOSs on a log-
arithmic (upper row) or linear (lower row) scale for (a) symmetric mat-
ter, (b) pure neutron matter, (c) beta-stable matter, and (d) the symmetry
pressure. In (a) constraints derived from HICs data are reported as brown
band (KaoS experiment) and grey band (Flow data). In (c) the GW170817
constraints [4] are reported. The markers in (d) are from the data anal-
ysis of Ref. [200]. The thick curves represent the compatible quantity
pβ − pSNM, whereas the actual symmetry pressure pPNM − pSNM is shown
by thin curves. See text for more details. From Ref. [105].

by assuming that both NSs feature the same EOS [4]. In this new anal-
ysis, the values of the pressure as a function of density were extracted,
and those are displayed as colored areas in Fig. 3.8(c), in which the blue
(green) shaded region corresponds to the 90% (50%) posterior confidence
level. We notice that almost all EOSs turn out to be compatible with the
GW170817 data at density ρ > 2ρ0, with BOB in marginal agreement at
large density. This constraint combined with the recent observation of the
new maximum mass M = 2.14+0.10

−0.09 M⊙ of PSR J0740+6620 [74] represents
at the moment the strongest test for any EOS model. In our case, the V18
EOS appears the most compatible with both data sets. This point has also
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been discussed in the framework of phenomenological EOSs [202], where
the combined data help to constrain the range of values of the stiffness
of isospin-symmetric nuclear matter. A further comparison of HIC data
with GW observations can be found in Ref. [203].

Another interesting quantity to consider is the so-called symmetry
pressure,

psym(ρ) = ρ2 dEsym(ρ)
dρ

≈ pPNM(ρ) − pSNM(ρ) , (3.16)

[the last equation is valid in the case of the quadratic approximation
Eq. 3.9], which adds to the pressure of an isospin-symmetric system
with N = Z . Its contribution is very important because it is related
to the poorly known symmetry energy at large density, and plays a big
role in the determination of the proton fraction, for instance, crucial for
NS cooling simulations. More precisely, the pressure of beta-stable mat-
ter (including electrons) with asymmetry δ(ρ) = (ρn − ρe)/ρ is given by
[202, 204, 205]

pβ (ρ) = pSNM(ρ) + δ2psym(ρ) +
δ(1 − δ)

2
ρEsym(ρ) . (3.17)

For small electron fractions one has δ ≈ 1 and

psym ≈ pβ − pSNM . (3.18)

This quantity is displayed in Fig. 3.8(d) using thick curves. The markers
with error bars are the corresponding results of the analysis performed
in Ref. [200], where a subtraction procedure has been proposed between
the kaon data (white dots) and flow data (blue dots) for SNM, both dis-
played in panel (a), and the GW170817 event constraints shown in panel
(c), assuming matter in beta-stable condition. We see that the symmetry
pressure increases rapidly with the baryon density, as many microscopic
EOSs predict, except at densities above ρ ≳ 0.7 fm3, where most EOSs
show a saturating behavior and thus a different trend with respect to
the analysis of the (Flow) data. However, such high densities are never
actually reached in HICs.

We also point out that the true symmetry pressure psym ≈ pPNM − pSNM
[thin curves in Fig. 3.8(d)] can be substantially larger than the approxi-
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Figure 3.9: Tidal deformability (upper panels) and radius (lower panels)
of a 1.4 M⊙ NS vs. the pressure (left panels) and the incompressibility
K (right panels) of beta-stable matter at twice the saturation density. The
light and dark shaded bands in the upper row represent the limits derived
in [4, 91], respectively. From Ref. [105].

mation Eq. (3.18), if one takes properly into account the EOS for PNM,
which is significantly stiffer than the beta-stable EOS for most considered
models, compare Figs. 3.8(b) and (c).

We just discussed both nuclear matter and neutron-star observables
constraints on the pressure of symmetric nuclear matter and of beta-stale
matter, respectively, and the connection of these two pressures. In order
to better understand the properties of nuclear matter, it would be very
interesting to find correlations between GW170817 observations on NS
properties and microscopic constraints from nuclear measurements, as
the ones just discussed. For this purpose, the limits derived for the tidal
deformability could be very valuable.
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Figure 3.10: The tidal deformability of a 1.4 M⊙ NS as a function of the
symmetry energy S0 (left panel), its derivative L (middle panel), and the
incompressibility K0 at saturation density ρ0 for all the considered EOSs.
The shaded areas represent the limits listed in Table 3.3. From Ref. [105].

We now turn to the discussion of our results. In Ref. [204] it was found
that for a wide choice of nuclear EOSs the NS radius is strongly correlated
with the pressure of beta-stable matter p = ρ2dEβ/dρ at a density ρ ≈ 2ρ0.
According to the previous discussion this correlation is then also valid
between Λ1.4 and pressure. This is also confirmed for our set of EOSs
as shown in Fig. 3.9 (left panels), whereas weaker correlations appear
with the incompressibility K = 9ρ2d2Eβ/dρ2 under the same conditions,
displayed in the right panels.

For completeness, we have calculated the correlation factors

r (x, y) =
1

n − 1

∑
x
∑

y (x − x̄)(y − ȳ)
sx sy

, (3.19)

where n is the number of data pairs, x̄ and ȳ are the sample means of
all the x and y values, respectively; and sx and sy are their standard
deviations. In our case the results are

r (p,Λ1.4) = 0.982 , r (p, R1.4) = 0.971 , (3.20)
r (K,Λ1.4) = 0.885 , r (K, R1.4) = 0.846 , (3.21)
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which confirm the above statements, i.e., stronger (weaker) correlations
among pressure p, Λ1.4, and R1.4 (K , Λ1.4, and R1.4).

The green bands displayed in the upper panels represent the limits on
Λ1.4 derived in [4, 91]; in particular the lower limits, i.e., Λ1.4 = 190+390

−120
[4] (light green) and Λ1.4 > 300 [91, 92] (dark green), are important for
the determination of the radius, which corresponds to R1.4 = 11.9+1.4

−1.4 km
in the former case, and R1.4 = 12.2+1.0

−0.8 ± 0.2 km in the latter one. For
completeness, we have checked whether this correlation applies also to
NS masses different from 1.4 M⊙, but it becomes slightly weaker with
increasing NS masses. Thus the determination of the tidal deformability
or the NS radius could put constraints on the pressure and the symmetry
pressure at twice the saturation density [204, 142], or vice versa. The
current limits exclude only the DBHF EOS due to its too high Λ1.4 value.

Following the same method, we have tried to find correlations be-
tween NS observables and properties of SNM around saturation density.
Results are displayed in Fig. 3.10 (the green bands display the same con-
ditions as in Fig. 3.9), where the tidal deformability of a 1.4 M⊙ NS is
reported as a function of the symmetry energy S0 (left panel), its slope
L (middle panel), and the incompressibility K0 (right panel), all taken at
saturation density. Apparently no evident correlations between the tidal
deformability and S0 and K0 do exist, whereas some degree of correlation
is found with L, as confirmed by the corresponding correlation factors

r ([S0, K0, L],Λ1.4) = [0.128, 0.300, 0.808] . (3.22)

Similar results were found also in Refs. [206, 207, 208, 209], with sev-
eral EOSs based on the RMF model and the Skyrme-Hartree-Fock ap-
proach.



Chapter 4
The essential physics of neutron
star cooling

As introduced in Chapter 1, the study of the cooling behavior of NSs is
a possible way to constrain the EOS. In the following of this thesis, we
study the cooling evolution of NS applying the microscopic EOSs, which
have been tested in the previous chapter by various constraints from as-
trophysical observations and terrestrial nuclear experiments, and discuss
the constraints from the cooling observations on EOSs. While comput-
ing mass, radius and tidal deformability of NSs requires only a known
relation between total pressure and total energy density, the simulation
of NS cooling depends on a detailed description of interior composition
which determines the heat transport and amount of neutrino emission.
Furthermore, the possible presence of a superfluid, which barely affects
the structure of NS, is important to the NS cooling.

In this chapter, we briefly introduce the simulation of the cooling evo-
lution, which is dominated by the thermal balance equation and thermal
transport equation, and some key ingredients in cooling simulations such
as neutrino emission and the presence of pairing gaps. The NSCOOL
code [210], employed for performing cooling simulation, is introduced in
the last section.
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4.1 Equations of thermal evolution

The cooling evolution of a spherically symmetric NS can be characterized
by two equations: the equation of thermal balance and the equation of
thermal transport.

For a spherical shell in the star, the change of thermal energy is caused
by the neutrino emission, heat flux passing through the surface and the
possible heating sources, for example, by converting magnetic or rota-
tional energy into thermal energy [21]. This gives the thermal balance
equation

1
4πr2e2Φ

√
1 −

2Gm
r
∂

∂r
(e2ΦLr ) = −Qν +Qh −

Cv

eΦ
∂T
∂t
, (4.1)

where Φ is the metric function, m is the gravitational mass enclosed inside
the sphere of radius r , Qν and Cv are the neutrino emissivity and the
specific heat capacity, the term Qh stands for all heating sources. The local
luminosity Lr is defined as the non-neutrino heat flux passing through
the surface of a spherical shell, as shown in Fig. 4.1. Since the heat flux
is transported through thermal conduction, one can write the equation of
thermal transport as

Lr

4πκr2 = −

√
1 −

2Gm
r

e−Φ
∂

∂r
(TeΦ), (4.2)

where κ is the thermal conductivity. Obviously, Eqs. 4.1 and 4.2 are par-
tial differential equations for luminosity Lr and temperature T . Both Lr

and T depend on the radial coordinate r and time t. One has to solve
these two equations in order to obtain L(r, t) and T (r, t). On the sur-
face, luminosity and temperature can be connected by the Planck law
Lγ = Lr (R, t) = 4πσB R2T4

s (t), where Lγ and Ts are photon luminosity
and effective temperature, respectively. From astrophysical observation,
observable quantities are apparent photon luminosity L∞γ and apparent
effective surface temperature T∞s , defined as

L∞γ = Lγ (1 − 2GM/R) = 4πσ(T∞s )4R2
∞, (4.3)

T∞s = Ts
√

1 − 2GM/R, (4.4)
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Figure 4.1: Schematic diagram of heat transport in the spherically sym-
metric star.

where R∞ = R/
√

1 − 2GM/R is the apparent radius. Hence, by solving
Eqs. 4.1 and 4.2, one can obtain the dependence of the apparent photon
luminosity L∞γ (or of T∞s ) on the stellar age t. This is the main goal of the
cooling theory.

4.2 Neutrino emissivity

NSs are born with about 1011 K and cool down via neutrino emission
from the core. This process will last several thousand years before the
photon emission dominates the cooling where the NSs are already hard
to be observed. So the possible channels of neutrino processes in the NS
core are important to the cooling of NSs.

The most powerful process in nuclear matter (composed of n, p and e)
is the Direct Urca (DU) process,

n → p + e−+ ν̄e and p + e− → n + νe, (4.5)

which is actually the neutron β decay and inverse reaction in thermal
equilibrium. The derivation of the emission rate QDU of the DU process
has been carried out in Ref. [2], and the result is given as

Q(DU) =
457π
10080

G2
F cos2 θC (1 + 3g2

A)
m∗nm∗pm∗e

h̄10c3
(kBT )6

Θnpe

≈ 4.0 × 1027(
ne

n0
)1/3 m∗nm∗p

m2
n

T6
9Θnpe ergcm−3s−1, (4.6)
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where GF is the weak coupling constant, θc is the Cabibbo angle (cos θ2
c ≈

0.948), m∗i (i = n, p, e) is the effective particle mass, mn the bare neutron
mass, ne electron number density, n0 is the saturation number density, T6

9
is the temperature in the unit of 109 K and Θnpe is the step function, equals
to 1 if the momentum conservation law is satisfied for the reactions, and
Θnpe = 0 otherwise. This requires the proton fraction to be larger than
∼ 13%. The threshold value would be slightly higher if the muon appears
also.

We notice that the effective nucleon mass, in principle, should be cal-
culated from the same microphysical interaction as employed for the
EOS. In the BHF approach, the effective masses can be expressed self-
consistently in terms of the s.p. energy e(k),

m∗

m
=

k
m
[
de(k)

dk
]−1. (4.7)

The influence of the effective mass on neutrino emission rates has been
evaluated in Ref. [211]. However, as suggested in Ref. [61], the effect
can be absorbed into a rescaling factor of the pairing gaps that we also
considered in cooling simulation, and therefore we simply use the bare
nucleon mass here.

When the DU process is forbidden, due to a too low proton frac-
tion or the presence of superfluidity, the main contribution to the cooling
comes from less efficient neutrino processes such as modified Urca pro-
cess (MU), the bremsstrahlung (BS) and the Cooper pair formation pro-
cess (PBF) appearing in a superfluid. The emissivities of these processes
are summarized in Table 4.1. A detailed description of these reactions,
including the emissivity and its derivation, can be found in Ref. [2].

Similar to nuclear matter, the most powerful neutrino emission from
quark matter is also the DU process via the direct and inverse β decay
[212, 2, 20]. As quark matter consists of deconfined u, d, s quarks with
an admixture of leptons, there are three possible branches of quark DU
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reactions of interest for neutrino emission:

d → u + e−+ ν̄e and u + e− → d + νe , (4.8)
s → u + e− + ν̄e and u + e− → s + νe , (4.9)
s → d + e− + ν̄e and d + e− → s + νe . (4.10)

However, the sd branch is prohibited by the mechanism proposed by
Glashow [212], and only the ud and us branches give contributions to the
neutrino emission.

Let us start with reactions of the ud branch. u and d quarks are rel-
ativistic particles so that their mass can be neglected. If we treat these
quarks as free particles, one would immediately obtain pFd

= pFu + pFe

in terms of the beta-stable conditions, µd = µs = µu + µe. This basically
suppresses the reactions of the ud branch because they would be allowed
only if u and e were emitted in the same direction. Accordingly, it is neces-
sary to take into account interactions between quarks. In fact, deconfined
quarks are not completely free but coupled in the core of NS. Since u and
d are relativistic particles, the correction for the chemical potential, to the
lowest order in αs = g2/16π (g being the quark-gluon coupling constant),
is given by

µi = (1 +
8

3π
αs)pF (i), i = u, d. (4.11)

Hence, the Fermi momenta of u, d and e do not need to be collinear in
order to activate β decay of d quarks. The calculation of emissivity is
performed in Ref. [212] and gives

ϵ (d)
Q =

914
315
αs (GF cos θc)2k (d)

F k (u)
F k (e)

F T6 . (4.12)

Due to the moderate mass of s quarks, the calculation of emissivity of
the us branch does not rely on interactions. Finite mass takes the role of
αs and in this case the chemical potential can be written as

µs =

√
p2

Fs
+m2

s, (4.13)

which enables the β decay of s quarks to proceed. The resulting neutrino
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Table 4.1: Various neutrino processes and the corresponding emission
rates [21]. The q denotes any flavor of quarks and R are reduction factors
induced by the pairing gaps. DU is the fast neutrino emission process,
while the others are the neutrino processes with low emitting efficiency.
The cooling of NSs is dominated by DU processes once they are active.

Name Process Emissivity
(erg cm−3s−1)

I. Nuclear matter

Direct Urca
n → p + e− + ν̄e

∼ 1027RT6
9p + e− → n + νe

Modified Urca
(n branch)

n + n → n + p + e− + ν̄e
∼ 2 × 1021RT8

9n + p + e− → n + n + νe
Modified Urca
(p branch)

p + n → p + p + e− + ν̄e
∼ 1021RT8

9p + p + e− → p + n + νe

Bremsstrahlung
n + n → n + n + ν + ν̄

∼ 1019RT8
9n + p→ n + p + ν + ν̄

p + p→ p + p + ν + ν̄

Cooper pair
formation

n + n → [nn] + ν + ν̄ ∼ 5 × 1021RT7
9

p + p→ [pp] + ν + ν̄ ∼ 5 × 1019RT7
9

II. Quark matter
Direct Urca (ud
branch)

u + e− → d + νe
∼ 1026RT6

9d → u + e− + ν̄e
Direct Urca (us
branch)

u + e− → s + νe
∼ 1025RT6

9s → u + e− + ν̄e
Modified Urca
(ud branch)

q + u + e− → q + d + νe
∼ 1021RT8

9q + d → q + u + e− + ν̄e
Modified Urca
(us branch)

q + u + e− → q + s + νe
∼ 1020RT8

9q + s → q + u + e− + ν̄e



75

emissivity is also given in Ref. [212],

ϵ (s)
Q =

457π
840

(1 − cos θ34)(GF sin θc)2µsk (u)
F k (e)

F T6 , (4.14)

where θ34 comes from the decay kinematics and k (i)
F (i = u, e) is the Fermi

momentum of each particle. The absence of the strong coupling constant
in Eq. (4.14) also indicates that the beta decay of the d quark is due to the
strong interaction, whereas the one of the s quark is triggered by the finite
quark mass [212]. This results in somewhat different neutrino emission
rates. In general, the s quark DU process gives a smaller emissivity [2,
212], but above a certain density it could be the most prominent emission.

Comparing to the nucleonic DU process, which requires a threshold
density [213], the quark DU process switches on immediately at the onset
of quark matter since the electron fraction is high enough. In fact, if the
density is large, the quark DU reactions could be completely switched off
because of the too small electron fraction not fulfilling the Fermi momen-
tum conservation [214].

In addition to the DU processes, there are also quark MU processes,
which are much weaker than DU processes. Since the quark DU processes
do not have a threshold density, the quark MU processes are negligible
unless the quark pairing is taken into account. Note that quark DU pro-
cesses are suppressed due to small fraction of electrons, while the quark
MU remain active. However, this happens at extremely high density be-
yond the ones in NSs. The various neutrino reactions are summarized in
Table 4.1.

4.3 Pairing

NS cooling is affected not only by the dense matter composition, but
also by the neutron and proton superfluidity, as predicted by many mi-
croscopic theories [2]. These superfluids are produced by the pp and nn
Cooper pairs formation due to the attractive part of the NN potential, and
are characterized by a critical temperature Tc. The dominant channels of
the neutron and proton superfluidity are the 1S0 and the coupled 3PF2
channels. The nn interaction in the 1S0 state is repulsive at supernuclear
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Figure 4.2: Examples of control functions for Cv (left panel), Qν for MU
processes (central panel) and the PBF process (right panel). From Ref.[21].

density, thus the neutron 1S0 gap (n1S0) only appears in the crust and
neutron superfluidity at high density is caused by the 3P2 state which
remains attractive. The interactions of protons in both 1S0 state and 3P2
state are attractive and can result in the proton superfluidity, however, the
proton 3P2 gap remains uncertain at extreme density and is disregarded
in our work.

The presence of superfluid gaps in the nucleon energy spectrum re-
duces the neutrino reaction rates and specific heat. The reduced results
can be simply characterized by the unpaired results including control
functions [21],

Q(T ) → Qpaired
ν (T ) = Rν (T/Tc) ×Qnormal

ν , (4.15)

Cv (T ) → Cpaired
v (T ) = Rc(T/Tc) ×Cnormal

v , (4.16)

where Rν’s for many processes can be found in Ref. [2], Rc is the con-
trol function for the specific heat being calculated in Ref. [18] for both
1S0 and 3P2 gaps. Some examples of control functions for neutrino emis-
sivity are shown in Fig. 4.2. The neutrino emissivity is exponentially
reduced, together with the specific heat. However, the pairing gaps of
each component only affect the reactions involving it. For instance, the
proton superfluidity does not affect the neutron-neutron bremsstrahlung,
but strongly suppresses both Urca processes.

On the other hand, the baryon superfluidity initiates a specific neu-
trino emission due to Cooper pairing of nucleons, called the pair break-
ing and formation (PBF) processes. These processes take place only in
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the presence of superfluidity, with the energy released in the form of a
neutrino-antineutrino pair when a Cooper pair of baryons is formed. As
an example, the PBF of neutron n3P2 has the emissivity

Qn3P2
ν = 8.6 × 1021(

nb

n0
)1/3(

m∗n
mn

) × Rn3P2(T/Tc)T7
9 (4.17)

where Rn3P2 is the control function shown in right panel of Fig. 4.2. As we
can see, when the temperature descends to Tc of a given type of baryons,
the PBF process sets in and becomes maximally efficient when T ≈ 0.8 Tc,
and then is exponentially suppressed for T ≪ Tc [2].

4.4 NSCOOL code

In this work, we use the widely used NSCOOL code [210] which is able
to carry out the cooling simulations of NSs, hybrid stars and strange
quark stars. The code adopts an implicit scheme (Henyey-type scheme)
and solves the partial differential equations (Eqs. 4.1 and 4.2) on a grid
of spherical shells. The inner boundary condition is taken at r = 0 with
Lr (r = 0) = 0. Since the outer envelope, the so-called heat-blanketing en-
velope, contains a large temperature gradient and possible changes of the
mass and composition due to accretion for instance, the outer boundary
is cut at a radius r = rb. In numerical simulation, the rb is chosen that
corresponds to the point where L(rb) ≡ Lγ, and typical this point is taken
as ρb = 1010g cm−3 [21]. Hence the outer boundary condition becomes

L(rb) = 4πR2σ[Te(Tb)]4, (4.18)

where Tb is the temperature at r = rb, and the relation between Te and Tb

is determined by the envelope models.
Each simulation starts with a constant initial temperature profile,T̃ =

TeΦ = 1010K , and no heat transport, Lr = 0. It was found that the cool-
ing curves are not sensitive to the initial temperature profile. We notice
that beneath the heat-blanketing envelope the star’s structure, including
mass, radius and composition, is assumed to be unchanged throughout
the entire cooling simulation.
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Regarding the most important ingredient - neutrino emissivity, this
code comprises all relevant cooling reactions as introduced in Sec. 4.2:
nucleonic DU, MU, PBF and BS in the nuclear matter; and quark DU and
MU in the quark matter. The modifications of neutrino emissivity due to
the pairing gaps are also included. In order to reflect the uncertainty of
the gap, the scaling factors of each gap are introduced in this code.

Moreover, various processes in the crust are included, such as the most
important electron-nucleus bremsstrahlung, plasmon decay, electron-ion
bremsstrahlung, etc. A detailed introduction of these processes can be
found in Ref. [2].



Chapter 5
Thermal evolution of neutron stars

In this chapter, we study NS cooling with several microscopic nuclear
EOS based on different nucleon-nucleon interactions and three-body forces,
and compatible with the recent GW170817 NS merger event as tested in
Chapter 3. They all feature strong DU processes. We find that all mod-
els are able to describe well the current set of cooling data for isolated
NSs, provided that large and extended proton 1S0 (p1S0) gaps and no
neutron 3P2 gaps are active in the stellar matter. We then analyze the NS
mass distributions predicted by the different models and single out the
preferred ones.

Furthermore, we model and quantize in the same way the cooling of
hybrid NSs combining a microscopic nuclear EOS in the BHF approach
with different quark models. We find that also in this scenario the possi-
bility of neutron p-wave pairing can be excluded.

This chapter is a modified version of the following articles:

[1] J.-B. Wei, G. F. Burgio and H.-J. Schulze, Neutron star cooling with
microscopic equations of state, MNRAS 484, 5162 (2019).

[2] J.-B. Wei, G. F. Burgio, H.-J. Schulze and D. Zappalà, Cooling of
hybrid neutron stars with microscopic equations of state, MNRAS 498, 344
(2020).
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5.1 Cooling of nucleonic stars

5.1.1 Structure and composition

During the cooling simulation, some quantities such as mass, radius and
internal profile of the NS remain unchanged. Thus we are able to de-
termine when the DU process is active from the known EOS and NS
structure.

For the different EOSs used in this work, the DU process sets in at
slightly different values of the proton fraction xp due to the presence of
muons, as shown in Fig. 5.1. The threshold values xDU are calculated
starting from Eq. (4.5), in which the momentum conservation imposes
the triangle rule, i.e.,

k (n)
F < k (p)

F + k (e)
F . (5.1)

This is indicated by the vertical dotted lines in Fig. 5.1 for the different
EOSs, and xDU is comprised in the range 0.133 < xDU < 0.136. It is im-
portant to determine at which corresponding value ρDU of the nucleon
density of beta-stable and charge-neutral matter the DU process sets in,
because compact stars characterized by central densities larger than ρDU
will cool down very rapidly. This is also displayed in Fig. 5.1 and occurs
in a density range between 0.30 and 0.45 fm−3 depending on the EOS.
In the lower panel we display the NS mass-central density relations ob-
tained by solving the TOV equations for hydrostatic equilibrium. The NS
masses MDU corresponding to the central densities ρDU span a range be-
tween 0.82 M⊙ (N93) and 1.56 M⊙ (BOB), above which the DU process can
potentially operate. As discussed in Chapter 3, in all cases (marginally for
the UIX) the value of the maximum mass Mmax is larger than the current
observational lower limits [73, 158, 216].

The main results for xDU, ρDU, MDU, and Mmax are also listed in Ta-
ble 5.1. We conclude that in all cases there is a wide range of NS masses
where the DU process is operative, practically for all NSs with the V18
and N93 EOSs, while only for the BOB EOS the threshold MDU = 1.56 M⊙
is high, but in this case also Mmax = 2.51 M⊙ is very large.
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Figure 5.1: DU onset condition (upper panel), proton fraction (central
panel), and NS mass (lower panel) vs. the (central) baryon density for the
different EOSs. The vertical dotted lines indicate the threshold density
for the DU process. From Ref. [215].
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Table 5.1: Characteristic properties of several EOSs: DU onset proton
fraction xDU, density ρDU, and corresponding NS mass with that central
density MDU. Upper limit of the range of p1S0 pairing ρ1S0 and NS mass
with that central density M1S0. Maximum NS mass Mmax. Densities are
given in fm−3 and masses in M⊙. From Ref. [215].

EOS xDU ρDU MDU ρ1S0 M1S0 Mmax

BOB 0.1357 0.41 1.56 0.59 2.23 2.51
V18 0.1348 0.37 1.01 0.60 1.92 2.34
N93 0.1331 0.30 0.82 0.52 1.59 2.13
UIX 0.1363 0.45 1.17 0.70 1.70 2.04

5.1.2 Cooling diagrams of non-superfluid stars

For a better understanding, we begin by discussing the simulations ob-
tained with different EOSs without including any superfluidity. Results
are displayed in Fig. 5.2, where the luminosity vs. age is plotted for sev-
eral NS masses in the range 1.0, 1.1, ...,Mmax (solid black curves). The
dashed green curves mark the NS mass MDU + 0.01 M⊙ at which the DU
process has just set in, whereas the dotted green curves correspond to the
maximum mass Mmax.

Our set of observational cooling data comprises the (age, tempera-
ture/luminosity) information of the 19 isolated NS sources listed in [51],
where it was also pointed out that in many cases the distance to the ob-
ject, the composition of its atmosphere, thus its luminosity, and its age are
rather estimated than measured. Thus in these cases, we use large ad-hoc
error bars (a factor 0.5 and 2) to reflect this uncertainty.

The results are clearly unrealistic, as observed NSs would essentially
be divided into very hot ones and very cold ones by the DU threshold
MDU, with very few stars in between: In a NS with M < MDU, the DU
process is turned off and therefore the total neutrino emissivity is orders
of magnitude smaller than for a NS with a mass above the DU threshold.
Consequently the former has at a given age (t ≳ 300 yr) a much higher
luminosity than the latter. All NSs with M < MDU have a small neutrino
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Figure 5.2: Cooling curves for different EOSs without any pairing for
different NS masses M/ M⊙ = 1.0, 1.1, . . . ,Mmax (decreasing curves). The
dashed green curves mark the NS mass MDU + 0.01 M⊙ at which the DU
process has just set in, and the dotted green curves correspond to Mmax
for each EOS. The black curves are obtained with a Fe atmosphere and
the shaded areas cover the same results obtained with a light-elements
(η = 10−7) atmosphere. The data points are from [51]. See text for more
details. From Ref. [215].

emissivity, hence their cooling curves are nearly indistinguishable on the
scale of Fig. 5.2, while for objects with M > MDU, the larger is the mass
and thus the bigger is the central region of the star where the DU process
operates, the lower is the luminosity and the cooling curves are no longer
superimposed.

This feature depends on the EOS as explained in Sect. 5.1.1. For ex-
ample, in the N93 case the DU onset takes place at a very small value
of the density and the related gravitational mass MDU = 0.82 M⊙, and
therefore all NS masses undergo DU processes. In the V18 case, the
DU process starts for a 1.01 M⊙ NS, and therefore only the first upper
curve is influenced by MU alone, whereas the remaining ones are deter-
mined by DU cooling. The other EOSs have higher threshold values of
MDU/M⊙ = 1.17, 1.56 for the UIX and BOB, respectively.
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5.1.3 Cooling diagrams of superfluid stars

We now discuss the effect of pairing gaps on the cooling evolution. The
pairing gaps we employed are computed with the V18 NN interaction,
and using TBF and effective masses derived from the corresponding EOS,
thus performing a completely consistent description [17]. We remind that
the pairing gaps were computed on the BCS level by solving the (angle-
averaged) gap equation in the T = 1 and S = 0, L = 0 (1S0) or S = 1,
L = 1, 3 (3PF2) channels [217, 218, 219, 220, 221, 222]. The relation between

(angle-averaged) pairing gap at zero temperature ∆ ≡
√
∆2

L (kF ) + ∆2
L′ (kF )

obtained in this way and the critical temperature of superfluidity is then
Tc ≈ 0.567∆. For further details concerning the formalism, one can refer
to the above quoted references.

For a better understanding, we display in Fig. 5.3 the BCS pairing
gaps and critical temperatures as a function of baryonic density of beta-
stable matter for the different EOSs. In this way one can easily identify
which range of gaps is active in different stars, whose central densities
are shown by vertical dotted lines for given NS masses. A n1S0 gap exists
only in the crust, while the n3P2 gap with lower strength covers almost
the entire density range of NSs for all EOSs. However, the n3P2 gap could
be completely suppressed due to polarization correction [223]. Regarding
the p1S0 pairing, an important information is the density ρ1S0 at which
the BCS gap disappears, and the corresponding NS mass M1S0 with that
central density. The DU process can only be completely blocked for NSs
with M < M1S0, whereas for heavier stars it is active and unblocked in a
certain domain of the core, which leads to extremely fast cooling of these
objects. The value of M1S0 is also listed in Table 5.1 and together with
MDU determines the ranges of blocked and unblocked DU cooling. We
observe that for the BOB, V18, UIX, N93 EOS the DU blocking terminates
at M/M⊙ = 2.23, 1.92, 1.70, 1.59, respectively, which implies very rapid
cooling for heavier stars, reflected in the following cooling diagrams. The
regions of blocked DU cooling are represented by shading in Fig. 5.3.

We now discuss the cooling curves when the n1S0 and p1S0 gaps are
switched on, as shown in Fig. 5.4 (upper panels). For the gaps used
in this work, the main effect of superfluidity on NSs with M > MDU
(dashed green curves, partially covered) is the strong quenching of the
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BCS gaps (upper panels), and excluding the PBF processes in the latter
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DU process, and thus a substantial reduction of the total neutrino emis-
sivity. Hence those stars have a higher luminosity compared to the non-
superfluid case. On the other hand, if M > M1S0 (dash-dotted green
curves), the complete blocking of the DU process disappears and the star
cools very rapidly again. One observes results in line with these features
in the figure, namely between MDU and M1S0 there is now a smooth de-
pendence of the luminosity on the NS mass for a given age. The effect is
qualitatively the same for all EOSs, just the distribution of NS masses in
the cooling diagram depends on the EOS, which will be analyzed in the
next section.

Regarding the effect of the atmosphere models, we note that by as-
suming a proper atmosphere for any given data point, all current cooling
data could potentially be explained in the present scenario, by assigning
a Fe atmosphere (black curves) to the oldest objects and an accreted light-
elements atmosphere (shaded area) to the hottest ones. The currently
known most extreme (very hot) object, XMMU J1731-347, (log10 t ≈ 4.4,
log10 L∞γ ≈ 34.2), is indeed supposed to have a carbon atmosphere, see the
discussions in [51, 56, 57, 58].

Although in general the presence of superfluidity is slowing down the
cooling, the PBF processes might prevail in certain situations and provide
an accelerated cooling of some stellar configurations [61, 224, 225, 226].
It is therefore of interest to show in Fig. 5.4 (middle panels) also results
where the 1S0 PBF processes have been switched off by hand. It can
be seen, however, that the effect of PBF cooling in the 1S0 channels is
practically negligible.

For completeness, we present the cooling curves in Fig. 5.4 (lower
panel), taking into account both 1S0 gap and n3P2 gap. It is clear that the
results including the n3P2 gap are incompatible with observations. This is
consistent with Refs. [51, 56, 57, 62, 63, 227, 228]. In Ref. [227], for instance,
the author employed the "nuclear medium cooling" scenario with both
gaps [62, 63, 228]. As shown in their paper, the inclusion of the n3P2 gap
results in too efficient PBF processes and a too fast cooling, which makes
the "nuclear medium cooling" scenario fail to explain at least several of
the cooling data. One requires thus a strong suppression of the n3P2
gap. We remind that in the "nuclear medium cooling" the in-medium
effects (in particular on the pion propagator) might strongly enhance the
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emissivities of modified Urca processes by a factor of 102 − 103, and also
the PBF processes [229, 230, 231]. This conclusion regarding the n3P2 gap
remains valid even without the in-medium effect [51, 56, 57, 58, 61].

In our results, as seen in the lower panel of Fig. 5.4, the cooling curves
of NSs distribute in a narrow area and are not able to match all the data
points. This is due to that the very effective n3P2 PBF process is en-
abled, which leads to too fast cooling for the stars with medium mass.
In addition, the n3P2 gap extends to large density and suppresses the
DU processes even for the most massive NSs, which exhibit a fast cooling
evolution with only 1S0 gaps considered.

We conclude that a successful consistent modeling of all cooling data
(in particular XMMU J1731-347) requires an extended p1S0 gap and a
very small or vanishing n3P2 gap, which is consistent with the results of
Refs. [51, 56, 57, 62, 63, 227, 228]. Furthermore, the BCS p1S0 gap alone is
able to suppress sufficiently the DU cooling and to yield realistic cooling
curves, provided that it extends over a large enough density/mass range.
This is the case for all our considered EOSs, which yield however different
mass profiles in the luminosity vs. age plane. This illustrates the necessity
of precise information on the masses of the NSs in the cooling diagram,
without which no theoretical cooling model can be verified. We study
this issue in some detail in the following.

5.1.4 Neutron star mass distributions

The extraction of the NS mass distribution from the cooling curves in
the T − t diagram was first proposed in Refs. [234, 235], by counting the
number of cooling data from the binning in the mass intervals, which
could be used to compare with the theoretical mass distribution in the
Universe, from population synthesis for example [236, 237]. As suggested
in [234, 235], the deduced mass distributions are very sensitive to the
chosen cooling models (for instance with different gaps) and of course
the EOSs including the hadronic and hybrid stars. Hence, the deduced
mass distribution could be another constraint on cooling simulations.

Here, we follow this idea and discuss the constraint of the deduced
NS mass distribution on the considered microscopic EOSs, assuming that
the currently observed set of isolated NSs in the cooling diagrams of
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Fig. 5.4 reflects the unbiased mass distribution of NSs in the Universe
(which is highly unlikely due to strong selection effects; for example, very
old and massive NSs are too faint to be observed and would therefore
never appear in the cooling diagrams. Also, the mass distribution of
isolated NSs could be very different from those in binary systems, etc.)
For simplicity we disregard the error bars in this analysis. The results
are shown as histograms in Fig. 5.5, obtained directly from the binning in
mass intervals in Fig. 5.4. One observes clear differences between the four
EOSs, with surprisingly small dependence on the atmosphere model. The
lowest panel provides for comparison a compilation of recent theoretical
results for the NS mass distribution [232, 233, 238, 239]. We stress again,
however, that there is no good reason that the mass distribution extracted
from the cooling data in this way should be similar to the overall mass
distribution of NSs in the Universe or even to that of isolated NSs only.

Due to this problem and the scarcity of data, no firm conclusions can
be drawn for the moment, apart from perhaps excluding the BOB model,
which does not predict any data point even close to the NS canonical
value of about 1.4 M⊙. This model features also a very large Mmax =

2.51 M⊙, which seems to be in conflict with recent upper limits on Mmax
derived from analysis of the NS merger event [159, 160, 82]. On the other
hand, the Mmax = 2.04 M⊙ of the UIX EOS appears too small, which leaves
as most realistic models either N93 or V18. Clearly more data points, ide-
ally with assigned known masses, would be required for a more profound
analysis of this kind.

To emphasize even more the value of data with well-assigned masses,
we point out that the mass distributions do not only depend on the EOS,
but also on the pairing gaps. For that purpose we plot in Fig. 5.6 the
results obtained with the V18 model and applying different scaling fac-
tors s = 0.2, 0.5, 1.0, 2.0 to the 1S0 BCS gaps, which could be motivated
by the polarization effects. One sees that while the overall coverage of
the luminosity vs. age plane remains nearly unaffected, the deduced NS
mass distributions (shown as insets) depend sensitively on the gap scal-
ing factor. In the specific case, one would be able to exclude very large
scaling factors, which is indeed physically reasonable. Of course, modi-
fying also the density domain of the pairing, similar variations would be
obtained in line with the considerations in Sec. 5.1.3 [240]. But we think
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it is premature to try to resolve this issue with the present set of cooling
data.

5.2 Cooling of hybrid stars

5.2.1 Structure and composition

We now extend our study to hybrid stars, combining the hadronic V18
EOS and various quark EOSs as introduced in Chapter 2. The parameters
of all quark models have been adjusted in such a way as to decrease the
maximum mass from the value Mmax = 2.34 M⊙ of the purely hadronic
V18 EOS down to the same value Mmax = 2.10 M⊙ in all hybrid star cases,
so as to be compatible with the current constraint [74]. For this purpose,
we choose the values BDS = 138 MeV fm−3 and 42 MeV fm−3 for α = 1.5
and α = 1.0, respectively, in the DSM. This condition imposes a smaller
BDS for α = 1.0. The effect of smaller BDS makes the EOS of quark matter
stiffer, but at the same time it lowers the hadron-quark phase transition
point and makes the total EOS of the hybrid star softer. This results in a
reduction of the maximum mass. As reminded in Chapter 2, BDS cannot
be arbitrarily low. Here, the DS1.0 model is an extreme choice close to
the lower limit in order to enforce a quark matter onset density ρQM as
low as possible. Regarding the FCM, we have used V1 = 142 MeV and
G2 = 0.006 GeV4, so as to fix the hybrid star maximum mass to 2.1 M⊙, as
for the DSM.

The selected EOSs and the resulting NS structures are shown in Fig. 5.7
and Fig. 5.8, respectively. For the comparison, we include results of a
hybrid star using the MIT bag model for quark matter. As shown, the
appearance of quark matter leads to a strong softening of the EOS, and
induces a decrease of the NS maximum mass. Also, the limit on the maxi-
mum mass requires fairly large quark-matter threshold densities ρQM and
associated masses MQM, see Table 5.2. The biggest quark-matter content
is achieved by the DS1.0 model with ρQM ≈ 0.5 fm−3 and MQM ≈ 1.6 M⊙.
Lowering further the values of ρQM leads to too low maximum masses of
the hybrid models. In the same table we also list the density ρ1S0 at which
the p1S0 gap vanishes and the corresponding gravitational mass, which
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Figure 5.7: The EOS for the different models. The solid black curve
represents the purely hadronic case, whereas the broken colored curves
are the hybrid EOSs. From Ref. [241].

will be important for the forthcoming discussion. For completeness, the
values of the central densities of the maximum-mass configuration are
also reported.

In Fig. 5.9 we compare the particle fractions of all models. In the
upper panel results are displayed for the purely nucleonic case, whereas
in the other panels the populations of the hybrid models are plotted. The
vertical dashed lines represent the values of the baryon density at which
the nucleonic DU process starts and the corresponding mass MDU, the
values of the quark-matter onset density for the mixed phase and its mass
MQM, and finally the central density of the maximum-mass configuration
Mmax. We notice that in all cases the onset of the DU process takes place
at a smaller density than the one of the mixed phase, which depends
on the adopted model for the quark phase. In all cases, the maximum-
mass configurations contain still more than 50% of nucleonic matter in
their center, while pure quark matter is only reached at extreme densities,
not present in hybrid stars. The DS1.0 model features the biggest quark
matter content, and in this case the p1S0 gap extends into the mixed
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phase. A similar behavior is slightly present also in the FCM, whereas
in the MIT and DS1.5 models the p1S0 gap is active only in the pure
nucleonic phase.

5.2.2 Cooling reactions in a hybrid star

In addition to the cooling reactions in nuclear matter, hybrid stars also
feature quark DU (QDU) and quark MU (QMU) processes. The role
played by the different processes is illustrated in detail in Fig. 5.10 for
a V18+FCM hybrid star with (maximum) mass M = 2.1 M⊙. The upper
panel displays the nucleonic, leptonic and quark populations (curves) to-
gether with the p1S0 and n3P2 critical temperatures (shaded areas) vs. the
radial distance, whereas the lower panels show the various neutrino emis-
sivities at a temperature T = 108 K (corresponding roughly to an age of
10y or 0.1y with/out n3P2 pairing) for the different cooling channels. The
central panel employs only 1S0 pairing, whereas the lower panel includes
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Table 5.2: Characteristic properties of several EOSs: densities ρ (in fm−3)
and corresponding NS masses M (in M⊙) with that central density charac-
terising the nucleonic DU cooling onset, quark-matter onset, the vanish-
ing of the p1S0 gap, and maximum-mass configuration. From Ref. [241].

EOS ρDU MDU ρQM MQM ρ1S0 M1S0 ρmax Mmax

V18 0.37 1.01 - - 0.599 1.92 1.010 2.34
MIT 0.37 1.01 0.629 2.00 0.599 1.92 0.944 2.10
DS1.5 0.37 1.01 0.614 1.96 0.599 1.92 0.960 2.10
DS1.0 0.37 1.01 0.498 1.59 0.576 1.80 1.009 2.10
FCM 0.37 1.01 0.588 1.89 0.599 1.91 0.977 2.10

also the n3P2 gap.
We observe that in the mixed phase in the core (containing up to about

50% quark matter), the main contribution to the cooling comes from the
QMU, and in the case without n3P2 gap (central panel) also from the
nucleonic DU (NDU) reaction. All other reactions are weaker by several
orders of magnitude.

At about r ≈ 6 km quark matter vanishes and the cooling is regu-
lated by the nucleonic processes only: the dominant NDU is active up to
r ≈ 9 km, where the proton fraction becomes too small. For this model,
the p1S0 gap happens to vanish close to the onset of the mixed phase,
and therefore NDU cooling is undamped inside the mixed phase (central
panel) unless the n3P2 gap is present (lower panel). The nucleonic MU
(NMU) and QMU reactions play only minor roles, together with nucle-
onic BS (NBS), which is the only relevant cooling process in the outer part
of the star when only p1S0 pairing is active (central panel).

The PBF processes merit a separate discussion: Due to their nature,
they only provide significant and even dominant contributions when the
local critical temperature (either p1S0 or n3P2) is slightly above the value
of the actual temperature. Under the conditions chosen for Fig. 5.10 (see
the values of Tc in the upper panel), this occurs around r ≈ 6 − 7 km for
the p1S0 channel, and r ≈ 10 − 11 km for the n3P2 gap when present. In
the latter case, due to the concurrent suppression of the NDU process, the
PBF reactions become the most efficient nucleonic cooling process, which
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emissivities at T = 108K (lower panels) as a function of the radial dis-
tance r for a hybrid star with mass M = 2.1 M⊙ and the FCM EOS. From
Ref. [241].

has important consequences for the final luminosity vs. age plots.

We stress that emissivity plots like Fig. 5.10 depend decisively on the
matter composition, i.e., the NS mass, and the value of the temperature,
related to the NS age. The values M = 2.1 M⊙ and T = 108 K chosen for
Fig. 5.10 provide only one particular snapshot of the cooling history. In
particular the zones and magnitudes of PBF cooling inside the star de-
pend extremely sensitively on the local temperatures, and the complete
cooling history has to be integrated in order to make quantitative state-
ments, which we investigate now.
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5.2.3 Cooling diagrams with unpaired quark matter

Fig. 5.11 shows the resulting final cooling diagrams for the different mod-
els, namely the luminosity vs. age is plotted for several NS masses in the
range 1.0, 1.1, ..., 2.1 M⊙ (solid black curves). Eventual dashed black curves
represent M = 1.95, 2.05 M⊙ for a better resolution. The dash-dotted green
curves mark the NS mass MQM + 0.02 M⊙ at which the QDU process has
just set in. Results employing only 1S0 pairing (left column) and with
n3P2 pairing included (right column) are compared for the different mod-
els.

One observes the following general features: Since MDU = 1.01 M⊙,
practically all cooling curves involve nucleonic DU cooling, which is how-
ever quenched by the p1S0 pairing active up to M1S0 ≈ 1.9 M⊙ (≈ 1.8 M⊙ for
the DS1.0 model), nearly coincident with the onset of the quark phase and
the related rapid quark DU cooling. Since the quark-matter onset density
is fairly large for all quark models, only high-mass NSs, M ≳ 1.9 M⊙
(≳ 1.6 M⊙ for the DS1.0), exhibit different cooling behavior for the hy-
brid models. No observational data exist currently for such heavy and
faint objects (lying below the dash-dotted green curves in Fig. 5.11). On
the other hand, as only heavy NSs are affected by the presence of quark
matter, very reasonable NS mass distributions can be deduced when con-
fronting the theoretical curves with the available cooling data in the fig-
ure, see the results in Fig. 5.5, where the mass histograms were simply
computed by counting the number of data points (error bars disregarded)
lying between the two adjacent theoretical cooling curves in the luminos-
ity vs age plot.

One common conclusion with [242, 243] can be made here, namely
that quark matter has significant effects only if NDU cooling is sup-
pressed. Therefore within the DS1.0 model, the hybrid star shows faster
cooling for masses between 1.6 and 1.8 M⊙, whereas for masses larger
than 1.8 M⊙, NDU cooling in the inner core is not quenched by the p1S0
pairing anymore, and the effect of quarks tends to be invisible. This is
also the case of the other three models, since MQM ≈ M1S0. Compared to
the results with p1S0 pairing only, all quark models could have significant
effects when including n3P2 pairing that covers a large density range.

This is shown in the right column of Fig. 5.11, where we display the
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Figure 5.11: Cooling curves with/out n3P2 pairing, for different NS
masses M/ M⊙ = 1.0, 1.1, . . . , 2.1 (decreasing solid black curves). Eventual
black dashed curves indicate the M/ M⊙ = 1.95, 2.05 results. The dash-
dotted green curves mark the NS mass MQM + 0.02 M⊙ at which the quark
DU process has just set in. The black curves are obtained with a Fe
atmosphere and the shaded areas cover the same results obtained with a
light-elements (η = 10−7) atmosphere. From Ref. [241].
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cooling curves for the case with the n3P2 gap included. As already dis-
cussed in Sec. 5.1.3, an important conclusion can be drawn regarding the
nucleonic pairing: While very satisfactory results can be obtained em-
ploying only 1S0 pairing, the addition of n3P2 superfluidity leads to too
fast cooling for all models considered, such that old and warm NSs cannot
be reproduced by any model. Thus, as for the purely nucleonic EOSs be-
fore, we can exclude the possibility of n3P2 pairing in our approach, even
allowing the existence of a phase transition to quark matter. This is be-
cause only very massive stars are affected by the latter feature. As shown
in [58, 61, 62, 63, 227, 228], this conclusion remains valid even for strongly
reduced n3P2 gaps, as cooling remains too fast due to the very efficient
PBF process of this channel, and the luminosity of old (≈ 106yr) NSs
cannot be reproduced. Thus less persistent n3P2 pairing could only be
compatible with current cooling data if the n3P2 gap only existed at very
high density (≳ 0.5 fm3 in the case of the V18 EOS) and would not affect
medium-mass NSs. This would be very difficult to justify theoretically,
indeed. The same conclusions were drawn by [51, 56, 62, 63, 227, 228] and
other authors.

In order to better understand the too fast cooling provided by the
n3P2 gap, we show in Fig. 5.12 the decomposition of the total luminosity
into its various contributions for ‘normal’ (M = 1.4 M⊙, upper panels) and
heavy (M = 2.0 M⊙, lower panels) hybrid NSs with the FCM. The core
temperature is also displayed for better understanding. The main obser-
vations are:
- For normal stars (no quark matter), the eventual n3P2 PBF reaction is the
dominant cooling process in panel (b) due to the fact that the core temper-
ature remains of the order of the n3P2 critical temperature for most of the
cooling history. This leads to too cold old NSs compared to the available
data (see Fig. 5.11). The NDU process is completely blocked by the p1S0
gap that extends throughout the whole star in this case, and even more by
the eventual additional n3P2 gap in (b). This keeps the core temperature
sufficiently high to obtain warm old NSs in agreement with the data in
the first panel (a). The additional n3P2 gap also suppresses the NBS (nn)
reaction in (b) compared to (a), see also Fig. 5.10. This causes the cooling
process in (b) at a later stage to be dominated by crust neutrino emission,
which otherwise does not provide important contributions.
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Figure 5.12: Contributions of the various cooling processes to the total
luminosity as a function of time for M = 1.4 M⊙ and 2.0 M⊙ NSs with the
FCM EOS. Results with/out effects of the n3P2 gaps are compared. The
core temperature is also shown (rhs scale). From Ref. [241].

- For heavy NSs, the NDU process is unblocked and dominant in the
mixed phase when only p1S0 pairing is present in (c), but becomes com-
pletely blocked by the additional n3P2 gap in (d), see also Fig. 5.10. The
strong QDU reaction is also active in both cases and dominant in (d) at
any time. Therefore the PBF reactions are not decisive here and cannot
compensate for the blocking of the NDU by the n3P2 gap. All this leads
to much lower core temperatures compared to (a,b), but warmer stars
when including the n3P2 gap and associated blocking of NDU (d) than
not (c).
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Conclusions

Motivated by the recent availability of experimental and observational
constraints, in particular the novel constraints on the tidal deformability
imposed by GW170817, we analysed the predictions of some compatible
microscopic BHF EOSs and two quark-matter EOSs for the properties of
NSs. Regarding the microscopic BHF EOSs, we also discussed the con-
straints obtained from the nuclear matter properties at saturation den-
sity. We would like to emphasize that these are not phenomenological
EOSs, but they have been constructed in a microscopic way from nuclear
two-body potentials and compatible three-body forces. The last issue im-
posed in fact strong conditions on their construction, due to which reason
a perfect reproduction of all current constraints is not achieved, but was
also not attempted. We stress in particular that the predicted maximum
mass values ≈ 2.3 M⊙ could be close to the ‘true’ maximum mass conjec-
tured from the GW170817 event. The new astrophysical constraints on
maximum mass and tidal deformability exclude several models with too
small maximum mass and the DBHF EOS with a too large deformability.
Tightening the lower limit on Λ1.4 could potentially exclude several other
EOSs in the future.

We concluded that among the BHF models analyzed here, the V18
and N93 could be good candidates for a realistic description of the nu-
clear EOS up to very high density. They satisfied nearly all current exper-
imental and observational constraints discussed in this work. However,
no novel conclusions can be drawn regarding quark matter EOSs, be-
cause similar properties of hadronic stars and hybrid stars are obtained
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from the considered EOSs. As already mentioned, in this work we dis-
regard hyperonic EOSs. If a hyperonic EOS is realistic, those constraints
from NSs shall be invalid to our EOSs including only nuclear and quark
matter. However, the realistic EOS remains unknown due to the theoret-
ical uncertainties discussed in Sec. 1.4. The presence of hyperons could
be suppressed or postponed by certain mechanisms, for example, by a
repulsive hyperonic three-body force or an early onset of quark matter.
Ultimately, to solve those uncertainties, one should rely on future obser-
vational constraints.

Furthermore, we predicted the radius of a 1.4 M⊙ NS to be 11.6 ≲
R1.5 ≲ 12.9 km with the condition of 72 ≲ Λ̃1.4 ≲ 720 in the one-family
scenario. This is larger than the radius measurement of accreting NS
in quiescent LMXBs. This inconsistency, however, can be solved in the
two-families or twin-stars scenarios. A correlation between the radius or
deformability of a M = 1.4 M⊙ NS and the pressure of beta-stable matter
at about twice normal density for all examined EOSs was confirmed. We
found weaker correlations with the speed of sound and the compressibil-
ity of beta-stable matter at that density. On the other hand, we did not
find any correlations between NS deformability and properties of sym-
metric or neutron matter at normal density.

We also analysed the results of the same microscopic BHF EOSs for the
cooling properties of isolated NSs. All EOSs feature strong DU cooling
for a wide range of masses and the presence of superfluidity is required
for realistic cooling scenarios. We find that assuming absence of n3P2
pairing and employing n1S0 and p1S0 BCS gaps with possible rather
generous scaling factors, a reproduction of all current cooling data for
isolated NSs can be achieved with any of the proposed EOSs. A naive
and straightforward analysis of the deduced NS mass distribution would
exclude only the stiffest BOB EOS, which also predicts a fairly (too) large
maximum mass.

We also studied the cooling of hybrid NSs, combining a realistic mi-
croscopic BHF model for the nucleonic EOS with different quark mod-
els, joined by a Gibbs phase transition. The large maximum mass of the
nucleonic model is lowered to a common value of 2.1 M⊙ in all hybrid
scenarios, which could be close to the ‘true’ value. The nucleonic DU
cooling process is active in all stars, but blocked by BCS p1S0 pairing
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up to the onset of the quark phase. Therefore only very heavy hybrid
stars, typically M ≳ 1.9 M⊙, exhibit rapid quark DU cooling, while rea-
sonable smooth NS mass distributions in agreement with current data are
predicted by the effect of nucleonic cooling solely.

An important conclusion can be drawn regarding n3P2 superfluidity:
In all possible scenarios with and without quark matter, its presence leads
to too rapid cooling of all NSs, such that the high luminosity of all cur-
rently observed old (t ≳ 105 yrs) stars cannot be reproduced. This seems
to be a robust result of all models involving nucleonic DU cooling and
confirms conclusions reached by several previous investigations within
various theoretical models with and without DU cooling. This conclu-
sion is also very unlikely to be changed by the effects of quark pairing
that was disregarded here.

We have only studied a very limited set of quark-matter EOSs here,
but in general it seems difficult to reconcile an early onset of quark mat-
ter with a not too large reduction of the maximum mass of the nucleonic
EOS. This was confirmed by the extreme DS1.0 model we studied. There-
fore only heavy NSs could be hybrid stars, and we thus expect our results
to be robust with respect to changes of the quark model. In this case it
would be difficult to confirm or not the appearance of quark matter in
NSs from the cooling data, since the cooling pattern would the same as
for pure NSs except for rare high-mass stars.

There are still various other factors that could affect the cooling sce-
nario. So far, we only focused on unpaired quark matter and disregarded
possible quark superconductivity and the size of associated gaps. Large
quark gaps would suppresses the quark DU process and make quark mat-
ter ‘invisible.’ In our current scenario this would only affect very heavy
NSs, as long as the quark matter EOS is not also strongly modified by the
quark gaps. In addition, the appearance of hyperons in NSs which we
disregarded in this work could also affect the cooling scenario. Hyper-
ons, apart from strongly modifying the EOS, provide a new fast neutrino
process called hyperon DU (e.g., Λ → p + e−+ ν̄e), which leads to a fast
cooling. This could completely change the cooling diagrams. However,
hyperonic pairing gaps are currently unknown. These possibilities will
be studied in the future.

The combined and consistent analysis of different aspects of NS physics
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will allow in the future a more and more accurate derivation of the nu-
clear EOS and its constraints. The simultaneous measurement of mass
and radius of a NS, more accurate results of the tidal deformability, or
any information on very faint objects of any age would be most valuable
for such theoretical progress.
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