
UNIVERSITÀ DEGLI STUDI DI CATANIA

Ph.D. Thesis in Earth and Environmental Sciences

XXXV Cycle

NEW FRONTIERS OF MINERALOGICAL AND STRUCTURAL DATA

ANALYSIS IN THE ERA OF MACHINE LEARNING: TOOLS FOR

MODERN PETROGRAPHY

Ph.D. candidate: Alberto D’Agostino

Advisor:

Prof. Gaetano Ortolano

Co-advisor:

Prof. Michele Zucali

Coordinator:

Prof. Agata Di Stefano

Ph. D. attended during 2019-2023

2

Index

Premise .. 6

Introduction ... 8

Section 1 – Development of supervised machine learning models ... 13

1 The power of iterations ... 14

2 Types of machine learning .. 17

2.1 Supervised Learning ... 17

2.2 Unsupervised Learning... 19

2.3 Reinforced Learning ... 20

3 Building a supervised model ... 20

3.1 Lazy vs. eager learning ... 21

3.2 Structuring the ground truth dataset ... 22

3.3 Train, validation and test sets .. 24

3.4 Pre-processing operations ... 25

3.5 Model and parameters .. 25

3.6 Optimization .. 26

3.7 Model and optimization in a binary classification task .. 29

3.7.1 Extension to the multiclass case ... 32

3.8 Evaluation of classification models .. 36

3.8.1 Accuracy ... 36

3.8.2 Loss ... 36

3.8.3 Precision, recall and F1 score ... 37

3.8.4 Confusion matrix .. 38

3.9 Hyperparameters ... 40

3.9.1 Number of epochs .. 40

3.9.2 Learning rate .. 40

3.9.3 Weight decay and momentum ... 41

4 Python ... 42

4.1 Python libraries .. 42

5 Geological applications ... 43

Section 2 – ArcStereoNet: statistical analysis of structural data ... 44

1 Introduction .. 45

1.1 Graphic User Interface ... 46

3

2 Dataset management ... 47

2.1 Fields formatting .. 49

3 Tools overview .. 50

3.1 Stereoplots tool .. 51

3.2 Rose Diagrams tool .. 52

3.3 Graph To Hyperlink tool ... 53

4 Algorithms .. 54

4.1 Stereoplots tool algorithms .. 55

4.1.1 MEAD .. 56

4.1.2 MEAD + Fisher .. 59

4.1.3 K-Means vs MEAD .. 59

4.1.4 Bingham .. 59

4.1.5 Algorithms comparison .. 60

4.2 Rose Diagrams tool algorithms .. 64

5 Structural data analysis at different scales: the Palmi Shear Zone ... 65

5.1 Geological background... 66

5.2 Outcrop data analysis .. 67

5.2.1 Reef 1 .. 67

5.2.2 Reef 2 .. 68

5.2.3 Beach .. 69

5.2.4 Malopasso .. 70

5.3 Thin section data analysis .. 70

5.3.1 PAL11 thin section .. 74

5.3.2 PAL12a thin section .. 74

5.4 Aerial photogrammetry data analysis .. 75

5.5 Data comparison .. 78

6 Discussions .. 78

Section 3 – X-Min Learn: Automatic mineral recognition and analysis ... 81

1 Introduction .. 82

2 Input data handling .. 83

3 Basic operations: the main window .. 87

3.1 Input maps operations ... 88

3.1.1 Data loading and visualization tools ... 88

3.1.2 Histogram analysis tools ... 89

3.1.3 RGB(A) composite maps ... 90

4

3.2 Mineral maps operations ... 91

3.2.1 Visualization tools... 91

3.2.2 Probability maps ... 92

3.2.3 Pixel Editor .. 93

3.3 Menu bar and main toolbar ... 95

4 Developer’s toolkit .. 97

4.1 Datasets management tools .. 100

4.1.1 Dataset Builder ... 100

4.1.2 Sub-sample Dataset .. 102

4.1.3 Merge Datasets .. 102

4.2 Model Learner .. 103

4.2.1 The learning session ... 105

4.2.2 Balancing operations .. 110

4.2.3 Update models ... 115

5 Mineral Classifier .. 115

5.1 Pre-trained Model .. 116

5.2 K-NN ... 117

5.3 K-Means ... 119

5.4 Algorithms comparison .. 120

5.5 Sub-phase identification .. 123

6 Phase Refiner .. 124

6.1 Basic mode ... 126

6.2 Advanced mode ... 128

6.3 Morphological image processing algorithms ... 130

6.3.1 Erosion and Dilation ... 131

6.3.2 Opening and Closing ... 132

6.3.3 Erosion + Reconstruction .. 133

6.3.4 Fill holes .. 134

7 Utility tools .. 135

8 Case study I: Quantitative analysis of a natural rock sample ... 137

8.1 Geological and petrographic background .. 138

8.2 Methodology and data classification with X-Min Learn .. 142

8.3 Data interpretation and discussions .. 150

9 Case study II: Investigation of the hydraulic behavior of mortars .. 151

9.1 Case study background .. 151

9.2 Mortars analysis with X-Min Learn .. 154

5

9.3 Results comparison .. 162

9.3.1 Classification and sub-phases identification .. 162

9.3.2 Hydraulicity Index (HI) .. 168

9.3.3 Explanations for the model behavior ... 172

10 Discussions .. 173

Conclusions .. 176

Acknowledgments .. 179

References ... 180

Appendix: ArcStereoNet installation .. 193

Appendix: Aerial photogrammetry data ... 194

6

 PREMISE

Numerical computations play an increasingly significant role in modern petrography. The

natural consequence of this approach is the dropping of only qualitative analyses in favor of

more solid statistical-based ones. Indeed, while the experience of the petrographer still plays a

huge role in the recognition of specific features in rocks, it can also lead to several

misinterpretations driven by the subjectiveness of the operator. Nowadays a plethora of several

computer-driven statistical analyses can be applied on rocks to reduce such underlying bias and

objectively extract quantitative information from the samples. Moreover, computers

performance overrun human capabilities by far when it comes to relatively easy but recursive

tasks. Nevertheless, machine-driven analyses can be misleading and introduce other kinds of

biases if not properly overseen by an expert operator. Therefore, petrologists experience is still

fundamental when quantitatively extracted data needs to be interpreted and attributed to a

specific petrogenetic process. In other words, computer science and petrographic/petrological

skills should contribute complementarily to the assessment of rocks analysis.

In this scenario, the aim of this work is to provide high-level statistical tools in the form of

computer software to obtain more reliable quantitative petrographical data sets useful for more

robust petrological modelling. More in particular, useful petrographical data sets that have to

be taken into account are not only characterized by the mineralogical composition, but also by

the fabric arrangement of constituent grains, in order to quantitatively unravel the specific

petrogenetic evolution of natural rocks as well as stone artifacts.

In this wider view, two new computer applications for both mineral recognition and structures

analysis are presented. These tools take advantage of machine learning algorithms, a category

of “smart” algorithms whose applications extend to several scientific and industrial fields. Their

main strength is being able to learn from experience to solve a very specific task, becoming

more and more efficient with every further use.

The drawback of using computer software when processing the data is to not have the full

control and knowledge of what is really happening behind the scenes. This, especially in the

field of machine learning, can lead to critical mistakes. Therefore, one of the core goals of the

software here presented is to provide user-friendly tools to evaluate the algorithms performance,

to compare different algorithms’ results and even to stepwise build new machine learning

models from scratch to best fit the user needs. In fact, when it comes to apply statistical analyses

7

to data, the goodness of obtained results is influenced by the user’s awareness almost as much

as the degree of representativeness of said data.

8

 INTRODUCTION

How many observations can be collected from rocks, how can numerical parameters be

extracted from them, and which one are the most significant to describe the lithotype

characteristics? A rock is canonically defined as an aggregation of one or more mineral species.

Nevertheless, the shape and the distribution of such minerals, of voids and fractures (i.e., the

textural and structural traits of the rock) also play an important role on the characteristics of the

lithotype. This is because petrogenetic processes are mostly controlled by chemical-physical

counterbalancing factors, such as deposition mechanisms vs. diagenesis for sedimentary rocks,

emplacement or flow dynamics vs. crystal solidification velocity for plutonic and volcanic

rocks, respectively, and deformation vs. recovery processes, P-T variations and fluids

interactions for metamorphic rocks. Therefore, the answers to the former questions are

complex, and generally they depend on the purpose of the study. For example, if we want to

study the modal amounts of specific mineral species in rocks thin sections, mineralogical and

chemical parameters need to be collected. However, if we need to tell the capability of a rock

of being a good reservoir or to measure the anisotropy degree of lithotypes, then

textural/structural (i.e., fabric) traits (e.g., spatial distribution, size and shape of all the rock-

forming grains) also play a central role.

For what regards the techniques to extract parameters from rocks, these are also very variegate,

and still depends on the task of the study. Optical and electronic microscope analysis, for

example, are very common analysis that can be performed to identify minerals and micro-

structures in the sample. However, if we need to study the mechanical resistance of the whole

rock, then stress tests are required.

This last example introduces another factor that complicates even more the answer to the initial

questions: the scale factor. We can, indeed, concentrate the analysis on tiny portions of a

sample (i.e., micro-domains), studying the chemical reactions and the textural relationships that

occur between adjacent mineral phases, but we can also consider an entire lithological complex

as a unique object, characterized by large scale parameters (e.g., rheologic response to stress,

thermic conductivity, density, porosity etc.).

Approaches to study the data

What is fascinating about the scale factor is that a correlation between the micro-scale and the

macro-scale often occurs. For example, it happens frequently that the very same characteristics

9

(e.g., structures) visible within outcrops occur very similarly in micron-sized portions of a

sample. This means that, once identified the laws that regulate the occurrence of such

characteristics, they can be applied to study those characteristics at different scales (e.g., Barton

et al., 1995). However, rocks are complex natural objects, and identifying such laws may not

always be an easy task to accomplish. The main approaches that are used in science are the

theoretical and the experimental approach.

The theoretical approach requires great knowledge of the laws that govern the matter in solid,

liquid and gas states. These include the laws of thermodynamics, rheology, fluid dynamics,

crystallography, chemistry and many more. The aim of this approach is to recognize the

variables that determine the occurrence of a given phenomenon and the relationships that link

them. The complications with this approach arise when we realize that some variables may be

unknown and/or the relationship between them is not immediately clear. Furthermore, given

the complexity of the subject of study, some simplifications are required to find a theoretical

law. On the other hand, if such law is successfully found, we consequently acquire a wider

knowledge of the phenomenon, and we will likely be able to predict any other phenomenon of

the same kind.

With the experimental approach, instead, we try to identify the complex relations between two

or more variables through lab experiments. The drawback here is that the experiments occur at

very specific conditions, that do not always match the natural ones, including the scale factor.

An experimental law may work well at similar conditions of the experiment but fail in different

ones, leading to a more situational understanding of the phenomenon. On the other hand, it is a

way quicker method to bind variables, and can somehow mend the lack of unknown variables

with the use of fixed numeric values (constants).

This work will be focused on the machine learning (ML) approach, a data analysis technique

widely employed in several scientific and industrial fields (Jordan & Mitchell 2015). In this

context, two new ML-oriented software will be introduced in Section 2 and Section 3, and

different ML algorithms will be employed within the provided case studies.

The machine learning approach

A law that describes the relationships between input variables and output results can be deduced

from hidden patterns in the data using ML. This technique differs from experimental approach

because the raw collected data is fed to an algorithm pipeline, and the machine tries to

automatically detect through several reiterations a statistic relation that links the variables. After

10

this process, a ML model is generated. The accuracy of models and their degree of overfitting

can be evaluated through several statistics. These concepts are discussed in Section 1.

Machine learning in petrography and petrology

The machine learning approach has been widely experimented to support petrological and

petrographic analysis. Among the most investigated data, bulk-rock chemistry is one of the

most prolific, leading to the realization of several prediction models based on geochemical

constraints, as demonstrated by several authors (e.g., Petrelli & Perugini 2016; Petrelli et al.

2017; Han et al. 2019; Ren et al. 2019; Bolton et al. 2020; Itano et al. 2020; Schönig et al.

2021). Indeed, the establishment of open-access and comprehensive global geochemical

databases, such as GEOROC (https://georoc.eu/georoc/new-start.asp) and PetDB

(https://search.earthchem.org/), provided a reliable support for big data analysis (Zhang & Zhou

2017; Luo & Zhang 2018; Zhang & Zhou 2018; Ren et al. 2019), allowing, in turn, the

development of very efficient ML models.

More recently, optical thin section image analysis has been extensively boosted by machine

learning and deep learning algorithms for both the identification of fabric and mineralogical

information (e.g., Izadi et al., 2017; Pereira Borges & de Aguiar 2019; Rubo et al, 2019; Su et

al., 2020; Koh et al., 2021; Visalli et al. 2021; Liu et al., 2022). Optical scans of rocks thin

sections can sometimes be a complex type of input to process with ML, considering the efforts

required to efficiently label large amounts of training data (Yu et al., 2023) and to standardize

the input acquisition. Although efforts have been made towards the realization of databases of

optical thin section images (e.g., Tarquini & Favalli 2010; Quinn et al. 2011), a unique, global

and open-access archive of standardized and labeled optical microscope data is missing. New

instrumentations such as ZEISS AxioScan® 7, that allows automatic digitalization of multiple

rocks thin sections at time, could, however, greatly contribute to the development of such

datasets in the coming years.

X-ray elemental maps obtained from SEM-EDS and EPMA-WDS instrumentations are yet

another type of input data that can significantly benefit from the application of ML algorithms

(e.g., Lanari et al. 2014; Arganda-Carreras et al., 2017; Ortolano et al., 2018; Izawa et al.,

2020). Unlike punctual chemical analyses, the information is not scattered and prevents

possible biases introduced by the choice of point locations. Also, unlike optical scans, X-ray

maps are generated as numerical arrays and only then rendered as grayscale images. A

drawback of this type of data is that the chemical information is not fully quantitative, as the

https://georoc.eu/georoc/new-start.asp
https://search.earthchem.org/

11

intensity value of a given element is mapped with a numerical value within pixels which are

influenced by the mineralogy of the specific sample. Therefore, powerful tools have been

developed to quantify X-ray maps, such as XMapTools (Lanari et al., 2014) and Q-XRMA

(Ortolano et al. 2018). The acquisition of X-ray elemental maps and BSE maps is generally an

efficient and relatively cheap process; however, an online structured database of labelled X-ray

maps or BSE maps is again missing. Therefore, the current software dedicated to the automatic

classification of X-ray maps are generally limited to the implementation of unsupervised or lazy

supervised classifiers, trained on specific samples of data, through the definition of user-

selected training areas. While this approach can lead to very accurate results, functional to the

classification tasks, it also inhibits the possibility to generate eager learning models, that,

oppositely, try to abstract from training data a condensed representation of the features and the

targets of the classification (Hendrickx & Van Den Bosch, 2005) – see Section 1, subchapter

3.1 for further details. This approach leads to faster classifiers that effectively learn from the

training data a generalized function that links the input data to the output classification.

Moreover, the architecture of eager learners is also at the base of the creation of artificial neural

networks and eventually of deep learning networks. Eager learners also become more functional

than lazy ones with the increasing amount of training data (Section 1, subchapter 3.1) and are

therefore oriented towards the analysis of big data.

The aim of this work is to provide a new software solution for the analysis and automatic

classification of rocks thin sections of both natural and artificial stone materials, that also

includes eager ML algorithms within its classifiers. The software (X-Min Learn - see Section

3) is designed to deal with EDS and WDS X-ray elemental maps as input, but also works fine

with any type of multi-channel image data, including, for example, BSE maps. X-Min Learn

elaborates the input data in a pixel-oriented fashion and permits to select different ML classifier

to predict in few seconds the modal amounts of the recognized minerals. An output mineral

map is obtained, together with a confidence map to monitor and evaluate the classifier’s

performance.

Moreover, instead of providing only pre-complied ML classifiers, X-Min Learn is designed to

support the development of custom classifiers, within a user-friendly “developer’s toolkit”.

Users can build and test new eager machine learning models and/or update existing ones, thanks

to an interactive graphic interface. This, in turn, determines greater user awareness of the use

of ML, since the models are built step by step, from the compilation of training and test datasets

to the analysis of diagrams and graphics useful for evaluating the learning process. The whole

12

procedure is simplified to meet the needs of all users, even those not experienced in

programming, who will not need to write any line of code. This also permits to generate highly

specialized predictive models for any research needs. Other features include tools for the output

refinement with morphological image processing algorithms, interactive data visualization, file

conversions and more.

However, mineral-chemical observations are not always sufficient to describe rocks. Very often

fabric parameters also play a central role in the final properties of the lithotypes. In this view,

in this Ph.D. project a newly developed ArcGIS® toolbox for the statistical analysis and

projection of structural data is also presented: ArcStereoNet (see Section 2). This tool, which

has been published during the Ph.D. timespan in Ortolano et al., 2021, allows the comparison

of oriented data from the outcrop scale to the thin section scale by applying the commonly used

statistical methods for cluster and girdle analysis directly on stereographic projections and rose

diagrams, while also taking full advantage of all potential GIS mapping processes. In addition

to this, a completely new algorithm for cluster analysis and mean vector extraction (Mean

Extractor from Azimuthal Data) is included in the toolbox, thereby allowing a more reliable

interpretation of any possible structural data distribution.

Oriented data collected from outcrops can be easily imported in ArcGIS® and processed with

ArcStereoNet, that shares the same interface look and feel of default ArcGIS® tools. While

oriented mineral data cannot be extracted directly from thin sections images with ArcStereoNet,

the toolbox is extremely compatible with any kind of ArcGIS® shapefile, that can be previously

populated with such data with tools like Micro-Fabric Analyzer (Visalli et al., 2021). In this

view, ArcStereoNet can be utilized as a final instrument to visualize and analyze oriented data

from the macro-scale to the micro-scale, without ever leaving the ArcGIS® environment,

expanding the potential of other pioneering tools such as GIS-stereoplot (Knox-Robinson &

Gardoll, 1998), Export Toolbox (Maxelon, 2004) and OATools (Kociánová & Melichar, 2016).

13

 SECTION 1

–

DEVELOPMENT OF SUPERVISED MACHINE LEARNING MODELS

Machine learning (ML) principal features will be covered in this section. The basic ML

terminology, that is used throughout the thesis, is here defined. Different types of ML

algorithms and the advantages and disadvantages in using them are discussed in chapter 2. In

chapter 3 the mathematical and computational steps required for the creation of a multi-class

classification model are described. This information is valuable for fully understanding the

working principles of the “developer’s toolkit” provided in the software X-Min Learn,

presented in Section 3. The most common statistical tools useful to evaluate ML models’

performance will also be here described from a mathematical point of view. This is again useful

for better understanding the software, since such tools are implemented in X-Min Learn as well.

An overview of the most useful Python libraries used in this work will be provided in chapter

4. Eventually, the geological applications of ML explored in this work, that are discussed in

detail in the next sections, will be introduced.

14

1 The power of iterations

The term “machine learning” (ML) was firstly used by Arthur (1959) when he developed a

computer game for playing checkers. One year before, Frank Rosenblatt implemented the

perceptron (Rosenblatt, 1958), an effort of artificially reproducing the models of human brain

cells interaction (Figure S1.1). The perceptron followed in part the Hebbian theory of neuron

excitement during learning processes (Hebb, 1949).

Figure S1.1 – (a) Frank Rosenblatt working at the Mark I Perceptron machine he designed; (b) schematic

representation of a human neuron (modified after Stangor & Walinga, 2014) and (c) its conceptualization in the

Rosenblatt’s perceptron, where the weighted (w) sum of inputs (x) yields a prediction (y) based on a threshold

value (activation function).

Although showing promising results, it was eventually clear that perceptrons were not able to

recognize many patterns, including non-linearly separable ones (Figure S1.2). The main issue

was related to the architecture of the perceptron, that was initially designed to work in a single

layer. The use of multi-layer perceptrons (MLP) significantly increased the efficiency of this

pioneer ML approach (Figure S1.3). Further improvements increased even more the strength

of machine learning, such as the introduction the backpropagation algorithm (Rumelhart et

al., 1986), that allowed ML models to more efficiently self-correct, starting from their own

prediction errors.

15

Figure S1.2 – The “XOR problem”, an example of a non-linearly separable pattern. It is indeed impossible to

separate the two classes with a single line.

The beginning of the first decade of the XXI century was a turning point in the history of ML,

thanks to Big Data, reduced cost of parallel computing and memory and development of new

algorithms of deep learning (Fradkov, 2020). Previously, the main ML issues were related to a

not strong enough computational power of CPUs and a not large enough storage space. The

absence of large online data repositories, nowadays available and constantly widening, also put

the brakes on the potentiality of ML. This is mainly due to eager ML algorithms architecture,

that is computationally expensive by design (Thompson et al., 2020). The flourishing success

recently achieved by machine learning can indeed be linked to several technological

advancements that granted bigger datasets and faster implementations of the algorithms. For

example, the use of Graphical Processing Units (GPUs) as a faster substitute of ordinary CPUs

heavily concurred to the boosting of machine learning. To better understand this concept, we

need to take a step back and discuss about the differences between human and computer

approaches to solve a given task.

16

Figure S1.3 – Comparison between a single layer perceptron and a multi-layer perceptron (MLP). In a MLP

architecture we add more layers (hidden layers) between the input layer and the output layer in order to solve non-

linear patterns. The number of nodes per hidden layer is arbitrary.

The logical processes used by a human being are not the same as those that a programmer

implements into a computer code to train a machine to solve a specific task. Take as an example

the task of solving a sudoku puzzle. The goal of sudoku is to fill the given grid with numbers

from 1 to 9 without repeating the same number along the rows and the columns and within the

same main square. Human way to solve this puzzle includes several strategies, such as checking

adjacent numbers, insert a value by elimination, try to insert the same number in all nine main

squares and so on. A programmer, however, would probably avoid to model any of the human

schemes into a computer script, because it would result into a complex and counterproductive

strategy. A computer, indeed, can find the solution of a sudoku puzzle within seconds by using

a recursive approach. This happens because computers are very performant in solving simple

yet recursive tasks, that may involve millions of reiterations.

As in many other computer algorithms, iterations play a central and inevitable role in any

machine learning algorithm as well. Eager ML models can self-refine to the point of learning a

law that well describes input data only after multiple reiterations over said data (see subchapter

3.1). This is the inevitable path to cross to implement any machine learning algorithm. Some of

17

the ML concept that will be introduced further on in this section will be somehow linked to this

concept. The only limit to the power of iterations is the computational capacity of the machine.

Hence, given a well populated dataset, the bottleneck of machine learning is computer

performance.

2 Types of machine learning

ML algorithms are canonically grouped into three different categories: Supervised Learning,

Unsupervised Learning and Reinforced Learning (Table S1.1). In the next subchapters they

will be defined, their advantages and disadvantages will be discussed, and some examples of

their possible applications to geodata will be provided. These concepts are broad and general

and can be further explored by consulting several ML books such as Rojas, 1996; Duda et al.,

2000; Smola & Vishwanathan, 2008; Hastie et al., 2009; Alpaydin, 2020.

Supervised

Learning

Unsupervised

Learning

Reinforced

Learning

Input

Labeled data

Input

Unlabeled data

Input

States and Actions

Strategy

Minimize prediction

errors based on

ground truth

Strategy

Identify similarities

within the data and

group it accordingly

Strategy

Learn in a reward-

punishment

environment

Output

Prediction

Output

Clustering

Output

Action

Table S1.1 – Simplified scheme listing the main features of Supervised, Unsupervised and Reinforced Learning.

2.1 Supervised Learning

The aim of Supervised Learning is to develop a model able to solve a specific task based on its

experience. The task can both be a prediction or a categorization of unknown data. The

experience is extracted from practical examples of tasks of the same kind already unraveled by

a human. These practical examples are commonly defined as ground truth data. The term

“Supervised” is indeed related to the active contribution of human decisions in transferring the

know-how to the machine (Figure S1.4).

In a supervised environment the role of the ground truth dataset is central, and most of the times

collecting and sorting the data take up most of the operator’s time during the development of a

new model. The sorting operation consists of ordering the ground truth data by defining its

features and its labels. A feature is a characteristic of the data. For example, the amount of

18

magnesium and iron can both be considered as features of a rock sample. The label is the goal

of the task, the desired output that must be inferred from the features. In the example, the label

could be the name of the rock. The immediate question that arises from this example is: are

magnesium and iron amounts sufficient to determine the rock name? In more technical terms

this is equal to ask: does the ground truth dataset have enough features for the model to predict

the correct labels and solve the task accurately?

Figure S1.4 – Schematic flowchart of a generic supervised learning pipeline. The machine extracts knowledge

from the ground truth data provided by the operator and from that it develops autonomously a model able to

predicts new unknown data of the same kind.

There are two ways to answer this question: by trials or by knowledge. If the operator is an

expert in the task’s domain, probably already knows how many and which features the model

would likely require to achieve a consistent result. For example, a geologist would probably

argue that magnesium and iron contents would never be sufficient to name a rock. A non-expert

operator, instead, would likely spend more time in finding the right features and would not have

a strong evaluation confidence on the model’s output. The knowledge of the task’s domain

plays a central role in the ground truth dataset construction and, in general, it grants a more

critical approach during the consequent learning operations. This is a great reason for geologists

to take an active part in the development of Supervised ML models applied to geological data.

Supervised learning algorithms can be implemented to solve two main categories of tasks:

classifications and regressions. The difference between the two is mainly related to the type

of requested labels. In a classification task the labels play the role of categories, which can be

defined as discrete labels. For example, a machine that is trained to distinguish volcanic rock

19

specimens from plutonic ones performs a binary classification task. The classes “volcanic” and

“plutonic” are respectively coded by the machine as class “0” and class “1”, but, since they

represent discrete labels, a hypothetical “class 0.5” (i.e., a volcanic-plutonic specimen) is not

contemplated by the model. In other words, the machine will never predict classes that are not

included in the ground truth dataset. Instead, in a regression task the labels are continuous,

therefore the model can infer values that are not included in the ground truth data. For example,

a hypothetical model that has been trained to predict volcanic tremor amplitudes starting from

the chemical composition of the emitted gases, performs a regression task. The labels (i.e., the

tremor values) are continuous, and therefore the model must have the freedom to predict values

that are not precisely provided in the ground truth dataset.

In summary, with supervised learning the machine is fed with examples of human solved tasks.

This information is stored by the machine and analyzed to identify a law that links all the

features in such a way that the desired labels are obtained as output (see Figure S1.4). Hence,

the machine does not learn the human logic processes behind the resolution of the task, but

instead it develops its own resolution formula that minimizes the errors of the output prediction.

The main advantage of this approach is that the operator can check during the training whether

the machine is minimizing enough the errors or not. In other words, the evaluation of the model

is easier, because the required output is already known. On the other hand, collecting and

labeling the ground truth data are always long and tedious processes and some issues may arise

(e.g., imbalanced datasets – see Section 3, subchapter 4.2.2 for more details). The overall

learning process may also take some time, because several learning parameters needs to be

tweaked until the best possible result is obtained (more about this in subchapters 3.8 and 3.9).

2.2 Unsupervised Learning

As the name suggests, the Unsupervised Learning is not strictly bound to the human knowledge

of the task. Hence, the main difference with the Supervised Learning is that a ground truth

dataset is not required to run the algorithm – i.e., the input dataset does not require labels. The

aim of the unsupervised approach is, indeed, to statistically identify differences and similarities

within the features of a dataset and then to group the data accordingly.

In more technical terms, with the Unsupervised Learning the computer analyzes unlabeled data

to recognize hidden patterns useful to perform a clustering operation on such data. For

example, if we want to recognize how many different mineral species occur in a thin section,

20

then we are looking for a clustering algorithm. With this approach, however, the machine will

just try to recognize different types of minerals, without labeling them.

The Unsupervised Learning can also be used to discover the relations between certain features

in the provided dataset (association). This is particularly used today for web advertisements,

that can be customized for any user based on, for example, their research history or their

interactions with social media.

The main advantage of using Unsupervised Learning is that it does not require examples of

already solved tasks, thus it is quicker to build the input dataset. It is also particularly useful to

start exploring unknown data, since it has a strong statistical background and can be applied to

fetch unknown patterns without being biased by human subjectiveness. The biggest drawback

of Unsupervised Learning, however, is that it does not provide precise information regarding

data sorting. Therefore, the output needs to be interpreted and manually labeled by the operator.

2.3 Reinforced Learning

Reinforced Learning gathers several algorithms that are based on a reward-punishment learning

environment. Very similarly to animal training strategies, in Reinforced Learning the machine

is rewarded with positive feedback when it solves the task and with negative feedback when it

fails. The aim of this approach is to train a machine to develop a strategy to maximize the

number of positive feedbacks, which means to complete the task with the best possible result.

Maze-solver algorithms, videogames Artificial Intelligence (AI) and self-driving cars are all

examples of Reinforced Learning. Due to its nature, this type of ML approach is mostly oriented

to AI projects, and examples of Reinforced Learning applied to geological tasks are not

provided in this work. This, however, does not mean that no efforts are made to apply these

algorithms to geodata (see for example the interesting work of Nasir & Durlofsky, 2022).

3 Building a supervised model

As explained in the previous chapter, Supervised Learning allow the machine to extract from

human-solved examples (ground truth data) a “strategy” to solve the required task. In this

chapter the learning process will be described in detail, introducing several ML specific terms

that will be used throughout the thesis. The reason to focus on supervised models’ development

is due to one of the main purposes of this work, and that is to introduce, within the software X-

Min Learn, a ML developer’s toolkit. This toolkit includes user-friendly tools to build from

scratch new supervised ML models adapted to the specific needs of the user (see Section 3,

21

chapter 4). Albeit being user-friendly, these tools still require minimal conceptual background

preparation on which “ingredients” a supervised ML model requires and on how to evaluate its

performance. A detailed description of the fundamental steps required to build a supervised

learning model is therefore provided in the following subchapters and schematized in Figure

S1.5.

Figure S1.5 – Flowchart of a supervised learning model development. A detailed description of each step is

provided in the corresponding subchapters. Firstly, a ground truth dataset needs to be populated with known (i.e.,

labeled) data. After having split the dataset into train, validation and test subsets, and having applied several data

pre-processing operations, an iterative learning session is launched, where several parameters are manually (i.e.,

hyperparameters) and automatically tuned to optimize the performance of the model. Once a working model is

built, it can predict new unknown (i.e., unlabeled) data.

3.1 Lazy vs. eager learning

Not all Supervised Learning algorithms use the same approach to extract information from

ground truth data. A lazy learner (or instance-based learner) stores the ground truth data in

memory and delays the creation of the model, if it builds any, until new unlabeled data needs

to be evaluated. Lazy learners do not learn a law or a function that describes the relations

between the features of the ground truth dataset. Instead, they attempt to memorize the

information and use it to predict new data by comparison (Hendrickx & Van Den Bosch, 2005).

This means that the ground truth dataset itself can be considered the model of a lazy learner.

As a consequence, a lazy learner will run rapidly during the learning operations (it just stores

data in memory) and will be slower during predictions of new data (Rafatirad & Heidari, 2019).

An example of a lazy learner is the K-Nearest Neighbors (k-NN – Cover & Hart, 1967), that

is discussed in more details in Section 3, subchapter 5.2.

22

An eager learner, instead, processes the ground truth data immediately, trying to extract a

generalized function that describes the relations between the features, hence building a model.

Therefore, eager learners will perform slower during the learning operations because they

require multiple iterations to identify such function, while being very fast during predictions,

since they only need to apply the model to new data. An example of an eager learner is the

Multinomial Logistic Regression (a.k.a. Softmax regression – see subchapter 3.7.1), that was

implemented within a completely customizable ML model learner workflow in the software X-

Min Learn (see Section 3, subchapter 4.2).

Lazy learners tend to be more reliable with smaller datasets, as they require to store the ground

truth data in memory. This means that the bigger is the dataset, the longer will be the prediction

time, as more comparisons needs to be performed. Eager learners, instead, delete the ground

truth data from the memory as soon as the model is constructed and are therefore linearly more

effective with the increasing of the dataset size. On the other hand, eager learners could perform

slightly worse than lazy ones in terms of accuracy (Rafatirad & Heidari, 2019), especially if

they have been trained using a small ground truth dataset (Table S1.2).

Lazy learner Eager learner

Saves ground truth data in memory Builds a model from ground truth data

Predicts new data by comparison Predicts new data through the model

Fast during training Slow during training

Slow during inference Fast during inference

Best with small datasets Best with large datasets

Table S1.2 – Principal features of lazy and eager learners.

In the next subchapters the basic working principles of an eager supervised learner will be

described in detail, to identify the steps that a machine performs to extract the “knowledge”

from the data to build its own prediction strategy (model). An entire learning procedure will be

stepwise analyzed, beginning with the structuring of the ground truth dataset and ending with

the discussion of some of the most used statistical methods to evaluate the output model.

3.2 Structuring the ground truth dataset

As already indicated, the machine extracts knowledge from the examples provided by the

ground truth dataset and uses it to automatically solve a specific task. To make this possible,

the ground truth examples must be readable for a computer. As will be discussed further in

23

this chapter, ML uses mathematical equations to solve the task, hence the information contained

in the data needs to be translated into an appropriate numeric format. This operation can be both

immediate or quite challenging, since it mainly depends on the nature of the ground truth data

and, more generally, of the task itself.

For example, if we would like to train a model able to name plutonic rocks based on the modal

amount of quartz, alkali-feldspar, plagioclase, feldspathoid and mafic minerals, the ground

truth dataset would be relatively easy to populate, since the features are already provided in a

numeric format – i.e., the minerals amounts are expressed as a percentage (see Table S1.3).

After an efficient training session based on the raw input ground truth data, the algorithm should

be able to build a model whose predictions would likely converge with the correct fields of the

well-known QAPF diagram (Le Maitre et al., 2005).

Quartz
wt%

Alkali-
feldspar wt%

Plagioclase
wt%

Feldspathoid
wt%

Mafic
mineral wt%

Sample name

23 17 49 0 11 Granodiorite

14 42 19 0 25 Qtz-syenite

0 0 15 20 65 Foid gabbro

0 0 5 60 35 Foidolite

75 15 5 0 5 Qtz-granitoid

30 25 35 0 10 Monzo-granite

12 27 40 0 21 Qtz-monzonite

Table S1.3 – Example of a ground truth dataset for plutonic rocks classification. The last column holds the
labels while the others contain the features.

If, instead, we would like to train the same model based on thin section images of plutonic rocks

samples, the complexity of the task would raise remarkably. The ground truth dataset this time

is populated by images, that are not immediately translatable to numeric values useful to

accomplish the classification task. Although images are made of pixels that a computer reads

as numeric values, such values are not sufficient to determine the name of the plutonic rock

without any prior pre-processing. Moreover, the features to labels ratio is 1, meaning that with

a single information (the image) the model would have to recognize the rock name (the label):

not a very realistic prospect. Therefore, in a machine learning approach that involves images,

generally it is firstly required to perform several pre-processing operations on the raw input to

extract a consistent number of numerical features. These operations generally include image

24

slicing and convolutions. Convolutions mainly consist in transforming an image by applying a

convolution matrix of numeric values (kernel) over each pixel and its local neighbors across

the entire image. The outputs of several convolutions are feature maps whose pixels’ values

can be used by a machine learning model to perform the required task. An entire category of

artificial neural networks implements this approach when dealing with input image data and

they are hence referred to as Convolutional Neural Networks (CNN). These types of networks

have been indeed intensively used during the last years for various tasks of mineral and rock

recognition from thin section images (e.g., Su et al., 2020; Koh et al., 2021; Liu et al., 2022).

Once the features have been extracted, refined, and properly ordered, the correct labels need to

be assigned to each ground truth instance. In the previous example (i.e., plutonic rocks’

classification task), the label would simply be the name of the rock. A ground truth dataset can

be conceptualized as a simple spreadsheet or a table, where each row represents an example

(instance) and each column represents a specific feature, with the last column holding the

correct label (see Table S1.3). However, it is worth to say that any number of labels per instance

is allowed, i.e., any number of outputs per example.

3.3 Train, validation and test sets

Once the ground truth dataset is populated, the first operation that needs to be performed is to

split the dataset into two or three subsets: the train set, the validation set (optionally) and the

test set. The train set is the actual dataset from which the machine learns and develops a model,

while the test set is only used to perform an unbiased evaluation of the goodness of the model.

The validation set is useful in many learning processes when the fine-tuning of several ML

parameters is required.

The appropriate splitting ratio can vary based on the task and the input data, however, generally

the train set is the bigger set, followed by test and validation sets. A common ratio, for example,

is train 60%, test 20%, validation 20%.

It is common practice to shuffle (i.e., to randomly rearrange) the ground truth dataset before

splitting it, since it can often be unintentionally populated following a specific order (e.g., sorted

by one feature or label). This procedure is therefore useful to better distribute the examples of

the ground truth dataset throughout the subsets.

25

3.4 Pre-processing operations

As already discussed in chapter 2.1, the “nature” of the label depends on the required task. In a

regression task the outputs are characterized by continuous numeric values, therefore the label

is generally fed into the machine as it is, without the necessity of any machine-friendly

translation. In a classification task, instead, most of the times the label is a category, hence it is

characterized by one or multiple words (e.g., “granite”, “diorite”, “monzo-syenite”). A simple

translation here consists of assigning to each different label a unique, progressive, numerical

ID, that starts canonically from 0. This operation is commonly referred to as label encoding.

Another very important data pre-processing operation to be performed on the train set is the

feature scaling. ML algorithms tend to be biased towards numerically larger values, therefore

if the dataset includes features with different units of measurement or different scales, the entire

learning process can be compromised. There are two very common techniques to scale the

features: the normalization and the standardization. The first, also known as min-max scaling,

scales the data to the range [0, 1] by solving the following equation:

𝑥𝑗
′ =

𝑥𝑗 −min(𝑗)

max(𝑗) − min(𝑗)

(1)

where 𝑥𝑗
′ is the normalized example in reference to the j-th feature and 𝑥𝑗 is the original, not

normalized value. This technique however is not ideal when there are several outliers in the

dataset. In such scenario, the standardization, also known as Z-score normalization, is a more

suitable option, because it scales the j-th feature by subtracting its mean 𝜇𝑗 from each instance

𝑥𝑗 and then dividing by its standard deviation 𝜎𝑗:

𝑥𝑗
′ =

𝑥𝑗 − 𝜇𝑗

𝜎𝑗

(2)

The standardization ensures the data to be re-projected into a new coordinates system where

all the features have zero mean and unit standard deviation.

3.5 Model and parameters

In this subchapter we will begin to dive into the mathematical concepts applied during the

learning process of an eager supervised learner. In the simplest scenario (i.e., one feature and

26

one label) the model predictive function can be expressed as a univariate linear regression

model, where the predicted output is obtained by solving the simple linear equation:

ℎ𝜗(𝑥) = 𝜗0 + 𝜗1𝑥1

(3)

Here θ0 and θ1 are the model parameters (or weights) and x1 is the only feature. While x1 is

provided by the train set and hence plays the role of a constant value for each instance of the

set, the weights need to be adjusted by the machine in order to solve the equation and predict

the correct output. The true output is of course stored in the train set as the label, and we can

evaluate the performance of the model by comparing it with the predicted output.

If this equation is extended to a multidimensional problem (i.e., with more than one feature),

the predictive function is expressed as a multivariate linear regression model:

ℎ𝜗(𝑥) = 𝜗0 + 𝜗1𝑥1 +⋯+ 𝜗𝑛𝑥𝑛

(4)

or

ℎ𝜗(𝑥) = ∑(𝜗𝑖𝑥𝑖) +

𝑛

𝑖=1

𝜗0

(5)

Here the linear equation is extended to include all the n features together with their respective

weight parameter. The intercept (θ0) is the only parameter that is not linked to a specific feature

and in machine learning it is referred to as the bias parameter. Like the intercept of the line

equation, the bias allows shifting operations to the model function in the multidimensional

space.

Now the question that naturally arises is: how does the machine find the best weights for the

model?

3.6 Optimization

Optimization algorithms are the core behind the learning process of any machine learning

model. Optimization consists, in general, of a mathematical approach aimed at maximizing or

minimizing the output of a given function, by reiteratively and systematically varying some

27

input elements. In the previous example, the input elements that vary in each epoch (i.e., in

each iteration) are the weights (θi) and the bias (θ0) parameters.

During the first epoch the model parameters are initialized randomly, but from the second epoch

onwards they will be adjusted automatically by the machine in order to obtain a better and better

prediction. This adjustment needs to be somehow related to the prediction errors made by the

model in the precedent epoch. Hence, a function that computes those errors after each iteration

is required. In ML such function is defined loss function (𝓛).

In a simple regression scenario, like the one described in subchapter 3.5, one of the most

commonly used loss function is the Mean Squared Error (MSE) function or L2 loss.

ℒ = 𝑀𝑆𝐸 =
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑁

𝑖

(6)

Here, the average squared prediction error over the N-sized train set is obtained by subtracting

the value of the prediction ŷi to the true output yi for each example instance i. The predicted

output (ŷi) is the output of the model function (i.e., the linear regressor), therefore the loss

function can be written as:

ℒ(𝜗) = 𝑀𝑆𝐸 =
1

𝑁
∑(ℎ𝜗(𝑥𝑖) − 𝑦𝑖)

2

𝑁

𝑖

(7)

Another similar and well-known loss function for regression tasks is the Mean Absolute Error

(MAE) function or L1 loss, that computes the average absolute (instead of squared) prediction

error. In general, any kind of function that outputs a measure for the prediction error is suitable

as a loss function. In practice, it is preferrable that the chosen loss function is differentiable.

The following step is to use the loss function result to update the model parameters, thus

obtaining a (hopefully) better prediction in the subsequent epoch. This is performed by an

optimizer function. A common optimizer function is the gradient descent algorithm.

Calculating the gradient (∇) of the loss function equals to find its tangent in the point linked to

the current θ values, by calculating the partial derivatives with respect to θ.

28

∇𝜗ℒ𝜗 =
𝜕ℒ𝜗
𝜕𝜗

(8)

The gradient descent’s aim is to find the minimum of the loss function with a recursive

approach, by updating each θj parameter after every epoch (ε) (see Figure S1.6). This is

accomplished by multiplying the gradient to the learning rate (η), an hyperparameter (i.e., a

special parameter that controls the learning process, see subchapter 3.9) chosen by the operator.

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 − 𝜂 ∙
𝜕ℒ𝜗𝑗
𝜕𝜗𝑗

(9)

The learning rate determines the size of the step to be taken towards the optimization of the

weights at each epoch. In subchapter 3.9.2 the evaluation of the efficiency of the chosen

learning rate is discussed.

In theory, the gradient descent algorithm should run until convergence. The convergence would

indicate that the algorithm was able to find the (local) minimum of the loss function, whose

tangent is equal to 0 (see Figure S1.6), and therefore:

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 − 𝜂 ∙ 0

(10)

hence

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1

(11)

In practice the operator chooses a fixed number of epochs (or iterations) after which the gradient

descent algorithm interrupts the calculus routine. Thus, the number of epochs is another

hyperparameter.

The gradient descent is often implemented in simple ML models because it is easy to compute

and always converges. However, it can be slow or easily get stuck in local minima or saddle

points, especially with complex models. Therefore, other optimizers can also be implemented,

such as Adam, AdaGrad etc. (see Ruder, 2016 for further details). The vanilla gradient descent

can also be boosted by the “momentum”, a hyperparameter that helps in avoiding local minima

and speeds up the convergence (see subchapter 3.9.3).

29

Figure S1.6 – Geometric representations of the gradient descent algorithm (GDA) minimizing the loss function.

In (a) a single θ weight is considered. If the loss value at epoch ε-1 was A, then the gradient (i.e., the angular

coefficient of the tangent) has a negative sign; therefore, in epoch ε the GDA takes a positive step towards the

optimization of θ (confront the formula provided, where η is the learning rate and is always a positive number).

The step size is determined by η. Instead, if the loss value at epoch ε-1 was B, then the gradient has a positive sign

and in epoch ε the GDA takes a negative step. At the minimum of the loss function the gradient is 0, which means

that θ has reached its optimum. In (b) two weights are considered, just to show how the complexity of the loss

function morphology raises with the number of model parameters.

3.7 Model and optimization in a binary classification task

In a classification scenario the expected output y is a discrete value (see subchapter 0).

However, the output of the regressor model is in the interval [-∞, ∞], therefore it is not feasible

for a classifier. Consequently, the model function (hϑ(x)) must be adjusted in order to output a

probability score over the classes. In a binary classification scenario (e.g., is a fault active or

inactive), this is accomplished by switching from the linear regression function to the logistic

regression function (σ), a non-linear function characterized by a sigmoid shape (see Figure

S1.7).

ℎ𝜗(𝑥) = 𝜎(𝑧) =
1

1 + 𝑒−𝑧

(12)

Here z indicates the matrix product between the vector of the weights (θ) and the vector of the

inputs (x), as previously seen in the linear regression model:

𝑧 = 𝜗𝑇𝑥 = 𝜗0 + 𝜗1𝑥1 +⋯+ 𝜗𝑛𝑥𝑛

(13)

hence

30

ℎ𝜗(𝑥) =
1

1 + 𝑒−𝜗
𝑇𝑥

(14)

Therefore, the linear regression output is simply fed to the logistic function. In ML this function

is also referred to as activation function.

Figure S1.7 – The logistic function. The red dot (σ(z) = 0.5) is the inflection point of the function.

Since the output of the logistic function covers the range [0, 1] (see Figure S1.7), in a binary

classification task the output of the function σ(z) can be considered the estimated probability �̂�

that the input sample (given its features x and weights θ) is part of the positive class (y = 1).

ℎ𝜗(𝑥) = 𝜎(𝑧) = �̂�(𝑦 = 1 |𝑥, 𝜗)

(15)

At the same time, the estimated probability that the sample is part of the negative class (y = 0)

is:

31

1 − ℎ𝜗(𝑥) = 1 − 𝜎(𝑧) = 𝜎(−𝑧) = �̂�(𝑦 = 0|𝑥, 𝜗)

(16)

In practice, the output of the logistic function can be used to predict which class the input

belongs to, using the score 0.5 (i.e., the inflection point of the sigmoid – see Figure S1.7) as a

threshold or a decision boundary.

�̂� = {
0, ℎ𝜗(𝑥) = 𝜎(𝑧) < 0.5 ⟺ 𝑧 < 0

1, ℎ𝜗(𝑥) = 𝜎(𝑧) ≥ 0.5 ⟺ 𝑧 ≥ 0

(17)

As for the regressor, the next ingredient for a classifier is the loss function, to calculate the

differences between the expected output and predicted one. The MSE loss is not ideal to

evaluate the errors of the model, since, as already stated, we are dealing with probability scores.

A very common loss function for binary classification tasks that implements the logistic

regression is the binary cross-entropy (BCE) loss.

ℒ(ℎ𝜗(𝑥), 𝑦) = {
− log(ℎ𝜗(𝑥)) , 𝑦 = 1

− log(1 − ℎ𝜗(𝑥)) , 𝑦 = 0

(18)

This function is correlated to the concept of the Shannon entropy, as introduced by Shannon,

1948. The binary cross-entropy loss increases as the predicted probability diverges from the

true label (Figure S1.8). In practice, considering the N-sized train set, the binary cross-entropy

loss is computed as:

ℒ(𝜗) = 𝐵𝐶𝐸 = −
1

𝑁
∑[𝑦𝑖 log(ℎ𝜗(𝑥𝑖))⏟

𝑦𝑖=1

+ (1 − 𝑦𝑖) log(1 − ℎ𝜗(𝑥𝑖))⏟
𝑦𝑖=0

]

𝑁

𝑖

(19)

This last is a convenient way to express the BCE loss, since, depending on the value of the

expected output yi (that can only be 0 or 1 in a binary classification) just one portion of the

equation will be activated, as indicated above. Another useful characteristic of this loss function

is that it is not only differentiable but also convex. A convex function is more suitable for the

gradient descent algorithm to find the global minimum, rather than a local one. The formula

for the gradient descent algorithm is the same one introduced for the regression task (see

subchapter 3.6).

32

Figure S1.8 – Different cross entropy values, depending on the degree of error of the prediction. A low cross-

entropy is obtained when the predicted class corresponds to the true class and the prediction has a high probability

(i.e., close to 1). A high cross-entropy is instead obtained when the predicted class does not correspond to the true

class and the prediction has a high probability.

Once the loss function has been minimized with the optimizer, and therefore the best model

parameters (θ) have been unraveled, the logistic function can be applied to the data and,

consequently, each input is assigned to the positive (σ(z) ≥ 0.5) or the negative (σ(z) < 0.5)

class.

3.7.1 Extension to the multiclass case

The logistic function can be extended to the multiclass case, where the number of required

classes (k) is major than 2. One possible approach is to implement multiple binary classifiers

in a one-vs-all (i.e., one class becomes the positive class, and all the others are handled as the

negative one) or a one-vs-one (i.e., every class against each other) fashion. The final prediction

is then obtained by evaluating the contribution of each binary classifier. However, the most

popular strategy is to generalize the logistic function to multiple dimensions. This multi-class

logistic regression (a.k.a. softmax function, firstly introduced in ML by Bridle, 1989 and

Bridle, 1990) is nowadays applied in most neural networks that solve classification tasks with

more than two classes.

One very convenient feature of softmax is that, unlike one-vs-all and one-vs-one strategies, it

outputs a probability distribution across all K classes, so that their sum is always equal to one.

The model will then simply output the class with the higher probability value. This is

mathematically achieved by computing the softmax function as follows:

33

𝜎(𝑧)𝜅 =
𝑒𝑧𝜅

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0

(20)

The form of this equation is very similar to the logistic regression one, with some minor

adjustments to achieve the multi-class probability distribution. In particular, 𝑧 is a column

vector that represents the outputs of K linear regressors, one for each κ class. The term 𝑒𝑧𝜅 is,

therefore, the sigmoid activation of the regressor’s output for the κ-th class; to compute the

probability of the input to be part of that κ class, 𝑒𝑧𝜅 is divided by the sum of the activations of

the regressors’ outputs for all K classes. K-1 and i=0 are specified in the sum because,

canonically, the classes are labelled starting from index 0 (see subchapter 3.4). The softmax

algorithm can also be expressed as a function of the model parameters (θ) and the input features

(x) as follows:

ℎ𝜗
(𝜅)
(𝑥) =

𝑒𝜗
(𝜅)𝑇𝑥

∑ 𝑒𝜗
(𝑖)𝑇𝑥𝐾−1

𝑖=0

(21)

To better understand how the softmax classifier works, we can take as an example a

classification task with K=3, such as κ0 = ‘plagioclase’, κ1 = ‘garnet’ and κ2 = ‘quartz’. The

input features are x=3, with x1 = SiO2 wt%, x2 = Al2O3 wt% and x3 = FeO2 wt%. We assume

that the best model parameters (θ) for this classification task have already been identified. Now

we want to classify a new unknown sample:

The regressors output vector (𝑧) can be schematized as following:

𝑧 ⃗⃗⃗ =

[

 𝑧𝜅0 = 𝜗0

(0) + 𝜗1
(0)𝑥1 + 𝜗2

(0)𝑥2 + 𝜗3
(0)𝑥3

𝑧𝜅1 = 𝜗0
(1) + 𝜗1

(1)𝑥1 + 𝜗2
(1)𝑥2 + 𝜗3

(1)𝑥3

𝑧𝜅2 = 𝜗0
(2) + 𝜗1

(2)𝑥1 + 𝜗2
(2)𝑥2 + 𝜗3

(2)𝑥3]

= [

𝜗0
(0) + 𝜗1

(0)65 + 𝜗2
(0)19 + 𝜗3

(0)0

𝜗0
(1) + 𝜗1

(1)65 + 𝜗2
(1)19 + 𝜗3

(1)0

𝜗0
(2) + 𝜗1

(2)65 + 𝜗2
(2)19 + 𝜗3

(2)0

]

 SiO2 wt% (x1) Al2O3 wt% (x2) FeO2 wt% (x3)

Unknown sample 65 19 0

34

= [
5.19
2.16
−1.3

]

Now the softmax activation can be applied to each component of the 𝑧 ⃗⃗⃗ vector:

𝜎(𝑧 ⃗⃗⃗) =

[

 𝜎(𝑧𝜅0) =

𝑒𝑧𝜅0

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0

𝜎(𝑧𝜅1) =
𝑒𝑧𝜅1

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0

𝜎(𝑧𝜅2) =
𝑒𝑧𝜅2

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0]

=

[

 𝑒
5.19 ∙ 1 (𝑒5.19 + 𝑒2.16 + 𝑒−1.3)⁄

𝑒2.16 ∙ 1
(𝑒5.19 + 𝑒2.16 + 𝑒−1.3)⁄

𝑒−1.3 ∙ 1 (𝑒5.19 + 𝑒2.16 + 𝑒−1.3)⁄]

= [
0.953
0.046
0.001

]

Consequently, the new sample will be classified as a ‘plagioclase’ (class κ0), with a probability

score of 95%. The probability score is a very convenient information because it can be used to

impose a confidence threshold value on the classification. For instance, every classification

with a probability score lower than 80% could be discarded. Even more conveniently, such

threshold can be arbitrarily set by the end user during model exploitation – i.e., during

inference.

In the previous multi-class example, we assumed that the model parameters (θ) were already

known. In order to identify them during training phase, the binary cross-entropy loss function

must be adjusted to work with multiple classes. The extension of BCE loss to the multi-class

case is intuitively named cross-entropy (CE) loss. When introducing the BCE loss, it was

discussed how just one portion of the equation is activated at time, depending on the nature of

the true label (yi), that can only be 0 or 1 in a binary classification. In the cross-entropy loss

formula the same concept is applied, but yi can take K different values. Therefore, a convenient

way to compute the CE loss formula is:

ℒ(𝜗) = 𝐶𝐸 = −
1

𝑁
∑∑1{𝑦𝑖 = 𝜅} log(ℎ𝜗

(𝜅)
(𝑥𝑖))

𝐾−1

𝜅=0

𝑁

𝑖

(22)

Here, in order to activate only one portion of the equation at time, an indicator function (i.e.,

1{yi = κ}) is employed, which outputs 1 when the proposition inside the parenthesis is true, 0

otherwise:

1{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇𝑟𝑢𝑒
0, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒

35

(23)

In CE loss, ℎ𝜗
(𝜅)
(𝑥𝑖) is the estimated probability �̂� that the i-th input sample (given its features

x and the model weights θ) is part of the class κ:

ℎ𝜗
(𝜅)(𝑥𝑖) = �̂�(𝑦 = 𝜅|𝑥, 𝜗) =

𝑒𝜗
(𝜅)𝑇𝑥

∑ 𝑒𝜗
(𝑖)𝑇𝑥𝐾−1

𝑖=0

(24)

The cross-entropy loss is also appreciated because it penalizes more the predictions that are

confident but wrong. To use the CE loss formula properly, however, the ground truth labels

require an important pre-processing operation named one hot encoding. In fact, to simplify the

job of the loss function in a multi-class classification scenario, the true outputs (y) need to be

encoded as column vectors of 0’s, except for a single 1 value at the κ-th row, being κ the

corresponding class id. For instance, considering the previous example, the true labels of three

samples of class ‘plagioclase’ (κ=0), ‘garnet’ (κ=1) and ‘quartz’ (κ=2) respectively, will be one

hot encoded as:

𝑦𝑘0 = [
1
0
0
] ; 𝑦𝑘1 = [

0
1
0
] ; 𝑦𝑘2 = [

0
0
1
]

These encoded labels have the same shape of the predicted output vectors 𝜎(𝑧 ⃗⃗⃗), and this allows

a simpler comparison between true labels and predicted labels with the CE loss.

The softmax regression can be displayed as a simple Neural Network, as shown in Figure S1.9.

Figure S1.9 – Softmax regressor schematized as a simple Neural Network. The information is forwarded from the

input nodes (x) to the linear regressors (z) and then to the softmax activations (a). After the prediction (ŷ) is

obtained, the loss function (L) is computed. In this example the model is designed to identify up to 5 classes from

3 features. More layers (hidden layers) can be inserted between the input layer and the regressor layer to possibly

enhance the model performance.

36

3.8 Evaluation of classification models

Evaluating a classification model means to qualitatively and quantitively estimate its prediction

successes and failures. The evaluation of the model is performed during and/or after the learning

operations. An example of a quantitative estimation is the accuracy score, a straightforward

indicator of the correct predictions’ percentage over an entire dataset. Qualitatively evaluate a

classification model means to identify in which classes the major failures of the model are

concentrated and why. In the next subchapters some of the most utilized evaluation scores and

graphics, that were also implemented in the software X-Min Learn (see Section 3 – chapter

4.2), will be described.

3.8.1 Accuracy

One of the most intuitive evaluation scores is the accuracy, being just the number of correct

predictions over all the predictions. The accuracy curve (i.e., a graphic showing the accuracy

score at each training epoch, see Figure S1.10a,b) is one of the main diagnostic curves that is

examined during the learning session. Since ideally the model’s accuracy increases over time,

the accuracy curve should be similar to the ones illustrated in Figure S1.10a. Examining the

trend of the curve during training permits to immediately understand if the model is learning

appropriately and, if not, to prematurely stop the learning session and save time. Moreover, a

common procedure is to compare the accuracy score on train set with the accuracy score on

validation/test set (confront Figure S1.10a,b). Since model parameters are automatically

refined only using the train set data, the validation/test set accuracy represents an unbiased

score of the model predictions, being populated by examples from which the model never

extracts “knowledge”. Comparing the two accuracy curves can be useful for identifying

learning problems like overfitting (i.e., much higher accuracy on train set than validation/test

set – see Figure S1.10b).

3.8.2 Loss

As introduced in subchapter 3.6, the loss function computes the model prediction errors after

each iteration; thus, the loss curve can be graphed like the accuracy curve. If the model is

learning efficiently, it should reduce its prediction errors over time. Consequently, the loss

curve should show a decreasing trend, ideally converging asymptotically to a near-zero value

(Figure S1.10c). The same considerations previously made for the accuracy curves also apply

to loss curves (i.e., comparison between train set and validation/test set curves and diagnosis

of overfitting – see Figure S1.10c,d).

37

Figure S1.10 – Accuracy (a, b) and loss (c, d) curves, useful to monitor the model’s learning behaviour during

training sessions. The curves in (a) and (c) show a good learning, where both the train and the validation sets data

is more and more accurately classified over time. In (b) and (d) the wide gap between train (well classified) and

validation (poorly classified) curves is diagnostic of model overfitting.

3.8.3 Precision, recall and F1 score

A common practice during the evaluation of a classification model is to extract the following

parameters:

• True Positives (TP) i.e., the number of samples of class κ that were correctly predicted

as class κ

• True Negatives (TN) i.e., the number of samples not of class κ that were correctly

predicted as not of class κ

• False Negatives (FN) i.e., the number of samples of class κ that were incorrectly

predicted as not of class κ

• False Positives (FP) i.e., the number of samples not of class κ that were incorrectly

predicted as class κ

Since these parameters are computed for each κ class, they allow a class-by-class evaluation of

the model. They are indeed required to compute three useful metrics: precision, recall and F1

score.

38

The classification precision (for class κ) is defined as the ratio of correct predictions of class κ

to all predictions of class κ. This metric can, for example, answer the question: of all the samples

predicted as quartz, how many were actually quartz?

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(25)

The classification recall (for class κ) is defined as the ratio of correct predictions of class κ to

all instances truly of class κ. This metric can, for example, answer the question: of all the sample

that are actually quartz, how many were predicted as quartz?

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(26)

The F1 score metric is the weighted average of precision and recall and it is usually more

effective than the accuracy, since it takes into account both the precision and the recall metrics:

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(27)

In a multi-class scenario, it is common practice to provide a unique F1 score that describes the

overall model performance. This unique value is extracted by combining the F1 scores of each

class. There are three kinds of combinations: micro-average, macro-average and weighted

average. The micro-average is the only method that computes a global average F1 score by

directly applying the formulas at Eq. 25, 26 and 27 with the sums of TP, FN and FP of the entire

dataset. Therefore, the micro-average F1 score is equal to the accuracy score. The macro-

average score is the most straightforward, extracting a global F1 score by computing the

arithmetic mean (a.k.a., unweighted mean) of all the per-class F1 scores. The weighted average

computes instead the weighted mean of all the per-class F1 scores. The weight value is the

percentage of occurrence of each class in the dataset. This score is most useful when evaluating

the model performance on unbalanced datasets (see Section 3, subchapter 4.2.2).

3.8.4 Confusion matrix

Precision, recall and F1 scores allow a quantitative class-by-class estimation of the efficiency

of the model. The confusion matrix shows a graphical interpretation of such estimation. Given

39

its structure (see Figure S1.11), a confusion matrix of a perfect model would be an identity

matrix. From the confusion matrix illustrated in Figure S1.11 is possible to extract the class-

by-class precision along the columns and the class-by-class recall along the rows. Moreover,

a confusion matrix allows a qualitative evaluation of the model, as the operator can identify

which classes the model tends to confuse the most.

Figure S1.11 – Confusion matrices for train set (a) and validation set (b), respectively. These matrices are useful

to evaluate the model’s performance qualitatively and quantitatively. For example, both show that about 25% of

the class ‘Kfs’ (K-feldspar) is misclassified as class ‘Pl’ (plagioclase).

40

3.9 Hyperparameters

As briefly mentioned in subchapter 3.6, hyperparameters are special ML parameters, that are

chosen arbitrarily by the operator and heavily control the learning process. The choice depends

on the behavior of the model itself, which in turn depends on the data. Subchapter 3.8 covers

some of the most useful statistics and graphics that can be examined by the operator to obtain

qualitative and quantitative scores of the model’s performance. In this subchapter it will be

described how such scores can lead the operator to the fine-tuning of four of the most used

hyperparameters: the number of epochs, the learning rate, the weight decay and the momentum.

3.9.1 Number of epochs

This is the most straightforward of the hyperparameters. In general, the more the epochs, the

more the model can self-refine. However, a very large number of epochs can lead to overfitting

issues and always extends the learning time. A simple way to identify the ideal number of

epochs is to examine the loss and accuracy curves (see Figure S1.10). In general, the optimum

is observed when the curve reaches a plateau. However, if overfitting occurs it is highly

recommended to reduce the number of epochs or fine-tune other hyperparameters.

3.9.2 Learning rate

The learning rate (LR), already introduced in subchapter 3.6, determines the step size that the

optimizer takes at each epoch to refine the model by minimizing the loss function. A big LR

(>10-1 in general, but it depends on the data) can determine an “overshoot” of the loss minimum,

producing a loss curve that looks like the one illustrated in Figure S1.12a. A small LR (< 10-5

in general) would eventually lead to a good model performance but increases dramatically the

required number of epochs and therefore the learning time. A loss curve that never reaches a

plateau is diagnostic of a too small LR (see Figure S1.12b).

Figure S1.12 – Effects of a very big (a) and a very small (b) learning rate (LR) on the trend of the loss curve. A

big LR leads the optimizer to overshoot the minimum of the loss, while a small one slows it down dramatically.

41

3.9.3 Weight decay and momentum

The weight decay (WD) is a hyperparameter that can be included in the optimizer formula to

reduce overfitting. For example, the optimization function at (9), introduced in subchapter 3.6,

can be rewritten as follows:

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 − 𝜂 ∙
𝜕ℒ𝜗𝑗
𝜕𝜗𝑗

−𝝀𝜼𝝑𝒋
𝜺−𝟏

⏟
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑡𝑒𝑟𝑚

(28)

Here λ indicates the weight decay and it is commonly chosen in the range 0 – 0.1, following a

logarithmic scale. The WD, as the name suggests, reduces the absolute values of the model

weights (θ), and it is particularly efficient against the biggest weights, thus simplifying the

model and consequently reducing the chance of overfitting. On the other hand, the WD can

slightly reduce the accuracy of the model, increase the learning time and lead to underfitting in

the worse scenario.

The momentum, on the other hand, accelerates the learning time by boosting the optimizer

function (see Polyak, 1964 and Sutskever et al., 2013 for details). This is accomplished by

saving temporarily in memory the optimization term of the previous epoch (δε-1) and use it in

combination with the momentum (μ) to calculate the optimization term at the current epoch:

𝛿𝜀 =
𝜕ℒ𝜗𝑗
𝜕𝜗𝑗

+ 𝜇 ∙ 𝛿𝜀−1

(29)

Then the parameters are updated as follows:

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 − 𝜂 ∙ 𝛿𝜀

(30)

The momentum ranges between 0 and 1, reduces the time required to minimize the loss function

and sometimes reduces the chance of the model to get “trapped” in a local minimum. However,

it can also increase the chances of overfitting, or, in worst case scenarios, to “overshoot” the

minimum when abused. It is possible to apply both the weight decay and the momentum

contemporaneously.

42

4 Python

Python language was chosen to develop both the tools presented in this work. Python’s design

philosophy encourages dynamicity, simplicity, flexibility, high code readability and

extensibility through external open-source libraries. These features allow Python developers to

spend less time on the technicisms of the language and focus more on their projects. This makes

Python one of the most popular programming languages among data scientists, and, in general,

very suitable for scientific purposes, including machine learning algorithms implementation. A

Python distribution is also embedded within ArcGIS®, and this enabled to code ArcStereoNet

directly within the GIS environment, determining a high compatibility between the new code

and the default tools of ArcGIS®. At the same time, the wide plethora of external open-source

libraries allowed the entire development of a stand-alone GUI for X-Min Learn.

4.1 Python libraries

This work introduces a Python toolbox developed within the ArcGIS® environment

(ArcStereoNet [ASN] – see Section 2) making use of Python 2.7 version, and a stand-alone

software (X-Min Learn [XML] – see Section 3) entirely coded in Python 3.8 version. To

develop both applications, several external open-source Python libraries were employed, the

most important of which are listed below:

• NumPy (Harris et al., 2020), a collection of array-oriented computing tools for scientific

calculation (both ASN and XML).

• Matplotlib (Hunter, 2007), a comprehensive library for creating static, animated, and

interactive visualizations (both ASN and XML).

• SciPy (Virtanen et al., 2020), a collection of algorithms to extend NumPy

functionalities, providing additional advanced tools for array computing (only XML).

• Arcpy, the ESRI-designed library to run Python code in the ArcGIS® environment (only

ASN).

• Mplstereonet (Kington, 2020), that provides lower-hemisphere equal-area and equal-

angle stereonets for matplotlib (only ASN).

• Pandas (McKinney, 2010), a collection of tools for reading, writing and manipulate

datasets (only XML).

• Pillow (Clark, 2015), a library that provides several image processing tools (only

XML).

• Libtiff (Leffler, 2003), that provides support for the TIFF image format (only XML).

43

• Scikit-learn (Pedregosa et al., 2011), a machine learning library that provides both

supervised and unsupervised algorithms, and several tools for data pre-processing,

model evaluation and more (only XML).

• Imbalanced-learn (Lemaître et al., 2017), a library relying on scikit-learn that provides

tools to deal with imbalanced datasets (only XML).

• PyTorch (Paszke et al., 2009), a package that provides Tensor computation with GPU

acceleration and several utility functions to build neural networks (only XML).

• PyQt (Summerfield, 2007), a set of Python bindings for Qt, a C++ library to develop

efficient Graphic User Interfaces (only XML).

5 Geological applications

As introduced in chapters 2 and 3, the first and fundamental step to run a machine learning

algorithm is to collect data and organize it into a dataset. Such dataset can be either a ground

truth dataset (for supervised learning) or a simple unlabeled input dataset (for unsupervised

learning). Both types of datasets must be populated in a consistent and schematic way and

conveniently designed for the ML task. It has been broadly discussed in subchapters 2.1, 2.2

and 3.2 how a dataset should be structured to meet machine requirements.

Knowing all the above prerequisites, the following, arguably more complex task is to translate

the geological data accordingly. This is a challenge faced during the development and the

application of both software presented in this work. It was eventually decided to design user-

friendly dataset management tools to direct users towards a semi-automatic and standardized

way of organizing their geological data while using the provided software.

These tools are designed for geological applications that require the statistical analysis and

projection of micro- and meso-structural data (ArcStereoNet) and the automatic mineral

recognition and analysis from multichannel chemical data (X-Min Learn). In both cases, the

role of a properly structured dataset is undoubtably central. Additionally, since a standard, data-

independent, schematized way of organizing the user’s data was implemented, the applications

of such software can potentially be extended to different types of task’s domains (for more

details see Section 2, chapter 2 and Section 3, subchapter 4.1).

44

 SECTION 2

–

ARCSTEREONET: STATISTICAL ANALYSIS OF STRUCTURAL

DATA

In this section a Python-toolbox for the statistical analysis of oriented data within the ArcGIS®

environment (i.e., ArcStereoNet) will be introduced. In the first two chapters the relation

between ArcStereoNet and ArcGIS® will be defined. In chapter 3 an overview of the different

tools that are included within ArcStereoNet will be provided and in chapter 4 the implemented

algorithms will be compared. Finally, chapter 5 will highlight the quantitative geological

parameters that can be extracted with the toolbox from the outcrop scale to the thin section

scale, through the practical analysis of a petro-structural case study.

45

1 Introduction

Many geoscientific disciplines often require processing large amounts of oriented data (e.g.,

foliations, fault planes, joints, crystallographic orientations, etc.) in order to extrapolate

statistically meaningful numerical parameters. Equal-angle and equal-area stereographic

projections (a.k.a. stereoplots) are graphical tools that permit to re-project 3D data in a two-

dimensions space, thus, simplifying its interpretation (Phillips, 1955).

Various software have been developed during the years for the digital and semiautomatic

realisation of stereoplots, such as Stereonet (Cardozo & Allmendinger, 2013) or Dips® (by

Rocscience Inc.). Some of these include a large number of useful tools for statistical analysis,

rotation and transformation functions and include kinematic analysis or stress field orientation

analysis.

One downside of using such software, however, is that the relative geographical coordinates of

the data in real space (e.g., distance between two faults in the field, two minerals in this section

etc.) is lost (Hobbs et al., 1985). To mind this gap between orientation data and its spatial

information, several pioneering tools or plugins compatible with ArcGIS® have been developed

in the past, such as GIS-stereoplot (Knox-Robinson & Gardoll, 1998), Export Toolbox

(Maxelon, 2004) and OATools (Kociánová & Melichar, 2016). ArcGIS® is indeed a

Geographical Information System (GIS) software useful to analyze geographic information,

build geo-referenced layers containing quantitative parameters and apply several algorithms for

the extrapolation of statistical information from the data. Most importantly, since the data is

imported within a GIS environment, its spatial information is not lost, but rather highlighted.

Therefore, many functionalities of ArcGIS® are remarkably suitable for geological data

handling and exploring. If properly structured and organized, such data represent a source of

valuable information at different scales. The tools that ArcGIS® provides can indeed be applied

to an entire section of an orogen (e.g., Ortolano et al., 2022) or to an arbitrary Local Information

System (LIS), for example at the scale of the thin section (see Ortolano et al., 2018 and Visalli

et al., 2021).

The above-mentioned pioneering tools are however very old and all of them, except for

OATools, are not compatible with the modern distributions of ArcMap® (versions 10.x), and

none of them is compatible with ArcGIS® Pro. OATools is the most recent steroplots-related

tool for ArcGIS® but extends its compatibility only to ArcMap® 10.2 and 10.3. More recent are

instead the stereographic projections plugins for QGIS®, among which the most used are

46

qgSurf (Alberti et al., 2016) and GeoTrace (Thiele et al., 2017). This is the reason why

ArcStereoNet (ASN) was developed, and published during the Ph.D. timespan in Ortolano et

al., 2021, as an ArcGIS®-based Python-toolbox.

ASN adds geological-oriented tools to the already wide plethora of ArcGIS® functionalities,

allowing the projection (stereographic projections and rose diagrams) and the statistical analysis

of oriented structural and micro-structural data. The integration of ASN is possible thanks to a

built-in feature provided by ArcGIS® itself, that allows users to run custom Python scripts

within its environment. ArcStereoNet is compatible with all the recent ArcMap® versions of

the software, starting from version 10.3, as well as with the ArcGIS® Pro distributions.

ArcStereoNet was therefore developed within this Ph.D. project to provide a unique software

solution for analyzing and comparing oriented data at different scales within the same

environment (i.e., the same ArcGIS® project). Georeferenced meso-structural data collected

from outcrops can be easily organized in spreadsheet files that can then be imported and

visualized within the GIS project and processed with ASN. Oriented micro-structural data

cannot be extracted directly from thin sections images with ArcStereoNet, but it can process

any kind of shapefile (i.e., punctual, linear, polygonal) previously populated with microfabric-

related data using other ArcGIS® toolboxes like Micro-Fabric Analyzer (Visalli et al., 2021). In

this view, ArcStereoNet can be utilized as a final instrument to compare simultaneously the

oriented data collected from the macro-scale to the micro-scale within the same GIS project.

However, ASN is not just a data visualization tool; it also permits to carry out spherical

statistical analysis, such as density functions (contours), cluster and girdle analysis, mean

vectors extraction. In addition to this, a completely new algorithm for cluster analysis and mean

vector extraction (i.e., Mean Extractor from Azimuthal Data) is included in the toolbox. All the

available algorithms can be compared simultaneously, allowing a more reliable interpretation

of the occurring structural data distribution.

1.1 Graphic User Interface

The graphic user interface (GUI) plays a critical role in the efficiency of any application.

Developing an interactive interface increases the number of potential users, simplify rather

complex tasks, and generally reduces the time required to accomplish them. Since ASN is

completely merged within the ArcGIS® environment, it shares the same look and feel of its

default tools (see subchapter 3 for details). Consequently, ArcGIS® users will find

ArcStereoNet tools extremely straightforward and will experience a high compatibility with

47

other ArcGIS® functionalities. As an example, refer to the case study provided in subchapter 5,

where ASN was implemented inside a wider workflow that also included other custom ArcGIS®

tools.

The development of the ArcStereoNet GUI was the first attempt within this Ph.D. project of

using Python for developing a graphic interface. The core library of ArcStereoNet is

mplstereonet (see Section 1, subchapter 4.1), that gathers several functions for the realization

of stereographic projections and rose diagrams in Python. It also includes several statistics for

the extrapolation of density contours and clusters within the plots. However, mplstereonet is a

pure Python library, that requires programming skills in order to be exploited. In this Ph.D.

project the library functionalities were expanded, adapted and implemented into the ArcGIS®

environment by means of the arcpy library (see Section 1, subchapter 4.1). After having tested

the various spherical statistical algorithms using stand-alone Python scripts, ASN GUI was

developed in a way that directs users toward a friendly but aware application of the available

algorithms, in order to derive more reliable geological and petrological interpretations and

constraints than traditional analysis techniques. A guide to the installation of ASN is provided

in Appendix: ArcStereoNet installation.

2 Dataset management

As anticipated in Section 1, chapter 5, the role of a properly structured dataset is undoubtably

central in the digitalization of geological data. ArcGIS® already provides several tools to deal

with datasets management. ESRI shapefiles were identified as the ideal type of data container

that meets the requirements of ASN algorithms. Shapefiles enable indeed to store geo-

referenced data, adding as many fields as required within their attribute tables and supporting

a great number of different queries.

Shapefiles can be created directly inside ArcMap® through the “Create Feature” window, but a

tabular data file (e.g., Excel file), storing latitude and longitude coordinates for each data

instance, can also be imported and then converted into a shapefile. This can be performed

through the following steps:

1. Click on File > Add Data > Add XY Data (Figure S2.1a) and select the tabular data

sheet and the coordinates fields (Figure S2.1b). The coordinate system can also be here

specified.

48

2. In the Table of Contents, right-click on the imported file, then select Data > Export

Data (Figure S2.2a) and choose an output path for the new shapefile (Figure S2.2b).

Figure S2.1– Screenshots showing (a) how to load georeferenced data in ArcMap® through a spreadsheet-like

file and (b) how to select latitude and longitude fields from said file.

Figure S2.2 – Screenshots showing how to export data from a loaded spreadsheet-like file (see Figure S2.1) to a

shapefile format.

49

ArcStereoNet can access the attribute tables and extract the information required to draw

stereographic projections or rose diagrams, as well as to derive several statistics from oriented

data. In this view, the dataset management operations that ArcGIS® provide can be leveraged

to better manage and standardize structural data.

2.1 Fields formatting

ArcStereoNet tools require as input the following information:

• Azimuth angle

• Dip angle (only for Stereoplots tool – see subchapter 3.1)

• Sampling method (only for Stereoplots tool)

• Feature type

This information must be stored in different fields within the attribute table of the oriented data

shapefile (see Figure S2.3). ASN tools can automatically recognize the required information if

such fields are renamed, respectively, as follows (not case sensitive):

• Azimuth – here azimuthal values (i.e., direction, dip direction or trend) shall be stored

as numeric values.

• Dip Angle or Dip_Angle – here inclination values (i.e., dip or plunge) shall be stored as

numeric values.

• Method – here the data format must be specified as text values, choosing from “RHR”,

“DD” and “TP” (must be written in uppercases), indicating, respectively, the following

conventional sampling methods: Right Hand Rule, Dip Direction/Dip and Trend-

Plunge.

• Type – here the user should indicate the feature type as text values (e.g., “Main

Foliation”). Such information is not mandatory, though highly recommended. It allows

a correct grouping and graphical representation of the different types of data. When

differences between facing directions need to be highlighted (e.g., beddings with

distinguishing between normal and overturned positions), this field can be populated

with distinct entries, thus prompting the tool to treat such data separately.

The user can also populate with such information a tabular data file and then import it, as

described at the beginning of chapter 2; each column will be treated as a different field by

ArcMap®. The attribute table of the shapefile can also be edited at any time. If the fields are not

renamed as suggested above, it is still possible to select manually the corresponding ones within

50

the tools interface (see chapter 3 for details). Other fields can also be added in the attribute table

according to user’s needs and preferences. Once the shapefile is compiled, users can select the

portion of data that needs to be plotted, taking advantage of the various selection tools provided

by ArcMap® (see Figure S2.4), otherwise, the whole dataset will be processed by ASN.

Figure S2.3 – Example of a shapefile’s attribute table. The highlighted fields hold the data required by

ArcStereoNet.

Figure S2.4 – Feature selection in ArcMap®. The selection performed on the map (a) is reflected in the attribute

table (b), and vice versa.

3 Tools overview

Three tools have been developed within ArcStereoNet: Stereoplots, Rose Diagrams and Graph

To Hyperlink, respectively useful to carry out stereographic projections, rose diagram plotting

and to connect such graphics with the geographic position of the data, via hyperlink.

51

Furthermore, the first two tools include unsupervised algorithms (see chapter 4) useful to

explore, statistically analyze and cluster the oriented data. The plots can be saved in different

images formats, including vectorial ones (e.g., svg).

3.1 Stereoplots tool

Figure S2.5 – from Ortolano et al., 2021. Stereoplots tool layout. Green dots indicate required parameters. (a)

Oriented dataset input; requires a shapefile (point, line, and polygon feature types are supported). (b) Dataset’s

fields required by the tool. (c) Plotting data value table; for each added instance the user can specify the plotting

colour, size, and symbolism. (d) Output image settings; the plot can be saved as a temporary file, otherwise an

output file path must be selected. (e) Contour & Statistics submenu (collapsed, see Figure S2.8 for details). (f)

Plot Customisation submenu; the stereoplot look can be here customised. (g) Plotting Options submenu; the

stereonet type can be chosen (equal-area or equal-angle) and a log file can be requested.

52

The Stereoplots tool (Figure S2.5) yields lower hemisphere equal area or equal angle azimuthal

projections, showing cyclographic traces, and/or poles for the selected planar measurements,

and/or points for the linear elements. The shapefile storing the data can be loaded in the Input

Feature box (Figure S2.5a). If the fields were formatted as suggested (subchapter 2.1) the

required information (Figure S2.5b) will be automatically detected, otherwise it can be selected

manually through the drop-down menus. The data types that the user wants to plot can be

selected through the Plot Cyclographic Traces, Poles, and Vectors box (Figure S2.5c). By

unchecking the Store Image Output checkbox (Figure S2.5d), the user can prompt the tool to

save a temporary output image file and automatically open it after the tool execution. Otherwise,

the output image file path can be specified in the “Output Image” parameter box.

The Plot Customisation and the Plotting Options submenus (Figure S2.5f,g) permits to further

customize the appearance of the plot, for example by selecting the net type (Schmidt or Wulff).

An important parameter in the Plotting Options submenu is the Write Log File checkbox, that

can be checked to compile a log text file (.txt). Such file stores useful statistical information

regarding the algorithms that can be applied to data by expanding the Contour & Statistics

submenu (Figure S2.5e). A detailed description of the available algorithms is provided in

chapter 4.

3.2 Rose Diagrams tool

The Rose Diagrams tool permits to generate weighted and unweighted rose diagrams. Its GUI

(Figure S2.6) is very similar to the Stereoplots tool’s one. The required information are only

the Azimuth and the Type fields (Figure S2.6b). Within the Data to be plotted box (Figure

S2.6c) the user can specify the bar color and whether to show the mean vectors or not, with a

determined number of clusters and azimuth tolerance. Each mean vector will be shown in the

plot with an arrow oriented along the mean direction (azimuth), with a length proportional to

the mean resultant length (see chapter 4 for further details). While the Plot Customisation

(Figure S2.6e) submenu gathers only graphic-related settings, the Plotting Options (Figure

S2.6) submenu enables to show a specular rose diagram (Mirrored Behaviour checkbox), and

to weight the plotted data based on a user-selected field of the input shapefile. This is useful

for plotting orientation distributions not just by number of occurrences, but also by other

parameters (e.g., by area). A practical example of this settings usefulness is provided in chapter

5.

53

Figure S2.6 – from Ortolano et al., 2021. Rose Diagrams tool layout. Green dots indicate required parameters. (a)

Oriented dataset input; requires a shapefile (point, line, and polygon feature types are supported). (b) Dataset’s

fields required by the tool. (c) Plotting data value table; for each added instance, the user can specify the bar colour

and whether to show the mean vectors or not, with a determined number of clusters and azimuth tolerance. (d)

Output image settings; the plot can be saved as a temporary file, otherwise an output file path must be selected.

(e) Plot Customisation submenu; the rose diagram look can be here customised. (f) Plotting Options submenu;

prompt for a specular rose diagram, weight the data (a weight field must be provided) and request a log file.

3.3 Graph To Hyperlink tool

The Graph To Hyperlink tool can be used to link the plots created with Stereoplots and Rose

Diagrams tools to their related spatial positions in the map (Figure S2.7). Each position

corresponds to the mean latitude and longitude coordinates (i.e., the centroid) of plotted data.

This tool takes as input the plots as images and outputs a new punctual shapefile (Figure S2.7a),

54

storing the images file paths and their corresponding latitude and longitude coordinates. As a

result, user can click on each of the point on the map to show a popup window displaying the

plot (Figure S2.7b).

Figure S2.7 – from Ortolano et al., 2021. Graph To Hyperlink tool. (a) Tool layout; one or multiple raster images

are required as input. Such images are meant to be stereoplots or rose diagrams realised by the ASN tools. An

output feature class is also required; here, the spatial information and the hyperlinks to each image is stored. (b)

Example of Graph To Hyperlink result. Green circles indicate the centroid of four different sampling stations; the

corresponding plots pop out from each one of them.

4 Algorithms

In this chapter the algorithms that have been implemented within ArcStereoNet are discussed.

Considering what was mentioned in Section 1, chapter 2, unsupervised algorithms were

selected as the most suitable for grouping and analyzing oriented data. Indeed, there is no

55

advantage in building a ground truth dataset of previously clustered structural data, as structures

and micro-structures can take any possible orientation in space. Therefore, both Stereoplots and

Rose Diagrams tools implement unsupervised algorithms to recognize recurring patterns in the

data, allowing the machine to perform clustering operations.

4.1 Stereoplots tool algorithms

The main purpose of the statistical techniques implemented in the Stereoplots tool is to

subdivide the data into several families on the basis of their orientation similarity (i.e.,

clustering process) and, subsequently, to identify a representative average value for each

identified family (i.e., mean vector extraction process). There are four available algorithms:

Mean Extractor from Azimuthal Data (MEAD), MEAD + Fisher, K-Means, Bingham (Figure

S2.8c).

Additionally, density contour functions are also available (Figure S2.8a,b). They improve the

visualization of the data distribution across the stereographic projection. By default, the tool

implements a modified Kamb contour function (Vollmer, 1995) with exponential smoothing.

However, other density contour functions – e.g., traditional Kamb (Kamb, 1959), Schmidt

(a.k.a. 1% method) – are also available.

Figure S2.8 – from Ortolano et al., 2021. Expanded Contour & Statistics submenu of Stereoplots tool. (a) Apply

Contour value table; density function, standard deviation, style, colour, and transparency of contour can be here

chosen. (b) Show the contour colour bar. (c) Extract Mean Vectors value table; the algorithm and the algorithm-

control parameters (see Table 4) can be here specified, as well as other graphic appearance settings. Multiple

analysis instances are supported. (d) Track MEAD behaviour option (see Figure S2.10 for details) will only apply

on clusters extracted with MEAD or MEAD + Fisher algorithms.

56

4.1.1 MEAD

The MEAD algorithm is a new, custom-designed algorithm, implemented for the first time

within ArcStereoNet (see Figure S2.9). The main reason for developing MEAD was to provide

a unique algorithm for both the clustering and the mean vector extraction process, that could be

used as a slightly more user-controlled alternative of K-Means algorithm (see subchapter 4.1.5

for further details).

Figure S2.9 – from Ortolano et al., 2021. Mean Extractor from Azimuthal Data (MEAD) algorithm flow chart.

Ovals indicate input/output objects, squares indicate algorithm subprocesses. The azimuth-dip couples are firstly

sorted by most frequent azimuth value (pre-clustering); then the clustering subprocess is applied, taking care of

the user-controlled tolerance parameters. The raw output is then refined in a post-clustering phase and the required

number of clusters is returned. Finally, these are fed into the mean vector extracting process that outputs the final

result, consisting of one or more mean vectors.

The arithmetic mean formula is not functional to extract a correct mean vector from azimuthal

data, since each oriented feature (planar or linear) is defined by a couple of values (azimuth and

inclination). Moreover, a ‘wrap-around’ problem also occurs, i.e., the overlapping of the values

0 and 360 in a circumference. Therefore, the MEAD algorithm implements a different strategy,

by taking as input: a) the data expressed as a list of azimuth-dip couples (i.e., strike-dip for

planar features or trend-plunge for linear features), b) a user-defined number of clusters and c)

two user-controlled tolerance values (azimuth tolerance and dip tolerance). It is possible for

users to quickly test different tolerance values multiple times to obtain the graphical result that

57

best suits their needs and preferences. A useful option to check is the Track MEAD Behaviour

(Figure S2.8d), which plots the clustered data (poles or lines) with different symbols (see

Figure S2.10). This can be helpful to understand the actual influence of user-controlled

parameters on the clustering process and to simplify their fine-tuning.

Figure S2.10 – from Ortolano et al., 2021. Influence of azimuth and inclination tolerance parameters on the MEAD

clustering process, highlighted with the Track MEAD behaviour option (Figure S2.8). (a) Clustering with an

azimuth tolerance of 20% and an inclination tolerance of 30%. Almost all plotted data is grouped into two different

clusters (i.e., 1 and 2). (b) Clustering with an azimuth tolerance of 13% and an inclination tolerance of 10%.

Extracted clusters tend to be less dispersed; consequently, more data is evaluated as spurious (i.e., not gathered

within any cluster).

The MEAD clustering process tries to group the data into the user-defined number of clusters,

with a 3-steps procedure (see Figure S2.9):

• Pre-clustering. In this subprocess the azimuth-dip couples are sorted by normalized

azimuth frequency.

• Clustering. In this subprocess the couples are iteratively analyzed in order to group them

in different families. In the first iteration, the azimuth and dip values of the first couple

are the starting median values. Each couple is compared with them and grouped together

if they do not diverge by more than a threshold value. Consequently, the median values

get refreshed. The comparison is computed as:

|sin 𝛼𝑖 − sin 𝛼
∗| ≤ 𝑡1;

(31)

58

|cos 𝛼𝑖 − cos𝛼
∗| ≤ 𝑡1;

(32)

|sin 𝛿𝑖 − sin 𝛿
∗| ≤ 𝑡2;

(33)

where αi and δi are the azimuth and dip values of the i-th couple, while α* and δ* are the

current azimuth and dip median values. The sine and the cosine differences (Eq. 31 and

32) are both required to unequivocally express the azimuth value. Instead, as the dip

value ranges between 0 and 90, its sine value is sufficient (Eq. 33). The azimuth

threshold (t1) ranges from 0 to 2, while the inclination threshold (t2) from 0 to 1. This is

required because the sine function ranges between -1 and 1 for azimuth values (i.e.,

maximum variance is 2) and between 0 and 1 for the dip values (i.e., maximum variance

is 1). The clustering subprocess is reiterated until no more clusters can be extracted; the

remaining couples, if present, are considered as spurious. An important role here is

covered by the azimuth and inclination tolerances set by the user, as the thresholds (t1

and t2) are proportional to such values.

• Post-clustering. During this subprocess a post-filtering operation is performed, that

yields only the number of clusters required by the user, selecting the most populated

ones. Any extra cluster is considered as spurious data. If the required number is higher

than the actual number of families extracted by the clustering process, all the obtained

clusters will be returned instead.

The obtained clusters are subsequently fed into the mean vector extraction process (Figure

S2.9). Within each cluster, the sines and cosines of the azimuth values are summed together,

respectively. Then, the 2-argument arctangent function is applied on such summations and the

modulo 360 is applied to its output, after having converted it to degrees. The formula is:

𝜃 = deg (𝑎𝑟𝑐𝑡𝑎𝑛2(∑sin𝛼𝑖 ,∑cos𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

))𝑚𝑜𝑑 360

(34)

where αi represents the i-th azimuth value (in radians) within the n-elements cluster and θ is the

mean angle expressed in degrees. The average inclination value is simply calculated by

59

applying the arithmetic mean formula, since its values range from 0 to 90 and do not ‘wrap-

around’.

4.1.2 MEAD + Fisher

The MEAD + Fisher algorithm is a modified version of MEAD, where the mean vector

extraction process is carried out by the Fisher function (Fisher et al., 1993), implemented within

the mplstereonet package (see Kington, 2016 for details). Additionally, this function generates

three statistic parameters: The R value (i.e., the magnitude of the mean vector, ranging from 0

to 1), the confidence radius (i.e., the opening angle of a small circle that corresponds to the

confidence of the mean vector), and the K value (i.e., the data dispersion factor). These statistics

are stored in a log file if the user enables the Write Log File option (Figure S2.5g).

Since the clustering process is still carried out by the MEAD algorithm, the two tolerance

parameters will influence the result. Additionally, another user-defined parameter (i.e., the

Fisher confidence, ranging between 0 and 99) is required by the algorithm. It influences the

above-mentioned confidence radius. A related confidence cone (or small circle) will also be

plotted on the stereoplot. with an opening angle equal to the confidence radius value.

4.1.3 K-Means vs MEAD

The K-Means algorithm (MacQueen, 1967) is one of the most known and applied unsupervised

machine learning algorithms. It is properly implemented within the mplstereonet package by

Kington, 2016 in order to process spherical data. Like MEAD, it includes both the clustering

and the mean vector extraction processes. The two algorithms implement a different strategy

for the iterative clustering function; K-Means starts the iteration from random points whereas

MEAD starts from the most frequent azimuthal values. Moreover, the clustering process of K-

Means is influenced by the number of clusters required by the user, while MEAD firstly

performs the clustering iteration and then filters the results based on the required number of

clusters (see Figure S2.9). Finally, K-Means works with data expressed in matrix form and

converted in spherical coordinates, unlike MEAD that processes the sines and cosines of

angular data.

4.1.4 Bingham

Like Fisher algorithm, the Bingham algorithm is a well-known function for analyzing the

probability distribution on the sphere (Bingham, 1974), and it is implemented within the

mplstereonet package. This algorithm does not include a clustering process, but rather aims to

60

find the best fit plane of a ‘girdle-like’ distribution pattern. It also differs from the other ASN

algorithms because it does not require any user-defined parameter.

4.1.5 Algorithms comparison

In this subchapter the Stereoplots tool algorithms are compared, and the influence exerted by

the user-defined parameters on each algorithm is discussed. The parameters required by each

algorithm are summarized in Table S2.1, and their influence on the analysis will be

demonstrated using a dataset (Table S2.2) populated with 40 beddings from MacDuff area of

NE Scotland (Trewin, 1987). The data was collected with a geological compass from fold limbs

that were already grouped by the field investigator into two different families (i.e., west and

east limbs of the NNE trending anticlines – see Figure S2.11).

 MEAD + Fisher MEAD K-Means Bingham

Number of clusters X X X -

Azimuth tolerance X X - -

Inclination tolerance X X - -

Fisher confidence X - - -

Table S2.1 – from Ortolano et al., 2021. Influences of user-controlled parameters on ArcStereoNet algorithms.

An ‘X’ symbol means that the parameter (row) influences the algorithm (column).

ID Azimuth Dip_Angle Method Type

0 206 65 RHR West limb of Anticlines

1 212 25 RHR West limb of Anticlines

2 217 40 RHR West limb of Anticlines

3 197 24 RHR West limb of Anticlines

4 192 20 RHR West limb of Anticlines

5 213 40 RHR West limb of Anticlines

6 206 74 RHR West limb of Anticlines

7 205 68 RHR West limb of Anticlines

8 190 35 RHR West limb of Anticlines

9 212 35 RHR West limb of Anticlines

10 203 85 RHR West limb of Anticlines

11 205 52 RHR West limb of Anticlines

12 210 55 RHR West limb of Anticlines

13 204 48 RHR West limb of Anticlines

14 206 70 RHR West limb of Anticlines

15 212 83 RHR East limb of Anticlines

16 215 84 RHR East limb of Anticlines

17 210 77 RHR East limb of Anticlines

18 214 81 RHR East limb of Anticlines

19 207 80 RHR East limb of Anticlines

61

20 205 81 RHR East limb of Anticlines

21 207 86 RHR East limb of Anticlines

22 206 85 RHR East limb of Anticlines

23 214 63 RHR East limb of Anticlines

24 30 65 RHR East limb of Anticlines

25 45 70 RHR East limb of Anticlines

26 27 75 RHR East limb of Anticlines

27 33 83 RHR East limb of Anticlines

28 33 74 RHR East limb of Anticlines

29 40 70 RHR East limb of Anticlines

30 15 65 RHR East limb of Anticlines

31 34 76 RHR East limb of Anticlines

32 32 75 RHR East limb of Anticlines

33 32 88 RHR East limb of Anticlines

34 34 80 RHR East limb of Anticlines

35 35 80 RHR East limb of Anticlines

36 32 70 RHR East limb of Anticlines

37 15 85 RHR East limb of Anticlines

38 24 72 RHR East limb of Anticlines

39 25 70 RHR East limb of Anticlines

Table S2.2 – from Ortolano et al., 2021. Macduff dataset with data categorized by the field investigator (i.e.,
data is split into ‘West limb of Anticlines’ and ‘East limb of Anticlines’).

Figure S2.11 – from Ortolano et al., 2021. Field photograph of a NNE-trending upright synform that folds bedding

(highlighted in yellow) and develops a broadly axial-planar cleavage (in green). (Macduff area: UK Grid: NJ7190

6465).

62

Three different ways of approaching the problem with ArcStereoNet are simulated. The aim is

to extract the most representative mean planes. The first two simulations ignore the data

differentiation performed by the field investigator, labelling all data as generic ‘Fold limb’,

while the third simulation considers such distinction.

In the first simulation (Figure S2.12), three user-defined parameters are set to default (i.e.,

azimuth tolerance = 50%; inclination tolerance = 30%, Fisher confidence = 95%). The number

of clusters is set to 2. MEAD and MEAD + Fisher results converge; the pole to the Bingham

plane confirms this result, as it coincides with the mean cyclographic traces intersections,

indicating the fold axis. K-Means shows the same mean azimuth values but different mean

inclinations, suggesting a larger interlimb angle and a more asymmetrical fold. This can be

attributed to the clustering approach of K-Means, which tries to ‘force’ all data into the clusters.

Instead, the MEAD algorithm tends to exclude spurious data, assembling lower dispersion

clusters. This behavior is highly customizable through the tolerance parameters, as

demonstrated in the next simulation.

Figure S2.12 – from Ortolano et al., 2021. Application of Stereoplots tool algorithms with default algorithm-

control parameters on Macduff dataset. (a) ASN graphic result; (b) portion of Macduff dataset attribute table, with

all records sharing the same feature type (i.e., “Fold limb”); (c) ASN log file showing algorithm statistics and

results; and (d) Extract Mean Vector value table showing the algorithms settings.

The second simulation (Figure S2.13) highlights the influence of user-defined parameters on

MEAD and MEAD + Fisher results. Three possible average inclinations for the west-dipping

63

fold limb are highlighted. The inclination tolerance set for MEAD + Fisher algorithm is low

(i.e., 7%), and this determines a higher number of spurious data and consequently low-

dispersion clusters extraction. Conversely, a much higher inclination tolerance set for MEAD

algorithm (i.e., 65%) leads to more dispersed clusters and less spurious data. The K-Means and

the Bingham results are the same of the previous simulation and are displayed just for

comparison. A contour density function is here also applied to help visualize the different

results of the algorithms.

Figure S2.13 – from Ortolano et al., 2021. Application of ArcStereoNet algorithms with customised algorithm-

control parameters on Macduff dataset. (a) ASN graphic result; (b) portion of Macduff dataset attribute table, with

all records sharing the same feature type (i.e., ‘Fold limb’); (c) ASN log file showing algorithm statistics and

results; and (d) Extract Mean Vector value table showing the algorithms settings.

In the third simulation (Figure S2.14), the impact of an expert user on the final result is

demonstrated. Here, the data differentiation recognized by the field investigator is considered.

This can be done in ASN by specifying within the Type field of the attribute table two different

entries (i.e., ‘West limb of Anticlines’ and ‘East limb of Anticlines’ – see Figure S2.14b). In

other words, this means that a manual data clustering is already performed by the user;

consequently, the number of required clusters is set to 1. This determines that each group of

beddings is processed separately, leading to two individual mean cyclographic traces. In this

example, the orientation data was collected with the Right-Hand Rule (RHR) method and some

of the beddings show a high dip value. Therefore, some of the data labelled as ‘East limb’ show

supplementary strike values (e.g., 30 and 210 degrees). MEAD tends not to group together

64

supplementary strike values, as a consequence of formulas at (31) and (32). Thus, the single

cluster required by the user only gathers the SE-dipping ‘East limb’ records (i.e., the most

numerous) and the mean cyclographic trace shows a less steep dip value. Conversely, K-Means

groups all ‘East limb’ records within the cluster. This leads to the extraction of a steeper dipping

mean cyclographic trace.

Figure S2.14 – from Ortolano et al., 2021. Application of ArcStereoNet algorithms with customised algorithm-

control parameters on Macduff dataset. (a) ASN graphic result; (b) portion of Macduff dataset attribute table, with

records displaying two different feature types (i.e., ‘East limb of Anticlines’ and ‘West limb of Anticlines’); (c)

ASN log file showing algorithm statistics and results; and (d) Extract Mean Vector value table showing the

algorithms settings.

4.2 Rose Diagrams tool algorithms

The Rose Diagrams tool implements a modified version of MEAD for the extraction of mean

vectors. The inclination tolerance parameter is absent because meaningless. Moreover, in

addition to the mathematical formula at (34) the following equation is calculated for each cluster

as well:

𝑅 = √(∑sin𝛼𝑖

𝑛

𝑖=1

)

2

+ (∑cos 𝛼𝑖

𝑛

𝑖=1

)

2

(35)

65

where αi is the i-th azimuth value within the n-elements cluster. R is the mean resultant length

(ranging between 0 and 1) and determines the length of the arrow that represents the mean

vector on the plot. If the Mirrored Behaviour option (Figure S2.6f) is enabled, the

supplementary mean azimuth direction (θ’ = 180° + θ) is also computed and R is displayed as

a double-headed arrow, pointing towards both directions. If a weighted rose diagram is

requested, the formulas at (34) and (35) become, respectively:

𝜃 = deg(𝑎𝑟𝑐𝑡𝑎𝑛2(
∑ 𝑤𝑖sin(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

,
∑ 𝑤𝑖cos(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

))𝑚𝑜𝑑 360;

(36)

𝑅 = √(
∑ 𝑤𝑖sin(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

+ (
∑ 𝑤𝑖cos(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

(37)

with wi representing the i-th weight value associated to each azimuth value (αi) within the n-

elements cluster.

5 Structural data analysis at different scales: the Palmi Shear Zone

As demonstrated in several scientific articles that are collected in the book “Fractals in the Earth

Sciences” by Barton et al. (1995), in some geological contexts, fractal relations of structures at

different scales are sometimes observable. More commonly, even if a clear fractal relation

cannot be identified, it is still possible to recognize strong relationships between some

characteristics at different scales. For example, it happens frequently that structures

recognizable at the outcrop scale occur similarly in micron-sized portions of a hand specimen

collected from the same outcrop.

ArcStereoNet is a scale-independent toolbox, as it can process oriented data at every possible

scale. Thus, it can also be used to identify potential relationships between data at very different

scales. This chapter will include a practical example of extraction, analysis and comparison of

quantitative spatial parameters from both meso-structural (outcrop scale) and micro-structural

(thin section scale) data, that was collected from several outcrops within the Palmi Shear Zone,

and also integrated with meso-structural data virtually collected from an aerial photogrammetry

3D model.

66

5.1 Geological background

The Palmi Shear Zone (PSZ – Fazio et al., 2017; Ortolano et al., 2020) is a roughly E-W

trending, high-strain strike-slip zone, a few hundred meters thick. It shows a pervasive ductile

deformation that started in the Paleocene (57 Ma – Prosser et al., 2003). The PSZ lies in the

southern sector of the Calabria-Peloritani Orogen (CPO – Cirrincione et al., 2015), in southern

Italy (Figure S2.15a). Here, the outcropping lithotypes occur as an alternance of highly foliated

calcsilicates with subordinate mylonitic migmatitic paragneiss and mylonitic granitoids.

Figure S2.15 – modified after Ortolano et al., 2021. Geological background of the Palmi Shear Zone: (a)

Geological map of the Calabrian metamorphic complexes (after Angì et al., 2010); (b) Geological Map of the case

study area of the Palmi Shear zone, with trends of the main foliations and average stretching lineations. White dots

represent the location of collected meso-structural data, while red circles represent rock samples location.

67

A 400 m wide mylonitic horizon with a prevalent subvertical foliation extends inland for about

1500 m, along the contact between Late-Hercynian tonalites to the south and a high grade

Hercynian metamorphic complex to the north (i.e., restitic paragneisses, migmatites and

amphibolites – Ortolano et al., 2020). According to Ortolano et al., 2013; 2020 and Cirrincione

et al., 2015 this mylonitic zone can be interpreted as a relic fragment of the regional scale strike-

slip system that influenced since the Paleocene the mutual microplate movements of the

Western Mediterranean realm. The PSZ is a segment of the Palmi Line (Ortolano et al., 2013),

a dextral strike-slip system. This structure controlled the juxtaposition of the Aspromonte

Massif nappe-like edifice, characterized by the presence of a pervasive Alpine re-equilibration

(Cirrincione et al., 2015; Fazio et al., 2017; Ortolano et al., 2005; 2015; 2020).

5.2 Outcrop data analysis

In this section the Stereoplots tool is employed to analyze and project the meso-structural data

manually collected from four different stations (see Supplementary Materials of Ortolano et al.,

2021) approximately aligned along a W–E oriented direction, and named ‘Reef 1’, ‘Reef 2’,

‘Beach’, and ‘Malopasso’, respectively (Figure S2.15b). The analyzed structural data consists

of mylonitic foliations and stretching lineations.

5.2.1 Reef 1

Figure S2.16 – from Ortolano et al., 2021. Reef 1 station: (a) equal-area azimuthal projection and statistical

analysis of main foliation and stretching lineation data and (b) example of isoclinally folded foliation in mylonites.

68

This station is fixed at the furthest-most sea stack with respect to the coastline. The density

contour function (Kamb with linear smoothing) applied on 112 poles to mylonitic foliations

(Figure S2.16) shows a well populated group of subvertical foliations that are steeply dipping

towards SW or NE. A second, minor, N-S dipping cluster of subvertical foliations is also

displayed. The mean mylonitic foliation plane is (in strike/dip notation): 311/74 if extracted

with K-Means or 316/69 if computed with MEAD + Fisher (azimuth tolerance = 50%,

inclination tolerance = 30%, Fisher confidence = 95%). The stretching lineations (n = 10)

display sub-horizontal to moderate plunges and are roughly dispersed along the mean mylonitic

foliation plane. Their Bingham best fit plane is 320/66 (strike/dip notation).

5.2.2 Reef 2

Figure S2.17 – from Ortolano et al., 2021. Reef 2 station: (a) equal-area azimuthal projection and statistical

analysis of main foliation and stretching lineation data and (b) example of mylonitic foliation subparallel to fold

axial surface in tonalites.

This station is fixed at the closest sea stack to the coastline. The density contour function (Kamb

with linear smoothing) applied on the poles to mylonitic foliations highlights four clusters on

the stereoplot (Figure S2.17). Two of them gently dip towards N-S, whereas the other two are

NE and NW oriented, respectively. The MEAD + Fisher algorithm (azimuth tolerance = 30%,

inclination tolerance = 30%, Fisher confidence = 95%) computed four size-decreasing ordered

clusters, whose mean planes are 098/67; 275/74; 036/61; 144/72, respectively (see Figure

S2.17). The more populated clusters display a reasonably good correlation with the clusters

69

identified in ‘Reef 1’ station, even if rotated by about 35 degrees around a vertical axis. The

mean planes obtained with the K-Means algorithm display similar but randomly sorted values

(i.e., 090/68; 139/72; 036/60; 275/74). The analysis of stretching lineations was carried out with

the K-Means algorithm and yielded a mean vector value of 116/05 (trend/plunge notation).

5.2.3 Beach

Figure S2.18 – from Ortolano et al., 2021. Beach station: (a) equal-area azimuthal projection and statistical

analysis of main foliation and stretching lineation data and (b) example of W–E oriented mylonitic foliation

developed in tonalites interlayered with paragneisses.

At the Beach station, located along the coastline, several useful outcrops are well exposed. The

density contour function (Kamb with linear smoothing) applied on the 275 collected mylonitic

foliations depict a main northward cluster, followed by a secondary southward one (see Figure

S2.18). The large number of coalescing data, especially observable within the major cluster, is

due to the occurrence of highly strained isoclinal folds evolving into sheath folds. By setting

the number of required clusters to 4, the obtained mean vectors with MEAD + Fisher are:

101/69, 283/70, 064/67, 257/77 (strike/dip notation, azimuth tolerance = 20%, inclination

tolerance = 20%, Fisher confidence = 95%), which followed the trend of the results of previous

structural stations. The analysis of stretching lineations (n = 56) was again carried out with K-

Means, that identified a nearly sub-horizontal mean lineation (099/04 with trend/plunge

notation).

70

5.2.4 Malopasso

Figure S2.19 – from Ortolano et al., 2021. Malopasso station: (a) equal-area azimuthal projection and statistical

analysis of main foliation and stretching lineation data and (b) example of tight isoclinal folds and smaller sheath

folds developed in calc-silicates and skarns.

The Malopasso station shows the lowest amount of manually collected structural data, including

39 mylonitic foliations and 8 stretching lineations. For such reason, aerial photogrammetry data

collected at this station was subsequently integrated for a more reliable statistical analysis (see

subchapter 5.4). When only considering the manually collected data, the results yielded by each

algorithm converged for both main foliations and stretching lineations analysis. The MEAD +

Fisher results for the analysis of both mylonitic foliations and stretching lineations (both with

azimuth tolerance = 50%, inclination tolerance = 30%, Fisher confidence = 95%) are the only

one displayed in Figure S2.19, just to show the two Fisher confidence cones. The green cone,

surrounding the pole to the mean mylonitic foliation plane (310/69 with strike/dip notation),

represents a Fisher angle of 5.28 degrees. The yellow cone is instead referred to the mean

stretching lineation vector (127/10 with trend/plunge notation), representing a Fisher angle of

9.29 degrees.

5.3 Thin section data analysis

The quantitative micro-structural analysis was carried out with the Rose Diagrams tool using

the data extracted from two thin sections (see Ortolano et al., 2020 for further details on micro-

structures). The analysis was performed on the minerals belonging to porphyroclastic domains,

71

highlighting their preferred orientations. In the samples, (i.e., PAL11 and PAL12a – see Figure

S2.15b, Figure S2.20a and Figure S2.21a), the pre-kinematic clasts behave as rigid phases

during sub-simple shearing plastic deformation.

PAL11 consist of a mylonitic paragneiss from Malopasso station, while PAL12a is a mylonitic

skarn collected near the Beach station (confront Figure S2.15b). The porphyroclasts

orientations were extracted from the thin sections’ optical scans with the Micro-Fabric

Analyzer tool (MFA – Visalli et al., 2021). The tool enables to extract and store in a shapefile

format several quantitative micro-structural information of the identified minerals (see

Supplementary Materials of Ortolano et al., 2021) through a stepwise controlled overlaying

procedure of X-ray and Grain-boundary maps of thin sections (see Visalli et al., 2021 for further

details).

Like ASN, MFA operates within the ArcMap® environment as well and, therefore, an organic

workflow was implemented, where the MFA output becomes the ASN input. Using the

minimum bounding geometry approach of MFA on ~800 grains per thin section, the

porphyroclasts’ azimuthal orientations were extracted, ranging from 0 to 180 degrees with

respect to the normal axis to the main foliation of the sample (Figure S2.20b). This 2D oriented

data was fed to the Rose Diagrams tool in the Azimuth field, whereas the Type field was filled

with the minerals name (see Figure S2.6b).

Six and twelve rose diagrams were generated, respectively, for PAL11 and PAL12a samples.

Both unweighted (Figure S2.20c,e,g and Figure S2.21b,d,f,h,j,l) and weighted (Figure

S2.20b,f,h and Figure S2.21c,e,g,i,k,m) rose diagrams were generated for each sample. The

first display directional data in function of the frequency of minerals, while the latter were

useful to assign greater or smaller importance to each grain orientation as a function of a specific

weighting factor (i.e., grains area in mm2, also obtained with MFA). In both cases, the Mirrored

behaviour option was selected (see Figure S2.6f), since the orientation values range from 0 to

180 degrees.

72

Figure S2.20 – from Ortolano et al., 2021. Application of Rose Diagrams tool on PAL11 micro-structural data.

(a) Porphyroclast grains boundary detection map from MFA tool (Visalli et al., 2021); (b) minimum bounding

geometry of a single grain, where α is the angle between the normal to the main foliation in thin section and the

major axis of the bounding box; (c,e,g) unweighted rose diagrams and (d,f,h) weighted rose diagrams based on

grains cumulative area (in mm2).

73

Figure S2.21 – from Ortolano et al., 2021. Application of Rose Diagrams tool on PAL12a micro-structural data.

(a) Porphyroclast grains boundary detection map from MFA tool (Visalli et al., 2021); (b,d,f,h,j,l) unweighted

rose diagrams and (c,e,g,i,k,m) weighted rose diagrams based on grains cumulative area (in mm2).

74

5.3.1 PAL11 thin section

30 amphiboles, 100 K-feldspars and 604 plagioclase porphyroclasts were identified from the

mylonitic paragneiss (PAL11). Here the mylonitic foliation shows a WNW–ESE orientation

(Figure S2.20).

The amphiboles have equivalent spherical diameters (ESD – Jennings & Parslow, 1988)

ranging from 0.25 mm to 0.83 mm. The unweighted rose diagram highlights a major alignment

which is parallel to the mylonitic foliation (i.e., 90 – 270). A weaker alignment, deviating by

~20 degrees from the main foliation, can also be recognized. The same results are displayed in

the weighted rose diagram (Figure S2.20d), where, however, the minor alignment is less

evident. This is due to a smaller cumulative area of the corresponding grains.

The unweighted rose diagram extracted from the K-feldspars (0.25 mm < ESD < 3.67 mm)

displays a principale alignment (i.e., 80 – 260) that deviates by ~10 degrees from the main

foliation (Figure S2.20e). Two minor families with specular orientations (i.e., 120 – 300 and

40 – 220) can also be observed, but are not evident in the weighted rose diagram (Figure

S2.20f). This last in fact shows clearly the principal alignment (i.e., 80 – 260), preserved

especially by the largest porphyroclasts, where the simple shear component is more pronounced

(see Ortolano et al. 2020 for details).

The unweighted rose diagram for the plagioclases (0.25 mm< ESD < 2.45 mm) highlights a

prevalent orientation (i.e., 90 – 270) along the mylonitic foliation (Figure S2.20g). However,

several families are dispersed towards N-S and E-W directions with respect to the foliation.

This is probably linked to the activation of S-C’ planes. This dispersion is more marked in the

weighted rose diagram (Figure S2.20h), where the largest porphyroclasts show an evident

alignment along the N-S direction (i.e., 120 – 300).

5.3.2 PAL12a thin section

144 calcites, 102 calcsilicate minerals, 231 clinopyroxenes, 149 K-feldspars, 63 plagioclases

and 186 scapolite porphyroclasts were identifed in the mylonitic skarn sample (PAL12a). Here

the mylonitic foliation is, on average, E-W oriented (Figure S2.21).

Calcite porphyroclasts (0.18 mm < ESD < 0.50 mm) are very dispersed, as displayed in the

unweighted rose diagram (Figure S2.21b). The weighted rose diagram, however, shows a

dominant ~ E-W orientation (i.e., 80 – 260) of larger grains (Figure S2.21c).

75

The unweighted rose diagram for the calcsilicates (0.18 mm < ESD < 0.79 mm) highlights a

lesser data dispersion, with a high number of grains parallel to the mylonitic foliation (Figure

S2.21d). The weighted rose diagram (Figure S2.21e) shows instead two diverging families,

respectively NE-SW (i.e., 30 – 210) and WNW-ESE (i.e., 110 – 290) oriented.

Clinopyroxene grains (0.18 mm < ESD < 1.21 mm) are very dispersed as well, as highlighted

by the unweighted rose diagram (Figure S2.21f). Such dispersion also occurs in the weighted

rose diagram (Figure S2.21g), that, however, also displays a dominant ESE – WNW orientation

(i.e., 120 – 300).

The unweighted rose diagram for the K-feldspars (0.18 mm < ESD < 1.35 mm) shows a major

alignment (i.e., 90 – 270) parallel to the mylonitic foliation (Figure S2.21h). This also occurs

in the weighted rose diagram (Figure S2.21i), where fewer families showing a ~N-S orientation

(i.e., 20 – 200) are also observable.

Plagioclase porphyroclasts (0.18 mm < ESD < 1.03 mm) are dispersed, and the corresponding

unweighted rose diagram displays a both dominant ~ E-W (i.e., 80 – 260) and a secondary N-

S (i.e., 20 – 200) orientation (Figure S2.21j). The dispersion is more marked in the weighted

rose diagram (Figure S2.21k).

The unweighted rose diagram for the scapolite porphyroclasts (0.18 mm < ESD < 7.26 mm)

depicts two dominant alignments ~ E–W (i.e., 90 – 270) and ENE–WSW (i.e., 50 – 230)

oriented (Figure S2.21l), which are further emphasized in the weighted rose diagram (Figure

S2.21m).

5.4 Aerial photogrammetry data analysis

In addition to the structural data previously described (already published in Ortolano et al.,

2021), manually collected at the outcrops and through image analysis of thin sections,

ArcStereoNet was subsequently tested on new, unpublished, structural data derived from a

drone-operated 3D aerial photogrammetry campaign (data provided in Appendix: Aerial

photogrammetry data). Images of a wide portion of the lithotypes outcropping at Malopasso

station were acquired using the software Pix4D® as mission flight planner, and then a 3D model

of the outcrop was generated with the software Agisoft Metashape® (see Figure S2.22).

The discernible meso-structures were digitized directly from the 3D model with the software

GeoVis3D® (see Figure S2.23). Since the software automatically computes the orientation of

the traced planar and linear features, a total of 143 main foliations and 9 stretching lineations

76

have been measured and projected with ArcStereoNet, as displayed in Figure S2.24.

GeoVis3D® also includes within its interface an interactive stereoplot viewer (Figure S2.23b),

that was functional to validate the projections produced by ArcStereoNet. It does not, however,

include functions for data clustering, contouring or mean vector extraction, that were thus

carried out only with ASN.

Figure S2.22 – 3D model of the outcrops at Malopasso station, extracted from aerial photogrammetry data with

the software Agisoft Metashape® and visualized with the software GeoVis3D®.

The mean mylonitic foliation plane (i.e., 310/69 with strike/dip notation) identified from the

analysis of the data manually collected at the Malopasso station (see subchapter 5.2.4) is

confirmed by the aerial photogrammetry data (see Figure S2.24), that, however, also displays

a supplementary plane oriented 114/70, with strike/dip notation, using the MEAD + Fisher

algorithm with the default parameters (i.e., azimuth tolerance = 50%, inclination tolerance =

30%, Fisher confidence = 95%). This additional plane is clearly identifiable thanks to the

highest amount of virtually collected structural data (i.e., 143 main foliations) against the 39

manually collected on the field. This was determined by the practical difficulty in reaching the

very steep and often impervious outcrops. The mean stretching lineation vector, obtained with

the K-Means algorithm, is 123/02, with trend/plunge notation, slightly less steep than the one

extracted from manually collected data (i.e., 127/10 with trend/plunge notation).

77

Figure S2.23 – Digitalization of the observed structural features (planar and linear measurements) from the 3D

model of the Malopasso outcrops through the software GeoVis3D®. From the model viewer (a) the recognized

structural features can be manually traced, while in (b) the computed oriented data is automatically projected into

an equal-area stereoplot.

Figure S2.24 – Equal-area azimuthal projection and statistical analysis of main foliation and stretching lineation

data collected from aerial photogrammetry data at Malopasso station.

78

5.5 Data comparison

The orientations of mesoscopic structures are overall comparable, showing only minor

differences. A good association between main foliations collected at the Reef 1 (Figure S2.16)

and at the Malopasso station (Figure S2.19) has been observed, both displaying steep NE-

dipping foliations (~70 degrees) with an average NW–SE strike and sub-horizontal NW–SE

oriented stretching lineations. Reef 2 and Beach stations show an overall E-W striking foliation

that N or S dipping (~75 degrees), and horizontal stretching lineations dispersed towards E and

W.

As depicted in Figure S2.15b, the mylonitic paragneiss sample (PAL11) was collected within

the Malopasso station, while the mylonitic skarn sample (PAL12a) was located close to the

Beach station. A correlation between the orientation of micro-structures extracted from thin

sections quantitative analysis and the orientation of meso-structural data collected in the field

can be observed (see Figure S2.18, Figure S2.19, Figure S2.20 and Figure S2.21).

A greater porphyroclasts dispersion is observed in the mylonitic skarn (PAL12a) due to the

higher contrast in behaviour between weakening (i.e., calcite) and hardening (i.e., other

porphyroclasts) layers. This rheology contrast leads to a major passive rotation of the

porphyroclasts with respect to the calcite weak layers during the mylonitic flow. Differently,

PAL11 porphyroclasts, which are surrounded by quartz-rich weak layers (i.e., with a lower

rheology contrast), facilitate wing formation, producing greater resistance to the mylonitic flow

and, in turn, clearer evidence of the formation of sub-simple shear kinematic indicators.

The integration of the oriented data virtually collected from a 3D model of the outcrops,

extracted from aerial photogrammetry data, enlarged the amount of meso-structural data

available at Malopasso station, previously scarce because of the impervious terrain, enhancing

the consistency of the analysis. This shows the reliability of drone surveys, especially when

outcrops that are difficult to reach prevent the collection of a statistically consistent amount of

structural data. It also further confirms the versatility of ArcStereoNet in processing data

collected from different sources and at different scales.

6 Discussions

ArcStereoNet (ASN) is a unique software solution for analyzing and comparing oriented data

at different scales within the same environment (i.e., the same ArcGIS® project). It adds

geological-oriented tools to the already wide plethora of ArcGIS® functions, allowing the

79

projection (stereographic projections and rose diagrams) and the statistical analysis of oriented

structural and micro-structural data. The software blends within the GIS environment with a

friendly, ArcGIS®-like, GUI, while also being highly compatible with other ArcGIS®

functionalities. The user can at any time visualize exactly, within their GIS project, the plotted

data together with the corresponding geographical/locality position.

ASN permits to carry out spherical statistical analysis, such as density functions (contours),

cluster and girdle analysis, mean vectors extraction. All the available algorithms (including

MEAD, a completely new algorithm for cluster analysis and mean vector extraction) can be

compared simultaneously, allowing a more reliable interpretation of the occurring structural

data distribution. This drives users towards a greater awareness of the statistical constrains

applied during data analysis.

Main features ArcStereoNet Stereonet OATools qgSurf

Projection types
Stereoplots

and rose
diagrams

Stereoplots
and rose
diagrams

Stereoplots
and rose
diagrams

Stereoplots

GIS integration Yes No Yes Yes

Interpolation tools No No Yes No

DEMs analysis No No No Yes

Generation of geological
profiles

No No No Yes

Statistical analysis Yes Yes Yes No

Clustering Yes No No No

Synergistic comparison of
algorithms

Yes No No No

Advanced calculations (e.g.,
slope stability, angle

between)
No Yes No No

3D viewer No Yes No No

Distribution
ArcMap 10.3+

ArcGIS Pro
Stand-alone ArcMap 10.2

QGIS
(open-
source)

Table S2.3 – Comparison between ArcStereoNet and other known tools for stereographic projections and oriented

data analysis, such as Stereonet (Cardozo & Allmendinger, 2013), OATools (Kociánová & Melichar, 2016) and

qgSurf (Alberti et al., 2016). Only ArcStereoNet allows clustering operations and synergistic comparison of

multiple statistical algorithms.

When compared with other software for the automatic analysis and projection of oriented data,

ArcStereoNet represents a valid open-source alternative for the ArcGIS® platform, including

80

some of the most requested features and adding the possibility of performing clustering

operations on data and synergistically comparing different algorithms (see Table S2.3 for

further details).

In this work the potentiality of ASN with a petro-structural case study analysis (chapter 5) was

demonstrated, but the same approach could be employed with any other kind of oriented dataset.

In this view, ArcStereoNet can potentially be updated in the future to include further statistical

tools and algorithms for enhanced data visualization and analysis. Furthermore, new tailored

tools for specific geodata analysis and projection (e.g., kinematic analysis for geotechnical

purposes) can also be developed and included within the toolbox.

81

 SECTION 3

–

X-MIN LEARN: AUTOMATIC MINERAL RECOGNITION AND

ANALYSIS

This section introduces X-Min Learn, a stand-alone software that provides users with friendly

machine learning tools to identify rocks minerals from thin section X-ray data. Some

considerations about data representation are provided in chapter 2. The software, entirely coded

in Python, features an interactive Graphic User Interface (GUI), as described in chapter 2. X-

Min Learn includes several tools for data exploration, mineral classification, ground truth

datasets auto-compilation, and even for the development of custom machine learning models.

Detailed descriptions of such tools are provided from chapter 3 to chapter 7. In chapters 8 and

9 two practical examples of the application of X-Min Learn to both a natural rock sample and

an artificial one, respectively, are provided.

82

1 Introduction

X-ray elemental maps have been extensively employed to semi-automatically collect

quantitative chemical and mineralogical parameters from thin sections of natural and artificial

rocks, through dedicated software solutions (e.g., Cossio & Borghi, 1998; Lanari et al., 2014;

Belfiore et al., 2016; Arganda-Carreras et al., 2017; Ortolano et al., 2018; Izawa et al., 2020,

Belfiore et al., 2022). Unlike punctual chemical analyses, the information is not scattered and

prevents possible biases introduced by the choice of point locations. Their acquisition is

generally an efficient and relatively cheap process. X-ray maps are rendered as grayscale

images, but the information contained in their pixels can be processed as numerical arrays (i.e.,

stacks of 2D matrices). The pixel values are proportional to the amount of the investigated

element in a specific areal of the sample, that is influenced by the pixel resolution.

The current free software dedicated to the automatic or semi-automatic classification of this

type of data (e.g., XMapTools – Lanari et al., 2014, Trainable Weka Segmentation –

Arganda-Carreras et al., 2017, Q-XRMA – Ortolano et al., 2018) are generally oriented

towards the implementation of unsupervised or lazy supervised classifiers, trained on specific

samples of data, through the definition of user-selected training areas. Another important

mention among such tools is iDiscover, a software package that is provided with QEMSCAN®

(i.e., Quantitative Evaluation of Minerals by Scanning Electron Microscopy – Gottlieb et al.,

2000), a fully automated micro-analysis system owned by the FEI company, that includes the

entire SEM instrumentation and that is, therefore not a freeware.

While supervised classifiers trained with user-defined areas can lead to very accurate results,

functional to the classification tasks, it may also introduce user-driven biases (e.g., implicit bias,

selection bias etc.) and it also inhibits the possibility to generate eager learning models (see

Section 1, subchapter 3.1), that, oppositely, learn from the training data a generalized function

that links the input information to the output classification. This last approach lead to faster

classifiers that learn from the training data a generalized function that links the input data to the

output classification, and it is at the base of the creation of artificial neural networks and

eventually of deep learning networks. Eager learners also become more functional than lazy

ones with the increasing amount of training data (Section 1, subchapter 3.1) and are therefore

oriented towards the analysis of big data.

In this section a new software solution (i.e., X-Min Learn) for the analysis and automatic

mineral classification of thin sections of both natural and artificial stone materials is presented.

83

X-Min Learn (XML) also adopts lazy supervised and unsupervised classifiers, but, in addition

to that, it includes eager ML algorithms within its classifiers. The software was tested on both

EDS and WDS X-ray elemental maps but can also be employed for the analysis of other types

of multi-channel image data, including, for example, BSE maps. X-Min Learn elaborates the

input data in a pixel-oriented fashion and permits to select different ML classifiers to predict in

few seconds the modal amounts of the recognized minerals. An output mineral map is obtained,

together with a confidence map to monitor and evaluate the classifier’s performance.

X-Min Learn is also the first mineral-oriented software that includes a collection of interactive

tools for a step-by-step development of custom eager machine learning models (i.e., developer’s

toolkit – see chapter 4). These tools allow the automatic compilation of ground truth datasets,

include diagrams and graphics useful for the evaluation of the learning process, provide

balancing algorithms to enhance the training datasets and several morphological image

processing functions to refine the classification result. This determines a greater user awareness

of the use of ML, since the models are built step by step, from the compilation of training and

test datasets to the evaluation of the model. The whole procedure is simplified to meet the needs

of all users, even those not experienced in programming, who will not need to write any line of

code.

2 Input data handling

Since data storing, managing, and ordering is at the basis of an efficient machine learning

application, the first important challenge during the development of X-Min Learn was to define

a standardized policy for data representation and storing. Input data consists of multi-channel

image data where chemical information is stored. Each channel consists of an image storing

within its pixel values the relative abundance of a specific element (Figure S3.1). The number

and the type of chemical elements is chosen by the operator.

Since the software deals with multi-channel data, each channel must share the same shape i.e.,

same image width and height in pixels. In other words, the channels must be perfectly stackable.

Consequently, X-Min Learn is coded to automatically load, store and process input data as a

3D matrix of size (H·W·C), where H and W are the maps height and width in pixels, that

coincides with the matrix numbers of rows and columns, respectively (see Figure S3.2). The

number of channels (i.e., of investigated chemical elements) represents the third matrix

dimension (C). X-Min Learn, however, is not strict about the type of input data; users are rather

encouraged to analyze different types of input information (e.g., X-ray chemical maps together

84

with Backscattered Electrons maps), and to build machine learning models from them, as long

as they share the same shape and resolution. In case of different pixel resolutions, the input data

can be priorly resampled (e.g., Reynes et al., 2020).

Figure S3.1 – Example of X-ray elemental maps. From left to right and top to bottom: Al, Ca, Fe, K, Mg, Mn, Na,

Si and Ti maps.

Figure S3.2 – Stack of X-ray elemental maps displayed as a 3D matrix of pixel values with shape H·W·C, where

H and W are the maps’ height and width in pixels, respectively, and C is the number of maps.

85

In X-Min Learn the result obtained from the analysis of input maps and the identification of the

occurring minerals (or other features such as metals, glass, fractures etc.) is defined with the

term mineral map (Figure S3.3). Therefore, a mineral map is computed by XML as a 2D

matrix of size (W·H) where the width and the height are the same as the input maps from which

the mineral map was extracted. Yet a mineral map differs from input maps for the nature of

pixel values. Indeed, since numerical classes IDs can lead to confusion or misinterpretations,

X-Min Learn stores mineral maps as string-formatted matrices, meaning that each pixel, or

node of the matrix, stores alphanumeric characters instead of just numbers (see Figure S3.4).

Each pixel is constrained to hold a maximum of 8 characters, to reduce the impact on memory

and for a quicker computation. Hence, the use of abbreviations, that can freely be chosen by

users, is encouraged.

Figure S3.3 – Example of a mineral map obtained with X-Min Learn.

Computation efficiency is another fundamental reason that led to the decision of representing

the data in matrix form. The Python library NumPy (see Section 1, subchapter 4.1), extensively

employed in XML, provides indeed functions and algorithms to achieve quick array (i.e., vector

or matrix) calculations. Furthermore, NumPy arrays are extremely compatible with matplotlib

library, making easier to read and plot matrix data within the software interface, but also with

Scikit-learn and PyTorch, the Python libraries used by X-Min Learn to apply and build machine

learning algorithms (see Section 1, subchapter 4.1). Consequently, both input data and mineral

maps data are stored by X-Min Learn in NumPy-compatible ASCII file formats: classic text

86

files (.txt) and compressed text files (.gz). However, to encourage data sharing and simplify

input/output data compatibility with other image analysis software, conversion tools are

included in XML (see chapter 7) as well as a function to export mineral maps data in a numerical

format (see subchapter 3.2.1).

Figure S3.4 – Extract of a mineral map stored by X-Min Learn. Pixel classes are expressed as mineral

abbreviations in string format.

Since the Graphic User Interface (GUI) plays a critical role in the efficiency of a computer

software that deals with image analysis, a fully interactive interface was developed, where users

can easily manage and explore the input data with friendly graphic widgets (see chapter 3),

analyze and customize mineral maps with several image processing algorithms (see subchapter

3.2 and chapter 6), develop and manage custom machine learning models (see chapter 3) and

apply them to automatically identify minerals from input data (see chapter 5). The principal

GUI objects were coded making use of the PyQt library (see Section 1, subchapter 4.1). These

include windows, buttons, combo boxes, check boxes, popup dialogs, progress bars and many

other typical GUI elements. The plots and all the related graphic tools were embedded within

the interface making use of the matplotlib library backends for PyQt. Some particularly long-

time processes (e.g., the training process of a new machine learning model) are computed with

a multi-threading approach (i.e., different calculations are carried out simultaneously), to grant

a fresh and responsive behavior of the GUI during long computations. An automatic DPI

adaptation policy permits XML to run on screens of different sizes and resolutions, while also

87

supporting multiscreen viewing. Several graphic settings, like the font and the toolbar size, can

also be customized (see subchapter 3.3). The software is distributed with an installer,

compatible with Windows® 7, 8 and 10. Since cross-platform Python libraries were employed

in the code, a macOS-compatible version is feasible, although not yet available.

3 Basic operations: the main window

The main window of X-Min Learn is the first window that is shown when the software is

launched. Here the input and output data can be loaded, visualized, explored and analyzed with

several graphic tools. The window is conveniently subdivided into two main tabs; the first tab

is the X-Ray Maps tab (Figure S3.5), where users can load and explore input maps data (see

subchapter 3.1); the second tab is the Classified Mineral Maps tab (Figure S3.6), that includes

several tools for analyzing and manipulating classified mineral maps (see subchapter 3.2). The

main window also includes a menu bar (see Figure S3.5a and Figure S3.6a) and the main X-

Min Learn toolbar (see Figure S3.5b and Figure S3.6b), where the principal ML tools can be

accessed. A detailed description of their features is provided in subchapter 3.3.

Figure S3.5 – Main window of X-Min Learn: X-Ray Maps tab. (a) Menu bar (see Figure S3.10 for details); (b)

Main Toolbar, displaying the main tools of X-Min Learn; (c) Loaded Maps list; (d) Loaded Maps toolbox,

including the following functions: 1) Load maps, 2) Refresh maps data source, 3) Delete maps, 4) Invert maps, 5)

Equalize colormap, 6) Generate RGB(A) composite map; (e) Maps viewer; (f) Maps viewer’s navigation panel

(from left to right: reset view, pan/zoom, zoom to rectangle, reset zoom, lock zoom, select ROI, save image,

hovered pixel’s coordinates and value, zoom to pixel); (g) Pixel histogram + navigation panel (from left to right:

set bins, pan/zoom, zoom to rectangle, save image); (h) RGB(A) composite maps viewer + navigation panel (from

left to right: reset view, pan/zoom, zoom to rectangle, save image).

88

Figure S3.6 – Main window of X-Min Learn: Classified Mineral Maps tab. (a) Menu bar (see Figure S3.10 for

details); (b) Main Toolbar, displaying the main tools of X-Min Learn; (c) Loaded Maps list; (d) Loaded Maps

toolbox: 1) Load maps, 2) Refresh maps, 3) Delete maps; (e) Legend; (f) Loaded Maps toolbox, including the

following functions: 1) Rename class, 2) Randomize palette colors, 3) Save current palette, 4) Highlight class; (g)

Maps viewer; (h) Maps viewer’s navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle,

reset zoom, lock zoom, edit pixels, save edits, export IDs, save image, hovered pixel’s coordinates and class, zoom

to pixel); (i) Mode histogram + navigation panel (from left to right: show mineral amounts, save image); (j)

Probability maps viewer + navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, save

image, hovered pixel’s coordinates and value, load probability map).

3.1 Input maps operations

The X-Ray Maps tab (see Figure S3.5) gathers several widgets and tools to load and analyze

input data. Although X-Min Learn provides tools for the automatic classification of the input

data, input data exploration still plays a fundamental role in the identification of the occurring

mineral species. Here different well-known statistical techniques can be applied to collect

different observations from input data (e.g., pixel range distributions, possible presence of pores

or fractures, preventive estimation of the number / type of occurring classes, etc.), which

guarantee greater awareness in the choice of the machine learning algorithm, while also

allowing a better evaluation of the classifier predictions.

3.1.1 Data loading and visualization tools

Input maps can be loaded in the Loaded Maps area (Figure S3.5c) by clicking the top-left

button of the maps’ toolbox (Figure S3.5d1). The list of loaded maps will be shown in the

Loaded Maps area. A map can be viewed by simply left click on its name; the data will be

quickly processed as a 2D matrix by X-Min Learn and will be shown in the Maps viewer area

89

(Figure S3.5e). The map histogram, showing the frequency of the map’s pixel values, will be

automatically computed and displayed in the Pixel histogram (Figure S3.5g). The histogram

can be used to quickly identify different peaks of the pixel values that may be linked to different

mineral species, and to highlight portions of maps with similar pixel values (see subchapter

3.1.2 for further details).

The loaded maps’ toolbox (Figure S3.5d) gathers several functions that can be applied to input

maps data (i.e., refresh data source, remove map, invert map, equalize the colormap). One

important function here is the RGB(A) composite (Figure S3.5d6), that computes an RGB(A)

composite map by combining the selected maps (see subchapter 3.1.3 for further details).

The Maps viewer area (Figure S3.5e) is a classic map viewer and supports typical viewing

operations such as zoom (Ctrl + mouse wheel) and pan (mouse wheel dragging). The area

includes a color bar that automatically adjusts to the pixel value range of the displayed map. By

simply scrolling with the mouse wheel, it is possible to quickly display the precedent/following

map. From the navigation panel (Figure S3.5f) other visualization functions are available. One

important function is the ROI selection, that permits to select a Region of Interest in the

displayed map. The frequency of the pixel values within the ROI will be highlighted in the Pixel

histogram (see subchapter 3.1.2). When hovering with the mouse on top of the displayed map,

the current pixel information is shown in the navigation panel, such as cartesian/matrix

coordinates and pixel value (see Figure S3.5f).

3.1.2 Histogram analysis tools

The Pixel histogram shows the frequency of the pixel values of the currently displayed map in

a logarithmic scale. It has its own navigation panel where users can set the number of bins

through a slider widget (see Figure S3.5g). When a Region of Interest (ROI) is selected (see

subchapter 3.1.1), the frequency of the pixel values that fall within the ROI are highlighted in

the histogram (see Figure S3.7).

A very useful function of the Pixel histogram is the histogram span, that can be employed to

select a value range in the histogram. This highlights the portions of the current map that

displays the pixel values in the span range; the colormap and the color bar in the Maps viewer

area are adjusted consequently, with pixels with values above and below the range being color-

coded in black and grey respectively (see Figure S3.8). This type of input map visualization is

effectively a data rescaling operation that can help the user to better detect different mineral

species and/or mineral zonation patterns.

90

Figure S3.7 – Selection of a Region of Interest (ROI) in map (a); the selected pixel values are highlighted in the

Pixel histogram (b).

Figure S3.8 – Histogram span function, highlighting in map the pixels within the selected value range.

3.1.3 RGB(A) composite maps

An RGB(A) composite map is a multi-channel image, where A is the opacity value (a.k.a.

alpha), that the user can easily generate by combining input maps. This technique has been used

for decades by most of SEM programs (e.g., Antonovsky, 1984), to combine the information

held by different greyscale channels into a new RGB image, in order to visualize the presence

91

of different classes with different colors. RGB(A) composite imaging has also many

applications in remote sensing (e.g., Ban et al., 2017). Visualizing multiple maps at once can

be more efficient in discriminating different classes rather than observing one input map at time.

Even though an RGB(A) composite map cannot be considered the result of a proper

unsupervised classification, the visual result can effectively highlight in false colors the

presence of different mineral classes.

X-Min Learn allows the selection of up to 4 different input maps; the RGB(A) composite map

is then displayed in the corresponding viewer (Figure S3.5h). The pixel values of selected input

maps are rescaled to the range [0, 1] by applying the min-max scaling function (see Eq. 1).

Then each rescaled map is set as a different band (i.e., R, G, B or A) of the composite map.

The software is sensitive to the selection order, meaning that the first selected map will be set

as the red (R) channel, the second as the green (G) channel and so on. Any number of maps

between 1 and 4 can be selected; channels left with no assigned map will be automatically

populated by an all-one matrix. When zooming on the composite map, the same zoom is applied

to the displayed input map and vice-versa. When hovering with the mouse on top of the

composite map, pixel information is shown in the navigation panel as well. Pixel values are

here expressed as a list of 4 values, one for each channel of the composite map.

3.2 Mineral maps operations

The Classified Mineral Maps tab (see Figure S3.6) gathers tools for the interactive

visualization, analysis and editing of mineral maps. Here the results of the automatic

classifications (see chapter 5) can be displayed and the percentage amount of the identified

classes is automatically included in a dedicated legend and within a histogram plot. An

associated probability map (see subchapter 3.2.2), that holds a pixel-by-pixel confidence of the

classification result is also here provided.

3.2.1 Visualization tools

The Classified Mineral Maps tab has its own viewer (Figure S3.6g), that displays the selected

mineral map. When zooming a mineral map, the same zoomed view can be applied to the X-

ray map displayed in the X-Ray Maps tab, and vice-versa. An interactive legend, linked to the

currently displayed map, will be automatically generated (Figure S3.6e) and the classes

abundancies are displayed in a dedicated histogram (Figure S3.6i). The legend includes several

settings for conveniently customizing the appearance of the displayed map. For example, each

class can be renamed; this also permits to merge different classes using the same name. It is

92

also possible to apply a mask to only visualize a specific class. The color of each class can be

customized through a simple color selection widget.

From the navigation panel (Figure S3.6h) several basic visualization operations can be

achieved. An important function here is Edit pixel, that permits to change the name (i.e., the

class) of the pixels that fall within a user-drawn ROI. The edited pixels can also be employed

as a simple training set to fetch other similar pixels within the input maps and automatically

edit them as well. This functionality is managed by the Pixel Editor tool, that is described in

subchapter 3.2.3.

The mineral map can also be exported in a numerical format, where mineral class names are

converted to class IDs. Optionally, a translator text file linking each class to the corresponding

ID can be generated. This is particularly useful for the compatibility with other image

processing software, that commonly save the classified data in a numerical format, instead of

string format like X-Min Learn (see chapter 2).

3.2.2 Probability maps

A probability map is provided together with a classified mineral map as result of any X-Min

Learn classification algorithm. As introduced in Section 1, subchapter 3.7.1, a probability score

can be extracted from a multi-class classification. A probability map displays the probability

score of each pixel in the classified mineral map. In chapter 5, where the available ML

algorithms of XML are discussed, it will be described how such score is extracted from each

classifier.

Probability maps can be used as a metric for evaluating the classification performance, by

quantifying its degree of confidence with a probability score ranging from 0 to 1. However, a

low probability score does not necessarily indicate an incorrect result and vice versa. It rather

indicates how confident is the employed ML model / algorithm in yielding the pixel class. Such

confidence is mostly determined by the amount and the degree of variance of the training data

utilized during the training of the classifier (or the intrinsic variance of the data itself when

using unsupervised algorithms), but also by the complexity of the input data that has been

classified. Therefore, as shown in the example of Figure S3.6j, probability maps are

particularly useful for highlighting mixed pixels, i.e., pixels that are located on the boundary

between two different minerals or near fractures. In fact, by their nature, these pixels bring a

mixed chemical composition and therefore their classification confidence is lower. Using the

probability score as a rejection factor to exclude low confidence pixel can lead to more

93

confident results and provides a stronger user control. It also helps reducing possible

inaccuracies resulting from the subsequent processing of mineral maps data.

Probability maps are saved in the mineral map’s parent folder and are automatically displayed

in the Probability Maps viewer when the mineral map is displayed (Figure S3.6j). The

automatic loading may fail if the probability map file is moved or renamed. Therefore, a manual

load button is provided in the navigation panel of the Probability Maps viewer (see Figure

S3.6j). When the probability map is zoomed, the same zoomed view is applied to the classified

mineral map and vice-versa.

3.2.3 Pixel Editor

The Pixel Editor is a dialog window (Figure S3.9) that shows up after the user edited some

pixels of the mineral map (see subchapter 3.1.1). In the central part of the window a Boolean

map (i.e., a 1-bit map) highlights the edited pixels (see Figure S3.9b). The Pixel Editor provides

a Training Mode (Figure S3.9f), that can be used to automatically edit the pixels of the entire

mineral map that are similar to the user-edited ones. The similarity of the pixels is based on

their original input data, loaded in the X-Ray Maps tab. Users can choose which input maps the

algorithm must take into account for establishing the pixel similarity.

Figure S3.9 – Pixel Editor window. (a) Input maps list; (b) Edits preview viewer; (c) Edited class drop-down

menu, useful to select which edited pixel class is visualized; (d) Refresh preview; (e) Save edited map; (f) Training

mode (from top to bottom: enable training mode checkbox, tolerance box, proximity option – description in the

text).

94

A custom algorithm computes the automatic analysis in the n-dimensional Euclidean space,

where n is the number of selected input maps. The variance between a single edited pixel and

all the pixels of the mineral map is computed as follows:

𝑉𝑖𝑗 = |𝑀𝑖𝑗 − 𝑒𝑘⃗⃗⃗⃗⃗|

(38)

where V is the variance matrix, M is the input maps matrix and 𝑒𝑘⃗⃗⃗⃗⃗ is the k-th user-edited pixel

(ek) expressed as a vector of input data. V and M have shape h · w · n, where h and w are the

height and width in pixels of the input maps and n is the number of input maps; the shape of 𝑒𝑘⃗⃗⃗⃗⃗

is 1 · 1 · n.

For each node of V (i.e., for each pixel in the mineral map), if all the variance values along the

n dimension (i.e., for each input map) are minor or equal to a threshold value, then that specific

node (or pixel) will be renamed as ek. This computation is reiterated for each user-edited pixel.

If more than one unique edited pixel name satisfies the “variance ≤ threshold” condition, then

the name of the pixel with the smallest overall variance is chosen. The threshold is a user-

defined numerical value, that can be changed in the Tolerance box (Figure S3.9f).

Optionally, the Evaluate Proximity setting (see Figure S3.9f) can be enabled to reduce the

variance of the pixels the closer they are to the edited ones. This is achieved by calculating a

proximity matrix (P) that is subtracted to the variance matrix. The proximity index depends on

the tolerance value (t) provided by the user, and it is computed as:

𝑃𝑖𝑗 =
𝑡

√(𝑅𝑖𝑗 − 𝑟𝑒𝑘)
2 + (𝐶𝑖𝑗 − 𝑐𝑒𝑘)

2 + 1

(39)

R and C are two matrices representing the row indices and the column indices of the mineral

map. Together they describe the coordinates of each pixel in the map. On the other hand, 𝑟𝑒𝑘

and 𝑐𝑒𝑘 are the row index and the column index of the k-th edited pixel.

The Pixel Editor is not the only X-Min Learn tool that permits to semi-automatically edit a

map. As will be discussed in chapter 6, the Phase Refiner tool provides more algorithm for the

post-classification elaboration of mineral maps.

95

3.3 Menu bar and main toolbar

The Menu bar (Figure S3.5a and Figure S3.6a) includes five main menus: File, Dataset Tools,

Classification, Post-classification and Utility.

Figure S3.10 – Menu bar. (a) File menu, including import data options and preferences window (see Figure

S3.11); (b) Dataset Tools menu, including the following tools: Dataset Builder (Figure S3.14), Sub-sample dataset

(Figure S3.15) and Merge datasets (Figure S3.16) ; (c) Classification menu, including the Mineral Classifier

(Figure S3.23) and the Model Learner (Figure S3.17, Figure S3.18, Figure S3.19, Figure S3.20 and Figure

S3.21) tools; (d) Post-classification menu, including only the Phase Refiner tool (Figure S3.29 and Figure S3.30);

(e) Utility menu, including the Conversion Tools (Figure S3.40 and Figure S3.41) and the Generate Dummy

Maps tool (Figure S3.42).

From the File menu (Figure S3.10a) users can import X-ray maps and classified mineral maps

through the Import submenu. By clicking on Preferences, a window dialog will be displayed

96

(Figure S3.11), where users can set several X-Min Learn settings. The various preferences are

grouped into three main tabs: General, Plots and Classification.

Figure S3.11 – Preferences dialog window. (a) General tab (from top to bottom: application font size, dynamic

handlebars option); (b) Plots tab (from top to bottom: shared zoom between X-Ray Maps viewer and Classified

Mineral Maps viewer; navigation panels [i.e., toolbars] size; decimals amount displayed in legends); (c)

Classification tab (from top to bottom: custom models logs display advanced [i.e., extended] information, colors

and filling of training areas when using the k-NN algorithm – see subchapter 5.2).

The Dataset Tools menu (Figure S3.10b) includes three tools for the assisted development and

the management of ground truth datasets. They will be described in detail in subchapter 4.1.

The Classification menu (Figure S3.10c) includes the Mineral Classifier tool and the Model

Learner tool, useful for the classification of mineral maps through machine learning algorithms

and for the development and management of custom machine learning models, respectively.

Both will be described further on in this work, respectively in subchapter 4.2 and chapter 5.

The Post-classification menu (Figure S3.10d) includes only the Phase Refiner tool, useful to

refine the output results of mineral classifications through morphological image processing

algorithms. Its functionalities are discussed in chapter 6.

The Utility menu (Figure S3.10e) gathers a few utility functions for the conversion of grayscale

images and RGB images to X-Min Learn supported formats (Conversion tools submenu). The

Generate Dummy Maps function can be used to build placeholder input X-Ray maps. More

details about the X-Min Learn utility functions are provided in chapter 7.

97

The main toolbar (Figure S3.5b and Figure S3.6b) provides a quick access to the four most

important X-Min Learn tools: Dataset Builder (subchapter 4.1.1), Model Learner (subchapter

4.2), Mineral Classifier (chapter 5) and Phase Refiner (chapter 6).

4 Developer’s toolkit

Other software such as XMapTools (Lanari et al., 2014), Trainable Weka Segmentation

(Arganda-Carreras et al., 2017) or Q-XRMA (Ortolano et al., 2018) already allow training

machine learning models that can classify an entire sample starting from the examples provided

in specific user-drawn training areas traced on the input data of the same sample. Optionally, it

is also possible to apply the same model on other samples. Alternatively, they also provide

unsupervised algorithms for a classification based on clustering functions.

With X-Min Learn it is possible to employ the same classification strategies using the k-NN

algorithm (see subchapter 5.2) and the K-Means algorithm (see subchapter 5.3). However, X-

Min Learn also introduces another more advanced operating approach, which allows users to

train ML models starting from an arbitrary number of previously classified and validated

samples. X-Min Learn is the first mineral-oriented software that includes a collection of

interactive tools for a step-by-step development of custom eager machine learning models (i.e.,

developer’s toolkit). This determines a greater user awareness of the use of ML, since the

models are built step by step, from the compilation of training and test datasets to the evaluation

of the model. The whole procedure is simplified to meet the needs of all users, even those not

experienced in programming.

This approach is functional to reduce user-driven biases such as the selection bias (i.e., when

training examples are chosen in a way that is not reflective of their real distribution) and

confirmation bias (i.e., when assumptions are made based on the user’s own mental models and

personal experiences – Nickerson, 1998; Pohl & Pohl, 2004). A model trained with user-drawn

areas is particularly prone to be affected by this last category of bias, as operators are led to

modify the training areas many times until the model generates a result that aligns with their

initial hypothesis. Previously classified samples, instead, contain an intrinsic larger class

variance, since all the pixels are computed as training data instead of just those selected by users

within arbitrary ROIs. The different samples can also be collected from different rock types,

thus reducing the selection bias. The evaluation of the model, moreover, is not based on the

result of a specific classification (i.e., a possible source of confirmation bias), but rather on

98

graphics and statistics during the learning phase (e.g., loss curves, confusion matrices and F1

scores, as described in Section 1, subchapter 3.8).

Figure S3.12 – Original (a) and final (b) X-Min Learn logical workflow. In (a) the users passively employ the

models provided by the developer, while in (b) users become active developers, building custom ML models

tailored for their research needs. Complex and/or technical development steps are simplified to accommodate non-

programming users (i.e., supported users), through the “developer’s toolkit” (see Figure S3.13)

At the beginning of this Ph.D. project, however, X-Min Learn was envisaged as a container of

pre-built machine learning models. In this view, an integral part of the software development

process would have been focused on providing users with several ready-to-use classification

models. The original workflow of X-Min Learn is schematized in Figure S3.12a. Nevertheless,

during the development process and after several tests, it was evident that such approach would

not have covered all users’ requirements. Not considering the large amount of ground truth data

required to build such models, the main drawback of this approach is that many unpredictable

variables influenced their reliability. For example, the input maps are arbitrarily chosen by the

operator depending on the required classification task. Since such maps are effectively the

model’s features (or variables), pre-trained models were sometimes affected by the omitted

variables bias (Mehrabi et al., 2021 and references therein). Also, data collected from different

analysis techniques or instrumentation is another issue that falls within the category of

measurement bias (Mehrabi et al., 2021). Moreover, the same mineral data can be interpreted

99

and classified in different ways, depending on the user’s task. For example, a plagioclase can

be identified as class “plagioclase”, as part of the class “feldspar” or as one of the classes

“anorthite”, “bytownite”, “labradorite”, “andesine”, “oligoclase” and “albite”. A user may also

be interested in defining sample-oriented classes, for example by assigning a class to a garnet

that shows a very specific chemism, and then to search within the same sample other garnets

that fits the same chemical signature. Another issue concerning pre-built models is that they

reduce the awareness of the users, with a consequent lack of knowledge about the processes

and the training data that are hidden behind the development of the employed model. After all

these considerations, the workflow of X-Min Learn was modified (Figure S3.12b). The role of

users in the new X-Min Learn workflow varied from simple end users, who passively apply the

models made available by the developer, to active users, who develop customized machine

learning models for their research needs.

Figure S3.13 – Workflow of the developer’s toolkit in X-Min Learn. The toolkit allows users to build customized

machine learning models through user-friendly tools, starting from their own ground truth data. Ground truth

dataset can be automatically compiled and several user-friendly tools and graphics for the tuning of models’

parameters and their evaluation are provided. Successfully developed models can then be saved and applied to

new data to achieve its automatic classification.

100

In Section 1, chapter 3 the concepts and the mathematical formulas behind the development of

an eager supervised ML model were widely discussed, using the Softmax algorithm, the cross-

entropy loss and the gradient descent optimizer. It was also demonstrated how several

hyperparameters can be fine-tuned to optimize the learning behavior of the model. X-Min Learn

users are not expected to implement these functions in a Python script. Instead, a user-friendly

developer’s toolkit is provided within X-Min Learn, to build machine learning models without

writing a single line of code. Of course, the toolkit has limited customization opportunities if

compared with a Python script developed from scratch. Arguably, however, it is an acceptable

compromise, allowing all users to exploit the potential of machine learning algorithms in the

analysis of rock’s mineral from the input maps.

The developer’s toolkit (Figure S3.13) gathers tools for ground truth datasets management

operations (see subchapter 4.1) and for the actual training of custom machine learning models

(see subchapter 4.2).

4.1 Datasets management tools

The characteristics of a ground truth dataset were described in Section 1, subchapter 0 and the

steps required to structure one were covered in Section 1, subchapter 3.2. The dataset

management tools automatize these steps and consist of three tools: Dataset Builder, Sub-

sample dataset and Merge datasets.

4.1.1 Dataset Builder

The Dataset Builder (Figure S3.14) is the most important of the dataset management tools, and

one of the main tools of X-Min Learn. As discussed in Section 1, subchapter 3.2, a ground truth

dataset consists of features and labels. In X-Min Learn the features are the pixel values of the

input maps, while the labels are the corresponding pixel mineral classes in the mineral map.

This tool automatizes the first fundamental step required to build an eager supervised ML

model, that is to populate a human-readable, machine-friendly, standardized dataset with

validated examples of already classified data.

In the Dataset Builder the feature names (i.e., the input maps names, such as Al, Ca, BSE etc.)

need to be specified (Figure S3.14a) in order to initialize the Dataset Designer (Figure

S3.14d), that displays them as column headers in a spreadsheet-like viewer. The last column

(Mineral Map) is always dedicated to the labels, and it is separated from the features columns.

Each row of the Dataset Designer must be populated with the corresponding input maps and

the classified mineral map of the same sample. Users can add as many samples (rows) as they

101

want (see Figure S3.14d). A green line indicates in each cell that the map is loaded correctly;

a red line that the map is missing; a yellow line that the map has a wrong shape (i.e., it does not

perfectly stack with the other maps).

Figure S3.14 – Dataset builder tool. (a) Input Features selector, where the name of input maps must be indicated;

(b) Delete features option; (c) Refresh Dataset Designer, that automatically compiles a spreadsheet-like table

representing the ground truth dataset; (d) Dataset Designer, where input maps (features) and output mineral maps

(labels) can be loaded ; (e) Dataset Refinement operations (to Rename, Delete and Merge mineral classes); (f)

Dataset Info, where the amount of pixel per class is displayed; (g) Output CSV file preferences (from top to bottom:

character for decimal points, character for separator, split dataset option; save dataset to CSV).

Once all the feature maps (e.g., input maps) and the label maps (i.e., mineral maps) have been

loaded correctly, the tool can be prompted to automatically process the loaded data and compile

a proper ground truth dataset. Each instance (i.e., row) of this dataset is populated with the

features (the numerical values extracted from input maps of a single pixel) and its label (mineral

class from the classified mineral map). Within the Dataset Refinement box (Figure S3.14e)

users can then visualize all the identified mineral classes and operate different refinement

operations such as Rename class, Delete class and Merge classes. In the Dataset Info box

(Figure S3.14f) a preview of the ground truth dataset can be visualized as well as the pixels

count for each mineral class.

The dataset can finally be saved as a CSV file (Figure S3.14g). This format was chosen because

it is widely compatible with many applications and many users are familiar with it. The most

popular software for reading CSV file is Microsoft Excel®, that, however, has a limit of 220

(=1048576) readable rows. While this does not affect the dataset file itself (no rows get deleted),

102

it is not ideal to visualize big size datasets. Since each sample generally contains hundreds of

thousands of pixels, it is quite easy to reach the Excel rows limit. To avoid this issue, users can

check the Split dataset option (Figure S3.14g) to split the dataset in multiple files, each one

with less than 220 rows of data.

4.1.2 Sub-sample Dataset

The Sub-sample Dataset (Figure S3.15) is a small tool to extract a sub-dataset from an already

existing ground truth dataset. After having imported the original dataset (Figure S3.15a), users

can select which classes to include in the new sub-sampled dataset, with a simple drag and drop

operation. Once the selection is completed, the derived dataset can be saved as a new CSV file.

Figure S3.15 – Sub-sample Dataset tool. (a) Original Dataset input box, where the original dataset must be loaded

(from top to bottom: import dataset, character for decimal point, loaded dataset filename); (b) Sub-sampled Dataset

box, where the derived sub-sampled dataset can be saved (from top to bottom: character for decimal point,

character for separator, save sub-sampled dataset); (c) Original Dataset preview; (d) Original Dataset mineral

classes; (e) Sub-sampled Dataset mineral classes. Mineral classes from (d) can be dragged and dropped in (e) to

include them into the sub-sampled dataset.

4.1.3 Merge Datasets

The Merge Datasets tool (Figure S3.16), as the name suggests, can be used to merge multiple

ground truth datasets. It can be very useful to improve models over time by adding more ground

truth data to their training datasets. After having loaded the “parent” datasets (Figure S3.16a),

a list of the added file paths will be displayed (Figure S3.16b), and users can click on each

103

individual path to display a preview of the corresponding dataset (Figure S3.16e). By clicking

the Merge button (Figure S3.16d), all loaded datasets will be merged into a new one, that can

then be saved in CSV format as well.

Figure S3.16 – Merge Datasets tool. (a) Import multiple “parent” datasets; (b) List of loaded datasets filepaths;

(c) Remove imported datasets; (d) Merge datasets button; (e) Preview of the selected dataset in (b); (f) Merged

dataset preview; (g) Save merged dataset button.

4.2 Model Learner

The Model Learner is the second main tool of X-Min Learn and contains all the functions to

build a new custom machine learning model or to update an existing one. After having compiled

a ground truth dataset (see subchapter 4.1), the subsequent steps for the training of custom eager

supervised ML models (Section 1, subchapter 3.7), are condensed and automatized in this tool.

The models developed with the Model Learner can be customized to solve different

classification tasks. Users build a greater awareness of the purposes (and reliability) of their

custom models, because they are trained with the samples provided by the users themselves.

For example, models that recognize the most common mineral classes (e.g., quartz, feldspars,

micas etc.) can be trained with a consistent amount of ground truth data that include lots of

examples, to cover the intra-class variability of certain mineral species (e.g., amphiboles,

pyroxenes, felspars etc.). However, users may also train models tailored for the classification

of the phases occurring in a very specific rock type or even in a specific sample. Tailored models

are able to also recognize small intra-phase variabilities of certain mineral species (see for

example the case studies provided in chapters 8 and 9). Models can also be updated in the Model

Learner with new training data (see subchapter 4.2.3), allowing their refinement over time.

104

Figure S3.17 – Model Learner tool: Settings Panel. (a) Ground truth dataset (from top to bottom: import dataset

+ character for decimal point, loaded dataset filename, dataset preview); (b) Random seed generator, to control

the randomization of certain learning operations; (c) Previous model box, to update existing models (from top to

bottom: load model, remove model); (d) Hyperparameters (from top to bottom: learning rate; weight decay,

momentum, number of epochs); (e) Learning preferences (from top to bottom: regressor type selector [i.e.,

polynomial kernel feature mapping – see subchapter 4.2.1], polynomial degree, ML algorithm selector, optimizer

selector, use GPU or CPU for computation, update rate of accuracy and loss plots – see Figure S3.20); (f) Start

learning session, Stop learning session, Test model, Save model.

105

The Model Learner provides interactive tools for the customization of users’ models, and,

especially, for a more unbiased evaluation of their performance. The Model Learner window is

divided into two scrollable panels: the Settings Panel (Figure S3.17) and the Training

Visualization Panel (Figure S3.18, Figure S3.19, Figure S3.20 and Figure S3.21). At the

bottom of the Settings Panel there are four buttons, respectively useful to launch and stop the

learning sessions, and to test and save the trained models (Figure S3.17f). From this panel users

can set the model’s hyperparameters and various other learning settings that influence the

learning session (see subchapter 4.2.1 for further details). The Training Visualization Panel

includes four main boxes, useful for: splitting the ground truth dataset into train, validation and

test sets, balancing the train set to address the issue of imbalanced datasets, evaluate and

monitor the status of the learning operations through interactive graphics and statistics and test

the model. The order of the boxes within the Training Visualization Panel reflects the order of

the steps that users must follow to correctly train and test a custom machine learning model (see

Figure S1.5), as described in the next subchapter.

4.2.1 The learning session

The initial steps required during the training of a custom eager supervised ML algorithm include

the dataset shuffling (to avoid sampling biases) followed by the splitting of the ground truth

dataset into three subset (i.e., the train, the validation and the test sets – see Section 1,

subchapter 3.3). The dataset shuffling is automatically performed once the ground truth dataset

is loaded (Figure S3.17a), while the splitting is prompted by users, that can also set the

preferred sets ratio (see Figure S3.18a). The train set contains the pixel data from which the

model extracts the knowledge useful to link the input features to the output labels. The

validation set is used to test if the model parameters that describe such relationships are valid.

The labels of the validation set are indeed hidden to the machine during the training phase and

are only used as a metric to validate the model flexibility with “unknown” data. Therefore, the

model cannot access the validation data during training, otherwise such metric would be biased.

The learning session of the Model Learner consists of an active hyperparameters tuning (see

Section 1, subchapter 3.9) operated by users, with the aim of optimizing the model performance.

The train and the validation sets are compared multiple times with different hyperparameters

settings, until a satisfactory performance (i.e., high accuracy, low error, converging confusion

matrices, etc. – see Section 1, subchapter 3.8) is achieved on both sets. This, however, may

introduce a huge confirmation bias, since the hyperparameters are fine-tuned based on the best

result achieved always on the same sets of data (i.e., train and validation data); this may generate

106

an overfitted model, not reliable with new data that the machine has never “seen”. To reduce

this issue, the third subset (i.e., the test set) is examined only after the learning session is

completed, as a more unbiased metric of evaluation of the model’s performance. After having

evaluated the model with the test set, hyperparameters should not be changed anymore and the

learning session should be stopped.

The randomization that determines the shuffling of the ground truth dataset and that,

consequently, affects the data that populates each one of the train, validation and test sets, is

controlled by a random seed generator (Figure S3.17b), which automatically generates a

number that produces pseudo-randomizations. The random seed controls all the randomizations

that are operated during the learning session. This means that two learning sessions, with same

input data and same hyperparameters settings will never produce the exact same result.

Therefore, for reproducibility purposes, the random seed can be manually set by users. Every

time the same experiment (i.e., learning session) is reproduced with same data, same parameters

and same seed, the results will be always consistent.

Figure S3.18 – Model Learner tool: Training Visualization Panel (part I – Split dataset). (a) Split ground truth

dataset with custom ratios; (b) Histogram of train, validation and test sets per mineral class; (c) Train, validation

and test sets per-class counters.

The following step, after the splitting of the ground truth dataset, is the data pre-processing

(as described in Section 1, subchapter 3.4). In the Model Learner, the pre-processing operations

are fully automatized, and include the label encoding (a procedure required by the machine to

assign each class to a progressive numeric ID) and the feature scaling, useful to re-project the

data (train, validation and test) to a new coordinates system where all the features have zero

mean and unit standard deviation, using the formula of Eq. 2.

107

At this point users should check the number of pixels assigned to each class in each set (Figure

S3.18c), that is also visible in a dedicated histogram (Figure S3.18b). Here, an imbalanced

distribution of pixels across the different classes may lead to inaccurate models, and, therefore,

it is recommended to apply balancing functions (Figure S3.19), especially when the model

struggles to minimize errors on underrepresented classes. Balancing functions include an entire

category of algorithms for data manipulation, aimed at reducing the impact of imbalanced

datasets on the learning performance. Therefore, they can still be considered as data pre-

processing operations. In subchapter 4.2.2 these algorithms are discussed and an example of

their impact on learning performance is provided.

Figure S3.19 – Model Learner tool: Training Visualization Panel (part II – Balancing operations). (a) Balancing

algorithms info; (b) warning icon displayed when a cleaning under-sampling algorithm is selected – see subchapter

4.2.2; (c) Over-sampling algorithm and linked neighborhood parameters selector; (d) Under-sampling algorithm

and linked neighborhood parameter selector; (e) Balancing strategy selector; (f) Start balancing operations; (g)

Clear all balancing operations; (h) Balancing Table (from left to right: class names, original number of pixels per

class, current number of pixels per class, number of pixels per class after the currently selected balancing strategy

will be applied.

After the pre-processing operations are concluded, the hyperparameters and other learning

preferences must be set (Figure S3.17e,d). Users can follow the guidelines provided in Section

1, subchapter 3.9 for fine-tuning the hyperparameters. The best strategy is to launch a learning

session (Figure S3.17f) and monitor the model’s performance by consulting the graphics

displayed in the Learning Evaluation box (Figure S3.20). The loss (i.e., the error function) and

accuracy plots and the confusion matrices are useful for evaluating the performance of the

model on train and validation sets and, consequently for fine-tuning the hyperparameters

accordingly. This is the longest step of the entire procedure and usually multiple learning

sessions are required for a proper fine-tuning of hyperparameters.

108

Figure S3.20 – Model Learner tool: Training Visualization Panel (part III – Learning Evaluation). (a) Train and

Validation sets loss (left) and accuracy (right) plots + corresponding navigation panels (from left to right: reset

view, pan/zoom, zoom to rectangle, save image); (b) Train (left) and validation (right) sets confusion matrices +

corresponding navigation panels (from left to right: reset view, show values as percentages, pan/zoom, zoom to

rectangle, save image). Below them the corresponding F1 scores (micro-averaged, macro-averaged and weighted

averaged) are displayed.

The other learning preferences that can be set (Figure S3.17d) include the regressor type, the

algorithm, the optimizer and the option to process the data with a dedicated NVIDIA® GPU, if

present on the machine, for a faster computation. The Softmax Regressor (with Cross-Entropy

Loss) and the Gradient Descent (as described in Section 1, subchapter 3.7.1) are, respectively,

the only algorithm and optimizer available at the moment in this first version of X-Min Learn.

Nevertheless, the Model Learner workflow is coded in a way that foresee integrations of further

algorithms, optimizers and loss functions, that are already planned to be added in future updates

109

(see chapter 10). This will increase exponentially the degree of customization available to X-

Min Learn users.

The regressor type option allows the selection of a linear or a polynomial regressor to process

the input data. The degree of the polynomial regressor can be chosen as well. Actually, a

polynomial regressor is still a linear regressor whose input data is firstly fed to a polynomial

kernel function. This operation is known as “kernel trick” (Theodoridis & Koutroumbas, 2006)

and is useful to increase the dimensionality of input data. For example, if a train set has three

features (a, b and c), a polynomial kernel (ϕ) of degree 2 processes them as follows:

Φ(𝑎, 𝑏, 𝑐) = 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑎2, 𝑏2, 𝑐2

(40)

This operation increases the number of input features, allowing the identification of potential

non-linear patterns in the data. However, it may also increase the chance of experiencing

overfitting, especially with high polynomial degrees.

Figure S3.21 – Model Learner tool: Training Visualization Panel (part IV – Model testing). (a) Test set scores;

from top to bottom: navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, save image),

confusion matrix, accuracy score, micro-averaged, macro-averaged, and weighted averaged F1 scores; (b) Model

variables log preview.

110

There is no specific metric that tells when to stop the learning operations, because it mainly

depends on the processed data. However, generally the consideration made in Section 1,

subchapter 3.8 can be used as guidelines. Therefore, if the loss and accuracy curves have

reached a plateau on both train and validation sets, there is no sign of (or small) overfitting and

the confusion matrices show a high per-class classification accuracy, then the session can be

stopped, and the model can finally be tested on the test set.

The testing results can be checked in the Model testing box (Figure S3.21a). Here a preview of

the model internal parameters is also provided (Figure S3.21b). This preview contains all the

information that users may want to check before applying the model to new data (see subchapter

5.1). Such information can also be used to reproduce the entire learning session again, as it

keeps track of every parameter and operation. The final step is to simply save the model as a

.pth file (a PyTorch compatible file format), with the Save Model button (Figure S3.17f).

4.2.2 Balancing operations

Imbalanced datasets have been addressed to as one of the top ten problems in pattern

recognition and data mining (Yang & Wu, 2006), restricting the performance and accuracy of

classifiers (Kaur et al., 2019). Supervised machine learning algorithms are indeed structured to

yield the best results when processing balanced data (i.e., where each class is populated with

similar amounts of examples). However, real world datasets are often populated with

imbalanced data, and several approaches have been hence proposed to handle this problem (He

& Garcia, 2009; Pozzi et al., 2009; Dal Pozzolo et al., 2013, Kaur et al., 2019).

Mineralogical and petrographic data is not exempt from the “curse of imbalanced datasets”, as

the modal amount of minerals extremely differ in natural rocks depending on the mineral

species. In fact, rocks-forming minerals are grouped in two wide categories: essential minerals

and accessory minerals. A common granitic rock can be, for example, considered as a source

of imbalanced mineral data, as it contains a huge amount of essential minerals like quartz and

feldspar, and small amounts, if any, of accessory minerals like zircon, tourmaline etc. If

chemical data is collected from X-ray elemental maps of natural rocks and such data is used to

compile a ground truth dataset, almost certainly an imbalanced dataset will occur. This happens

because the eager supervised algorithm implemented in X-Min Learn (i.e., the Softmax

Regressor) is programmed to automatically refine its internal parameters based on the

minimization of the cost (or error) function (i.e., the Cross-Entropy loss – see Section 1,

subchapter 3.7.1), that is computed on the correct/wrong predictions of the whole train set.

111

Since minority classes are underrepresented, their contribution to the cumulative error is

minimal, and therefore tends to be ignored during the optimization process, in favor of major

classes.

Figure S3.22 – Effects of balancing operations on an imbalanced dataset. (a) Mediocre model performance

without balancing operations; (b) Better model performance after having applied SMOTE and NearMiss

algorithms on the train set, increasing the number of pixels of the minority classes (green arrows) and reducing

the amount of pixel of the majority classes (red arrows).

112

This is the reason why several functions for dealing with imbalanced data were included within

the Model Leaner tool (i.e., the Balance train set box – see Figure S3.19). The Python library

imbalanced-learn by Lemaître et al. (2017) provides the balancing algorithms that X-Min Learn

makes available to users in a friendly environment. These algorithms can be grouped in two

families: over-sampling algorithms, that generate synthetic data based on real available data,

and under-sampling algorithms, that remove data of over-populated classes. The goal is to

obtain a balanced distribution of examples for each mineral class that the model is expected to

recognize.

An important clarification is required: X-Min Learn enables to apply balancing operations only

on the train set, as validation and test sets must contain pristine real-world data for the model

to be tested on. The Balancing Table (Figure S3.19h) is divided into four columns. The first

column (“Class name”) lists the mineral names, while the second one (“Original size”) the

original (i.e., before any balancing operation) number of pixels per mineral. The third column

(“Current size”) shows the current number of pixels, that differs from the original if any

balancing operation was performed. The fourth column (“After balancing”) is the only user-

editable column. Here users can insert the number of pixels they want to get for each class after

starting the next balancing operation. More than one balancing session can be applied in

sequence.

Users may also apply a balancing strategy (Figure S3.19e) to autofill the fourth column, for

example, with the average value of pixels-per-class, or with the pixels amount of the

majority/minority class and more. A custom unique value can also be specified. Mineral classes

with a value in the “After balancing” column that is bigger than the value in the “Current size”

column will be over-sampled, and, oppositely, if that value is smaller, they will be under-

sampled. If the value is the same, then no over-samplings or under-samplings will be performed

for that mineral class. However, over-samplings and/or under-samplings can only occur if a

corresponding algorithm has been selected. The selection can be operated from the dedicated

drop-down menus (see Figure S3.19c,d).

The available balancing algorithms list, aim and explanation is listed below; a complete

description, supported by practical examples and mathematical formulations, of each one of

these algorithms can be found in the official page of the imbalanced-learn library, at

https://imbalanced-learn.org/stable/index.html. A similar link can be accessed by X-Min Learn

users from the Info button (Figure S3.19a) within the Balance train set box. Many of these

https://imbalanced-learn.org/stable/index.html

113

balancing algorithms apply randomizations during their computation. As for all the other

randomizations that happen within the Model Learner, they are controlled by the user selectable

random seed (see Figure S3.17b) and are therefore completely reproducible.

The over-sampling algorithms (Figure S3.19c) generate new synthetic data by interpolation,

using a k-nearest neighbors (k-NN) rule (k-NN is discussed more in subchapter 5.2). They

differ for the strategy they implement to select which sample to use for computing the

interpolation. They are:

• SMOTE, a.k.a. Synthetic Minority Over-sampling Technique (Chawla et al., 2002), that

generates new samples without making any distinction in the original data. The minority

class is over-sampled by taking each minority class sample and introducing synthetic

examples along the line segments joining any/all of the k minority class nearest

neighbors (Chawla et al., 2002).

• BorderlineSMOTE, a SMOTE variant that categorizes each sample (si) of the original

data as: noise, if all nearest neighbors are from a different class of si, in danger, if at

least half of the nearest neighbors are from the same class of si, and safe, if all nearest

neighbors are from the same class of si. Then it will generate new data by interpolating

only the samples in danger.

• ADASYN, a.k.a. Adaptive Synthetic (He et al., 2008), that generates new data next to

the original samples which are wrongly classified using a k-NN classifier. The essential

idea of ADASYN is to use a weighted distribution for different minority class examples

according to their level of difficulty in learning, where more synthetic data is generated

for minority class examples that are harder to learn (He et al., 2008).

All three algorithms require a user-defined parameter (k-neighbors, see Figure S3.19c) that

defines the size of the neighborhood to consider. The BorderlineSMOTE requires a further

parameter (m-neighbors, see Figure S3.19c) which is the number of nearest neighbors to use

to determine if a sample is in danger.

The under-sampling algorithms (Figure S3.19d) can be grouped in two main categories:

controlled under-samplers and cleaning under-samplers. The first category is controlled by the

number of required pixels per class (strategy) typed in by the user in the “After balancing”

column (Figure S3.19h), while the latter ignores it. If a cleaning under-sampler is selected, a

warning icon will be displayed next to the Balancing Table (Figure S3.19b), to inform users

that the selected algorithm will ignore the strategy. The available algorithms are:

114

• RandUS, referred to the RandomUnderSampler algorithm of imbalanced-learn, a

controlled under-sampler that randomly removes samples from the majority classes of

the train set.

• NearMiss, referred to the NearMiss-1 of imbalanced-learn, is a controlled under-

sampler that removes the samples based on a nearest neighbors approach, introduce for

the first time by Mani & Zhang, 2003. It removes the samples whose average distance

to the n closest samples of another class is the smallest.

• TomekLinks, a cleaning under-sampler that firstly detects the samples that exhibit a

Tomek Link (Tomek, 1976), i.e., they are the nearest neighbors of each other and

belongs to different classes. It then removes those samples that belongs to a class that is

targeted for under-sampling operations. Therefore, this method explicitly seek to find

boundary points (Tomek, 1976).

• ENN-all and ENN-mode, two versions of the EditedNearestNeighbors algorithm

implemented in imbalanced-learn. Both are cleaning under-samplers that remove data

based on a nearest neighbors approach, selecting those samples that do not agree

“enough” with their neighborhood. ENN-all also removes samples if their neighborhood

does not entirely belong to their same class, while ENN-mode does not.

• NCR-all and NCR-mode, two versions of the NeighbourhoodCleaningRule algorithm

from imbalanced-learn. This last cleaning under-sampler uses ENN to remove some

sample. Additionally, it uses a 3 nearest neighbors rule to remove samples which do

not agree with this rule. The selection of the version simply reflects on the choice of the

ENN version.

Some of the under-sampling algorithms require a user-defined parameter (n-neighbors, see

Figure S3.19d) that defines the size of the neighborhood to consider. When not required, it will

be automatically disabled.

Data balancing is an optional pre-processing operation that should be employed after having

performed a standard leaning session using unaltered data. A confusion matrix showing a bad

classification of poorly represented mineral classes may indicate the need to apply balancing

operations on the train set. These operations shall affect only the interested mineral classes (i.e.,

the over-represented and the under-represented). Different under-sampling and/or over-

sampling algorithms should be compared to obtain the best possible result. In the worst scenario

the best practice is to exclude extremely under-represented mineral classes from the dataset, or,

115

alternatively, to collect more data specifically for them. In Figure S3.22 an example of the

effects of balancing operations on an imbalanced dataset is provided.

4.2.3 Update models

Custom machine learning models developed with the Model Learner can be updated any time

with new training data. In order to update an old model, users must firstly load a new ground

truth dataset (Figure S3.17a). Then the old model can be loaded in the Load previous model

box (Figure S3.17c). X-Min Learn will automatically detect if the input features (i.e., the input

maps) of the loaded model coincide with the input features of the new ground truth dataset. If

they do not coincide, an error will be raised. In update mode the polynomial degree, within the

Learning preferences box (Figure S3.17e), is set according to the parent model (i.e., the old

model) and cannot be changed by the user.

From this point onward, the learning session can be executed normally, as described in

subchapter 4.2.1. The loss and accuracy curves will start from the last loss and accuracy values

of the parent model. The update mode can also be useful to set model checkpoints within the

same learning session.

5 Mineral Classifier

The Mineral Classifier (Figure S3.23) is the third main tool of X-Min Learn, useful to

automatically or semi-automatically classify the input data with different ML algorithms,

including the custom models developed with the “developer’s toolkit” (see chapter 4). The tool

can only be executed if input maps are already loaded in the X-Ray Maps tab (see subchapter

3.1.1). Such maps will be listed in the Input Maps box of the (Figure S3.23a), where they can

be included/excluded from the computation. Just below them, the user can select the classifier

(Figure S3.23b), from three choices: Pre-trained Model, KNN, K-Means. A detailed

description of these three classifiers is provided in subchapters 5.1, 5.2 and 5.3, respectively.

The Algorithm Preferences box content (Figure S3.23c) changes depending on the selected

classifier. The Sub-phase Identification box (Figure S3.23d) permits to reiterate the

classification algorithms to explore a specific subphase of an already classified mineral map;

more about this in subchapter 5.5. The Preferences box (Figure S3.23e) permits to set a

classification confidence threshold, extracted from the probability maps. Each classifier

generates a probability map with different approaches, that are described in the following

116

subchapters. Pixels with a probability score below this threshold will not be assigned to a proper

mineral class; instead, they will be grouped into an X-Min Learn default class named ‘_ND_’.

The Algorithm Panel (Figure S3.23f) changes its content according to the selected classifier. It

contains several algorithm-oriented utilities and/or statistical tools. Finally, in the Classification

result box (Figure S3.23g) the classified mineral map is displayed; next to it, a Boolean map is

displayed as well, highlighting the pixels that were not classified because their probability score

was lower than the user-defined confidence threshold. Below the two maps, an interactive

legend and a mode histogram are displayed.

Figure S3.23 – Mineral Classifier tool (pre-trained model). (a) Input maps list; (b) Classifier selector; (c)

Algorithm Preferences (from top to bottom: load model, loaded model filename); (d) Sub-phase identification box

(from top to bottom: mineral map selector, mineral phase selector, refresh mineral maps list); (e) Preferences (from

top to bottom: confidence threshold, auto-load result in the Classified Mineral Maps tab – see Figure S3.6c, start

classification and save mineral map); (f) Algorithm Panel: loaded model variables preview + navigation panel

(from left to right: enable document editing, search box, search up, search down, zoom in, zoom out).

5.1 Pre-trained Model

The Pre-trained Model permits to classify input data by employing a custom ML model

developed by users with the developer’s toolkit (see chapter 4). This type of classifier allows a

completely automatic classification of the sample. The Algorithm Preferences box (Figure

S3.23c) here only includes a Load model button, that users can click to load their custom

models. In the Algorithm Panel the model’s variables will be displayed (Figure S3.23f). Many

useful information about the loaded model can be checked here, like the seed, the number of

epochs, the learning rate, the ground truth dataset path and more. One of the most important

117

variables to check here before using the model is the “ORDERED_XFEAT”, that lists the

names of the input maps (features) that the model was trained with. They must coincide with

the input maps listed in the Input Maps box (Figure S3.23a). An eager machine learning model

can indeed only work properly if fed with the same type of input features it was trained with.

To help the model to recognize each required feature, users can also rename the maps in the

Input Maps box through the buttons placed next to each map (see Figure S3.23a). Maps can

also be included or excluded from the computation through their checkboxes. Another

important model variable to check is the “Y_DICT”, that lists the mineral classes that the model

was trained to identify.

The probability maps are generated automatically during the classification, because the

probability score calculation is an integral part of the process (see Section 1, subchapter 3.7.1).

Indeed, the probability score coincides with the estimated probability �̂� (computed by the

algorithm) that the i-th input sample (given its features x and the model weights θ) is part of the

class κ, as described in Eq. 24. For each sample (i.e., pixel) the Softmax Regressor outputs a

probability distribution across all K classes, so that the probability sum is always equal to one

(see Eq. 21). The model will then output the class with the higher probability value. This exact

value is stored in the probability map and plays the role of classification confidence.

5.2 K-NN

The K-Nearest Neighbors algorithm (k-NN – Cover & Hart, 1967) is a lazy machine learning

algorithm (see Section 1, subchapter 3.1), included in X-Min Learn after the implementation in

the scikit-learn library (Pedregosa et al., 2011). With k-NN users can launch a semi-automatic

supervised classification, by manually drawing some training areas over the sample. The

algorithm will then classify the entire sample based on those areas.

The Training Areas Counter (Figure S3.24d) lists all the drawn training areas, specifying the

corresponding mineral class and the pixel counts. Here users can select the areas to highlight

them in the Maps Viewer (and vice-versa) as well as change their mineral class or remove them.

A histogram displays the pixel count for each mineral class.

The k-NN classifier assigns each pixel to the mineral class most common among its k nearest

neighbors (see Figure S3.25). K is an integer, preferably an odd number, that users can select

in the Algorithm Preferences box (Figure S3.24a). The larger is K, the smoother the

classification result will be, but some information may be lost. Conversely, the smaller is K, the

more detailed the classification will be, eventually introducing noise.

118

Figure S3.24 – Mineral Classifier tool (k-NN). (a) Algorithm preferences (from top to bottom: neighborhood size,

weights selector (uniform or distance weighted), pixel proximity experimental function. (b) Navigation panel

(from left to right: reset view, zoom/pan, zoom to rectangle, save image, lock zoom, draw training areas, training

areas color settings – see also Figure S3.11c, display next input map, display previous input map); (c) Maps

viewer; (d) Training areas counter (from left to right: training areas table, navigation panel, training areas

histogram).

Figure S3.25 – K-Nearest Neighbors rule. The unknown pixel (yellow) is classified according to the number of k

nearest neighbors pixels in the 2-features space (F1, F2). With k=3 and k=5, the pixel is assigned to class B (red);

however, with k=7 and k=9 the same pixel is classified as class A (blue).

The neighbors are selected among the pixels that fall within the user-drawn training areas. The

neighborhood is features-oriented, meaning that the algorithm considers the pixel vicinity in

the features space (an n-dimensional space, where n is the number of input maps), and not in

the sample coordinates space. To include the pixel proximity in the sample coordinates space,

users can enable the Pixel Proximity option in the Algorithm Preferences (Figure S3.24a). This

119

option adds on the fly two more features to the input data: the x and the y coordinates. It is

however an experimental function, recently introduced into the software and still under testing.

One last option that users can choose is whether to weight all the neighbors equally (Uniform

weight) or based on their distance (Distance weight), so that the closer they are, the more they

are weighted.

The probability maps are extracted pixel-by-pixel from a k-NN classification result because the

probability score is defined as the degree of agreement of the neighborhood. In other words, the

probability score is computed as the ratio between the number of neighbors displaying the most

voted class and the size of the considered neighborhood. For example, for a 5-nearest neighbors

rule, if the top voted class is ‘Plagioclase’ and all 5 neighbors are labelled as ‘Plagioclase’ than

the probability score is 1. If only 3 out of 5 are labelled as ‘Plagioclase’, the score is 3/5 = 0.6.

5.3 K-Means

The K-Means approach (MacQueen, 1967) was already introduced in Section 2, subchapter

4.1.3. Like k-NN, this algorithm is also implemented in the scikit-learn Python library. It is a

very well-known unsupervised machine learning algorithm that clusters the data into a K

number of classes defined by the user. The number of classes can be selected in the Algorithm

Preferences box, as well as a random seed, since K-Means initializes the clusters randomly and

therefore classification results may slightly change with different pseudo-randomizations. As

for k-NN, the Pixel Proximity option is also here available (see Figure S3.26a); the same

considerations made in subchapter 5.2 apply here.

The Algorithm Panel includes post-classification scores and graphics to evaluate the clustering

result. The silhouette score (also implemented in the scikit-learn library) is a very useful tool,

introduced by Rousseeuw (1987), to graphically evaluate if the number of required clusters is

appropriate (see Figure S3.26b). The score defines how well a pixel fits its own cluster

(cohesion) compared to other clusters. The score ranges from −1 to +1, where a big (positive)

value indicates that a pixel is properly assigned to its own cluster. A small (negative) value

instead indicates that the pixel is probably placed in the wrong cluster. For each cluster, if most

pixels have a high value, then K is appropriate. Otherwise, the clustering configuration may

have too many or too few clusters. Since the silhouette score is computationally expensive,

users can select a random subset of the data to evaluate the entire result (Figure S3.26c). Other

scores for clustering evaluation are also available in the Other scores box (Figure S3.26d), such

120

as the Calinski-Harabasz Index (CHI – Caliński & Harabasz, (1974)) and the Davies-Bouldin

Index (DBI – Davies & Bouldin (1979)).

Figure S3.26 – Mineral Classifier tool (K-Means). (a) Algorithm Preferences (from top to bottom: number of

classes, random seed selector, pixel proximity experimental function); (b) Silhouette plot; (c) Silhouette score box

(from top to bottom: subset of data used for computation, random seed selector, start computation); (d) Other

scores box (from top to bottom: Calinski-Harabasz Index, Davies-Bouldin Index).

Probability maps of K-Means classifications are computed pixel-by-pixel as the proximity of

each pixel to the centroid of its own cluster in the features space. Firstly, the distance between

each pixel to the nearest cluster centroid is computed. Then, the distances values are normalized

in the range [0, 1], by applying the min-max scaling function (see Eq. 1). Finally, the probability

scores are extracted by inverting the normalized distance values (i.e., 1 – distance), to get a

proximity score, that is considered as a confidence score.

5.4 Algorithms comparison

The three available classifiers in the Mineral Classifier tool use different approaches to analyze

and classify the data, therefore, there are different pros and cons for each one of them. Although

some algorithms may be more suitable for specific case studies, the best practice is to compare

the results of different classifiers. The main pros and cons of each classifier are summarized in

Table S3.1. The same thin section of a metamorphic rock was classified with each algorithm

to compare their results, that are displayed in Figure S3.27. The following input data was

collected: X-ray maps of Al, Ca, Fe, K, Mg, Mn, Na, Si, Ti and BSE map. The maps size is 512

by 400 pixels. The time required for the computation was comparable for each classifier; each

121

algorithm completed the classification under 10 seconds. The k-NN classifier, however,

required about 25 extra minutes to define each training area and the K-Means required about

15 extra minutes to individuate the appropriate number of clusters and to assign each identified

cluster to the corresponding mineral class.

Classifier Pros Cons

Pre-trained

Model

Fully customizable Ground truth data is required

Very fast even with large maps Building models is time-consuming

Fully automatic classification Influenced by noisy data

Reduces users-driven biases Requires specific maps

k-NN

Very user-controlled Biased by user’s interpretation

High classification accuracy Slow with large maps

Does not require specific maps Drawing areas is time-consuming

Can produce ground truth data Different k yields different results

K-Means

Highly objective (unbiased) Not very user-controlled

Statistically strong Better with even-sized clusters

Does not require specific maps Does not output mineral names

K can be fine-tuned with statistics Clustering statistics are slow

Table S3.1 – Pros and cons of X-Min Learn mineral classifiers.

The pre-trained model was trained using other metamorphic rocks samples, collected from

different outcrops and lithotypes, as ground truth data. An issue of this first classifier was that

it assigned very small amounts of pixels to certain mineral classes that are not truly occurring

in the analyzed sample (i.e., FeOx, Px, and Rt, namely iron oxide, pyroxene and rutile). These

pixels are noisy data, that the model recognized as true mineral classes. Many of them were

excluded with the confidence threshold, but some had a high probability score that prevented

their filtering. This is a small issue that can occur with pre-trained models and can be fixed with

post-processing operations in the Phase Refiner tool, as discussed in chapter 6. Nevertheless,

the classification result is in accordance with the other classifiers. The main difference is in the

number of pixels assigned to the class biotite (Bt) and the class white mica (Wm). This classifier

assigned some pixels to Bt that the other classifiers tended to assign to Wm. As a consequence,

the amount of Bt individuated by the model is higher, at the expense of Wm. These pixels are

concentrated in narrow areas of contact between biotite and other phases like garnet and

122

plagioclase, thus determining an oscillation of Al, Fe an Mg pixel values of biotite. The model

was trained on different samples containing biotite and therefore can correctly identify the

occurrence of biotite with depleted contents of Fe and Mg, or with increased contents of Al.

The k-NN and the K-Means algorithms, instead, assigned those pixels to Wm, because, in the

first case, the training information of biotite derived from training areas collected within the

same sample where biotite shows the ideal contents of such elements (i.e., selection bias); in

the second case (i.e., with K-Means), the unsupervised approach determined the association of

such pixels with the Wm cluster, because, again, they show a different chemical composition

with respect of the “ideal” biotite cluster.

Figure S3.27 –Comparison of the results of a sample classification using the three available classifiers of X-Min

Learn. (a) Pre-trained Model, with (d) its corresponding probability map, (b) k-NN, with (e) its corresponding

probability map and (c) K-Means, with (f) its corresponding probability map. The results of the three classifiers

are comparable, except for a higher amount of Biotite (Bt) identified by (a) at the expenses of white mica (Wm).

Moreover, in (c) the classifier highlighted four different mineral zonation patterns of the garnet (Grt) and excluded

from the classification some minority classes (e.g., titanite – Ttn).

123

The k-NN classifier was supervised by the operator who traced several training areas on

examples of the occurring mineral phases, therefore the result displays the expected classes.

The neighborhood size was set to 5 and the neighbors were weighted uniformly. This is a

valuable classifier when no ground truth data is available to train a custom model. Moreover,

if validated, mineral maps classified with a k-NN can be eligible as ground truth data for a

future custom model. The main drawback of this classifier is that tracing the training areas is

time consuming and it is required for each new analysis. Moreover, as mentioned before, this

classifier can determine sampling bias issues, as well as confirmation biases.

The K-Means differs from the previous classifiers as it employs an unsupervised learning

strategy to cluster the data into a K number of classes defined by the user. The main drawback

of K-Means is that classes are not labeled with mineral names, therefore the result must be

interpreted. Another problem of K-Means is that it does not work very well with uneven sized

clusters, making it not the best choice when classifying rocks with imbalanced mineral

distributions. Therefore, this classifier identified with different classes the various mineral

zonation patterns of the garnet phase (i.e., Grt1, Grt2, Grt3, Grt4), that gather high amounts of

pixels (majority classes) that, if summed up, lead to the correct amount of garnet identified by

the other two classifiers. This was at the expenses of minority classes such as titanite (Ttn) and

K-feldspar (Kfs) which were not identified at all but instead merged with other classes.

The probability maps obtained with the three algorithms (see Figure S3.27d,e,f) clearly display

a comparable distribution of low-confidence pixels across the map. Such pixels are mainly

concentrated along the boundaries between different mineral classes and within fractures.

Besides providing a statistical metric for a pixel-wise evaluation of the confidence of each

classifier, this information is useful to better highlight the presence of noisy data, fractures,

mineral boundaries and mixed pixels in general.

5.5 Sub-phase identification

The Mineral Classifier provides users with an option for applying the classification process to

a specific phase (or mineral class) of an already classified mineral map. This option can be

accessed in the Sub-phase Identification box (Figure S3.23d), if at least one mineral map is

loaded in the Classified Mineral Maps tab in the main window. The map can be selected from

the corresponding drop-down menu; then users can select the mineral phase through the second

drop-down menu situated just below the first one (see Figure S3.23d).

124

All the classifiers described in the precedent subchapters can be applied to run a sub-phase (or

sub-class) identification. X-Min Learn will automatically mask the input data to only process

the pixels assigned to the selected phase or mineral class. The new classification will be stored

as a new classified mineral map.

Figure S3.28 – Example of sub-phase identification applied to a garnet to identify mineral zonation patterns

through a K-Means approach.

Different classifiers can also be applied in sequence. For example, a user could firstly classify

a new sample with the k-NN classifier to identify the occurrent mineral classes (e.g.,

plagioclase, pyroxene, quartz etc.). Then, s/he could apply on the class ‘pyroxene’ a pre-trained

model, customized to distinguish clinopyroxene from orthopyroxene.

Subphase identifications can also be reiterated multiple times. For example, after having

identified a clinopyroxene, that user can apply a K-Means algorithm, in order to highlight

possible intra-phase chemical variations within the clinopyroxene. In Figure S3.28 an example

of sub-phase identification applied to a garnet to identify mineral zonation is provided.

6 Phase Refiner

The Phase Refiner (Figure S3.29 and Figure S3.30) is the fourth main tool of X-Min Learn

and can be rapidly launched from the main toolbar (see subchapter 3.3). The tool permits to

easily refine the mineral map currently displayed in the Mineral Maps tab (Figure S3.6g), by

removing noisy pixels. These pixels often occur along mineral edges or next to fractures; they

125

can negatively affect further analysis on mineral maps (e.g., sub-phase identifications – see

subchapter 5.5). They commonly occur when a pre-trained model is used to classify the mineral

map (see subchapter 5.4). Within the Phase Refiner, X-Min Learn provides image processing

algorithms to face this issue. The tool is divided into two main tabs: Basic (Figure S3.29) and

Advanced (Figure S3.30). The first tab allows users to apply a max frequency filter (i.e., a mode

filter) to smoothen the entire mineral map, while the latter provides morphological image

processing algorithms to refine each mineral class individually.

Figure S3.29 – Phase Refiner tool: Basic tab. Useful to apply a maximum frequency (i.e., mode) filter to the entire

mineral map. (a) Mineral phase legend; (b) Kernel shape and size selector; (c) exclude map’s borders from

filtering; (d) NaN value selector; (e) NaN tolerance percentage selector; (f) Apply filtering; (g) Save refined

mineral map; (h) Original mineral map viewer + navigation panel (from left to right: reset view, pan/zoom, zoom

to rectangle, save image); (i) Original mineral map’s mode histogram; (j) Refined mineral map viewer + navigation

panel (from left to right: reset view, pan/zoom, zoom to rectangle, save image); (k) Refined mineral map’s mode

histogram.

126

Figure S3.30 – Phase Refiner tool: Advanced tab. Useful to apply morphological image processing algorithms to

specific classes. (a) Mineral phase selector; (b) Morphological image processing algorithm selector; (c) Invert

mask (i.e., switch phase with background); (d) Invert selected ROI; (e) Kernel shape and size selector; (f) Removed

pixels as Nearest phase or _ND_ phase, (g) Restore original mineral map; (h) Save refined mineral map; (i)

Original phase navigation panel (from left to right: restore original phase, reset view, pan/zoom, zoom to rectangle,

save image); (j) Original selected phase viewer; (k) Refined phase navigation panel (from left to right: apply

refinement, reset view, pan/zoom, zoom to rectangle, lock zoom, select ROI, save image); (l) Refinement preview

of selected phase.

6.1 Basic mode

Within the Basic tab (Figure S3.29), users can apply a max frequency filter to remove noisy

pixels from the entire mineral map. The minimal interface consists of two main Maps View

areas (Figure S3.29h,j), displaying the original image and the refined image, respectively.

Below each one of them, two mode histograms (Figure S3.29i,k) display the corresponding

mineral modal amounts. On the left side of the window there are an interactive legend (Figure

S3.29a) and the Preferences box (Figure S3.29b-g).

Like many other image filters, the max frequency filter scans the image (i.e., the original

mineral map) with a sliding window (or kernel) of a fixed size, reading the pixel values and

modifying them when required. The kernel radius can only be an odd number; currently X-Min

Learn allows the following sizes: 3x3, 5x5, 7x7, 9x9 and 11x11. The kernel shape can be a

square, a circle or a rhombus (a.k.a. diamond). The radius and the shape of the kernel influence

how many and which pixels to process at each step during the computation. The user can easily

select them in the Preferences box; a schematic figure displays the current kernel shape and

127

size, with red nodes indicating the pixels influenced at each sliding step (see Figure S3.29b).

The bigger the kernel, the more smoothed the refined image will be.

The max frequency function was coded using the generic_filter object implemented in the SciPy

library (Virtanen et al., 2020). The filter modifies the pixel value at the center of the sliding

window according to the neighbor processed pixels (see Figure S3.31). The max frequency

(i.e., the mode) is calculated from such pixels; this value will then substitute the original value

of the central pixel. This process is performed for the entire image, from the left-top corner to

the right-bottom one.

Figure S3.31 – Schematic representation of the application of the maximum frequency (i.e., mode) filter with a

3x3 squared kernel. The pixel at the center of the kernel (light blue) is modified (from 1 to 8) according to the

mode value extracted from the 3x3 neighborhood. Then the kernel slides by one column to the right and modifies

the adjacent pixel. This operation is performed on the entire image.

The image borders are processed through extending the mineral map beyond its boundaries by

replicating its edge pixels (e.g., aaaa | abcd | dddd). This process could very occasionally

generate strange pixel artifacts; to address this problem users can exclude the image borders

from the filtering by selecting the Preserve borders option (Figure S3.29c).

If users want to control the spreading of NaN (= unclassified, empty) data in the refined mineral

map, they can select a NaN tolerance percentage (Figure S3.29e). If the percentage of NaN

pixels in the sliding window is higher than the user-defined tolerance, then the central pixel is

forced to be labelled as NaN, otherwise NaN data will be completely excluded from the max

frequency computation. Therefore, with low tolerance values, the spreading of NaN is

promoted; vice-versa, with high tolerance value NaN data spreading is prevented. Originally,

NaN data coincided with the default ‘_ND_’ class, that X-Min Learn classifiers automatically

populate with pixels whose probability score is lower than the user-defined classification

128

confidence threshold (see chapter 5). Successively, to increment users’ freedom and

customization opportunities, the tool was coded to let them choose which class to consider as

NaN data. This can be done from the corresponding drop-down menu (Figure S3.29d).

6.2 Advanced mode

The Advanced tab (Figure S3.30) is useful to class-wise refine a mineral map, i.e.,

morphological image processing algorithms can be applied to specific mineral phases. Users

can select any mineral class occurring in the mineral map within the Mineral Phases box

(Figure S3.30a); the corresponding phase is highlighted in the Preview area as a Boolean (=

binary) map. In particular, the Preview area displays two maps: the original phase map, on the

left side (Figure S3.30j), and the refined one, on the right side (Figure S3.30l). The refined

map highlights pixels that will be added to (green) or removed from (red) the selected phase if

the current algorithm is applied. To apply the refinement, users must click the Apply button on

the navigation panel situated above the refined map preview (Figure S3.30k). Once clicked,

the refinement will be applied, and the original map will be edited consequently. The refined

map will instead highlight the edit preview of the successive refinement. To remove all the

refinements applied to the mineral class, users can click on the Reset button on the navigation

panel above the original map preview (Figure S3.30i).

Different algorithms can be applied consecutively on different phases, guaranteeing a complete

user control over the final result. Six different morphological image processing algorithms are

available in the corresponding drop-down menu in the Preferences box (Figure S3.30b). Each

one of them is discussed in subchapter 6.3.

Like in basic mode, users can select the kernel size and shape (Figure S3.30e). The displayed

Boolean maps can also be inverted, by selecting the Invert mask option (Figure S3.30c); this

allows the application of the algorithm on an inverted version of the map, where the phase and

its background are switched. This, in turn, yields to an inverted algorithm result.

A Region of Interest (ROI) can also be selected by clicking the Select ROI button from the

navigation panel above the refined map preview (Figure S3.30k). If a ROI is selected on the

refined map, the preview will be updated accordingly, highlighting only the pixels that are

affected by the algorithm only inside the ROI. This behavior can be inverted (i.e., the algorithm

can be applied everywhere except for the pixels in the ROI) by clicking the Invert ROI option

in the Preferences box (Figure S3.30d).

129

One last important setting for the user to set is how to dispose of the pixels that are removed

from the selected phase. Should they be assigned to the default ‘_ND_’ class or to the nearest

phase? This choice can be selected from the dedicated drop-down menu (Figure S3.30f). Just

below it, the Reset All button (Figure S3.30g) can be clicked to restore the original mineral

map, removing all refinements applied on each phase. The Save button (Figure S3.30h),

instead, permits to save the refined image as a new mineral map file.

Figure S3.32 – Circular operative strategy when using X-Min Learn tools. Ground truth data can be fed to the

Dataset Builder to automatically generate an ordered and standardized ground truth dataset. The dataset can be

loaded to the Model Learner to run a learning session and generate a custom machine learning model. Such model

can then be used to classify new unknown data with the Mineral Classifier. If a model is not available yet due to a

lack of ground truth data, the unknown data can still be classified with the other provided classifiers. The raw

output mineral map can then be refined with the Phase Refiner and become eligible to new ground truth data,

closing the circle.

The advanced mode permits to easily remove the small classification errors produced by the

classifier. In general, it is a valuable tool for cleaning mineral maps from bad or noisy data and,

therefore, reducing possible inaccuracies that may occur when processing mineral maps.

Carefully refined mineral maps could, in turn, be employed as ground truth data to build new

datasets within the Dataset Builder tool (see subchapter 4.1.1) and then train new machine

learning models with the Model Learner tool (see subchapter 4.2). This makes the Phase

Refiner an extremely user-controlled point of connection between the output results of X-Min

130

Learn and its ground truth inputs, defining a circular strategy when using the software, in which

models become more accurate the more they are applied (see Figure S3.32).

6.3 Morphological image processing algorithms

Morphological image processing algorithms are non-linear operations related to the geometry

(e.g., shape or morphology) of features in an image. They are especially suited to the processing

of binary images, where a specific feature can be easily highlighted (e.g., the Boolean maps

showing a specific mineral phase). The entire image is probed, or scanned, with a sliding

window a.k.a. kernel or structuring element, as described in subchapter 6.1 for the maximum

frequency filter. The structuring element can have different radius or size. At every step it is

compared with the corresponding neighborhood of pixels.

The structuring element is populated by 0’s and 1’s; visually this can be observed in the

Preferences box of the Phase Refiner, where the schematic representation of the kernel (Figure

S3.30e) includes red (1’s) and black (0’s) nodes. The Boolean, or binary, maps are populated

by 0’s (= background) and 1’s (= selected phase) as well. Some operations test whether the

kernel "fits" within the neighborhood or "hits" (i.e., intersects) the neighborhood. A kernel fits

when to each one of its 1’s corresponds a 1 in the image below, and hits when at least one of

its 1’s corresponds to a 1 in the image below (Figure S3.33).

Figure S3.33 – Schematic representation of kernels hitting and/or fitting the neighborhood. The kernel K1 has a

diamond shape and fits (and therefore also hits) the neighborhoods in A and C, but misses B. The kernel K2 also

misses B and fits C, but only hits A because it has a squared shape.

131

Morphological image processing algorithms derive from the mathematical morphology theory

(Serra, 1982), developed in 1964 after the Ph.D. thesis of Jean Serra, supervised by Georges

Matheron, which is also known for being the founder of geostatistics. Interestingly, the thesis

was devoted to the quantification of mineral characteristics from thin cross sections.

Subsequently, the novel developed approach had immense repercussions in several research

fields connected with image analysis.

Most of the morphological image processing algorithms included in the advanced Phase

Refiner are based on the abovementioned concepts. Like the max frequency filter, they were

implemented in X-Min Learn using the SciPy Python library. The available algorithms are

Erosion, Dilation, Opening, Closing, Erosion + Reconstruction and Fill Holes.

6.3.1 Erosion and Dilation

The erosion algorithm transforms the original binary image so that if the structuring element

does fit the neighborhood, it returns 1, otherwise 0. It shrinks the geometry (e.g., the phase) by

stripping away a layer of pixels from both the inner and outer boundaries of regions. Small

details, like noisy “stand-alone” pixels, are eliminated; holes and gaps become larger. The

bigger the kernel radius the more pronounced is the shrinking. In Figure S3.34 the effect of

erosion on a mineral phase is illustrated.

Figure S3.34 – Comparison between biotite pixels before (a) and after (b) an erosion. Red pixels are removed.

The dilation algorithm transforms the original binary image so that if the structuring element

does hit the neighborhood, it returns 1, otherwise 0. It has the opposite effect to erosion, i.e., it

enlarges the geometry, by adding a layer of pixels to both the inner and outer boundaries of

regions. Holes, gaps and background inclusions become smaller, or get filled entirely,

132

depending on the size of the kernel radius. In Figure S3.35 the effect of dilation on a mineral

phase is illustrated.

Figure S3.35 – Comparison between biotite pixels before (a) and after (b) a dilation. Green pixels are added.

Dilation and erosion have opposite effects (i.e., they are dual operations), meaning that users

can obtain an erosion by inverting the mask (Figure S3.30c) during a dilation and vice-versa.

These algorithms are particularly aggressive and may be useful when users want to heavily

refine the boundaries of a mineral phase.

6.3.2 Opening and Closing

Opening and closing algorithms are compounded functions, as they are combinations of erosion

and dilation. Opening is an erosion followed by a dilation and closing is a dilation followed by

an erosion. Both are idempotent algorithms, meaning that once an image has been

opened/closed, subsequent openings/closings with the same kernel shape and size have no

further effect on that image.

Opening is so called because it can open a gap between shapes connected by a thin bridge of

pixels. The portions of image that have “survived” the erosion are restored to their original size

by the subsequent dilation. Closing is so called because it can fill holes in the geometry while

keeping the initial shape sizes. Like erosion and dilation, opening and closing are dual, and can

be swapped by inverting the mask.

Opening and closing are generally more versatile because they represent a less aggressive

version of dilation and erosion. In Figure S3.36 and Figure S3.37 the effects of opening and

closing on a mineral phase are illustrated, respectively.

133

Figure S3.36 – Comparison between biotite pixels before (a) and after (b) an opening. Red pixels are removed.

Figure S3.37 – Comparison between biotite pixels before (a) and after (b) a closing. Green pixels are added.

6.3.3 Erosion + Reconstruction

This algorithm is a slightly modified version of an opening. First, a classic erosion operation is

performed on the image. Then, consecutive dilations are applied until convergence of the result,

i.e., until the image does not change anymore. This allows a precise reconstruction of the shapes

of the geometries that have not been totally removed by the erosion process. Therefore, this can

be considered an even softer version of the opening, particularly suitable to remove small noisy

“stand-alone” pixels while entirely preserving the rest of the image. An example of the

application of the erosion + reconstruction algorithm on a mineral phase is illustrated in Figure

S3.38.

134

Figure S3.38 – Comparison between biotite pixels before (a) and after (b) an erosion + reconstruction. Red pixels

are removed.

6.3.4 Fill holes

This last algorithm automatically identifies and fills the holes occurring within the phase, i.e.,

portions of background not connected to the image boundaries, because surrounded entirely by

the phase. Its strategy consists of invading the background from the outer boundary of the

image, using a dilation reiterated until convergence. Holes are not connected to the background

and are therefore not invaded. The result is the complementary subset of the invaded region.

As the name suggests, this algorithm is specifically designed to fill the holes within a mineral

phase. It ignores the ROI selection. An example of this algorithm on a mineral phase is

illustrated in Figure S3.39.

Figure S3.39 – Comparison between biotite pixels before (a) and after (b) a fill holes. Green pixels are added.

135

7 Utility tools

Utility tools can be accessed from the Utility menu in the Menu bar (see subchapter 3.3). From

the Conversion tools sub-menu, two integrated conversion tools can be launched: Greyscale to

ASCII (Figure S3.40) and RGB image to Mineral Map (Figure S3.41).

Figure S3.40 – Greyscale to ASCII tool: a conversion tool to transform image data into an XML-compatible

format. (a) Import images to be converted; (b) Remove loaded images; (c) List of loaded images filepaths; (d)

Options box (from top to bottom: auto-load the converted images in the X-Ray Maps tab – see Figure S3.5c, split

multi-channel images and convert each separate channel, output format selector, start conversion).

The first tool is useful to import several input maps in typical image formats (e.g. .tiff, .bmp,

.png etc.) and converts them into an X-Min Learn compatible format. It supports the conversion

of multi-channel images if the Split multi-channel images option (Figure S3.40d) is checked.

Figure S3.41 – RGB to Mineral Map tool: a conversion tool to transform RGB images to an XML-compatible

format of mineral map (a) Load RGB image; (b) Convert loaded image; (c) Identified classes legend; (d) auto-

load converted mineral map in the Mineral Map tab (see Figure S3.6c); (e) Save converted mineral map; (f)

Converted mineral map preview + navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle,

hovered pixel’s coordinates and class).

136

The second tool (Figure S3.41) is useful to import an RGB image and to convert it to an X-

Min Learn compatible mineral map. It scans the image to identify each possible pixel color

variation, assigning it to a specific mineral class. Mineral classes are labelled with a progressive

numerical ID. It can scan up to 216 (=32768) different pixel shades; however, it is highly

recommended to convert only images with high sharpness, as different color shades are

interpreted as different mineral classes.

Figure S3.42 – Generate Dummy Maps tool, useful to generate fake noisy place-holder maps.(a) Generated map’s

width (in pixels); (b) Generated map’s height (in pixels); (c) Gamma function shape selector; (d) Gamma function

scale selector; (e) Generate dummy map; (f) Save dummy map; (g) Pixel histogram preview of the generated

dummy map + navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, save image).

Another useful tool in the Utility menu is the Generate Dummy Maps tool (Figure S3.42),

which permits to build artificial noisy X-ray maps featuring a near-zero value on all their pixels

(e.g., Figure S3.43). The values are randomized through a gamma distribution function, whose

shape and scale can be adjusted by the user (Figure S3.42c,d). Such maps can be used as a

placeholder for missing mandatory maps when applying a pre-trained model (see subchapters

5.1 and 5.4). They must be used with caution and only if the operator is absolutely sure that the

missing map, if collected, would have produced a noisy output similar to the one artificially

generated. It is especially useful for mimicking maps of minor chemical elements, if the

137

operator already knows that the occurrent minerals do not include those elements in their

chemical formula.

Figure S3.43 – Comparison between a dummy map (a) and a real noisy map of Manganese (b).

8 Case study I: Quantitative analysis of a natural rock sample

In this chapter the application of X-Min Learn tools for the extraction of quantitative

petrographic parameters from natural rocks data will be described. The collected sample

consists of a late Variscan amphibolite from the Aspromonte Unit, NE Sicily (see subchapter

8.1 for more details). The most interesting feature of this sample is the occurrence of

symplectitic micro-structures developing around relict eo-Variscan garnets.

Metamorphic rocks often show evidence of minerals characterized by chemical exchanges,

mostly concentrated along their edges. The chemical exchange reactions are usually more or

less “frozen” in specific mineralogical associations, depending on the rock’s exhumation rate.

Symplectites are micro-structures that freeze a specific state of the ongoing reaction. The

observable paragenesis define the level at which the reaction has stopped due to lack of

sufficient activation energy useful for completing the reaction itself, and therefore, for reaching

thermodynamic equilibrium. Symplectites generally occur as vermicular intimate intergrowths

of two or more products minerals. When preserved in exhumed rocks, they can be analysed to

extract considerable amounts of petrological information, as they allow the identification of

both products and reactants of the metamorphic reaction in progress (Dégi et al., 2010).

Three micro-domains were selected from a thin section of the sample, depicting three different

relict garnets surrounded by symplectitic micro-structures. Then, WDS X-ray elemental maps

and BSE maps were collected from such microdomains and were analyzed and classified with

X-Min Learn, that also allowed the identification of the occurrent sub-phases (i.e., minerals

138

zonation). This is a preliminary procedure preparatory to the identification of the Effective Bulk

Chemistry (EBC – Zuluaga et al., 2005; Ortolano et al., 2014), which, in turn, enables the

extraction of more reliable pseudo-sections for the modelling of metamorphic reactions, with

dedicated tools like Perple_X (e.g., Ortolano et al., 2014).

8.1 Geological and petrographic background

The analyzed sample (GC29) is collected from the north-eastern sector of the Peloritani

Mountains (NE Sicily), SW of Pizzo Bottino (Figure S3.44). Peloritani Mountains are a south-

verging nappe structure, which represent the SW branch of the Calabria-Peloritani Orogen

(CPO – Cirrincione et al., 2015). The CPO is part of the Kabilo-Calabride Chain (KCC), a

ribbon-like orogenic segment located in the southern portion of the south-European Variscan

chain at the end of the Paleozoic, which, together with the Apennine-Maghrebid Chain and the

External Thrust System, constitutes the orogenic domain of the central Mediterranean (Figure

S3.45). The KCC is made up of pre-Alpine metamorphic basement nappes, with local Alpine

metamorphism overprints and Mesozoic covers.

Figure S3.44 – modified after Fiannacca et al., 2019. (a) Distribution of the pre-Alpine basement in Europe; (b)

Distribution of Alpine and pre-Alpine (Variscan and/or pre-Variscan) basement rocks in the Calabro-Peloritani

Orogen and main tectonic alignments; (c) Collection area of GC29 sample (yellow star).

139

Figure S3.45 – Distribution of structural domains in the central Mediterranean (after Lentini et al., 1996).

The Peloritani Mountains (Figure S3.46) are delimited to the south by the Taormina Line,

previously interpreted as a right transcurrent (Amodio Morelli et al., 1976; Bonardi et al.,

1976), today identified as a low angle thrust formed by the rotation and subsequent overlapping

of the CPO on the Apennine-Maghrebid Chain (Ghisetti et al., 1991). They are characterized

by a very articulated continental crust sector (Ferla, 2000) which has been divided into two

metamorphic complexes characterized by a different tectonic-metamorphic evolution: the lower

and the upper complex (Cirrincione et al., 1999; Atzori et al., 2001; Cirrincione et al., 2015).

The Lower Complex, outcropping in the SE sector, consists of a Variscan succession of sub-

greenschist facies metamorphites with non-metamorphosed Mesozoic covers. It is divided into

three tectonic units (Sant’Andrea Unit, Longi-Taormina Unit and San Marco D’Alunzio Unit)

essentially characterized by metapelites and metapsammites with intercalated metabasites of

volcanic and volcanoclastic derivation and subordinate metacarbonates.

140

Figure S3.46 – (a) Geological scheme of the Peloritani Mountains chain, associated with (b) tectonic scheme

representing the nappe structure (from Cirrincione et al., 2015).

The Upper Complex, outcropping in the NE sectors, shows a Variscan basement of medium to

high metamorphic grade, locally intruded by late-Variscan plutonic rocks. It is divided into two

tectonic units, the Mandanici Unit and the tectonically overlying Aspromonte Unit. The

Mandanici Unit (Ogniben, 1970; Atzori & Vezzani, 1974) consists of metamorphic rocks

141

ranging from greenschist to low grade amphibolitic facies; the prevailing lithotypes are

phyllites and phylladic quartzites, with subordinate garnet and staurolite micascists and local

marbles, metabasites and schists (Cirrincione & Pezzino, 1991; Ferla, 2000; Cirrincione et al.,

2015). The Aspromonte Unit is the geometrically higher tectonic unit of the Peloritan

Mountains; it is mainly composed of paragneisses, migmatitic paragneisses and augen-gneisses,

with secondary marbles and amphibolites, often intruded by late-Variscan granitoid plutons

(D'Amico, 1979; Paglionico & Rottura, 1979; D'Amico et al., 1982; Rottura et al., 1993;

Fiannacca et al., 2008). The sample analyzed in this case study was collected from this unit’s

outcrops.

Figure S3.47 – Thin section scansion of the sample GC29, highlighting the selected micro-domains (i.e., GC29_1,

GC29_2 and GC29_3) locations.

The sample GC29 (Figure S3.47) is an amphibolite; the principal occurring minerals consist of

amphibole, pyroxene, feldspar and garnet; the recognized accessory minerals are epidote,

ilmenite, apatite, chlorite, pyrite and titanite. Among the main minerals, amphibole is the most

abundant, with an estimated modal percentage of around 50 vol%, followed by pyroxene (> 30

vol%) and plagioclase (about 10 vol%). A grano-nematoblastic structure is recognizable, with

a weakly anisotropic texture due to the isorientation of amphibole crystals, interrupted by the

presence of garnet porphyroblasts. The latter are characterized by the presence of a symplectitic

reaction rim, consisting of Ca-rich plagioclase, amphibole and pyroxene symplectites (e.g.,

Figure S3.48). The presence of such micro-structures is associated with amphibolitic

142

retrocession phenomena on a garnet, pyroxene and K-feldspar paragenesis, clearly attributable

to conditions of granulitic facies metamorphism.

Figure S3.48 – (a) XPL and (b) PPL optical microscope images depicting symplectitic micro-structures

surrounding relict garnet porphyroblast, occurring in the sample GC29.

From a petrological point of view, symplectites are defined as vermicular intergrowths between

two or more minerals that grow simultaneously in a sub-solidus reaction (Vernon, 2018). Such

micro-structures generally develop in metamorphic rocks along the contact edges of reacting

minerals. The minerals that compose them seem unable to impose their growth on each other;

this may be caused by high reaction rates or by low amounts of the fluid phase, necessary to

transport material into and out of the reaction site (Passchier & Trouw, 2005). Symplectites are

therefore the expression of an incomplete chemical reaction, whose products and reactants can

be reconstructed by analyzing the restitic portions of the reactants and the incomplete products

occurring in the symplectites. The study of the relationships between porphyroblast and matrix,

with consequent development of symplectitic micro-structures, can be of fundamental

importance for obtaining reliable thermo-barometric constraints, useful for reconstructing the

tectono-metamorphic evolution that characterized the geodynamic context in which the sample

is located.

8.2 Methodology and data classification with X-Min Learn

WDS Electron Probe Micro Analysis data was collected from three micro-domains of a thin

section of the sample GC29 (i.e., GC29_1, GC29_2 and GC29_3 – see Figure S3.47). Each

micro-domain displays a garnet porphyroblast surrounded by symplectites. From each micro-

domain Al, Ca, Fe, K, Mg, Mn, Na, Si and Ti X-ray elemental maps were analyzed, as well as

the backscattered electrons maps, with X-Min Learn (Figure S3.49).

143

Figure S3.49 – EPMA-WDS X-Ray elemental maps and BSE maps collected from the three selected micro-

domains of sample GC29.

It was chosen a scenario where ground truth data is lacking, to demonstrate one possible

application of X-Min Learn when pre-trained machine learning models are not available.

Firstly, the GC29_2 micro-domain was classified with the k-NN algorithm (see subchapter 5.2),

drawing training areas validated with WDS punctual chemical data and optical microscope

analysis (Figure S3.50a). Consequently, the mineral map was refined with the Pixel Editor (see

subchapter 3.2.3) and the Phase Refiner (see chapter 6) tools, to respectively highlight holes

and fractures and clean noisy pixels (Figure S3.50b).

144

Figure S3.50 – (a) Raw GC29_2 mineral map classified with k-NN algorithm and (b) refined mineral map after

the application of the Pixel Editor and the Phase Refiner tools.

Through the developer’s toolkit (see chapter 4) a custom machine learning model was trained

and tailored for the classification of the sample GC29, using the refined mineral map as ground

truth data. By means of the Dataset Builder tool, a ground truth dataset was firstly compiled

and then loaded into the Model Learner tool to start the learning session. The following model

hyperparameters (see Section 1, subchapter 3.9) were selected:

• Learning rate: 0.05

• Weight decay: 0.0

• Momentum: 0.99

• Epochs: 300

The input features were mapped to a higher dimensional space through a polynomial kernel of

degree 3 (see subchapter 4.2). The random seed was 1364337. A classification accuracy on the

test set of 98.8% was achieved; the test set confusion matrix is displayed in Figure S3.51. The

other two micro-domains were consequently classified automatically through this model (see

Figure S3.52 and Figure S3.53).

145

Figure S3.51– Test set confusion matrix of the custom model trained from GC29_2 ground truth data.

Figure S3.52 – (a) Raw GC29_1 mineral map classified with the custom machine learning model and (b) refined

mineral map after the application of the Phase Refiner tool.

146

Figure S3.53 – (a) Raw GC29_3 mineral map classified with the custom machine learning model and (b) refined

mineral map after the application of the Phase Refiner tool.

Then, the K-Means classifier (see subchapter 5.3) was applied on amphibole, clinopyroxene,

epidote, garnet and plagioclase grains of each micro-domain, to detect the occurrence of

potential sub-phases or mineral zonation (see subchapter 5.5). Two sub-classes for each of the

aforementioned mineral phases were identified in each micro-domain, except for the

amphibole, that showed evident intra-class chemical variations only in the GC29_1 micro-

domain (see Figure S3.54, Figure S3.55 and Figure S3.56). The entire methodological

procedure was recorded and is provided in the form of a practical X-Min Learn tutorial (see

video tutorial attached).

To validate the classification accuracy of the tailored model, EDS X-ray maps from the GC29_1

micro-domain were also collected and classified through an EDS custom model. Such model

was previously trained from EDS ground truth data, that was collected from six different

metamorphic samples not belonging from the same metamorphic unit of GC29. The two results

are very similar and demonstrate the statistical strength of both models. The comparison of the

results is displayed in Figure S3.57.

147

Figure S3.54 – GC29_1 sub-phase identification of (a) amphibole, (b) clinopyroxene, (c) epidote, (d) garnet and

(e) plagioclase. (f) Schematic representation of the interpreted reacting (R) / non-reacting (NR) sub-phases and

reacting (R_Grt) / non-reacting (NR_Grt) garnet portions during the symplectitic reaction.

148

Figure S3.55 – GC29_2 sub-phase identification of (a) amphibole, (b) clinopyroxene, (c) epidote, (d) garnet and

(e) plagioclase. (f) Schematic representation of the interpreted reacting (R) / non-reacting (NR) sub-phases and

reacting (R_Grt) / non-reacting (NR_Grt) garnet portions during the symplectitic reaction.

149

Figure S3.56 – GC29_3 sub-phase identification of (a) amphibole, (b) clinopyroxene, (c) epidote, (d) garnet and

(e) plagioclase. (f) Schematic representation of the interpreted reacting (R) / non-reacting (NR) sub-phases and

reacting (R_Grt) / non-reacting (NR_Grt) garnet portions during the symplectitic reaction.

150

Figure S3.57 – Comparison between (a) GC29_1 mineral map classified from EDS X-Ray maps with a custom

ML model trained with EDS ground truth data collected from metamorphic samples not belonging from the same

unit of GC29, and (b) GC29_1 mineral map classified from EPMA-WDS X-Ray maps with the “GC29-tailored”

custom ML model trained from the GC29_2 micro-domain.

8.3 Data interpretation and discussions

The three analyzed micro-domains display three relict eo-Variscan garnet porphyroblasts,

probably formed in granulitic facies conditions, and the surrounding matrix. This late-Variscan

reaction occurred as a consequence of a retrograde metamorphic stage in amphibolitic facies

conditions. This determined the development of Ca-rich plagioclase, clinopyroxene and

amphibole symplectitic micro-structures surrounding the relict garnet porphyroblasts, along the

contacts with an original pyroxene-rich matrix. Subordinate symplectitic micro-structures

involving orthopyroxene, titanite and ilmenite, are also observable in the three micro-domains,

and are probably also linked to the former metamorphic stage.

The sub-phase analysis allowed the identification of mineral zonation patterns that were

interpreted as the result of the effect of the symplectitic reaction (Figure S3.54, Figure S3.55

and Figure S3.56). GC29_3 micro-domain displays the more preserved garnet, with an

observed surface ratio of symplectites-to-relict garnet of 0.62. On the other hand, the more

consumed garnet porphyroblast is observed in GC29_2 micro-domain, with a ratio of 3.51. The

151

last micro-domain (i.e., GC29_1) shows instead an intermediate ratio of 1.24. If expressed as

symplectites to inferred original garnet section, the ratios are 0.55, 0.78 and 0.38, respectively

for GC29_1, GC29_2, GC29_3. This information can be helpful to infer the effective reactant

volumes, that, in turn, lead to the identification of the effective bulk chemistry and to the

extraction of more reliable pseudo-sections and/or phase diagrams (Zuluaga et al, 2005;

Ortolano et al., 2014).

The epidote was not included as a direct product of the symplectitic reaction, but rather

interpreted as the product of a late-retrograde reaction at the expenses of the symplectitic Ca-

rich plagioclase and amphibole. The sub-phase analysis highlighted the presence in all three

micro-domains of an Al-rich and an Fe-rich compositions in epidote (see Figure S3.54c, Figure

S3.55c and Figure S3.56c). This last is a valuable information, in terms of thermodynamic

modelling, for a better definition of the oxidation state of the system when using phase diagram

computing tools like Perple_X (Connolly, 1990).

9 Case study II: Investigation of the hydraulic behavior of mortars

This chapter will demonstrate how to use X-Min Learn for the analysis of artificial stone

materials. Thanks to the working principles of the tools implemented in X-Min Learn, the

software supports the analysis of any kind of 2D multi-channel image data. Through this case

study such adaptability of X-Min Learn is demonstrated by inferring the hydraulic behavior of

mortars induced by volcanic aggregates. This analysis was already performed in a recent work

by Belfiore et al., 2022, through the software Q-XRMA (Ortolano et al, 2018). After processing

the same input data provided in the article by the authors, the main components of the mortars

were identified, their hydraulic behavior was investigated and then the results compared.

9.1 Case study background

Mortars are historically one of the most crafted building materials. Their main components are

the binder and the aggregates. The properties of the mortar are related to the nature of such

components and, especially, to the chemical reactions that occur between them. For example,

since Roman Age different types of volcanic aggregates were employed to confer hydraulic

properties to mortars (Walker & Pavia, 2011; Belfiore et al., 2015). As demonstrated by

Belfiore et al. (2016) and Belfiore et al. (2022), X-Ray elemental maps of mortars thin sections

can be analyzed to map the chemical reactions that occurred within the artifacts. If applied on

152

ancient mortars, this analysis can be helpful for identifying the level of technology of the people

who made them.

Figure S3.58 – from Belfiore et al. (2022). Optical thin section scan of the azolo (AZO) mortar. Insets represent

the four selected micro-domain (i.e., MDI, MDII, MDIII, MDIV).

In this view, the case study here presented (Belfiore et al., 2022), aimed at comparing two

different types of mortars of the historic built heritage of Catania (eastern Sicily, Italy): the

azolo mortar and the ghiara mortar. Both mortars were crafted using volcanic products of the

close Mt. Etna volcano as aggregates. Azolo was an aggregate derived from incoherent

153

pyroclastic rocks, whereas ghiara is a reddish material originated from the transformation of

volcanic paleo-soils induced by lava flows. The main differences between them are:

• The aggregate size, finer for the ghiara than the azolo

• The color, reddish for ghiara and gray for azolo

• The chemical reactivity, higher for the ghiara than the azolo (Battiato, 1988)

Figure S3.59 – from Belfiore et al. (2022). Optical thin section scan of the ghiara (GHI) mortar. Insets represent

the four selected micro-domain (i.e., MDI, MDII, MDIII, MDIV).

The authors (see Belfiore et al., 2022 for further details) collected EDS X-Ray maps from a

total of 8 micro-domains: 4 from a sample of azolo mortar (Figure S3.58) and 4 from a sample

154

of ghiara mortar (Figure S3.59). Through the application of the software Q-XRMA, each

micro-domain was analyzed individually, to identify the components of the mortars. Then the

authors focused on the analysis of the binder to highlight its chemical variations, linked to the

reactions occurring from the interaction with the aggregates. Finally, through the application of

a Kernel Density function, validated by chemical spot analysis, the authors mapped the

Hydraulicity Index (HI) throughout the entire micro-domains (see Belfiore et al., 2022 for

further details). The HI was introduced by Boynton (1980) and is commonly used to evaluate

the hydraulicity degree of a mortar as (SiO2 + Al2O3 + Fe2O3) / (CaO + MgO) – see Table

S3.2.

Hydraulicity degree of mortars HI range

Aerial lime 0 – 0.1

Feebly hydraulic lime 0.1 – 0.16

Moderately hydraulic lime 0.16 – 0.31

Properly hydraulic lime 0.31 – 0.42

Eminently hydraulic lime 0.42 – 0.5

Cement 0.5 – 1.5

Table S3.2 – Hydraulicity degree of mortars based on Hydraulic Index (HI) value, after Boynton (1980).

9.2 Mortars analysis with X-Min Learn

Following the same approach adopted for the first case study (see subchapter 8.2), the first

micro-domain (i.e., GHI-MDI) of the ghiara sample was semi-automatically classified with the

k-NN algorithm (see subchapter 5.2). Then, using the obtained mineral map as ground truth

data, a ground truth dataset was compiled, and a new custom machine learning model was

trained. The following model hyperparameters (see Section 1, subchapter 3.9) have been

selected:

• Learning rate: 0.05

• Weight decay: 0.0

• Momentum: 0.99

• Epochs: 700

The input features have been mapped to a higher dimensional space through a polynomial

kernel of degree 2 (see subchapter 4.2). The random seed was 72438559. Under-sampling

algorithms were also applied on the train set to reduce the impact of the imbalanced distribution

155

of pixel classes (see subchapter 4.2.2). In particular, the TomekLinks algorithm, followed by

the ENN-mode algorithm (neighborhood size of 3), were applied to reduce the number of pixels

of the majority class (i.e., the binder) from 61987 to 60535 (see subchapter 4.2.2 for further

details on the algorithms). This allowed the achievement of a classification accuracy of 98% on

the test set. The test set confusion matrix is displayed in Figure S3.60. The other three ghiara

micro-domains were then classified automatically with the model (confront Figure S3.61).

Figure S3.60 – Test set confusion matrix of the custom ML model trained from GHI-MDI mineral map.

Such model, although trained on the ghiara micro-domain (GHI-MDI), was able to also identify

all the azolo fragments in each micro-domain (Figure S3.62). This permitted to achieve a very

quick data classification. In subchapter 9.3.3 the possible reasons behind the behavior of the

model are discussed. As the authors did, the sub-phase analysis of the binder was consequently

performed, and four different sub-classes were identified in both azolo and ghiara samples,

based on the analysis of Al, Ca, Fe, K, Mg and Si maps. Due to the gradual chemical variations

between the sub-classes (i.e., absence of clear chemical differences separating them) the k-NN

algorithm was employed, manually tracing training areas to steer the algorithm towards the

optimal results, which are provided in Figure S3.63 and Figure S3.64.

Finally, HI was extracted from the binder class of each micro-domain, using basic algebraic

operations on Al, Ca, Fe, Mg and Si maps, and then applying a Median Filter with a 5x5 squared

156

kernel to smoothen the results, that are displayed in Figure S3.65 and Figure S3.66. This was

performed outside X-Min Learn using a custom Python script, since algebraic operations on

maps are not available in the software yet. This is a good reason for implementing such

functionality in future X-Min Learn releases, among other planned updates (see chapter 10).

Figure S3.61 – Mineral maps obtained from ghiara sample: (a) GHI-MDI, (b) GHI-MDII, (c) GHI-MDIII, (d)

GHI-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = binder; Ghi = ghiara aggregate;

Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; _ND_ = not classified.

157

Figure S3.62 – Mineral maps obtained from azolo sample: (a) AZO-MDI, (b) AZO-MDII, (c) AZO-MDIII, (d)

AZO-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = binder; Az = azolo aggregate;

Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; _ND_ = not classified.

158

Figure S3.63 – Results obtained from the sub-phase identification on the binder of the ghiara sample: (a) GHI-

MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the occurring sub-phases abundancies are displayed.

159

Figure S3.64 – Results obtained from the sub-phase identification on the binder of the azolo sample: (a) AZO-

MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the occurring sub-phases abundancies are

displayed.

160

Figure S3.65 – Hydraulicity Index (HI) extracted from the binder of the ghiara sample: (a) GHI-MDI, (b) GHI-

MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the percentages of the value ranges of the HI are displayed.

161

Figure S3.66 – Hydraulicity Index (HI) extracted from the binder of the azolo sample: (a) AZO-MDI, (b) AZO-

MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the percentages of the value ranges of the HI are displayed.

162

9.3 Results comparison

9.3.1 Classification and sub-phases identification

The mineral maps and the sub-phase maps of binders obtained with X-Min Learn are displayed

in Figure S3.61, Figure S3.62 and Figure S3.63, Figure S3.64, respectively. For a

comparison, the corresponding results obtained by Belfiore et al. (2022) are displayed in Figure

S3.67, Figure S3.68 and Figure S3.69, Figure S3.70.

The most abundant phase identified in the azolo mortar with X-Min Learn is represented by the

binder, occurring with percentages ranging from 52 vol% to 68 vol%, against the 47 vol% – 53

vol% range identified by the authors, followed by the azolo fragments (15 vol% – 33 vol% from

X-Min Learn vs. 23 vol% – 38 vol% obtained by the authors). The large difference between the

maximum binder amount extracted from X-Min Learn (68 vol%) and the one obtained by the

authors (53 vol%) is partially determined by the second micro-domain (i.e., AZO-MDII – see

Figure S3.62b), where most of the pixels not classified by the authors (see Figure S3.68b),

were instead assigned to the class binder by the custom model. Moreover, in all micro-domains

the custom model assigned some of the pixels recognized as azolo fragments by the authors to

the class binder, thus also determining a slightly lower percentage range in the class “azolo

fragments”. Plagioclase abundancies are instead very similar, with amounts ranging from 2

vol% to 9 vol% in this work’s results, compared with 2 vol% – 11 vol% obtained by the authors.

Minor phases (quartz, clinopyroxene, olivine and Fe-Ti oxides) exhibit percentages lower than

1 vol% in both results, except for AZO-MDII, where in both results quartz amount is 3 vol%

(confront Figure S3.62b and Figure S3.68b). Porosity displays an average abundance of 10%

in this work’s results, against the 13% identified by the authors.

The binder’s sub-phases identification of azolo mortar highlighted the presence of four different

compositions, in accordance with the authors (confront Figure S3.64 and Figure S3.70). The

Zone 1 exhibits the lowest amounts in both analysis (0.6 vol% – 10 vol% from X-Min Learn

and 0.5 vol% – 5 vol% from the authors) except for AZO-MDII (see Figure S3.64b and Figure

S3.70b), exhibiting higher amounts (22 vol% and 20 vol%, respectively). The most abundant

zones are, in both cases, Zone 2 (15 vol% – 36 vol% by X-Min Learn and 12 vol% – 30 vol%

by the authors) and Zone 3 (43 vol% – 64 vol% by X-Min Learn and 52 vol% – 66 vol% by the

authors). Finally, the Zone 4 abundancies averages around 6 vol% (X-Min Learn) and 5 vol%

(authors), except for AZO-MDI (see Figure S3.64a and Figure S3.70a), where it displays

amounts of 20 vol% and 31 vol%, respectively. The differences between this work’s results and

163

the authors’, are mostly linked to the original different amounts of pixels assigned to the class

binder, as discussed above. Other important differences (e.g., Zone 4 in AZO-MDI – Figure

S3.64a and Figure S3.70a) may be related to the similar chemical footprint of the sub-phases,

that could have been interpreted in different ways by the different algorithms (i.e., k-NN and

Maximum Likelihood Classification – see Ortolano et al., 2018 for details). The number and the

location of user’s drawn training areas also affected the results of both analyses.

Analogously to azolo mortar, the most abundant phase identified in the four micro-domains of

ghiara mortar is the binder (47 vol% – 57 vol% vs. 48 vol% – 56 vol% obtained by the authors),

followed by ghiara fragments, that constitute about 29 vol% of the micro-domains on average,

against 28 vol% identified by the authors. Plagioclase grains occur with an average value of 11

vol% (10 vol% for the authors) and minor phases (quartz, clinopyroxene, olivine and Fe-Ti

oxides and others) are lower than 1 vol% in both analyses, except for GHI-MDI and GHI-

MDIII, that display an amount of clinopyroxene grains of 1 vol% and 2 vol%, respectively (see

Figure S3.61a,c). The porosity averages around 5% in this work’s result and 7% in the authors’

result. Overall, the ghiara mortar sample classification is more similar to the classification

achieved by the authors (confront Figure S3.61 and Figure S3.67), if compared with the azolo

mortar.

The binder’s sub-phases identification of ghiara mortar highlighted again the presence of four

different compositional zones, in accordance with the authors (confront Figure S3.63 and

Figure S3.69). The Zone 1 constitutes about 6 vol% of the micro-domains, against 5 vol%

identified by the authors. Zone 2 averages to 29 vol% vs. 26 vol%, Zone 3 to 48 vol% vs. 46

vol% and Zone 4 to 23 vol% vs. 22 vol%.

164

Figure S3.67 – Mineral maps obtained from ghiara sample by Belfiore et al., 2022: (a) GHI-MDI, (b) GHI-MDII,

(c) GHI-MDIII, (d) GHI-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = binder; Ghi

= ghiara aggregate; Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; NC = not

classified.

165

Figure S3.68 – Mineral maps obtained from azolo sample by Belfiore et al. (2022): (a) AZO-MDI, (b) AZO-

MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi =

binder; Az = azolo aggregate; Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; NC

= not classified.

166

Figure S3.69 – Results obtained by Belfiore et al. (2022) from the sub-phase identification on the binder of the

ghiara sample: (a) GHI-MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the occurring sub-phases

abundancies are displayed.

167

Figure S3.70 – Results obtained by Belfiore et al. (2022) from the sub-phase identification on the binder of the

azolo sample: (a) AZO-MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the occurring sub-phases

abundancies are displayed.

168

9.3.2 Hydraulicity Index (HI)

The Kernel Density function applied by the authors (see Belfiore et al., 2022 for more details)

calculates a magnitude per unit area from a punctual feature distribution, fitting a smoothly

tapered surface to each point. This allowed the authors to highlight the compositional

differences in the binder through a smooth density distribution. Then they applied map algebra

operation on the kernel density maps to extract the HI, following the Boynton formula

(Boynton, 1980).

Since each channel of the input X-ray maps can be seen as a greyscale image storing within its

pixel values the relative amount of a specific element (see chapter 2), a different strategy was

employed, based on the assumption that the ratios between the pixel values mimics the ratios

between the abundance of the chemical elements. Therefore, since the HI value is a

dimensionless number, algebraic operations were directly applied on input maps, masked to

display only the pixels assigned to the class binder. Subsequently, to obtain the similar

smoothened result achieved by Kernel Density Estimators, a Median Filter with a squared 5x5

kernel shape was applied. The HI maps thus extracted are displayed in Figure S3.65 and Figure

S3.66, while the ones obtained by the authors are displayed in Figure S3.71 and Figure S3.72.

In the case of azolo mortars, the average HI values outline (confront Table S3.2):

• Aerial lime: 4 vol% (6 vol% by the authors)

• Feebly hydraulic lime: 31 vol% (25 vol% by the authors)

• Moderately hydraulic lime: 43 vol% (58 vol% by the authors)

• Properly hydraulic lime: 9 vol% (8 vol% by the authors)

• Eminently hydraulic lime: 4 vol% (2 vol% by the authors)

• Cement: 9 vol% (1 vol% by the authors)

The result differs especially in relation to the amount of feebly hydraulic lime (higher in this

work result), of moderately hydraulic lime (higher for the authors) and cement (higher in this

result result). This last value however is strongly influenced by the AZO-MDI micro-domain

(see Figure S3.66a), where a region of the binder shows very high HI value (about 16%)

associated to the class cement. This region is also observable in the authors’ result (Figure

S3.72a), but with lower HI values, that fall into the eminently and proper hydraulic lime

categories. However, both results agree on the overall poor hydraulic properties of the azolo

mortar, confirmed by EDS point analysis.

169

For ghiara mortars, the average HI values outline (confront Table S3.2):

• Aerial lime + feebly hydraulic lime: <5 vol% (<5 vol% by the authors), except for

GHI_MDII (confront Figure S3.65b and Figure S3.71b) that includes a region with a

high number of pixels outlining a feebly hydraulic lime binder.

• Moderately hydraulic lime: 38 vol% (48 vol% by the authors)

• Properly hydraulic lime: 19 vol% (26 vol% by the authors)

• Eminently hydraulic lime: 8 vol% (11 vol% by the authors)

• Cement: 28 vol% (11 vol% by the authors)

Although both results agree on the overall better hydraulic properties of the ghiara mortar,

some differences are noticeable in the distribution of the binder categories, with this work’s

result suggesting, in general, better hydraulic properties for the analysed ghiara mortar. These

differences are mostly linked to the different strategy adopted for extracting the HI.

Furthermore, a more statistically strong result would have probably been achieved after having

quantified the input X-ray maps. Attaining maps quantification within X-Min Learn is, in fact,

one of the main priorities for the future software updates (see chapter 10).

The HI index obtained for the two types of mortars confirmed again that the chemical reactivity

of ghiara mortars is higher than azolo ones, and therefore their hydraulic properties are superior,

as also evaluated with EDS point analysis. This is also in accordance with the known historical

use of the two mortars. The azolo mortars were, indeed, extensively used during the eighteenth

century, until about 1860. Afterwards, they were replaced by the ghiara mortars due to their

better technical and economic characteristics, until the 1950s when modern cement concretes

have been adopted (Belfiore et al., 2022).

170

Figure S3.71 – Hydraulicity Index (HI) extracted by Belfiore et al. (2022) from the binder of the ghiara sample:

(a) GHI-MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the percentages of the value ranges of the

HI are displayed.

171

Figure S3.72 – Hydraulicity Index (HI) extracted by Belfiore et al. (2022) from the binder of the azolo sample:

(a) AZO-MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the percentages of the value ranges of the

HI are displayed.

172

9.3.3 Explanations for the model behavior

As discussed in subchapter 9.3.1, a custom machine learning model was trained with the

mineral map obtained from the first micro-domain of the ghiara mortar (i.e., GHI-MDI, Figure

S3.61a). Such model was able not only to automatically identify the components of the other

ghiara micro-domains (i.e., the expected behavior) but also to identify the components of the

azolo micro-domains, including the azolo fragments, which the model had never “seen” before.

Two possible explanations can be identified for this behavior: a computer science explanation

and a petrological one. The computer science explanation hides behind the basic concepts of

machine learning models discussed in Section 1. By observing the mineral classes occurring in

both mortars (confront Figure S3.61 and Figure S3.62), it is noticeable that both the samples

share the exact same mineral classes, except for the ghiara fragments, that are replaced by the

azolo ones in the azolo mortar. The model was definitely able to recognize all the shared classes

in both mortars. Therefore, the azolo class, which was never “seen” by the model, was probably

linked to the ghiara class by exclusion. In other words, the features describing the azolo mortars

were more similar to the ghiara ones than to the other mineral classes. This last consideration

introduces the second possible explanation: the petrological one. What if the chemical footprint

of both azolo and ghiara fragments are indeed similar? As described in subchapter 9.1, the main

differences between them are the aggregate size, the color and the chemical reactivity. None of

these differences is actually reflected in the input X-ray maps utilized by the custom developed

model. The chemical reactivity, which was proven to be different by the HI extraction, only

influences the behavior of the fragments with the surrounding binder. However, both types of

fragments belong to Mt. Etna volcanic products. A possible explanation is, therefore, that the

developed model actually learned a chemical pattern of Mt. Etna products from the ghiara

fragments and was then able to identify a similar pattern in the azolo ones.

The main differences in the results achieved with X-Min Learn and Q-XRMA, respectively, are

linked to the different approach adopted for the classification. The X-Min Learn model was

trained only with one micro-domain, thus the automatic classification results of the other micro-

domains are less biased than the corresponding ones provided by the authors, that, instead,

traced specific training areas for each micro-domain, introducing a possible source of selection

and confirmation biases. The different classification results also influenced the HI index

extraction, that obviously exhibit some differences. Such differences, however, do not alter the

final evaluation of the hydraulicity properties, that are confirmed to be higher for the ghiara

mortar. On the efficiency side, X-Min Learn allowed the extraction of comparable results in

173

much less time than Q-XRMA, also minimizing the bias effect introduced by the manual tracing

of training areas in each microdomain. This furtherly confirms the advantage of using pre-

trained models over manually drawn training areas for each different sample.

10 Discussions

X-Min Learn (XML) is a new software solution for the analysis and automatic mineral

classification of thin sections of both natural and artificial stone materials. As many other well-

known software for petrographic image analysis (see Table S3.3) such as XMapTools (Lanari

et al., 2014), Trainable Weka Segmentation (Arganda-Carreras et al., 2017) or Q-XRMA

(Ortolano et al., 2018), X-Min Learn implements lazy supervised and unsupervised classifiers,

but, in addition to that, it also includes, for the first time within a mineral-oriented software, a

collection of interactive tools for the advanced development of custom eager machine learning

models with the “developer’s toolkit” (see chapter 4).

Main features X-Min Learn XMapTools
Trainable Weka

Segmentation
Q-XRMA

Input type
Multi-channel

maps data
Multi-channel

maps data
Single channel

map data
Multi-channel

maps data

Graphic User Interface Yes Yes Yes No

Large algorithmic
choice

No Yes Yes No

Automated database
compilation

Yes Yes Yes Yes

Training from ROIs Yes Yes Yes Yes

Training from fully
classified samples

Yes No No No

Development of eager
custom ML classifiers

from scratch
Yes No No No

Statistics for the
evaluation of models

during training
Yes No No No

Probability maps Yes Yes Yes No

Maps calibration No Yes No Yes

Add-ons for petrology No Yes No Yes

Distribution Stand-alone Stand-alone Requires ImageJ
Requires
ArcMap®

Table S3.3 – Comparison between X-Min Learn and other known software for petrographic image analysis, such

as XMapTools (Lanari et al., 2014), Trainable Weka Segmentation (Arganda-Carreras et al., 2017) and Q-XRMA

174

(Ortolano et al., 2018). Only X-Min Learn allows the development of custom eager ML classifiers, trainable from

fully classified and validated samples and evaluable with dedicated statistics and graphics during training session.

These tools allow the automatic compilation of ground truth datasets from an arbitrary number

of previously classified and validated samples, include diagrams and graphics useful for the

evaluation of the learning process, provide balancing algorithms to enhance the training datasets

and several morphological image processing functions to refine the classification result. The

whole procedure is simplified to meet the needs of all users, even those not experienced in

programming, who will not need to write any line of code. This approach is functional to reduce

user-driven biases such as the selection bias and confirmation bias. Therefore, users in X-Min

Learn can actively develop and statistically validate customized machine learning models for

their research requirements. Once custom models have been developed, the proposed approach

also provides a reliable and faster way of classifying rocks thin sections with respect of lazy

supervised classifiers built from training areas traced on the samples and unsupervised

classifiers.

The use of X-Min Learn can also be described as dynamic and in constant evolution. Using X-

Min Learn would mean starting a process of digitalization, collection and standardized

organization of mineralogical and petrographic data. Such data, suitably processed within the

software, allows the generation of automatic classification models customized for the specific

needs of the users. X-Min Learn would also create the conditions for collaboration and data

sharing within the community, functional to the generation of increasingly performing and free-

access models.

The dynamic use of X-Min Learn requires a continuous evolution of the software itself,

consisting in the addition of new algorithms and functions and in the enhancement of the

existing ones. Future updates will be primarily focused on improving performance and stability.

Once the software backbone is strengthened, another important goal will be to increase the

number of classifiers made available to the user, that are, currently only limited to three:

Softmax Regressor, as a customizable eager supervised classifier, k-NN as a lazy supervised

classifier and K-Means as an unsupervised classifier. Other algorithms such as MeanShift and

GaussianMixture, were already successfully tested and may be introduced into the Mineral

Classifier in future updates. Support Vector Machine (SVM) has also been tested as a new eager

supervised algorithm to be implemented as a new customizable ML classifier, as an alternative

to the current Softmax Regressor. Moreover, it is planned to improve the available machine

learning algorithms through the implementation of strategies oriented towards open set

175

classifications (e.g., Bendale & Boult, 2016). This would reduce the chance of erroneous

classifications of unknown phases, that eager machine learning models tend to assign to one of

the phases they were trained with.

Another important field towards which X-Min Learn must develop is the quantification of

chemical maps. Indeed, a complete analysis of the input maps includes the extraction of the

weight percentage of the chemical elements identified in the mineralogical classes. A large part

of the resources shall be oriented towards the study of smart techniques useful to quantify the

input maps. Punctual chemical analyses must also be integrated within the software to make

them completely interactive with the input maps.

176

 CONCLUSIONS

Rocks are very often the product of mineral-chemical, geochemical and mechanical processes,

that can be naturally or artificially induced (e.g., mortars, ceramics etc.). Several analysis

techniques can be employed to extract different kinds of quantitative parameters from

lithotypes. The type of required parameters highly depends on the task of the study.

Furthermore, the scale factor plays a huge role in the type of analysis and interpretation of the

extracted information. In the era of digitalization and big data collection and analysis,

petrography, and geology in general, could greatly benefit from the implementation of data

science techniques on geological data, such as machine learning algorithms.

In this view, two new informatic tools for modern petrography were introduced: a)

ArcStereoNet (ASN), a Python-toolbox for the statistical analysis of structural oriented data

within the ArcGIS® environment and b) X-Min Learn (XML), a software that provides users

with friendly and customizable machine learning tools to identify rocks minerals from thin

section multi-spectral data. They are both oriented towards the application of smart algorithms

for the detection of statistical patterns hidden in the data, providing tools for exploring,

analyzing, classifying and extracting quantitative information from structured datasets. Thanks

to a standardized policy of data representation and storing, such datasets are automatically

compiled to be human-readable and machine-friendly at the same time. The philosophy behind

those tools is to encourage users towards an aware application of the provided algorithms, in

order to extract valuable parameters from geodata, useful, in turn, to derive more accurate

geological and petrological interpretations and constraints.

ArcStereoNet (already published in Ortolano et al., 2021) is a new Python-toolbox written using

the arcpy library and, therefore, integrated within the ArcGIS® environment, that shares the

same properties and interface of default ArcGIS® tools. It is useful for stereographic projections

and rose diagrams extraction, also taking full advantage of all potential GIS mapping processes.

ASN allows the application of most of the commonly used statistical methods for density

contour, cluster and girdle analysis on structural geodata. It also includes a new algorithm (i.e.,

Mean Extractor from Azimuthal Data) for a more user-controlled statistical representation of

the result. It is a scale-independent toolbox and can therefore be employed to identify potential

relationships between meso-structural (outcrop scale) and micro-structural (thin section scale)

data, as demonstrated with the Palmi Shear Zone case study.

177

X-Min Learn is a stand-alone tool, independent from any proprietary software and entirely

coded in Python programming language. It allows users to automatically identify the modal

amounts of rocks minerals from multi-channel data within a dynamic and interactive graphic

user interface. Output mineral maps are computed with machine learning algorithms in a pixel-

oriented fashion. Probability maps are extracted as well, to monitor and evaluate the

classification performance. XML also supports the development of custom eager ML

classifiers, providing a user-friendly “developer’s toolkit” to build and test new machine

learning models within a user-friendly dedicated GUI. It includes tools for designing training

datasets from scratch, refining mineral maps with morphological image processing algorithms,

converting data in different formats and more. This allows X-Min Learn users to tailor the

software for the analysis of different kinds of natural and artificial rocks, as demonstrated within

the dedicated case studies. The advantage of using such models resides in a faster and automatic

classification of input data and in the reduction of sampling and/or confirmation biases that can

be increased, instead, by manual tracing training areas directly on the sample under analysis.

Although relying on smart algorithms for the automatic analysis of the data, both tools here

presented have been developed to be strongly controlled by users. Geological and petrological

skills are essential to evaluate and interpret the obtained results. At the same time ASN and

XML create a bridge between recent techniques of data analysis (i.e., machine learning

algorithms) and geological data, which hopefully will help users to develop greater awareness

of the potential offered by machine learning and can provide even a small contribution to the

already ongoing digitization of geological and petrographic data, moving towards the

consolidation of statistically supported geodata analysis.

As mentioned at the beginning of this work, although a rock is canonically defined as an

aggregation of one or more mineral species, its textural and structural traits also play a central

role on its characteristics. The tools presented in this work provide instruments for the

quantitative investigation of the mineralogy and the fabric of rock samples. These two

complementary features of natural rocks can be examined by extracting structural and micro-

structural parameters with ASN and unraveling mineral-chemical interaction of phases with

XML. Nevertheless, thanks to the data-independency of the tools, the very same approach can

be employed for the analysis of synthetic rock samples, to study the artificially induced textural

traits of human-crafted materials and/or their chemical reactions, as demonstrated with the

analysis of mortars. This opens up to several possible industrial application of the presented

178

tools such as the testing of innovative materials for the recovery of cultural heritage, support to

mining engineering as well as assessment of the authenticity of valuable stone materials.

In other words, they represent another important contribution toward the increasingly pressing

demand of reaching quantitative results in petrography. This is at the service of the most diverse

facets of the geosciences, from solving complex petrological to micro-structural problems,

passing from those exquisitely applied to the field of geomaterials analysis.

179

 ACKNOWLEDGMENTS

The author is grateful to Prof. Pierre Lanari and Prof. Juan Gómez Barreiro, who, as reviewers

of the thesis, have provided several suggestions and corrections that were fundamental for the

improvement of the thesis itself, and to the tutor, Prof. Gaetano Ortolano, and the co-tutor, Prof.

Michele Zucali, who have been a source of inspiration and discussion, and supported this Ph.D.

project from the beginning.

The author also thanks Prof. Eugenio Fazio for his support in providing the aerial

photogrammetry data, which proved to be very useful for a better analysis of the Palmi case

study.

The author is also grateful to Prof. Giovanni Maria Farinella, for having allowed him to

participate in his enlightening university course on Machine Learning, which was of invaluable

importance for the development of specific technical skills in the field of machine learning.

Finally, a special thanks goes to Dr. Jukka Kuva, to Dr. Roberto Visalli and to Dr. Mario

Pagano, for the friendly support during the Ph.D. period and for the suggestions of various kinds

provided during the development of the software presented in this work.

180

 REFERENCES

Alberti, M., Laloux, M., & Zanieri, M. (2016). Tools for structural geology analysis in QGIS.

Società geological Italiana, 39, 55.

Alpaydin, E. (2020). Introduction to machine learning, 4th Edition. MIT press.

Amodio Morelli L., Bonardi G., Colonna V., Dietrich D., Giunta G., Ippolito F., Liguori V.,

Lorenzoni S., Paglionico A., Perrone V., Piccarreta G., Russo M., Scandone P.,

Zanettin-Lorenzoni E. & Zuppetta A. (1976). L’arco calabro-peloritano nell’orogene

appenninico-maghrebide. Memorie della Società Geologica Italiana, 17, 1-60.

Angì, G., Cirrincione, R., Fazio, E., Fiannacca, P., Ortolano, G., & Pezzino, A. (2010).

Metamorphic evolution of preserved Hercynian crustal section in the Serre Massif

(Calabria–Peloritani Orogen, southern Italy). Lithos, 115(1-4), 237-262.

Antonovsky, A. (1984). The application of colour to SEM imaging for increased definition.

Micron and microscopica acta, 15(2), 77-84.

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., &

Sebastian Seung, H. (2017). Trainable Weka Segmentation: a machine learning tool for

microscopy pixel classification. Bioinformatics, 33(15), 2424-2426.

Atzori P. & Vezzani L. (1974). Lineamenti petrografico-strutturali della catena peloritana.

Geologica Romana, 13, 21-27.

Atzori P., Cirrincione R., Mazzoleni P., Pezzino A. & Trombetta A. (2001). A tentative pre-

Variscan geodynamic model for the Palaeozoic basement of the Peloritani mountains

(Sicily): Evidence from meta-igneous products. Periodico di Mineralogia, 70(2), 255-

267.

Ban, H. J., Kwon, Y. J., Shin, H., Ryu, H. S., & Hong, S. (2017). Flood monitoring using

satellite-based RGB composite imagery and refractive index retrieval in visible and

near-infrared bands. Remote Sensing, 9(4), 313.

Barton, C. C., Paul, R., & Pointe, L. (Eds.). (1995). Fractals in the earth sciences. New York:

Plenum Press.

Battiato G. (1988). Le malte del centro storico di Catania, in: Margani L. and Salemi A.(eds.),

Materiali e tecniche costruttive della tradizione siciliana, Documenti 16 dell’Istituto

181

Dipartimentale di Architettura e Urbanistica (IDAU) dell’Università di Catania, 85–

107.

Belfiore, C. M., Fichera, G. V., La Russa, M. F., Pezzino, A., Ruffolo, S. A., Galli, G., & Barca,

D. (2015). A Multidisciplinary Approach for the Archaeometric Study of Pozzolanic

Aggregate in Roman Mortars: The Case of Villa dei Quintili (Rome, Italy).

Archaeometry, 57(2), 269-296.

Belfiore, C. M., Fichera, G. V., Ortolano, G., Pezzino, A., Visalli, R., & Zappalà, L. (2016).

Image processing of the pozzolanic reactions in Roman mortars via X-Ray Map

Analyser. Microchemical Journal, 125, 242-253.

Belfiore, C. M., Visalli, R., Ortolano, G., Barone, G., & Mazzoleni, P. (2022). A GIS-based

image processing approach to investigate the hydraulic behavior of mortars induced by

volcanic aggregates. Construction and Building Materials, 342, 128063.

Bendale, A., & Boult, T. E. (2016). Towards open set deep networks. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 1563-1572).

Bingham, C. (1974). An antipodally symmetric distribution on the sphere. The Annals of

Statistics, 1201-1225.

Bolton, M.S., Jensen, B.J., Wallace, K., Praet, N. Fortin, D., Kaufman, D., De Batist, M. (2020).

Machine learning classifers for attributing tephra to source volcanoes: an evaluation of

methods for Alaska tephras. J Quat Sci 35:81–92. doi: 10.1002/jqs.3170

Bonardi G., Giunta G., Liguori V., Perrone V., Russo M. & Zuppetta A. (1976). Schema

Geologico Dei Monti Peloritani. Bollettino della Società Geologica Italiana, 95, 1-26.

Boynton, R.S. (1980). Chemistry and Technology of Lime and Limestone, 2nd ed., John Wiley

& Sons, New York

Bridle, J. (1989). Training stochastic model recognition algorithms as networks can lead to

maximum mutual information estimation of parameters. Advances in neural information

processing systems, 2.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs,

with relationships to statistical pattern recognition. In Neurocomputing (pp. 227-236).

Springer, Berlin, Heidelberg.

182

Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications

in Statistics-theory and Methods, 3(1), 1-27.

Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet.

Computers & Geosciences, 51, 193-205.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic

minority over-sampling technique. Journal of artificial intelligence research, 16, 321-

357.

Cirrincione R. & Pezzino A. (1991). Caratteri strutturali dell’evento alpino nella serie

mesozoica di Alì e nella Unita metamorfica di Mandanici (Peloritani orientali).

Memorie della Società Geologica Italiana, 47, 63-272.

Cirrincione R., Atzori P. & Pezzino A. (1999). Sub-greenschist facies assemblages of

metabasites from south-eastern Peloritani range (NE-Sicily). Mineralogy and Petrology,

67(3-4), 193-212.

Cirrincione, R., Fazio, E., Fiannacca, P., Ortolano, G., Pezzino, A., & Punturo, R. (2015). The

Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; its overall

architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan

basin. Periodico di Mineralogia, 84(3B), 701-749.

Clark, A. (2015). Pillow (PIL Fork) Documentation. readthedocs. Retrieved from

https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

Connolly, J. A. D. (1990). Multivariable phase diagrams; an algorithm based on generalized

thermodynamics. American Journal of Science, 290(6), 666-718.

Cossio, R., & Borghi, A. (1998). PETROMAP: MS-DOS software package for quantitative

processing of X-ray maps of zoned minerals. Computers & Geosciences, 24(8), 805-

814.

Cover, T. M. & Hart, P. E. (1967). "Nearest neighbor pattern classification" (PDF). IEEE

Transactions on Information Theory. 13 (1): 21–27. CiteSeerX 10.1.1.68.2616.

doi:10.1109/TIT.1967.1053964.

D’Amico, C. (1979). General picture of Hercynian magmatism in the Alps, Calabria-Peloritani

and Sardinia-Corsica. International Geoscience Program, 5, 50-68.

183

D’Amico, C., Rottura, A., Maccarrone E. & Puglisi G. (1982). Peraluminous granitic suite of

Calabria-Peloritani arc (Southern Italy). Rendiconti della Societa Italiana di Mineralogia

e Petrologia, 38, 35-52.

Dal Pozzolo, A., Caelen, O., Waterschoot, S., & Bontempi, G. (2013). Racing for unbalanced

methods selection. In International conference on intelligent data engineering and

automated learning (pp. 24-31). Springer, Berlin, Heidelberg.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on

pattern analysis and machine intelligence, (2), 224-227.

Dégi, J., Abart, R., Török, K., Bali, E., Wirth, R., & Rhede, D. (2010). Symplectite formation

during decompression induced garnet breakdown in lower crustal mafic granulite

xenoliths: mechanisms and rates. Contributions to Mineralogy and Petrology, 159, 293-

314.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification, 2nd Edition. John Wiley

& Sons. ISBN: 978-0-471-05669-0

Fazio, E., Ortolano, G., & Cirrincione, R. (2017). Eye-type folds at the Palmi shear zone

(Calabria, Italy). International Journal of Earth Sciences, 106(6), 2039-2040.

Ferla, P. (2000). A model of continental crustal evolution in the geological history of the

Peloritani Mountains (Sicily). Memorie della Società Geologica Italiana, 55, 87-93.

Fiannacca P., Williams I.S., Cirrincione R. & Pezzino A. (2008). Crustal Contributions to Late

Hercynian Peraluminous Magmatism in the Southern Calabria Peloritani Orogen,

Southern Italy: Petrogenetic Inferences and the Gondwana Connection. Journal of

Petrology, 49, 1897-1514.

Fiannacca P., Basei M. A. S., Cirrincione R., Pezzino A. & Russo D. (2019). Water-assisted

production of late-orogenic trondhjemites at magmatic and subsolidus conditions. Geol.

Soc. London Spec. Publ. 491.

Fisher, N. I., Lewis, T., & Embleton, B. J. (1993). Statistical analysis of spherical data.

Cambridge university press.

Fradkov, A. L. (2020). Early history of machine learning. IFAC-PapersOnLine, 53(2), 1385-

1390.

184

Ghisetti F., Pezzino A., Atzori P. & Vezzani L. (1991). Un approccio strutturale per la

definizione della linea di Taormina: risultati preliminari. Memorie della Società

Geologica Italiana, 47, 273-289.

Gottlieb, P., Wilkie, G., Sutherland, D., Ho-Tun, E., Suthers, S., Perera, K., Jenkins, B.,

Spencer, S., Butcher, A., & Rayner, J. (2000). Using quantitative electron microscopy

for process mineralogy applications. Journal of the Minerals, Metals and Materials

Society, 52(4), 24-25.

Han, S., Li, M., Ren, Q. (2019). Discriminating among tectonic settings of spinel based on

multiple machine learning algorithms. Big Earth Data 3:67–82. doi:

10.1080/20964471.2019.1586074

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,

Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van

Kerkwijk, M. H., Brett, M., Haldane, A., Fernandez del Rio, J., Wiebe, M., Peterson,

P., Gérard-Marchant, P., Sheppard, K, Reddy, T., Weckesser, W., Abbasi, H., Gohlke,

C. & Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-

362.

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical

learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York: springer.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling

approach for imbalanced learning. In 2008 IEEE international joint conference on neural

networks (IEEE world congress on computational intelligence) (pp. 1322-1328). IEEE.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on

knowledge and data engineering, 21(9), 1263-1284.

Hebb, D.O. (1949). The Organization of Behavior. New York: Wiley & Sons

Hendrickx, I., & Van Den Bosch, A. (2005). Hybrid algorithms with instance-based

classification. In Machine Learning: ECML 2005: 16th European Conference on

Machine Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16 (pp. 158-169).

Springer Berlin Heidelberg.

Hobbs, B.E., Means, W.D. & Williams, P.F. (1985). An Outline of Structural Geology; Wiley:

New York, NY, USA; ISBN 978-0-471-40157-5.

185

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science &

engineering, 9(03), 90-95.

Itano, K., Ueki, K,, Iizuka, T., Kuwatani, T. (2020). Geochemical discrimination of monazite

source rock based on machine learning techniques and multinomial logistic regression

analysis. Geosciences 10:63. doi: 10.3390/geosciences10020063

Izadi, H., Sadri, J., & Bayati, M. (2017). An intelligent system for mineral identification in thin

sections based on a cascade approach. Computers & Geosciences, 99, 37-49.

Izawa, M. R. M., & Hall, B. J. (2020). Supervised and Unsupervised Machine-Learning

Approaches to Mineral Segmentation. In 51st Annual Lunar and Planetary Science

Conference (No. 2326, p. 2252).

Jennings, B. R., & Parslow, K. (1988). Particle size measurement: the equivalent spherical

diameter. Proceedings of the Royal Society of London. A. Mathematical and Physical

Sciences, 419(1856), 137-149.

Jordan, M.I. & Mitchell, T.M. (2015). Machine learning: trends, perspectives, and prospects.

Science 349:255–260. doi: 10.1126/science.aaa8415

Kamb, W. B. (1959). Ice petrofabric observations from Blue Glacier, Washington, in relation

to theory and experiment. Journal of Geophysical Research, 64(11), 1891-1909.

Kaur, H., Pannu, H. S., & Malhi, A. K. (2019). A systematic review on imbalanced data

challenges in machine learning: Applications and solutions. ACM Computing Surveys

(CSUR), 52(4), 1-36.

Kington, J. (2016). Mplstereonet. Available at https://github.com/joferkington/mplstereonet

(accessed on 25 November 2020).

Knox-Robinson, C. M., & Gardoll, S. J. (1998). GIS-Stereoplot: an interactive stereonet

plotting module for ArcView 3.0 Geographic information system. Computers &

Geosciences, 24(3), 243-250. doi:10.1016/S0098-3004(97)00122-2.

Kociánová, L., & Melichar, R. (2016). OATools: An ArcMap add-in for the orientation analysis

of geological structures. Computers & Geosciences, 87, 67-75.

186

Koh, E. J., Amini, E., McLachlan, G. J., & Beaton, N. (2021). Utilising convolutional neural

networks to perform fast automated modal mineralogy analysis for thin-section optical

microscopy. Minerals Engineering, 173, 107230.

Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., & Schwartz, S.

(2014). XMapTools: A MATLAB©-based program for electron microprobe X-ray

image processing and geothermobarometry. Computers & Geosciences, 62, 227-240.

Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.).

(2005). Igneous rocks: a classification and glossary of terms: recommendations of the

International Union of Geological Sciences Subcommission on the Systematics of

Igneous Rocks. Cambridge University Press.

Leffler, S. (2003). LibTIFF–TIFF Library and Utilities. URL http://www. libtiff. org/v3, 6.

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to

tackle the curse of imbalanced datasets in machine learning. The Journal of Machine

Learning Research, 18(1), 559-563.

Lentini, F., Catalano, S., & Carbone, S. (1996). The external thrust system in southern Italy; a

target for petroleum exploration. Petroleum Geoscience, 2(4), 333-342.

Liu, H., Ren, Y. L., Li, X., Hu, Y. X., Wu, J. P., Li, B., Luo, L., Tao, Z., Liu, X., Liang, J.,

Zhang, Y. Y., An, X. Y. & Fang, W. K. (2022). Rock thin-section analysis and

identification based on artificial intelligent technique. Petroleum Science.

Luo, J.M. & Zhang, Q. (2018). Big data opens up new way for geology study: Mining of all

data enhances the researchful precision. Chin. J. Geol. 53, 1207–1214.

MacQueen, J. (1967). Classification and analysis of multivariate observations. In 5th Berkeley

Symp. Math. Statist. Probability (pp. 281-297).

Mani, I., & Zhang, I. (2003). kNN approach to unbalanced data distributions: a case study

involving information extraction. In Proceedings of workshop on learning from

imbalanced datasets (Vol. 126, pp. 1-7). ICML.

Maxelon, M. (2004). Some tools for three-dimensional modelling in structural geology and

tectonics. ETH Zurich.

187

McKinney, W. (2010). Data structures for statistical computing in python. In Proceedings of

the 9th Python in Science Conference (Vol. 445, No. 1, pp. 51-56).

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias

and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35.

Nasir, Y., & Durlofsky, L. J. (2022). Deep reinforcement learning for optimal well control in

subsurface systems with uncertain geology. arXiv preprint arXiv:2203.13375.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. Review

of general psychology, 2(2), 175-220.

Ogniben L. (1970). Paleotectonic history of Sicily. In: Geology and History Sicily (Eds. W.

Alvarez and K.H.A. Gohrbandt). PESL, Tripoli. 133-143.

Ortolano, G., Cirrincione, R., & Pezzino, A. (2005). PT evolution of Alpine metamorphism in

the southern Aspromonte Massif (Calabria-Italy). Schweiz. Mineral. Petrogr. Mitt,

85(1), 31-56.

Ortolano, G., Cirrincione, R., Pezzino, A., & Puliatti, G. (2013). Geo-Petro-Structural study of

the Palmi shear zone: Kinematic and rheological implications. Rendiconti Online della

Società Geologica Italiana, 29, 126-129.

Ortolano, G., Visalli, R., Cirrincione, R., & Rebay, G. (2014). PT-path reconstruction via

unraveling of peculiar zoning pattern in atoll shaped garnets via image assisted analysis:

an example from the Santa Lucia del Mela garnet micaschists (northeastern Sicily-Italy).

Periodico di Mineralogia, 83(2), 257-297.

Ortolano, G., Cirrincione, R., Pezzino, A., Tripodi, V., & Zappala, L. (2015). Petro-structural

geology of the Eastern Aspromonte Massif crystalline basement (southern Italy-

Calabria): an example of interoperable geo-data management from thin section–to field

scale. Journal of Maps, 11(1), 181-200.

Ortolano, G., Visalli, R., Godard, G., & Cirrincione, R. (2018). Quantitative X-ray Map

Analyser (Q-XRMA): A new GIS-based statistical approach to Mineral Image Analysis.

Computers & Geosciences, 115, 56-65.

Ortolano, G., Fazio, E., Visalli, R., Alsop, G. I., Pagano, M., & Cirrincione, R. (2020).

Quantitative microstructural analysis of mylonites formed during Alpine tectonics in the

western Mediterranean realm. Journal of Structural Geology, 131, 103956.

188

Ortolano, G., D’Agostino, A., Pagano, M., Visalli, R., Zucali, M., Fazio, E., Alsop, I. &

Cirrincione, R. (2021). ArcStereoNet: a new ArcGIS® toolbox for projection and

analysis of meso-and micro-structural data. ISPRS International Journal of Geo-

Information, 10(2), 50.

Ortolano, G., Pagano, M., Visalli, R., Angì, G., D’Agostino, A., Muto, F., Tripodi, V., Critelli,

S. & Cirrincione, R. (2022). Geology and structure of the Serre Massif upper crust: a

look in to the late-Variscan strike–slip kinematics of the Southern European Variscan

chain. Journal of Maps, 1-17.

Paglionico A. & Rottura A. (1979). Variscan magmatism in the Calabro-Peloritani Arc

(Southern Italy). In: Sassi F.P. Ed., IGCP Project, N.5, Newsletter, 1, 83-92.

Passchier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,

Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019).

Pytorch: An imperative style, high-performance deep learning library. Advances in

neural information processing systems, 32.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M. & Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. the Journal of machine Learning research, 12, 2825-2830.

Pereira Borges, H., & de Aguiar, M. S. (2019). Mineral classification using machine learning

and images of microscopic rock thin section. In Advances in Soft Computing: 18th

Mexican International Conference on Artificial Intelligence, MICAI 2019, Xalapa,

Mexico, October 27–November 2, 2019, Proceedings 18 (pp. 63-76). Springer

International Publishing.

Petrelli, M. & Perugini, D. (2016). Solving petrological problems through machine learning:

the study case of tectonic discrimination using geochemical and isotopic data. Contrib

Mineral Petrol 171, 81. doi: 10.1007/s00410-016-1292-2

Petrelli, M., Bizzarri, R., Morgavi, D., Baldanza, A., & Perugini D. (2017). Combining machine

learning techniques, microanalyses and large geochemical datasets for

tephrochronological studies in complex volcanic areas: New age constraints for the

189

Pleistocene magmatism of central Italy. Quat Geochronol 40:33–44. doi:

10.1016/j.quageo.2016.12.003

Phillips, F. C. (1955). The use of stereographic projection in structural geology (Vol. 79, No.

3, p. 236). LWW.

Pohl, R., & Pohl, R. F. (2004). Cognitive illusions: A handbook on fallacies and biases in

thinking, judgement and memory. Psychology Press. pp.79-96.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. Ussr

computational mathematics and mathematical physics, 4(5), 1-17.

Prati, R. C., Batista, G. E., & Monard, M. C. (2009). Data mining with imbalanced class

distributions: concepts and methods. In IICAI (pp. 359-376).

Prosser, G., Caggianelli, A., Rottura, A., & Del Moro, A. (2003). Strain localisation driven by

marble layers: the Palmi shear zone (Calabria-Peloritani terrane, southern Italy).

GeoActa, 2, 155-166.

Quinn, P., Rout, D., Stringer, L., Alexander, T., Armstrong, A., & Olmstead, S. (2011).

Petrodatabase: an on-line database for thin section ceramic petrography. Journal of

archaeological science, 38(9), 2491-2496.

Rafatirad, S., & Heidari, M. (2019). An exhaustive analysis of lazy vs. eager learning methods

for real-estate property investment.

Ren, Q., Li, M., Han, S., Zhang, Y., Zhang, Q., & Shi, J. (2019). Basalt tectonic discrimination

using combined machine learning approach. Minerals 9:376. doi: 10.3390/min9060376

Reynes, J., Lanari, P., & Hermann, J. (2020). A mapping approach for the investigation of Ti–

OH relationships in metamorphic garnet. Contributions to mineralogy and petrology,

175(5), 46.

Rojas, R. (1996). Neural networks: a systematic introduction. Springer Science & Business

Media.

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review,

v65, No. 6, pp. 386–408.

190

Rottura A., Caggianelli A., Campana R. & Del Moro A. (1993). Petrogenesis of Hercynian

peraluminous granites from the Calabrian Arc, Italy. European Journal of Mineralogy,

5(4), 737-754.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. Journal of computational and applied mathematics, 20, 53-65.

Rubo, R. A., de Carvalho Carneiro, C., Michelon, M. F., & dos Santos Gioria, R. (2019). Digital

petrography: Mineralogy and porosity identification using machine learning algorithms

in petrographic thin section images. Journal of Petroleum Science and Engineering, 183,

106382.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. nature, 323(6088), 533-536.

Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development. 3 (3): 210–229. CiteSeerX 10.1.1.368.2254.

doi:10.1147/rd.33.0210.

Schönig, J., von Eynatten, H., Tolosana-Delgado, R., & Meinhold, G. (2021). Garnet major-

element composition as an indicator of host-rock type: a machine learning approach

using the random forest classifier. Contributions to Mineralogy and Petrology, 176, 1-

21.

Serra, J. (1982). Image analysis and mathematical morphology. Academic Press, Inc.6277 Sea

Harbor Drive Orlando, FL, United States. ISBN: 978-0-12-637240-3

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical

journal, 27(3), 379-423.

Smola, A., & Vishwanathan, S. V. N. (2008). Introduction to machine learning. Cambridge

University, UK, 32(34), 2008.

Stangor, C., & Walinga, J. (2014). Introduction to psychology-1st Canadian edition.

191

Su, C., Xu, S. J., Zhu, K. Y., & Zhang, X. C. (2020). Rock classification in petrographic thin

section images based on concatenated convolutional neural networks. Earth Science

Informatics, 13(4), 1477-1484.

Summerfield, M. (2007). Rapid GUI Programming with Python and Qt: The Definitive Guide

to PyQt Programming (paperback). Pearson Education.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization

and momentum in deep learning. In International conference on machine learning (pp.

1139-1147). PMLR.

Tarquini, S., & Favalli, M. (2010). A microscopic information system (MIS) for petrographic

analysis. Computers & Geosciences, 36(5), 665-674.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition. Elsevier.

Thiele, S. T., Grose, L., Samsu, A., Micklethwaite, S., Vollgger, S. A., & Cruden, A. R. (2017).

Rapid, semi-automatic fracture and contact mapping for point clouds, images and

geophysical data. Solid Earth, 8(6), 1241-1253.

Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020). The computational limits

of deep learning. arXiv preprint arXiv:2007.05558.

Tomek, I. (1976). Two modifications of cnn. IEEE Trans. Systems, Man and Cybernetics,

6:769–772.

Vernon R. H. (2018). A practical guide to rock microstructure. Cambridge University Press,

Cambridge.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,

Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Milliman K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,

E., Carey, C.J., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold,

J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,

A. H., Pedregosa, F., van Mulbregt, P. & SciPy 1.0 Contributors. (2020). SciPy 1.0:

fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261-

272.

Visalli, R., Ortolano, G., Godard, G., & Cirrincione, R. (2021). Micro-Fabric Analyzer (MFA):

A new semiautomated ArcGIS-based edge detector for quantitative microstructural

192

analysis of rock thin-sections. ISPRS International Journal of Geo-Information, 10(2),

51.

Vollmer, F. W. (1995). C program for automatic contouring of spherical orientation data using

a modified Kamb method. Computers & Geosciences, 21(1), 31-49.

Walker, R. & Pavía, S. (2011). Physical properties and reactivity of pozzolans, and their

influence on the properties of lime–pozzolan pastes. Materials and structures, 44(6),

1139-1150.

Yang, Q., & Wu, X. (2006). 10 challenging problems in data mining research. International

Journal of Information Technology & Decision Making, 5(04), 597-604.

Yu, J., Wellmann, F., Virgo, S., von Domarus, M., Jiang, M., Schmatz, J., & Leibe, B. (2023).

Superpixel segmentations for thin sections: evaluation of methods to enable the

generation of machine learning training data sets. Computers & Geosciences, 170,

105232.

Zhang, Q. & Zhou, Y.Z. (2017). Reflections on the scientific research method in the era of big

data. Bull. Mineral. Petrol. Geochem. 36, 881–885.

Zhang, Q. & Zhou, Y.Z. (2018). Big data helps geology develop rapidly. Acta Petrol. Sin. 34,

3167–3172.

Zuluaga, C. A., Stowell, H. H., & Tinkham, D. K. (2005). The effect of zoned garnet on

metapelite pseudosection topology and calculated metamorphic PT paths. American

Mineralogist, 90(10), 1619-1628.

193

 APPENDIX: ARCSTEREONET INSTALLATION

ArcStereoNet (ASN) core Python library, mplstereonet (Kington, 2016), does not come with

the default installation of Python 2.7.x for ArcMap®, therefore it must be specifically installed

for ASN to work. The most canonical way to carry out the installation is by mean of pip (i.e.,

the most known Package Installer for Python). The toolbox has been programmed to fully

automate this procedure. If the ArcMap® version is 10.3 or 10.3.1, however, the installation

routine requires a previous step, that is described below.

The user must copy the file “ArcStereoNet.pyt” (see supplementary material of Ortolano et al.,

2021) inside ArcGIS® toolboxes folder. The default path is: “C:/Program Files

(x86)/ArcGis/Desktop10.x/ArcToolbox/Toolboxes”. Once the file is copied, the user can open

the ArcToolbox window inside ArcMap®, right-click and then select the “Add Toolbox” option

to import ASN (see Figure A.1). The installation will then automatically start; this requires an

internet connection. A pop-up window will inform the user whether the toolbox components

have been successfully installed or not.

Figure A.1 – Screenshot showing how to add a custom toolbox, like ArcStereoNet, inside ArcMap®.

Installation with ArcMap® 10.3.x

ArcGIS® 10.3 and 10.3.1 versions do not include pip in their default Python directory,

therefore, it must be installed manually by browsing to https://bootstrap.pypa.io/pip/2.7/get-

pip.py, right-clicking and selecting “Save As” to download the “get-pip.py” script. The file

must be saved in the Scripts directory, located by default in “C:\Python27\ArcGIS10.3\Scripts”.

Then, the installation steps described above can be followed. If the automatic installation

routine happens to fail, refer to the manual installation of pip at https://pip.pypa.io/en/stable/.

https://bootstrap.pypa.io/pip/2.7/get-pip.py
https://bootstrap.pypa.io/pip/2.7/get-pip.py
https://pip.pypa.io/en/stable/

194

 APPENDIX: AERIAL PHOTOGRAMMETRY DATA

Dip/
Plunge

DipDirection/
Trend

Feature type Easting Northing
Altitude

offset (m)

49 29 Main Foliation 5,75337E+14 4,24846E+13 5980015

53 27 Main Foliation 5,75336E+14 4,24846E+14 5999926

63 21 Main Foliation 5,75337E+14 4,24846E+14 602341

49 44 Main Foliation 5,75336E+14 4,24846E+14 6026546

41 77 Main Foliation 5,75336E+14 4,24846E+14 5978481

42 60 Main Foliation 5,75336E+14 4,24846E+14 6009612

84 71 Main Foliation 5,75336E+13 4,24846E+14 6041855

59 103 Main Foliation 5,75337E+14 4,24846E+14 6167231

65 43 Main Foliation 5,75336E+14 4,24846E+14 6075282

27 74 Main Foliation 5,75337E+14 4,24846E+14 5993966

48 69 Main Foliation 5,75337E+14 4,24846E+14 5971349

31 43 Main Foliation 5,75336E+14 4,24846E+14 6009094

72 47 Main Foliation 5,75336E+14 4,24846E+14 6015384

64 328 Main Foliation 5,75337E+14 4,24846E+14 5948465

44 212 Main Foliation 5,75333E+14 4,24845E+14 6014211

18 177 Main Foliation 5,75332E+14 4,24845E+14 6015148

80 215 Main Foliation 5,75331E+13 4,24845E+14 6074697

61 186 Main Foliation 5,7533E+14 4,24845E+14 6047017

75 81 Main Foliation 5,75331E+14 4,24845E+14 6091596

65 216 Main Foliation 5,7533E+14 4,24845E+12 606285

56 215 Main Foliation 5,7533E+14 4,24845E+14 6025143

44 169 Main Foliation 5,75329E+14 4,24845E+14 6007076

47 206 Main Foliation 5,75331E+14 4,24845E+14 596213

40 99 Main Foliation 5,75328E+14 4,24845E+14 6081601

23 357 Main Foliation 5,75328E+14 4,24845E+14 6095134

79 290 Main Foliation 5,75327E+14 4,24845E+14 6166647

44 163 Main Foliation 5,75326E+14 4,24845E+14 6147497

42 180 Main Foliation 5,75326E+14 4,24845E+14 6253848

73 191 Main Foliation 5,75323E+14 4,24845E+14 5881218

76 191 Main Foliation 5,75323E+13 4,24845E+14 5897243

72 191 Main Foliation 5,75323E+14 4,24845E+14 5926296

75 180 Main Foliation 5,75323E+14 4,24845E+14 588297

61 163 Main Foliation 5,75322E+14 4,24845E+14 6147951

41 92 Main Foliation 5,75319E+13 4,24845E+14 6326204

80 60 Main Foliation 5,75317E+14 4,24845E+13 6375182

66 39 Main Foliation 5,75317E+13 4,24845E+14 6201701

69 36 Main Foliation 5,75318E+14 4,24845E+14 5988508

34 351 Main Foliation 5,75316E+14 4,24845E+13 6592616

59 359 Main Foliation 5,75316E+14 4,24845E+14 6601204

81 220 Main Foliation 5,75314E+14 4,24845E+13 6551525

195

79 40 Main Foliation 5,75315E+14 4,24845E+14 6524699

72 30 Main Foliation 5,75315E+14 4,24845E+14 6406224

54 21 Main Foliation 5,75315E+14 4,24845E+14 6372351

73 29 Main Foliation 5,75316E+14 4,24845E+14 6379814

81 11 Main Foliation 5,75316E+14 4,24845E+13 64088

59 192 Main Foliation 5,75315E+14 4,24845E+13 6311317

78 74 Main Foliation 5,75315E+14 4,24845E+14 6400745

52 37 Main Foliation 5,75316E+14 4,24845E+14 6455634

43 10 Main Foliation 5,75315E+14 4,24845E+14 6490167

40 34 Main Foliation 5,75315E+14 4,24845E+14 6457008

70 27 Main Foliation 5,75314E+14 4,24845E+13 631825

86 38 Main Foliation 5,75313E+14 4,24845E+14 6392061

60 25 Main Foliation 5,75313E+14 4,24845E+14 6369606

77 219 Main Foliation 5,75313E+14 4,24845E+14 6341489

59 21 Main Foliation 5,75313E+14 4,24845E+14 6374203

76 36 Main Foliation 5,75313E+14 4,24845E+14 6308995

61 46 Main Foliation 5,75313E+14 4,24845E+14 626573

81 210 Main Foliation 5,75314E+14 4,24845E+14 6554878

65 42 Main Foliation 5,75313E+14 4,24844E+14 6569251

76 222 Main Foliation 5,75313E+14 4,24844E+14 6539664

82 35 Main Foliation 5,75313E+14 4,24844E+13 6536015

63 29 Main Foliation 5,75312E+14 4,24845E+14 6482649

67 199 Main Foliation 5,75312E+14 4,24845E+14 6447238

69 38 Main Foliation 5,75312E+14 4,24844E+14 6519147

54 206 Main Foliation 5,75313E+14 4,24844E+14 6603224

83 17 Main Foliation 5,75314E+14 4,24844E+14 6623299

84 39 Main Foliation 5,75315E+14 4,24845E+14 6639986

74 212 Main Foliation 5,75314E+14 4,24845E+14 6604787

72 19 Main Foliation 5,75313E+14 4,24844E+14 6688093

77 9 Main Foliation 5,75314E+14 4,24844E+14 6675423

89 16 Main Foliation 5,75313E+14 4,24844E+14 6664228

75 30 Main Foliation 5,75313E+14 4,24844E+14 6646918

56 20 Main Foliation 5,75313E+14 4,24844E+14 6662302

71 9 Main Foliation 5,75313E+14 4,24844E+14 6682913

75 46 Main Foliation 5,75312E+14 4,24844E+14 6496968

72 215 Main Foliation 5,75312E+14 4,24844E+14 6454999

67 70 Main Foliation 5,75311E+14 4,24844E+14 6468935

83 23 Main Foliation 5,75312E+14 4,24844E+14 6427811

80 217 Main Foliation 5,75312E+14 4,24844E+14 6387048

87 198 Main Foliation 5,75312E+14 4,24845E+14 6402475

86 188 Main Foliation 5,75312E+14 4,24844E+14 6326363

78 215 Main Foliation 5,75311E+14 4,24844E+14 6363148

89 24 Main Foliation 5,75311E+14 4,24844E+14 6402962

72 206 Main Foliation 5,75311E+14 4,24844E+14 6449138

85 213 Main Foliation 5,75313E+14 4,24845E+14 6139424

196

88 33 Main Foliation 5,75313E+14 4,24845E+14 619732

87 208 Main Foliation 5,75313E+13 4,24845E+14 610301

83 204 Main Foliation 5,75312E+14 4,24845E+14 6107144

69 30 Main Foliation 5,75312E+14 4,24845E+14 6079913

67 44 Main Foliation 5,75312E+14 4,24845E+13 6051531

26 20 Main Foliation 5,75314E+14 4,24845E+14 6173455

48 47 Main Foliation 5,75314E+14 4,24845E+13 6191539

89 34 Main Foliation 5,75315E+14 4,24845E+14 6162753

80 215 Main Foliation 5,75312E+13 4,24845E+14 5976513

85 215 Main Foliation 5,75311E+14 4,24845E+14 5962994

73 18 Main Foliation 5,75313E+14 4,24845E+14 6232236

71 24 Main Foliation 5,75311E+14 4,24845E+14 6037189

49 31 Main Foliation 5,75311E+14 4,24845E+14 6016999

81 31 Main Foliation 5,75311E+12 4,24844E+14 6203868

81 31 Main Foliation 5,75311E+14 4,24844E+14 6204172

90 24 Main Foliation 5,75311E+14 4,24844E+14 6241188

70 212 Main Foliation 5,75311E+14 4,24844E+14 6314428

88 39 Main Foliation 5,75311E+14 4,24844E+14 6266676

73 25 Main Foliation 5,75311E+14 4,24844E+13 6319171

86 218 Main Foliation 5,75311E+14 4,24844E+14 6277291

72 42 Main Foliation 5,75309E+14 4,24844E+13 6346382

71 198 Main Foliation 5,7531E+14 4,24844E+14 6375335

74 13 Main Foliation 5,7531E+14 4,24844E+13 6415396

63 358 Main Foliation 5,75306E+14 4,24844E+14 6205683

40 219 Main Foliation 5,75306E+13 4,24844E+14 7092865

83 33 Main Foliation 5,75306E+13 4,24844E+14 7122562

74 51 Main Foliation 5,75306E+13 4,24844E+14 6651627

61 61 Main Foliation 5,75306E+14 4,24844E+12 6687679

60 34 Main Foliation 5,75305E+14 4,24844E+14 6748511

45 54 Main Foliation 5,75305E+14 4,24844E+14 6784868

66 16 Main Foliation 5,75303E+14 4,24844E+12 6598363

49 354 Main Foliation 5,75303E+14 4,24844E+13 6628529

18 269 Main Foliation 5,75302E+14 4,24844E+14 664355

46 30 Main Foliation 5,75305E+14 4,24844E+14 657905

45 18 Main Foliation 5,75304E+14 4,24844E+14 6563882

41 35 Main Foliation 5,75304E+14 4,24844E+13 6601851

69 34 Main Foliation 5,75304E+14 4,24844E+14 6571725

64 359 Main Foliation 5,75305E+14 4,24844E+14 6616294

48 23 Main Foliation 5,75304E+14 4,24844E+14 6497356

57 29 Main Foliation 5,75306E+14 4,24844E+14 6501749

22 23 Main Foliation 5,75303E+14 4,24844E+14 670278

22 19 Main Foliation 5,75303E+14 4,24844E+14 6699965

62 15 Main Foliation 5,75302E+14 4,24844E+14 6849251

51 30 Main Foliation 5,75302E+14 4,24844E+14 6800707

77 25 Main Foliation 5,75302E+14 4,24844E+14 6759322

197

77 28 Main Foliation 5,75302E+14 4,24844E+14 6818652

84 217 Main Foliation 5,75302E+14 4,24844E+14 6729484

57 10 Main Foliation 5,75298E+14 4,24844E+14 6340251

40 347 Main Foliation 5,75298E+14 4,24844E+14 6369389

51 0 Main Foliation 5,75298E+14 4,24844E+14 6395351

54 7 Main Foliation 5,75299E+14 4,24844E+14 6283947

43 359 Main Foliation 5,75299E+14 4,24844E+14 6255237

63 16 Main Foliation 5,75299E+13 4,24844E+13 633973

48 345 Main Foliation 5,75299E+14 4,24844E+14 6382713

34 347 Main Foliation 5,75299E+14 4,24844E+14 6382601

58 18 Main Foliation 5,75297E+13 4,24844E+14 628979

64 32 Main Foliation 5,75297E+14 4,24844E+14 6304314

9 301 Stretching Lineation 5,75313E+14 4,24844E+14 6557539

1 322 Stretching Lineation 5,75313E+14 4,24845E+14 6414336

3 305 Stretching Lineation 5,75311E+13 4,24845E+13 5985928

6 118 Stretching Lineation 5,75312E+14 4,24845E+14 6107338

4 120 Stretching Lineation 5,75312E+14 4,24845E+14 6067215

4 117 Stretching Lineation 5,75313E+14 4,24845E+14 6240239

6 117 Stretching Lineation 5,75311E+14 4,24844E+14 6291584

12 142 Stretching Lineation 5,75309E+14 4,24844E+14 6324884

1 287 Stretching Lineation 5,75312E+13 4,24845E+14 6466518

