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 PREMISE 

Numerical computations play an increasingly significant role in modern petrography. The 

natural consequence of this approach is the dropping of only qualitative analyses in favor of 

more solid statistical-based ones. Indeed, while the experience of the petrographer still plays a 

huge role in the recognition of specific features in rocks, it can also lead to several 

misinterpretations driven by the subjectiveness of the operator. Nowadays a plethora of several 

computer-driven statistical analyses can be applied on rocks to reduce such underlying bias and 

objectively extract quantitative information from the samples. Moreover, computers 

performance overrun human capabilities by far when it comes to relatively easy but recursive 

tasks. Nevertheless, machine-driven analyses can be misleading and introduce other kinds of 

biases if not properly overseen by an expert operator. Therefore, petrologists experience is still 

fundamental when quantitatively extracted data needs to be interpreted and attributed to a 

specific petrogenetic process. In other words, computer science and petrographic/petrological 

skills should contribute complementarily to the assessment of rocks analysis.  

In this scenario, the aim of this work is to provide high-level statistical tools in the form of 

computer software to obtain more reliable quantitative petrographical data sets useful for more 

robust petrological modelling. More in particular, useful petrographical data sets that have to 

be taken into account are not only characterized by the mineralogical composition, but also by 

the fabric arrangement of constituent grains, in order to quantitatively unravel the specific 

petrogenetic evolution of natural rocks as well as stone artifacts. 

In this wider view, two new computer applications for both mineral recognition and structures 

analysis are presented. These tools take advantage of machine learning algorithms, a category 

of “smart” algorithms whose applications extend to several scientific and industrial fields. Their 

main strength is being able to learn from experience to solve a very specific task, becoming 

more and more efficient with every further use.  

The drawback of using computer software when processing the data is to not have the full 

control and knowledge of what is really happening behind the scenes. This, especially in the 

field of machine learning, can lead to critical mistakes. Therefore, one of the core goals of the 

software here presented is to provide user-friendly tools to evaluate the algorithms performance, 

to compare different algorithms’ results and even to stepwise build new machine learning 

models from scratch to best fit the user needs. In fact, when it comes to apply statistical analyses 
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to data, the goodness of obtained results is influenced by the user’s awareness almost as much 

as the degree of representativeness of said data. 
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 INTRODUCTION 

How many observations can be collected from rocks, how can numerical parameters be 

extracted from them, and which one are the most significant to describe the lithotype 

characteristics? A rock is canonically defined as an aggregation of one or more mineral species. 

Nevertheless, the shape and the distribution of such minerals, of voids and fractures (i.e., the 

textural and structural traits of the rock) also play an important role on the characteristics of the 

lithotype. This is because petrogenetic processes are mostly controlled by chemical-physical 

counterbalancing factors, such as deposition mechanisms vs. diagenesis for sedimentary rocks, 

emplacement or flow dynamics vs. crystal solidification velocity for plutonic and volcanic 

rocks, respectively, and deformation vs. recovery processes, P-T variations and fluids 

interactions for metamorphic rocks. Therefore, the answers to the former questions are 

complex, and generally they depend on the purpose of the study. For example, if we want to 

study the modal amounts of specific mineral species in rocks thin sections, mineralogical and 

chemical parameters need to be collected. However, if we need to tell the capability of a rock 

of being a good reservoir or to measure the anisotropy degree of lithotypes, then 

textural/structural (i.e., fabric) traits (e.g., spatial distribution, size and shape of all the rock-

forming grains) also play a central role.  

For what regards the techniques to extract parameters from rocks, these are also very variegate, 

and still depends on the task of the study. Optical and electronic microscope analysis, for 

example, are very common analysis that can be performed to identify minerals and micro-

structures in the sample. However, if we need to study the mechanical resistance of the whole 

rock, then stress tests are required. 

This last example introduces another factor that complicates even more the answer to the initial 

questions: the scale factor. We can, indeed, concentrate the analysis on tiny portions of a 

sample (i.e., micro-domains), studying the chemical reactions and the textural relationships that 

occur between adjacent mineral phases, but we can also consider an entire lithological complex 

as a unique object, characterized by large scale parameters (e.g., rheologic response to stress, 

thermic conductivity, density, porosity etc.).  

Approaches to study the data 

What is fascinating about the scale factor is that a correlation between the micro-scale and the 

macro-scale often occurs. For example, it happens frequently that the very same characteristics 
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(e.g., structures) visible within outcrops occur very similarly in micron-sized portions of a 

sample. This means that, once identified the laws that regulate the occurrence of such 

characteristics, they can be applied to study those characteristics at different scales (e.g., Barton 

et al., 1995). However, rocks are complex natural objects, and identifying such laws may not 

always be an easy task to accomplish. The main approaches that are used in science are the 

theoretical and the experimental approach. 

The theoretical approach requires great knowledge of the laws that govern the matter in solid, 

liquid and gas states. These include the laws of thermodynamics, rheology, fluid dynamics, 

crystallography, chemistry and many more. The aim of this approach is to recognize the 

variables that determine the occurrence of a given phenomenon and the relationships that link 

them. The complications with this approach arise when we realize that some variables may be 

unknown and/or the relationship between them is not immediately clear. Furthermore, given 

the complexity of the subject of study, some simplifications are required to find a theoretical 

law. On the other hand, if such law is successfully found, we consequently acquire a wider 

knowledge of the phenomenon, and we will likely be able to predict any other phenomenon of 

the same kind.     

With the experimental approach, instead, we try to identify the complex relations between two 

or more variables through lab experiments. The drawback here is that the experiments occur at 

very specific conditions, that do not always match the natural ones, including the scale factor. 

An experimental law may work well at similar conditions of the experiment but fail in different 

ones, leading to a more situational understanding of the phenomenon. On the other hand, it is a 

way quicker method to bind variables, and can somehow mend the lack of unknown variables 

with the use of fixed numeric values (constants). 

This work will be focused on the machine learning (ML) approach, a data analysis technique 

widely employed in several scientific and industrial fields (Jordan & Mitchell 2015). In this 

context, two new ML-oriented software will be introduced in Section 2 and Section 3, and 

different ML algorithms will be employed within the provided case studies.  

The machine learning approach 

A law that describes the relationships between input variables and output results can be deduced 

from hidden patterns in the data using ML. This technique differs from experimental approach 

because the raw collected data is fed to an algorithm pipeline, and the machine tries to 

automatically detect through several reiterations a statistic relation that links the variables. After 



10 

 

this process, a ML model is generated. The accuracy of models and their degree of overfitting 

can be evaluated through several statistics. These concepts are discussed in Section 1. 

Machine learning in petrography and petrology 

The machine learning approach has been widely experimented to support petrological and 

petrographic analysis. Among the most investigated data, bulk-rock chemistry is one of the 

most prolific, leading to the realization of several prediction models based on geochemical 

constraints, as demonstrated by several authors (e.g., Petrelli & Perugini 2016; Petrelli et al. 

2017; Han et al. 2019; Ren et al. 2019; Bolton et al. 2020; Itano et al. 2020; Schönig et al. 

2021). Indeed, the establishment of open-access and comprehensive global geochemical 

databases, such as GEOROC (https://georoc.eu/georoc/new-start.asp) and PetDB 

(https://search.earthchem.org/), provided a reliable support for big data analysis (Zhang & Zhou 

2017; Luo & Zhang 2018; Zhang & Zhou 2018; Ren et al. 2019), allowing, in turn, the 

development of very efficient ML models.  

More recently, optical thin section image analysis has been extensively boosted by machine 

learning and deep learning algorithms for both the identification of fabric and mineralogical 

information (e.g., Izadi et al., 2017; Pereira Borges & de Aguiar 2019; Rubo et al, 2019; Su et 

al., 2020; Koh et al., 2021; Visalli et al. 2021; Liu et al., 2022). Optical scans of rocks thin 

sections can sometimes be a complex type of input to process with ML, considering the efforts 

required to efficiently label large amounts of training data (Yu et al., 2023) and to standardize 

the input acquisition. Although efforts have been made towards the realization of databases of 

optical thin section images (e.g., Tarquini & Favalli 2010; Quinn et al. 2011), a unique, global 

and open-access archive of standardized and labeled optical microscope data is missing. New 

instrumentations such as ZEISS AxioScan® 7, that allows automatic digitalization of multiple 

rocks thin sections at time, could, however, greatly contribute to the development of such 

datasets in the coming years. 

X-ray elemental maps obtained from SEM-EDS and EPMA-WDS instrumentations are yet 

another type of input data that can significantly benefit from the application of ML algorithms 

(e.g., Lanari et al. 2014; Arganda-Carreras et al., 2017; Ortolano et al., 2018; Izawa et al., 

2020). Unlike punctual chemical analyses, the information is not scattered and prevents 

possible biases introduced by the choice of point locations. Also, unlike optical scans, X-ray 

maps are generated as numerical arrays and only then rendered as grayscale images. A 

drawback of this type of data is that the chemical information is not fully quantitative, as the 

https://georoc.eu/georoc/new-start.asp
https://search.earthchem.org/
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intensity value of a given element is mapped with a numerical value within pixels which are 

influenced by the mineralogy of the specific sample. Therefore, powerful tools have been 

developed to quantify X-ray maps, such as XMapTools (Lanari et al., 2014) and Q-XRMA 

(Ortolano et al. 2018). The acquisition of X-ray elemental maps and BSE maps is generally an 

efficient and relatively cheap process; however, an online structured database of labelled X-ray 

maps or BSE maps is again missing. Therefore, the current software dedicated to the automatic 

classification of X-ray maps are generally limited to the implementation of unsupervised or lazy 

supervised classifiers, trained on specific samples of data, through the definition of user-

selected training areas. While this approach can lead to very accurate results, functional to the 

classification tasks, it also inhibits the possibility to generate eager learning models, that, 

oppositely, try to abstract from training data a condensed representation of the features and the 

targets of the classification (Hendrickx & Van Den Bosch, 2005) – see Section 1, subchapter 

3.1 for further details. This approach leads to faster classifiers that effectively learn from the 

training data a generalized function that links the input data to the output classification. 

Moreover, the architecture of eager learners is also at the base of the creation of artificial neural 

networks and eventually of deep learning networks. Eager learners also become more functional 

than lazy ones with the increasing amount of training data (Section 1, subchapter 3.1) and are 

therefore oriented towards the analysis of big data. 

The aim of this work is to provide a new software solution for the analysis and automatic 

classification of rocks thin sections of both natural and artificial stone materials, that also 

includes eager ML algorithms within its classifiers. The software (X-Min Learn - see Section 

3) is designed to deal with EDS and WDS X-ray elemental maps as input, but also works fine 

with any type of multi-channel image data, including, for example, BSE maps. X-Min Learn 

elaborates the input data in a pixel-oriented fashion and permits to select different ML classifier 

to predict in few seconds the modal amounts of the recognized minerals. An output mineral 

map is obtained, together with a confidence map to monitor and evaluate the classifier’s 

performance.  

Moreover, instead of providing only pre-complied ML classifiers, X-Min Learn is designed to 

support the development of custom classifiers, within a user-friendly “developer’s toolkit”. 

Users can build and test new eager machine learning models and/or update existing ones, thanks 

to an interactive graphic interface. This, in turn, determines greater user awareness of the use 

of ML, since the models are built step by step, from the compilation of training and test datasets 

to the analysis of diagrams and graphics useful for evaluating the learning process. The whole 
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procedure is simplified to meet the needs of all users, even those not experienced in 

programming, who will not need to write any line of code. This also permits to generate highly 

specialized predictive models for any research needs. Other features include tools for the output 

refinement with morphological image processing algorithms, interactive data visualization, file 

conversions and more. 

However, mineral-chemical observations are not always sufficient to describe rocks. Very often 

fabric parameters also play a central role in the final properties of the lithotypes. In this view, 

in this Ph.D. project a newly developed ArcGIS® toolbox for the statistical analysis and 

projection of structural data is also presented: ArcStereoNet (see Section 2). This tool, which 

has been published during the Ph.D. timespan in Ortolano et al., 2021, allows the comparison 

of oriented data from the outcrop scale to the thin section scale by applying the commonly used 

statistical methods for cluster and girdle analysis directly on stereographic projections and rose 

diagrams, while also taking full advantage of all potential GIS mapping processes. In addition 

to this, a completely new algorithm for cluster analysis and mean vector extraction (Mean 

Extractor from Azimuthal Data) is included in the toolbox, thereby allowing a more reliable 

interpretation of any possible structural data distribution. 

Oriented data collected from outcrops can be easily imported in ArcGIS® and processed with 

ArcStereoNet, that shares the same interface look and feel of default ArcGIS® tools. While 

oriented mineral data cannot be extracted directly from thin sections images with ArcStereoNet, 

the toolbox is extremely compatible with any kind of ArcGIS® shapefile, that can be previously 

populated with such data with tools like Micro-Fabric Analyzer (Visalli et al., 2021). In this 

view, ArcStereoNet can be utilized as a final instrument to visualize and analyze oriented data 

from the macro-scale to the micro-scale, without ever leaving the ArcGIS® environment, 

expanding the potential of other pioneering tools such as GIS-stereoplot (Knox-Robinson & 

Gardoll, 1998), Export Toolbox (Maxelon, 2004) and OATools (Kociánová & Melichar, 2016). 
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 SECTION 1  

–  

DEVELOPMENT OF SUPERVISED MACHINE LEARNING MODELS 

Machine learning (ML) principal features will be covered in this section. The basic ML 

terminology, that is used throughout the thesis, is here defined. Different types of ML 

algorithms and the advantages and disadvantages in using them are discussed in chapter 2. In 

chapter 3 the mathematical and computational steps required for the creation of a multi-class 

classification model are described. This information is valuable for fully understanding the 

working principles of the “developer’s toolkit” provided in the software X-Min Learn, 

presented in Section 3. The most common statistical tools useful to evaluate ML models’ 

performance will also be here described from a mathematical point of view. This is again useful 

for better understanding the software, since such tools are implemented in X-Min Learn as well. 

An overview of the most useful Python libraries used in this work will be provided in chapter 

4. Eventually, the geological applications of ML explored in this work, that are discussed in 

detail in the next sections, will be introduced.  
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1 The power of iterations 

The term “machine learning” (ML) was firstly used by Arthur (1959) when he developed a 

computer game for playing checkers. One year before, Frank Rosenblatt implemented the 

perceptron (Rosenblatt, 1958), an effort of artificially reproducing the models of human brain 

cells interaction (Figure S1.1). The perceptron followed in part the Hebbian theory of neuron 

excitement during learning processes (Hebb, 1949).  

 

Figure S1.1 – (a) Frank Rosenblatt working at the Mark I Perceptron machine he designed; (b) schematic 

representation of a human neuron (modified after Stangor & Walinga, 2014) and (c) its conceptualization in the 

Rosenblatt’s perceptron, where the weighted (w) sum of inputs (x) yields a prediction (y) based on a threshold 

value (activation function). 

Although showing promising results, it was eventually clear that perceptrons were not able to 

recognize many patterns, including non-linearly separable ones (Figure S1.2). The main issue 

was related to the architecture of the perceptron, that was initially designed to work in a single 

layer. The use of multi-layer perceptrons (MLP) significantly increased the efficiency of this 

pioneer ML approach (Figure S1.3). Further improvements increased even more the strength 

of machine learning, such as the introduction the backpropagation algorithm (Rumelhart et 

al., 1986), that allowed ML models to more efficiently self-correct, starting from their own 

prediction errors. 
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Figure S1.2 – The “XOR problem”, an example of a non-linearly separable pattern. It is indeed impossible to 

separate the two classes with a single line. 

The beginning of the first decade of the XXI century was a turning point in the history of ML, 

thanks to Big Data, reduced cost of parallel computing and memory and development of new 

algorithms of deep learning (Fradkov, 2020). Previously, the main ML issues were related to a 

not strong enough computational power of CPUs and a not large enough storage space. The 

absence of large online data repositories, nowadays available and constantly widening, also put 

the brakes on the potentiality of ML. This is mainly due to eager ML algorithms architecture, 

that is computationally expensive by design (Thompson et al., 2020). The flourishing success 

recently achieved by machine learning can indeed be linked to several technological 

advancements that granted bigger datasets and faster implementations of the algorithms. For 

example, the use of Graphical Processing Units (GPUs) as a faster substitute of ordinary CPUs 

heavily concurred to the boosting of machine learning. To better understand this concept, we 

need to take a step back and discuss about the differences between human and computer 

approaches to solve a given task.  
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Figure S1.3 – Comparison between a single layer perceptron and a multi-layer perceptron (MLP). In a MLP 

architecture we add more layers (hidden layers) between the input layer and the output layer in order to solve non-

linear patterns. The number of nodes per hidden layer is arbitrary. 

The logical processes used by a human being are not the same as those that a programmer 

implements into a computer code to train a machine to solve a specific task. Take as an example 

the task of solving a sudoku puzzle. The goal of sudoku is to fill the given grid with numbers 

from 1 to 9 without repeating the same number along the rows and the columns and within the 

same main square. Human way to solve this puzzle includes several strategies, such as checking 

adjacent numbers, insert a value by elimination, try to insert the same number in all nine main 

squares and so on. A programmer, however, would probably avoid to model any of the human 

schemes into a computer script, because it would result into a complex and counterproductive 

strategy. A computer, indeed, can find the solution of a sudoku puzzle within seconds by using 

a recursive approach. This happens because computers are very performant in solving simple 

yet recursive tasks, that may involve millions of reiterations.  

As in many other computer algorithms, iterations play a central and inevitable role in any 

machine learning algorithm as well. Eager ML models can self-refine to the point of learning a 

law that well describes input data only after multiple reiterations over said data (see subchapter 

3.1). This is the inevitable path to cross to implement any machine learning algorithm. Some of 
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the ML concept that will be introduced further on in this section will be somehow linked to this 

concept. The only limit to the power of iterations is the computational capacity of the machine. 

Hence, given a well populated dataset, the bottleneck of machine learning is computer 

performance. 

2 Types of machine learning  

ML algorithms are canonically grouped into three different categories: Supervised Learning, 

Unsupervised Learning and Reinforced Learning (Table S1.1). In the next subchapters they 

will be defined, their advantages and disadvantages will be discussed, and some examples of 

their possible applications to geodata will be provided.  These concepts are broad and general 

and can be further explored by consulting several ML books such as Rojas, 1996; Duda et al., 

2000; Smola & Vishwanathan, 2008; Hastie et al., 2009; Alpaydin, 2020. 

Supervised  

Learning 

Unsupervised 

Learning 

Reinforced  

Learning 

Input 

Labeled data 

Input 

Unlabeled data 

Input 

States and Actions 

Strategy 

Minimize prediction 

errors based on 

ground truth 

Strategy 

Identify similarities 

within the data and 

group it accordingly 

Strategy 

Learn in a reward-

punishment 

environment 

Output 

Prediction 

Output 

Clustering 

Output 

Action 

 

Table S1.1 – Simplified scheme listing the main features of Supervised, Unsupervised and Reinforced Learning. 

2.1 Supervised Learning  

The aim of Supervised Learning is to develop a model able to solve a specific task based on its 

experience. The task can both be a prediction or a categorization of unknown data. The 

experience is extracted from practical examples of tasks of the same kind already unraveled by 

a human. These practical examples are commonly defined as ground truth data. The term 

“Supervised” is indeed related to the active contribution of human decisions in transferring the 

know-how to the machine (Figure S1.4). 

In a supervised environment the role of the ground truth dataset is central, and most of the times 

collecting and sorting the data take up most of the operator’s time during the development of a 

new model. The sorting operation consists of ordering the ground truth data by defining its 

features and its labels. A feature is a characteristic of the data. For example, the amount of 
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magnesium and iron can both be considered as features of a rock sample. The label is the goal 

of the task, the desired output that must be inferred from the features. In the example, the label 

could be the name of the rock. The immediate question that arises from this example is: are 

magnesium and iron amounts sufficient to determine the rock name? In more technical terms 

this is equal to ask: does the ground truth dataset have enough features for the model to predict 

the correct labels and solve the task accurately?  

 

Figure S1.4 – Schematic flowchart of a generic supervised learning pipeline. The machine extracts knowledge 

from the ground truth data provided by the operator and from that it develops autonomously a model able to 

predicts new unknown data of the same kind. 

There are two ways to answer this question: by trials or by knowledge. If the operator is an 

expert in the task’s domain, probably already knows how many and which features the model 

would likely require to achieve a consistent result. For example, a geologist would probably 

argue that magnesium and iron contents would never be sufficient to name a rock. A non-expert 

operator, instead, would likely spend more time in finding the right features and would not have 

a strong evaluation confidence on the model’s output. The knowledge of the task’s domain 

plays a central role in the ground truth dataset construction and, in general, it grants a more 

critical approach during the consequent learning operations. This is a great reason for geologists 

to take an active part in the development of Supervised ML models applied to geological data. 

Supervised learning algorithms can be implemented to solve two main categories of tasks: 

classifications and regressions. The difference between the two is mainly related to the type 

of requested labels. In a classification task the labels play the role of categories, which can be 

defined as discrete labels. For example, a machine that is trained to distinguish volcanic rock 
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specimens from plutonic ones performs a binary classification task. The classes “volcanic” and 

“plutonic” are respectively coded by the machine as class “0” and class “1”, but, since they 

represent discrete labels, a hypothetical “class 0.5” (i.e., a volcanic-plutonic specimen) is not 

contemplated by the model. In other words, the machine will never predict classes that are not 

included in the ground truth dataset. Instead, in a regression task the labels are continuous, 

therefore the model can infer values that are not included in the ground truth data. For example, 

a hypothetical model that has been trained to predict volcanic tremor amplitudes starting from 

the chemical composition of the emitted gases, performs a regression task. The labels (i.e., the 

tremor values) are continuous, and therefore the model must have the freedom to predict values 

that are not precisely provided in the ground truth dataset.  

In summary, with supervised learning the machine is fed with examples of human solved tasks. 

This information is stored by the machine and analyzed to identify a law that links all the 

features in such a way that the desired labels are obtained as output (see Figure S1.4). Hence, 

the machine does not learn the human logic processes behind the resolution of the task, but 

instead it develops its own resolution formula that minimizes the errors of the output prediction. 

The main advantage of this approach is that the operator can check during the training whether 

the machine is minimizing enough the errors or not. In other words, the evaluation of the model 

is easier, because the required output is already known. On the other hand, collecting and 

labeling the ground truth data are always long and tedious processes and some issues may arise 

(e.g., imbalanced datasets – see Section 3, subchapter 4.2.2 for more details). The overall 

learning process may also take some time, because several learning parameters needs to be 

tweaked until the best possible result is obtained (more about this in subchapters 3.8 and 3.9).  

2.2 Unsupervised Learning 

As the name suggests, the Unsupervised Learning is not strictly bound to the human knowledge 

of the task. Hence, the main difference with the Supervised Learning is that a ground truth 

dataset is not required to run the algorithm – i.e., the input dataset does not require labels. The 

aim of the unsupervised approach is, indeed, to statistically identify differences and similarities 

within the features of a dataset and then to group the data accordingly.  

In more technical terms, with the Unsupervised Learning the computer analyzes unlabeled data 

to recognize hidden patterns useful to perform a clustering operation on such data. For 

example, if we want to recognize how many different mineral species occur in a thin section, 
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then we are looking for a clustering algorithm. With this approach, however, the machine will 

just try to recognize different types of minerals, without labeling them.  

The Unsupervised Learning can also be used to discover the relations between certain features 

in the provided dataset (association). This is particularly used today for web advertisements, 

that can be customized for any user based on, for example, their research history or their 

interactions with social media. 

The main advantage of using Unsupervised Learning is that it does not require examples of 

already solved tasks, thus it is quicker to build the input dataset. It is also particularly useful to 

start exploring unknown data, since it has a strong statistical background and can be applied to 

fetch unknown patterns without being biased by human subjectiveness. The biggest drawback 

of Unsupervised Learning, however, is that it does not provide precise information regarding 

data sorting. Therefore, the output needs to be interpreted and manually labeled by the operator. 

2.3 Reinforced Learning 

Reinforced Learning gathers several algorithms that are based on a reward-punishment learning 

environment. Very similarly to animal training strategies, in Reinforced Learning the machine 

is rewarded with positive feedback when it solves the task and with negative feedback when it 

fails. The aim of this approach is to train a machine to develop a strategy to maximize the 

number of positive feedbacks, which means to complete the task with the best possible result. 

Maze-solver algorithms, videogames Artificial Intelligence (AI) and self-driving cars are all 

examples of Reinforced Learning. Due to its nature, this type of ML approach is mostly oriented 

to AI projects, and examples of Reinforced Learning applied to geological tasks are not 

provided in this work. This, however, does not mean that no efforts are made to apply these 

algorithms to geodata (see for example the interesting work of Nasir & Durlofsky, 2022).  

3 Building a supervised model 

As explained in the previous chapter, Supervised Learning allow the machine to extract from 

human-solved examples (ground truth data) a “strategy” to solve the required task. In this 

chapter the learning process will be described in detail, introducing several ML specific terms 

that will be used throughout the thesis. The reason to focus on supervised models’ development 

is due to one of the main purposes of this work, and that is to introduce, within the software X-

Min Learn, a ML developer’s toolkit. This toolkit includes user-friendly tools to build from 

scratch new supervised ML models adapted to the specific needs of the user (see Section 3, 
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chapter 4). Albeit being user-friendly, these tools still require minimal conceptual background 

preparation on which “ingredients” a supervised ML model requires and on how to evaluate its 

performance. A detailed description of the fundamental steps required to build a supervised 

learning model is therefore provided in the following subchapters and schematized in Figure 

S1.5. 

 

Figure S1.5 – Flowchart of a supervised learning model development. A detailed description of each step is 

provided in the corresponding subchapters. Firstly, a ground truth dataset needs to be populated with known (i.e., 

labeled) data. After having split the dataset into train, validation and test subsets, and having applied several data 

pre-processing operations, an iterative learning session is launched, where several parameters are manually (i.e., 

hyperparameters) and automatically tuned to optimize the performance of the model. Once a working model is 

built, it can predict new unknown (i.e., unlabeled) data. 

3.1 Lazy vs. eager learning 

Not all Supervised Learning algorithms use the same approach to extract information from 

ground truth data. A lazy learner (or instance-based learner) stores the ground truth data in 

memory and delays the creation of the model, if it builds any, until new unlabeled data needs 

to be evaluated. Lazy learners do not learn a law or a function that describes the relations 

between the features of the ground truth dataset. Instead, they attempt to memorize the 

information and use it to predict new data by comparison (Hendrickx & Van Den Bosch, 2005). 

This means that the ground truth dataset itself can be considered the model of a lazy learner. 

As a consequence, a lazy learner will run rapidly during the learning operations (it just stores 

data in memory) and will be slower during predictions of new data (Rafatirad & Heidari, 2019). 

An example of a lazy learner is the K-Nearest Neighbors (k-NN – Cover & Hart, 1967), that 

is discussed in more details in Section 3, subchapter 5.2. 
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An eager learner, instead, processes the ground truth data immediately, trying to extract a 

generalized function that describes the relations between the features, hence building a model. 

Therefore, eager learners will perform slower during the learning operations because they 

require multiple iterations to identify such function, while being very fast during predictions, 

since they only need to apply the model to new data. An example of an eager learner is the 

Multinomial Logistic Regression (a.k.a. Softmax regression – see subchapter 3.7.1), that was 

implemented within a completely customizable ML model learner workflow in the software X-

Min Learn (see Section 3, subchapter 4.2). 

Lazy learners tend to be more reliable with smaller datasets, as they require to store the ground 

truth data in memory. This means that the bigger is the dataset, the longer will be the prediction 

time, as more comparisons needs to be performed. Eager learners, instead, delete the ground 

truth data from the memory as soon as the model is constructed and are therefore linearly more 

effective with the increasing of the dataset size. On the other hand, eager learners could perform 

slightly worse than lazy ones in terms of accuracy (Rafatirad & Heidari, 2019), especially if 

they have been trained using a small ground truth dataset (Table S1.2). 

Lazy learner Eager learner 

Saves ground truth data in memory Builds a model from ground truth data 

Predicts new data by comparison Predicts new data through the model 

Fast during training Slow during training 

Slow during inference Fast during inference 

Best with small datasets Best with large datasets 

 

Table S1.2 – Principal features of lazy and eager learners. 

In the next subchapters the basic working principles of an eager supervised learner will be 

described in detail, to identify the steps that a machine performs to extract the “knowledge” 

from the data to build its own prediction strategy (model). An entire learning procedure will be 

stepwise analyzed, beginning with the structuring of the ground truth dataset and ending with 

the discussion of some of the most used statistical methods to evaluate the output model.  

3.2 Structuring the ground truth dataset  

As already indicated, the machine extracts knowledge from the examples provided by the 

ground truth dataset and uses it to automatically solve a specific task. To make this possible, 

the ground truth examples must be readable for a computer.  As will be discussed further in 
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this chapter, ML uses mathematical equations to solve the task, hence the information contained 

in the data needs to be translated into an appropriate numeric format. This operation can be both 

immediate or quite challenging, since it mainly depends on the nature of the ground truth data 

and, more generally, of the task itself.  

For example, if we would like to train a model able to name plutonic rocks based on the modal 

amount of quartz, alkali-feldspar, plagioclase, feldspathoid and mafic minerals, the ground 

truth dataset would be relatively easy to populate, since the features are already provided in a 

numeric format – i.e., the minerals amounts are expressed as a percentage (see Table S1.3). 

After an efficient training session based on the raw input ground truth data, the algorithm should 

be able to build a model whose predictions would likely converge with the correct fields of the 

well-known QAPF diagram (Le Maitre et al., 2005). 

Quartz 
wt% 

Alkali-
feldspar wt% 

Plagioclase 
wt% 

Feldspathoid 
wt% 

Mafic 
mineral wt% 

Sample name 

23 17 49 0 11 Granodiorite 

14 42 19 0 25 Qtz-syenite 

0 0 15 20 65 Foid gabbro 

0 0 5 60 35 Foidolite 

75 15 5 0 5 Qtz-granitoid 

30 25 35 0 10 Monzo-granite 

12 27 40 0 21 Qtz-monzonite 

 

Table S1.3 – Example of a ground truth dataset for plutonic rocks classification. The last column holds the 
labels while the others contain the features. 

If, instead, we would like to train the same model based on thin section images of plutonic rocks 

samples, the complexity of the task would raise remarkably. The ground truth dataset this time 

is populated by images, that are not immediately translatable to numeric values useful to 

accomplish the classification task. Although images are made of pixels that a computer reads 

as numeric values, such values are not sufficient to determine the name of the plutonic rock 

without any prior pre-processing. Moreover, the features to labels ratio is 1, meaning that with 

a single information (the image) the model would have to recognize the rock name (the label): 

not a very realistic prospect. Therefore, in a machine learning approach that involves images, 

generally it is firstly required to perform several pre-processing operations on the raw input to 

extract a consistent number of numerical features. These operations generally include image 
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slicing and convolutions. Convolutions mainly consist in transforming an image by applying a 

convolution matrix of numeric values (kernel) over each pixel and its local neighbors across 

the entire image. The outputs of several convolutions are feature maps whose pixels’ values 

can be used by a machine learning model to perform the required task. An entire category of 

artificial neural networks implements this approach when dealing with input image data and 

they are hence referred to as Convolutional Neural Networks (CNN). These types of networks 

have been indeed intensively used during the last years for various tasks of mineral and rock 

recognition from thin section images (e.g., Su et al., 2020; Koh et al., 2021; Liu et al., 2022).  

Once the features have been extracted, refined, and properly ordered, the correct labels need to 

be assigned to each ground truth instance. In the previous example (i.e., plutonic rocks’ 

classification task), the label would simply be the name of the rock. A ground truth dataset can 

be conceptualized as a simple spreadsheet or a table, where each row represents an example 

(instance) and each column represents a specific feature, with the last column holding the 

correct label (see Table S1.3). However, it is worth to say that any number of labels per instance 

is allowed, i.e., any number of outputs per example.     

3.3 Train, validation and test sets 

Once the ground truth dataset is populated, the first operation that needs to be performed is to 

split the dataset into two or three subsets: the train set, the validation set (optionally) and the 

test set. The train set is the actual dataset from which the machine learns and develops a model, 

while the test set is only used to perform an unbiased evaluation of the goodness of the model. 

The validation set is useful in many learning processes when the fine-tuning of several ML 

parameters is required.  

The appropriate splitting ratio can vary based on the task and the input data, however, generally 

the train set is the bigger set, followed by test and validation sets. A common ratio, for example, 

is train 60%, test 20%, validation 20%. 

It is common practice to shuffle (i.e., to randomly rearrange) the ground truth dataset before 

splitting it, since it can often be unintentionally populated following a specific order (e.g., sorted 

by one feature or label). This procedure is therefore useful to better distribute the examples of 

the ground truth dataset throughout the subsets. 
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3.4 Pre-processing operations 

As already discussed in chapter 2.1, the “nature” of the label depends on the required task. In a 

regression task the outputs are characterized by continuous numeric values, therefore the label 

is generally fed into the machine as it is, without the necessity of any machine-friendly 

translation. In a classification task, instead, most of the times the label is a category, hence it is 

characterized by one or multiple words (e.g., “granite”, “diorite”, “monzo-syenite”). A simple 

translation here consists of assigning to each different label a unique, progressive, numerical 

ID, that starts canonically from 0. This operation is commonly referred to as label encoding.  

Another very important data pre-processing operation to be performed on the train set is the 

feature scaling. ML algorithms tend to be biased towards numerically larger values, therefore 

if the dataset includes features with different units of measurement or different scales, the entire 

learning process can be compromised. There are two very common techniques to scale the 

features: the normalization and the standardization. The first, also known as min-max scaling, 

scales the data to the range [0, 1] by solving the following equation:  

𝑥𝑗
′ = 

𝑥𝑗 −min(𝑗)

max(𝑗) − min(𝑗)
 

( 1 ) 

where 𝑥𝑗
′ is the normalized example in reference to the j-th feature and 𝑥𝑗 is the original, not 

normalized value. This technique however is not ideal when there are several outliers in the 

dataset. In such scenario, the standardization, also known as Z-score normalization, is a more 

suitable option, because it scales the j-th feature by subtracting its mean 𝜇𝑗 from each instance 

𝑥𝑗 and then dividing by its standard deviation 𝜎𝑗: 

𝑥𝑗
′ = 

𝑥𝑗 − 𝜇𝑗

𝜎𝑗
 

( 2 ) 

The standardization ensures the data to be re-projected into a new coordinates system where 

all the features have zero mean and unit standard deviation. 

3.5 Model and parameters 

In this subchapter we will begin to dive into the mathematical concepts applied during the 

learning process of an eager supervised learner. In the simplest scenario (i.e., one feature and 
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one label) the model predictive function can be expressed as a univariate linear regression 

model, where the predicted output is obtained by solving the simple linear equation: 

ℎ𝜗(𝑥) =  𝜗0 + 𝜗1𝑥1  

( 3 ) 

Here θ0 and θ1 are the model parameters (or weights) and x1 is the only feature. While x1 is 

provided by the train set and hence plays the role of a constant value for each instance of the 

set, the weights need to be adjusted by the machine in order to solve the equation and predict 

the correct output. The true output is of course stored in the train set as the label, and we can 

evaluate the performance of the model by comparing it with the predicted output.  

If this equation is extended to a multidimensional problem (i.e., with more than one feature), 

the predictive function is expressed as a multivariate linear regression model: 

ℎ𝜗(𝑥) =  𝜗0 + 𝜗1𝑥1 +⋯+ 𝜗𝑛𝑥𝑛  

( 4 ) 

or 

ℎ𝜗(𝑥) =  ∑(𝜗𝑖𝑥𝑖) + 

𝑛

𝑖=1

𝜗0 

( 5 ) 

Here the linear equation is extended to include all the n features together with their respective 

weight parameter. The intercept (θ0) is the only parameter that is not linked to a specific feature 

and in machine learning it is referred to as the bias parameter. Like the intercept of the line 

equation, the bias allows shifting operations to the model function in the multidimensional 

space.  

Now the question that naturally arises is: how does the machine find the best weights for the 

model? 

3.6 Optimization 

Optimization algorithms are the core behind the learning process of any machine learning 

model. Optimization consists, in general, of a mathematical approach aimed at maximizing or 

minimizing the output of a given function, by reiteratively and systematically varying some 
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input elements. In the previous example, the input elements that vary in each epoch (i.e., in 

each iteration) are the weights (θi) and the bias (θ0) parameters.  

During the first epoch the model parameters are initialized randomly, but from the second epoch 

onwards they will be adjusted automatically by the machine in order to obtain a better and better 

prediction. This adjustment needs to be somehow related to the prediction errors made by the 

model in the precedent epoch. Hence, a function that computes those errors after each iteration 

is required. In ML such function is defined loss function (𝓛).   

In a simple regression scenario, like the one described in subchapter 3.5, one of the most 

commonly used loss function is the Mean Squared Error (MSE) function or L2 loss. 

ℒ = 𝑀𝑆𝐸 = 
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑁

𝑖

 

( 6 ) 

Here, the average squared prediction error over the N-sized train set is obtained by subtracting 

the value of the prediction ŷi to the true output yi for each example instance i. The predicted 

output (ŷi) is the output of the model function (i.e., the linear regressor), therefore the loss 

function can be written as: 

ℒ(𝜗) = 𝑀𝑆𝐸 =  
1

𝑁
∑(ℎ𝜗(𝑥𝑖) − 𝑦𝑖)

2

𝑁

𝑖

 

( 7 ) 

Another similar and well-known loss function for regression tasks is the Mean Absolute Error 

(MAE) function or L1 loss, that computes the average absolute (instead of squared) prediction 

error. In general, any kind of function that outputs a measure for the prediction error is suitable 

as a loss function. In practice, it is preferrable that the chosen loss function is differentiable. 

The following step is to use the loss function result to update the model parameters, thus 

obtaining a (hopefully) better prediction in the subsequent epoch. This is performed by an 

optimizer function. A common optimizer function is the gradient descent algorithm. 

Calculating the gradient (∇) of the loss function equals to find its tangent in the point linked to 

the current θ values, by calculating the partial derivatives with respect to θ.  
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∇𝜗ℒ𝜗 = 
𝜕ℒ𝜗
𝜕𝜗

 

( 8 ) 

The gradient descent’s aim is to find the minimum of the loss function with a recursive 

approach, by updating each θj parameter after every epoch (ε) (see Figure S1.6). This is 

accomplished by multiplying the gradient to the learning rate (η), an hyperparameter (i.e., a 

special parameter that controls the learning process, see subchapter 3.9) chosen by the operator.  

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 −  𝜂 ∙
𝜕ℒ𝜗𝑗
𝜕𝜗𝑗

 

( 9 ) 

The learning rate determines the size of the step to be taken towards the optimization of the 

weights at each epoch. In subchapter 3.9.2 the evaluation of the efficiency of the chosen 

learning rate is discussed. 

In theory, the gradient descent algorithm should run until convergence. The convergence would 

indicate that the algorithm was able to find the (local) minimum of the loss function, whose 

tangent is equal to 0 (see Figure S1.6), and therefore: 

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 −  𝜂 ∙ 0 

( 10 ) 

hence 

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 

( 11 ) 

In practice the operator chooses a fixed number of epochs (or iterations) after which the gradient 

descent algorithm interrupts the calculus routine. Thus, the number of epochs is another 

hyperparameter. 

The gradient descent is often implemented in simple ML models because it is easy to compute 

and always converges. However, it can be slow or easily get stuck in local minima or saddle 

points, especially with complex models. Therefore, other optimizers can also be implemented, 

such as Adam, AdaGrad etc. (see Ruder, 2016 for further details). The vanilla gradient descent 

can also be boosted by the “momentum”, a hyperparameter that helps in avoiding local minima 

and speeds up the convergence (see subchapter 3.9.3). 
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Figure S1.6 – Geometric representations of the gradient descent algorithm (GDA) minimizing the loss function. 

In (a) a single θ weight is considered. If the loss value at epoch ε-1 was A, then the gradient (i.e., the angular 

coefficient of the tangent) has a negative sign; therefore, in epoch ε the GDA takes a positive step towards the 

optimization of θ (confront the formula provided, where η is the learning rate and is always a positive number). 

The step size is determined by η. Instead, if the loss value at epoch ε-1 was B, then the gradient has a positive sign 

and in epoch ε the GDA takes a negative step. At the minimum of the loss function the gradient is 0, which means 

that θ has reached its optimum. In (b) two weights are considered, just to show how the complexity of the loss 

function morphology raises with the number of model parameters. 

3.7 Model and optimization in a binary classification task  

In a classification scenario the expected output y is a discrete value (see subchapter 0). 

However, the output of the regressor model is in the interval [-∞, ∞], therefore it is not feasible 

for a classifier. Consequently, the model function (hϑ(x)) must be adjusted in order to output a 

probability score over the classes. In a binary classification scenario (e.g., is a fault active or 

inactive), this is accomplished by switching from the linear regression function to the logistic 

regression function (σ), a non-linear function characterized by a sigmoid shape (see Figure 

S1.7).  

ℎ𝜗(𝑥) =  𝜎(𝑧) =  
1

1 + 𝑒−𝑧
 

( 12 ) 

Here z indicates the matrix product between the vector of the weights (θ) and the vector of the 

inputs (x), as previously seen in the linear regression model: 

𝑧 =  𝜗𝑇𝑥 = 𝜗0 + 𝜗1𝑥1 +⋯+ 𝜗𝑛𝑥𝑛  

( 13 ) 

hence 
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ℎ𝜗(𝑥) =  
1

1 + 𝑒−𝜗
𝑇𝑥

 

( 14 ) 

Therefore, the linear regression output is simply fed to the logistic function. In ML this function 

is also referred to as activation function. 

 

Figure S1.7 – The logistic function. The red dot (σ(z) = 0.5) is the inflection point of the function. 

Since the output of the logistic function covers the range [0, 1] (see Figure S1.7), in a binary 

classification task the output of the function σ(z) can be considered the estimated probability �̂� 

that the input sample (given its features x and weights θ) is part of the positive class (y = 1).  

ℎ𝜗(𝑥) =  𝜎(𝑧) =  �̂�(𝑦 = 1 |𝑥, 𝜗) 

( 15 ) 

At the same time, the estimated probability that the sample is part of the negative class (y = 0) 

is:  
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1 −  ℎ𝜗(𝑥) =  1 −  𝜎(𝑧) =  𝜎(−𝑧) =  �̂�(𝑦 = 0|𝑥, 𝜗) 

( 16 ) 

In practice, the output of the logistic function can be used to predict which class the input 

belongs to, using the score 0.5 (i.e., the inflection point of the sigmoid – see Figure S1.7) as a 

threshold or a decision boundary. 

�̂� = {
0, ℎ𝜗(𝑥) = 𝜎(𝑧) < 0.5 ⟺ 𝑧 < 0

1, ℎ𝜗(𝑥) = 𝜎(𝑧) ≥ 0.5 ⟺ 𝑧 ≥ 0
 

( 17 ) 

As for the regressor, the next ingredient for a classifier is the loss function, to calculate the 

differences between the expected output and predicted one. The MSE loss is not ideal to 

evaluate the errors of the model, since, as already stated, we are dealing with probability scores. 

A very common loss function for binary classification tasks that implements the logistic 

regression is the binary cross-entropy (BCE) loss.  

ℒ(ℎ𝜗(𝑥), 𝑦) =  {
− log(ℎ𝜗(𝑥)) , 𝑦 = 1

− log(1 − ℎ𝜗(𝑥)) , 𝑦 = 0
 

( 18 ) 

This function is correlated to the concept of the Shannon entropy, as introduced by Shannon, 

1948. The binary cross-entropy loss increases as the predicted probability diverges from the 

true label (Figure S1.8). In practice, considering the N-sized train set, the binary cross-entropy 

loss is computed as: 

ℒ(𝜗) = 𝐵𝐶𝐸 =  −
1

𝑁
∑[ 𝑦𝑖 log(ℎ𝜗(𝑥𝑖))⏟        

𝑦𝑖=1

+ (1 − 𝑦𝑖) log(1 − ℎ𝜗(𝑥𝑖))⏟                
𝑦𝑖=0

]

𝑁

𝑖

 

( 19 ) 

This last is a convenient way to express the BCE loss, since, depending on the value of the 

expected output yi (that can only be 0 or 1 in a binary classification) just one portion of the 

equation will be activated, as indicated above. Another useful characteristic of this loss function 

is that it is not only differentiable but also convex. A convex function is more suitable for the 

gradient descent algorithm to find the global minimum, rather than a local one. The formula 

for the gradient descent algorithm is the same one introduced for the regression task (see 

subchapter 3.6). 
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Figure S1.8 – Different cross entropy values, depending on the degree of error of the prediction. A low cross-

entropy is obtained when the predicted class corresponds to the true class and the prediction has a high probability 

(i.e., close to 1). A high cross-entropy is instead obtained when the predicted class does not correspond to the true 

class and the prediction has a high probability. 

Once the loss function has been minimized with the optimizer, and therefore the best model 

parameters (θ) have been unraveled, the logistic function can be applied to the data and, 

consequently, each input is assigned to the positive (σ(z) ≥ 0.5) or the negative (σ(z) < 0.5) 

class. 

3.7.1 Extension to the multiclass case 

The logistic function can be extended to the multiclass case, where the number of required 

classes (k) is major than 2. One possible approach is to implement multiple binary classifiers 

in a one-vs-all (i.e., one class becomes the positive class, and all the others are handled as the 

negative one) or a one-vs-one (i.e., every class against each other) fashion. The final prediction 

is then obtained by evaluating the contribution of each binary classifier. However, the most 

popular strategy is to generalize the logistic function to multiple dimensions. This multi-class 

logistic regression (a.k.a. softmax function, firstly introduced in ML by Bridle, 1989 and 

Bridle, 1990) is nowadays applied in most neural networks that solve classification tasks with 

more than two classes.  

One very convenient feature of softmax is that, unlike one-vs-all and one-vs-one strategies, it 

outputs a probability distribution across all K classes, so that their sum is always equal to one. 

The model will then simply output the class with the higher probability value. This is 

mathematically achieved by computing the softmax function as follows: 
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𝜎(𝑧)𝜅 = 
𝑒𝑧𝜅

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0

 

( 20 ) 

The form of this equation is very similar to the logistic regression one, with some minor 

adjustments to achieve the multi-class probability distribution. In particular, 𝑧 is a column 

vector that represents the outputs of K linear regressors, one for each κ class. The term 𝑒𝑧𝜅 is, 

therefore, the sigmoid activation of the regressor’s output for the κ-th class; to compute the 

probability of the input to be part of that κ class, 𝑒𝑧𝜅 is divided by the sum of the activations of 

the regressors’ outputs for all K classes. K-1 and i=0 are specified in the sum because, 

canonically, the classes are labelled starting from index 0 (see subchapter 3.4). The softmax 

algorithm can also be expressed as a function of the model parameters (θ) and the input features 

(x) as follows: 

ℎ𝜗
(𝜅)
(𝑥) =

𝑒𝜗
(𝜅)𝑇𝑥

∑ 𝑒𝜗
(𝑖)𝑇𝑥𝐾−1

𝑖=0

 

( 21 ) 

To better understand how the softmax classifier works, we can take as an example a 

classification task with K=3, such as κ0 = ‘plagioclase’, κ1 = ‘garnet’ and κ2 = ‘quartz’. The 

input features are x=3, with x1 = SiO2 wt%, x2 = Al2O3 wt% and x3 = FeO2 wt%. We assume 

that the best model parameters (θ) for this classification task have already been identified. Now 

we want to classify a new unknown sample:  

The regressors output vector (𝑧) can be schematized as following: 

𝑧 ⃗⃗⃗ =

[
 
 
 𝑧𝜅0 = 𝜗0

(0) + 𝜗1
(0)𝑥1 + 𝜗2

(0)𝑥2 + 𝜗3
(0)𝑥3

𝑧𝜅1 = 𝜗0
(1) + 𝜗1

(1)𝑥1 + 𝜗2
(1)𝑥2 + 𝜗3

(1)𝑥3

𝑧𝜅2 = 𝜗0
(2) + 𝜗1

(2)𝑥1 + 𝜗2
(2)𝑥2 + 𝜗3

(2)𝑥3]
 
 
 

 

= [

𝜗0
(0) + 𝜗1

(0)65 + 𝜗2
(0)19 + 𝜗3

(0)0

𝜗0
(1) + 𝜗1

(1)65 + 𝜗2
(1)19 + 𝜗3

(1)0

𝜗0
(2) + 𝜗1

(2)65 + 𝜗2
(2)19 + 𝜗3

(2)0

] 

 SiO2 wt% (x1) Al2O3 wt% (x2) FeO2 wt% (x3) 

Unknown sample 65 19 0 
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= [
5.19
2.16
−1.3

] 

Now the softmax activation can be applied to each component of the 𝑧 ⃗⃗⃗ vector: 

𝜎(𝑧 ⃗⃗⃗) =

[
 
 
 
 
 
 𝜎(𝑧𝜅0) =

𝑒𝑧𝜅0

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0

𝜎(𝑧𝜅1) =
𝑒𝑧𝜅1

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0

𝜎(𝑧𝜅2) =
𝑒𝑧𝜅2

∑ 𝑒𝑧𝑖𝐾−1
𝑖=0 ]

 
 
 
 
 
 

=

[
 
 
 
 𝑒
5.19 ∙ 1 (𝑒5.19 + 𝑒2.16 + 𝑒−1.3)⁄

𝑒2.16 ∙ 1
(𝑒5.19 + 𝑒2.16 + 𝑒−1.3)⁄

𝑒−1.3 ∙ 1 (𝑒5.19 + 𝑒2.16 + 𝑒−1.3)⁄ ]
 
 
 
 

= [
0.953
0.046
0.001

] 

Consequently, the new sample will be classified as a ‘plagioclase’ (class κ0), with a probability 

score of 95%. The probability score is a very convenient information because it can be used to 

impose a confidence threshold value on the classification. For instance, every classification 

with a probability score lower than 80% could be discarded. Even more conveniently, such 

threshold can be arbitrarily set by the end user during model exploitation – i.e., during 

inference. 

In the previous multi-class example, we assumed that the model parameters (θ) were already 

known. In order to identify them during training phase, the binary cross-entropy loss function 

must be adjusted to work with multiple classes. The extension of BCE loss to the multi-class 

case is intuitively named cross-entropy (CE) loss. When introducing the BCE loss, it was 

discussed how just one portion of the equation is activated at time, depending on the nature of 

the true label (yi), that can only be 0 or 1 in a binary classification. In the cross-entropy loss 

formula the same concept is applied, but yi can take K different values. Therefore, a convenient 

way to compute the CE loss formula is: 

ℒ(𝜗) = 𝐶𝐸 = −
1

𝑁
∑∑1{𝑦𝑖 = 𝜅} log(ℎ𝜗

(𝜅)
(𝑥𝑖))

𝐾−1

𝜅=0

𝑁

𝑖

 

( 22 ) 

Here, in order to activate only one portion of the equation at time, an indicator function (i.e., 

1{yi = κ}) is employed, which outputs 1 when the proposition inside the parenthesis is true, 0 

otherwise: 

1{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑇𝑟𝑢𝑒
0, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒

 



35 

 

( 23 ) 

In CE loss, ℎ𝜗
(𝜅)
(𝑥𝑖) is the estimated probability �̂� that the i-th input sample (given its features 

x and the model weights θ) is part of the class κ: 

ℎ𝜗
(𝜅)(𝑥𝑖) =  �̂�(𝑦 = 𝜅|𝑥, 𝜗) =

𝑒𝜗
(𝜅)𝑇𝑥

∑ 𝑒𝜗
(𝑖)𝑇𝑥𝐾−1

𝑖=0

 

( 24 ) 

The cross-entropy loss is also appreciated because it penalizes more the predictions that are 

confident but wrong. To use the CE loss formula properly, however, the ground truth labels 

require an important pre-processing operation named one hot encoding. In fact, to simplify the 

job of the loss function in a multi-class classification scenario, the true outputs (y) need to be 

encoded as column vectors of 0’s, except for a single 1 value at the κ-th row, being κ the 

corresponding class id. For instance, considering the previous example, the true labels of three 

samples of class ‘plagioclase’ (κ=0), ‘garnet’ (κ=1) and ‘quartz’ (κ=2) respectively, will be one 

hot encoded as: 

𝑦𝑘0 = [
1
0
0
] ;   𝑦𝑘1 = [

0
1
0
] ;   𝑦𝑘2 = [

0
0
1
] 

These encoded labels have the same shape of the predicted output vectors 𝜎(𝑧 ⃗⃗⃗), and this allows 

a simpler comparison between true labels and predicted labels with the CE loss. 

The softmax regression can be displayed as a simple Neural Network, as shown in Figure S1.9. 

 

Figure S1.9 – Softmax regressor schematized as a simple Neural Network. The information is forwarded from the 

input nodes (x) to the linear regressors (z) and then to the softmax activations (a). After the prediction (ŷ) is 

obtained, the loss function (L) is computed. In this example the model is designed to identify up to 5 classes from 

3 features. More layers (hidden layers) can be inserted between the input layer and the regressor layer to possibly 

enhance the model performance. 
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3.8 Evaluation of classification models 

Evaluating a classification model means to qualitatively and quantitively estimate its prediction 

successes and failures. The evaluation of the model is performed during and/or after the learning 

operations. An example of a quantitative estimation is the accuracy score, a straightforward 

indicator of the correct predictions’ percentage over an entire dataset. Qualitatively evaluate a 

classification model means to identify in which classes the major failures of the model are 

concentrated and why. In the next subchapters some of the most utilized evaluation scores and 

graphics, that were also implemented in the software X-Min Learn (see Section 3 – chapter 

4.2), will be described. 

3.8.1 Accuracy  

One of the most intuitive evaluation scores is the accuracy, being just the number of correct 

predictions over all the predictions. The accuracy curve (i.e., a graphic showing the accuracy 

score at each training epoch, see Figure S1.10a,b) is one of the main diagnostic curves that is 

examined during the learning session. Since ideally the model’s accuracy increases over time, 

the accuracy curve should be similar to the ones illustrated in Figure S1.10a. Examining the 

trend of the curve during training permits to immediately understand if the model is learning 

appropriately and, if not, to prematurely stop the learning session and save time. Moreover, a 

common procedure is to compare the accuracy score on train set with the accuracy score on 

validation/test set (confront Figure S1.10a,b). Since model parameters are automatically 

refined only using the train set data, the validation/test set accuracy represents an unbiased 

score of the model predictions, being populated by examples from which the model never 

extracts “knowledge”. Comparing the two accuracy curves can be useful for identifying 

learning problems like overfitting (i.e., much higher accuracy on train set than validation/test 

set – see Figure S1.10b). 

3.8.2 Loss 

As introduced in subchapter 3.6, the loss function computes the model prediction errors after 

each iteration; thus, the loss curve can be graphed like the accuracy curve. If the model is 

learning efficiently, it should reduce its prediction errors over time. Consequently, the loss 

curve should show a decreasing trend, ideally converging asymptotically to a near-zero value 

(Figure S1.10c). The same considerations previously made for the accuracy curves also apply 

to loss curves (i.e., comparison between train set and validation/test set curves and diagnosis 

of overfitting – see Figure S1.10c,d).  
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Figure S1.10 – Accuracy (a, b) and loss (c, d) curves, useful to monitor the model’s learning behaviour during 

training sessions. The curves in (a) and (c) show a good learning, where both the train and the validation sets data 

is more and more accurately classified over time. In (b) and (d) the wide gap between train (well classified) and 

validation (poorly classified) curves is diagnostic of model overfitting. 

3.8.3 Precision, recall and F1 score 

A common practice during the evaluation of a classification model is to extract the following 

parameters: 

• True Positives (TP) i.e., the number of samples of class κ that were correctly predicted 

as class κ  

• True Negatives (TN) i.e., the number of samples not of class κ that were correctly 

predicted as not of class κ  

• False Negatives (FN) i.e., the number of samples of class κ that were incorrectly 

predicted as not of class κ 

• False Positives (FP) i.e., the number of samples not of class κ that were incorrectly 

predicted as class κ 

Since these parameters are computed for each κ class, they allow a class-by-class evaluation of 

the model. They are indeed required to compute three useful metrics: precision, recall and F1 

score. 
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The classification precision (for class κ) is defined as the ratio of correct predictions of class κ 

to all predictions of class κ. This metric can, for example, answer the question: of all the samples 

predicted as quartz, how many were actually quartz? 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

( 25 ) 

The classification recall (for class κ) is defined as the ratio of correct predictions of class κ to 

all instances truly of class κ. This metric can, for example, answer the question: of all the sample 

that are actually quartz, how many were predicted as quartz? 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

( 26 ) 

The F1 score metric is the weighted average of precision and recall and it is usually more 

effective than the accuracy, since it takes into account both the precision and the recall metrics: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑅𝑒𝑐𝑎𝑙𝑙 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

( 27 ) 

In a multi-class scenario, it is common practice to provide a unique F1 score that describes the 

overall model performance. This unique value is extracted by combining the F1 scores of each 

class. There are three kinds of combinations: micro-average, macro-average and weighted 

average. The micro-average is the only method that computes a global average F1 score by 

directly applying the formulas at Eq. 25, 26 and 27 with the sums of TP, FN and FP of the entire 

dataset. Therefore, the micro-average F1 score is equal to the accuracy score. The macro-

average score is the most straightforward, extracting a global F1 score by computing the 

arithmetic mean (a.k.a., unweighted mean) of all the per-class F1 scores. The weighted average 

computes instead the weighted mean of all the per-class F1 scores. The weight value is the 

percentage of occurrence of each class in the dataset. This score is most useful when evaluating 

the model performance on unbalanced datasets (see Section 3, subchapter 4.2.2). 

3.8.4 Confusion matrix 

Precision, recall and F1 scores allow a quantitative class-by-class estimation of the efficiency 

of the model. The confusion matrix shows a graphical interpretation of such estimation. Given 



39 

 

its structure (see Figure S1.11), a confusion matrix of a perfect model would be an identity 

matrix. From the confusion matrix illustrated in Figure S1.11 is possible to extract the class-

by-class precision along the columns and the class-by-class recall along the rows. Moreover, 

a confusion matrix allows a qualitative evaluation of the model, as the operator can identify 

which classes the model tends to confuse the most. 

 

Figure S1.11 – Confusion matrices for train set (a) and validation set (b), respectively. These matrices are useful 

to evaluate the model’s performance qualitatively and quantitatively. For example, both show that about 25% of 

the class ‘Kfs’ (K-feldspar) is misclassified as class ‘Pl’ (plagioclase). 
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3.9 Hyperparameters 

As briefly mentioned in subchapter 3.6, hyperparameters are special ML parameters, that are 

chosen arbitrarily by the operator and heavily control the learning process. The choice depends 

on the behavior of the model itself, which in turn depends on the data. Subchapter 3.8 covers 

some of the most useful statistics and graphics that can be examined by the operator to obtain 

qualitative and quantitative scores of the model’s performance. In this subchapter it will be 

described how such scores can lead the operator to the fine-tuning of four of the most used 

hyperparameters: the number of epochs, the learning rate, the weight decay and the momentum. 

3.9.1 Number of epochs 

This is the most straightforward of the hyperparameters. In general, the more the epochs, the 

more the model can self-refine. However, a very large number of epochs can lead to overfitting 

issues and always extends the learning time. A simple way to identify the ideal number of 

epochs is to examine the loss and accuracy curves (see Figure S1.10). In general, the optimum 

is observed when the curve reaches a plateau. However, if overfitting occurs it is highly 

recommended to reduce the number of epochs or fine-tune other hyperparameters. 

3.9.2 Learning rate 

The learning rate (LR), already introduced in subchapter 3.6, determines the step size that the 

optimizer takes at each epoch to refine the model by minimizing the loss function. A big LR 

(>10-1 in general, but it depends on the data) can determine an “overshoot” of the loss minimum, 

producing a loss curve that looks like the one illustrated in Figure S1.12a. A small LR (< 10-5 

in general) would eventually lead to a good model performance but increases dramatically the 

required number of epochs and therefore the learning time. A loss curve that never reaches a 

plateau is diagnostic of a too small LR (see Figure S1.12b). 

 

Figure S1.12 – Effects of a very big (a) and a very small (b) learning rate (LR) on the trend of the loss curve. A 

big LR leads the optimizer to overshoot the minimum of the loss, while a small one slows it down dramatically. 
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3.9.3 Weight decay and momentum 

The weight decay (WD) is a hyperparameter that can be included in the optimizer formula to 

reduce overfitting. For example, the optimization function at ( 9 ), introduced in subchapter 3.6, 

can be rewritten as follows: 

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 −  𝜂 ∙
𝜕ℒ𝜗𝑗
𝜕𝜗𝑗

−𝝀𝜼𝝑𝒋
𝜺−𝟏

⏟      
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑡𝑒𝑟𝑚

 

( 28 ) 

Here λ indicates the weight decay and it is commonly chosen in the range 0 – 0.1, following a 

logarithmic scale. The WD, as the name suggests, reduces the absolute values of the model 

weights (θ), and it is particularly efficient against the biggest weights, thus simplifying the 

model and consequently reducing the chance of overfitting. On the other hand, the WD can 

slightly reduce the accuracy of the model, increase the learning time and lead to underfitting in 

the worse scenario. 

The momentum, on the other hand, accelerates the learning time by boosting the optimizer 

function (see Polyak, 1964 and Sutskever et al., 2013 for details). This is accomplished by 

saving temporarily in memory the optimization term of the previous epoch (δε-1) and use it in 

combination with the momentum (μ) to calculate the optimization term at the current epoch: 

𝛿𝜀 = 
𝜕ℒ𝜗𝑗
𝜕𝜗𝑗

+ 𝜇 ∙ 𝛿𝜀−1 

( 29 ) 

Then the parameters are updated as follows: 

𝜗𝑗
𝜀 = 𝜗𝑗

𝜀−1 −  𝜂 ∙ 𝛿𝜀 

( 30 ) 

The momentum ranges between 0 and 1, reduces the time required to minimize the loss function 

and sometimes reduces the chance of the model to get “trapped” in a local minimum. However, 

it can also increase the chances of overfitting, or, in worst case scenarios, to “overshoot” the 

minimum when abused. It is possible to apply both the weight decay and the momentum 

contemporaneously. 
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4 Python 

Python language was chosen to develop both the tools presented in this work. Python’s design 

philosophy encourages dynamicity, simplicity, flexibility, high code readability and 

extensibility through external open-source libraries. These features allow Python developers to 

spend less time on the technicisms of the language and focus more on their projects. This makes 

Python one of the most popular programming languages among data scientists, and, in general, 

very suitable for scientific purposes, including machine learning algorithms implementation. A 

Python distribution is also embedded within ArcGIS®, and this enabled to code ArcStereoNet 

directly within the GIS environment, determining a high compatibility between the new code 

and the default tools of ArcGIS®. At the same time, the wide plethora of external open-source 

libraries allowed the entire development of a stand-alone GUI for X-Min Learn.   

4.1 Python libraries  

This work introduces a Python toolbox developed within the ArcGIS® environment 

(ArcStereoNet [ASN] – see Section 2) making use of Python 2.7 version, and a stand-alone 

software (X-Min Learn [XML] – see Section 3) entirely coded in Python 3.8 version. To 

develop both applications, several external open-source Python libraries were employed, the 

most important of which are listed below: 

• NumPy (Harris et al., 2020), a collection of array-oriented computing tools for scientific 

calculation (both ASN and XML). 

• Matplotlib (Hunter, 2007), a comprehensive library for creating static, animated, and 

interactive visualizations (both ASN and XML). 

• SciPy (Virtanen et al., 2020), a collection of algorithms to extend NumPy 

functionalities, providing additional advanced tools for array computing (only XML). 

• Arcpy, the ESRI-designed library to run Python code in the ArcGIS® environment (only 

ASN). 

• Mplstereonet (Kington, 2020), that provides lower-hemisphere equal-area and equal-

angle stereonets for matplotlib (only ASN). 

• Pandas (McKinney, 2010), a collection of tools for reading, writing and manipulate 

datasets (only XML). 

• Pillow (Clark, 2015), a library that provides several image processing tools (only 

XML). 

• Libtiff (Leffler, 2003), that provides support for the TIFF image format (only XML).  
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• Scikit-learn (Pedregosa et al., 2011), a machine learning library that provides both 

supervised and unsupervised algorithms, and several tools for data pre-processing, 

model evaluation and more (only XML).  

• Imbalanced-learn (Lemaître et al., 2017), a library relying on scikit-learn that provides 

tools to deal with imbalanced datasets (only XML). 

• PyTorch (Paszke et al., 2009), a package that provides Tensor computation with GPU 

acceleration and several utility functions to build neural networks (only XML). 

• PyQt (Summerfield, 2007), a set of Python bindings for Qt, a C++ library to develop 

efficient Graphic User Interfaces (only XML). 

5 Geological applications  

As introduced in chapters 2 and 3, the first and fundamental step to run a machine learning 

algorithm is to collect data and organize it into a dataset. Such dataset can be either a ground 

truth dataset (for supervised learning) or a simple unlabeled input dataset (for unsupervised 

learning). Both types of datasets must be populated in a consistent and schematic way and 

conveniently designed for the ML task.  It has been broadly discussed in subchapters 2.1, 2.2 

and 3.2 how a dataset should be structured to meet machine requirements.  

Knowing all the above prerequisites, the following, arguably more complex task is to translate 

the geological data accordingly. This is a challenge faced during the development and the 

application of both software presented in this work. It was eventually decided to design user-

friendly dataset management tools to direct users towards a semi-automatic and standardized 

way of organizing their geological data while using the provided software. 

These tools are designed for geological applications that require the statistical analysis and 

projection of micro- and meso-structural data (ArcStereoNet) and the automatic mineral 

recognition and analysis from multichannel chemical data (X-Min Learn). In both cases, the 

role of a properly structured dataset is undoubtably central. Additionally, since a standard, data-

independent, schematized way of organizing the user’s data was implemented, the applications 

of such software can potentially be extended to different types of task’s domains (for more 

details see Section 2, chapter 2 and Section 3, subchapter 4.1). 

  



44 

 

 SECTION 2 

– 

ARCSTEREONET: STATISTICAL ANALYSIS OF STRUCTURAL 

DATA 

In this section a Python-toolbox for the statistical analysis of oriented data within the ArcGIS® 

environment (i.e., ArcStereoNet) will be introduced. In the first two chapters the relation 

between ArcStereoNet and ArcGIS® will be defined. In chapter 3 an overview of the different 

tools that are included within ArcStereoNet will be provided and in chapter 4 the implemented 

algorithms will be compared. Finally, chapter 5 will highlight the quantitative geological 

parameters that can be extracted with the toolbox from the outcrop scale to the thin section 

scale, through the practical analysis of a petro-structural case study.  
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1 Introduction 

Many geoscientific disciplines often require processing large amounts of oriented data (e.g., 

foliations, fault planes, joints, crystallographic orientations, etc.) in order to extrapolate 

statistically meaningful numerical parameters. Equal-angle and equal-area stereographic 

projections (a.k.a. stereoplots) are graphical tools that permit to re-project 3D data in a two-

dimensions space, thus, simplifying its interpretation (Phillips, 1955).  

Various software have been developed during the years for the digital and semiautomatic 

realisation of stereoplots, such as Stereonet (Cardozo & Allmendinger, 2013) or Dips® (by 

Rocscience Inc.). Some of these include a large number of useful tools for statistical analysis, 

rotation and transformation functions and include kinematic analysis or stress field orientation 

analysis. 

One downside of using such software, however, is that the relative geographical coordinates of 

the data in real space (e.g., distance between two faults in the field, two minerals in this section 

etc.) is lost (Hobbs et al., 1985). To mind this gap between orientation data and its spatial 

information, several pioneering tools or plugins compatible with ArcGIS® have been developed 

in the past, such as GIS-stereoplot (Knox-Robinson & Gardoll, 1998), Export Toolbox 

(Maxelon, 2004) and OATools (Kociánová & Melichar, 2016). ArcGIS® is indeed a 

Geographical Information System (GIS) software useful to analyze geographic information, 

build geo-referenced layers containing quantitative parameters and apply several algorithms for 

the extrapolation of statistical information from the data. Most importantly, since the data is 

imported within a GIS environment, its spatial information is not lost, but rather highlighted. 

Therefore, many functionalities of ArcGIS® are remarkably suitable for geological data 

handling and exploring. If properly structured and organized, such data represent a source of 

valuable information at different scales. The tools that ArcGIS® provides can indeed be applied 

to an entire section of an orogen (e.g., Ortolano et al., 2022) or to an arbitrary Local Information 

System (LIS), for example at the scale of the thin section (see Ortolano et al., 2018 and Visalli 

et al., 2021). 

The above-mentioned pioneering tools are however very old and all of them, except for 

OATools, are not compatible with the modern distributions of ArcMap® (versions 10.x), and 

none of them is compatible with ArcGIS® Pro. OATools is the most recent steroplots-related 

tool for ArcGIS® but extends its compatibility only to ArcMap® 10.2 and 10.3. More recent are 

instead the stereographic projections plugins for QGIS®, among which the most used are 
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qgSurf (Alberti et al., 2016) and GeoTrace (Thiele et al., 2017). This is the reason why 

ArcStereoNet (ASN) was developed, and published during the Ph.D. timespan in Ortolano et 

al., 2021, as an ArcGIS®-based Python-toolbox.  

ASN adds geological-oriented tools to the already wide plethora of ArcGIS® functionalities, 

allowing the projection (stereographic projections and rose diagrams) and the statistical analysis 

of oriented structural and micro-structural data. The integration of ASN is possible thanks to a 

built-in feature provided by ArcGIS® itself, that allows users to run custom Python scripts 

within its environment. ArcStereoNet is compatible with all the recent ArcMap® versions of 

the software, starting from version 10.3, as well as with the ArcGIS® Pro distributions. 

ArcStereoNet was therefore developed within this Ph.D. project to provide a unique software 

solution for analyzing and comparing oriented data at different scales within the same 

environment (i.e., the same ArcGIS® project). Georeferenced meso-structural data collected 

from outcrops can be easily organized in spreadsheet files that can then be imported and 

visualized within the GIS project and processed with ASN. Oriented micro-structural data 

cannot be extracted directly from thin sections images with ArcStereoNet, but it can process 

any kind of shapefile (i.e., punctual, linear, polygonal) previously populated with microfabric-

related data using other ArcGIS® toolboxes like Micro-Fabric Analyzer (Visalli et al., 2021). In 

this view, ArcStereoNet can be utilized as a final instrument to compare simultaneously the 

oriented data collected from the macro-scale to the micro-scale within the same GIS project. 

However, ASN is not just a data visualization tool; it also permits to carry out spherical 

statistical analysis, such as density functions (contours), cluster and girdle analysis, mean 

vectors extraction. In addition to this, a completely new algorithm for cluster analysis and mean 

vector extraction (i.e., Mean Extractor from Azimuthal Data) is included in the toolbox. All the 

available algorithms can be compared simultaneously, allowing a more reliable interpretation 

of the occurring structural data distribution.  

1.1 Graphic User Interface 

The graphic user interface (GUI) plays a critical role in the efficiency of any application. 

Developing an interactive interface increases the number of potential users, simplify rather 

complex tasks, and generally reduces the time required to accomplish them. Since ASN is 

completely merged within the ArcGIS® environment, it shares the same look and feel of its 

default tools (see subchapter 3 for details). Consequently, ArcGIS® users will find 

ArcStereoNet tools extremely straightforward and will experience a high compatibility with 
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other ArcGIS® functionalities. As an example, refer to the case study provided in subchapter 5, 

where ASN was implemented inside a wider workflow that also included other custom ArcGIS® 

tools.  

The development of the ArcStereoNet GUI was the first attempt within this Ph.D. project of 

using Python for developing a graphic interface. The core library of ArcStereoNet is 

mplstereonet (see Section 1, subchapter 4.1), that gathers several functions for the realization 

of stereographic projections and rose diagrams in Python. It also includes several statistics for 

the extrapolation of density contours and clusters within the plots. However, mplstereonet is a 

pure Python library, that requires programming skills in order to be exploited. In this Ph.D. 

project the library functionalities were expanded, adapted and implemented into the ArcGIS® 

environment by means of the arcpy library (see Section 1, subchapter 4.1). After having tested 

the various spherical statistical algorithms using stand-alone Python scripts, ASN GUI was 

developed in a way that directs users toward a friendly but aware application of the available 

algorithms, in order to derive more reliable geological and petrological interpretations and 

constraints than traditional analysis techniques. A guide to the installation of ASN is provided 

in Appendix: ArcStereoNet installation. 

2 Dataset management 

As anticipated in Section 1, chapter 5, the role of a properly structured dataset is undoubtably 

central in the digitalization of geological data. ArcGIS® already provides several tools to deal 

with datasets management. ESRI shapefiles were identified as the ideal type of data container 

that meets the requirements of ASN algorithms. Shapefiles enable indeed to store geo-

referenced data, adding as many fields as required within their attribute tables and supporting 

a great number of different queries.  

Shapefiles can be created directly inside ArcMap® through the “Create Feature” window, but a 

tabular data file (e.g., Excel file), storing latitude and longitude coordinates for each data 

instance, can also be imported and then converted into a shapefile. This can be performed 

through the following steps: 

1. Click on File > Add Data > Add XY Data (Figure S2.1a) and select the tabular data 

sheet and the coordinates fields (Figure S2.1b). The coordinate system can also be here 

specified. 
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2. In the Table of Contents, right-click on the imported file, then select Data > Export 

Data (Figure S2.2a) and choose an output path for the new shapefile (Figure S2.2b). 

 

Figure S2.1– Screenshots showing (a) how to load georeferenced data in ArcMap® through a spreadsheet-like 

file and (b) how to select latitude and longitude fields from said file. 

 

Figure S2.2 – Screenshots showing how to export data from a loaded spreadsheet-like file (see Figure S2.1) to a 

shapefile format. 
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ArcStereoNet can access the attribute tables and extract the information required to draw 

stereographic projections or rose diagrams, as well as to derive several statistics from oriented 

data. In this view, the dataset management operations that ArcGIS® provide can be leveraged 

to better manage and standardize structural data.  

2.1 Fields formatting 

ArcStereoNet tools require as input the following information: 

• Azimuth angle  

• Dip angle (only for Stereoplots tool – see subchapter 3.1) 

• Sampling method (only for Stereoplots tool) 

• Feature type  

This information must be stored in different fields within the attribute table of the oriented data 

shapefile (see Figure S2.3). ASN tools can automatically recognize the required information if 

such fields are renamed, respectively, as follows (not case sensitive): 

• Azimuth – here azimuthal values (i.e., direction, dip direction or trend) shall be stored 

as numeric values. 

• Dip Angle or Dip_Angle – here inclination values (i.e., dip or plunge) shall be stored as 

numeric values. 

• Method – here the data format must be specified as text values, choosing from “RHR”, 

“DD” and “TP” (must be written in uppercases), indicating, respectively, the following 

conventional sampling methods: Right Hand Rule, Dip Direction/Dip and Trend-

Plunge. 

• Type – here the user should indicate the feature type as text values (e.g., “Main 

Foliation”). Such information is not mandatory, though highly recommended. It allows 

a correct grouping and graphical representation of the different types of data. When 

differences between facing directions need to be highlighted (e.g., beddings with 

distinguishing between normal and overturned positions), this field can be populated 

with distinct entries, thus prompting the tool to treat such data separately. 

The user can also populate with such information a tabular data file and then import it, as 

described at the beginning of chapter 2; each column will be treated as a different field by 

ArcMap®. The attribute table of the shapefile can also be edited at any time. If the fields are not 

renamed as suggested above, it is still possible to select manually the corresponding ones within 
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the tools interface (see chapter 3 for details). Other fields can also be added in the attribute table 

according to user’s needs and preferences. Once the shapefile is compiled, users can select the 

portion of data that needs to be plotted, taking advantage of the various selection tools provided 

by ArcMap® (see Figure S2.4), otherwise, the whole dataset will be processed by ASN. 

 

Figure S2.3 – Example of a shapefile’s attribute table. The highlighted fields hold the data required by 

ArcStereoNet. 

 

Figure S2.4 – Feature selection in ArcMap®. The selection performed on the map (a) is reflected in the attribute 

table (b), and vice versa. 

3 Tools overview 

Three tools have been developed within ArcStereoNet: Stereoplots, Rose Diagrams and Graph 

To Hyperlink, respectively useful to carry out stereographic projections, rose diagram plotting 

and to connect such graphics with the geographic position of the data, via hyperlink. 
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Furthermore, the first two tools include unsupervised algorithms (see chapter 4) useful to 

explore, statistically analyze and cluster the oriented data. The plots can be saved in different 

images formats, including vectorial ones (e.g., svg). 

3.1 Stereoplots tool 

 

Figure S2.5 – from Ortolano et al., 2021. Stereoplots tool layout. Green dots indicate required parameters. (a) 

Oriented dataset input; requires a shapefile (point, line, and polygon feature types are supported). (b) Dataset’s 

fields required by the tool. (c) Plotting data value table; for each added instance the user can specify the plotting 

colour, size, and symbolism. (d) Output image settings; the plot can be saved as a temporary file, otherwise an 

output file path must be selected. (e) Contour & Statistics submenu (collapsed, see Figure S2.8 for details). (f) 

Plot Customisation submenu; the stereoplot look can be here customised. (g) Plotting Options submenu; the 

stereonet type can be chosen (equal-area or equal-angle) and a log file can be requested. 
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The Stereoplots tool (Figure S2.5) yields lower hemisphere equal area or equal angle azimuthal 

projections, showing cyclographic traces, and/or poles for the selected planar measurements, 

and/or points for the linear elements. The shapefile storing the data can be loaded in the Input 

Feature box (Figure S2.5a). If the fields were formatted as suggested (subchapter 2.1) the 

required information (Figure S2.5b) will be automatically detected, otherwise it can be selected 

manually through the drop-down menus. The data types that the user wants to plot can be 

selected through the Plot Cyclographic Traces, Poles, and Vectors box (Figure S2.5c). By 

unchecking the Store Image Output checkbox (Figure S2.5d), the user can prompt the tool to 

save a temporary output image file and automatically open it after the tool execution. Otherwise, 

the output image file path can be specified in the “Output Image” parameter box.  

The Plot Customisation and the Plotting Options submenus (Figure S2.5f,g) permits to further 

customize the appearance of the plot, for example by selecting the net type (Schmidt or Wulff). 

An important parameter in the Plotting Options submenu is the Write Log File checkbox, that 

can be checked to compile a log text file (.txt). Such file stores useful statistical information 

regarding the algorithms that can be applied to data by expanding the Contour & Statistics 

submenu (Figure S2.5e). A detailed description of the available algorithms is provided in 

chapter 4. 

3.2 Rose Diagrams tool 

The Rose Diagrams tool permits to generate weighted and unweighted rose diagrams. Its GUI 

(Figure S2.6) is very similar to the Stereoplots tool’s one. The required information are only 

the Azimuth and the Type fields (Figure S2.6b). Within the Data to be plotted box (Figure 

S2.6c) the user can specify the bar color and whether to show the mean vectors or not, with a 

determined number of clusters and azimuth tolerance. Each mean vector will be shown in the 

plot with an arrow oriented along the mean direction (azimuth), with a length proportional to 

the mean resultant length (see chapter 4 for further details). While the Plot Customisation 

(Figure S2.6e) submenu gathers only graphic-related settings, the Plotting Options (Figure 

S2.6) submenu enables to show a specular rose diagram (Mirrored Behaviour checkbox), and 

to weight the plotted data based on a user-selected field of the input shapefile. This is useful 

for plotting orientation distributions not just by number of occurrences, but also by other 

parameters (e.g., by area). A practical example of this settings usefulness is provided in chapter 

5. 
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Figure S2.6 – from Ortolano et al., 2021. Rose Diagrams tool layout. Green dots indicate required parameters. (a) 

Oriented dataset input; requires a shapefile (point, line, and polygon feature types are supported). (b) Dataset’s 

fields required by the tool. (c) Plotting data value table; for each added instance, the user can specify the bar colour 

and whether to show the mean vectors or not, with a determined number of clusters and azimuth tolerance. (d) 

Output image settings; the plot can be saved as a temporary file, otherwise an output file path must be selected. 

(e) Plot Customisation submenu; the rose diagram look can be here customised. (f) Plotting Options submenu; 

prompt for a specular rose diagram, weight the data (a weight field must be provided) and request a log file. 

3.3 Graph To Hyperlink tool 

The Graph To Hyperlink tool can be used to link the plots created with Stereoplots and Rose 

Diagrams tools to their related spatial positions in the map (Figure S2.7). Each position 

corresponds to the mean latitude and longitude coordinates (i.e., the centroid) of plotted data. 

This tool takes as input the plots as images and outputs a new punctual shapefile (Figure S2.7a), 
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storing the images file paths and their corresponding latitude and longitude coordinates. As a 

result, user can click on each of the point on the map to show a popup window displaying the 

plot (Figure S2.7b). 

 

Figure S2.7 – from Ortolano et al., 2021. Graph To Hyperlink tool. (a) Tool layout; one or multiple raster images 

are required as input. Such images are meant to be stereoplots or rose diagrams realised by the ASN tools. An 

output feature class is also required; here, the spatial information and the hyperlinks to each image is stored. (b) 

Example of Graph To Hyperlink result. Green circles indicate the centroid of four different sampling stations; the 

corresponding plots pop out from each one of them. 

4 Algorithms 

In this chapter the algorithms that have been implemented within ArcStereoNet are discussed. 

Considering what was mentioned in Section 1, chapter 2, unsupervised algorithms were 

selected as the most suitable for grouping and analyzing oriented data. Indeed, there is no 
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advantage in building a ground truth dataset of previously clustered structural data, as structures 

and micro-structures can take any possible orientation in space. Therefore, both Stereoplots and 

Rose Diagrams tools implement unsupervised algorithms to recognize recurring patterns in the 

data, allowing the machine to perform clustering operations.  

4.1 Stereoplots tool algorithms 

The main purpose of the statistical techniques implemented in the Stereoplots tool is to 

subdivide the data into several families on the basis of their orientation similarity (i.e., 

clustering process) and, subsequently, to identify a representative average value for each 

identified family (i.e., mean vector extraction process). There are four available algorithms: 

Mean Extractor from Azimuthal Data (MEAD), MEAD + Fisher, K-Means, Bingham (Figure 

S2.8c).  

Additionally, density contour functions are also available (Figure S2.8a,b). They improve the 

visualization of the data distribution across the stereographic projection. By default, the tool 

implements a modified Kamb contour function (Vollmer, 1995) with exponential smoothing. 

However, other density contour functions – e.g., traditional Kamb (Kamb, 1959), Schmidt 

(a.k.a. 1% method) – are also available.  

 

Figure S2.8 – from Ortolano et al., 2021. Expanded Contour & Statistics submenu of Stereoplots tool. (a) Apply 

Contour value table; density function, standard deviation, style, colour, and transparency of contour can be here 

chosen. (b) Show the contour colour bar. (c) Extract Mean Vectors value table; the algorithm and the algorithm-

control parameters (see Table 4) can be here specified, as well as other graphic appearance settings. Multiple 

analysis instances are supported. (d) Track MEAD behaviour option (see Figure S2.10 for details) will only apply 

on clusters extracted with MEAD or MEAD + Fisher algorithms. 
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4.1.1 MEAD 

The MEAD algorithm is a new, custom-designed algorithm, implemented for the first time 

within ArcStereoNet (see Figure S2.9). The main reason for developing MEAD was to provide 

a unique algorithm for both the clustering and the mean vector extraction process, that could be 

used as a slightly more user-controlled alternative of K-Means algorithm (see subchapter 4.1.5 

for further details).  

 

Figure S2.9 – from Ortolano et al., 2021. Mean Extractor from Azimuthal Data (MEAD) algorithm flow chart. 

Ovals indicate input/output objects, squares indicate algorithm subprocesses. The azimuth-dip couples are firstly 

sorted by most frequent azimuth value (pre-clustering); then the clustering subprocess is applied, taking care of 

the user-controlled tolerance parameters. The raw output is then refined in a post-clustering phase and the required 

number of clusters is returned. Finally, these are fed into the mean vector extracting process that outputs the final 

result, consisting of one or more mean vectors. 

The arithmetic mean formula is not functional to extract a correct mean vector from azimuthal 

data, since each oriented feature (planar or linear) is defined by a couple of values (azimuth and 

inclination). Moreover, a ‘wrap-around’ problem also occurs, i.e., the overlapping of the values 

0 and 360 in a circumference. Therefore, the MEAD algorithm implements a different strategy, 

by taking as input: a) the data expressed as a list of azimuth-dip couples (i.e., strike-dip for 

planar features or trend-plunge for linear features), b) a user-defined number of clusters and c) 

two user-controlled tolerance values (azimuth tolerance and dip tolerance). It is possible for 

users to quickly test different tolerance values multiple times to obtain the graphical result that 
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best suits their needs and preferences. A useful option to check is the Track MEAD Behaviour 

(Figure S2.8d), which plots the clustered data (poles or lines) with different symbols (see 

Figure S2.10). This can be helpful to understand the actual influence of user-controlled 

parameters on the clustering process and to simplify their fine-tuning. 

 

Figure S2.10 – from Ortolano et al., 2021. Influence of azimuth and inclination tolerance parameters on the MEAD 

clustering process, highlighted with the Track MEAD behaviour option (Figure S2.8). (a) Clustering with an 

azimuth tolerance of 20% and an inclination tolerance of 30%. Almost all plotted data is grouped into two different 

clusters (i.e., 1 and 2). (b) Clustering with an azimuth tolerance of 13% and an inclination tolerance of 10%. 

Extracted clusters tend to be less dispersed; consequently, more data is evaluated as spurious (i.e., not gathered 

within any cluster). 

The MEAD clustering process tries to group the data into the user-defined number of clusters, 

with a 3-steps procedure (see Figure S2.9): 

• Pre-clustering. In this subprocess the azimuth-dip couples are sorted by normalized 

azimuth frequency. 

• Clustering. In this subprocess the couples are iteratively analyzed in order to group them 

in different families. In the first iteration, the azimuth and dip values of the first couple 

are the starting median values. Each couple is compared with them and grouped together 

if they do not diverge by more than a threshold value. Consequently, the median values 

get refreshed. The comparison is computed as: 

|sin 𝛼𝑖 − sin 𝛼
∗| ≤ 𝑡1; 

( 31 ) 
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|cos 𝛼𝑖 − cos𝛼
∗| ≤ 𝑡1; 

( 32 ) 

|sin 𝛿𝑖 − sin 𝛿
∗| ≤ 𝑡2; 

( 33 ) 

where αi and δi are the azimuth and dip values of the i-th couple, while α* and δ* are the 

current azimuth and dip median values. The sine and the cosine differences (Eq. 31 and 

32) are both required to unequivocally express the azimuth value. Instead, as the dip 

value ranges between 0 and 90, its sine value is sufficient (Eq. 33). The azimuth 

threshold (t1) ranges from 0 to 2, while the inclination threshold (t2) from 0 to 1. This is 

required because the sine function ranges between -1 and 1 for azimuth values (i.e., 

maximum variance is 2) and between 0 and 1 for the dip values (i.e., maximum variance 

is 1).  The clustering subprocess is reiterated until no more clusters can be extracted; the 

remaining couples, if present, are considered as spurious. An important role here is 

covered by the azimuth and inclination tolerances set by the user, as the thresholds (t1 

and t2) are proportional to such values. 

• Post-clustering. During this subprocess a post-filtering operation is performed, that 

yields only the number of clusters required by the user, selecting the most populated 

ones. Any extra cluster is considered as spurious data. If the required number is higher 

than the actual number of families extracted by the clustering process, all the obtained 

clusters will be returned instead. 

The obtained clusters are subsequently fed into the mean vector extraction process (Figure 

S2.9). Within each cluster, the sines and cosines of the azimuth values are summed together, 

respectively. Then, the 2-argument arctangent function is applied on such summations and the 

modulo 360 is applied to its output, after having converted it to degrees. The formula is: 

𝜃 = deg (𝑎𝑟𝑐𝑡𝑎𝑛2(∑sin𝛼𝑖 ,∑cos𝛼𝑖

𝑛

𝑖=1

𝑛

𝑖=1

))𝑚𝑜𝑑 360 

( 34 ) 

where αi represents the i-th azimuth value (in radians) within the n-elements cluster and θ is the 

mean angle expressed in degrees. The average inclination value is simply calculated by 
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applying the arithmetic mean formula, since its values range from 0 to 90 and do not ‘wrap-

around’.  

4.1.2 MEAD + Fisher 

The MEAD + Fisher algorithm is a modified version of MEAD, where the mean vector 

extraction process is carried out by the Fisher function (Fisher et al., 1993), implemented within 

the mplstereonet package (see Kington, 2016 for details). Additionally, this function generates 

three statistic parameters: The R value (i.e., the magnitude of the mean vector, ranging from 0 

to 1), the confidence radius (i.e., the opening angle of a small circle that corresponds to the 

confidence of the mean vector), and the K value (i.e., the data dispersion factor). These statistics 

are stored in a log file if the user enables the Write Log File option (Figure S2.5g).  

Since the clustering process is still carried out by the MEAD algorithm, the two tolerance 

parameters will influence the result. Additionally, another user-defined parameter (i.e., the 

Fisher confidence, ranging between 0 and 99) is required by the algorithm. It influences the 

above-mentioned confidence radius. A related confidence cone (or small circle) will also be 

plotted on the stereoplot. with an opening angle equal to the confidence radius value. 

4.1.3 K-Means vs MEAD 

The K-Means algorithm (MacQueen, 1967) is one of the most known and applied unsupervised 

machine learning algorithms. It is properly implemented within the mplstereonet package by 

Kington, 2016 in order to process spherical data. Like MEAD, it includes both the clustering 

and the mean vector extraction processes. The two algorithms implement a different strategy 

for the iterative clustering function; K-Means starts the iteration from random points whereas 

MEAD starts from the most frequent azimuthal values. Moreover, the clustering process of K-

Means is influenced by the number of clusters required by the user, while MEAD firstly 

performs the clustering iteration and then filters the results based on the required number of 

clusters (see Figure S2.9). Finally, K-Means works with data expressed in matrix form and 

converted in spherical coordinates, unlike MEAD that processes the sines and cosines of 

angular data. 

4.1.4 Bingham 

Like Fisher algorithm, the Bingham algorithm is a well-known function for analyzing the 

probability distribution on the sphere (Bingham, 1974), and it is implemented within the 

mplstereonet package. This algorithm does not include a clustering process, but rather aims to 
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find the best fit plane of a ‘girdle-like’ distribution pattern. It also differs from the other ASN 

algorithms because it does not require any user-defined parameter.  

4.1.5 Algorithms comparison 

In this subchapter the Stereoplots tool algorithms are compared, and the influence exerted by 

the user-defined parameters on each algorithm is discussed. The parameters required by each 

algorithm are summarized in Table S2.1, and their influence on the analysis will be 

demonstrated using a dataset (Table S2.2) populated with 40 beddings from MacDuff area of 

NE Scotland (Trewin, 1987). The data was collected with a geological compass from fold limbs 

that were already grouped by the field investigator into two different families (i.e., west and 

east limbs of the NNE trending anticlines – see Figure S2.11).  

 MEAD + Fisher MEAD K-Means Bingham 

Number of clusters X X X - 

Azimuth tolerance X X - - 

Inclination tolerance X X - - 

Fisher confidence X - - - 

 

Table S2.1 – from Ortolano et al., 2021. Influences of user-controlled parameters on ArcStereoNet algorithms. 

An ‘X’ symbol means that the parameter (row) influences the algorithm (column). 

ID Azimuth Dip_Angle Method Type 

0 206 65 RHR West limb of Anticlines 

1 212 25 RHR West limb of Anticlines 

2 217 40 RHR West limb of Anticlines 

3 197 24 RHR West limb of Anticlines 

4 192 20 RHR West limb of Anticlines 

5 213 40 RHR West limb of Anticlines 

6 206 74 RHR West limb of Anticlines 

7 205 68 RHR West limb of Anticlines 

8 190 35 RHR West limb of Anticlines 

9 212 35 RHR West limb of Anticlines 

10 203 85 RHR West limb of Anticlines 

11 205 52 RHR West limb of Anticlines 

12 210 55 RHR West limb of Anticlines 

13 204 48 RHR West limb of Anticlines 

14 206 70 RHR West limb of Anticlines 

15 212 83 RHR East limb of Anticlines 

16 215 84 RHR East limb of Anticlines 

17 210 77 RHR East limb of Anticlines 

18 214 81 RHR East limb of Anticlines 

19 207 80 RHR East limb of Anticlines 
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20 205 81 RHR East limb of Anticlines 

21 207 86 RHR East limb of Anticlines 

22 206 85 RHR East limb of Anticlines 

23 214 63 RHR East limb of Anticlines 

24 30 65 RHR East limb of Anticlines 

25 45 70 RHR East limb of Anticlines 

26 27 75 RHR East limb of Anticlines 

27 33 83 RHR East limb of Anticlines 

28 33 74 RHR East limb of Anticlines 

29 40 70 RHR East limb of Anticlines 

30 15 65 RHR East limb of Anticlines 

31 34 76 RHR East limb of Anticlines 

32 32 75 RHR East limb of Anticlines 

33 32 88 RHR East limb of Anticlines 

34 34 80 RHR East limb of Anticlines 

35 35 80 RHR East limb of Anticlines 

36 32 70 RHR East limb of Anticlines 

37 15 85 RHR East limb of Anticlines 

38 24 72 RHR East limb of Anticlines 

39 25 70 RHR East limb of Anticlines 

 

Table S2.2 – from Ortolano et al., 2021. Macduff dataset with data categorized by the field investigator (i.e., 
data is split into ‘West limb of Anticlines’ and ‘East limb of Anticlines’). 

 

Figure S2.11 – from Ortolano et al., 2021. Field photograph of a NNE-trending upright synform that folds bedding 

(highlighted in yellow) and develops a broadly axial-planar cleavage (in green). (Macduff area: UK Grid: NJ7190 

6465). 
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Three different ways of approaching the problem with ArcStereoNet are simulated. The aim is 

to extract the most representative mean planes. The first two simulations ignore the data 

differentiation performed by the field investigator, labelling all data as generic ‘Fold limb’, 

while the third simulation considers such distinction. 

In the first simulation (Figure S2.12), three user-defined parameters are set to default (i.e., 

azimuth tolerance = 50%; inclination tolerance = 30%, Fisher confidence = 95%). The number 

of clusters is set to 2. MEAD and MEAD + Fisher results converge; the pole to the Bingham 

plane confirms this result, as it coincides with the mean cyclographic traces intersections, 

indicating the fold axis. K-Means shows the same mean azimuth values but different mean 

inclinations, suggesting a larger interlimb angle and a more asymmetrical fold. This can be 

attributed to the clustering approach of K-Means, which tries to ‘force’ all data into the clusters. 

Instead, the MEAD algorithm tends to exclude spurious data, assembling lower dispersion 

clusters. This behavior is highly customizable through the tolerance parameters, as 

demonstrated in the next simulation. 

 

Figure S2.12 – from Ortolano et al., 2021. Application of Stereoplots tool algorithms with default algorithm-

control parameters on Macduff dataset. (a) ASN graphic result; (b) portion of Macduff dataset attribute table, with 

all records sharing the same feature type (i.e., “Fold limb”); (c) ASN log file showing algorithm statistics and 

results; and (d) Extract Mean Vector value table showing the algorithms settings. 

The second simulation (Figure S2.13) highlights the influence of user-defined parameters on 

MEAD and MEAD + Fisher results. Three possible average inclinations for the west-dipping 
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fold limb are highlighted. The inclination tolerance set for MEAD + Fisher algorithm is low 

(i.e., 7%), and this determines a higher number of spurious data and consequently low-

dispersion clusters extraction. Conversely, a much higher inclination tolerance set for MEAD 

algorithm (i.e., 65%) leads to more dispersed clusters and less spurious data. The K-Means and 

the Bingham results are the same of the previous simulation and are displayed just for 

comparison. A contour density function is here also applied to help visualize the different 

results of the algorithms.  

 

Figure S2.13 – from Ortolano et al., 2021. Application of ArcStereoNet algorithms with customised algorithm-

control parameters on Macduff dataset. (a) ASN graphic result; (b) portion of Macduff dataset attribute table, with 

all records sharing the same feature type (i.e., ‘Fold limb’); (c) ASN log file showing algorithm statistics and 

results; and (d) Extract Mean Vector value table showing the algorithms settings. 

In the third simulation (Figure S2.14), the impact of an expert user on the final result is 

demonstrated. Here, the data differentiation recognized by the field investigator is considered. 

This can be done in ASN by specifying within the Type field of the attribute table two different 

entries (i.e., ‘West limb of Anticlines’ and ‘East limb of Anticlines’ – see Figure S2.14b). In 

other words, this means that a manual data clustering is already performed by the user; 

consequently, the number of required clusters is set to 1. This determines that each group of 

beddings is processed separately, leading to two individual mean cyclographic traces. In this 

example, the orientation data was collected with the Right-Hand Rule (RHR) method and some 

of the beddings show a high dip value. Therefore, some of the data labelled as ‘East limb’ show 

supplementary strike values (e.g., 30 and 210 degrees). MEAD tends not to group together 
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supplementary strike values, as a consequence of formulas at (31) and (32). Thus, the single 

cluster required by the user only gathers the SE-dipping ‘East limb’ records (i.e., the most 

numerous) and the mean cyclographic trace shows a less steep dip value. Conversely, K-Means 

groups all ‘East limb’ records within the cluster. This leads to the extraction of a steeper dipping 

mean cyclographic trace.  

 

Figure S2.14 – from Ortolano et al., 2021. Application of ArcStereoNet algorithms with customised algorithm-

control parameters on Macduff dataset. (a) ASN graphic result; (b) portion of Macduff dataset attribute table, with 

records displaying two different feature types (i.e., ‘East limb of Anticlines’ and ‘West limb of Anticlines’); (c) 

ASN log file showing algorithm statistics and results; and (d) Extract Mean Vector value table showing the 

algorithms settings. 

4.2 Rose Diagrams tool algorithms 

The Rose Diagrams tool implements a modified version of MEAD for the extraction of mean 

vectors. The inclination tolerance parameter is absent because meaningless. Moreover, in 

addition to the mathematical formula at (34) the following equation is calculated for each cluster 

as well: 

𝑅 = √(∑sin𝛼𝑖

𝑛

𝑖=1

)

2

+ (∑cos 𝛼𝑖

𝑛

𝑖=1

)

2

 

( 35 ) 
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where αi is the i-th azimuth value within the n-elements cluster. R is the mean resultant length 

(ranging between 0 and 1) and determines the length of the arrow that represents the mean 

vector on the plot. If the Mirrored Behaviour option (Figure S2.6f) is enabled, the 

supplementary mean azimuth direction (θ’ = 180° + θ) is also computed and R is displayed as 

a double-headed arrow, pointing towards both directions. If a weighted rose diagram is 

requested, the formulas at (34) and (35) become, respectively: 

𝜃 = deg(𝑎𝑟𝑐𝑡𝑎𝑛2(
∑ 𝑤𝑖sin(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

,
∑ 𝑤𝑖cos(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

))𝑚𝑜𝑑 360; 

( 36 ) 

𝑅 = √(
∑ 𝑤𝑖sin(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

+ (
∑ 𝑤𝑖cos(𝛼𝑖)
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

)

2

 

( 37 ) 

with wi representing the i-th weight value associated to each azimuth value (αi) within the n-

elements cluster.  

5 Structural data analysis at different scales: the Palmi Shear Zone  

As demonstrated in several scientific articles that are collected in the book “Fractals in the Earth 

Sciences” by Barton et al. (1995), in some geological contexts, fractal relations of structures at 

different scales are sometimes observable. More commonly, even if a clear fractal relation 

cannot be identified, it is still possible to recognize strong relationships between some 

characteristics at different scales. For example, it happens frequently that structures 

recognizable at the outcrop scale occur similarly in micron-sized portions of a hand specimen 

collected from the same outcrop.  

ArcStereoNet is a scale-independent toolbox, as it can process oriented data at every possible 

scale. Thus, it can also be used to identify potential relationships between data at very different 

scales. This chapter will include a practical example of extraction, analysis and comparison of 

quantitative spatial parameters from both meso-structural (outcrop scale) and micro-structural 

(thin section scale) data, that was collected from several outcrops within the Palmi Shear Zone, 

and also integrated with meso-structural data virtually collected from an aerial photogrammetry 

3D model. 
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5.1 Geological background 

The Palmi Shear Zone (PSZ – Fazio et al., 2017; Ortolano et al., 2020) is a roughly E-W 

trending, high-strain strike-slip zone, a few hundred meters thick. It shows a pervasive ductile 

deformation that started in the Paleocene (57 Ma – Prosser et al., 2003). The PSZ lies in the 

southern sector of the Calabria-Peloritani Orogen (CPO – Cirrincione et al., 2015), in southern 

Italy (Figure S2.15a). Here, the outcropping lithotypes occur as an alternance of highly foliated 

calcsilicates with subordinate mylonitic migmatitic paragneiss and mylonitic granitoids. 

 

Figure S2.15 – modified after Ortolano et al., 2021. Geological background of the Palmi Shear Zone: (a) 

Geological map of the Calabrian metamorphic complexes (after Angì et al., 2010); (b) Geological Map of the case 

study area of the Palmi Shear zone, with trends of the main foliations and average stretching lineations. White dots 

represent the location of collected meso-structural data, while red circles represent rock samples location. 
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A 400 m wide mylonitic horizon with a prevalent subvertical foliation extends inland for about 

1500 m, along the contact between Late-Hercynian tonalites to the south and a high grade 

Hercynian metamorphic complex to the north (i.e., restitic paragneisses, migmatites and 

amphibolites – Ortolano et al., 2020). According to Ortolano et al., 2013; 2020 and Cirrincione 

et al., 2015 this mylonitic zone can be interpreted as a relic fragment of the regional scale strike-

slip system that influenced since the Paleocene the mutual microplate movements of the 

Western Mediterranean realm. The PSZ is a segment of the Palmi Line (Ortolano et al., 2013), 

a dextral strike-slip system. This structure controlled the juxtaposition of the Aspromonte 

Massif nappe-like edifice, characterized by the presence of a pervasive Alpine re-equilibration 

(Cirrincione et al., 2015; Fazio et al., 2017; Ortolano et al., 2005; 2015; 2020). 

5.2 Outcrop data analysis  

In this section the Stereoplots tool is employed to analyze and project the meso-structural data 

manually collected from four different stations (see Supplementary Materials of Ortolano et al., 

2021) approximately aligned along a W–E oriented direction, and named ‘Reef 1’, ‘Reef 2’, 

‘Beach’, and ‘Malopasso’, respectively (Figure S2.15b). The analyzed structural data consists 

of mylonitic foliations and stretching lineations.  

5.2.1 Reef 1 

 

Figure S2.16 – from Ortolano et al., 2021. Reef 1 station: (a) equal-area azimuthal projection and statistical 

analysis of main foliation and stretching lineation data and (b) example of isoclinally folded foliation in mylonites. 
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This station is fixed at the furthest-most sea stack with respect to the coastline. The density 

contour function (Kamb with linear smoothing) applied on 112 poles to mylonitic foliations 

(Figure S2.16) shows a well populated group of subvertical foliations that are steeply dipping 

towards SW or NE. A second, minor, N-S dipping cluster of subvertical foliations is also 

displayed. The mean mylonitic foliation plane is (in strike/dip notation): 311/74 if extracted 

with K-Means or 316/69 if computed with MEAD + Fisher (azimuth tolerance = 50%, 

inclination tolerance = 30%, Fisher confidence = 95%). The stretching lineations (n = 10) 

display sub-horizontal to moderate plunges and are roughly dispersed along the mean mylonitic 

foliation plane. Their Bingham best fit plane is 320/66 (strike/dip notation). 

5.2.2 Reef 2 

 

Figure S2.17 – from Ortolano et al., 2021. Reef 2 station: (a) equal-area azimuthal projection and statistical 

analysis of main foliation and stretching lineation data and (b) example of mylonitic foliation subparallel to fold 

axial surface in tonalites. 

This station is fixed at the closest sea stack to the coastline. The density contour function (Kamb 

with linear smoothing) applied on the poles to mylonitic foliations highlights four clusters on 

the stereoplot (Figure S2.17). Two of them gently dip towards N-S, whereas the other two are 

NE and NW oriented, respectively. The MEAD + Fisher algorithm (azimuth tolerance = 30%, 

inclination tolerance = 30%, Fisher confidence = 95%) computed four size-decreasing ordered 

clusters, whose mean planes are 098/67; 275/74; 036/61; 144/72, respectively (see Figure 

S2.17). The more populated clusters display a reasonably good correlation with the clusters 
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identified in ‘Reef 1’ station, even if rotated by about 35 degrees around a vertical axis. The 

mean planes obtained with the K-Means algorithm display similar but randomly sorted values 

(i.e., 090/68; 139/72; 036/60; 275/74). The analysis of stretching lineations was carried out with 

the K-Means algorithm and yielded a mean vector value of 116/05 (trend/plunge notation). 

5.2.3 Beach 

 

Figure S2.18 – from Ortolano et al., 2021. Beach station: (a) equal-area azimuthal projection and statistical 

analysis of main foliation and stretching lineation data and (b) example of W–E oriented mylonitic foliation 

developed in tonalites interlayered with paragneisses. 

At the Beach station, located along the coastline, several useful outcrops are well exposed. The 

density contour function (Kamb with linear smoothing) applied on the 275 collected mylonitic 

foliations depict a main northward cluster, followed by a secondary southward one (see Figure 

S2.18). The large number of coalescing data, especially observable within the major cluster, is 

due to the occurrence of highly strained isoclinal folds evolving into sheath folds. By setting 

the number of required clusters to 4, the obtained mean vectors with MEAD + Fisher are: 

101/69, 283/70, 064/67, 257/77 (strike/dip notation, azimuth tolerance = 20%, inclination 

tolerance = 20%, Fisher confidence = 95%), which followed the trend of the results of previous 

structural stations. The analysis of stretching lineations (n = 56) was again carried out with K-

Means, that identified a nearly sub-horizontal mean lineation (099/04 with trend/plunge 

notation). 
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5.2.4 Malopasso 

 

Figure S2.19 – from Ortolano et al., 2021. Malopasso station: (a) equal-area azimuthal projection and statistical 

analysis of main foliation and stretching lineation data and (b) example of tight isoclinal folds and smaller sheath 

folds developed in calc-silicates and skarns. 

The Malopasso station shows the lowest amount of manually collected structural data, including 

39 mylonitic foliations and 8 stretching lineations. For such reason, aerial photogrammetry data 

collected at this station was subsequently integrated for a more reliable statistical analysis (see 

subchapter 5.4). When only considering the manually collected data, the results yielded by each 

algorithm converged for both main foliations and stretching lineations analysis. The MEAD + 

Fisher results for the analysis of both mylonitic foliations and stretching lineations (both with 

azimuth tolerance = 50%, inclination tolerance = 30%, Fisher confidence = 95%) are the only 

one displayed in Figure S2.19, just to show the two Fisher confidence cones. The green cone, 

surrounding the pole to the mean mylonitic foliation plane (310/69 with strike/dip notation), 

represents a Fisher angle of 5.28 degrees. The yellow cone is instead referred to the mean 

stretching lineation vector (127/10 with trend/plunge notation), representing a Fisher angle of 

9.29 degrees.  

5.3 Thin section data analysis 

The quantitative micro-structural analysis was carried out with the Rose Diagrams tool using 

the data extracted from two thin sections (see Ortolano et al., 2020 for further details on micro-

structures). The analysis was performed on the minerals belonging to porphyroclastic domains, 
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highlighting their preferred orientations. In the samples, (i.e., PAL11 and PAL12a – see Figure 

S2.15b, Figure S2.20a and Figure S2.21a), the pre-kinematic clasts behave as rigid phases 

during sub-simple shearing plastic deformation.  

PAL11 consist of a mylonitic paragneiss from Malopasso station, while PAL12a is a mylonitic 

skarn collected near the Beach station (confront Figure S2.15b). The porphyroclasts 

orientations were extracted from the thin sections’ optical scans with the Micro-Fabric 

Analyzer tool (MFA – Visalli et al., 2021). The tool enables to extract and store in a shapefile 

format several quantitative micro-structural information of the identified minerals (see 

Supplementary Materials of Ortolano et al., 2021) through a stepwise controlled overlaying 

procedure of X-ray and Grain-boundary maps of thin sections (see Visalli et al., 2021 for further 

details).  

Like ASN, MFA operates within the ArcMap® environment as well and, therefore, an organic 

workflow was implemented, where the MFA output becomes the ASN input. Using the 

minimum bounding geometry approach of MFA on ~800 grains per thin section, the 

porphyroclasts’ azimuthal orientations were extracted, ranging from 0 to 180 degrees with 

respect to the normal axis to the main foliation of the sample (Figure S2.20b). This 2D oriented 

data was fed to the Rose Diagrams tool in the Azimuth field, whereas the Type field was filled 

with the minerals name (see Figure S2.6b).  

Six and twelve rose diagrams were generated, respectively, for PAL11 and PAL12a samples. 

Both unweighted (Figure S2.20c,e,g and Figure S2.21b,d,f,h,j,l) and weighted (Figure 

S2.20b,f,h and Figure S2.21c,e,g,i,k,m) rose diagrams were generated for each sample. The 

first display directional data in function of the frequency of minerals, while the latter were 

useful to assign greater or smaller importance to each grain orientation as a function of a specific 

weighting factor (i.e., grains area in mm2, also obtained with MFA). In both cases, the Mirrored 

behaviour option was selected (see Figure S2.6f), since the orientation values range from 0 to 

180 degrees. 
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Figure S2.20 – from Ortolano et al., 2021. Application of Rose Diagrams tool on PAL11 micro-structural data. 

(a) Porphyroclast grains boundary detection map from MFA tool (Visalli et al., 2021); (b) minimum bounding 

geometry of a single grain, where α is the angle between the normal to the main foliation in thin section and the 

major axis of the bounding box; (c,e,g) unweighted rose diagrams and (d,f,h) weighted rose diagrams based on 

grains cumulative area (in mm2). 
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Figure S2.21 – from Ortolano et al., 2021. Application of Rose Diagrams tool on PAL12a micro-structural data. 

(a) Porphyroclast grains boundary detection map from MFA tool (Visalli et al., 2021); (b,d,f,h,j,l) unweighted 

rose diagrams and (c,e,g,i,k,m) weighted rose diagrams based on grains cumulative area (in mm2). 
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5.3.1 PAL11 thin section 

30 amphiboles, 100 K-feldspars and 604 plagioclase porphyroclasts were identified from the 

mylonitic paragneiss (PAL11). Here the mylonitic foliation shows a WNW–ESE orientation 

(Figure S2.20).  

The amphiboles have equivalent spherical diameters (ESD – Jennings & Parslow, 1988) 

ranging from 0.25 mm to 0.83 mm. The unweighted rose diagram highlights a major alignment 

which is parallel to the mylonitic foliation (i.e., 90 – 270). A weaker alignment, deviating by 

~20 degrees from the main foliation, can also be recognized. The same results are displayed in 

the weighted rose diagram (Figure S2.20d), where, however, the minor alignment is less 

evident. This is due to a smaller cumulative area of the corresponding grains.  

The unweighted rose diagram extracted from the K-feldspars (0.25 mm < ESD < 3.67 mm) 

displays a principale alignment (i.e., 80 – 260) that deviates by ~10 degrees from the main 

foliation (Figure S2.20e). Two minor families with specular orientations (i.e., 120 – 300 and 

40 – 220) can also be observed, but are not evident in the weighted rose diagram (Figure 

S2.20f). This last in fact shows clearly the principal alignment (i.e., 80 – 260), preserved 

especially by the largest porphyroclasts, where the simple shear component is more pronounced 

(see Ortolano et al. 2020 for details).  

The unweighted rose diagram for the plagioclases (0.25 mm< ESD < 2.45 mm) highlights a 

prevalent orientation (i.e., 90 – 270) along the mylonitic foliation (Figure S2.20g). However, 

several families are dispersed towards N-S and E-W directions with respect to the foliation. 

This is probably linked to the activation of S-C’ planes. This dispersion is more marked in the 

weighted rose diagram (Figure S2.20h), where the largest porphyroclasts show an evident 

alignment along the N-S direction (i.e., 120 – 300). 

5.3.2 PAL12a thin section 

144 calcites, 102 calcsilicate minerals, 231 clinopyroxenes, 149 K-feldspars, 63 plagioclases 

and 186 scapolite porphyroclasts were identifed in the mylonitic skarn sample (PAL12a). Here 

the mylonitic foliation is, on average, E-W oriented (Figure S2.21). 

Calcite porphyroclasts (0.18 mm < ESD < 0.50 mm) are very dispersed, as displayed in the 

unweighted rose diagram (Figure S2.21b). The weighted rose diagram, however, shows a 

dominant ~ E-W orientation (i.e., 80 – 260) of larger grains (Figure S2.21c).  
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The unweighted rose diagram for the calcsilicates (0.18 mm < ESD < 0.79 mm) highlights a 

lesser data dispersion, with a high number of grains parallel to the mylonitic foliation (Figure 

S2.21d). The weighted rose diagram (Figure S2.21e) shows instead two diverging families, 

respectively NE-SW (i.e., 30 – 210) and WNW-ESE (i.e., 110 – 290) oriented. 

Clinopyroxene grains (0.18 mm < ESD < 1.21 mm) are very dispersed as well, as highlighted 

by the unweighted rose diagram (Figure S2.21f). Such dispersion also occurs in the weighted 

rose diagram (Figure S2.21g), that, however, also displays a dominant ESE – WNW orientation 

(i.e., 120 – 300). 

The unweighted rose diagram for the K-feldspars (0.18 mm < ESD < 1.35 mm) shows a major 

alignment (i.e., 90 – 270) parallel to the mylonitic foliation (Figure S2.21h). This also occurs 

in the weighted rose diagram (Figure S2.21i), where fewer families showing a ~N-S orientation 

(i.e., 20 – 200) are also observable. 

Plagioclase porphyroclasts (0.18 mm < ESD < 1.03 mm) are dispersed, and the corresponding 

unweighted rose diagram displays a both dominant ~ E-W (i.e., 80 – 260) and a secondary N-

S (i.e., 20 – 200) orientation (Figure S2.21j). The dispersion is more marked in the weighted 

rose diagram (Figure S2.21k). 

The unweighted rose diagram for the scapolite porphyroclasts (0.18 mm < ESD < 7.26 mm) 

depicts two dominant alignments ~ E–W (i.e., 90 – 270) and ENE–WSW (i.e., 50 – 230) 

oriented (Figure S2.21l), which are further emphasized in the weighted rose diagram (Figure 

S2.21m). 

5.4 Aerial photogrammetry data analysis 

In addition to the structural data previously described (already published in Ortolano et al., 

2021), manually collected at the outcrops and through image analysis of thin sections, 

ArcStereoNet was subsequently tested on new, unpublished, structural data derived from a 

drone-operated 3D aerial photogrammetry campaign (data provided in Appendix: Aerial 

photogrammetry data). Images of a wide portion of the lithotypes outcropping at Malopasso 

station were acquired using the software Pix4D® as mission flight planner, and then a 3D model 

of the outcrop was generated with the software Agisoft Metashape® (see Figure S2.22). 

The discernible meso-structures were digitized directly from the 3D model with the software 

GeoVis3D® (see Figure S2.23). Since the software automatically computes the orientation of 

the traced planar and linear features, a total of 143 main foliations and 9 stretching lineations 
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have been measured and projected with ArcStereoNet, as displayed in Figure S2.24. 

GeoVis3D® also includes within its interface an interactive stereoplot viewer (Figure S2.23b), 

that was functional to validate the projections produced by ArcStereoNet. It does not, however, 

include functions for data clustering, contouring or mean vector extraction, that were thus 

carried out only with ASN. 

 

Figure S2.22 – 3D model of the outcrops at Malopasso station, extracted from aerial photogrammetry data with 

the software Agisoft Metashape® and visualized with the software GeoVis3D®. 

The mean mylonitic foliation plane (i.e., 310/69 with strike/dip notation) identified from the 

analysis of the data manually collected at the Malopasso station (see subchapter 5.2.4) is 

confirmed by the aerial photogrammetry data (see Figure S2.24), that, however, also displays 

a supplementary plane oriented 114/70, with strike/dip notation, using the MEAD + Fisher 

algorithm with the default parameters (i.e., azimuth tolerance = 50%, inclination tolerance = 

30%, Fisher confidence = 95%). This additional plane is clearly identifiable thanks to the 

highest amount of virtually collected structural data (i.e., 143 main foliations) against the 39 

manually collected on the field. This was determined by the practical difficulty in reaching the 

very steep and often impervious outcrops. The mean stretching lineation vector, obtained with 

the K-Means algorithm, is 123/02, with trend/plunge notation, slightly less steep than the one 

extracted from manually collected data (i.e., 127/10 with trend/plunge notation).  
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Figure S2.23 – Digitalization of the observed structural features (planar and linear measurements) from the 3D 

model of the Malopasso outcrops through the software GeoVis3D®. From the model viewer (a) the recognized 

structural features can be manually traced, while in (b) the computed oriented data is automatically projected into 

an equal-area stereoplot. 

 

Figure S2.24 – Equal-area azimuthal projection and statistical analysis of main foliation and stretching lineation 

data collected from aerial photogrammetry data at Malopasso station. 
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5.5 Data comparison  

The orientations of mesoscopic structures are overall comparable, showing only minor 

differences. A good association between main foliations collected at the Reef 1 (Figure S2.16) 

and at the Malopasso station (Figure S2.19) has been observed, both displaying steep NE-

dipping foliations (~70 degrees) with an average NW–SE strike and sub-horizontal NW–SE 

oriented stretching lineations. Reef 2 and Beach stations show an overall E-W striking foliation 

that N or S dipping (~75 degrees), and horizontal stretching lineations dispersed towards E and 

W.  

As depicted in Figure S2.15b, the mylonitic paragneiss sample (PAL11) was collected within 

the Malopasso station, while the mylonitic skarn sample (PAL12a) was located close to the 

Beach station. A correlation between the orientation of micro-structures extracted from thin 

sections quantitative analysis and the orientation of meso-structural data collected in the field 

can be observed (see Figure S2.18, Figure S2.19, Figure S2.20 and Figure S2.21). 

A greater porphyroclasts dispersion is observed in the mylonitic skarn (PAL12a) due to the 

higher contrast in behaviour between weakening (i.e., calcite) and hardening (i.e., other 

porphyroclasts) layers. This rheology contrast leads to a major passive rotation of the 

porphyroclasts with respect to the calcite weak layers during the mylonitic flow. Differently, 

PAL11 porphyroclasts, which are surrounded by quartz-rich weak layers (i.e., with a lower 

rheology contrast), facilitate wing formation, producing greater resistance to the mylonitic flow 

and, in turn, clearer evidence of the formation of sub-simple shear kinematic indicators. 

The integration of the oriented data virtually collected from a 3D model of the outcrops, 

extracted from aerial photogrammetry data, enlarged the amount of meso-structural data 

available at Malopasso station, previously scarce because of the impervious terrain, enhancing 

the consistency of the analysis. This shows the reliability of drone surveys, especially when 

outcrops that are difficult to reach prevent the collection of a statistically consistent amount of 

structural data. It also further confirms the versatility of ArcStereoNet in processing data 

collected from different sources and at different scales. 

6 Discussions  

ArcStereoNet (ASN) is a unique software solution for analyzing and comparing oriented data 

at different scales within the same environment (i.e., the same ArcGIS® project). It adds 

geological-oriented tools to the already wide plethora of ArcGIS® functions, allowing the 
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projection (stereographic projections and rose diagrams) and the statistical analysis of oriented 

structural and micro-structural data. The software blends within the GIS environment with a 

friendly, ArcGIS®-like, GUI, while also being highly compatible with other ArcGIS® 

functionalities. The user can at any time visualize exactly, within their GIS project, the plotted 

data together with the corresponding geographical/locality position.  

ASN permits to carry out spherical statistical analysis, such as density functions (contours), 

cluster and girdle analysis, mean vectors extraction. All the available algorithms (including 

MEAD, a completely new algorithm for cluster analysis and mean vector extraction) can be 

compared simultaneously, allowing a more reliable interpretation of the occurring structural 

data distribution. This drives users towards a greater awareness of the statistical constrains 

applied during data analysis.  

Main features ArcStereoNet Stereonet OATools qgSurf 

Projection types 
Stereoplots 

and rose 
diagrams 

Stereoplots 
and rose 
diagrams 

Stereoplots 
and rose 
diagrams 

Stereoplots 

GIS integration Yes No Yes Yes 

Interpolation tools No No Yes No 

DEMs analysis No No No Yes 

Generation of geological 
profiles 

No No No Yes 

Statistical analysis Yes Yes Yes No 

Clustering Yes No No No 

Synergistic comparison of 
algorithms 

Yes No No No 

Advanced calculations (e.g., 
slope stability, angle 

between) 
No Yes No No 

3D viewer No Yes No No 

Distribution 
ArcMap 10.3+ 

ArcGIS Pro 
Stand-alone ArcMap 10.2 

QGIS 
(open-
source) 

 

Table S2.3 – Comparison between ArcStereoNet and other known tools for stereographic projections and oriented 

data analysis, such as Stereonet (Cardozo & Allmendinger, 2013), OATools (Kociánová & Melichar, 2016) and 

qgSurf (Alberti et al., 2016). Only ArcStereoNet allows clustering operations and synergistic comparison of 

multiple statistical algorithms.  

When compared with other software for the automatic analysis and projection of oriented data, 

ArcStereoNet represents a valid open-source alternative for the ArcGIS® platform, including 
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some of the most requested features and adding the possibility of performing clustering 

operations on data and synergistically comparing different algorithms (see Table S2.3 for 

further details). 

In this work the potentiality of ASN with a petro-structural case study analysis (chapter 5) was 

demonstrated, but the same approach could be employed with any other kind of oriented dataset. 

In this view, ArcStereoNet can potentially be updated in the future to include further statistical 

tools and algorithms for enhanced data visualization and analysis. Furthermore, new tailored 

tools for specific geodata analysis and projection (e.g., kinematic analysis for geotechnical 

purposes) can also be developed and included within the toolbox. 
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 SECTION 3 

– 

X-MIN LEARN: AUTOMATIC MINERAL RECOGNITION AND 

ANALYSIS  

This section introduces X-Min Learn, a stand-alone software that provides users with friendly 

machine learning tools to identify rocks minerals from thin section X-ray data. Some 

considerations about data representation are provided in chapter 2. The software, entirely coded 

in Python, features an interactive Graphic User Interface (GUI), as described in chapter 2. X-

Min Learn includes several tools for data exploration, mineral classification, ground truth 

datasets auto-compilation, and even for the development of custom machine learning models. 

Detailed descriptions of such tools are provided from chapter 3 to chapter 7. In chapters 8 and 

9 two practical examples of the application of X-Min Learn to both a natural rock sample and 

an artificial one, respectively, are provided. 
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1 Introduction 

X-ray elemental maps have been extensively employed to semi-automatically collect 

quantitative chemical and mineralogical parameters from thin sections of natural and artificial 

rocks, through dedicated software solutions (e.g., Cossio & Borghi, 1998; Lanari et al., 2014; 

Belfiore et al., 2016; Arganda-Carreras et al., 2017; Ortolano et al., 2018; Izawa et al., 2020, 

Belfiore et al., 2022). Unlike punctual chemical analyses, the information is not scattered and 

prevents possible biases introduced by the choice of point locations. Their acquisition is 

generally an efficient and relatively cheap process. X-ray maps are rendered as grayscale 

images, but the information contained in their pixels can be processed as numerical arrays (i.e., 

stacks of 2D matrices). The pixel values are proportional to the amount of the investigated 

element in a specific areal of the sample, that is influenced by the pixel resolution.  

The current free software dedicated to the automatic or semi-automatic classification of this 

type of data (e.g., XMapTools – Lanari et al., 2014, Trainable Weka Segmentation – 

Arganda-Carreras et al., 2017, Q-XRMA – Ortolano et al., 2018) are generally oriented 

towards the implementation of unsupervised or lazy supervised classifiers, trained on specific 

samples of data, through the definition of user-selected training areas. Another important 

mention among such tools is iDiscover, a software package that is provided with QEMSCAN® 

(i.e., Quantitative Evaluation of Minerals by Scanning Electron Microscopy – Gottlieb et al., 

2000), a fully automated micro-analysis system owned by the FEI company, that includes the 

entire SEM instrumentation and that is, therefore not a freeware.  

While supervised classifiers trained with user-defined areas can lead to very accurate results, 

functional to the classification tasks, it may also introduce user-driven biases (e.g., implicit bias, 

selection bias etc.) and it also inhibits the possibility to generate eager learning models (see 

Section 1, subchapter 3.1), that, oppositely, learn from the training data a generalized function 

that links the input information to the output classification. This last approach lead to faster 

classifiers that learn from the training data a generalized function that links the input data to the 

output classification, and it is at the base of the creation of artificial neural networks and 

eventually of deep learning networks. Eager learners also become more functional than lazy 

ones with the increasing amount of training data (Section 1, subchapter 3.1) and are therefore 

oriented towards the analysis of big data. 

In this section a new software solution (i.e., X-Min Learn) for the analysis and automatic 

mineral classification of thin sections of both natural and artificial stone materials is presented. 
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X-Min Learn (XML) also adopts lazy supervised and unsupervised classifiers, but, in addition 

to that, it includes eager ML algorithms within its classifiers. The software was tested on both 

EDS and WDS X-ray elemental maps but can also be employed for the analysis of other types 

of multi-channel image data, including, for example, BSE maps. X-Min Learn elaborates the 

input data in a pixel-oriented fashion and permits to select different ML classifiers to predict in 

few seconds the modal amounts of the recognized minerals. An output mineral map is obtained, 

together with a confidence map to monitor and evaluate the classifier’s performance.  

X-Min Learn is also the first mineral-oriented software that includes a collection of interactive 

tools for a step-by-step development of custom eager machine learning models (i.e., developer’s 

toolkit – see chapter 4). These tools allow the automatic compilation of ground truth datasets, 

include diagrams and graphics useful for the evaluation of the learning process, provide 

balancing algorithms to enhance the training datasets and several morphological image 

processing functions to refine the classification result. This determines a greater user awareness 

of the use of ML, since the models are built step by step, from the compilation of training and 

test datasets to the evaluation of the model. The whole procedure is simplified to meet the needs 

of all users, even those not experienced in programming, who will not need to write any line of 

code.  

2 Input data handling 

Since data storing, managing, and ordering is at the basis of an efficient machine learning 

application, the first important challenge during the development of X-Min Learn was to define 

a standardized policy for data representation and storing. Input data consists of multi-channel 

image data where chemical information is stored. Each channel consists of an image storing 

within its pixel values the relative abundance of a specific element (Figure S3.1). The number 

and the type of chemical elements is chosen by the operator.  

Since the software deals with multi-channel data, each channel must share the same shape i.e., 

same image width and height in pixels. In other words, the channels must be perfectly stackable. 

Consequently, X-Min Learn is coded to automatically load, store and process input data as a 

3D matrix of size (H·W·C), where H and W are the maps height and width in pixels, that 

coincides with the matrix numbers of rows and columns, respectively (see Figure S3.2). The 

number of channels (i.e., of investigated chemical elements) represents the third matrix 

dimension (C). X-Min Learn, however, is not strict about the type of input data; users are rather 

encouraged to analyze different types of input information (e.g., X-ray chemical maps together 
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with Backscattered Electrons maps), and to build machine learning models from them, as long 

as they share the same shape and resolution. In case of different pixel resolutions, the input data 

can be priorly resampled (e.g., Reynes et al., 2020). 

 

Figure S3.1 – Example of X-ray elemental maps. From left to right and top to bottom: Al, Ca, Fe, K, Mg, Mn, Na, 

Si and Ti maps. 

 

Figure S3.2 – Stack of X-ray elemental maps displayed as a 3D matrix of pixel values with shape H·W·C, where 

H and W are the maps’ height and width in pixels, respectively, and C is the number of maps. 
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In X-Min Learn the result obtained from the analysis of input maps and the identification of the 

occurring minerals (or other features such as metals, glass, fractures etc.) is defined with the 

term mineral map (Figure S3.3). Therefore, a mineral map is computed by XML as a 2D 

matrix of size (W·H) where the width and the height are the same as the input maps from which 

the mineral map was extracted. Yet a mineral map differs from input maps for the nature of 

pixel values. Indeed, since numerical classes IDs can lead to confusion or misinterpretations, 

X-Min Learn stores mineral maps as string-formatted matrices, meaning that each pixel, or 

node of the matrix, stores alphanumeric characters instead of just numbers (see Figure S3.4). 

Each pixel is constrained to hold a maximum of 8 characters, to reduce the impact on memory 

and for a quicker computation. Hence, the use of abbreviations, that can freely be chosen by 

users, is encouraged. 

 

Figure S3.3 – Example of a mineral map obtained with X-Min Learn. 

Computation efficiency is another fundamental reason that led to the decision of representing 

the data in matrix form. The Python library NumPy (see Section 1, subchapter 4.1), extensively 

employed in XML, provides indeed functions and algorithms to achieve quick array (i.e., vector 

or matrix) calculations. Furthermore, NumPy arrays are extremely compatible with matplotlib 

library, making easier to read and plot matrix data within the software interface, but also with 

Scikit-learn and PyTorch, the Python libraries used by X-Min Learn to apply and build machine 

learning algorithms (see Section 1, subchapter 4.1). Consequently, both input data and mineral 

maps data are stored by X-Min Learn in NumPy-compatible ASCII file formats: classic text 
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files (.txt) and compressed text files (.gz). However, to encourage data sharing and simplify 

input/output data compatibility with other image analysis software, conversion tools are 

included in XML (see chapter 7) as well as a function to export mineral maps data in a numerical 

format (see subchapter 3.2.1). 

 

Figure S3.4 – Extract of a mineral map stored by X-Min Learn. Pixel classes are expressed as mineral 

abbreviations in string format. 

Since the Graphic User Interface (GUI) plays a critical role in the efficiency of a computer 

software that deals with image analysis, a fully interactive interface was developed, where users 

can easily manage and explore the input data with friendly graphic widgets (see chapter 3), 

analyze and customize mineral maps with several image processing algorithms (see subchapter 

3.2 and chapter 6), develop and manage custom machine learning models (see chapter 3) and 

apply them to automatically identify minerals from input data (see chapter 5). The principal 

GUI objects were coded making use of the PyQt library (see Section 1, subchapter 4.1). These 

include windows, buttons, combo boxes, check boxes, popup dialogs, progress bars and many 

other typical GUI elements. The plots and all the related graphic tools were embedded within 

the interface making use of the matplotlib library backends for PyQt. Some particularly long-

time processes (e.g., the training process of a new machine learning model) are computed with 

a multi-threading approach (i.e., different calculations are carried out simultaneously), to grant 

a fresh and responsive behavior of the GUI during long computations. An automatic DPI 

adaptation policy permits XML to run on screens of different sizes and resolutions, while also 
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supporting multiscreen viewing. Several graphic settings, like the font and the toolbar size, can 

also be customized (see subchapter 3.3). The software is distributed with an installer, 

compatible with Windows® 7, 8 and 10. Since cross-platform Python libraries were employed 

in the code, a macOS-compatible version is feasible, although not yet available. 

3 Basic operations: the main window 

The main window of X-Min Learn is the first window that is shown when the software is 

launched. Here the input and output data can be loaded, visualized, explored and analyzed with 

several graphic tools. The window is conveniently subdivided into two main tabs; the first tab 

is the X-Ray Maps tab (Figure S3.5), where users can load and explore input maps data (see 

subchapter 3.1); the second tab is the Classified Mineral Maps tab (Figure S3.6), that includes 

several tools for analyzing and manipulating classified mineral maps (see subchapter 3.2). The 

main window also includes a menu bar (see Figure S3.5a and Figure S3.6a) and the main X-

Min Learn toolbar (see Figure S3.5b and Figure S3.6b), where the principal ML tools can be 

accessed. A detailed description of their features is provided in subchapter 3.3.  

 

Figure S3.5 – Main window of X-Min Learn: X-Ray Maps tab. (a) Menu bar (see Figure S3.10 for details); (b) 

Main Toolbar, displaying the main tools of X-Min Learn; (c) Loaded Maps list; (d) Loaded Maps toolbox, 

including the following functions: 1) Load maps, 2) Refresh maps data source, 3) Delete maps, 4) Invert maps, 5) 

Equalize colormap, 6) Generate RGB(A) composite map; (e) Maps viewer; (f) Maps viewer’s navigation panel 

(from left to right: reset view, pan/zoom, zoom to rectangle, reset zoom, lock zoom, select ROI, save image, 

hovered pixel’s coordinates and value, zoom to pixel); (g) Pixel histogram + navigation panel (from left to right: 

set bins, pan/zoom, zoom to rectangle, save image); (h) RGB(A) composite maps viewer + navigation panel (from 

left to right: reset view, pan/zoom, zoom to rectangle, save image). 
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Figure S3.6 – Main window of X-Min Learn: Classified Mineral Maps tab. (a) Menu bar (see Figure S3.10 for 

details); (b) Main Toolbar, displaying the main tools of X-Min Learn; (c) Loaded Maps list; (d) Loaded Maps 

toolbox: 1) Load maps, 2) Refresh maps, 3) Delete maps; (e) Legend; (f) Loaded Maps toolbox, including the 

following functions: 1) Rename class, 2) Randomize palette colors, 3) Save current palette, 4) Highlight class; (g) 

Maps viewer; (h) Maps viewer’s navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, 

reset zoom, lock zoom, edit pixels, save edits, export IDs, save image, hovered pixel’s coordinates and class, zoom 

to pixel); (i) Mode histogram + navigation panel (from left to right: show mineral amounts, save image); (j) 

Probability maps viewer + navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, save 

image, hovered pixel’s coordinates and value, load probability map).  

3.1 Input maps operations 

The X-Ray Maps tab (see Figure S3.5) gathers several widgets and tools to load and analyze 

input data. Although X-Min Learn provides tools for the automatic classification of the input 

data, input data exploration still plays a fundamental role in the identification of the occurring 

mineral species. Here different well-known statistical techniques can be applied to collect 

different observations from input data (e.g., pixel range distributions, possible presence of pores 

or fractures, preventive estimation of the number / type of occurring classes, etc.), which 

guarantee greater awareness in the choice of the machine learning algorithm, while also 

allowing a better evaluation of the classifier predictions.  

3.1.1 Data loading and visualization tools 

Input maps can be loaded in the Loaded Maps area (Figure S3.5c) by clicking the top-left 

button of the maps’ toolbox (Figure S3.5d1). The list of loaded maps will be shown in the 

Loaded Maps area. A map can be viewed by simply left click on its name; the data will be 

quickly processed as a 2D matrix by X-Min Learn and will be shown in the Maps viewer area 
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(Figure S3.5e). The map histogram, showing the frequency of the map’s pixel values, will be 

automatically computed and displayed in the Pixel histogram (Figure S3.5g). The histogram 

can be used to quickly identify different peaks of the pixel values that may be linked to different 

mineral species, and to highlight portions of maps with similar pixel values (see subchapter 

3.1.2 for further details).  

The loaded maps’ toolbox (Figure S3.5d) gathers several functions that can be applied to input 

maps data (i.e., refresh data source, remove map, invert map, equalize the colormap). One 

important function here is the RGB(A) composite (Figure S3.5d6), that computes an RGB(A) 

composite map by combining the selected maps (see subchapter 3.1.3 for further details). 

The Maps viewer area (Figure S3.5e) is a classic map viewer and supports typical viewing 

operations such as zoom (Ctrl + mouse wheel) and pan (mouse wheel dragging). The area 

includes a color bar that automatically adjusts to the pixel value range of the displayed map. By 

simply scrolling with the mouse wheel, it is possible to quickly display the precedent/following 

map. From the navigation panel (Figure S3.5f) other visualization functions are available. One 

important function is the ROI selection, that permits to select a Region of Interest in the 

displayed map. The frequency of the pixel values within the ROI will be highlighted in the Pixel 

histogram (see subchapter 3.1.2). When hovering with the mouse on top of the displayed map, 

the current pixel information is shown in the navigation panel, such as cartesian/matrix 

coordinates and pixel value (see Figure S3.5f). 

3.1.2 Histogram analysis tools 

The Pixel histogram shows the frequency of the pixel values of the currently displayed map in 

a logarithmic scale. It has its own navigation panel where users can set the number of bins 

through a slider widget (see Figure S3.5g).  When a Region of Interest (ROI) is selected (see 

subchapter 3.1.1), the frequency of the pixel values that fall within the ROI are highlighted in 

the histogram (see Figure S3.7).  

A very useful function of the Pixel histogram is the histogram span, that can be employed to 

select a value range in the histogram. This highlights the portions of the current map that 

displays the pixel values in the span range; the colormap and the color bar in the Maps viewer 

area are adjusted consequently, with pixels with values above and below the range being color-

coded in black and grey respectively (see Figure S3.8). This type of input map visualization is 

effectively a data rescaling operation that can help the user to better detect different mineral 

species and/or mineral zonation patterns. 
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Figure S3.7 – Selection of a Region of Interest (ROI) in map (a); the selected pixel values are highlighted in the 

Pixel histogram (b). 

 

Figure S3.8 – Histogram span function, highlighting in map the pixels within the selected value range. 

3.1.3 RGB(A) composite maps 

An RGB(A) composite map is a multi-channel image, where A is the opacity value (a.k.a. 

alpha), that the user can easily generate by combining input maps. This technique has been used 

for decades by most of SEM programs (e.g., Antonovsky, 1984), to combine the information 

held by different greyscale channels into a new RGB image, in order to visualize the presence 
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of different classes with different colors. RGB(A) composite imaging has also many 

applications in remote sensing (e.g., Ban et al., 2017). Visualizing multiple maps at once can 

be more efficient in discriminating different classes rather than observing one input map at time. 

Even though an RGB(A) composite map cannot be considered the result of a proper 

unsupervised classification, the visual result can effectively highlight in false colors the 

presence of different mineral classes.  

X-Min Learn allows the selection of up to 4 different input maps; the RGB(A) composite map 

is then displayed in the corresponding viewer (Figure S3.5h). The pixel values of selected input 

maps are rescaled to the range [0, 1] by applying the min-max scaling function (see Eq. 1). 

Then each rescaled map is set as a different band (i.e., R, G, B or A) of the composite map.  

The software is sensitive to the selection order, meaning that the first selected map will be set 

as the red (R) channel, the second as the green (G) channel and so on. Any number of maps 

between 1 and 4 can be selected; channels left with no assigned map will be automatically 

populated by an all-one matrix. When zooming on the composite map, the same zoom is applied 

to the displayed input map and vice-versa. When hovering with the mouse on top of the 

composite map, pixel information is shown in the navigation panel as well. Pixel values are 

here expressed as a list of 4 values, one for each channel of the composite map.  

3.2 Mineral maps operations 

The Classified Mineral Maps tab (see Figure S3.6) gathers tools for the interactive 

visualization, analysis and editing of mineral maps. Here the results of the automatic 

classifications (see chapter 5) can be displayed and the percentage amount of the identified 

classes is automatically included in a dedicated legend and within a histogram plot. An 

associated probability map (see subchapter 3.2.2), that holds a pixel-by-pixel confidence of the 

classification result is also here provided.   

3.2.1 Visualization tools 

The Classified Mineral Maps tab has its own viewer (Figure S3.6g), that displays the selected 

mineral map. When zooming a mineral map, the same zoomed view can be applied to the X-

ray map displayed in the X-Ray Maps tab, and vice-versa. An interactive legend, linked to the 

currently displayed map, will be automatically generated (Figure S3.6e) and the classes 

abundancies are displayed in a dedicated histogram (Figure S3.6i). The legend includes several 

settings for conveniently customizing the appearance of the displayed map. For example, each 

class can be renamed; this also permits to merge different classes using the same name. It is 
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also possible to apply a mask to only visualize a specific class. The color of each class can be 

customized through a simple color selection widget. 

From the navigation panel (Figure S3.6h) several basic visualization operations can be 

achieved. An important function here is Edit pixel, that permits to change the name (i.e., the 

class) of the pixels that fall within a user-drawn ROI. The edited pixels can also be employed 

as a simple training set to fetch other similar pixels within the input maps and automatically 

edit them as well. This functionality is managed by the Pixel Editor tool, that is described in 

subchapter 3.2.3. 

The mineral map can also be exported in a numerical format, where mineral class names are 

converted to class IDs. Optionally, a translator text file linking each class to the corresponding 

ID can be generated. This is particularly useful for the compatibility with other image 

processing software, that commonly save the classified data in a numerical format, instead of 

string format like X-Min Learn (see chapter 2). 

3.2.2 Probability maps  

A probability map is provided together with a classified mineral map as result of any X-Min 

Learn classification algorithm. As introduced in Section 1, subchapter 3.7.1, a probability score 

can be extracted from a multi-class classification. A probability map displays the probability 

score of each pixel in the classified mineral map. In chapter 5, where the available ML 

algorithms of XML are discussed, it will be described how such score is extracted from each 

classifier. 

Probability maps can be used as a metric for evaluating the classification performance, by 

quantifying its degree of confidence with a probability score ranging from 0 to 1. However, a 

low probability score does not necessarily indicate an incorrect result and vice versa. It rather 

indicates how confident is the employed ML model / algorithm in yielding the pixel class. Such 

confidence is mostly determined by the amount and the degree of variance of the training data 

utilized during the training of the classifier (or the intrinsic variance of the data itself when 

using unsupervised algorithms), but also by the complexity of the input data that has been 

classified. Therefore, as shown in the example of Figure S3.6j, probability maps are 

particularly useful for highlighting mixed pixels, i.e., pixels that are located on the boundary 

between two different minerals or near fractures. In fact, by their nature, these pixels bring a 

mixed chemical composition and therefore their classification confidence is lower. Using the 

probability score as a rejection factor to exclude low confidence pixel can lead to more 
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confident results and provides a stronger user control. It also helps reducing possible 

inaccuracies resulting from the subsequent processing of mineral maps data.  

Probability maps are saved in the mineral map’s parent folder and are automatically displayed 

in the Probability Maps viewer when the mineral map is displayed (Figure S3.6j). The 

automatic loading may fail if the probability map file is moved or renamed. Therefore, a manual 

load button is provided in the navigation panel of the Probability Maps viewer (see Figure 

S3.6j). When the probability map is zoomed, the same zoomed view is applied to the classified 

mineral map and vice-versa. 

3.2.3 Pixel Editor 

The Pixel Editor is a dialog window (Figure S3.9) that shows up after the user edited some 

pixels of the mineral map (see subchapter 3.1.1). In the central part of the window a Boolean 

map (i.e., a 1-bit map) highlights the edited pixels (see Figure S3.9b). The Pixel Editor provides 

a Training Mode (Figure S3.9f), that can be used to automatically edit the pixels of the entire 

mineral map that are similar to the user-edited ones. The similarity of the pixels is based on 

their original input data, loaded in the X-Ray Maps tab. Users can choose which input maps the 

algorithm must take into account for establishing the pixel similarity. 

 

Figure S3.9 – Pixel Editor window. (a) Input maps list; (b) Edits preview viewer; (c) Edited class drop-down 

menu, useful to select which edited pixel class is visualized; (d) Refresh preview; (e) Save edited map; (f) Training 

mode (from top to bottom: enable training mode checkbox, tolerance box, proximity option – description in the 

text). 
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A custom algorithm computes the automatic analysis in the n-dimensional Euclidean space, 

where n is the number of selected input maps. The variance between a single edited pixel and 

all the pixels of the mineral map is computed as follows: 

𝑉𝑖𝑗 = |𝑀𝑖𝑗 − 𝑒𝑘⃗⃗⃗⃗⃗| 

( 38 ) 

where V is the variance matrix, M is the input maps matrix and 𝑒𝑘⃗⃗⃗⃗⃗ is the k-th user-edited pixel 

(ek) expressed as a vector of input data. V and M have shape h · w · n, where h and w are the 

height and width in pixels of the input maps and n is the number of input maps; the shape of 𝑒𝑘⃗⃗⃗⃗⃗ 

is 1 · 1 · n. 

For each node of V (i.e., for each pixel in the mineral map), if all the variance values along the 

n dimension (i.e., for each input map) are minor or equal to a threshold value, then that specific 

node (or pixel) will be renamed as ek. This computation is reiterated for each user-edited pixel. 

If more than one unique edited pixel name satisfies the “variance ≤ threshold” condition, then 

the name of the pixel with the smallest overall variance is chosen. The threshold is a user-

defined numerical value, that can be changed in the Tolerance box (Figure S3.9f).  

Optionally, the Evaluate Proximity setting (see Figure S3.9f) can be enabled to reduce the 

variance of the pixels the closer they are to the edited ones. This is achieved by calculating a 

proximity matrix (P) that is subtracted to the variance matrix. The proximity index depends on 

the tolerance value (t) provided by the user, and it is computed as: 

𝑃𝑖𝑗 =
𝑡

√(𝑅𝑖𝑗 − 𝑟𝑒𝑘)
2 + (𝐶𝑖𝑗 − 𝑐𝑒𝑘)

2 + 1

 

( 39 ) 

R and C are two matrices representing the row indices and the column indices of the mineral 

map. Together they describe the coordinates of each pixel in the map. On the other hand, 𝑟𝑒𝑘 

and 𝑐𝑒𝑘 are the row index and the column index of the k-th edited pixel. 

The Pixel Editor is not the only X-Min Learn tool that permits to semi-automatically edit a 

map. As will be discussed in chapter 6, the Phase Refiner tool provides more algorithm for the 

post-classification elaboration of mineral maps.  
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3.3 Menu bar and main toolbar  

The Menu bar (Figure S3.5a and Figure S3.6a) includes five main menus: File, Dataset Tools, 

Classification, Post-classification and Utility. 

 

Figure S3.10 – Menu bar. (a) File menu, including import data options and preferences window (see Figure 

S3.11); (b) Dataset Tools menu, including the following tools: Dataset Builder (Figure S3.14), Sub-sample dataset 

(Figure S3.15) and Merge datasets (Figure S3.16) ; (c) Classification menu, including the Mineral Classifier 

(Figure S3.23) and the Model Learner (Figure S3.17, Figure S3.18, Figure S3.19, Figure S3.20 and Figure 

S3.21) tools; (d) Post-classification menu, including only the Phase Refiner tool (Figure S3.29 and Figure S3.30); 

(e) Utility menu, including the Conversion Tools (Figure S3.40 and Figure S3.41) and the Generate Dummy 

Maps tool (Figure S3.42). 

From the File menu (Figure S3.10a) users can import X-ray maps and classified mineral maps 

through the Import submenu. By clicking on Preferences, a window dialog will be displayed 
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(Figure S3.11), where users can set several X-Min Learn settings. The various preferences are 

grouped into three main tabs: General, Plots and Classification. 

 

Figure S3.11 – Preferences dialog window. (a) General tab (from top to bottom: application font size, dynamic 

handlebars option); (b) Plots tab (from top to bottom: shared zoom between X-Ray Maps viewer and Classified 

Mineral Maps viewer; navigation panels [i.e., toolbars] size; decimals amount displayed in legends); (c) 

Classification tab (from top to bottom: custom models logs display advanced [i.e., extended] information, colors 

and filling of training areas when using the k-NN algorithm – see subchapter 5.2).   

The Dataset Tools menu (Figure S3.10b) includes three tools for the assisted development and 

the management of ground truth datasets. They will be described in detail in subchapter 4.1. 

The Classification menu (Figure S3.10c) includes the Mineral Classifier tool and the Model 

Learner tool, useful for the classification of mineral maps through machine learning algorithms 

and for the development and management of custom machine learning models, respectively. 

Both will be described further on in this work, respectively in subchapter 4.2 and chapter 5. 

The Post-classification menu (Figure S3.10d) includes only the Phase Refiner tool, useful to 

refine the output results of mineral classifications through morphological image processing 

algorithms. Its functionalities are discussed in chapter 6.   

The Utility menu (Figure S3.10e) gathers a few utility functions for the conversion of grayscale 

images and RGB images to X-Min Learn supported formats (Conversion tools submenu). The 

Generate Dummy Maps function can be used to build placeholder input X-Ray maps. More 

details about the X-Min Learn utility functions are provided in chapter 7. 
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The main toolbar (Figure S3.5b and Figure S3.6b) provides a quick access to the four most 

important X-Min Learn tools: Dataset Builder (subchapter 4.1.1), Model Learner (subchapter 

4.2), Mineral Classifier (chapter 5) and Phase Refiner (chapter 6). 

4 Developer’s toolkit 

Other software such as XMapTools (Lanari et al., 2014), Trainable Weka Segmentation 

(Arganda-Carreras et al., 2017) or Q-XRMA (Ortolano et al., 2018) already allow training 

machine learning models that can classify an entire sample starting from the examples provided 

in specific user-drawn training areas traced on the input data of the same sample. Optionally, it 

is also possible to apply the same model on other samples. Alternatively, they also provide 

unsupervised algorithms for a classification based on clustering functions. 

With X-Min Learn it is possible to employ the same classification strategies using the k-NN 

algorithm (see subchapter 5.2) and the K-Means algorithm (see subchapter 5.3). However, X-

Min Learn also introduces another more advanced operating approach, which allows users to 

train ML models starting from an arbitrary number of previously classified and validated 

samples. X-Min Learn is the first mineral-oriented software that includes a collection of 

interactive tools for a step-by-step development of custom eager machine learning models (i.e., 

developer’s toolkit). This determines a greater user awareness of the use of ML, since the 

models are built step by step, from the compilation of training and test datasets to the evaluation 

of the model. The whole procedure is simplified to meet the needs of all users, even those not 

experienced in programming. 

This approach is functional to reduce user-driven biases such as the selection bias (i.e., when 

training examples are chosen in a way that is not reflective of their real distribution) and 

confirmation bias (i.e., when assumptions are made based on the user’s own mental models and 

personal experiences – Nickerson, 1998; Pohl & Pohl, 2004). A model trained with user-drawn 

areas is particularly prone to be affected by this last category of bias, as operators are led to 

modify the training areas many times until the model generates a result that aligns with their 

initial hypothesis. Previously classified samples, instead, contain an intrinsic larger class 

variance, since all the pixels are computed as training data instead of just those selected by users 

within arbitrary ROIs. The different samples can also be collected from different rock types, 

thus reducing the selection bias. The evaluation of the model, moreover, is not based on the 

result of a specific classification (i.e., a possible source of confirmation bias), but rather on 
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graphics and statistics during the learning phase (e.g., loss curves, confusion matrices and F1 

scores, as described in Section 1, subchapter 3.8). 

 

Figure S3.12 – Original (a) and final (b) X-Min Learn logical workflow. In (a) the users passively employ the 

models provided by the developer, while in (b) users become active developers, building custom ML models 

tailored for their research needs. Complex and/or technical development steps are simplified to accommodate non-

programming users (i.e., supported users), through the “developer’s toolkit” (see Figure S3.13) 

At the beginning of this Ph.D. project, however, X-Min Learn was envisaged as a container of 

pre-built machine learning models. In this view, an integral part of the software development 

process would have been focused on providing users with several ready-to-use classification 

models. The original workflow of X-Min Learn is schematized in Figure S3.12a. Nevertheless, 

during the development process and after several tests, it was evident that such approach would 

not have covered all users’ requirements. Not considering the large amount of ground truth data 

required to build such models, the main drawback of this approach is that many unpredictable 

variables influenced their reliability. For example, the input maps are arbitrarily chosen by the 

operator depending on the required classification task. Since such maps are effectively the 

model’s features (or variables), pre-trained models were sometimes affected by the omitted 

variables bias (Mehrabi et al., 2021 and references therein). Also, data collected from different 

analysis techniques or instrumentation is another issue that falls within the category of 

measurement bias (Mehrabi et al., 2021). Moreover, the same mineral data can be interpreted 
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and classified in different ways, depending on the user’s task. For example, a plagioclase can 

be identified as class “plagioclase”, as part of the class “feldspar” or as one of the classes 

“anorthite”, “bytownite”, “labradorite”, “andesine”, “oligoclase” and “albite”. A user may also 

be interested in defining sample-oriented classes, for example by assigning a class to a garnet 

that shows a very specific chemism, and then to search within the same sample other garnets 

that fits the same chemical signature. Another issue concerning pre-built models is that they 

reduce the awareness of the users, with a consequent lack of knowledge about the processes 

and the training data that are hidden behind the development of the employed model. After all 

these considerations, the workflow of X-Min Learn was modified (Figure S3.12b). The role of 

users in the new X-Min Learn workflow varied from simple end users, who passively apply the 

models made available by the developer, to active users, who develop customized machine 

learning models for their research needs.  

 

Figure S3.13 – Workflow of the developer’s toolkit in X-Min Learn. The toolkit allows users to build customized 

machine learning models through user-friendly tools, starting from their own ground truth data. Ground truth 

dataset can be automatically compiled and several user-friendly tools and graphics for the tuning of models’ 

parameters and their evaluation are provided. Successfully developed models can then be saved and applied to 

new data to achieve its automatic classification. 
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In Section 1, chapter 3 the concepts and the mathematical formulas behind the development of 

an eager supervised ML model were widely discussed, using the Softmax algorithm, the cross-

entropy loss and the gradient descent optimizer. It was also demonstrated how several 

hyperparameters can be fine-tuned to optimize the learning behavior of the model. X-Min Learn 

users are not expected to implement these functions in a Python script. Instead, a user-friendly 

developer’s toolkit is provided within X-Min Learn, to build machine learning models without 

writing a single line of code. Of course, the toolkit has limited customization opportunities if 

compared with a Python script developed from scratch. Arguably, however, it is an acceptable 

compromise, allowing all users to exploit the potential of machine learning algorithms in the 

analysis of rock’s mineral from the input maps.  

The developer’s toolkit (Figure S3.13) gathers tools for ground truth datasets management 

operations (see subchapter 4.1) and for the actual training of custom machine learning models 

(see subchapter 4.2). 

4.1 Datasets management tools 

The characteristics of a ground truth dataset were described in Section 1, subchapter 0 and the 

steps required to structure one were covered in Section 1, subchapter 3.2. The dataset 

management tools automatize these steps and consist of three tools: Dataset Builder, Sub-

sample dataset and Merge datasets.  

4.1.1 Dataset Builder 

The Dataset Builder (Figure S3.14) is the most important of the dataset management tools, and 

one of the main tools of X-Min Learn. As discussed in Section 1, subchapter 3.2, a ground truth 

dataset consists of features and labels. In X-Min Learn the features are the pixel values of the 

input maps, while the labels are the corresponding pixel mineral classes in the mineral map. 

This tool automatizes the first fundamental step required to build an eager supervised ML 

model, that is to populate a human-readable, machine-friendly, standardized dataset with 

validated examples of already classified data.  

In the Dataset Builder the feature names (i.e., the input maps names, such as Al, Ca, BSE etc.) 

need to be specified (Figure S3.14a) in order to initialize the Dataset Designer (Figure 

S3.14d), that displays them as column headers in a spreadsheet-like viewer. The last column 

(Mineral Map) is always dedicated to the labels, and it is separated from the features columns. 

Each row of the Dataset Designer must be populated with the corresponding input maps and 

the classified mineral map of the same sample. Users can add as many samples (rows) as they 
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want (see Figure S3.14d). A green line indicates in each cell that the map is loaded correctly; 

a red line that the map is missing; a yellow line that the map has a wrong shape (i.e., it does not 

perfectly stack with the other maps). 

 

Figure S3.14 – Dataset builder tool. (a) Input Features selector, where the name of input maps must be indicated; 

(b) Delete features option; (c) Refresh Dataset Designer, that automatically compiles a spreadsheet-like table 

representing the ground truth dataset; (d) Dataset Designer, where input maps (features) and output mineral maps 

(labels) can be loaded ; (e) Dataset Refinement operations (to Rename, Delete and Merge mineral classes); (f) 

Dataset Info, where the amount of pixel per class is displayed; (g) Output CSV file preferences (from top to bottom: 

character for decimal points, character for separator, split dataset option; save dataset to CSV). 

Once all the feature maps (e.g., input maps) and the label maps (i.e., mineral maps) have been 

loaded correctly, the tool can be prompted to automatically process the loaded data and compile 

a proper ground truth dataset. Each instance (i.e., row) of this dataset is populated with the 

features (the numerical values extracted from input maps of a single pixel) and its label (mineral 

class from the classified mineral map). Within the Dataset Refinement box (Figure S3.14e) 

users can then visualize all the identified mineral classes and operate different refinement 

operations such as Rename class, Delete class and Merge classes. In the Dataset Info box 

(Figure S3.14f) a preview of the ground truth dataset can be visualized as well as the pixels 

count for each mineral class. 

The dataset can finally be saved as a CSV file (Figure S3.14g). This format was chosen because 

it is widely compatible with many applications and many users are familiar with it. The most 

popular software for reading CSV file is Microsoft Excel®, that, however, has a limit of 220 

(=1048576) readable rows. While this does not affect the dataset file itself (no rows get deleted), 
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it is not ideal to visualize big size datasets. Since each sample generally contains hundreds of 

thousands of pixels, it is quite easy to reach the Excel rows limit. To avoid this issue, users can 

check the Split dataset option (Figure S3.14g) to split the dataset in multiple files, each one 

with less than 220 rows of data.  

4.1.2 Sub-sample Dataset 

The Sub-sample Dataset (Figure S3.15) is a small tool to extract a sub-dataset from an already 

existing ground truth dataset. After having imported the original dataset (Figure S3.15a), users 

can select which classes to include in the new sub-sampled dataset, with a simple drag and drop 

operation. Once the selection is completed, the derived dataset can be saved as a new CSV file. 

 

Figure S3.15 – Sub-sample Dataset tool. (a) Original Dataset input box, where the original dataset must be loaded 

(from top to bottom: import dataset, character for decimal point, loaded dataset filename); (b) Sub-sampled Dataset 

box, where the derived sub-sampled dataset can be saved (from top to bottom: character for decimal point, 

character for separator, save sub-sampled dataset); (c) Original Dataset preview; (d) Original Dataset mineral 

classes; (e) Sub-sampled Dataset mineral classes. Mineral classes from (d) can be dragged and dropped in (e) to 

include them into the sub-sampled dataset. 

4.1.3 Merge Datasets 

The Merge Datasets tool (Figure S3.16), as the name suggests, can be used to merge multiple 

ground truth datasets. It can be very useful to improve models over time by adding more ground 

truth data to their training datasets. After having loaded the “parent” datasets (Figure S3.16a), 

a list of the added file paths will be displayed (Figure S3.16b), and users can click on each 
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individual path to display a preview of the corresponding dataset (Figure S3.16e). By clicking 

the Merge button (Figure S3.16d), all loaded datasets will be merged into a new one, that can 

then be saved in CSV format as well. 

 

Figure S3.16 – Merge Datasets tool. (a) Import multiple “parent” datasets; (b) List of loaded datasets filepaths; 

(c) Remove imported datasets; (d) Merge datasets button; (e) Preview of the selected dataset in (b); (f) Merged 

dataset preview; (g) Save merged dataset button. 

4.2 Model Learner 

The Model Learner is the second main tool of X-Min Learn and contains all the functions to 

build a new custom machine learning model or to update an existing one. After having compiled 

a ground truth dataset (see subchapter 4.1), the subsequent steps for the training of custom eager 

supervised ML models (Section 1, subchapter 3.7), are condensed and automatized in this tool. 

The models developed with the Model Learner can be customized to solve different 

classification tasks. Users build a greater awareness of the purposes (and reliability) of their 

custom models, because they are trained with the samples provided by the users themselves. 

For example, models that recognize the most common mineral classes (e.g., quartz, feldspars, 

micas etc.) can be trained with a consistent amount of ground truth data that include lots of 

examples, to cover the intra-class variability of certain mineral species (e.g., amphiboles, 

pyroxenes, felspars etc.). However, users may also train models tailored for the classification 

of the phases occurring in a very specific rock type or even in a specific sample. Tailored models 

are able to also recognize small intra-phase variabilities of certain mineral species (see for 

example the case studies provided in chapters 8 and 9). Models can also be updated in the Model 

Learner with new training data (see subchapter 4.2.3), allowing their refinement over time. 
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Figure S3.17 – Model Learner tool: Settings Panel. (a) Ground truth dataset (from top to bottom: import dataset 

+ character for decimal point, loaded dataset filename, dataset preview); (b) Random seed generator, to control 

the randomization of certain learning operations; (c) Previous model box, to update existing models (from top to 

bottom: load model, remove model); (d) Hyperparameters (from top to bottom: learning rate; weight decay, 

momentum, number of epochs); (e) Learning preferences (from top to bottom: regressor type selector [i.e., 

polynomial kernel feature mapping – see subchapter 4.2.1], polynomial degree, ML algorithm selector, optimizer 

selector, use GPU or CPU for computation, update rate of accuracy and loss plots – see Figure S3.20); (f) Start 

learning session, Stop learning session, Test model, Save model. 
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The Model Learner provides interactive tools for the customization of users’ models, and, 

especially, for a more unbiased evaluation of their performance. The Model Learner window is 

divided into two scrollable panels: the Settings Panel (Figure S3.17) and the Training 

Visualization Panel (Figure S3.18, Figure S3.19, Figure S3.20 and Figure S3.21). At the 

bottom of the Settings Panel there are four buttons, respectively useful to launch and stop the 

learning sessions, and to test and save the trained models (Figure S3.17f). From this panel users 

can set the model’s hyperparameters and various other learning settings that influence the 

learning session (see subchapter 4.2.1 for further details). The Training Visualization Panel 

includes four main boxes, useful for: splitting the ground truth dataset into train, validation and 

test sets, balancing the train set to address the issue of imbalanced datasets, evaluate and 

monitor the status of the learning operations through interactive graphics and statistics and test 

the model. The order of the boxes within the Training Visualization Panel reflects the order of 

the steps that users must follow to correctly train and test a custom machine learning model (see 

Figure S1.5), as described in the next subchapter.  

4.2.1 The learning session 

The initial steps required during the training of a custom eager supervised ML algorithm include 

the dataset shuffling (to avoid sampling biases) followed by the splitting of the ground truth 

dataset into three subset (i.e., the train, the validation and the test sets – see Section 1, 

subchapter 3.3). The dataset shuffling is automatically performed once the ground truth dataset 

is loaded (Figure S3.17a), while the splitting is prompted by users, that can also set the 

preferred sets ratio (see Figure S3.18a). The train set contains the pixel data from which the 

model extracts the knowledge useful to link the input features to the output labels. The 

validation set is used to test if the model parameters that describe such relationships are valid. 

The labels of the validation set are indeed hidden to the machine during the training phase and 

are only used as a metric to validate the model flexibility with “unknown” data. Therefore, the 

model cannot access the validation data during training, otherwise such metric would be biased. 

The learning session of the Model Learner consists of an active hyperparameters tuning (see 

Section 1, subchapter 3.9) operated by users, with the aim of optimizing the model performance. 

The train and the validation sets are compared multiple times with different hyperparameters 

settings, until a satisfactory performance (i.e., high accuracy, low error, converging confusion 

matrices, etc. – see Section 1, subchapter 3.8) is achieved on both sets. This, however, may 

introduce a huge confirmation bias, since the hyperparameters are fine-tuned based on the best 

result achieved always on the same sets of data (i.e., train and validation data); this may generate 
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an overfitted model, not reliable with new data that the machine has never “seen”. To reduce 

this issue, the third subset (i.e., the test set) is examined only after the learning session is 

completed, as a more unbiased metric of evaluation of the model’s performance. After having 

evaluated the model with the test set, hyperparameters should not be changed anymore and the 

learning session should be stopped.  

The randomization that determines the shuffling of the ground truth dataset and that, 

consequently, affects the data that populates each one of the train, validation and test sets, is 

controlled by a random seed generator (Figure S3.17b), which automatically generates a 

number that produces pseudo-randomizations. The random seed controls all the randomizations 

that are operated during the learning session. This means that two learning sessions, with same 

input data and same hyperparameters settings will never produce the exact same result. 

Therefore, for reproducibility purposes, the random seed can be manually set by users. Every 

time the same experiment (i.e., learning session) is reproduced with same data, same parameters 

and same seed, the results will be always consistent. 

 

Figure S3.18 – Model Learner tool: Training Visualization Panel (part I – Split dataset). (a) Split ground truth 

dataset with custom ratios; (b) Histogram of train, validation and test sets per mineral class; (c) Train, validation 

and test sets per-class counters. 

The following step, after the splitting of the ground truth dataset, is the data pre-processing 

(as described in Section 1, subchapter 3.4). In the Model Learner, the pre-processing operations 

are fully automatized, and include the label encoding (a procedure required by the machine to 

assign each class to a progressive numeric ID) and the feature scaling, useful to re-project the 

data (train, validation and test) to a new coordinates system where all the features have zero 

mean and unit standard deviation, using the formula of Eq. 2. 
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At this point users should check the number of pixels assigned to each class in each set (Figure 

S3.18c), that is also visible in a dedicated histogram (Figure S3.18b). Here, an imbalanced 

distribution of pixels across the different classes may lead to inaccurate models, and, therefore, 

it is recommended to apply balancing functions (Figure S3.19), especially when the model 

struggles to minimize errors on underrepresented classes. Balancing functions include an entire 

category of algorithms for data manipulation, aimed at reducing the impact of imbalanced 

datasets on the learning performance. Therefore, they can still be considered as data pre-

processing operations. In subchapter 4.2.2 these algorithms are discussed and an example of 

their impact on learning performance is provided. 

 

Figure S3.19 – Model Learner tool: Training Visualization Panel (part II – Balancing operations). (a) Balancing 

algorithms info; (b) warning icon displayed when a cleaning under-sampling algorithm is selected – see subchapter 

4.2.2; (c) Over-sampling algorithm and linked neighborhood parameters selector; (d) Under-sampling algorithm 

and linked neighborhood parameter selector; (e) Balancing strategy selector; (f) Start balancing operations; (g) 

Clear all balancing operations; (h) Balancing Table (from left to right: class names, original number of pixels per 

class, current number of pixels per class, number of pixels per class after the currently selected balancing strategy 

will be applied. 

After the pre-processing operations are concluded, the hyperparameters and other learning 

preferences must be set (Figure S3.17e,d). Users can follow the guidelines provided in Section 

1, subchapter 3.9 for fine-tuning the hyperparameters. The best strategy is to launch a learning 

session (Figure S3.17f) and monitor the model’s performance by consulting the graphics 

displayed in the Learning Evaluation box (Figure S3.20). The loss (i.e., the error function) and 

accuracy plots and the confusion matrices are useful for evaluating the performance of the 

model on train and validation sets and, consequently for fine-tuning the hyperparameters 

accordingly. This is the longest step of the entire procedure and usually multiple learning 

sessions are required for a proper fine-tuning of hyperparameters.  
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Figure S3.20 – Model Learner tool: Training Visualization Panel (part III – Learning Evaluation). (a) Train and 

Validation sets loss (left) and accuracy (right) plots + corresponding navigation panels (from left to right: reset 

view, pan/zoom, zoom to rectangle, save image); (b) Train (left) and validation (right) sets confusion matrices + 

corresponding navigation panels (from left to right: reset view, show values as percentages, pan/zoom, zoom to 

rectangle, save image). Below them the corresponding F1 scores (micro-averaged, macro-averaged and weighted 

averaged) are displayed. 

The other learning preferences that can be set (Figure S3.17d) include the regressor type, the 

algorithm, the optimizer and the option to process the data with a dedicated NVIDIA® GPU, if 

present on the machine, for a faster computation. The Softmax Regressor (with Cross-Entropy 

Loss) and the Gradient Descent (as described in Section 1, subchapter 3.7.1) are, respectively, 

the only algorithm and optimizer available at the moment in this first version of X-Min Learn. 

Nevertheless, the Model Learner workflow is coded in a way that foresee integrations of further 

algorithms, optimizers and loss functions, that are already planned to be added in future updates 
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(see chapter 10). This will increase exponentially the degree of customization available to X-

Min Learn users.  

The regressor type option allows the selection of a linear or a polynomial regressor to process 

the input data. The degree of the polynomial regressor can be chosen as well. Actually, a 

polynomial regressor is still a linear regressor whose input data is firstly fed to a polynomial 

kernel function. This operation is known as “kernel trick” (Theodoridis & Koutroumbas, 2006) 

and is useful to increase the dimensionality of input data. For example, if a train set has three 

features (a, b and c), a polynomial kernel (ϕ) of degree 2 processes them as follows: 

Φ(𝑎, 𝑏, 𝑐) = 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑐, 𝑎2, 𝑏2, 𝑐2  

( 40 ) 

This operation increases the number of input features, allowing the identification of potential 

non-linear patterns in the data. However, it may also increase the chance of experiencing 

overfitting, especially with high polynomial degrees. 

 

Figure S3.21 – Model Learner tool: Training Visualization Panel (part IV – Model testing). (a) Test set scores; 

from top to bottom: navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, save image), 

confusion matrix, accuracy score, micro-averaged, macro-averaged, and weighted averaged F1 scores; (b) Model 

variables log preview. 
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There is no specific metric that tells when to stop the learning operations, because it mainly 

depends on the processed data. However, generally the consideration made in Section 1, 

subchapter 3.8 can be used as guidelines. Therefore, if the loss and accuracy curves have 

reached a plateau on both train and validation sets, there is no sign of (or small) overfitting and 

the confusion matrices show a high per-class classification accuracy, then the session can be 

stopped, and the model can finally be tested on the test set. 

The testing results can be checked in the Model testing box (Figure S3.21a). Here a preview of 

the model internal parameters is also provided (Figure S3.21b). This preview contains all the 

information that users may want to check before applying the model to new data (see subchapter 

5.1). Such information can also be used to reproduce the entire learning session again, as it 

keeps track of every parameter and operation. The final step is to simply save the model as a 

.pth file (a PyTorch compatible file format), with the Save Model button (Figure S3.17f).  

4.2.2 Balancing operations 

Imbalanced datasets have been addressed to as one of the top ten problems in pattern 

recognition and data mining (Yang & Wu, 2006), restricting the performance and accuracy of 

classifiers (Kaur et al., 2019). Supervised machine learning algorithms are indeed structured to 

yield the best results when processing balanced data (i.e., where each class is populated with 

similar amounts of examples). However, real world datasets are often populated with 

imbalanced data, and several approaches have been hence proposed to handle this problem (He 

& Garcia, 2009; Pozzi et al., 2009; Dal Pozzolo et al., 2013, Kaur et al., 2019). 

Mineralogical and petrographic data is not exempt from the “curse of imbalanced datasets”, as 

the modal amount of minerals extremely differ in natural rocks depending on the mineral 

species. In fact, rocks-forming minerals are grouped in two wide categories: essential minerals 

and accessory minerals. A common granitic rock can be, for example, considered as a source 

of imbalanced mineral data, as it contains a huge amount of essential minerals like quartz and 

feldspar, and small amounts, if any, of accessory minerals like zircon, tourmaline etc. If 

chemical data is collected from X-ray elemental maps of natural rocks and such data is used to 

compile a ground truth dataset, almost certainly an imbalanced dataset will occur. This happens 

because the eager supervised algorithm implemented in X-Min Learn (i.e., the Softmax 

Regressor) is programmed to automatically refine its internal parameters based on the 

minimization of the cost (or error) function (i.e., the Cross-Entropy loss – see Section 1, 

subchapter 3.7.1), that is computed on the correct/wrong predictions of the whole train set. 
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Since minority classes are underrepresented, their contribution to the cumulative error is 

minimal, and therefore tends to be ignored during the optimization process, in favor of major 

classes.  

 

Figure S3.22 – Effects of balancing operations on an imbalanced dataset. (a) Mediocre model performance 

without balancing operations; (b) Better model performance after having applied SMOTE and NearMiss 

algorithms on the train set, increasing the number of pixels of the minority classes (green arrows) and reducing 

the amount of pixel of the majority classes (red arrows). 
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This is the reason why several functions for dealing with imbalanced data were included within 

the Model Leaner tool (i.e., the Balance train set box – see Figure S3.19). The Python library 

imbalanced-learn by Lemaître et al. (2017) provides the balancing algorithms that X-Min Learn 

makes available to users in a friendly environment. These algorithms can be grouped in two 

families: over-sampling algorithms, that generate synthetic data based on real available data, 

and under-sampling algorithms, that remove data of over-populated classes. The goal is to 

obtain a balanced distribution of examples for each mineral class that the model is expected to 

recognize. 

An important clarification is required: X-Min Learn enables to apply balancing operations only 

on the train set, as validation and test sets must contain pristine real-world data for the model 

to be tested on. The Balancing Table (Figure S3.19h) is divided into four columns. The first 

column (“Class name”) lists the mineral names, while the second one (“Original size”) the 

original (i.e., before any balancing operation) number of pixels per mineral. The third column 

(“Current size”) shows the current number of pixels, that differs from the original if any 

balancing operation was performed. The fourth column (“After balancing”) is the only user-

editable column. Here users can insert the number of pixels they want to get for each class after 

starting the next balancing operation. More than one balancing session can be applied in 

sequence. 

Users may also apply a balancing strategy (Figure S3.19e) to autofill the fourth column, for 

example, with the average value of pixels-per-class, or with the pixels amount of the 

majority/minority class and more. A custom unique value can also be specified. Mineral classes 

with a value in the “After balancing” column that is bigger than the value in the “Current size” 

column will be over-sampled, and, oppositely, if that value is smaller, they will be under-

sampled. If the value is the same, then no over-samplings or under-samplings will be performed 

for that mineral class. However, over-samplings and/or under-samplings can only occur if a 

corresponding algorithm has been selected. The selection can be operated from the dedicated 

drop-down menus (see Figure S3.19c,d).  

The available balancing algorithms list, aim and explanation is listed below; a complete 

description, supported by practical examples and mathematical formulations, of each one of 

these algorithms can be found in the official page of the imbalanced-learn library, at 

https://imbalanced-learn.org/stable/index.html. A similar link can be accessed by X-Min Learn 

users from the Info button (Figure S3.19a) within the Balance train set box. Many of these 

https://imbalanced-learn.org/stable/index.html
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balancing algorithms apply randomizations during their computation. As for all the other 

randomizations that happen within the Model Learner, they are controlled by the user selectable 

random seed (see Figure S3.17b) and are therefore completely reproducible.  

The over-sampling algorithms (Figure S3.19c) generate new synthetic data by interpolation, 

using a k-nearest neighbors (k-NN) rule (k-NN is discussed more in subchapter 5.2). They 

differ for the strategy they implement to select which sample to use for computing the 

interpolation. They are: 

• SMOTE, a.k.a. Synthetic Minority Over-sampling Technique (Chawla et al., 2002), that 

generates new samples without making any distinction in the original data. The minority 

class is over-sampled by taking each minority class sample and introducing synthetic 

examples along the line segments joining any/all of the k minority class nearest 

neighbors (Chawla et al., 2002). 

• BorderlineSMOTE, a SMOTE variant that categorizes each sample (si) of the original 

data as: noise, if all nearest neighbors are from a different class of si, in danger, if at 

least half of the nearest neighbors are from the same class of si, and safe, if all nearest 

neighbors are from the same class of si. Then it will generate new data by interpolating 

only the samples in danger.  

• ADASYN, a.k.a. Adaptive Synthetic (He et al., 2008), that generates new data next to 

the original samples which are wrongly classified using a k-NN classifier. The essential 

idea of ADASYN is to use a weighted distribution for different minority class examples 

according to their level of difficulty in learning, where more synthetic data is generated 

for minority class examples that are harder to learn (He et al., 2008). 

All three algorithms require a user-defined parameter (k-neighbors, see Figure S3.19c) that 

defines the size of the neighborhood to consider. The BorderlineSMOTE requires a further 

parameter (m-neighbors, see Figure S3.19c) which is the number of nearest neighbors to use 

to determine if a sample is in danger. 

The under-sampling algorithms (Figure S3.19d) can be grouped in two main categories: 

controlled under-samplers and cleaning under-samplers. The first category is controlled by the 

number of required pixels per class (strategy) typed in by the user in the “After balancing” 

column (Figure S3.19h), while the latter ignores it. If a cleaning under-sampler is selected, a 

warning icon will be displayed next to the Balancing Table (Figure S3.19b), to inform users 

that the selected algorithm will ignore the strategy. The available algorithms are: 
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• RandUS, referred to the RandomUnderSampler algorithm of imbalanced-learn, a 

controlled under-sampler that randomly removes samples from the majority classes of 

the train set. 

• NearMiss, referred to the NearMiss-1 of imbalanced-learn, is a controlled under-

sampler that removes the samples based on a nearest neighbors approach, introduce for 

the first time by Mani & Zhang, 2003. It removes the samples whose average distance 

to the n closest samples of another class is the smallest. 

• TomekLinks, a cleaning under-sampler that firstly detects the samples that exhibit a 

Tomek Link (Tomek, 1976), i.e., they are the nearest neighbors of each other and 

belongs to different classes. It then removes those samples that belongs to a class that is 

targeted for under-sampling operations. Therefore, this method explicitly seek to find 

boundary points (Tomek, 1976). 

• ENN-all and ENN-mode, two versions of the EditedNearestNeighbors algorithm 

implemented in imbalanced-learn. Both are cleaning under-samplers that remove data 

based on a nearest neighbors approach, selecting those samples that do not agree 

“enough” with their neighborhood. ENN-all also removes samples if their neighborhood 

does not entirely belong to their same class, while ENN-mode does not. 

• NCR-all and NCR-mode, two versions of the NeighbourhoodCleaningRule algorithm 

from imbalanced-learn. This last cleaning under-sampler uses ENN to remove some 

sample. Additionally, it uses a 3 nearest neighbors rule to remove samples which do 

not agree with this rule. The selection of the version simply reflects on the choice of the 

ENN version.  

Some of the under-sampling algorithms require a user-defined parameter (n-neighbors, see 

Figure S3.19d) that defines the size of the neighborhood to consider. When not required, it will 

be automatically disabled. 

Data balancing is an optional pre-processing operation that should be employed after having 

performed a standard leaning session using unaltered data. A confusion matrix showing a bad 

classification of poorly represented mineral classes may indicate the need to apply balancing 

operations on the train set. These operations shall affect only the interested mineral classes (i.e., 

the over-represented and the under-represented). Different under-sampling and/or over-

sampling algorithms should be compared to obtain the best possible result. In the worst scenario 

the best practice is to exclude extremely under-represented mineral classes from the dataset, or, 
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alternatively, to collect more data specifically for them. In Figure S3.22 an example of the 

effects of balancing operations on an imbalanced dataset is provided.  

4.2.3 Update models 

Custom machine learning models developed with the Model Learner can be updated any time 

with new training data. In order to update an old model, users must firstly load a new ground 

truth dataset (Figure S3.17a). Then the old model can be loaded in the Load previous model 

box (Figure S3.17c). X-Min Learn will automatically detect if the input features (i.e., the input 

maps) of the loaded model coincide with the input features of the new ground truth dataset. If 

they do not coincide, an error will be raised. In update mode the polynomial degree, within the 

Learning preferences box (Figure S3.17e), is set according to the parent model (i.e., the old 

model) and cannot be changed by the user.  

From this point onward, the learning session can be executed normally, as described in 

subchapter 4.2.1. The loss and accuracy curves will start from the last loss and accuracy values 

of the parent model. The update mode can also be useful to set model checkpoints within the 

same learning session. 

5 Mineral Classifier 

The Mineral Classifier (Figure S3.23) is the third main tool of X-Min Learn, useful to 

automatically or semi-automatically classify the input data with different ML algorithms, 

including the custom models developed with the “developer’s toolkit” (see chapter 4). The tool 

can only be executed if input maps are already loaded in the X-Ray Maps tab (see subchapter 

3.1.1). Such maps will be listed in the Input Maps box of the (Figure S3.23a), where they can 

be included/excluded from the computation. Just below them, the user can select the classifier 

(Figure S3.23b), from three choices: Pre-trained Model, KNN, K-Means. A detailed 

description of these three classifiers is provided in subchapters 5.1, 5.2 and 5.3, respectively.  

The Algorithm Preferences box content (Figure S3.23c) changes depending on the selected 

classifier. The Sub-phase Identification box (Figure S3.23d) permits to reiterate the 

classification algorithms to explore a specific subphase of an already classified mineral map; 

more about this in subchapter 5.5. The Preferences box (Figure S3.23e) permits to set a 

classification confidence threshold, extracted from the probability maps. Each classifier 

generates a probability map with different approaches, that are described in the following 
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subchapters. Pixels with a probability score below this threshold will not be assigned to a proper 

mineral class; instead, they will be grouped into an X-Min Learn default class named ‘_ND_’.  

The Algorithm Panel (Figure S3.23f) changes its content according to the selected classifier. It 

contains several algorithm-oriented utilities and/or statistical tools. Finally, in the Classification 

result box (Figure S3.23g) the classified mineral map is displayed; next to it, a Boolean map is 

displayed as well, highlighting the pixels that were not classified because their probability score 

was lower than the user-defined confidence threshold. Below the two maps, an interactive 

legend and a mode histogram are displayed. 

 

Figure S3.23 – Mineral Classifier tool (pre-trained model). (a) Input maps list; (b) Classifier selector; (c) 

Algorithm Preferences (from top to bottom: load model, loaded model filename); (d) Sub-phase identification box 

(from top to bottom: mineral map selector, mineral phase selector, refresh mineral maps list); (e) Preferences (from 

top to bottom: confidence threshold, auto-load result in the Classified Mineral Maps tab – see Figure S3.6c, start 

classification and save mineral map); (f) Algorithm Panel: loaded model variables preview + navigation panel 

(from left to right: enable document editing, search box, search up, search down, zoom in, zoom out). 

5.1 Pre-trained Model 

The Pre-trained Model permits to classify input data by employing a custom ML model 

developed by users with the developer’s toolkit (see chapter 4). This type of classifier allows a 

completely automatic classification of the sample. The Algorithm Preferences box (Figure 

S3.23c) here only includes a Load model button, that users can click to load their custom 

models. In the Algorithm Panel the model’s variables will be displayed (Figure S3.23f). Many 

useful information about the loaded model can be checked here, like the seed, the number of 

epochs, the learning rate, the ground truth dataset path and more. One of the most important 
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variables to check here before using the model is the “ORDERED_XFEAT”, that lists the 

names of the input maps (features) that the model was trained with. They must coincide with 

the input maps listed in the Input Maps box (Figure S3.23a). An eager machine learning model 

can indeed only work properly if fed with the same type of input features it was trained with. 

To help the model to recognize each required feature, users can also rename the maps in the 

Input Maps box through the buttons placed next to each map (see Figure S3.23a). Maps can 

also be included or excluded from the computation through their checkboxes. Another 

important model variable to check is the “Y_DICT”, that lists the mineral classes that the model 

was trained to identify.  

The probability maps are generated automatically during the classification, because the 

probability score calculation is an integral part of the process (see Section 1, subchapter 3.7.1). 

Indeed, the probability score coincides with the estimated probability �̂� (computed by the 

algorithm) that the i-th input sample (given its features x and the model weights θ) is part of the 

class κ, as described in Eq. 24. For each sample (i.e., pixel) the Softmax Regressor outputs a 

probability distribution across all K classes, so that the probability sum is always equal to one 

(see Eq. 21). The model will then output the class with the higher probability value. This exact 

value is stored in the probability map and plays the role of classification confidence.  

5.2 K-NN 

The K-Nearest Neighbors algorithm (k-NN – Cover & Hart, 1967) is a lazy machine learning 

algorithm (see Section 1, subchapter 3.1), included in X-Min Learn after the implementation in 

the scikit-learn library (Pedregosa et al., 2011). With k-NN users can launch a semi-automatic 

supervised classification, by manually drawing some training areas over the sample. The 

algorithm will then classify the entire sample based on those areas.  

The Training Areas Counter (Figure S3.24d) lists all the drawn training areas, specifying the 

corresponding mineral class and the pixel counts. Here users can select the areas to highlight 

them in the Maps Viewer (and vice-versa) as well as change their mineral class or remove them. 

A histogram displays the pixel count for each mineral class. 

The k-NN classifier assigns each pixel to the mineral class most common among its k nearest 

neighbors (see Figure S3.25). K is an integer, preferably an odd number, that users can select 

in the Algorithm Preferences box (Figure S3.24a). The larger is K, the smoother the 

classification result will be, but some information may be lost. Conversely, the smaller is K, the 

more detailed the classification will be, eventually introducing noise.  
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Figure S3.24 – Mineral Classifier tool (k-NN). (a) Algorithm preferences (from top to bottom: neighborhood size, 

weights selector (uniform or distance weighted), pixel proximity experimental function. (b) Navigation panel 

(from left to right: reset view, zoom/pan, zoom to rectangle, save image, lock zoom, draw training areas, training 

areas color settings – see also Figure S3.11c, display next input map, display previous input map); (c) Maps 

viewer; (d) Training areas counter (from left to right: training areas table, navigation panel, training areas 

histogram). 

 

Figure S3.25 – K-Nearest Neighbors rule. The unknown pixel (yellow) is classified according to the number of k 

nearest neighbors pixels in the 2-features space (F1, F2). With k=3 and k=5, the pixel is assigned to class B (red); 

however, with k=7 and k=9 the same pixel is classified as class A (blue). 

The neighbors are selected among the pixels that fall within the user-drawn training areas. The 

neighborhood is features-oriented, meaning that the algorithm considers the pixel vicinity in 

the features space (an n-dimensional space, where n is the number of input maps), and not in 

the sample coordinates space. To include the pixel proximity in the sample coordinates space, 

users can enable the Pixel Proximity option in the Algorithm Preferences (Figure S3.24a). This 
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option adds on the fly two more features to the input data: the x and the y coordinates. It is 

however an experimental function, recently introduced into the software and still under testing. 

One last option that users can choose is whether to weight all the neighbors equally (Uniform 

weight) or based on their distance (Distance weight), so that the closer they are, the more they 

are weighted. 

The probability maps are extracted pixel-by-pixel from a k-NN classification result because the 

probability score is defined as the degree of agreement of the neighborhood. In other words, the 

probability score is computed as the ratio between the number of neighbors displaying the most 

voted class and the size of the considered neighborhood. For example, for a 5-nearest neighbors 

rule, if the top voted class is ‘Plagioclase’ and all 5 neighbors are labelled as ‘Plagioclase’ than 

the probability score is 1. If only 3 out of 5 are labelled as ‘Plagioclase’, the score is 3/5 = 0.6.  

5.3 K-Means 

The K-Means approach (MacQueen, 1967) was already introduced in Section 2, subchapter 

4.1.3. Like k-NN, this algorithm is also implemented in the scikit-learn Python library. It is a 

very well-known unsupervised machine learning algorithm that clusters the data into a K 

number of classes defined by the user. The number of classes can be selected in the Algorithm 

Preferences box, as well as a random seed, since K-Means initializes the clusters randomly and 

therefore classification results may slightly change with different pseudo-randomizations. As 

for k-NN, the Pixel Proximity option is also here available (see Figure S3.26a); the same 

considerations made in subchapter 5.2 apply here. 

The Algorithm Panel includes post-classification scores and graphics to evaluate the clustering 

result. The silhouette score (also implemented in the scikit-learn library) is a very useful tool, 

introduced by Rousseeuw (1987), to graphically evaluate if the number of required clusters is 

appropriate (see Figure S3.26b). The score defines how well a pixel fits its own cluster 

(cohesion) compared to other clusters. The score ranges from −1 to +1, where a big (positive) 

value indicates that a pixel is properly assigned to its own cluster. A small (negative) value 

instead indicates that the pixel is probably placed in the wrong cluster. For each cluster, if most 

pixels have a high value, then K is appropriate. Otherwise, the clustering configuration may 

have too many or too few clusters. Since the silhouette score is computationally expensive, 

users can select a random subset of the data to evaluate the entire result (Figure S3.26c). Other 

scores for clustering evaluation are also available in the Other scores box (Figure S3.26d), such 
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as the Calinski-Harabasz Index (CHI – Caliński & Harabasz, (1974)) and the Davies-Bouldin 

Index (DBI – Davies & Bouldin (1979)). 

 

Figure S3.26 – Mineral Classifier tool (K-Means). (a) Algorithm Preferences (from top to bottom: number of 

classes, random seed selector, pixel proximity experimental function); (b) Silhouette plot; (c) Silhouette score box 

(from top to bottom: subset of data used for computation, random seed selector, start computation); (d) Other 

scores box (from top to bottom: Calinski-Harabasz Index, Davies-Bouldin Index). 

Probability maps of K-Means classifications are computed pixel-by-pixel as the proximity of 

each pixel to the centroid of its own cluster in the features space. Firstly, the distance between 

each pixel to the nearest cluster centroid is computed. Then, the distances values are normalized 

in the range [0, 1], by applying the min-max scaling function (see Eq. 1). Finally, the probability 

scores are extracted by inverting the normalized distance values (i.e., 1 – distance), to get a 

proximity score, that is considered as a confidence score. 

5.4 Algorithms comparison 

The three available classifiers in the Mineral Classifier tool use different approaches to analyze 

and classify the data, therefore, there are different pros and cons for each one of them. Although 

some algorithms may be more suitable for specific case studies, the best practice is to compare 

the results of different classifiers. The main pros and cons of each classifier are summarized in 

Table S3.1. The same thin section of a metamorphic rock was classified with each algorithm 

to compare their results, that are displayed in Figure S3.27. The following input data was 

collected: X-ray maps of Al, Ca, Fe, K, Mg, Mn, Na, Si, Ti and BSE map. The maps size is 512 

by 400 pixels. The time required for the computation was comparable for each classifier; each 
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algorithm completed the classification under 10 seconds. The k-NN classifier, however, 

required about 25 extra minutes to define each training area and the K-Means required about 

15 extra minutes to individuate the appropriate number of clusters and to assign each identified 

cluster to the corresponding mineral class. 

Classifier Pros Cons 

Pre-trained 

Model 

Fully customizable Ground truth data is required 

Very fast even with large maps Building models is time-consuming 

Fully automatic classification Influenced by noisy data 

Reduces users-driven biases Requires specific maps 

k-NN 

Very user-controlled Biased by user’s interpretation 

High classification accuracy Slow with large maps 

Does not require specific maps Drawing areas is time-consuming 

Can produce ground truth data Different k yields different results 

K-Means 

Highly objective (unbiased) Not very user-controlled 

Statistically strong  Better with even-sized clusters 

Does not require specific maps Does not output mineral names 

K can be fine-tuned with statistics Clustering statistics are slow 

 

Table S3.1 – Pros and cons of X-Min Learn mineral classifiers. 

The pre-trained model was trained using other metamorphic rocks samples, collected from 

different outcrops and lithotypes, as ground truth data. An issue of this first classifier was that 

it assigned very small amounts of pixels to certain mineral classes that are not truly occurring 

in the analyzed sample (i.e., FeOx, Px, and Rt, namely iron oxide, pyroxene and rutile). These 

pixels are noisy data, that the model recognized as true mineral classes. Many of them were 

excluded with the confidence threshold, but some had a high probability score that prevented 

their filtering. This is a small issue that can occur with pre-trained models and can be fixed with 

post-processing operations in the Phase Refiner tool, as discussed in chapter 6. Nevertheless, 

the classification result is in accordance with the other classifiers. The main difference is in the 

number of pixels assigned to the class biotite (Bt) and the class white mica (Wm). This classifier 

assigned some pixels to Bt that the other classifiers tended to assign to Wm. As a consequence, 

the amount of Bt individuated by the model is higher, at the expense of Wm. These pixels are 

concentrated in narrow areas of contact between biotite and other phases like garnet and 
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plagioclase, thus determining an oscillation of Al, Fe an Mg pixel values of biotite. The model 

was trained on different samples containing biotite and therefore can correctly identify the 

occurrence of biotite with depleted contents of Fe and Mg, or with increased contents of Al. 

The k-NN and the K-Means algorithms, instead, assigned those pixels to Wm, because, in the 

first case, the training information of biotite derived from training areas collected within the 

same sample where biotite shows the ideal contents of such elements (i.e., selection bias); in 

the second case (i.e., with K-Means), the unsupervised approach determined the association of 

such pixels with the Wm cluster, because, again, they show a different chemical composition 

with respect of the “ideal” biotite cluster. 

 

Figure S3.27 –Comparison of the results of a sample classification using the three available classifiers of X-Min 

Learn. (a) Pre-trained Model, with (d) its corresponding probability map, (b) k-NN, with (e) its corresponding 

probability map and (c) K-Means, with (f) its corresponding probability map. The results of the three classifiers 

are comparable, except for a higher amount of Biotite (Bt) identified by (a) at the expenses of white mica (Wm). 

Moreover, in (c) the classifier highlighted four different mineral zonation patterns of the garnet (Grt) and excluded 

from the classification some minority classes (e.g., titanite – Ttn). 
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The k-NN classifier was supervised by the operator who traced several training areas on 

examples of the occurring mineral phases, therefore the result displays the expected classes. 

The neighborhood size was set to 5 and the neighbors were weighted uniformly. This is a 

valuable classifier when no ground truth data is available to train a custom model. Moreover, 

if validated, mineral maps classified with a k-NN can be eligible as ground truth data for a 

future custom model. The main drawback of this classifier is that tracing the training areas is 

time consuming and it is required for each new analysis. Moreover, as mentioned before, this 

classifier can determine sampling bias issues, as well as confirmation biases. 

The K-Means differs from the previous classifiers as it employs an unsupervised learning 

strategy to cluster the data into a K number of classes defined by the user. The main drawback 

of K-Means is that classes are not labeled with mineral names, therefore the result must be 

interpreted. Another problem of K-Means is that it does not work very well with uneven sized 

clusters, making it not the best choice when classifying rocks with imbalanced mineral 

distributions. Therefore, this classifier identified with different classes the various mineral 

zonation patterns of the garnet phase (i.e., Grt1, Grt2, Grt3, Grt4), that gather high amounts of 

pixels (majority classes) that, if summed up, lead to the correct amount of garnet identified by 

the other two classifiers. This was at the expenses of minority classes such as titanite (Ttn) and 

K-feldspar (Kfs) which were not identified at all but instead merged with other classes.  

The probability maps obtained with the three algorithms (see Figure S3.27d,e,f) clearly display 

a comparable distribution of low-confidence pixels across the map. Such pixels are mainly 

concentrated along the boundaries between different mineral classes and within fractures. 

Besides providing a statistical metric for a pixel-wise evaluation of the confidence of each 

classifier, this information is useful to better highlight the presence of noisy data, fractures, 

mineral boundaries and mixed pixels in general. 

5.5 Sub-phase identification 

The Mineral Classifier provides users with an option for applying the classification process to 

a specific phase (or mineral class) of an already classified mineral map. This option can be 

accessed in the Sub-phase Identification box (Figure S3.23d), if at least one mineral map is 

loaded in the Classified Mineral Maps tab in the main window. The map can be selected from 

the corresponding drop-down menu; then users can select the mineral phase through the second 

drop-down menu situated just below the first one (see Figure S3.23d).  
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All the classifiers described in the precedent subchapters can be applied to run a sub-phase (or 

sub-class) identification. X-Min Learn will automatically mask the input data to only process 

the pixels assigned to the selected phase or mineral class. The new classification will be stored 

as a new classified mineral map. 

 

Figure S3.28 – Example of sub-phase identification applied to a garnet to identify mineral zonation patterns 

through a K-Means approach. 

Different classifiers can also be applied in sequence. For example, a user could firstly classify 

a new sample with the k-NN classifier to identify the occurrent mineral classes (e.g., 

plagioclase, pyroxene, quartz etc.). Then, s/he could apply on the class ‘pyroxene’ a pre-trained 

model, customized to distinguish clinopyroxene from orthopyroxene.  

Subphase identifications can also be reiterated multiple times. For example, after having 

identified a clinopyroxene, that user can apply a K-Means algorithm, in order to highlight 

possible intra-phase chemical variations within the clinopyroxene. In Figure S3.28 an example 

of sub-phase identification applied to a garnet to identify mineral zonation is provided. 

6 Phase Refiner 

The Phase Refiner (Figure S3.29 and Figure S3.30) is the fourth main tool of X-Min Learn 

and can be rapidly launched from the main toolbar (see subchapter 3.3). The tool permits to 

easily refine the mineral map currently displayed in the Mineral Maps tab (Figure S3.6g), by 

removing noisy pixels. These pixels often occur along mineral edges or next to fractures; they 
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can negatively affect further analysis on mineral maps (e.g., sub-phase identifications – see 

subchapter 5.5). They commonly occur when a pre-trained model is used to classify the mineral 

map (see subchapter 5.4). Within the Phase Refiner, X-Min Learn provides image processing 

algorithms to face this issue. The tool is divided into two main tabs: Basic (Figure S3.29) and 

Advanced (Figure S3.30). The first tab allows users to apply a max frequency filter (i.e., a mode 

filter) to smoothen the entire mineral map, while the latter provides morphological image 

processing algorithms to refine each mineral class individually. 

 

Figure S3.29 – Phase Refiner tool: Basic tab. Useful to apply a maximum frequency (i.e., mode) filter to the entire 

mineral map. (a) Mineral phase legend; (b) Kernel shape and size selector; (c) exclude map’s borders from 

filtering; (d) NaN value selector; (e) NaN tolerance percentage selector; (f) Apply filtering; (g) Save refined 

mineral map; (h) Original mineral map viewer + navigation panel (from left to right: reset view, pan/zoom, zoom 

to rectangle, save image); (i) Original mineral map’s mode histogram; (j) Refined mineral map viewer + navigation 

panel (from left to right: reset view, pan/zoom, zoom to rectangle, save image); (k) Refined mineral map’s mode 

histogram. 
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Figure S3.30 – Phase Refiner tool: Advanced tab. Useful to apply morphological image processing algorithms to 

specific classes. (a) Mineral phase selector; (b) Morphological image processing algorithm selector; (c) Invert 

mask (i.e., switch phase with background); (d) Invert selected ROI; (e) Kernel shape and size selector; (f) Removed 

pixels as Nearest phase or _ND_ phase, (g) Restore original mineral map; (h) Save refined mineral map; (i) 

Original phase navigation panel (from left to right: restore original phase, reset view, pan/zoom, zoom to rectangle, 

save image); (j) Original selected phase viewer; (k) Refined phase navigation panel (from left to right: apply 

refinement, reset view, pan/zoom, zoom to rectangle, lock zoom, select ROI, save image); (l) Refinement preview 

of selected phase. 

6.1 Basic mode 

Within the Basic tab (Figure S3.29), users can apply a max frequency filter to remove noisy 

pixels from the entire mineral map. The minimal interface consists of two main Maps View 

areas (Figure S3.29h,j), displaying the original image and the refined image, respectively. 

Below each one of them, two mode histograms (Figure S3.29i,k) display the corresponding 

mineral modal amounts. On the left side of the window there are an interactive legend (Figure 

S3.29a) and the Preferences box (Figure S3.29b-g). 

Like many other image filters, the max frequency filter scans the image (i.e., the original 

mineral map) with a sliding window (or kernel) of a fixed size, reading the pixel values and 

modifying them when required. The kernel radius can only be an odd number; currently X-Min 

Learn allows the following sizes: 3x3, 5x5, 7x7, 9x9 and 11x11. The kernel shape can be a 

square, a circle or a rhombus (a.k.a. diamond). The radius and the shape of the kernel influence 

how many and which pixels to process at each step during the computation. The user can easily 

select them in the Preferences box; a schematic figure displays the current kernel shape and 
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size, with red nodes indicating the pixels influenced at each sliding step (see Figure S3.29b). 

The bigger the kernel, the more smoothed the refined image will be. 

The max frequency function was coded using the generic_filter object implemented in the SciPy 

library (Virtanen et al., 2020). The filter modifies the pixel value at the center of the sliding 

window according to the neighbor processed pixels (see Figure S3.31). The max frequency 

(i.e., the mode) is calculated from such pixels; this value will then substitute the original value 

of the central pixel. This process is performed for the entire image, from the left-top corner to 

the right-bottom one. 

 

Figure S3.31 – Schematic representation of the application of the maximum frequency (i.e., mode) filter with a 

3x3 squared kernel. The pixel at the center of the kernel (light blue) is modified (from 1 to 8) according to the 

mode value extracted from the 3x3 neighborhood. Then the kernel slides by one column to the right and modifies 

the adjacent pixel. This operation is performed on the entire image. 

The image borders are processed through extending the mineral map beyond its boundaries by 

replicating its edge pixels (e.g., aaaa | abcd | dddd). This process could very occasionally 

generate strange pixel artifacts; to address this problem users can exclude the image borders 

from the filtering by selecting the Preserve borders option (Figure S3.29c).  

If users want to control the spreading of NaN (= unclassified, empty) data in the refined mineral 

map, they can select a NaN tolerance percentage (Figure S3.29e). If the percentage of NaN 

pixels in the sliding window is higher than the user-defined tolerance, then the central pixel is 

forced to be labelled as NaN, otherwise NaN data will be completely excluded from the max 

frequency computation. Therefore, with low tolerance values, the spreading of NaN is 

promoted; vice-versa, with high tolerance value NaN data spreading is prevented. Originally, 

NaN data coincided with the default ‘_ND_’ class, that X-Min Learn classifiers automatically 

populate with pixels whose probability score is lower than the user-defined classification 
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confidence threshold (see chapter 5). Successively, to increment users’ freedom and 

customization opportunities, the tool was coded to let them choose which class to consider as 

NaN data. This can be done from the corresponding drop-down menu (Figure S3.29d). 

6.2 Advanced mode 

The Advanced tab (Figure S3.30) is useful to class-wise refine a mineral map, i.e., 

morphological image processing algorithms can be applied to specific mineral phases. Users 

can select any mineral class occurring in the mineral map within the Mineral Phases box 

(Figure S3.30a); the corresponding phase is highlighted in the Preview area as a Boolean (= 

binary) map. In particular, the Preview area displays two maps: the original phase map, on the 

left side (Figure S3.30j), and the refined one, on the right side (Figure S3.30l). The refined 

map highlights pixels that will be added to (green) or removed from (red) the selected phase if 

the current algorithm is applied. To apply the refinement, users must click the Apply button on 

the navigation panel situated above the refined map preview (Figure S3.30k). Once clicked, 

the refinement will be applied, and the original map will be edited consequently. The refined 

map will instead highlight the edit preview of the successive refinement. To remove all the 

refinements applied to the mineral class, users can click on the Reset button on the navigation 

panel above the original map preview (Figure S3.30i). 

Different algorithms can be applied consecutively on different phases, guaranteeing a complete 

user control over the final result. Six different morphological image processing algorithms are 

available in the corresponding drop-down menu in the Preferences box (Figure S3.30b). Each 

one of them is discussed in subchapter 6.3. 

Like in basic mode, users can select the kernel size and shape (Figure S3.30e). The displayed 

Boolean maps can also be inverted, by selecting the Invert mask option (Figure S3.30c); this 

allows the application of the algorithm on an inverted version of the map, where the phase and 

its background are switched. This, in turn, yields to an inverted algorithm result.  

A Region of Interest (ROI) can also be selected by clicking the Select ROI button from the 

navigation panel above the refined map preview (Figure S3.30k). If a ROI is selected on the 

refined map, the preview will be updated accordingly, highlighting only the pixels that are 

affected by the algorithm only inside the ROI. This behavior can be inverted (i.e., the algorithm 

can be applied everywhere except for the pixels in the ROI) by clicking the Invert ROI option 

in the Preferences box (Figure S3.30d). 
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One last important setting for the user to set is how to dispose of the pixels that are removed 

from the selected phase. Should they be assigned to the default ‘_ND_’ class or to the nearest 

phase? This choice can be selected from the dedicated drop-down menu (Figure S3.30f). Just 

below it, the Reset All button (Figure S3.30g) can be clicked to restore the original mineral 

map, removing all refinements applied on each phase. The Save button (Figure S3.30h), 

instead, permits to save the refined image as a new mineral map file. 

 

Figure S3.32 – Circular operative strategy when using X-Min Learn tools. Ground truth data can be fed to the 

Dataset Builder to automatically generate an ordered and standardized ground truth dataset. The dataset can be 

loaded to the Model Learner to run a learning session and generate a custom machine learning model. Such model 

can then be used to classify new unknown data with the Mineral Classifier. If a model is not available yet due to a 

lack of ground truth data, the unknown data can still be classified with the other provided classifiers. The raw 

output mineral map can then be refined with the Phase Refiner and become eligible to new ground truth data, 

closing the circle. 

The advanced mode permits to easily remove the small classification errors produced by the 

classifier. In general, it is a valuable tool for cleaning mineral maps from bad or noisy data and, 

therefore, reducing possible inaccuracies that may occur when processing mineral maps. 

Carefully refined mineral maps could, in turn, be employed as ground truth data to build new 

datasets within the Dataset Builder tool (see subchapter 4.1.1) and then train new machine 

learning models with the Model Learner tool (see subchapter 4.2). This makes the Phase 

Refiner an extremely user-controlled point of connection between the output results of X-Min 
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Learn and its ground truth inputs, defining a circular strategy when using the software, in which 

models become more accurate the more they are applied (see Figure S3.32). 

6.3 Morphological image processing algorithms 

Morphological image processing algorithms are non-linear operations related to the geometry 

(e.g., shape or morphology) of features in an image. They are especially suited to the processing 

of binary images, where a specific feature can be easily highlighted (e.g., the Boolean maps 

showing a specific mineral phase). The entire image is probed, or scanned, with a sliding 

window a.k.a. kernel or structuring element, as described in subchapter 6.1 for the maximum 

frequency filter. The structuring element can have different radius or size. At every step it is 

compared with the corresponding neighborhood of pixels.  

The structuring element is populated by 0’s and 1’s; visually this can be observed in the 

Preferences box of the Phase Refiner, where the schematic representation of the kernel (Figure 

S3.30e) includes red (1’s) and black (0’s) nodes. The Boolean, or binary, maps are populated 

by 0’s (= background) and 1’s (= selected phase) as well. Some operations test whether the 

kernel "fits" within the neighborhood or "hits" (i.e., intersects) the neighborhood. A kernel fits 

when to each one of its 1’s corresponds a 1 in the image below, and hits when at least one of 

its 1’s corresponds to a 1 in the image below (Figure S3.33). 

 

Figure S3.33 – Schematic representation of kernels hitting and/or fitting the neighborhood. The kernel K1 has a 

diamond shape and fits (and therefore also hits) the neighborhoods in A and C, but misses B. The kernel K2 also 

misses B and fits C, but only hits A because it has a squared shape. 
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Morphological image processing algorithms derive from the mathematical morphology theory 

(Serra, 1982), developed in 1964 after the Ph.D. thesis of Jean Serra, supervised by Georges 

Matheron, which is also known for being the founder of geostatistics. Interestingly, the thesis 

was devoted to the quantification of mineral characteristics from thin cross sections. 

Subsequently, the novel developed approach had immense repercussions in several research 

fields connected with image analysis.  

Most of the morphological image processing algorithms included in the advanced Phase 

Refiner are based on the abovementioned concepts. Like the max frequency filter, they were 

implemented in X-Min Learn using the SciPy Python library. The available algorithms are 

Erosion, Dilation, Opening, Closing, Erosion + Reconstruction and Fill Holes. 

6.3.1 Erosion and Dilation 

The erosion algorithm transforms the original binary image so that if the structuring element 

does fit the neighborhood, it returns 1, otherwise 0. It shrinks the geometry (e.g., the phase) by 

stripping away a layer of pixels from both the inner and outer boundaries of regions. Small 

details, like noisy “stand-alone” pixels, are eliminated; holes and gaps become larger. The 

bigger the kernel radius the more pronounced is the shrinking. In Figure S3.34 the effect of 

erosion on a mineral phase is illustrated. 

 

Figure S3.34 – Comparison between biotite pixels before (a) and after (b) an erosion. Red pixels are removed. 

The dilation algorithm transforms the original binary image so that if the structuring element 

does hit the neighborhood, it returns 1, otherwise 0. It has the opposite effect to erosion, i.e., it 

enlarges the geometry, by adding a layer of pixels to both the inner and outer boundaries of 

regions. Holes, gaps and background inclusions become smaller, or get filled entirely, 
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depending on the size of the kernel radius. In Figure S3.35 the effect of dilation on a mineral 

phase is illustrated. 

 

Figure S3.35 – Comparison between biotite pixels before (a) and after (b) a dilation. Green pixels are added. 

Dilation and erosion have opposite effects (i.e., they are dual operations), meaning that users 

can obtain an erosion by inverting the mask (Figure S3.30c) during a dilation and vice-versa. 

These algorithms are particularly aggressive and may be useful when users want to heavily 

refine the boundaries of a mineral phase.  

6.3.2 Opening and Closing 

Opening and closing algorithms are compounded functions, as they are combinations of erosion 

and dilation. Opening is an erosion followed by a dilation and closing is a dilation followed by 

an erosion. Both are idempotent algorithms, meaning that once an image has been 

opened/closed, subsequent openings/closings with the same kernel shape and size have no 

further effect on that image. 

Opening is so called because it can open a gap between shapes connected by a thin bridge of 

pixels. The portions of image that have “survived” the erosion are restored to their original size 

by the subsequent dilation. Closing is so called because it can fill holes in the geometry while 

keeping the initial shape sizes. Like erosion and dilation, opening and closing are dual, and can 

be swapped by inverting the mask. 

Opening and closing are generally more versatile because they represent a less aggressive 

version of dilation and erosion. In Figure S3.36 and Figure S3.37 the effects of opening and 

closing on a mineral phase are illustrated, respectively. 
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Figure S3.36 – Comparison between biotite pixels before (a) and after (b) an opening. Red pixels are removed. 

 

Figure S3.37 – Comparison between biotite pixels before (a) and after (b) a closing. Green pixels are added. 

6.3.3 Erosion + Reconstruction 

This algorithm is a slightly modified version of an opening. First, a classic erosion operation is 

performed on the image. Then, consecutive dilations are applied until convergence of the result, 

i.e., until the image does not change anymore. This allows a precise reconstruction of the shapes 

of the geometries that have not been totally removed by the erosion process. Therefore, this can 

be considered an even softer version of the opening, particularly suitable to remove small noisy 

“stand-alone” pixels while entirely preserving the rest of the image. An example of the 

application of the erosion + reconstruction algorithm on a mineral phase is illustrated in Figure 

S3.38. 
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Figure S3.38 – Comparison between biotite pixels before (a) and after (b) an erosion + reconstruction. Red pixels 

are removed. 

6.3.4 Fill holes 

This last algorithm automatically identifies and fills the holes occurring within the phase, i.e., 

portions of background not connected to the image boundaries, because surrounded entirely by 

the phase. Its strategy consists of invading the background from the outer boundary of the 

image, using a dilation reiterated until convergence. Holes are not connected to the background 

and are therefore not invaded. The result is the complementary subset of the invaded region. 

As the name suggests, this algorithm is specifically designed to fill the holes within a mineral 

phase. It ignores the ROI selection. An example of this algorithm on a mineral phase is 

illustrated in Figure S3.39. 

 

Figure S3.39 – Comparison between biotite pixels before (a) and after (b) a fill holes. Green pixels are added. 
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7 Utility tools 

Utility tools can be accessed from the Utility menu in the Menu bar (see subchapter 3.3). From 

the Conversion tools sub-menu, two integrated conversion tools can be launched: Greyscale to 

ASCII (Figure S3.40) and RGB image to Mineral Map (Figure S3.41).  

 

Figure S3.40 – Greyscale to ASCII tool: a conversion tool to transform image data into an XML-compatible 

format. (a) Import images to be converted; (b) Remove loaded images; (c) List of loaded images filepaths; (d) 

Options box (from top to bottom: auto-load the converted images in the X-Ray Maps tab – see Figure S3.5c, split 

multi-channel images and convert each separate channel, output format selector, start conversion).  

The first tool is useful to import several input maps in typical image formats (e.g. .tiff, .bmp, 

.png etc.) and converts them into an X-Min Learn compatible format. It supports the conversion 

of multi-channel images if the Split multi-channel images option (Figure S3.40d) is checked. 

 

Figure S3.41 – RGB to Mineral Map tool: a conversion tool to transform RGB images to an XML-compatible 

format of mineral map (a) Load RGB image; (b) Convert loaded image; (c) Identified classes legend; (d) auto-

load converted mineral map in the Mineral Map tab (see Figure S3.6c); (e) Save converted mineral map; (f) 

Converted mineral map preview + navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, 

hovered pixel’s coordinates and class). 
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The second tool (Figure S3.41) is useful to import an RGB image and to convert it to an X-

Min Learn compatible mineral map. It scans the image to identify each possible pixel color 

variation, assigning it to a specific mineral class. Mineral classes are labelled with a progressive 

numerical ID. It can scan up to 216 (=32768) different pixel shades; however, it is highly 

recommended to convert only images with high sharpness, as different color shades are 

interpreted as different mineral classes. 

 

Figure S3.42 – Generate Dummy Maps tool, useful to generate fake noisy place-holder maps.(a) Generated map’s 

width (in pixels); (b) Generated map’s height (in pixels); (c) Gamma function shape selector; (d) Gamma function 

scale selector; (e) Generate dummy map; (f) Save dummy map; (g) Pixel histogram preview of the generated 

dummy map + navigation panel (from left to right: reset view, pan/zoom, zoom to rectangle, save image). 

Another useful tool in the Utility menu is the Generate Dummy Maps tool (Figure S3.42), 

which permits to build artificial noisy X-ray maps featuring a near-zero value on all their pixels 

(e.g., Figure S3.43). The values are randomized through a gamma distribution function, whose 

shape and scale can be adjusted by the user (Figure S3.42c,d). Such maps can be used as a 

placeholder for missing mandatory maps when applying a pre-trained model (see subchapters 

5.1 and 5.4). They must be used with caution and only if the operator is absolutely sure that the 

missing map, if collected, would have produced a noisy output similar to the one artificially 

generated. It is especially useful for mimicking maps of minor chemical elements, if the 
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operator already knows that the occurrent minerals do not include those elements in their 

chemical formula. 

 

Figure S3.43 – Comparison between a dummy map (a) and a real noisy map of Manganese (b). 

8 Case study I: Quantitative analysis of a natural rock sample 

In this chapter the application of X-Min Learn tools for the extraction of quantitative 

petrographic parameters from natural rocks data will be described. The collected sample 

consists of a late Variscan amphibolite from the Aspromonte Unit, NE Sicily (see subchapter 

8.1 for more details). The most interesting feature of this sample is the occurrence of 

symplectitic micro-structures developing around relict eo-Variscan garnets.  

Metamorphic rocks often show evidence of minerals characterized by chemical exchanges, 

mostly concentrated along their edges. The chemical exchange reactions are usually more or 

less “frozen” in specific mineralogical associations, depending on the rock’s exhumation rate. 

Symplectites are micro-structures that freeze a specific state of the ongoing reaction. The 

observable paragenesis define the level at which the reaction has stopped due to lack of 

sufficient activation energy useful for completing the reaction itself, and therefore, for reaching 

thermodynamic equilibrium. Symplectites generally occur as vermicular intimate intergrowths 

of two or more products minerals. When preserved in exhumed rocks, they can be analysed to 

extract considerable amounts of petrological information, as they allow the identification of 

both products and reactants of the metamorphic reaction in progress (Dégi et al., 2010). 

Three micro-domains were selected from a thin section of the sample, depicting three different 

relict garnets surrounded by symplectitic micro-structures. Then, WDS X-ray elemental maps 

and BSE maps were collected from such microdomains and were analyzed and classified with 

X-Min Learn, that also allowed the identification of the occurrent sub-phases (i.e., minerals 
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zonation). This is a preliminary procedure preparatory to the identification of the Effective Bulk 

Chemistry (EBC – Zuluaga et al., 2005; Ortolano et al., 2014), which, in turn, enables the 

extraction of more reliable pseudo-sections for the modelling of metamorphic reactions, with 

dedicated tools like Perple_X (e.g., Ortolano et al., 2014). 

8.1 Geological and petrographic background  

The analyzed sample (GC29) is collected from the north-eastern sector of the Peloritani 

Mountains (NE Sicily), SW of Pizzo Bottino (Figure S3.44). Peloritani Mountains are a south-

verging nappe structure, which represent the SW branch of the Calabria-Peloritani Orogen 

(CPO – Cirrincione et al., 2015). The CPO is part of the Kabilo-Calabride Chain (KCC), a 

ribbon-like orogenic segment located in the southern portion of the south-European Variscan 

chain at the end of the Paleozoic, which, together with the Apennine-Maghrebid Chain and the 

External Thrust System, constitutes the orogenic domain of the central Mediterranean (Figure 

S3.45). The KCC is made up of pre-Alpine metamorphic basement nappes, with local Alpine 

metamorphism overprints and Mesozoic covers. 

 

Figure S3.44 – modified after Fiannacca et al., 2019. (a) Distribution of the pre-Alpine basement in Europe; (b) 

Distribution of Alpine and pre-Alpine (Variscan and/or pre-Variscan) basement rocks in the Calabro-Peloritani 

Orogen and main tectonic alignments; (c) Collection area of GC29 sample (yellow star). 
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Figure S3.45 – Distribution of structural domains in the central Mediterranean (after Lentini et al., 1996). 

The Peloritani Mountains (Figure S3.46) are delimited to the south by the Taormina Line, 

previously interpreted as a right transcurrent (Amodio Morelli et al., 1976; Bonardi et al., 

1976), today identified as a low angle thrust formed by the rotation and subsequent overlapping 

of the CPO on the Apennine-Maghrebid Chain (Ghisetti et al., 1991). They are characterized 

by a very articulated continental crust sector (Ferla, 2000) which has been divided into two 

metamorphic complexes characterized by a different tectonic-metamorphic evolution: the lower 

and the upper complex (Cirrincione et al., 1999; Atzori et al., 2001; Cirrincione et al., 2015).  

The Lower Complex, outcropping in the SE sector, consists of a Variscan succession of sub-

greenschist facies metamorphites with non-metamorphosed Mesozoic covers. It is divided into 

three tectonic units (Sant’Andrea Unit, Longi-Taormina Unit and San Marco D’Alunzio Unit) 

essentially characterized by metapelites and metapsammites with intercalated metabasites of 

volcanic and volcanoclastic derivation and subordinate metacarbonates. 
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Figure S3.46 – (a) Geological scheme of the Peloritani Mountains chain, associated with (b) tectonic scheme 

representing the nappe structure (from Cirrincione et al., 2015). 

The Upper Complex, outcropping in the NE sectors, shows a Variscan basement of medium to 

high metamorphic grade, locally intruded by late-Variscan plutonic rocks. It is divided into two 

tectonic units, the Mandanici Unit and the tectonically overlying Aspromonte Unit. The 

Mandanici Unit (Ogniben, 1970; Atzori & Vezzani, 1974) consists of metamorphic rocks 
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ranging from greenschist to low grade amphibolitic facies; the prevailing lithotypes are 

phyllites and phylladic quartzites, with subordinate garnet and staurolite micascists and local 

marbles, metabasites and schists (Cirrincione & Pezzino, 1991; Ferla, 2000; Cirrincione et al., 

2015). The Aspromonte Unit is the geometrically higher tectonic unit of the Peloritan 

Mountains; it is mainly composed of paragneisses, migmatitic paragneisses and augen-gneisses, 

with secondary marbles and amphibolites, often intruded by late-Variscan granitoid plutons 

(D'Amico, 1979; Paglionico & Rottura, 1979; D'Amico et al., 1982; Rottura et al., 1993; 

Fiannacca et al., 2008). The sample analyzed in this case study was collected from this unit’s 

outcrops. 

 

Figure S3.47 – Thin section scansion of the sample GC29, highlighting the selected micro-domains (i.e., GC29_1, 

GC29_2 and GC29_3) locations. 

The sample GC29 (Figure S3.47) is an amphibolite; the principal occurring minerals consist of 

amphibole, pyroxene, feldspar and garnet; the recognized accessory minerals are epidote, 

ilmenite, apatite, chlorite, pyrite and titanite. Among the main minerals, amphibole is the most 

abundant, with an estimated modal percentage of around 50 vol%, followed by pyroxene (> 30 

vol%) and plagioclase (about 10 vol%). A grano-nematoblastic structure is recognizable, with 

a weakly anisotropic texture due to the isorientation of amphibole crystals, interrupted by the 

presence of garnet porphyroblasts. The latter are characterized by the presence of a symplectitic 

reaction rim, consisting of Ca-rich plagioclase, amphibole and pyroxene symplectites (e.g., 

Figure S3.48). The presence of such micro-structures is associated with amphibolitic 
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retrocession phenomena on a garnet, pyroxene and K-feldspar paragenesis, clearly attributable 

to conditions of granulitic facies metamorphism. 

 

Figure S3.48 – (a) XPL and (b) PPL optical microscope images depicting symplectitic micro-structures 

surrounding relict garnet porphyroblast, occurring in the sample GC29. 

From a petrological point of view, symplectites are defined as vermicular intergrowths between 

two or more minerals that grow simultaneously in a sub-solidus reaction (Vernon, 2018). Such 

micro-structures generally develop in metamorphic rocks along the contact edges of reacting 

minerals. The minerals that compose them seem unable to impose their growth on each other; 

this may be caused by high reaction rates or by low amounts of the fluid phase, necessary to 

transport material into and out of the reaction site (Passchier & Trouw, 2005). Symplectites are 

therefore the expression of an incomplete chemical reaction, whose products and reactants can 

be reconstructed by analyzing the restitic portions of the reactants and the incomplete products 

occurring in the symplectites. The study of the relationships between porphyroblast and matrix, 

with consequent development of symplectitic micro-structures, can be of fundamental 

importance for obtaining reliable thermo-barometric constraints, useful for reconstructing the 

tectono-metamorphic evolution that characterized the geodynamic context in which the sample 

is located. 

8.2 Methodology and data classification with X-Min Learn 

WDS Electron Probe Micro Analysis data was collected from three micro-domains of a thin 

section of the sample GC29 (i.e., GC29_1, GC29_2 and GC29_3 – see Figure S3.47). Each 

micro-domain displays a garnet porphyroblast surrounded by symplectites. From each micro-

domain Al, Ca, Fe, K, Mg, Mn, Na, Si and Ti X-ray elemental maps were analyzed, as well as 

the backscattered electrons maps, with X-Min Learn (Figure S3.49). 
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Figure S3.49 – EPMA-WDS X-Ray elemental maps and BSE maps collected from the three selected micro-

domains of sample GC29. 

It was chosen a scenario where ground truth data is lacking, to demonstrate one possible 

application of X-Min Learn when pre-trained machine learning models are not available. 

Firstly, the GC29_2 micro-domain was classified with the k-NN algorithm (see subchapter 5.2), 

drawing training areas validated with WDS punctual chemical data and optical microscope 

analysis (Figure S3.50a). Consequently, the mineral map was refined with the Pixel Editor (see 

subchapter 3.2.3) and the Phase Refiner (see chapter 6) tools, to respectively highlight holes 

and fractures and clean noisy pixels (Figure S3.50b). 
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Figure S3.50 – (a) Raw GC29_2 mineral map classified with k-NN algorithm and (b) refined mineral map after 

the application of the Pixel Editor and the Phase Refiner tools. 

Through the developer’s toolkit (see chapter 4) a custom machine learning model was trained 

and tailored for the classification of the sample GC29, using the refined mineral map as ground 

truth data. By means of the Dataset Builder tool, a ground truth dataset was firstly compiled 

and then loaded into the Model Learner tool to start the learning session. The following model 

hyperparameters (see Section 1, subchapter 3.9) were selected: 

• Learning rate: 0.05 

• Weight decay: 0.0 

• Momentum: 0.99 

• Epochs: 300 

The input features were mapped to a higher dimensional space through a polynomial kernel of 

degree 3 (see subchapter 4.2). The random seed was 1364337. A classification accuracy on the 

test set of 98.8% was achieved; the test set confusion matrix is displayed in Figure S3.51. The 

other two micro-domains were consequently classified automatically through this model (see 

Figure S3.52 and Figure S3.53). 
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Figure S3.51– Test set confusion matrix of the custom model trained from GC29_2 ground truth data. 

 

Figure S3.52 – (a) Raw GC29_1 mineral map classified with the custom machine learning model and (b) refined 

mineral map after the application of the Phase Refiner tool. 
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Figure S3.53 – (a) Raw GC29_3 mineral map classified with the custom machine learning model and (b) refined 

mineral map after the application of the Phase Refiner tool. 

Then, the K-Means classifier (see subchapter 5.3) was applied on amphibole, clinopyroxene, 

epidote, garnet and plagioclase grains of each micro-domain, to detect the occurrence of 

potential sub-phases or mineral zonation (see subchapter 5.5). Two sub-classes for each of the 

aforementioned mineral phases were identified in each micro-domain, except for the 

amphibole, that showed evident intra-class chemical variations only in the GC29_1 micro-

domain (see Figure S3.54, Figure S3.55 and Figure S3.56). The entire methodological 

procedure was recorded and is provided in the form of a practical X-Min Learn tutorial (see 

video tutorial attached). 

To validate the classification accuracy of the tailored model, EDS X-ray maps from the GC29_1 

micro-domain were also collected and classified through an EDS custom model. Such model 

was previously trained from EDS ground truth data, that was collected from six different 

metamorphic samples not belonging from the same metamorphic unit of GC29. The two results 

are very similar and demonstrate the statistical strength of both models. The comparison of the 

results is displayed in Figure S3.57. 
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Figure S3.54 – GC29_1 sub-phase identification of (a) amphibole, (b) clinopyroxene, (c) epidote, (d) garnet and 

(e) plagioclase. (f) Schematic representation of the interpreted reacting (R) / non-reacting (NR) sub-phases and 

reacting (R_Grt) / non-reacting (NR_Grt) garnet portions during the symplectitic reaction. 
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Figure S3.55 – GC29_2 sub-phase identification of (a) amphibole, (b) clinopyroxene, (c) epidote, (d) garnet and 

(e) plagioclase. (f) Schematic representation of the interpreted reacting (R) / non-reacting (NR) sub-phases and 

reacting (R_Grt) / non-reacting (NR_Grt) garnet portions during the symplectitic reaction. 
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Figure S3.56 – GC29_3 sub-phase identification of (a) amphibole, (b) clinopyroxene, (c) epidote, (d) garnet and 

(e) plagioclase. (f) Schematic representation of the interpreted reacting (R) / non-reacting (NR) sub-phases and 

reacting (R_Grt) / non-reacting (NR_Grt) garnet portions during the symplectitic reaction. 
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Figure S3.57 – Comparison between (a) GC29_1 mineral map classified from EDS X-Ray maps with a custom 

ML model trained with EDS ground truth data collected from metamorphic samples not belonging from the same 

unit of GC29, and (b) GC29_1 mineral map classified from EPMA-WDS X-Ray maps with the “GC29-tailored” 

custom ML model trained from the GC29_2 micro-domain. 

8.3 Data interpretation and discussions 

The three analyzed micro-domains display three relict eo-Variscan garnet porphyroblasts, 

probably formed in granulitic facies conditions, and the surrounding matrix. This late-Variscan 

reaction occurred as a consequence of a retrograde metamorphic stage in amphibolitic facies 

conditions. This determined the development of Ca-rich plagioclase, clinopyroxene and 

amphibole symplectitic micro-structures surrounding the relict garnet porphyroblasts, along the 

contacts with an original pyroxene-rich matrix. Subordinate symplectitic micro-structures 

involving orthopyroxene, titanite and ilmenite, are also observable in the three micro-domains, 

and are probably also linked to the former metamorphic stage.  

The sub-phase analysis allowed the identification of mineral zonation patterns that were 

interpreted as the result of the effect of the symplectitic reaction (Figure S3.54, Figure S3.55 

and Figure S3.56). GC29_3 micro-domain displays the more preserved garnet, with an 

observed surface ratio of symplectites-to-relict garnet of 0.62. On the other hand, the more 

consumed garnet porphyroblast is observed in GC29_2 micro-domain, with a ratio of 3.51. The 
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last micro-domain (i.e., GC29_1) shows instead an intermediate ratio of 1.24. If expressed as 

symplectites to inferred original garnet section, the ratios are 0.55, 0.78 and 0.38, respectively 

for GC29_1, GC29_2, GC29_3. This information can be helpful to infer the effective reactant 

volumes, that, in turn, lead to the identification of the effective bulk chemistry and to the 

extraction of more reliable pseudo-sections and/or phase diagrams (Zuluaga et al, 2005; 

Ortolano et al., 2014). 

The epidote was not included as a direct product of the symplectitic reaction, but rather 

interpreted as the product of a late-retrograde reaction at the expenses of the symplectitic Ca-

rich plagioclase and amphibole. The sub-phase analysis highlighted the presence in all three 

micro-domains of an Al-rich and an Fe-rich compositions in epidote (see Figure S3.54c, Figure 

S3.55c and Figure S3.56c). This last is a valuable information, in terms of thermodynamic 

modelling, for a better definition of the oxidation state of the system when using phase diagram 

computing tools like Perple_X (Connolly, 1990).  

9 Case study II: Investigation of the hydraulic behavior of mortars  

This chapter will demonstrate how to use X-Min Learn for the analysis of artificial stone 

materials. Thanks to the working principles of the tools implemented in X-Min Learn, the 

software supports the analysis of any kind of 2D multi-channel image data. Through this case 

study such adaptability of X-Min Learn is demonstrated by inferring the hydraulic behavior of 

mortars induced by volcanic aggregates. This analysis was already performed in a recent work 

by Belfiore et al., 2022, through the software Q-XRMA (Ortolano et al, 2018). After processing 

the same input data provided in the article by the authors, the main components of the mortars 

were identified, their hydraulic behavior was investigated and then the results compared. 

9.1 Case study background 

Mortars are historically one of the most crafted building materials. Their main components are 

the binder and the aggregates. The properties of the mortar are related to the nature of such 

components and, especially, to the chemical reactions that occur between them. For example, 

since Roman Age different types of volcanic aggregates were employed to confer hydraulic 

properties to mortars (Walker & Pavia, 2011; Belfiore et al., 2015). As demonstrated by 

Belfiore et al. (2016) and Belfiore et al. (2022), X-Ray elemental maps of mortars thin sections 

can be analyzed to map the chemical reactions that occurred within the artifacts. If applied on 
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ancient mortars, this analysis can be helpful for identifying the level of technology of the people 

who made them. 

 

Figure S3.58 – from Belfiore et al. (2022). Optical thin section scan of the azolo (AZO) mortar. Insets represent 

the four selected micro-domain (i.e., MDI, MDII, MDIII, MDIV). 

In this view, the case study here presented (Belfiore et al., 2022), aimed at comparing two 

different types of mortars of the historic built heritage of Catania (eastern Sicily, Italy): the 

azolo mortar and the ghiara mortar. Both mortars were crafted using volcanic products of the 

close Mt. Etna volcano as aggregates. Azolo was an aggregate derived from incoherent 
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pyroclastic rocks, whereas ghiara is a reddish material originated from the transformation of 

volcanic paleo-soils induced by lava flows. The main differences between them are: 

• The aggregate size, finer for the ghiara than the azolo 

• The color, reddish for ghiara and gray for azolo  

• The chemical reactivity, higher for the ghiara than the azolo (Battiato, 1988) 

 

Figure S3.59 – from Belfiore et al. (2022). Optical thin section scan of the ghiara (GHI) mortar. Insets represent 

the four selected micro-domain (i.e., MDI, MDII, MDIII, MDIV). 

The authors (see Belfiore et al., 2022 for further details) collected EDS X-Ray maps from a 

total of 8 micro-domains: 4 from a sample of azolo mortar (Figure S3.58) and 4 from a sample 
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of ghiara mortar (Figure S3.59). Through the application of the software Q-XRMA, each 

micro-domain was analyzed individually, to identify the components of the mortars. Then the 

authors focused on the analysis of the binder to highlight its chemical variations, linked to the 

reactions occurring from the interaction with the aggregates. Finally, through the application of 

a Kernel Density function, validated by chemical spot analysis, the authors mapped the 

Hydraulicity Index (HI) throughout the entire micro-domains (see Belfiore et al., 2022 for 

further details). The HI was introduced by Boynton (1980) and is commonly used to evaluate 

the hydraulicity degree of a mortar as (SiO2 + Al2O3 + Fe2O3) / (CaO + MgO) – see Table 

S3.2. 

Hydraulicity degree of mortars HI range 

Aerial lime 0 – 0.1 

Feebly hydraulic lime 0.1 – 0.16 

Moderately hydraulic lime 0.16 – 0.31 

Properly hydraulic lime 0.31 – 0.42 

Eminently hydraulic lime 0.42 – 0.5 

Cement 0.5 – 1.5 

 

Table S3.2 – Hydraulicity degree of mortars based on Hydraulic Index (HI) value, after Boynton (1980). 

9.2 Mortars analysis with X-Min Learn 

Following the same approach adopted for the first case study (see subchapter 8.2), the first 

micro-domain (i.e., GHI-MDI) of the ghiara sample was semi-automatically classified with the 

k-NN algorithm (see subchapter 5.2). Then, using the obtained mineral map as ground truth 

data, a ground truth dataset was compiled, and a new custom machine learning model was 

trained. The following model hyperparameters (see Section 1, subchapter 3.9) have been 

selected: 

• Learning rate: 0.05 

• Weight decay: 0.0 

• Momentum: 0.99 

• Epochs: 700 

The input features have been mapped to a higher dimensional space through a polynomial 

kernel of degree 2 (see subchapter 4.2). The random seed was 72438559. Under-sampling 

algorithms were also applied on the train set to reduce the impact of the imbalanced distribution 
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of pixel classes (see subchapter 4.2.2). In particular, the TomekLinks algorithm, followed by 

the ENN-mode algorithm (neighborhood size of 3), were applied to reduce the number of pixels 

of the majority class (i.e., the binder) from 61987 to 60535 (see subchapter 4.2.2 for further 

details on the algorithms). This allowed the achievement of a classification accuracy of 98% on 

the test set. The test set confusion matrix is displayed in Figure S3.60. The other three ghiara 

micro-domains were then classified automatically with the model (confront Figure S3.61). 

 

Figure S3.60 – Test set confusion matrix of the custom ML model trained from GHI-MDI mineral map. 

Such model, although trained on the ghiara micro-domain (GHI-MDI), was able to also identify 

all the azolo fragments in each micro-domain (Figure S3.62). This permitted to achieve a very 

quick data classification. In subchapter 9.3.3 the possible reasons behind the behavior of the 

model are discussed. As the authors did, the sub-phase analysis of the binder was consequently 

performed, and four different sub-classes were identified in both azolo and ghiara samples, 

based on the analysis of Al, Ca, Fe, K, Mg and Si maps. Due to the gradual chemical variations 

between the sub-classes (i.e., absence of clear chemical differences separating them) the k-NN 

algorithm was employed, manually tracing training areas to steer the algorithm towards the 

optimal results, which are provided in Figure S3.63 and Figure S3.64. 

Finally, HI was extracted from the binder class of each micro-domain, using basic algebraic 

operations on Al, Ca, Fe, Mg and Si maps, and then applying a Median Filter with a 5x5 squared 



156 

 

kernel to smoothen the results, that are displayed in Figure S3.65 and Figure S3.66. This was 

performed outside X-Min Learn using a custom Python script, since algebraic operations on 

maps are not available in the software yet. This is a good reason for implementing such 

functionality in future X-Min Learn releases, among other planned updates (see chapter 10). 

 

Figure S3.61 – Mineral maps obtained from ghiara sample: (a) GHI-MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) 

GHI-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = binder; Ghi = ghiara aggregate; 

Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; _ND_ = not classified. 
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Figure S3.62 – Mineral maps obtained from azolo sample: (a) AZO-MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) 

AZO-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = binder; Az = azolo aggregate; 

Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; _ND_ = not classified. 
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Figure S3.63 – Results obtained from the sub-phase identification on the binder of the ghiara sample: (a) GHI-

MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the occurring sub-phases abundancies are displayed. 
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Figure S3.64 – Results obtained from the sub-phase identification on the binder of the azolo sample: (a) AZO-

MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the occurring sub-phases abundancies are 

displayed. 
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Figure S3.65 – Hydraulicity Index (HI) extracted from the binder of the ghiara sample: (a) GHI-MDI, (b) GHI-

MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the percentages of the value ranges of the HI are displayed. 
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Figure S3.66 – Hydraulicity Index (HI) extracted from the binder of the azolo sample: (a) AZO-MDI, (b) AZO-

MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the percentages of the value ranges of the HI are displayed. 
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9.3 Results comparison  

9.3.1 Classification and sub-phases identification  

The mineral maps and the sub-phase maps of binders obtained with X-Min Learn are displayed 

in Figure S3.61, Figure S3.62 and Figure S3.63, Figure S3.64, respectively. For a 

comparison, the corresponding results obtained by Belfiore et al. (2022) are displayed in Figure 

S3.67, Figure S3.68 and Figure S3.69, Figure S3.70. 

The most abundant phase identified in the azolo mortar with X-Min Learn is represented by the 

binder, occurring with percentages ranging from 52 vol% to 68 vol%, against the 47 vol% – 53 

vol% range identified by the authors, followed by the azolo fragments (15 vol% – 33 vol% from 

X-Min Learn vs. 23 vol% – 38 vol% obtained by the authors). The large difference between the 

maximum binder amount extracted from X-Min Learn (68 vol%) and the one obtained by the 

authors (53 vol%) is partially determined by the second micro-domain (i.e., AZO-MDII – see 

Figure S3.62b), where most of the pixels not classified by the authors (see Figure S3.68b), 

were instead assigned to the class binder by the custom model. Moreover, in all micro-domains 

the custom model assigned some of the pixels recognized as azolo fragments by the authors to 

the class binder, thus also determining a slightly lower percentage range in the class “azolo 

fragments”. Plagioclase abundancies are instead very similar, with amounts ranging from 2 

vol% to 9 vol% in this work’s results, compared with 2 vol% – 11 vol% obtained by the authors. 

Minor phases (quartz, clinopyroxene, olivine and Fe-Ti oxides) exhibit percentages lower than 

1 vol% in both results, except for AZO-MDII, where in both results quartz amount is 3 vol% 

(confront Figure S3.62b and Figure S3.68b). Porosity displays an average abundance of 10% 

in this work’s results, against the 13% identified by the authors.  

The binder’s sub-phases identification of azolo mortar highlighted the presence of four different 

compositions, in accordance with the authors (confront Figure S3.64 and Figure S3.70). The 

Zone 1 exhibits the lowest amounts in both analysis (0.6 vol% – 10 vol% from X-Min Learn 

and 0.5 vol% – 5 vol% from the authors) except for AZO-MDII (see Figure S3.64b and Figure 

S3.70b), exhibiting higher amounts (22 vol% and 20 vol%, respectively). The most abundant 

zones are, in both cases, Zone 2 (15 vol% – 36 vol% by X-Min Learn and 12 vol% – 30 vol% 

by the authors) and Zone 3 (43 vol% – 64 vol% by X-Min Learn and 52 vol% – 66 vol% by the 

authors). Finally, the Zone 4 abundancies averages around 6 vol% (X-Min Learn) and 5 vol% 

(authors), except for AZO-MDI (see Figure S3.64a and Figure S3.70a), where it displays 

amounts of 20 vol% and 31 vol%, respectively. The differences between this work’s results and 
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the authors’, are mostly linked to the original different amounts of pixels assigned to the class 

binder, as discussed above. Other important differences (e.g., Zone 4 in AZO-MDI – Figure 

S3.64a and Figure S3.70a) may be related to the similar chemical footprint of the sub-phases, 

that could have been interpreted in different ways by the different algorithms (i.e., k-NN and 

Maximum Likelihood Classification – see Ortolano et al., 2018 for details). The number and the 

location of user’s drawn training areas also affected the results of both analyses. 

Analogously to azolo mortar, the most abundant phase identified in the four micro-domains of 

ghiara mortar is the binder (47 vol% – 57 vol% vs. 48 vol% – 56 vol% obtained by the authors), 

followed by ghiara fragments, that constitute about 29 vol% of the micro-domains on average, 

against 28 vol% identified by the authors. Plagioclase grains occur with an average value of 11 

vol% (10 vol% for the authors) and minor phases (quartz, clinopyroxene, olivine and Fe-Ti 

oxides and others) are lower than 1 vol% in both analyses, except for GHI-MDI and GHI-

MDIII, that display an amount of clinopyroxene grains of 1 vol% and 2 vol%, respectively (see 

Figure S3.61a,c). The porosity averages around 5% in this work’s result and 7% in the authors’ 

result. Overall, the ghiara mortar sample classification is more similar to the classification 

achieved by the authors (confront Figure S3.61 and Figure S3.67), if compared with the azolo 

mortar.  

The binder’s sub-phases identification of ghiara mortar highlighted again the presence of four 

different compositional zones, in accordance with the authors (confront Figure S3.63 and 

Figure S3.69). The Zone 1 constitutes about 6 vol% of the micro-domains, against 5 vol% 

identified by the authors. Zone 2 averages to 29 vol% vs. 26 vol%, Zone 3 to 48 vol% vs. 46 

vol% and Zone 4 to 23 vol% vs. 22 vol%. 
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Figure S3.67 – Mineral maps obtained from ghiara sample by Belfiore et al., 2022: (a) GHI-MDI, (b) GHI-MDII, 

(c) GHI-MDIII, (d) GHI-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = binder; Ghi 

= ghiara aggregate; Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; NC = not 

classified. 
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Figure S3.68 – Mineral maps obtained from azolo sample by Belfiore et al. (2022): (a) AZO-MDI, (b) AZO-

MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the occurring mineral phases abundancies are displayed: Bi = 

binder; Az = azolo aggregate; Pl = plagioclase; Ol = olivine; Cpx = clinopyroxene; Qz = quartz; Ox = oxide; NC 

= not classified. 
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Figure S3.69 – Results obtained by Belfiore et al. (2022) from the sub-phase identification on the binder of the 

ghiara sample: (a) GHI-MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the occurring sub-phases 

abundancies are displayed. 
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Figure S3.70 – Results obtained by Belfiore et al. (2022) from the sub-phase identification on the binder of the 

azolo sample: (a) AZO-MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the occurring sub-phases 

abundancies are displayed. 
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9.3.2 Hydraulicity Index (HI) 

The Kernel Density function applied by the authors (see Belfiore et al., 2022 for more details) 

calculates a magnitude per unit area from a punctual feature distribution, fitting a smoothly 

tapered surface to each point. This allowed the authors to highlight the compositional 

differences in the binder through a smooth density distribution. Then they applied map algebra 

operation on the kernel density maps to extract the HI, following the Boynton formula 

(Boynton, 1980).  

Since each channel of the input X-ray maps can be seen as a greyscale image storing within its 

pixel values the relative amount of a specific element (see chapter 2), a different strategy was 

employed, based on the assumption that the ratios between the pixel values mimics the ratios 

between the abundance of the chemical elements. Therefore, since the HI value is a 

dimensionless number, algebraic operations were directly applied on input maps, masked to 

display only the pixels assigned to the class binder. Subsequently, to obtain the similar 

smoothened result achieved by Kernel Density Estimators, a Median Filter with a squared 5x5 

kernel shape was applied. The HI maps thus extracted are displayed in Figure S3.65 and Figure 

S3.66, while the ones obtained by the authors are displayed in Figure S3.71 and Figure S3.72.  

In the case of azolo mortars, the average HI values outline (confront Table S3.2): 

• Aerial lime: 4 vol% (6 vol% by the authors) 

• Feebly hydraulic lime: 31 vol% (25 vol% by the authors) 

• Moderately hydraulic lime: 43 vol% (58 vol% by the authors) 

• Properly hydraulic lime: 9 vol% (8 vol% by the authors) 

• Eminently hydraulic lime: 4 vol% (2 vol% by the authors) 

• Cement: 9 vol% (1 vol% by the authors) 

The result differs especially in relation to the amount of feebly hydraulic lime (higher in this 

work result), of moderately hydraulic lime (higher for the authors) and cement (higher in this 

result result). This last value however is strongly influenced by the AZO-MDI micro-domain 

(see Figure S3.66a), where a region of the binder shows very high HI value (about 16%) 

associated to the class cement. This region is also observable in the authors’ result (Figure 

S3.72a), but with lower HI values, that fall into the eminently and proper hydraulic lime 

categories. However, both results agree on the overall poor hydraulic properties of the azolo 

mortar, confirmed by EDS point analysis. 
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For ghiara mortars, the average HI values outline (confront Table S3.2): 

• Aerial lime + feebly hydraulic lime: <5 vol% (<5 vol% by the authors), except for 

GHI_MDII (confront Figure S3.65b and Figure S3.71b) that includes a region with a 

high number of pixels outlining a feebly hydraulic lime binder. 

• Moderately hydraulic lime: 38 vol% (48 vol% by the authors) 

• Properly hydraulic lime: 19 vol% (26 vol% by the authors) 

• Eminently hydraulic lime: 8 vol% (11 vol% by the authors) 

• Cement: 28 vol% (11 vol% by the authors) 

Although both results agree on the overall better hydraulic properties of the ghiara mortar, 

some differences are noticeable in the distribution of the binder categories, with this work’s 

result suggesting, in general, better hydraulic properties for the analysed ghiara mortar. These 

differences are mostly linked to the different strategy adopted for extracting the HI. 

Furthermore, a more statistically strong result would have probably been achieved after having 

quantified the input X-ray maps. Attaining maps quantification within X-Min Learn is, in fact, 

one of the main priorities for the future software updates (see chapter 10).  

The HI index obtained for the two types of mortars confirmed again that the chemical reactivity 

of ghiara mortars is higher than azolo ones, and therefore their hydraulic properties are superior, 

as also evaluated with EDS point analysis. This is also in accordance with the known historical 

use of the two mortars. The azolo mortars were, indeed, extensively used during the eighteenth 

century, until about 1860. Afterwards, they were replaced by the ghiara mortars due to their 

better technical and economic characteristics, until the 1950s when modern cement concretes 

have been adopted (Belfiore et al., 2022). 
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Figure S3.71 – Hydraulicity Index (HI) extracted by Belfiore et al. (2022) from the binder of the ghiara sample: 

(a) GHI-MDI, (b) GHI-MDII, (c) GHI-MDIII, (d) GHI-MDIV. In (e) the percentages of the value ranges of the 

HI are displayed. 
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Figure S3.72 – Hydraulicity Index (HI) extracted by Belfiore et al. (2022) from the binder of the azolo sample: 

(a) AZO-MDI, (b) AZO-MDII, (c) AZO-MDIII, (d) AZO-MDIV. In (e) the percentages of the value ranges of the 

HI are displayed. 
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9.3.3 Explanations for the model behavior 

As discussed in subchapter 9.3.1, a custom machine learning model was trained with the 

mineral map obtained from the first micro-domain of the ghiara mortar (i.e., GHI-MDI, Figure 

S3.61a). Such model was able not only to automatically identify the components of the other 

ghiara micro-domains (i.e., the expected behavior) but also to identify the components of the 

azolo micro-domains, including the azolo fragments, which the model had never “seen” before. 

Two possible explanations can be identified for this behavior: a computer science explanation 

and a petrological one. The computer science explanation hides behind the basic concepts of 

machine learning models discussed in Section 1. By observing the mineral classes occurring in 

both mortars (confront Figure S3.61 and Figure S3.62), it is noticeable that both the samples 

share the exact same mineral classes, except for the ghiara fragments, that are replaced by the 

azolo ones in the azolo mortar. The model was definitely able to recognize all the shared classes 

in both mortars. Therefore, the azolo class, which was never “seen” by the model, was probably 

linked to the ghiara class by exclusion. In other words, the features describing the azolo mortars 

were more similar to the ghiara ones than to the other mineral classes. This last consideration 

introduces the second possible explanation: the petrological one. What if the chemical footprint 

of both azolo and ghiara fragments are indeed similar? As described in subchapter 9.1, the main 

differences between them are the aggregate size, the color and the chemical reactivity. None of 

these differences is actually reflected in the input X-ray maps utilized by the custom developed 

model. The chemical reactivity, which was proven to be different by the HI extraction, only 

influences the behavior of the fragments with the surrounding binder. However, both types of 

fragments belong to Mt. Etna volcanic products. A possible explanation is, therefore, that the 

developed model actually learned a chemical pattern of Mt. Etna products from the ghiara 

fragments and was then able to identify a similar pattern in the azolo ones. 

The main differences in the results achieved with X-Min Learn and Q-XRMA, respectively, are 

linked to the different approach adopted for the classification. The X-Min Learn model was 

trained only with one micro-domain, thus the automatic classification results of the other micro-

domains are less biased than the corresponding ones provided by the authors, that, instead, 

traced specific training areas for each micro-domain, introducing a possible source of selection 

and confirmation biases. The different classification results also influenced the HI index 

extraction, that obviously exhibit some differences. Such differences, however, do not alter the 

final evaluation of the hydraulicity properties, that are confirmed to be higher for the ghiara 

mortar. On the efficiency side, X-Min Learn allowed the extraction of comparable results in 
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much less time than Q-XRMA, also minimizing the bias effect introduced by the manual tracing 

of training areas in each microdomain. This furtherly confirms the advantage of using pre-

trained models over manually drawn training areas for each different sample.   

10 Discussions 

X-Min Learn (XML) is a new software solution for the analysis and automatic mineral 

classification of thin sections of both natural and artificial stone materials. As many other well-

known software for petrographic image analysis (see Table S3.3) such as XMapTools (Lanari 

et al., 2014), Trainable Weka Segmentation (Arganda-Carreras et al., 2017) or Q-XRMA 

(Ortolano et al., 2018), X-Min Learn implements lazy supervised and unsupervised classifiers, 

but, in addition to that, it also includes, for the first time within a mineral-oriented software, a 

collection of interactive tools for the advanced development of custom eager machine learning 

models with the “developer’s toolkit” (see chapter 4). 

Main features X-Min Learn XMapTools 
Trainable Weka 

Segmentation 
Q-XRMA 

Input type 
Multi-channel 

maps data  
Multi-channel 

maps data 
Single channel 

map data 
Multi-channel 

maps data 

Graphic User Interface Yes Yes Yes No 

Large algorithmic 
choice 

No Yes Yes No 

Automated database 
compilation 

Yes Yes Yes Yes 

Training from ROIs Yes Yes Yes Yes 

Training from fully 
classified samples 

Yes No No No 

Development of eager 
custom ML classifiers 

from scratch 
Yes No No No 

Statistics for the 
evaluation of models 

during training 
Yes No No No 

Probability maps Yes Yes Yes No 

Maps calibration No Yes No Yes 

Add-ons for petrology No Yes No Yes 

Distribution Stand-alone Stand-alone Requires ImageJ 
Requires 
ArcMap® 

 

Table S3.3 – Comparison between X-Min Learn and other known software for petrographic image analysis, such 

as XMapTools (Lanari et al., 2014), Trainable Weka Segmentation (Arganda-Carreras et al., 2017) and Q-XRMA 
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(Ortolano et al., 2018). Only X-Min Learn allows the development of custom eager ML classifiers, trainable from 

fully classified and validated samples and evaluable with dedicated statistics and graphics during training session. 

These tools allow the automatic compilation of ground truth datasets from an arbitrary number 

of previously classified and validated samples, include diagrams and graphics useful for the 

evaluation of the learning process, provide balancing algorithms to enhance the training datasets 

and several morphological image processing functions to refine the classification result. The 

whole procedure is simplified to meet the needs of all users, even those not experienced in 

programming, who will not need to write any line of code. This approach is functional to reduce 

user-driven biases such as the selection bias and confirmation bias. Therefore, users in X-Min 

Learn can actively develop and statistically validate customized machine learning models for 

their research requirements. Once custom models have been developed, the proposed approach 

also provides a reliable and faster way of classifying rocks thin sections with respect of lazy 

supervised classifiers built from training areas traced on the samples and unsupervised 

classifiers.  

The use of X-Min Learn can also be described as dynamic and in constant evolution. Using X-

Min Learn would mean starting a process of digitalization, collection and standardized 

organization of mineralogical and petrographic data. Such data, suitably processed within the 

software, allows the generation of automatic classification models customized for the specific 

needs of the users. X-Min Learn would also create the conditions for collaboration and data 

sharing within the community, functional to the generation of increasingly performing and free-

access models. 

The dynamic use of X-Min Learn requires a continuous evolution of the software itself, 

consisting in the addition of new algorithms and functions and in the enhancement of the 

existing ones. Future updates will be primarily focused on improving performance and stability. 

Once the software backbone is strengthened, another important goal will be to increase the 

number of classifiers made available to the user, that are, currently only limited to three: 

Softmax Regressor, as a customizable eager supervised classifier, k-NN as a lazy supervised 

classifier and K-Means as an unsupervised classifier. Other algorithms such as MeanShift and 

GaussianMixture, were already successfully tested and may be introduced into the Mineral 

Classifier in future updates. Support Vector Machine (SVM) has also been tested as a new eager 

supervised algorithm to be implemented as a new customizable ML classifier, as an alternative 

to the current Softmax Regressor. Moreover, it is planned to improve the available machine 

learning algorithms through the implementation of strategies oriented towards open set 
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classifications (e.g., Bendale & Boult, 2016). This would reduce the chance of erroneous 

classifications of unknown phases, that eager machine learning models tend to assign to one of 

the phases they were trained with.  

Another important field towards which X-Min Learn must develop is the quantification of 

chemical maps. Indeed, a complete analysis of the input maps includes the extraction of the 

weight percentage of the chemical elements identified in the mineralogical classes. A large part 

of the resources shall be oriented towards the study of smart techniques useful to quantify the 

input maps. Punctual chemical analyses must also be integrated within the software to make 

them completely interactive with the input maps. 
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 CONCLUSIONS 

Rocks are very often the product of mineral-chemical, geochemical and mechanical processes, 

that can be naturally or artificially induced (e.g., mortars, ceramics etc.). Several analysis 

techniques can be employed to extract different kinds of quantitative parameters from 

lithotypes. The type of required parameters highly depends on the task of the study. 

Furthermore, the scale factor plays a huge role in the type of analysis and interpretation of the 

extracted information. In the era of digitalization and big data collection and analysis, 

petrography, and geology in general, could greatly benefit from the implementation of data 

science techniques on geological data, such as machine learning algorithms.  

In this view, two new informatic tools for modern petrography were introduced: a) 

ArcStereoNet (ASN), a Python-toolbox for the statistical analysis of structural oriented data 

within the ArcGIS® environment and b) X-Min Learn (XML), a software that provides users 

with friendly and customizable machine learning tools to identify rocks minerals from thin 

section multi-spectral data. They are both oriented towards the application of smart algorithms 

for the detection of statistical patterns hidden in the data, providing tools for exploring, 

analyzing, classifying and extracting quantitative information from structured datasets. Thanks 

to a standardized policy of data representation and storing, such datasets are automatically 

compiled to be human-readable and machine-friendly at the same time. The philosophy behind 

those tools is to encourage users towards an aware application of the provided algorithms, in 

order to extract valuable parameters from geodata, useful, in turn, to derive more accurate 

geological and petrological interpretations and constraints.  

ArcStereoNet (already published in Ortolano et al., 2021) is a new Python-toolbox written using 

the arcpy library and, therefore, integrated within the ArcGIS® environment, that shares the 

same properties and interface of default ArcGIS® tools. It is useful for stereographic projections 

and rose diagrams extraction, also taking full advantage of all potential GIS mapping processes. 

ASN allows the application of most of the commonly used statistical methods for density 

contour, cluster and girdle analysis on structural geodata. It also includes a new algorithm (i.e., 

Mean Extractor from Azimuthal Data) for a more user-controlled statistical representation of 

the result. It is a scale-independent toolbox and can therefore be employed to identify potential 

relationships between meso-structural (outcrop scale) and micro-structural (thin section scale) 

data, as demonstrated with the Palmi Shear Zone case study. 
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X-Min Learn is a stand-alone tool, independent from any proprietary software and entirely 

coded in Python programming language. It allows users to automatically identify the modal 

amounts of rocks minerals from multi-channel data within a dynamic and interactive graphic 

user interface. Output mineral maps are computed with machine learning algorithms in a pixel-

oriented fashion. Probability maps are extracted as well, to monitor and evaluate the 

classification performance. XML also supports the development of custom eager ML 

classifiers, providing a user-friendly “developer’s toolkit” to build and test new machine 

learning models within a user-friendly dedicated GUI. It includes tools for designing training 

datasets from scratch, refining mineral maps with morphological image processing algorithms, 

converting data in different formats and more. This allows X-Min Learn users to tailor the 

software for the analysis of different kinds of natural and artificial rocks, as demonstrated within 

the dedicated case studies. The advantage of using such models resides in a faster and automatic 

classification of input data and in the reduction of sampling and/or confirmation biases that can 

be increased, instead, by manual tracing training areas directly on the sample under analysis. 

Although relying on smart algorithms for the automatic analysis of the data, both tools here 

presented have been developed to be strongly controlled by users. Geological and petrological 

skills are essential to evaluate and interpret the obtained results. At the same time ASN and 

XML create a bridge between recent techniques of data analysis (i.e., machine learning 

algorithms) and geological data, which hopefully will help users to develop greater awareness 

of the potential offered by machine learning and can provide even a small contribution to the 

already ongoing digitization of geological and petrographic data, moving towards the 

consolidation of statistically supported geodata analysis. 

As mentioned at the beginning of this work, although a rock is canonically defined as an 

aggregation of one or more mineral species, its textural and structural traits also play a central 

role on its characteristics. The tools presented in this work provide instruments for the 

quantitative investigation of the mineralogy and the fabric of rock samples. These two 

complementary features of natural rocks can be examined by extracting structural and micro-

structural parameters with ASN and unraveling mineral-chemical interaction of phases with 

XML. Nevertheless, thanks to the data-independency of the tools, the very same approach can 

be employed for the analysis of synthetic rock samples, to study the artificially induced textural 

traits of human-crafted materials and/or their chemical reactions, as demonstrated with the 

analysis of mortars. This opens up to several possible industrial application of the presented 
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tools such as the testing of innovative materials for the recovery of cultural heritage, support to 

mining engineering as well as assessment of the authenticity of valuable stone materials.  

In other words, they represent another important contribution toward the increasingly pressing 

demand of reaching quantitative results in petrography. This is at the service of the most diverse 

facets of the geosciences, from solving complex petrological to micro-structural problems, 

passing from those exquisitely applied to the field of geomaterials analysis. 
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 APPENDIX: ARCSTEREONET INSTALLATION 

ArcStereoNet (ASN) core Python library, mplstereonet (Kington, 2016), does not come with 

the default installation of Python 2.7.x for ArcMap®, therefore it must be specifically installed 

for ASN to work. The most canonical way to carry out the installation is by mean of pip (i.e., 

the most known Package Installer for Python). The toolbox has been programmed to fully 

automate this procedure. If the ArcMap® version is 10.3 or 10.3.1, however, the installation 

routine requires a previous step, that is described below. 

The user must copy the file “ArcStereoNet.pyt” (see supplementary material of Ortolano et al., 

2021) inside ArcGIS® toolboxes folder. The default path is: “C:/Program Files 

(x86)/ArcGis/Desktop10.x/ArcToolbox/Toolboxes”. Once the file is copied, the user can open 

the ArcToolbox window inside ArcMap®, right-click and then select the “Add Toolbox” option 

to import ASN (see Figure A.1). The installation will then automatically start; this requires an 

internet connection. A pop-up window will inform the user whether the toolbox components 

have been successfully installed or not. 

 

Figure A.1 – Screenshot showing how to add a custom toolbox, like ArcStereoNet, inside ArcMap®. 

Installation with ArcMap® 10.3.x 

ArcGIS® 10.3 and 10.3.1 versions do not include pip in their default Python directory, 

therefore, it must be installed manually by browsing to https://bootstrap.pypa.io/pip/2.7/get-

pip.py, right-clicking and selecting “Save As” to download the “get-pip.py” script. The file 

must be saved in the Scripts directory, located by default in “C:\Python27\ArcGIS10.3\Scripts”. 

Then, the installation steps described above can be followed. If the automatic installation 

routine happens to fail, refer to the manual installation of pip at https://pip.pypa.io/en/stable/.  

https://bootstrap.pypa.io/pip/2.7/get-pip.py
https://bootstrap.pypa.io/pip/2.7/get-pip.py
https://pip.pypa.io/en/stable/
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 APPENDIX: AERIAL PHOTOGRAMMETRY DATA 

Dip/ 
Plunge 

DipDirection/ 
Trend 

Feature type Easting Northing 
Altitude 

offset (m) 

49 29 Main Foliation 5,75337E+14 4,24846E+13 5980015 

53 27 Main Foliation 5,75336E+14 4,24846E+14 5999926 

63 21 Main Foliation 5,75337E+14 4,24846E+14 602341 

49 44 Main Foliation 5,75336E+14 4,24846E+14 6026546 

41 77 Main Foliation 5,75336E+14 4,24846E+14 5978481 

42 60 Main Foliation 5,75336E+14 4,24846E+14 6009612 

84 71 Main Foliation 5,75336E+13 4,24846E+14 6041855 

59 103 Main Foliation 5,75337E+14 4,24846E+14 6167231 

65 43 Main Foliation 5,75336E+14 4,24846E+14 6075282 

27 74 Main Foliation 5,75337E+14 4,24846E+14 5993966 

48 69 Main Foliation 5,75337E+14 4,24846E+14 5971349 

31 43 Main Foliation 5,75336E+14 4,24846E+14 6009094 

72 47 Main Foliation 5,75336E+14 4,24846E+14 6015384 

64 328 Main Foliation 5,75337E+14 4,24846E+14 5948465 

44 212 Main Foliation 5,75333E+14 4,24845E+14 6014211 

18 177 Main Foliation 5,75332E+14 4,24845E+14 6015148 

80 215 Main Foliation 5,75331E+13 4,24845E+14 6074697 

61 186 Main Foliation 5,7533E+14 4,24845E+14 6047017 

75 81 Main Foliation 5,75331E+14 4,24845E+14 6091596 

65 216 Main Foliation 5,7533E+14 4,24845E+12 606285 

56 215 Main Foliation 5,7533E+14 4,24845E+14 6025143 

44 169 Main Foliation 5,75329E+14 4,24845E+14 6007076 

47 206 Main Foliation 5,75331E+14 4,24845E+14 596213 

40 99 Main Foliation 5,75328E+14 4,24845E+14 6081601 

23 357 Main Foliation 5,75328E+14 4,24845E+14 6095134 

79 290 Main Foliation 5,75327E+14 4,24845E+14 6166647 

44 163 Main Foliation 5,75326E+14 4,24845E+14 6147497 

42 180 Main Foliation 5,75326E+14 4,24845E+14 6253848 

73 191 Main Foliation 5,75323E+14 4,24845E+14 5881218 

76 191 Main Foliation 5,75323E+13 4,24845E+14 5897243 

72 191 Main Foliation 5,75323E+14 4,24845E+14 5926296 

75 180 Main Foliation 5,75323E+14 4,24845E+14 588297 

61 163 Main Foliation 5,75322E+14 4,24845E+14 6147951 

41 92 Main Foliation 5,75319E+13 4,24845E+14 6326204 

80 60 Main Foliation 5,75317E+14 4,24845E+13 6375182 

66 39 Main Foliation 5,75317E+13 4,24845E+14 6201701 

69 36 Main Foliation 5,75318E+14 4,24845E+14 5988508 

34 351 Main Foliation 5,75316E+14 4,24845E+13 6592616 

59 359 Main Foliation 5,75316E+14 4,24845E+14 6601204 

81 220 Main Foliation 5,75314E+14 4,24845E+13 6551525 
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79 40 Main Foliation 5,75315E+14 4,24845E+14 6524699 

72 30 Main Foliation 5,75315E+14 4,24845E+14 6406224 

54 21 Main Foliation 5,75315E+14 4,24845E+14 6372351 

73 29 Main Foliation 5,75316E+14 4,24845E+14 6379814 

81 11 Main Foliation 5,75316E+14 4,24845E+13 64088 

59 192 Main Foliation 5,75315E+14 4,24845E+13 6311317 

78 74 Main Foliation 5,75315E+14 4,24845E+14 6400745 

52 37 Main Foliation 5,75316E+14 4,24845E+14 6455634 

43 10 Main Foliation 5,75315E+14 4,24845E+14 6490167 

40 34 Main Foliation 5,75315E+14 4,24845E+14 6457008 

70 27 Main Foliation 5,75314E+14 4,24845E+13 631825 

86 38 Main Foliation 5,75313E+14 4,24845E+14 6392061 

60 25 Main Foliation 5,75313E+14 4,24845E+14 6369606 

77 219 Main Foliation 5,75313E+14 4,24845E+14 6341489 

59 21 Main Foliation 5,75313E+14 4,24845E+14 6374203 

76 36 Main Foliation 5,75313E+14 4,24845E+14 6308995 

61 46 Main Foliation 5,75313E+14 4,24845E+14 626573 

81 210 Main Foliation 5,75314E+14 4,24845E+14 6554878 

65 42 Main Foliation 5,75313E+14 4,24844E+14 6569251 

76 222 Main Foliation 5,75313E+14 4,24844E+14 6539664 

82 35 Main Foliation 5,75313E+14 4,24844E+13 6536015 

63 29 Main Foliation 5,75312E+14 4,24845E+14 6482649 

67 199 Main Foliation 5,75312E+14 4,24845E+14 6447238 

69 38 Main Foliation 5,75312E+14 4,24844E+14 6519147 

54 206 Main Foliation 5,75313E+14 4,24844E+14 6603224 

83 17 Main Foliation 5,75314E+14 4,24844E+14 6623299 

84 39 Main Foliation 5,75315E+14 4,24845E+14 6639986 

74 212 Main Foliation 5,75314E+14 4,24845E+14 6604787 

72 19 Main Foliation 5,75313E+14 4,24844E+14 6688093 

77 9 Main Foliation 5,75314E+14 4,24844E+14 6675423 

89 16 Main Foliation 5,75313E+14 4,24844E+14 6664228 

75 30 Main Foliation 5,75313E+14 4,24844E+14 6646918 

56 20 Main Foliation 5,75313E+14 4,24844E+14 6662302 

71 9 Main Foliation 5,75313E+14 4,24844E+14 6682913 

75 46 Main Foliation 5,75312E+14 4,24844E+14 6496968 

72 215 Main Foliation 5,75312E+14 4,24844E+14 6454999 

67 70 Main Foliation 5,75311E+14 4,24844E+14 6468935 

83 23 Main Foliation 5,75312E+14 4,24844E+14 6427811 

80 217 Main Foliation 5,75312E+14 4,24844E+14 6387048 

87 198 Main Foliation 5,75312E+14 4,24845E+14 6402475 

86 188 Main Foliation 5,75312E+14 4,24844E+14 6326363 

78 215 Main Foliation 5,75311E+14 4,24844E+14 6363148 

89 24 Main Foliation 5,75311E+14 4,24844E+14 6402962 

72 206 Main Foliation 5,75311E+14 4,24844E+14 6449138 

85 213 Main Foliation 5,75313E+14 4,24845E+14 6139424 
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88 33 Main Foliation 5,75313E+14 4,24845E+14 619732 

87 208 Main Foliation 5,75313E+13 4,24845E+14 610301 

83 204 Main Foliation 5,75312E+14 4,24845E+14 6107144 

69 30 Main Foliation 5,75312E+14 4,24845E+14 6079913 

67 44 Main Foliation 5,75312E+14 4,24845E+13 6051531 

26 20 Main Foliation 5,75314E+14 4,24845E+14 6173455 

48 47 Main Foliation 5,75314E+14 4,24845E+13 6191539 

89 34 Main Foliation 5,75315E+14 4,24845E+14 6162753 

80 215 Main Foliation 5,75312E+13 4,24845E+14 5976513 

85 215 Main Foliation 5,75311E+14 4,24845E+14 5962994 

73 18 Main Foliation 5,75313E+14 4,24845E+14 6232236 

71 24 Main Foliation 5,75311E+14 4,24845E+14 6037189 

49 31 Main Foliation 5,75311E+14 4,24845E+14 6016999 

81 31 Main Foliation 5,75311E+12 4,24844E+14 6203868 

81 31 Main Foliation 5,75311E+14 4,24844E+14 6204172 

90 24 Main Foliation 5,75311E+14 4,24844E+14 6241188 

70 212 Main Foliation 5,75311E+14 4,24844E+14 6314428 

88 39 Main Foliation 5,75311E+14 4,24844E+14 6266676 

73 25 Main Foliation 5,75311E+14 4,24844E+13 6319171 

86 218 Main Foliation 5,75311E+14 4,24844E+14 6277291 

72 42 Main Foliation 5,75309E+14 4,24844E+13 6346382 

71 198 Main Foliation 5,7531E+14 4,24844E+14 6375335 

74 13 Main Foliation 5,7531E+14 4,24844E+13 6415396 

63 358 Main Foliation 5,75306E+14 4,24844E+14 6205683 

40 219 Main Foliation 5,75306E+13 4,24844E+14 7092865 

83 33 Main Foliation 5,75306E+13 4,24844E+14 7122562 

74 51 Main Foliation 5,75306E+13 4,24844E+14 6651627 

61 61 Main Foliation 5,75306E+14 4,24844E+12 6687679 

60 34 Main Foliation 5,75305E+14 4,24844E+14 6748511 

45 54 Main Foliation 5,75305E+14 4,24844E+14 6784868 

66 16 Main Foliation 5,75303E+14 4,24844E+12 6598363 

49 354 Main Foliation 5,75303E+14 4,24844E+13 6628529 

18 269 Main Foliation 5,75302E+14 4,24844E+14 664355 

46 30 Main Foliation 5,75305E+14 4,24844E+14 657905 

45 18 Main Foliation 5,75304E+14 4,24844E+14 6563882 

41 35 Main Foliation 5,75304E+14 4,24844E+13 6601851 

69 34 Main Foliation 5,75304E+14 4,24844E+14 6571725 

64 359 Main Foliation 5,75305E+14 4,24844E+14 6616294 

48 23 Main Foliation 5,75304E+14 4,24844E+14 6497356 

57 29 Main Foliation 5,75306E+14 4,24844E+14 6501749 

22 23 Main Foliation 5,75303E+14 4,24844E+14 670278 

22 19 Main Foliation 5,75303E+14 4,24844E+14 6699965 

62 15 Main Foliation 5,75302E+14 4,24844E+14 6849251 

51 30 Main Foliation 5,75302E+14 4,24844E+14 6800707 

77 25 Main Foliation 5,75302E+14 4,24844E+14 6759322 
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77 28 Main Foliation 5,75302E+14 4,24844E+14 6818652 

84 217 Main Foliation 5,75302E+14 4,24844E+14 6729484 

57 10 Main Foliation 5,75298E+14 4,24844E+14 6340251 

40 347 Main Foliation 5,75298E+14 4,24844E+14 6369389 

51 0 Main Foliation 5,75298E+14 4,24844E+14 6395351 

54 7 Main Foliation 5,75299E+14 4,24844E+14 6283947 

43 359 Main Foliation 5,75299E+14 4,24844E+14 6255237 

63 16 Main Foliation 5,75299E+13 4,24844E+13 633973 

48 345 Main Foliation 5,75299E+14 4,24844E+14 6382713 

34 347 Main Foliation 5,75299E+14 4,24844E+14 6382601 

58 18 Main Foliation 5,75297E+13 4,24844E+14 628979 

64 32 Main Foliation 5,75297E+14 4,24844E+14 6304314 

9 301 Stretching Lineation 5,75313E+14 4,24844E+14 6557539 

1 322 Stretching Lineation 5,75313E+14 4,24845E+14 6414336 

3 305 Stretching Lineation 5,75311E+13 4,24845E+13 5985928 

6 118 Stretching Lineation 5,75312E+14 4,24845E+14 6107338 

4 120 Stretching Lineation 5,75312E+14 4,24845E+14 6067215 

4 117 Stretching Lineation 5,75313E+14 4,24845E+14 6240239 

6 117 Stretching Lineation 5,75311E+14 4,24844E+14 6291584 

12 142 Stretching Lineation 5,75309E+14 4,24844E+14 6324884 

1 287 Stretching Lineation 5,75312E+13 4,24845E+14 6466518 

 


