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Abstract
Gender is an important factor influencing epidemiological and clinical features of Parkinson’s disease (PD). We aimed to 
evaluate gender differences in the expression of a panel of miRNAs (miR-34a-5p, miR-146a, miR-155, miR-29a, miR-106a) 
possibly involved in the pathophysiology or progression of disease. Serum samples were obtained from 104 PD patients 
(58 men and 46 women) never treated with levodopa. We measured levels of miRNAs using quantitative PCR. Correlations 
between miRNA expression and clinical data were assessed using the Spearman’s correlation test. We used STRING to 
evaluate co-expression relationship among target genes. MiR-34a-5p was significantly upregulated in PD male patients com-
pared to PD female patients (fc: 1.62; p < 0.0001). No correlation was found with age, BMI, and disease severity, assessed 
by UPDRS III scale, in male and female patients. MiR-146a-5p was significantly upregulated in female as compared to male 
patients (fc: 3.44; p < 0.0001) and a significant correlation was also observed between disease duration and mir-146a-5p. No 
differences were found in the expression of miR-29a, miR-106a-5p and miR-155 between genders. Predicted target genes for 
miR-34a-5p and miR-146-5p and protein interactions in biological processes were reported. Our study supports the hypothesis 
that there are gender-specific differences in serum miRNAs expression in PD patients. Follow-up of this cohort is needed to 
understand if these differences may affect disease progression and response to treatment.
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Introduction

Parkinson’s disease (PD) is the second most common neu-
rodegenerative disorder and affects millions of individu-
als worldwide. Gender differences have been recognized 
in PD, both in epidemiological data, with men being 1.5 
more likely to develop the disease compared to women, 
and in the incidence of motor and non-motor symptoms 
and the disease progression [1–4]. Since it is now widely 
known that PD is not a single disease, detection of bio-
markers that may characterize patient groups and predict 
disease progression and outcome for the purpose of per-
sonalized medicine is the goal to strive for. A personalized 
therapeutic approach also considering gender differences 
would be advisable to improve PD patients’ quality of life 
[5].

MicroRNAs (miRNAs) are small non-coding RNAs 
which regulate gene expression at post-transcriptional 
level. MiRNAs can cross the blood–brain barrier and 
enter body fluids as blood, urine and saliva. In addition, 
miRNAs are stable, easily quantifiable and accessible by 
minimally-invasive procedures [6] Several studies have 
shown that specific panels of miRNAs are dysregulated in 
PD and other parkinsonian disorders [7, 8]. Such evidence 
shows that the use of miRNAs as biomarkers has great 
potential for early PD diagnosis.

Generally, deregulated miRNAs show consistent 
expression between men and women, but some miRNAs 
may be differentially expressed between genders in spe-
cific diseases [9]. These differentially expressed miRNAs 
have important roles in basic biological processes and con-
tribute to the development and progression of diseases. So 
far, no gender-oriented analysis of miRNA panels has been 
performed in early PD.

Our aim was to evaluate gender differences in the 
expression of some miRNAs that, according to the lit-
erature, are possibly involved in the pathophysiology and 
progression of PD.

Materials and methods

Patients and sample collection

PD patients never treated with levodopa were recruited 
from 11 Italian centers. We enrolled 105 patients affected 
by PD (59 men and 45 women). Clinical features were 
reported in Table 1. The study protocol was approved by 
Ethics Committees at all participant centers (University 
of Salerno, Salerno; University of Campania “Luigi Van-
vitelli”, Napoli; IRCCS San Raffaele, Roma; Fondazione 

IRCCS Istituto Neurologico Carlo Besta, Milan; AOU 
“Policlinico-San Marco”, Catania; IRCCS Mondino Foun-
dation, Pavia; IRCCS Ca' Granda Ospedale Maggiore Poli-
clinico, Milan; IRCCS San Raffaele Scientific Institute, 
Milan; University Federico II, Naples; IRCCS Istituto 
delle Scienze Neurologiche, Bologna; University San Raf-
faele, Roma). Written informed consent was obtained from 
all patients. Blood samples were obtained by vein puncture 
using dry vacutainer tubes (BD Biosciences, Italy). Each 
sample was processed for serum isolation within 2 h after 
withdrawal according to our previously published protocol 
[10, 11].

MIRNAS quantification

We assessed hemolysis grade according to Shah et  al., 
which quantified the ratio of miR-451a and miR-23a-3p to 
determine the samples with low (miR ratio < 5), moderate 
(5 < miR ratio > 7) and severe (miR > 7) grade of hemolysis 
[12]. Then we excluded all samples with severe hemolysis. 
Serum miR-34a-5p and miR-146a-5p were quantified using 
LNATM enhanced microRNA assay (Exiqon) according to 
our previous published protocol [10, 11]. Each miRNA was 
quantified in duplicate and mean Ct values were used for fold 
change calculations.

Statistical analysis

We used miR-93-5p as reference miRNA according to our 
previously published protocol [8]. The data was checked 
for normality using the Anderson Darling test and ana-
lyzed using parametric or nonparametric tests accordingly. 
Correlations between miRNA expression and clinical fea-
tures were assessed using the Spearman’s correlation test. 
We excluded samples with Ct values higher than 37 from 
the analysis. We calculated the fold changes (fc) using the 
2 − 1CT method for miR-34a-5p and miR-146a-5p. All 
statistical analyses were performed using GraphPad Prism 
(GraphPad Software Inc., San Diego, CA, USA). A p < 0.05 
was considered significant.

Table 1   Demographic and clinical features of study population at 
baseline

Men
(n = 59)

Women
(n = 45)

p

Age, ys (mean ± SD) 64.52 (9.32) 64.43 (9.61) NS
Disease duration, months 

(mean ± SD)
26.24 (21.90) 28.41 (25.52) NS

MDS-UPDRS III (mean ± SD) 27.37 (9.46) 28.53 (14.39) NS
H&Y stage 1.90 (0.48) 1.93 (0.65) NS
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Target prediction

Target prediction of miRNAs that were found to be differen-
tially expressed according to gender was obtained by query-
ing the microRNA-target interactions using the miRTarBase, 
chosen due to its widespread use and completeness. We con-
sidered only strong mRNA-miRNA interactions experimen-
tally confirmed by qRT-PCR, luciferase assays and Western 
Blots. Then, we used the search tool for retrieval of interact-
ing genes (STRING) to evaluate co-expression relationships 
among target genes. We considered only the target genes 
with co-expression coefficients > 0.7. Furthermore, we used 
open target platform (https://​platf​orm.​opent​argets.​org/) to 
evaluate if predicted targets were associated to PD.

Results

Serum MIR‑34a‑5p

We found that miR-34a-5p was significantly upregulated in 
PD men patients compared with PD women patients (fc: 
1.62; p < 0.0001) (Fig. 1A). We did not find any correlation 
with age, BMI, and disease severity, assessed by UPDRS 
III scale, in men and women. Using miRTarBase, we iden-
tified 85 target genes, confirming strong mRNA-miRNA 
interactions for miR-34a-5p. Many predicted target genes 
are involved in neurodegeneration. Using STRING, we 
found several interactions among target proteins (Fig. 2). 
We observed that 9 target genes are involved in aging [False 
Discovery Rate (FDR) = 0.00011]. In addition, 15 target 
genes are implicated in the regulation of neurogenesis 
(FDR = 0.000008) and 10 genes are involved in the regu-
lation of neuronal death (FDR = 0.00084) (Table 2) Using 
open target platform, we identified 22 target genes associated 
to PD (Fig. 3).

Serum MIR‑146a‑5p

We observed that miR-146a-5p was significantly upregulated 
in PD men compared with PD women (fc: 3.44; p < 0.0001) 
(Fig. 1B). A weak but significant correlation was observed 
between disease duration and mir-146a-5p (r = 0.2744; 
p < 0.05) only in male patients. No correlation.was found 
between miR-146a-5p and age, BMI in PD patients of both 
genders.

Using miRTarBase, we identified 47 target genes con-
firming strong mRNA-miRNA interactions for miR-146a-5p. 
Many predicted target genes are involved in neurodegenera-
tive processes. Using STRING, we found several interactions 
among target proteins (Fig. 4). We observed that 19 target 
genes are involved in neurogenesis (FDR = 0.000007) and 11 
genes in the regulation of neurogenesis (FDR = 0.00013). In 
addition, 8 target genes are implicated in the process of axon 
guidance (FDR = 0.0000017) (Table 3). Using open target 
platform, we identified 17 target genes possibly associated 
to PD (Fig. 5).

No differences were found in the expression of miR-29a, 
miR-106a-5p and miR-155 between genders.

Discussion

In this study, we evaluated gender differences in the expres-
sion of some miRNAs that, are possibly involved in the 
pathophysiology and progression of PD. MiR-34a-5p is 
abundantly expressed in the adult mammalian brain and we 
selected this miRNA because of its involvement in several 
neurodegenerative disorders, like Alzheimer's disease (AD), 
schizophrenia and major depression [13]. Specific deregula-
tion of miR-34a-5p was found in cellular and animal mod-
els of PD but also in the blood and brain of PD patients 
[14, 15]. Recently, Grossi et al. found that miR-34a-5p was 
upregulated in plasmatic pure extracellular vesicles of PD 

Fig. 1   Box plots showing 
significant upregulation of miR-
34a-5p (A) and miR-146a-5p 
(B) in PD male patients com-
pared with PD female patients 
(fc: 1.62; p < 0.0001; fc: 3,44; 
p < 0.0001, respectively)

https://platform.opentargets.org/
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Fig. 2   Co-expression relationships among target genes of miR-34a-5p derived from the search tool for retrieval of interacting genes (STRING)

Table 2   Target genes of miR-34a-5p involved in neurodegeneration

Biological process Target genes False discovery rate

Aging MAGEA2, TP53, AKT1, BCL2, SIRT1, FOS, AKT1, PDGFRA, PDGFR, MAP2K1, ATG7 0.00011
Regulation of neurogenesis PP1CC, PRKD1, L1CAM, DLL1, JAG1, KLF4, HDAC1, MYB, TP53, NOTCH1, TREM, 

AKT1, BCL2, MAP2K1, CRTC1
0.000008

Regulation of neuronal death WNT1, MYB, TP53, AXL, PPARA, FOS, SIRT1, BCL2, ATG7, AKT1 0.00084
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patients. Furthermore, they observed that the levels of miR-
34a-5p were associated with disease duration, Hoehn and 
Yahr and Beck Depression Inventory scores [16]. Mir-146a 
has a key role in inflammatory responses and is expressed 
within neurons, astrocytes and microglia [17]. Several 
reports have shown a downregulation of miR-146a-5p in PD 
patient-derived samples. Caggiu et al. found that miR-146a 
was downregulated in PD patients under levodopa treatment 
compared with healthy controls (HC) [18]. In another study, 
a group of 20 sporadic PD patients and 45 PD patients with 
mutations in the LRRK2 gene also found a decrease in lev-
els of circulating miR146a in such patients [19]. MiR-155 
is considered a pro-inflammatory mediator in the CNS and 
has a central role in the inflammatory response to α-syn in 
the brain [20]. Caggiu et al. reported that miRNA-155-5p 
was generally up-regulated in PD patients compared to HC, 
but the expression of miR-155-5p was modified by levo-
dopa treatment, since a down-regulation of miR-155-5p 
in PD patients with the highest dosage was observed [18]. 
MiR-29a is involved in various neurodegenerative diseases, 
including AD and PD. Bai et al. reported that serum miR-
29a was reduced in 80 PD patients compared with 80 HC 
and serum levels were higher in female patients and HC than 
male patients and HC [21]. Moreover, an upregulation of this 
miR was found in levodopa-treated PD patients compared to 

drug-naïve PD patients and healthy controls [22]. Finally, we 
also selected miR-106a-5p, that has been recently predicted 
to play a role in the pathogenesis of AD [23].

In our study, we found for the first time a significant 
increase of serum miR-34a-5p in PD male patients compared 
to PD female patients. miR-34a-5p was upregulated in plas-
matic pure extracellular vesicles of 15 PD patients compared 
with healthy controls (HC) and its levels correlated with dis-
ease duration, Hoehn and Yahr and Beck Depression Inven-
tory scores. Measuring miR-34a-5p levels in serum and not 
in extracellular vesicles in a larger sample of PD patients, we 
did not find correlations with clinical features. Differences 
in sample size, disease duration, antiparkinsonian treatment, 
in addition to the different methodological approach, may 
account for this discrepancy. [16]. Recently, Stefanik et al. 
found that hippocampal expression of miR-34a-5p was sex-
dependent [24]. MiR-34a-5p is abundantly expressed in 
the brain and emerging evidence support its involvement 
in different neurodegenerative diseases as Alzheimer's dis-
ease and PD [13]. Moreover, Findeiss et al. observed that 
twelve miRNAS including miR-34a-5p were upregulated 
in α-synuclein-overexpressing Lund human mesencephalic 
neurons, a well-established cell model of PD, suggesting 
possible novel therapeutic targets for PD [25].

Neurodegeneration in PD results from a complex inter-
play of multiple immunological, inflammatory and genetic 
factors [26]. Certain genetic defects may contribute to 
microglial cell activation and production of inflammatory 
cytokines and chemokines, which finally lead to neurode-
generation [26]. Although dysregulation of miRNAs is only 
one of the disease-causing mechanisms that contribute to 
neurodegenerative disorders, evidence indicates that dys-
regulated miRNAs in NDs affect the severity and progres-
sion of neurodegenerative diseases [27]. MiRNAs not only 
affect gene expression inside the cells but also, when sorted 
into exosomes, systemically mediate the communication 
between different types of cells. Using miRTarBase, we pre-
dicted 85 target genes of miR-34a-5p and hypothesize that 
an increase of this miRNA can lead to the decreased expres-
sion of such predicted target genes. We used STRING to 
determine protein interactions among those genes involved 
in key biological processes such as regulation of neurogen-
esis, neuronal death and aging. Using open target platform, 
we identified 21 predicted target genes associated to PD. 
Among these target genes, AKT1, L1CAM and ATG5 may 
be particularly relevant. AKT1 is a serine/threonine-protein 
kinase responsible of the regulation of glucose uptake by 
mediating insulin-induced translocation of the SLC2A4/
GLUT4 glucose transporter to the cell surface [28]. Sekar 
et al. observed a significant decrease of AKT1 in substantia 
nigra samples obtained from PD patients compared to the 
age-matched controls [28]. L1CAM is a neural cell adhe-
sion molecule involved in multiple processes, including 

Fig. 3   Target genes of miR-34a-5p associated to PD obtained using 
open target platform
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neuronal migration, axonal growth and synaptogenesis. In 
the mature brain, it plays a role in the dynamics of neuronal 
structure and function, including synaptic plasticity [29]. 

Recently, Cheng et al. found that L1CAM was downregu-
lated in PD patients compared with HC. In addition, using 
LASSO model they observed that L1CAM was an immune 

Fig. 4   Co-expression relationships among target genes of miR-146a-5p derived from the search tool for retrieval of interacting genes (STRING)

Table 3   Target genes of miR-146a-5p involved in neurodegeneration

Biological process Target genes False discovery rate

Axon guidance SMAD4, NOTCH2, SOS1, RAC1, LAMC2, CXCL12, CXCR4, NOTCH1 0.0000017
Neurogenesis LRP2, HOXD10, NOS1, RARB, TGFB1, TLR2, TLR4, CXCR4, EGFR, CXCL12, SOX2, 

NOTCH1, ROCK1, SMAD4, NOTCH2, ERBB4, LAMC2, RAC1, SOS1
0.000007

Regulation of neurogenesis LRP2, NOS1, TGFB1, TLR2, RARB, CXCR4, SOX2, NOTCH1, CXCL12, ROCK1, ERBB4 0.00013
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hub gene for PD of their four-gene combined model [30]. 
Zhang et al. found that ATG5, a protein specifically required 
for autophagy, was downregulated in MPTP-induced PD 
mice model [31]. In addition, a significant downregulation 
of ATG5 in peripheral blood mononuclear cells (PBMCs) 
of PD patients compared with HC has been consistently 
reported [32, 33]. Moreover, Youn et al. reported signifi-
cantly lower levels of the ATG5 protein in the cerebrospinal 
fluid samples of PD patients compared to HC [34].

In the present study, we also observed a significant up-
regulation of miR-146a-5p in PD men compared with PD 
women. In addition, we observed a significant correlation 
between disease duration and miR-146a-5p specifically in 
male PD patients. The positive correlation between miR-
146a-5p and disease duration may suggest a possible role of 
miR-146a-5p in the progression of disease in male patients. 
Using miRTarBase, we identified 47 target genes of miR-
146a-5p and with STRING we determined protein interac-
tions among those genes involved in neurogenesis, axon 
guidance and regulation of neurogenesis. Using an open 
target platform, we identified 17 predicted target genes 
associated with PD. Among these target genes, TGFB1, 
TLR2 and TLR4 may be of particular interest. Booth et al. 
found that TGFB1 was downregulated in iPSC-derived 

midbrain-patterned astrocytes from PD patients carrying 
the common LRRK2 G2019S missense mutation [35]. Sev-
eral studies reported an upregulation of TLR2 and TLR4 
in PD patients, but no studies are available regarding gen-
der differences [36, 37]. Normal and aggregated a-syn have 
shown TLR2- or TLR4-mediated microglial cells activation 
and neuronal loss in PD and mouse models [38, 39]. As for 
TLR4, regulation of hippocampal neurogenesis is region-
specific in adult male mice while broader changes in neu-
rogenesis throughout the hippocampus are found in female 
mice [40].

As a possible limitation of the study, we recognize that 
we have included only PD patients at a very early disease 
stage and did not include more advanced PD patients. 
Indeed, in this study we enrolled a cohort of levodopa-naive 
PD patients, thus explaining the short disease duration and 
low H&Y scores. The same cohort of patients is being fol-
lowed up to evaluate gender differences in serum miRNAs 
after levodopa start.

In conclusion, our study supports the hypothesis that 
there are gender-specific differences in PD for miR-34a-5p 
and miR-146a-5p. A follow-up study of this cohort is under-
way to establish the possible role of these biomarkers in 
predicting disease progression and response to anti-parkin-
sonian treatments according to gender.
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