
Journal of Constructional Steel Research 205 (2023) 107811

Available online 14 March 2023
0143-974X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Influence of uncertainties on the seismic performance of steel moment 
resisting frames 

Melina Bosco, Elga Mangiameli, Pier Paolo Rossi * 

Department of Civil Engineering and Architecture, University of Catania, Catania, Italy   

A R T I C L E  I N F O   

Keywords: 
Moment resisting frames 
Seismic response 
Uncertainties 
Mean annual frequency of exceedance 

A B S T R A C T   

The present paper investigates the probabilistic assessment of the seismic performance of steel MRFs designed 
according to Eurocodes. The considered MRFs are three- and five-storey high and are analysed by the multiple 
stripe method of analysis by means of sets of earthquake ground motions that depend in frequency content, 
energy and duration on the value of the selected seismic intensity measure. Additional uncertainties are related 
to the mechanical properties of steel, dead and live loads and equivalent viscous damping ratio. Different criteria 
are defined to assess the performance at the achievement of different limit states, in terms of interstorey drifts 
and damage indexes. To reach a synthetic evaluation of the seismic performances, the mean annual frequency of 
exceedance of the assigned limit state condition is also reported. Based on a Monte Carlo simulation the paper 
evaluates the effects of the single uncertainties on the seismic performances and suggests proper modifications to 
the simplified approach included in FEMA documents to mime the results of a full probabilistic approach.   

1. Introduction 

The probabilistic assessment of the seismic performance of buildings 
is gaining attention and popularity within the scientific community. In 
the framework of this approach, the assessment of the seismic perfor-
mance is usually obtained by means of the estimate of the mean annual 
frequency of exceedance of a given set of limit state conditions generally 
involving either forces or displacements. The mean annual frequency of 
exceedance depends on the seismic hazard at the site and on the prob-
ability of exceedance of the assigned limit state conditions at different 
values of the selected ground motion intensity measure. The results of 
the assessment are significantly influenced by the simulation of the 
uncertainties of the main parameters involved in the structural and non- 
structural verifications [1–3]. As strongly influential for the results of 
the seismic assessment of constructions, seismic events should be 
simulated with care in order to represent the seismological character-
istics of the expected earthquakes as well as the effects of the geotech-
nical and morphological conditions at the site. As a consequence, the 
earthquake ground motions should be selected (or artificially generated) 
to reflect the expected earthquake frequency content, energy and 
duration at the site. In addition, as underlined by many researchers, 
earthquake ground motions corresponding to different values of the 
seismic intensity measure should be selected to be representative of 

seismic events corresponding to the single assigned value of the selected 
intensity measure and should not be obtained by scaling of a single set of 
ground motions [4]. The magnitude of permanent and variable loads 
acting on constructions is sometimes also considered as an uncertain 
variable. In regard to permanent loads, Ellingwood et al. [5] proposed to 
describe the dead loads by means of a Gaussian probability distribution 
with a mean value equal to the characteristic value of the loads and a 
coefficient of variation equal to 0.10. This assumption is also in keeping 
with the current recommendations of Eurocode 0 [6]. Indeed, this code 
reports that, if the structure is sensitive to variations in the dead loads, 
the probability distribution of the magnitude of such loads should be 
assumed as Gaussian and the coefficient of variation should be in the 
range from 0.05 to 0.10 depending on the type of structure considered. 
Instead, to the best knowledge of the authors, the uncertainty in the 
magnitude and position of variable loads is generally neglected in 
literature. 

Most research studies devoted to the probabilistic assessment of the 
seismic performance of structures also consider the variability of the 
material properties. In this regard, Baldassari et al. [7], collected data 
from three industrial producers and carried out statistical analyses to 
define mean, standard deviation, coefficient of variation, variance and 
5% and 95% percentiles of the yield strength, tensile strength and 
elongation at maximum load of different structural profiles made of steel 
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grade S235, S275, S355 or S460. Similarly, Simões da Silva et al. [8] 
collected data from several sources (e.g. [9–11]) and found that steel 
grade S235 exhibits the higher scatter of the mechanical properties 
(with a coefficient of variation equal to 0.10), maybe because steel 
profiles that cannot be classified as of higher steel grades are often 
classified as S235. Further, these researchers observed that, due to 
quality control procedures, the obtained minimum strength was always 
higher than the characteristic value. Based on the results of the tests 
reported in [12], Asgarian and Ordoubadi [2] proposed coefficients of 
variation equal to 0.11 and 0.065 for the yield and tensile strength of 
steel, respectively. Still in regard to the yield strength, the Italian code 
stipulates that, in qualification tests for steels members, a coefficient of 
variation equal to 0.08 should be used for steel grades from S235 to 
S355, whereas a coefficient of variation equal to 0.06 may be accepted 
for higher steel grades. 

The uncertainty in the inherent damping is of some interest, partic-
ularly for the assessment of structures at the achievement of the 
serviceability limit states or, more in general, for the assessment of 
structures endowed with low dissipation energy capacities. In this re-
gard, Porter et al. [13] summarized the experimental data on the vari-
ability of the equivalent viscous damping ratio obtained from 10 
instrumented buildings (five steel-frame buildings, four buildings with 
reinforced-concrete frames, and one with reinforced concrete shear- 
walls) that experienced one or more than one ground motions [14]. 
Based on these results, a lognormal probability distribution with median 
equal to 0.05 and coefficient of variation equal to 0.4 was suggested for 
the equivalent viscous damping ratio [2,13,14]. 

The seismic performance is often obtained by means of Monte Carlo 
simulations and limit state functions that are expressed in terms of 
global (e.g. interstorey drift) or local response parameters (e.g. plastic 
rotation). However, in the case of large and complex structures 
numerous researchers also adopt simplifications in order to reduce the 
computational burden of the probabilistic analysis by means of the 
response surface methodology and/or by means of the first-order reli-
ability method [15–18]. 

The application of the above probabilistic approach to some specific 
structural systems has led to a more refined and accurate assessment of 
the seismic performance of such systems. In addition, the comparison of 
these results with those from simpler numerical analyses in which un-
certainties are not taken into account or are partially considered (for 
example, only in the frequency content of the ground motions) has 
underlined the difference between the results of the types of analysis. In 
this regard, aiming at miming the results a full probabilistic approach, 
FEMA documents [19,20] (devoted to the assessment of the seismic 
performance of buildings and to the evaluation of the seismic losses) 
state that accurate fragility curves can be obtained from analyses in 
which only uncertainties related to the seismic input (record to record 
uncertainty) are modelled, assuming that the other uncertainties do not 
modify the median response but only increase the dispersion β of the 
intensity measure of the fragility curve. The total dispersion (βtot) is 
determined as the SRSS of the dispersions due to record-to-record 
variability (βRTR) and other uncertainties (e.g. modelling-related un-
certainty, test data-related uncertainty). The dispersion reported in 
these documents with reference to the single uncertainty does not 
depend on the structural type. In particular, to quantify the value of 
dispersion to be used, engineers have to formulate a quality judgment 
based on their experience on important issues such as the accuracy of the 
adopted numerical model. 

In regard to steel moment resisting frames (MRFs), the probabilistic 
assessment of the seismic performance is carried out only in a few 
research studies. Two papers consider MRFs designed according to 
American codes [21,22] and uncertainties introduced in the cyclic 
behaviour of steel sections by means of probabilistically distributed 
parameters. Incremental dynamic analyses and Monte Carlo simulation 
are used to assess the seismic performance of refined models with spe-
cific beam-to-column joint elements. Out of keeping with FEMA 

documents, both the studies find that uncertainties mainly affect the 
median response of the considered buildings. However, due to the 
limited number of the structures (one MRF in [21] and two MRFs in 
[22]), the authors of the above papers state that further research is 
needed to reach general conclusions. More sources of uncertainty are 
considered in [2,23]. In particular, Vaez et al. [23] simulate the un-
certainties in the modulus of steel, yield strength, gravity loads and 
thickness and width of parts of the cross-section. Based on the results of 
this research study, the authors state that the uncertainty in the modulus 
of elasticity, yield strength, section depth and geometry of the flange 
have the greatest effects on the maximum interstorey drift of the 
structure. The results, however, only refer to the response of two frames 
to seven ground motions characterised by a probability of exceedance of 
10% in 50 years. Record-to-record uncertainties and other uncertainties 
related to the mechanical properties of steel, dead loads and equivalent 
viscous damping ratio are considered, instead, in a recent research study 
by Asgarian and Ordoubadi [2]. The influence of the uncertainties is 
investigated on two 5-storey 3-bay steel MRFs designed according to the 
Iranian Steel Design Code. The fragility curves are obtained through 
incremental dynamic analyses of centreline models without numerical 
modelling of beam-to-column joints. The earthquake ground motions 
(12 in number) are selected to simulate the expected seismicity on a soil 
category C based on NEHRP [24] and are scaled to represent the seismic 
input corresponding to different values of the seismic intensity measure. 
The researchers conclude that the uncertainties clearly affect the seismic 
performance of the steel MRFs and that the convenient assumption that 
the median-parameter model produces the median seismic performance 
is not necessarily true. 

The present paper enters the line of research of the above authors to 
investigate with a high level of accuracy the probabilistic assessment of 
the seismic performance of steel MRFs designed according to Eurocodes. 
The considered MRFs are three- and five-storey high and are analysed by 
the multiple stripe method of analysis by means of sets of earthquake 
ground motions that depend in frequency content, energy and duration 
on the value of the selected seismic intensity measure. The model of the 
MRFs includes nonlinear elements that simulate the response of beams 
and columns and elements that simulate the response of the beam-to- 
column joint [25]. Additional uncertainties are related to the mechan-
ical properties of steel, dead and live loads and equivalent viscous 
damping ratio. Different criteria are defined to assess the performance at 
the achievement of different limit states, in terms of forces, interstorey 
drifts and damage indexes. To reach a synthetic evaluation of the seismic 
performances, the mean annual frequency of exceedance of the assigned 
limit state condition is also reported. Based on a Monte Carlo simulation 
the paper evaluates the effects of the single uncertainties on the seismic 
performances and suggests proper modifications to the simplified 
approach included in FEMA documents [19,20] in order to mime the 
results of a full probabilistic approach. 

2. Methodology 

To investigate the effects of the uncertainties, the statistical distri-
butions of the probabilistic variables have been preliminarily defined. 
Then, moment resisting frames are designed according to Eurocode 8 
and the seismic response of each of the designed structures is determined 
considering 3 different approaches. In the first approach (analysis type 
#1), a model with median properties of the probabilistic variables is 
considered (model M) and the seismic response is evaluated by multiple 
stripe analysis (MSA) considering a set of 50 ground motions for each 
selected intensity measure. The results of the numerical analyses are 
elaborated by means of the maximum likelihood method [26,27] to 
obtain the fragility curves corresponding to the achievement of different 
limit states. The fragility curve is expressed as a function of two pa-
rameters, θM and βRTR, that represent the median intensity measure 
corresponding to the achievement of the considered limit state and the 
record-to-record uncertainty, respectively. The parameters θ and β of the 
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fragility curves are determined maximizing the logarithm of the likeli-
hood function, as reported in the following relation [26] 

{θ̂ , β̂} =argmax
θ, β

∑m
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zj

)

+ zjlnΦ
(
ln
(
sj
/

θ
)

β

)

+
(
nj − zj

)
ln
[

1 − Φ
(
ln
(
sj
/

θ
)

β

)]} (1)  

where nj is the number of analyses that have been carried out at the 
intensity measure IM = sj and zj is the number of analyses in which the 
considered limit state has been exceeded. The obtained fragility curve is 
also used to evaluate the mean annual frequency of exceedance of the 
above-mentioned selected limit state. 

In the second approach (analysis type #2), 50 numerical models 
(models U#01 to U#50) are generated by varying seismic mass, per-
manent and variable loads, equivalent viscous damping ratio and 
strength of steel according to assigned probabilistic distribution func-
tions. Each numerical model is subjected to the action of a single 
accelerogram, which is extracted from the suite of the 50 ground mo-
tions artificially generated for the assigned earthquake return period. 
The obtained performances will be affected by the uncertainties related 
to the ground motion and to the uncertainties related to seismic mass, 
permanent and variable loads, equivalent viscous damping ratio and 
strength of steel. Therefore, a comparison between the results of Anal-
ysis type #1 and #2 will provide an estimate of the effects of the un-
certainties of seismic mass, permanent and variable loads, equivalent 
viscous damping ratio and strength of steel. 

In the third approach (analysis type #3), 50 numerical models are 
generated to investigate the effects of the uncertainty in the values of a 
single probabilistic variable, while the values of all the other variables 
are assumed to be fixed and equal to the median value. Specifically, in 
analysis #3–1 the uncertain variable is the strength of steel (models 
S#01 to S#50), in analysis #3–2 the uncertain variable is the equivalent 
viscous damping ratio (models D#01 to D#50) and in analysis #3–3 the 
uncertain variables are loads and masses (models L#01 to L#50). For 
each earthquake return period, one accelerogram is generated to match 
the median pseudo-acceleration and displacement response spectra 
considered in the previous approaches. The results of analyses type #3 
are used to quantify the dispersion of the results due to uncertainties in 
the material strength (βmat), equivalent viscous damping ratio (βξ) and 
loads (βL). 

Finally, to validate a simplified approach, such as the one given in 
FEMA documents, the fragility curve characterised by the median value 
θ provided by analysis type #1 and by a total dispersion (βtot) deter-
mined as the SRSS of the single previously determined dispersions will 
be compared to that obtained by analysis type #2 where all the 
considered sources of uncertainty are simultaneously considered. 

3. Design of the case studies 

The present research study investigates the seismic response of two 
(in-plan and in-elevation) regular buildings. The plan is rectangular and 
equal at all storeys (the sides are 36 m long in the x-direction and 24 m in 
the y-direction) (Fig. 1). The first building is three storeys high while the 
second is five storeys high. The interstorey height is equal to 4 m at the 
first storey and 3.3 m at the other storeys. The structural scheme of the 
buildings consists of four frames in the x-direction and seven frames in 
the y-direction. The spans are equal to 6 m in the x- direction and 8 m in 
the y-direction. 

The frames in the x-direction are moment resisting and endowed 
with rigid connections. The frames in the y-direction are concentrically 
braced and endowed with pinned connections. All the columns are 
oriented with their strong axis parallel to the x-direction. 

The buildings are founded on rock soil (category A soil in Eurocode 
8) and are located in a moderate seismic zone. The expected peak 

ground acceleration with a probability of exceedance of 10% in 50 years 
is equal to 0.2779 g. For the same probability of exceedance, the upper 
period of vibration of the constant spectral acceleration branch of the 
spectrum (TC) is equal to 0.43 s; in the same branch, the ratio FO of the 
spectral acceleration to the peak ground acceleration is equal to 2.28. 

The buildings are category of use type C according to the Italian code 
NTC18. The characteristic values of the permanent and variable loads on 
the floors are gk = 5.2 kN/m2 and qk = 3 kN/m2. 

The external infill extends over the entire perimeter of the buildings 
and is characterised by a load per meter equal to Gk = 4 kN/m. 

The buildings are designed to be highly ductile in keeping with the 
current version of Eurocode 8 [28]. According to this code, the reference 
value of the behaviour factor q of steel structures that are regular in 
elevation depends on the class of ductility (medium ductility class DCM 
or high ductility class DCH). The reference value of the behaviour factor 
is equal to 4 for frames in medium ductility class and 5.0 αu/α1 for 
frames in high ductility class. In the absence of more in-depth analyses, 
the αu/α1 ratio of multi-span multi-storey frames can be assumed equal 
to 1.3, leading to a maximum value of the behaviour factor equal to 6.5. 

As prescribed in Eurocode 8 (EC8), second order effects are consid-
ered by means of the interstorey drift sensitivity coefficient through the 
following relation: 

θ =
Ptot dr

Vtot h
(2)  

where Ptot is the total gravity load at and above the floor considered in 
the seismic design condition, Vtot is the total seismic storey shear force, h 
is the interstorey height and dr is the inelastic interstorey drift, evaluated 
as the difference between the average lateral displacements at the top 
and at the base of the storey under examination. If the maximum value 
of θ is < 0.1, no amplification of the seismic action due to the second 
order effects is required; if 0.1 < θ ≤ 0.2 the second order effects can be 
approximately taken into account by multiplying the first order seismic 
action effects by means of a factor equal to 1/(1 − θ); if 0.2 < θ ≤ 0.3 
second order effects should be taken into account directly by using an 
established method of second-order analysis which takes account of 
geometric non-linearity; values of θ higher than 0.3 are not accepted. 

For the verification of the interstorey drifts at the limited damage 
limit state, the interstorey displacements dr are determined by a modal 
response spectrum analysis considering the pseudo acceleration 
response spectrum corresponding to earthquake return periods equal to 
50 years in the considered seismic zone. For this return period, the peak 
ground acceleration, the period TC and the amplification factor FO are 
equal to 0.0687 g, 0.27 s and 2.519, respectively. The limit value of the 
interstorey drift is assumed equal to 0.005 times the interstorey height, 
as suggested in EC8 for buildings with fragile non-structural elements 

Fig. 1. Layout of the considered buildings.  
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attached to the structure. If the interstorey drift demand exceeds this 
limit, the behaviour factor used in design is reduced. 

Lateral and lateral-torsional buckling of beams are assumed to be 
prevented by the slab of the deck. According to EC8, the plastic bending 
moment and the rotation capacity of the beams are verified to be not 
reduced by the axial and shear forces. In particular, referring to sections 
belonging to Classes 1 and 2, the following relationships are verified 
where the formation of the hinges is expected: 

MEd

Mpl,Rd
≤ 1.0 (3)  

NEd

Npl,Rd
≤ 0.15 (4)  

VEd

Vpl,Rd
≤ 0.5 (5)  

where MEd is the design value of the bending moment, NEd is the design 
value of the axial force, VEd is the design value of the shear force, Mpl,Rd 
is the plastic resistance to bending moments, Npl,Rd is the plastic resis-
tance to axial forces and Vpl,Rd is the plastic resistance to shear forces. 
The shear force VEd is equal to VEd,G + VEd,M where VEd,G is the design 
shear force due to the gravity loads in the seismic design situation and 
VEd,M is the shear force due to the plastic bending moments in the ending 
cross-sections of the beam. 

Columns are checked for instability considering the most unfavor-
able combination of the axial force and bending moment. The design 
internal forces are calculated by means of the following relations: 

NEd = NEd,G + 1.1 γov Ω NEd,E (6)  

MEd = MEd,G + 1.1 γov Ω MEd,E (7)  

VEd = VEd,G + 1.1 γov Ω VEd,E (8)  

where NEd,G, MEd,G and VEd,G are the axial force, the bending moment 
and the shear force in the column because of non-seismic actions; NEd,E, 
MEd,E and VEd,E are the axial force, bending moment and shear force in 
the column caused by seismic actions in the first order analysis carried 
out in design; γov is the material overstrength factor and Ω is the mini-
mum value of Ωi = (Mpl,Rd,i - MEd,G,i)/MEd,E,i of all the beams in which 
dissipative zones are expected. 

Further, to promote a collapse mechanism in which dissipative zones 
are located at the ends of beams, the sum of the design values of the 
plastic resistances of the columns (reduced because of the axial force) 
framing into the joint has been verified to be larger than 1.3 times the 
sum of the plastic resistances of the beams framing into the same joint. 

The shear strength of the core of the nodal panel has to satisfy the 
following expression: 

Vwp,Ed

Vwp,Rd
≤ 1.0 (9)  

where Vwp,Ed is the design shear force in the panel due to the seismic 
action effects, taking into account the plastic resistance of adjacent 
dissipative zones in the beams or connections; Vwp,Rd is the design shear 
resistance of the panel. The shear force in the panel is here calculated 
according to the principles of the capacity design and neglecting any 
beneficial effect provided by the shear force at the bottom of the upper 
column, by means of the following expression: 

Vwp,Ed =
Msx

ht − tf
+

Mdx

ht − tf
(10)  

where ht is the depth of the beam, tf is the thickness of the beam flange, 
Msx and Mdx are the bending moments at the left and right sides of the 
joint (in the case of a side column, only one term shall be considered) 
and are determined taking into account the plastic resistance of the 

adjacent dissipative zones in beams or connections. In particular, the 
bending moments Msx and Mdx are calculated by means of the relation: 

Msx(Mdx) =
∑[

1.1 γov
(
Mpl,Rd + sh VEd,M

)
+ sh VEd,G

]
(11)  

where sh is the distance between the center of the plastic hinge and the 
axis of the column. 

The shear strength of the panel Vwp,Rd is calculated by means of the 
following relation: 

Vwp,Rd = Vwp,Rd,c + Vst,Rd (12)  

where Vwp,Rd,c is the shear strength of the web of the column and Vst,Rd is 
the shear strength of the stiffeners. 

The shear strength of the web Vwp,Rd,c is calculated according to 
Eurocode 3 Part 1–8: 

Vwp,Rd,c =
0.9 Av fyk

̅̅̅
3

√
γM0

(13)  

where Av is the shear area of the column, fyk is the characteristic value of 
the yield strength of steel of the column and γM0 is a partial safety co-
efficient equal to 1.05. 

The shear strength of the stiffeners Vst,Rd is given by the relation: 

Vst,Rd =
0.9 hc tp fyk

̅̅̅
3

√
γM0

(14)  

where hc is the depth of the column and tp is the thickness of the 
stiffener. 

4. Statistical characterization of the uncertainties 

4.1. Ground motions and seismic hazard 

The seismic hazard of the site under consideration has been defined 
based on the studies carried out by the INGV and the Department of Civil 
Protection of Italy [29,30]. These studies led to the definition of the 
probabilistic seismic hazard at the points of a regular grid (step equal to 
0.05◦ in latitude and longitude) over the entire Italian territory. For each 
of these points, elastic response spectra varying in shape were provided 
for three percentiles of the pseudo-accelerations Sa, 16%

TR , Sa, 50%
TR and 

Sa, 84%
TR (respectively equal to 16%, 50% and 84%) and for nine proba-

bilities of exceedance PVR (81, 63, 50, 39, 30, 22, 10, 5 and 2%) in a 
reference period of time of 50 years. Specifically, pseudo-accelerations 
were given for eleven periods of vibration Ti (equal to 0.0, 0.10, 0.15, 
0.20, 0.30, 0.40, 0.50, 0.75, 1.00, 1.50, and 2.00 s). For the site under 
investigation, suites of artificially generated ground motions have 
recently been generated [31], which are compatible with the seismic 
hazard of the above site in terms of (i) median pseudo-acceleration, 
standard deviation of the pseudo-accelerations at given periods of 
vibration and (ii) correlation coefficients between pseudo-accelerations 
at different periods of vibration. 

As an example, Fig. 2a shows the pseudo-acceleration spectra of the 
single ground motions, the target 16%, 50% and 84% spectra corre-
sponding to a probability of exceedance equal to 10% in 50 years and the 
obtained 16%, 50% and 84% spectra. 

To estimate the fragility curves accurately, pseudo-acceleration 
spectra corresponding to probabilities of exceedance PVR not consid-
ered by INGV (i.e. 19, 16, 7, 1.5, 1.0, 0.75% in a reference period of time 
of 50 years) have been derived for the present research study. To this 
end, the return periods TR corresponding to the eleven probabilities of 
exceedance in 50 years considered by INGV [29,30] have been first 
calculated as 

TR = −
50

ln(1 − PVR)
(15) 

Then, as suggested in CNR-DT 212/2013 [32], the seismic hazard 
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corresponding to TR has been calculated as 

λS = 1/TR (16) 

Finally, for each of the eleven periods of vibration Ti, the pseudo- 
accelerations Sa, 16%

TR ,Sa, 50%
TR and Sa, 84%

TR have been plotted in a pseudo- 
acceleration versus seismic hazard coordinate system and a quadratic 
function has been calibrated in a logarithmic space to match the relation 
between the seismic hazard and the pseudo-acceleration. The quadratic 
function is expressed by means of the following relation: 

λS(Sa) = k0 exp
(
− k1lnSa − k2ln2Sa

)
(17)  

where k0, k1 and k2 are the parameters to calibrate. 
The pseudo-accelerations Sa, 16%

TR , Sa, 50%
TR and Sa, 84%

TR corresponding to 
the additional probabilities of exceedance PVR are determined so as to 
provide the seismic hazard predicted by Eq. (4). As an example, Fig. 2b 
shows the pseudo-accelerations Sa, 50%

TR provided by INGV (black dots), 
the additional pseudo-accelerations Sa, 50%

TR (red triangles) and the cali-
brated quadratic function (continuous line) for a period of vibration 
equal to 1.50 s. 

Once the target spectra have been determined, the procedure 
described in [31] has been used to generate a suite of 50 accelerograms 
for each considered probability of exceedance. The above-mentioned 
suites of accelerograms have been used as the seismic input for ana-
lyses type #1 and #2. For each seismic intensity level, the median 
pseudo-acceleration and displacement response spectra of the accel-
erograms have been calculated and assumed as the target to generate by 
the SIMQKE computer program [33] the additional single accelerograms 
that will be used in analysis type #3 where the uncertainties of seismic 
mass, permanent and variable loads, equivalent viscous damping ratio 
and strength of steel are separately considered. 

4.2. Equivalent viscous damping ratio 

The lognormal distribution is selected to describe probabilistically 
the equivalent viscous damping ratio. Starting from the research studies 
by Porter [13] and McVerry [14] and considering only the equivalent 
viscous damping ratios recorded in steel buildings under low intensity 
peak ground accelerations (as reported in Table 1), a mean value of 
4.42%, a median value of 4.15% and a standard deviation of 1.706% 
have resulted. 

4.3. Permanent and variable loads 

Permanent and variable loads are described by a Gaussian probabi-
listic function. The coefficient of variation of the permanent loads is 
assumed equal to 0.1 [5]. The values of the mean and standard deviation 
of the variable loads, instead, are derived based on the definition of the 

frequent (ψ1Qk) and quasi-permanent values (ψ2Qk) of the variable 
loads, as provided in Eurocode 0 and in the Italian code [34]. Indeed, the 
quasi-permanent value is defined as the average value of load over a 
reference period of time, whereas the frequent value is defined as the 
95% percentile of the temporal distribution of the load intensity. Based 
on these definitions, the mean value of the variable load is set equal to 
ψ2Qk whereas the standard deviation is equal to: 

σ = (ψ1–ψ2) Qk/1.645 (18) 

For the considered occupation type, the values of Qk, ψ1 and ψ2 given 
by the Italian seismic code are 3.0 kN/m2, 0.7 and 0.6. This leads to a 
standard deviation equal to 0.1824 kN/m2. 

The values of the permanent and variable loads are randomly 
generated to simulate the above-mentioned Gaussian distribution 
functions. In particular, one value of permanent load, one value of 
external infill load per meter and one value of variable load are gener-
ated for each single storey. The mass is calculated based on the gener-
ated values of the permanent and variable loads. Owing to this, some in- 
elevation irregularity can be generated by the assigned distribution of 
mass, whereas the in-plan irregularity (caused by asymmetric distribu-
tion of the mass within a single storey) is neglected. 

4.4. Mechanical properties of steel 

The values of the yield strength fy are randomly generated to simu-
late a Gaussian distribution of values and assigned to the single mem-
bers. In keeping with the Italian Code [34], the coefficient of variation 
COV of the yield strength is fixed equal to 0.06 in the case of charac-
teristic yield strengths larger than 355 MPa and equal to 0.08 in all the 

S

T Sa

Sa

Sa

Fig. 2. Seismic hazard at the site: (a) response spectra for PVR = 10% in 50 years; (b) hazard curve for Ti = 1.50s.  

Table 1 
Summary of identification studies used to estimate the uncertainty in the 
equivalent viscous damping ratio.  

Building Earthquake Direction Damping 

JPL Building 180 
Pasadena 

Borrego 
Mountain 

longitudinal 2.9% 
transverse 2.7% 

Lytle Creek longitudinal 4.7% 
transverse 3.5% 

San Fernando longitudinal 3.8% 
transverse 6.4% 

Union Bank Building 
445 South Figueroa Street San Fernando 

longitudinal 4.4% 
transverse 4.1% 

KB Valley Center, 15,910 
Ventura Boulevard San Fernando 

longitudinal 6.3% 
transverse 8.6% 

Kajima International, 250 E. 
First 

San Fernando 

N36E 
component 

3.8% 

N54W 
component 

3.6%  
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other cases. In the steel model that will be used in the numerical analysis 
(Menegotto-Pinto material model), the elastic and hardening moduli of 
steel Es are assumed constant. 

5. Numerical models 

The MRF system is modelled in Opensees [35] as a two-dimensional 
centreline model. Columns and beams are schematised by means of el-
ements endowed with concentrated plasticity over specified hinge 
lengths at the element ends. The length of the hinge is equal to the depth 
of the cross-section. Cross-sections are discretized into fibres: specif-
ically, ten layers are considered across the thickness of the flanges and 
five across the depth of the web. The response of steel is simulated by 
means of the Menegotto-Pinto uniaxial material model. The elastic 
modulus is equal to 210,000 MPa, the strain-hardening ratio is equal to 
0.3%, coefficient R0 is equal to 20 and cR1 and cR2 are equal to 0.925 and 
0.15, respectively. No isotropic strain hardening is considered. 

The ends of the beams are constrained to develop equal horizontal 
displacements. However, to avoid significant axial forces in beams, three 
uniaxial springs are inserted at the ends of these members. The trans-
lational spring in the direction orthogonal to the longitudinal axis of the 
member and the rotational spring are characterised by high stiffnesses, 
so as to ensure virtually equal shear deformations and flexural curva-
tures on either side of the spring. The translational springs in the di-
rection parallel to the longitudinal axis are characterised instead by low 
stiffness to avoid the development of high axial forces [36]. The beam- 
to-column joint is modelled as suggested in [37–25]. Details are pro-
vided in Subsection 5.1. 

To consider P-Δ effects, a dummy column has been added to the 
model. This column is subjected at each storey to the entire gravity load 
of the storey and does not alter the lateral stiffness of the system because 
consisting of a series of elastic rigid truss members. 

5.1. The panel zone 

The panel zone is modelled as an articulated quadrilateral, as sug-
gested by Gupta and Krawinkler [37]. The response of the panel zone is 
modelled by means of a trilinear rotational spring in one of the four 
corners; the remaining three corners are pinned. The centroid of the 
rigid elements of the panel zone model coincides with the intersection of 
beam and column longitudinal axes. The nonlinear behaviour of the 
rotational spring is formulated according to the recent proposal by 
Skiadopoulos et al. [25] as a function of the shear force - shear distortion 
angle response of the panel zone. 

The elastic stiffness Ke of the panel zone, i.e. the ratio of the shear 
force to the shear distortion angle, is given by the following relation: 

Ke =
KsKb

Ks + Kb
(19)  

where Ks is the stiffness contribution due to the shear deformation mode 
and Kb is the contribution due to the bending deformation mode. These 
latter terms are calculated by means of the relations: 

Ks = tpz
(
dc − tcf

)
G (20)  

Kb =
12EI
d3

b
db (21)  

where tpz is the thickness of the panel zone, tcf is the thickness of the 
column flange, db is the depth of the beam cross-section and I is the 
moment of inertia of the column cross-section (including the doubler 
plate thickness, if any). 

The yield strength Vy and the post-yield strength Vp of the panel zone 
were calculated by Skiadopoulos et al. [25] starting from distributions of 
tangential stresses resulting from finite element analyses of numerical 
models in which different geometries of the panel zone and beam and 

column cross-sections were considered. In particular, the shear strengths 
were calculated at three levels of shear distortion equal to γy, 4γy and 
6γy. Based on regression of the numerical results, Skiadopoulos et al. 
[25] recommended to calculate the yield strength of the panel zone by 
means of the relation 

Vy =
fy
̅̅̅
3

√ ay
(
dc − tcf

)
tpz (22) 

The shear strength of the panel zone corresponding to 4γy and 6γy 
was expressed by means of the following relation 

Vpz =
fy
̅̅̅
3

√
[
aw,eff

(
dc − tcf

)
tpz + af,eff

(
bcf − tpz

)
2tcf

]
(23)  

where bcf is the width of the column flange, aw,eff is the average shear 
stress within the column web and af,eff is the average shear stress within 
the column flanges. The recommended values of ay, and of coefficients 
aw,eff and af,eff for distortions equal to 4γy and 6γy are reported in Fig. 3. 

Coefficients ay and af,eff were suggested as a function of the ratio of 
the stiffness of the column flange Kf to the elastic stiffness of the panel 
zone Ke. To this end, the stiffness Kf was calculated by means of the 
relation 

Kf =
KsfKbf

Ksf + Kbf
(24) 

In the above equation, the stiffness contributions due to shear 
deformation mode (Ksf) and bending deformation mode (Kbf) are given 
by the following relations: 

Ksf = 2
(
tcfbcfG

)
(25)  

Kbf = 2

⎡

⎣
12E

(
bcf t3cf

/
12

)

d3
b

db

⎤

⎦ (26) 

The values of the bending moments corresponding to Vy and Vpz to be 
assigned to the rotational spring are evaluated by multiplying the rele-
vant values of shear by the depth of the beam cross-section. 

Null damping coefficient is assigned to the rigid elements of the 
panel zone model. 

6. Numerical analyses and response parameters 

The seismic response of the structures is determined by multiple 
stripe analysis. In the single nonlinear dynamic analysis, the damping 
matrix is defined as a linear combination of the mass and committed 
stiffness matrix. The proportionality coefficients for mass and stiffness 
matrices are defined so as to have the prefixed value of the equivalent 
viscous damping ratio for the first and second modes of vibration of the 
system. 

At each instant of the nonlinear dynamic analysis, the response is 
determined in terms of global and local response parameters. The global 
parameters are the transient interstorey drifts and the residual inter-
storey drifts. The local response parameters are the damage indexes DI at 
the ends of beams and columns, the damage index of the panel zone (PI) 
and the lateral stability (SI) and lateral torsional stability (TI) indexes of 
columns. 

The DI of beams and columns are calculated as the ratio of the plastic 
rotation demand (θpl) to the plastic rotation capacity (θu). In particular, 
the plastic rotation demand is calculated as 

θpl(t) =
[

χ(t) − M(t)
EI

]

Lpl (27)  

where χ and M are the curvature and the bending moment recorded at 
the integration points located at the ends of the member, Lpl is the length 
of the plastic hinge, I is the moment of inertia of the member cross- 
sections and E is the elastic modulus of steel. 
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The plastic rotation capacity θu is expressed as a multiple of the 
chord rotation at yield, θy. Specifically, for beams and columns with 
dimensionless axial load ν ≤ 0.30, the plastic rotation capacity θu is 
equal to 8 θy if sections are Class 1 and 3 θy is sections are Class 2. A 
fragile behaviour is assumed for columns with ν > 0.50. Linear inter-
polation is used to estimate the plastic rotation capacity of columns if ν is 
in the range from 0.3 to 0.5. 

The chord rotation at yield is calculated as 

θy =
MN,RdLb

6EI
(28)  

where Lb is the length of the member and MN,Rd is the plastic flexural 
resistance reduced because of the interaction with the axial force NEd (if 
present). 

The damage index of the panel zone (PI) is calculated as the 
maximum of the ratios of the shear distortion γ (t) recorded during the 
time-history analysis to the shear distortion at ultimate. According to the 
draft of the revised version of Eurocode 8 [38], the shear distortion at 
ultimate is set equal to 4 γy. 

Stability indexes are calculated for columns from the provisions 
given in Eurocode 3 [39]. In particular, the lateral stability (SI) index is 
given as 

SI = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

NEd(t)
Nb,Rd,y

+ kyy
MEd,y(t)
Mpl,Rd,y

+ kyz
MEd,z(t)
Mpl,Rd,z

NEd(t)
Nb,Rd,z

+ kzy
MEd,y(t)
Mpl,Rd,y

+ kzz
MEd,z(t)
Mpl,Rd,z

(29)  

where MEd(t) and NEd(t) are the bending moment and the axial force at 
the generic instant t of the time history, Nb.Rd,y and Nb,Rd,z are the 
buckling resistances with respect to the strong and weak axes and kyy, 
kzz, kyz, kzy are the interaction factors accounting for the slenderness of 
the member and shape of the bending moment diagram, as reported in 
table B.1 of Annex B in Eurocode 3. 

The lateral torsional stability (TI) index is calculated as 

TI = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

NEd(t)
Nb,Rd,y

+ kyy
MEd,y(t)
χLTMpl,Rd,y

+ kyz
MEd,z(t)
Mpl,Rd,z

NEd(t)
Nb,Rd,z

+ kzy
MEd,y(t)
χLTMpl,Rd,y

+ kzz
MEd,z(t)
Mpl,Rd,z

(30)  

where χLT is the reduction factor due to lateral torsional buckling, as 
reported in Eurocode 3 (6.3.2). The interaction factors kyy, kzz, kyz, kzy 
are determined as reported in table B.2 of Annex B in Eurocode 3 for 
members susceptible to lateral torsional buckling. 

7. Effects of uncertainties 

To estimate the effects of the uncertainties, results of analyses type 
#1 and #2 are compared. The comparison is separately carried out in 

terms of global and local response parameters. Three limit states are 
considered to assess the seismic performance of the building, i.e. (1) 
damage limitation (DL), significant damage (SD) and near collapse (NC) 
limit states. 

7.1. Global response parameters 

The fragility curves corresponding to the achievement of a maximum 
interstorey drift angle δ equal to 0.5%, 2.5% and 5.0% and to a residual 
interstorey drift angle δr equal to 0.5% are plotted in Fig. 4. The first 
value of the maximum interstorey drift angle (0.5%) is consistent with 
the limit value adopted in the phase of design and is considered as 
representative of the DL limit state. 

In the absence of specifications in Eurocode 8 on interstorey drifts 
corresponding to the achievement of SD and NC limit states, the other 
two values of the limit interstorey drift (2.5 and 5.0%) are based on 
recommendations of FEMA 356 for the Life Safety and Collapse Pre-
vention Limit states of steel MRFs. A residual interstorey drift angle δr 
equal to 0.5% is assumed as corresponding to the achievement of the SD 
limit state. 

The seismic intensity measure considered in the figure is the pseudo- 
acceleration corresponding to the first period of vibration of the nu-
merical model used in analysis type #1. This period of vibration is equal 
to 1.414 s and 2.132 s in the 3-storey and 5-storey buildings, respec-
tively. The period of vibration of the systems considered in analysis type 
#2 ranges from 1.313 s to 1.485 s (median value equal to 1.413 s and 
COV = 0.027) in the 3-storey building and from 2.046 s to 2.228 s 
(median value equal to 2.138 s and COV = 0.019) in the 5-storey 
building. 

The comparison between the fragility curves obtained by the model 
with median properties of the uncertain variables (black line in the 
figures) and the fragility curves obtained by models with uncertain 
values of the same variables (red dashed lines) shows that the un-
certainties have a minor effect on the fragility curves in terms of global 
response parameters. Specifically, the ratios of the values of the pa-
rameters θ and β derived by analysis type #1 (θM and βRTR) to the cor-
responding values (θunc and βunc) derived by analysis type #2 (Fig. 5) are 
on average equal to 1.00 and 0.98, respectively. As a consequence, no 
significant error is committed in the estimate of the mean annual fre-
quency of exceedance (see Table 2) if the uncertainties of the seismic 
mass, permanent and variable loads, equivalent viscous damping ratio 
and strength of steel are neglected. It is interesting to underline that this 
result confirms the finding obtained in [21] with reference to MRFs 
designed according to the ASCE code and in which only the variability of 
the cyclic response of the plastic hinges was considered. In any case, the 
mean annual frequency of exceedance of the considered limit states is 
smaller than the target value provided in CNR-DT-2012 [32]. 

Fig. 3. Panel zone: (a) numerical model; (b) values of the response parameters for the evaluation of the shear resistance; (c) shear force versus shear distor-
tion behaviour. 
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7.2. Local response parameters 

The achievement of the SD limit state is associated with the 
achievement of either significant damage of ductile members (DI = 0.75 
or PI = 0.75) or instability of columns (SI = 1.00 or TI = 1.00). The NC 
limit state is associated with either failure of dissipative members (DI =
1.00 or PI = 1.00) or instability of columns (SI = 1.00 or TI = 1.00). 

The fragility curves corresponding to the achievement of a maximum 

damage index DI equal to either 0.75 or 1.00 at the ends of beams and 
columns and to the achievement of a stability index equal to 1.00 in 
columns are plotted in Fig. 6. No fragility curve is plotted in terms of the 
damage index of the panel zone because yielding of the panel zone has 
never occurred during the numerical analysis. 

Independently of the considered model, for each considered intensity 
measure of the seismic event the number of ground motions leading to 
the lateral torsional buckling of the columns of the first storey is always 
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Fig. 4. Fragility curves corresponding to the achievement of the considered limit values in the global response parameters (transient interstorey drift angle δ and 
residual interstorey drift angle δr). 
Notes: (solid black line) model with median properties of the uncertain variables (dashed red line) model with random values of the uncertain variables. 

Fig. 5. Influence of the uncertain variables on the parameter θ and β of the fragility curves for global response parameters (transient interstorey drift angle δ).  
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larger than the number of the ground motions leading to the full 
exploitation of the plastic rotation capacity of beams and columns. This 
result supports the proposal of some other researchers [40] who suggest 
the use of a reduced cross-section at the base of the first storey column to 
improve the seismic performance of MRFs. 

The median pseudo-acceleration leading to a stability index equal to 
1.0 is larger than that corresponding to seismic events with TR = 475 
years, whereas it is smaller than that corresponding to seismic events 
with TR = 1000 years (i.e. probability of occurrence of 5% in 50 years). 
In the Italian Seismic code, this latter value of TR is associated with the 
NC limit state. The comparison between the fragility curves obtained by 
the model with median properties of the uncertain variables (black line 
in the figure) and the fragility curves obtained by the models with un-
certain values of the same variables (red dashed line in the figure) shows 
that the uncertainty mainly affects the median value of the pseudo- 
acceleration leading to the considered limit state, whereas it has a 
minor effect on the parameter β. Indeed, the ratios θM /θunc and βRTR / 
βunc are on average equal to 1.16 and 1.00, respectively (Fig. 7). The 

overestimation of the median pseudo-acceleration corresponding to the 
considered limit states leads to an underestimation of the mean annual 
frequency of exceedance up to 26%, as reported in Table 3. Further, in 
the case of the 5-storey model the mean annual frequency of exceedance 
of the limit condition characterised by SI = 1.00 is higher than the target 

Table 2 
Mean annual frequency of exceedance of the considered limit states referred to global response parameters: comparison between model M with median values of the 
additional uncertain variables and model U with random values of the uncertain variables.   

λ0.5% × 10-3 λ2.5% × 10-3 λr=0.5% × 10-3 λ5.0% × 10-3 

Target 45.0 4.7 4.7 2.3 
Model 3-st. 5-st. 3-st. 5-st. 3-st. 5-st. 3-st. 5-st. 
M 5.75 4.88 1.00 0.82 0.66 0.84 0.34 0.30 
U 5.90 4.94 0.92 0.86 0.66 0.88 0.33 0.31 
Error − 2.63% − 1.20% 9.06% − 4.22% 0.78% − 4.13% 2.39% − 1.14%  
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Fig. 6. Fragility curves corresponding to the achievement of the considered limit values in the local response parameters (stability index SI and damage index DI). 
Notes: (solid black line) model with median properties of the uncertain variables (dashed red line) model with random values of the uncertain variables. 
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Fig. 7. Influence of the uncertain variables on the parameter θ and β of the fragility curves for local response parameters (stability index SI and damage index DI).  

Table 3 
Mean annual frequency of exceedance of the considered limit states referred to 
local response parameters: comparison between model M with median values of 
the additional uncertain variables and model U with random values of the un-
certain variables.   

λSI=1.00 × 10-3 λDI=0.75  × 10-3 λDI=1.00 × 10-3 

Target 2.3 4.7 2.3 
Model 3-storey 5-storey 3-storey 5-storey 3-storey 5-storey 
M 1.713 2.120 0.334 0.368 0.243 0.262 
U 2.110 2.629 0.367 0.446 0.300 0.356 
Error − 18.8% − 19.4% − 9.0% − 17.6% − 19.0% − 26.4%  
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value if the uncertain variables are considered, whereas it is lower than 
the target value if the model with median values of the variables is used. 

8. Estimate of the dispersion related to the single variable 

Results of analysis type #3 quantify the dispersion of the results 
because of the uncertainties in the material strength (βmat), equivalent 
viscous damping ratio (βξ) and loads (βL), separately considered. The 
values obtained are plotted in Fig. 8 where, for the sake of comparison, 
the dispersion due to the record-to-record uncertainty is also reported. 

The figure shows that, apart from the record-to-record uncertainty, 

the uncertainty that mainly affects the dispersion of the results is the 
equivalent viscous damping ratio. In the worst case, the value of βξ is 
close to 0.20. The uncertainty in the material properties has a negligible 
effect on the parameter β of the fragility curves referring to a prefixed 
value of the interstorey drift angle (βmat lower than 0.05) and has a 
maximum effect on the parameter β of the fragility curves referring to 
local parameters. When considering the uncertainty in the loads, values 
of βL are up to 0.1 and are obtained in the fragility curves referring to 
global response parameters. In any case, these dispersions are much 
smaller than those due to record-to-record variability. 

The above dispersions are used to estimate the total uncertainty 

Fig. 8. Dispersion of the intensity measure caused by the single source of uncertainty.  

M. Bosco et al.                                                                                                                                                                                                                                  



Journal of Constructional Steel Research 205 (2023) 107811

11

βtot =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
RTR + β2

mat + β2
ξ + β2

L

√

(31) 

Finally, the mean annual frequency of exceedance of the considered 
limit states has been determined based on the fragility curves charac-
terised by median pseudo-acceleration θM and total dispersion βtot. The 
obtained values (λtot) are compared in Fig. 9 with the ones corre-
sponding to the fragility curves resulting from analysis type #2, i.e. 
where the uncertain variables are explicitly taken into account. The 
figure shows that, if the simplified approach is used, the mean annual 
frequency of exceedance of the global response parameters are slightly 
overestimated (average λtot/ λunc equal to 1.02), whereas the mean 
annual frequency of exceedance of the local response parameters are 
underestimated (average λtot/ λunc equal to 0.82). 

9. Proposal of a simplified approach 

Referring to simplified approaches that intend to mime the results of 
a full probabilistic analyses by means of modifications of parameters θ 
and β of fragility curves resulting from record-to-record variability only, 
some proposals are formulated herein by the authors. 

In particular, based on the results of analyses type #1 and #2, the 
authors suggest dividing the median value of the intensity measure (θ) 
leading to the achievement of the considered limit state (because of only 
record-to-record uncertainty) by a factor equal to 1.2, whereas no 
modification is suggested for the dispersion β. Such modifications are 
required if local response parameters are assessed, whereas no modifi-
cation is needed if global response parameters are considered. To prove 
the validity of the proposal, the mean annual frequencies of exceedance 
of the SD and NC limit states in the systems under investigation are 
recalculated here and reported in Table 4. The analysis of the data in the 
table shows that the proposal leads to a satisfactory prediction of the 
mean annual frequency of exceedance of the examined limit states. 

10. Conclusions 

The present paper investigates the probabilistic assessment of the 
seismic performance of steel MRFs designed according to Eurocodes. 
The considered MRFs are three- and five-storey high and are analysed by 
the multiple stripe method of analysis by means of sets of earthquake 
ground motions that depend, in the main properties, on the value of the 
seismic intensity measure. Additional uncertainties are considered for 
the mechanical properties of steel, dead loads, live loads and equivalent 
viscous damping ratio. Criteria are defined to assess the performance at 
the achievement of different limit states in terms of interstorey drifts and 
damage indexes. To reach a synthetic evaluation of the seismic perfor-
mances the mean annual frequency of exceedance of the assigned limit 
state condition is also evaluated. 

The main conclusions of the numerical analyses are:  

- the comparison between the fragility curves obtained by the model 
with median properties of the additional uncertain variables (i.e. 
mechanical properties of steel, dead loads, live loads and equivalent 
viscous damping ratio) and the fragility curves obtained by models 

with uncertain values of the same variables shows that the additional 
uncertainties have a minor effect on the fragility curves in terms of 
global response parameters.  

- the comparison between the fragility curves obtained by the model 
with median properties of the additional uncertain variables and the 
fragility curves obtained by the models with uncertain values of the 
same variables shows that the uncertainty mainly affects the median 
value of the fragility curves in terms of local response parameters. 
The uncertainties have a minor effect on the parameter β of the 
fragility curves. This result supports the belief that the assumption 
that the median-parameter model produces the median seismic 
performance is not true if local response parameters are investigated.  

- apart from the record-to-record uncertainty, the uncertainty in the 
equivalent viscous damping ratio appears to affects the dispersion of 
the results more significantly than the uncertainty in the other 
additional uncertain variables.  

- if the total dispersion in the results is estimated as the SRSS of the 
dispersions caused by the single uncertain variables, the mean 
annual frequency of exceedance of the global response parameters is 
slightly overestimated, whereas the mean annual frequencies of ex-
ceedance of the local response parameters is underestimated.  

- if the seismic performance is assessed based on the only record-to- 
record variability, the median value of the intensity measure lead-
ing to the achievement of limit values of local response parameters 
should be divided by a factor equal to 1.2 to mime the results of a full 
probabilistic analyses. No modification is needed for the median 
value of the intensity measure and dispersion of fragility curves 
referring to global response parameters. 
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Fig. 9. Mean annual frequency of exceedance of the considered limit states by means of the simplified approach reported in FEMA documents.  

Table 4 
Mean annual frequency of exceedance of the considered limit states referred to 
local response parameters: comparison between proposed approach and model 
U with random values of the uncertain variables.   

λSI=1.00 × 10-3 λDI=0.75 × 10-3 λDI=1.00 × 10-3 

Target 2.3 4.7 2.3  
3-st. 5-st. 3-st. 5-st. 3-st. 5-st. 

Proposed model 2.157 2.651 0.429 0.482 0.323 0.347 
Error 2.22% 0.84% 17.2% 7.95% 7.94% − 2.49%  
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