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a b s t r a c t

A total preorder is a transitive and complete binary relation on a set. A modal preference structure
of rank n is a string composed of 2 to the exponent n binary relations on a set such that there is a
family of total preorders that gives all relations by taking intersections and unions. Total preorders
are structures of rank zero, NaP-preferences (Giarlotta and Greco, 2013) are structures of rank one,
and GNaP-preferences (Carpentiere et al., 2022) are structures of rank two. We characterize modal
preference structures of any rank by properties of transitive coherence and mixed completeness.
Moreover, we show how to construct structures of a given rank from others of lower rank. Modal
preference structures arise in economics and psychology, in the process of aggregating hierarchical
judgements of groups of agents, where each of the n coordinates represents a feature/stage of the
decision procedure.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Whenever the preference structure of a decision maker (DM)
s modeled by means of a binary relation on a set of alterna-
ives, the properties of transitivity and completeness are usually
egarded as the basic tenets of economic rationality (Kreps, 2013;
as-Colell et al., 1995). This is the reason why total preorders
reflexive, transitive, and complete binary relations – are of-

en considered a prototypical way to encode DMs’ preferences.
his attitude is also justified by the fact that, under some as-
umptions on the separability of the induced topology, repre-
entability of a total preorder by a continuous utility function is
uaranteed (Bridges & Mehta, 1995).
Over time, transitivity and completeness have been ques-

ioned by several scholars from various points of view: see,
mong many contributions on the topic, the seminal work of Tver-
ky (1969), who reports on an experiment that reliably induces
eople to violate the transitivity axiom.1 On one hand, this

✩ This paper is dedicated to the memory of Peter Fishburn, a truly exceptional
applied mathematician, and a pioneer in several fields of research, such as
order theory, graph theory, decision theory, preference modeling, choice theory,
mathematical psychology, and mathematical economics. The elegance and the
depth of his results, constructions, and proofs is largely acknowledged by the
most brilliant scholars in these fields.
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1 For a different perspective in mathematical psychology, see Regenwetter
t al. (2011).
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criticism spiked a fervent research toward the use of binary rela-
tions that satisfy weaker forms of transitivity, such as semiorders
(Fishburn, 1968, 1997; Luce, 1956; Pirlot & Vincke, 1997), interval
orders (Fishburn, 1970, 1973, 1985), and, more generally, (m, n)-
errers relations (Giarlotta & Watson, 2014, 2018; Öztürk, 2008).
n the other hand, after completeness was elusively doubted
y von Neumann and Morgenstern (1944, p. 19–20) and then
trongly opposed by Aumann (1962), a plethora of contributions
tudying incomplete modelizations of preferences followed in
any fields of research: for a survey, see Carpentiere et al. (2022,
ection 1) and references therein.
A quite recent line of research considers pairs – and, more

enerally, lists – of binary relations, in which the two basic
enets of economic rationality are satisfied ‘collectively’ (that is,
y the family of binary relations as a whole) instead of ‘indi-
idually’ (that is, by every binary relation). An instance of this
pproach is a necessary and possible preference or, for brevity, a
aP-preference (Giarlotta & Greco, 2013): this is a pair of nested
inary relations on a nonempty set of alternatives such that
he smaller is transitive, the larger is complete, and the two
references are mutually linked by properties of ‘transitive co-
erence’ and ‘mixed completeness’. The connection between the
wo relations ensures that any NaP-preference is representable
y means of a family of total preorders, whose intersection and
nion gives the two components, respectively.
Using a similar approach and motivation, Carpentiere et al.

2022) have recently extended the notion of a NaP-preference
y that of a GNaP-preference (generalized NaP-preference): this
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s a quadruple of binary relations on the same set, arranged in
diamond-shaped structure, such that the smallest is transi-

ive, the largest is complete, and the four relations are mutually
onnected by properties of transitive coherence and mixed com-
leteness. Similarly to NaP-preferences, any GNaP-preference is

characterized by the existence of a family of total preorders,
which is indexed over a Cartesian product of two sets in a way
that the four relations can be retrieved by taking suitable inter-
sections and unions of these preorders.

In this paper, we describe and characterize a general way to
employ multiple binary relations to aggregate rational (i.e., tran-
sitive and complete) preferences expressed by groups of agents.
Specifically, reversing the approach used for NaP-preferences and
GNaP-preferences, we define a modal preference structure (MPS)
as a 2n-tuple of binary relations on a given nonempty set of
alternatives such that there exists a family of prototypical pref-
erences – total preorders – indexed over a Cartesian product of
n sets, with the property that all 2n binary relations are suitable
intersections/unions of the preorders in the family.

Our goal is to show that any MPS is characterized by four ‘ra-
tional’ properties of consistency, which are natural extensions of
those that define NaP-preferences and GNaP-preferences. These
properties guarantee that the two axioms of transitivity and
completeness are collectively – but not necessarily individually
– satisfied by the 2n binary relations arranged in a boolean struc-
ture. In fact, for any given MPS, not only the smallest relation
is transitive and the largest is complete, but suitable pairs of
binary relations in the structure are mutually linked by forms of
transitive coherence and mixed completeness.

Similarly to NaP-preferences and GNaP-preferences, modal
preference structures are designed with the purpose of better
describing the process of preference modeling. In fact, any family
of total preorders that represents an MPS is indexed over a
Cartesian product of n sets, where each set describes a feature
of the decision procedure. The term ‘modal’ is used because each
feature can be satisfied either ‘universally’ (i.e., for all values in
the range) or ‘existentially’ (i.e., for at least a value in the range).
An additional reason that supports such a terminology is the
close connection with modal logic. In fact, modal logic extends
pre-existing settings by adding two unary operations □ and ⋄,
which are interpreted, respectively, as ‘necessary’ and ‘possible’
operators. (For instance, the formula □P is interpreted as ‘neces-
sarily P’, and □P holds when P holds for every value assigned to
free variables.) Therefore, a close connection with universal and
existential quantifiers is apparent. More generally, multi-modal
systems, where multiple necessary and possible operators are
defined, are semantically similar to modal preference structures,
as they are both applied to systems in which a ‘necessary and
possible’ analysis is required (Fitting & Mendelsohn, 1998).

Here we also show that the collection of all modal preference
structures on a given set of alternatives is closed under an opera-
tion of ‘tensor product’. This algebraic feature means two things:
(1) any MPS can be constructed from below, that is, by taking
the tensor product of MPSs having lower complexity; and (2) the
tensor product of a family of MPSs having the same complexity
yields an MPS of higher complexity. In particular, any MPS of
arbitrary complexity can be always obtained from MPSs having
the lowest complexity – total preorders – by suitably constructing
the sets whose Cartesian product indexes the total preorders.
In more practical terms, this means that, given (i) a family of
rational economic agents (endowed with total preorders) and
(ii) a hierarchical structure guiding the aggregation process of
their preferences (a rooted tree), the resulting MPS describes
an ‘organized synthesis’ of all pieces of preferential information
related to the problem at hand. This may be particularly useful in
applications, whenever an overwhelming number of actors is in-
volved in the decision procedure, and a well-structured synthesis
 ≿

2

of their judgements need be presented to DM(s) to facilitate the
final decision.

The paper is organized as follows. In Section 2 we recall the
notions of NaP-preferences and GNaP-preferences. In Section 3
we introduce modal preference structures and give some exam-
ples. Sections 4 and 5 collect some preliminary results, based
on the two notions of suitable lists and interpolating preorders.
The characterization of modal preference structures is proved in
Section 6. In Section 7 we define the operation of tensor prod-
uct and discuss feasible applications. Section 8 suggests several
possible directions of future research.

2. NaP-preferences and GNaP-preferences

Let X be a nonempty set of alternatives. A reflexive binary
relation ≿ on X is called a weak preference on X , and x ≿ y is
interpreted as ‘‘alternative x is weakly preferred to alternative y’’.
The strict preference ≻, the indifference ∼, and the incomparability
⊥ associated to ≿ are the binary relations on X defined by,
respectively, x ≻ y if x ≿ y and ¬(y ≿ x), x ∼ y if x ≿ y and
y ≿ x, and x ⊥ y if ¬(x ≿ y) and ¬(y ≿ x).2

A preorder ≿ on X is a reflexive and transitive binary relation
on X . A preorder ≿ is total (or complete) if for all distinct x, y ∈ X ,
t least one between x ≿ y and y ≿ x holds. Under suitable

separability assumptions on the order topology associated to a
total preorder ≿, there is a continuous function u : X → R such
that x ≿ y if and only if u(x) ⩾ u(y), for all x, y ∈ X .3

A necessary and possible preference (NaP-preference) on X is a
air

(
≿N, ≿P

)
of binary relations on X satisfying the following

properties (Giarlotta & Greco, 2013)4:

(NP1: core rationality) ≿N is a preorder;

(NP2: chain structure) ≿N
⊆ ≿P ;

(NP3: transitive coherence) ≿N
◦ ≿P

⊆ ≿P and ≿P
◦ ≿N

⊆ ≿P ;

(NP4: mixed completeness) x ≿N y or y ≿P x for all x, y ∈ X .

Originally introduced in the field of multiple criteria decision
analysis (MCDA) via the so-called robust ordinal regression (Greco
et al., 2008), NaP-preferences have been an object of careful
study, both in applications and in theory: see the survey by Gia-
rlotta (2019) for a vast account of research on the topic. From
a decision-theoretic perspective, NaP-preferences consistently
combine Knightian preferences (Bewley, 1986) and justifiable pref-
erences (Lehrer & Teper, 2011). Under the Axiom of Choice (AC),
the following characterization of NaP-preferences holds:

Theorem (Giarlotta & Greco, 2013, Theorem 3.4). (AC) A pair(
≿N, ≿P

)
of binary relations on X is a NaP-preference if and only

if there exist a nonempty set H and a family {≿h : h ∈ H} of total
preorders on X such that ≿N

:=
⋂

h∈H ≿h and ≿P
:=

⋃
h∈H ≿h.

Note that the above theorem generalizes a well-known result
by Donaldson and Weymark (1998), which says that any preorder
is the intersection of a family of total preorders.

In the same line of research – that is, modeling preferences
by pairs of binary relations – some recent contributions are the

2 Note that ≻ is the asymmetric part of ≿, ∼ is the symmetric part of ≿,
nd ⊥ is the symmetric part of the complement of ≿. Moreover, ≿ is the union
f ≻ and ∼.
3 See Bridges and Mehta (1995) for a survey on the representability of a total
reorder by utility functions.
4 The inclusion ≿N

◦ ≿P
⊆ ≿P means that x ≿N y ≿P z implies x ≿P z,

or all x, y, z ∈ X . A similar meaning has the inclusion ≿P
◦ ≿N

⊆ ≿P . The
erminology ‘transitive coherence’ originates from the fact that a binary relation
is transitive if and only if ≿ ◦ ≿ ⊆ ≿.
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ollowing: (1) preference structures (Nishimura & Ok, 2019) and
heir relationship with top-cycle choice rules (Evren et al., 2019);
2) consistency and decisiveness of a double-minded DM (Uyanik
Khan, 2019), also in connection to the continuity postulate

Uyanik & Khan, 2022) and the intermediate value property
Ghosh et al., 2019); (3) objective and subjective rationality in
multiple prior model (Gilboa et al., 2010); (4) interactions be-

ween mental and behavioral preferences (Cerreia-Vioglio et al.,
020).
Very recently, Carpentiere et al. (2022) have extended the

otion of NaP-preference by that of generalized NaP-preference
GNaP-preference): this is a quadruple

(
≿NN, ≿NP, ≿PN, ≿PP

)
of

inary relations on X satisfying the following properties:

GNP1: core rationality) ≿NN is a preorder;

(GNP2: diamond structure)

• ≿NN
⊆

(
≿NP

∩ ≿PN
)

⊆
(
≿NP

∪ ≿PN
)

⊆ ≿PP ;

(GNP3: transitive coherence)

• ≿NN
◦ ≿NP

⊆ ≿NP and ≿NP
◦ ≿NN

⊆ ≿NP ,
• ≿NN

◦ ≿PN
⊆ ≿PN and ≿PN

◦ ≿NN
⊆ ≿PN ,

• ≿NP
◦ ≿PN

⊆ ≿PP and ≿PN
◦ ≿NP

⊆ ≿PP ,
• ≿NN

◦ ≿PP
⊆ ≿PP and ≿PP

◦ ≿NN
⊆ ≿PP ;

(GNP4: mixed completeness) for all x, y ∈ X ,

• x ≿NN y ∨ y ≿PP x,
• x ≿NP y ∨ y ≿PN x.

As for NaP-preferences, also GNaP-preferences were origi-
nally introduced in MCDA, with the goal of developing a sound
multiple criteria methodology applicable to group decision mak-
ing (Greco et al., 2012). However, the axiomatic treatment of
the topic was missing from the mentioned paper, and only came
ten years later. Under the Axiom of Choice, GNaP-preferences
can be characterized in a way similar – mutatis mutandis – to
NaP-preferences:

Theorem (Carpentiere et al., 2022, Theorem 4). (AC) A quadruple(
≿NN, ≿NP, ≿PN, ≿PP

)
of binary relations on X is a GNaP-preference

if and only if there exist nonempty sets H, K and a family
{≿hk : (h, k) ∈ H × K } of total preorders on X such that

≿
NN

=

⋂
h∈H

⋂
k∈K

≿hk , ≿
NP

=

⋂
h∈H

⋃
k∈K

≿hk ,

≿
PN

=

⋃
h∈H

⋂
k∈K

≿hk , ≿
PP

=

⋃
h∈H

⋃
k∈K

≿hk .

The proof of the above characterization requires considerably
more work than the corresponding result for NaP-preferences.
The reason is that several technicalities in the proof – e.g., the
interplay between the two index sets, the construction of suitable
‘interpolating’ preorders, etc. – remain hidden when only two
relations are considered, and exclusively arise when at least four
relations are arranged into a boolean structure.

3. Modal preference structures

Here we define a general type of preference structure, which
comprises NaP-preferences and GNaP-preferences as special cases

Definition 1. Let n ⩾ 1 be an integer, and Q = {∀, ∃} the set of
quantifiers. Elements of Q n are denoted by § = (§1, . . . , §n), and

are called strings (of quantifiers); unless confusion may arise, we

3

simplify notation and use §1...§n for a string in Q n. A modal pref-
erence structure (MPS) of rank n is a 2n-tuple M =

(
≿§

: § ∈ Q n
)

of reflexive binary relations on X such that there is a family of
(index) sets K = (K1, . . . , Kn) and a family

T =
{
≿k1...kn : (k1, . . . , kn) ∈ K1 × · · · × Kn

}
of total preorders on X with the property that, for all x, y ∈ X and
§ = §1...§n ∈ Q n,

x ≿§1...§n y ⇐⇒ (§1k1 ∈ K1) . . . (§nkn ∈ Kn) x ≿k1...kn y . (1)

By definition, a total preorder is an MPS of rank 0.

Remark 1. Definition 1 does not explicitly say in which order
the binary relations are listed in an MPS. This fact does not affect
our analysis by any means. However, for the sake of clarity, it
is better to decide from the outset how these binary relations
are arranged into a 2n-tuple. To that end, we use an order that
suggests their level of refinement in the boolean structure that
will be associated to them (see Fig. 1). Specifically, if we use the
identifications ‘∀ ≡ 0’ and ‘∃ ≡ 1’, then the binary relations are
listed in increasing order according to the sum of their indices,
and, in case of an equal sum, the lexicographic order on {0, 1}2 is
applied. Thus, for instance, an MPS of rank 3 is listed as follows:(
≿∀∀∀, ≿∀∀∃, ≿∀∃∀, ≿∃∀∀, ≿∀∃∃, ≿∃∀∃, ≿∃∃∀, ≿∃∃∃

)
=

(
≿000, ≿001, ≿010,≿100, ≿011, ≿101, ≿110, ≿111 )

.

Example 1. By Theorem 3.4 in Giarlotta and Greco (2013), a
modal preference structure of rank 1 is a NaP-preference(
≿N, ≿P

)
=

(
≿∀, ≿∃

)
=

(
≿0,≿1

)
.

Example 2. By Theorem 4 in Carpentiere et al. (2022), an
MPS of rank 2 is a GNaP-preference

(
≿NN, ≿NP, ≿PN, ≿PP

)
=(

≿∀∀, ≿∀∃, ≿∃∀, ≿∃∃
)

=
(
≿00, ≿01, ≿10, ≿11

)
.

The idea behind the notion of an MPS is natural. Each set
Ki in the Cartesian product K1 × · · · × Kn encodes a ‘mode’ of
the preference structure. Specifically, each Ki models a relevant
feature/stage of the decision procedure, which can be witnessed
either universally or existentially — that is, either necessarily (for
any value in its range) or possibly (for at least one value in its
range). The next example illustrates a possible semantics of MPSs
in a concrete scenario.

Example 3 (Aggregating Rankings of Projects). A multinational
corporation has to select a key investment from five feasible
projects. The structure of the company comprises many de-
partments, some of which are directly involved in the decision
procedure, namely finance (F), marketing (M), research and de-
velopment (R&D), and human resources (HR). Each department
is split into sub-departments, which in turn have their own
officers. Selecting the correct project is crucial for the future of
the company, and so the CEO decides that every officer of each
sub-department must give her/his own opinion.

To that end, all officers are asked to rank the five candidate
projects in descending order, with ex-aequo allowed; that is, they
must provide total preorders on the set of projects. Note that
the amount of preferences to be evaluated by the CEO may turn
out overwhelmingly large. For instance, if each department has 4
sub-departments, and each sub-department has 3 officers, then
overall there are 48 total preorders that concur in the evaluation.

It is advisable – if not mandatory – that the CEO is pro-
vided with a synthetic and organized view of all these pieces
of preferential information emanating from the lower levels of
the organized chart of the corporation. A modal preference struc-
ture of rank 3 may perform this required process of ‘organized

synthesis’ in an effective and sound way. Let us explain how.
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Fig. 1. The monotonicity property of a modal preference structure of rank n = 0, 1, 2, 3. On the left, a modal preference structure of rank 0 (a total preorder). In the
iddle, two modal preference structures of rank 1 (a NaP-preference) and 2 (a GNaP-preference), respectively. On the right, a modal preference structure of rank
, whose components are the vertices of a cube embedded in the 3-dimensional space.
§

R

{

The first stage of the process of aggregation is done at the level
f sub-departments. Specifically, for each of them, all officers’
ankings (total preorders) are collected together. As a conse-
uence, by Theorem 3.4 in Giarlotta and Greco (2013), any sub-
epartment is associated with a NaP-preference on the set of the
ive available projects. The second stage of the process consists of
ollecting the opinions of all sub-departments for any of the four
epartments. This stage requires to perform the ‘tensor product’
f the NaP-preferences corresponding to its sub-departments.5
y Lemma 8 in Carpentiere et al. (2022), this tensor product is
GNaP-preference. In other words, each of the four departments

nvolved in the process is associated with a GNaP-preference on
he set of projects. The third and last stage of this synthesis of
valuations is to aggregate the opinions of the four departments.
his is done by taking the tensor product of the four associated
NaP-preferences, which, by Lemma 9 in Section 7, gives rise to
modal preference structure of rank 3.
The final result of this aggregation process is an 8-tuple of

inary relations on the set of available projects, where the se-
antics of each of the eight preference relations is quite simple.
or instance, x ≿∀∃∀ y means that for all departments F, M, R&D,
R, there is a sub-department such that all of its officers rank
roject x at least as good as project y. Note that the aggregation
rocess naturally yields the index sets K1, K2 and K3: in fact,
i is the (4 − i)-th stage, i = 1, 2, 3, of the synthesis. Overall,
he process of aggregation of the total preorders appears as an
rganized, synthetic view of all individual preferences. The ‘ra-
ionality’ of the model is retained by the properties of transitive
oherence and mixed completeness (later defined as properties
3 and M4), whereas an excessive complexity is removed from

he hierarchical decisional structure.
It is worth observing that this type of process applies to any

rganized structure that can be represented as a rooted tree of
rbitrary (finite) length and form. In this tree, all terminal nodes
epresent rational agents (i.e., total preorders) or rational groups
f agents (i.e., NaP-preferences, GNaP-preferences, etc.), whereas
he unique root represents the decisional unit (a single DM or
group of DMs). We shall formally elaborate on this point in
ection 7 (see also Example 11).

5 The general operation of tensor product for modal preference structures will
e introduced in Section 7. However, at the moment we only need the notion of
ensor product of NaP-preferences, which is already given in Carpentiere et al.
(2022, Section 5).
4

The main result of this paper is a characterization of modal
preference structures. In order to state it, we first introduce some
preliminary notions.

Definition 2. We define a partial binary operation ‘+ ’ and a
partial order ‘⩽’ on Q n. To start, we define + for strings of length
two. Let +:Q 2

\ {∃∃} → Q be the map6

∀ + ∀ := ∀ , ∀ + ∃ := ∃ , ∃ + ∀ := ∃ .

We extend + to a partial operation on Q n as follows: for all
strings § = §1 . . . §n and §′

= §1′ . . . §n′ in Q n such that §i + §i′

is defined for all i ∈ {1, . . . , n},7 let

§ + §′
:=

(
§i + §i′

)n
i=1.

Furthermore, let ⩽ be the Pareto ordering on Q n derived from the
linear order ⩽ on Q such that ∀ < ∃. For every string § = §1...§n

in Q n, we shall denote by § = §
1
...§

n
∈ Q n the opposite string,

that is, the string § such that §
i
̸= §i for all i ∈ {1, . . . , n}.

Thus, for instance, we have ∀∃∀∀∃ + ∀∀∃∀∀ = ∀∃∃∀∃ in Q 5,
whereas ∀∃∀∃ + ∀∀∀∃ is undefined in Q 4. Moreover, the strict
inequality ∃∀∀∃∀∀ < ∃∃∀∃∃∀ holds in Q 6, whereas ∀∃∀ and ∀∀∃

are incomparable in Q 3.

Remark 2. The notation employed for the partial operation ‘+’
and the partial order ‘⩽’ becomes clear as soon as one identifies
the quantifier ∀ with the digit 0, and the quantifier ∃ with the
digit 1: for instance, we have 0 + 0 = 0, 0 < 1, etc.

Remark 3. The partial operation + on Q n is associative, commu-
tative, and has ∀∀...∀ as identity. Thus (Q n, +) is a partial abelian
semigroup with unity. Note also that § + § = ∃∃...∃ for each

∈ Q n.

emark 4. Observe that ⩽ is the partial order on Q n defined by

§ ⩽ §′ def
⇐⇒ (∀i ∈ {1, . . . , n})

(
§i ̸= §i′ H⇒ §i = ∀

)
6 Recall that the string ‘∃∃’ is an abbreviation for the pair (∃, ∃). The partial

operation + is not defined for the pair ∃∃, because ∃+∃ ≡ 1+1 = 2 /∈ {0, 1} ≡

∀, ∃}.
7 That is, there is no coordinate k, with 1 ⩽ k ⩽ n, such that §k = §k′ = ∃.
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or all § = §1...§n and §′
= §1′...§n′ in Q n. Indeed, we have § ⩽ §′

f and only if §i ⩽ §i′ for all i ∈ {1, . . . , n}. Note also that the two
trings § and § are incomparable according to the Pareto ordering
on Q n.

Next, we list some properties of the components of any 2n-
uple

(
≿§

: § ∈ Q n
)
of binary relations on X (here §, §′

∈ Q n and
, y ∈ X are arbitrary):

M1: core transitivity) ≿∀∀...∀ is a preorder;

M2: monotonicity) if § ⩽ §′, then ≿§
⊆ ≿§′

;

(M3: transitive coherence) ≿§
◦ ≿§′

⊆ ≿§+§′

if §+ §′ is defined;

(M4: mixed completeness) x ≿§ y or y ≿§ x.

Note that if we set Q 0
:= {∗} by definition, then for n = 0 the

four properties M1–M4 collapse to requiring that transitivity and
completeness hold for the unique preference relation ≿∗ in the
20-tuple; that is, ≿∗ is a total preorder on X .

Moreover, observe that property M3 implies that ≿∀∀...∀ is
ransitive. Therefore, we could reduce M1 to reflexivity, or re-
ove the case of ≿∀∀...∀

◦ ≿∀∀...∀ from M3. However, in order to
eep the symmetry between MPSs and NaP-preferences, and also
o avoid overly complicating the formulation of property M3, we
refer to endure a slightly redundancy of the axioms.
In the next two examples, the notation ≿§

◦̂ ≿§′

stands for
ither ≿§

◦ ≿§′

or ≿§′

◦ ≿§.

xample 4. For n = 1, we obtain a pair
(
≿∀, ≿∃

)
of binary

elations on X , and properties M1–M4 reduce to the following,
here x, y ∈ X are arbitrary:

(M1) ≿∀ is a preorder;

M2) ≿∀
⊆ ≿∃;

M3) ≿∀
◦̂ ≿∃

⊆ ≿∃;

M4) x ≿∀ y ∨ y ≿∃ x.

hus,
(
≿∀, ≿∃

)
is a NaP-preference, with ≿∀

= ≿N and ≿∃
= ≿P.

xample 5. For n = 2, we have a quadruple
(
≿∀∀, ≿∀∃, ≿∃∀, ≿∃∃

)
of binary relations on X , and properties M1–M4 reduce to the
following, where x, y ∈ X are arbitrary:

(M1) ≿∀∀ is a preorder;

(M2) ≿∀∀
⊆

(
≿∀∃

∩ ≿∃∀
)

⊆
(
≿∀∃

∪ ≿∃∀
)

⊆ ≿∃∃;

(M3) ≿∀∀
◦̂ ≿∀∃

⊆ ≿∀∃, ≿∀∀
◦̂ ≿∃∀

⊆ ≿∃∀, ≿∀∃
◦̂ ≿∃∀

⊆ ≿∃∃, and
≿∀∀

◦̂ ≿∃∃
⊆ ≿∃∃;

(M4)
(
x ≿∀∀ y ∨ y ≿∃∃ x

)
and

(
x ≿∀∃ y ∨ y ≿∃∀ x

)
.

Thus,
(
≿∀∀, ≿∀∃, ≿∃∀, ≿∃∃

)
=

(
≿NN, ≿NP, ≿PN, ≿PP

)
is a GNaP-

reference on X .

To get an idea of the content of properties M1–M4, Fig. 1
raphically represents property M2 of modal preference struc-
ures of rank 0, 1, 2, and 3. For a graphical representation of the
roperties of transitive coherence and mixed completeness in the
ase of MPSs of rank 2 and 3, we refer the reader to Figs. 1–3
n Carpentiere et al. (2022).

The following conjecture is stated in Carpentiere et al. (2022):

onjecture 1. For any integer n ⩾ 1, the following statements
re equivalent for a 2n-tuple M =

(
≿§

: § ∈ Q n
)
of binary relations

n X:

(i) M is a modal preference structure on X;

(ii) M satisfies properties M1–M4.

5

The next three sections are devoted to the technical proof
of Conjecture 1. The necessity part is straightforward. On the
contrary, the sufficiency part requires several preparatory re-
sults to obtain a witnessing family of total preorders, which
emanates from properties M1–M4. The next two sections collect
such preliminaries, whereas Section 6 proves the claim.

Specifically, in Section 4 we list some general combinatorial
results, which require no assumption on the preference structure
and solely depend on properties M1–M4. In Section 5 we apply
these results to our setting with the goal of getting the required
total preorders. Finally, in Section 6 we prove Conjecture 1 by
fixing the set Q n

× X2
× {0, 1} = Ki for all i = 1, . . . , n, and then

showing that the equivalence (1) in Definition 1 holds.

4. Suitable lists

Here we define the notion of a ‘suitable list’, which allows one
to use the operation + on selected lists of quantifiers. Informally,
a suitable list is a collections of pairs, each of them composed of
a string of n quantifiers and a bit (0 or 1), satisfying a certain
property. If such a property is satisfied, then the addition is
defined for selected strings. The strings that we sum are chosen
by looking at the bit associated to each original string.

Definition 3. A building list – for brevity a list – in Q n is a family
((§t , bt ))t=1,...,m of pairs in Q n

× {0, 1}, where m is a positive
integer. A building list ((§t , bt ))t=1,...,m is suitable whenever for
any j ∈ {1, . . . , n}, there is at most one h ∈ {1, . . . ,m} such that
the pair (§jh, bh) is equal to either (∀, 0) or (∃, 1). (A component
§jh of the string §h that generates such a situation is called a bad
occurrence.)

In other words, if we arrange the m strings of n quantifiers in
an m×n matrix, then suitability requires that for each coordinate
of the given strings, there is at most one bad occurrence. Note that
suitability is independent of the order in which the building list
is presented.

The next example exhibits an instance of a suitable list.

Example 6. Arrange m = 4 given strings of quantifiers in Q n
=

Q 4 in a 4 × 4 matrix, one per row, and add a column for the
corresponding bits as follows:⎡⎢⎣ ∀ ∃ ∀ ∃ 1

∃ ∀ ∀ ∀ 1
∃ ∃ ∀ ∃ 0
∃ ∃ ∃ ∃ 0

⎤⎥⎦ ≡

⎡⎢⎣ 0 1 0 1 1
1 0 0 0 1
1 1 0 1 0
1 1 1 1 0

⎤⎥⎦ .

(In the matrix on the right, we are using the identifications ‘∀ ≡

0’ and ‘∃ ≡ 1’ mentioned in Remark 2, in order to provide a
more graphic way to verify the suitability of a building list.) It
is straightforward to check that the list ((§t , bt ))t=1,2,3,4 in Q 4 is
suitable. For instance, in the first column we only have one bad
occurrence, which is in the second row (emphasized in magenta
in both matrices). A similar reasoning applies for the other three
columns (where again the three bad occurrences are emphasized
in magenta).

Observe that every property which can be encoded using
0’s and 1’s can also be used to define a suitable list. The next
definition applies to a very general setting.

Definition 4. Let C be a nonempty set, and ((At , kt ))t=1,...,m a
nonempty family of elements in 2C

× C . For all t ∈ {1, . . . ,m},
fix §t ∈ Q n and define

bt :=

{
1 if kt ∈ At
0 if kt /∈ At .



D. Carpentiere, A. Giarlotta and S. Watson Journal of Mathematical Psychology 115 (2023) 102791

W
{

s

l

E
f
l
A
a
a
b
i
d
Q
t
o
o
i
l
{

b
e
a
p

o

L
t

b
j
b

s

t
a

s

o

L
∃

t

§

R
§

s

e call ((§t , bt ))t=1,...,m the list induced by {At : t ∈ {1, . . . ,m}},
kt : t ∈ {1, . . . ,m}}, and {§t : t ∈ {1, . . . ,m}}. Whenever the
etting is clear, we omit mentioning the generating sets.

The next example exhibits an algebraic instance of a (suitable)
ist induced by prime numbers.

xample 7. For m = n ⩾ 1, let {p1, . . . , pm} be the set of the
irst m prime numbers. Take B := N, and for each t ∈ {1, . . . ,m},
et At := ptN be the set of all multiples of pt . (Thus, for instance,
1 is the set of all even numbers.) Suppose §t ∈ Qm and kt ∈ N
re given for all t ∈ {1, . . . ,m}. The list induced by the At ’s, kt ’s,
nd the §t ’s is ((§t , bt ))t=1,...,m, where bt = 1 if pt divides kt , and
t = 0 otherwise. This list becomes suitable whenever for every j
n {1, . . . ,m}, there is at most one t such that either §jt = ∃ and pt
ivides kt , or §

j
t = ∀ and pt does not divide kt . Now suppose §t ∈

m
= Q n is the string whose components are all ‘∀’ except for the

th, which is ‘∃’. In other words, the entries of the n × n matrix
btained by listing §1, §2, . . . , §m by row are always ‘∀’, except
n the main diagonal, where there are ‘∃’. The list ((§t , bt ))t=1,...,m
s suitable if and only if pt divides kt for all t ’s. In particu-
ar, the list ((§t , bt ))t=1,...,m induced by {ptN : t ∈ {1, . . . ,m}} and
kt : (∀t ∈ {1, . . . ,m}) kt = ptct ∧ ct ∈ N} is suitable.

In Section 5, we shall consider building lists in Q n induced
y a family of binary relations and a family of ordered pairs of
lements. That is, the set C in Definition 4 is X2, the sets At ⊆ C
re binary relations on X , and the elements kt ∈ C are ordered
airs: see Lemmas 5 and 6.
Next, we prove some algebraic and order-theoretic properties

f suitable lists.

emma 1. Let S = ((§t , bt ))t=1,...,m be a list in Q n. If S is suitable,
hen the following properties hold:

(1) for all distinct p, q ∈ {1, . . . ,m} such that bp = bq = 1, the
sum §p + §q is defined;

(2) for all distinct p, q ∈ {1, . . . ,m} such that bp = bq = 0, the
sum §p + §q is defined;

(3) for all distinct p, q ∈ {1, . . . ,m} such that bp = 1 and bq = 0,
the sum §p + §q is defined;

(4) for all d, s ≥ 0 such that d + s = t, the sum §i1 + · · · + §id +

§j1 + · · · + §js , where bil = 1 for each l such that 1 ≤ l ≤ d,
and bjr = 0 for all r with 1 ≤ r ≤ s, is defined.8

Moreover, if every string §t is distinct from both ∀...∀ and ∃...∃, then
the addends of the sums are different in each case.9

Proof. We prove (1)–(4) by way of contradiction.
For (1), suppose there exist distinct p, q ∈ {1, . . . ,m} such that

p = bq = 1 and §p +§q is not defined. It follows that there exists
∈ {1, . . . , n} such that §jp = §jq = ∃. This is impossible, because
p = bq = 1 implies that both §jp and §jq are bad occurrences,

contradicting the suitability of S. Moreover, if §p is equal to §q
and different from ∀...∀ and ∃...∃, then there is j ∈ {1, . . . , n}
uch that §jq = §jp = ∃, which again contradicts suitability. Part
(2) is similar to (1).

Next, we prove (3). Suppose there are distinct p, q in {1, . . . ,m}

such that §p + §q is not defined, bp = 1, and bq = 0. It follows
hat there is j ∈ {1, . . . , n} such that §jp = ∃ and §jq = ∀. This is
contradiction, because S is suitable. The proof that the addends

8 If d = 0, we abuse notation, and let the sum be §j1 + · · · + §s . Similarly, if
= 0, we consider §i1 + · · · + §id .
9 For instance, in case (3) we have § ̸= § .
p q

6

of the sum are different whenever both strings of quantifiers are
different from ∃ . . . ∃ and ∀ . . . ∀ is similar to that of (1).

Finally, we prove (4). Suppose the sum is not defined. We
btain § and §′ such that either § + §′ or § + §′ or § + §′ is not

defined. Now apply (1), (2), or (3) to get a contradiction. □

emma 2. Let ((§t , bt ))t=1,...,m be a building list in Q n
\ {∀ . . . ∀,

. . . ∃} such that bh = 0 for some h ∈ {1, . . . ,m}. If S is suitable,
hen the following properties hold:

(1) for all l ∈ {1, . . . ,m} such that bl = 1, we have §l ⩽ §h;
(2) for all l ∈ {1, . . . ,m} such that l ̸= h and bl = 0, we have

§l ⩽ §h;
(3) if p ̸= q and bp = bq = 1, then §p + §q ⩽ §h;
(4) if p, q, h are all distinct and bp = bq = 0, then §p + §q ⩽ §h;
(5) if p ̸= q ̸= h, bp = 1, and bq = 0, then §p + §q ⩽ §h;
(6) for all d, s ≥ 0 such that d + s = t, if bil = 1 and il ̸= h for

each l with 1 ≤ l ≤ d, and bjr = 0 and jr ̸= h for all r with
1 ≤ r ≤ s, then §i1 + · · · + §id + §j1 + · · · + §js ≤ §h.10

Proof. For (1), let l ∈ {1, . . . ,m} be such that bl = 1. Suppose
there is j ∈ {1, . . . , n} such that §jl = ∃. Since bh = 0, suitability
yields §jh = ∃, otherwise we would have two bad occurrences in
column j. By the arbitrariness of j, we obtain §l ⩽ §h, as claimed.

For (2), suppose there exists j ∈ {1, . . . , n} such that §jl = ∃,
hence §jl = ∀. Again apply suitability to get §jh = ∃. The claim
follows.

Next, we prove (3). By Lemma 1(1), §p+§q is defined. Suppose
there is j ∈ {1, . . . , n} such that (§p + §q)j = ∃. It follows that
either §jp = ∃ or §jq = ∃. Now part (1) yields §jh = ∃, and we are
done.

The arguments to prove (4) and (5) are similar. Part (6) is
proved by induction. □

The following simple consequences of Lemmas 1 and 2, which
hold under additional properties of the list, will be useful in the
next section.

Corollary 1. Let M =
(
≿§

: § ∈ Q n
)
be a 2n-tuple of binary

relations on X satisfying property M2, and m an integer such that
1 ⩽ m ⩽ n. Moreover, let ((§t , bt ))t=1,...,m be a building list in Q n

such that (§h, 0) ∈ S for some h ∈ {1, . . . ,m}. Suppose that S is
ordered in way that bt = 1 if and only if t ≤ d for some nonnegative
integer d such that (§h, 0) is the last entry in the list. If S is suitable,
then

≿§1+···+§d+§d+1+···+§m−1 ⊆ ≿§m .

Proof. The sum §1 + · · · + §d + §d+1 + · · · + §m−1 is defined by
Lemma 1(4), and the inequality §1+· · ·+§d+§d+1+· · ·+§m−1 ⩽

m holds by Lemma 2. The claim follows from property M2. □

emark 5. By Remark 3, Corollary 1 also holds if the addends of
1 + · · · §d + §d+1 + · · · + §m−1 are listed in a different order.

Corollary 2. Let M =
(
≿§

: § ∈ Q n
)
be a 2n-tuple of binary

relations on X satisfying properties M2 and M3, and m an integer
such that 1 ⩽ m ⩽ n. Moreover, let ((§t , bt ))t=1,...,m be a list in Q n,
which is ordered in a way such that bt = 1 if and only if t ≤ d for
ome nonnegative integer d. If S is suitable, then

≿§1 ◦ . . . ◦ ≿§d ◦ ≿§d+1 ◦ . . . ◦ ≿§m

⊆ ≿§1+···+§d+§d+1+···+§m ⊆ ≿∃...∃ .

10 As in Lemma 1, we are slightly abusing notation: see Footnote 8.
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roof. By Lemma 1(4), the sum §1 + · · ·+ §d + §d+1 + · · ·+ §m is
efined. Now the first inclusion follows from property M3 applied
m − 1) times, whereas the second inclusion is an immediate
onsequence of property M2. □

emark 6. Corollary 2 also holds for every permutation of the
omposition ≿§1 ◦ . . . ◦ ≿§d ◦ ≿§d+1 ◦ . . . ◦ ≿§m .

. Interpolating preorders

In this section we define two notions, and prove some related
roperties. These notions are:

(1) a parsimonious extension of a preference relation, which is
a set-theoretic superset of a given relation having the same
asymmetric part;

(2) an interpolating relation for a pair of nested preferences,
which is a binary relation that is set-theoretically in be-
tween the two components of the original pair.

efinition 5. Let ≿ be a weak preference on X . A binary relation
≿′ on X such that ≿ ⊆≿′ and x ≿′ y implies x ≿ y or x ⊥ y is
alled a parsimonious extension of ≿.

Note that a parsimonious extension never makes a strict pref-
rence of x over y into an indifference between x and y.

efinition 6. Let (≿1,≿2) be a pair of weak preferences on X
uch that ≿2 extends ≿1. A binary relation ≿ on X is said to be
≿1,≿2)-interpolating if ≿1 ⊆ ≿ ⊆ ≿2.11

To start, we obtain interpolating preorders for NaP-prefer-
ences.

Lemma 3. Let
(
≿N, ≿P

)
be a NaP-preference on X. If ≿ is a(

≿N, ≿P
)
-interpolating preorder and ≿′ is a preorder that parsimo-

niously extends ≿, then also ≿′ is
(
≿N, ≿P

)
-interpolating.

Proof. Let ≿ be a preorder such that ≿N
⊆ ≿ ⊆ ≿P, and ≿′

a preorder that parsimoniously extends ≿. Clearly ≿N
⊆ ≿′. To

prove that also ≿′
⊆ ≿P holds, suppose x ≿′ y, hence either x ≿ y

or x ⊥ y. If x ≿ y, then x ≿P y by hypothesis. Otherwise, we have
x ⊥ y, and mixed completeness yields x ≿P y. □

In order to obtain interpolating preorders that are total, we
need the Axiom of Choice in its equivalent form of Zorn’s Lemma.

Lemma 4 (AC). Let
(
≿N, ≿P

)
be a NaP-preference on X. For any(

≿N, ≿P
)
-interpolating preorder ≿, there is a parsimonious exten-

sion ≿′ of ≿ that is a
(
≿N, ≿P

)
-interpolating total preorder.

Proof. Let ≿ be a preorder on X such that ≿N
⊆ ≿ ⊆ ≿P. By

Lemma 3, we only need to prove the existence of a parsimonious
extension ≿′ of ≿ that is a total preorder.

Let P be the set of all parsimonious extension of ≿ that are
preorders. Note that P ̸= ∅, because ≿ belongs to it. Suppose C is
a ⊆-chain of elements of P . Observe that

⋃
C is a parsimonious

extension of ≿, and is a preorder. By Zorn’s lemma, we obtain a
maximal element ≿′ of P . To complete the proof, we show that
≿′ is total.

Toward a contradiction, suppose there are x, y ∈ X such that
neither x ≿′ y nor y ≿′ x holds; in particular, x ⊥ y. Define ≿′′

11 The term ‘interpolating’ may appear overinflated at the moment. However,
he employed terminology becomes more appropriate as soon as we make
his interpolating preference contain or avoid some ordered pairs: see the
nterpolation Lemma (Lemma 5) and the Total Interpolation Lemma (Lemma 6)
elow.
7

as the transitive closure of ≿′
∪ {(x, y)}. We shall prove ≿′′

∈ P ,
hich contradicts the maximality of ≿′. It suffices to show that
′′ is parsimonious. To that end, suppose z, w ∈ X are such that
≿′′ w and ¬(z ⊥ w). Transitivity of ≿′′ implies that ¬(w ≻ z),
ince otherwise z ≿′′ w ≻ z would give z ≻ z. Now ¬(z ⊥ w) and
(w ≻ z) yield z ≿ w, which proves that ≿′′ is parsimonious. □

The next two lemmas establish the existence of suitable inter-
olating preorders for the first and the last components of any
n-tuple of binary relations satisfying properties M1–M4.

emma 5 (Interpolation Lemma). Let M =
(
≿§

: § ∈ Q n
)
be a

2n-tuple of binary relations on X satisfying properties M1–M4, and
m an integer such that 1 ⩽ m ⩽ n. For all t ∈ {1, . . . ,m},
let §t = §t1...§

t
n ∈ Q n and kt = (xt , yt ) ∈ X2. Consider the

list ((§t , bt ))t=1,...,m induced by {≿§t : t ∈ {1, . . . ,m}}, {kt : t ∈

{1, . . . ,m}}, and {§t : t ∈ {1, . . . ,m}}. If S is suitable, then there is
an

(
≿∀...∀,≿∃...∃

)
-interpolating preorder ≿k1...km on X satisfying the

following properties for all t ∈ {1, . . . ,m}:

(i) kt ∈ ≿§t H⇒ kt ∈ ≿k1...km ;
(ii) kt /∈ ≿§t H⇒

(
kt /∈ ≿k1...km ∧ (yt , xt ) ∈ ≿k1...km

)
.

Proof. For brevity, denote by [m] the set {1, . . . ,m}. There are
seven possible cases for the list S, which are mutually exclusive
and exhaustive:

(1) for all t ∈ [m], (§t , bt ) ∈
{
(∀...∀, 1), (∃...∃, 0)

}
;

(2) for all t ∈ [m], (§t , bt ) ∈
{
(∀...∀, 0), (∃...∃, 1)

}
;

(3) there is h ∈ [m] such that (§h, bh) ∈
{
(∀...∀, 1), (∃...∃, 0)

}
,

there is k ∈ [m] such that (§k, bk) /∈
{
(∀...∀, 1), (∃...∃, 0)

}
,

for all t ∈ [m], (§t , bt ) /∈
{
(∀...∀, 0), (∃...∃, 1)

}
;

(4) there is h ∈ [m] such that (§h, bh) ∈
{
(∀...∀, 0), (∃...∃, 1)

}
,

there is k ∈ [m] such that (§k, bk) /∈
{
(∀...∀, 0), (∃...∃, 1)

}
,

for all t ∈ [m], (§t , bt ) /∈
{
(∀...∀, 1), (∃...∃, 0)

}
;

(5) there is h ∈ [m] such that (§h, bh) ∈
{
(∀...∀, 1), (∃...∃, 0)

}
,

there is k ∈ [m] such that §k /∈
{
∀...∀, ∃...∃

}
, there is l ∈ [m]

such that (§l, bl) ∈
{
(∀...∀, 0), (∃...∃, 1)

}
;

(6) there is h ∈ [m] such that (§h, bh) ∈
{
(∀...∀, 1), (∃...∃, 0)

}
,

there is no k ∈ [m] such that §k /∈
{
∀...∀, ∃...∃

}
, there is

l ∈ [m] such that (§l, bl) ∈
{
(∀...∀, 0), (∃...∃, 1)

}
;

(7) for all t ∈ [m], §t /∈
{
∀...∀, ∃...∃

}
.

Here we only examine the general case, namely (7), and leave the
others to the reader.12 Suppose S is suitable. Define an extension
≿ of ≿∀...∀ by setting

≿ := ≿∀...∀
∪

⋃
t∈[m]

{
(xt , yt ) : kt ∈≿§t

}
∪

⋃
t∈[m]

{
(yt , xt ) : kt /∈≿§t

}
.

(2)

By construction, ≿ extends ≿∀...∀ and contains all pairs in any
≿§t ; moreover, if a pair (xt , yt ) is not in ≿§t , then its reverse pair
(yt , xt ) belongs to ≿. Let ≿k1...km be the transitive closure of ≿. To
complete the proof, it suffices to show

(A) ≿k1...km is included in ≿∃...∃, and
(B) for all t ∈ [m], ¬(xt ≿§t yt ) implies ¬(xt ≿k1...km yt ).

First, we prove (A). By Corollary 2 and Remark 6, we have

≿§1 ◦ . . . ◦ ≿§d ◦ ≿§d+1 ◦ . . . ◦ ≿§m ⊆ ≿§1+···+§d+§d+1+···+§m⊆ ≿∃...∃ (3)

12 Cases (1) and (2) are routine, cases (4) and (5) are impossible by the
suitability of S, and the nontrivial parts of cases (3) and (6) are subsumed by
case (7).
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or any permutation of the composition. Suppose x, y ∈ X are
uch that x ≿k1...km y. By the definition of transitive closure, there
s a ≿-chain of elements starting at x and ending at y; let

≿ c1 ≿ . . . ≿ cv ≿ y

e a minimal one. It follows that any binary relation ≿§hl or ≿§hl

ppears at most once in such a chain. (For instance, if there are
, q ∈ [m], with p < q, and ≿§t such that cp ≿§t cp+1, cq ≿§t cq+1,

cp = cq = xt , and cp+1 = cq+1 = yt , then we obtain cp ≿§t

cq+1, and so we can shorten the chain, contradicting maximality.)
Hence, we get (x, y) ∈ ≿§h1 ◦ . . . ◦ ≿

§hp ◦ ≿
§hp+1 ◦ . . . ◦ ≿§hr (or a

ermutation of such a composition), and we are done.
Finally, we prove (B). Toward a contradiction, suppose there

re distinct elements x, y ∈ X and an index h such that ¬(xh ≿§h

h) but xh ≿k1...km yh. We claim that ¬(xh ≿ yh). Indeed, if
h ≿ yh, then there is t such that either (xh, yh) = (xt , yt ) or
xh, yh) = (yt , xt ) holds. In the first case, we get xh ≿§t yh by
efinition of ≿, whence ≿§t ⊆ ≿§h by Lemma 2(1) and property
2, contradicting the hypothesis. By a similar argument, also the
econd case is impossible. From ¬(xh ≿ yh) we conclude that the
air (xh, yh) has been added to ≿k1...km in the process of taking the

transitive closure of ≿. Therefore, there is a nontrivial ≿-chain of
the type

xh ≿ c1 ≿ . . . ≿ ct ≿ yh.

As in the proof of (A), we obtain a minimal chain in which
every binary relation ≿§hl or ≿§hl appears at most once. Using
3), Corollary 1 and Remark 5 yield ≿

§t1+···+§tp+§tp+1+···+§tr ⊆ ≿§h ,
which is impossible because ¬(xh ≿§h yh). □

Again, in order to extend the existence result obtained in
Lemma 5 to total preorders, we need to appeal to the Axiom of
Choice.

Lemma 6 (Total Interpolation Lemma). (AC) Let M =
(
≿§

: § ∈ Q n
)

be a 2n-tuple of binary relations on X satisfying properties M1–
M4, and m be an integer such that 1 ⩽ m ⩽ n. For all t ∈

{1, . . . ,m}, let kt ∈ X2 and §t = §t1...§
t
n ∈ Q n. Consider the

building list ((§t , bt ))t=1,...,m induced by {≿§t
: t ∈ {1, . . . ,m}},

{kt : t ∈ {1, . . . ,m}}, and {§t : t ∈ {1, . . . ,m}}. If S is suitable, then
there is a

(
≿∀...∀,≿∃...∃

)
-interpolating total preorder ≿k1...km on X

satisfying the following properties for all h ∈ {1, . . . ,m}:

(i) kh ∈ ≿§h H⇒ kh ∈ ≿k1...km ;
(ii) kh /∈ ≿§h H⇒ kh /∈ ≿k1...km .

Proof. Suppose S is suitable. By Lemma 5, there is a preorder
≿k1...km satisfying (i) and (ii); moreover, if ¬(xh ≿§h yh) for some h
in {1, . . . ,m}, then yh ≿k1...km xh. Using Definition 5 and Lemma 4,
we obtain a total preorder satisfying (i) and (ii). (To show that,
simply observe that (≿∀...∀,≿∃...∃) is a NaP-preference, and the
inclusions ≿∀...∀

⊆ ≿k1...km ⊆ ≿∃...∃ hold.) □

6. Characterization

Here we prove that Conjecture 1 holds true.

Definition 7. We call Z = Q n
× X2

× {0, 1} the set of tasks.

Let M =
(
≿§

: § ∈ Q n
)
be a modal preference structure on X

having rank n. For each z ∈ Z , there is a unique associated string
§z = §1z . . . §nz , and so a unique binary relation ≿§z= ≿§1z ...§nz in M .
Moreover, we have a unique bit bz ∈ {0, 1}, and a unique pair
kz = (x, y). In what follows, we show that every subset V of Z

n
induces a list in Q . This is done in two steps.

8

For each v ∈ V , denote by §v the associated string of quanti-
fiers, and by kv the associated pair in X2. As first step, we use V
to obtain sets Av ⊆ X2 and pairs kv ∈ X2, for each v ∈ Z . (Note
that Av is equal to ≿§v for all v ∈ V .) As second step, we define
the list induced by {Av : v ∈ V }, {kv : v ∈ V }, and {§v : v ∈ V }.13

Lemma 7. Let V = {v1, . . . , vn} be a subset of Z = Q n
×X2

×{0, 1},
and ((§vt , bvt ))t=1,...,n the list induced by V . Consider the following
conditions, where t ∈ {1, . . . , n}:

(1) if kvt ∈ ≿§vt , then for all j ∈ {1, . . . , n}, §jvt = ∃ implies
vt = vj;

(2) if kvt /∈ ≿§vt , then for all j ∈ {1, . . . , n}, §jvt = ∀ implies
vt = vj.

Then the subset D of
{
kv1 , . . . , kvn

}
obtained by removing from D all

kvt’s such that either (1) or (2) fails, along with the set
{
≿§d : d ∈ D

}
,

induces a suitable list S.

Proof. Toward a contradiction, suppose that S is not suitable.
Thus there are distinct kv, kv′ ∈ D and j ∈ {1, . . . , n} such that
(§jkv , bkv ) and (§jkv′

, bkv′ ) belong to {(∀, 0), (∃, 1)}. Three possible
cases arise. We show that each case leads to a contradiction.

To start, we examine the case (§jkv , bkv ) = (§jkv′
, bkv′ ) = (∃, 1),

hence §jkv = §jkv′
= ∃, kv ∈ ≿§v , and kv′ ∈ ≿§v′ . By condition

(1) in the hypothesis, we derive v = v′, and so kv = kv′ , which
contradicts the assumption. The analysis of case (§jkv , bkv ) =

(§jkv′
, bkv′ ) = (∀, 0) is similar, using condition (2).

Next, we examine the case (§jkv , bkv ) = (∃, 1) and (§jkv′
, bkv′ ) =

(∀, 0), hence §jkv = ∃, §jkv′
= ∀, kv ∈ ≿§v , and kv′ /∈ ≿§v′ . By

condition (1), we get v = vj. Similarly, by condition (2), we get
v′

= vj. However, this implies v = v′, which is impossible. □

The notion of task plays a key role in the proof, because it
allows us to obtain an indexing that is more complex than the
usual indexing by integers.

Definition 8. If k ∈ X2 is in some ≿§1...§n with ≿§1...§n
∈ M for

some M modal preference structure, then a string of tasks z1...zn,
where if §i = ∃ then kzi = k and bzi = 1, is said to be induced
by k. Furthermore, if k is in some set X2

\ ≿§1...§n , then a string
kz1 ...kzn , where if xi = ∀ then kzi = k and bzi = 0, is still said to
be induced by k.

Lemma 8 (AC). Let M =
(
≿§

: § ∈ Q n
)
be a 2n-tuple of binary

relations on X satisfying properties M1–M4. For any (z1, . . . , zn) ∈

Zn, there is a
(
≿∀...∀,≿∃...∃

)
-interpolating total preorder ≿z1...zn on X

with the following properties:

(1) if kzt ∈ ≿§zt and for all j ∈ {1, . . . , n}, §jzt = ∃ implies kzt = kzj ,
then kzt ∈ ≿z1...zn ;

(2) if kzt /∈ ≿§zt and for all j ∈ {1, . . . , n}, §jzt = ∀ implies kzt = kzj ,
then kzt /∈ ≿z1...hn .

Moreover, if z1...zn is a string of tasks induced by some k belonging
to some ≿x1...xn (resp. some X\ ≿x1...xn ), then there is a total preorder
≿z1...zn such that k ∈ ≿z1...zn (resp. k /∈ ≿z1...zn ).

Proof. Apply Lemma 7 to obtain a suitable list, and then apply
Lemma 6 to get the required total preorders. To prove the last
statement, note that k satisfies either (1) or (2). □

13 Note that here we are extending Definition 4 to a more general notion. In
fact, Definition 4 uses a set of integers to index the two generating sets, whereas
here we are using a generic set V for the indexing.
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We are ready.

Ttheorem 1 (AC). For any integer n ⩾ 1, the following statements
are equivalent for a 2n-tuple M =

(
≿§

: § ∈ Q n
)
of binary relations

on X:

(i) M is a modal preference structure on X;
(ii) M satisfies properties M1–M4.

Proof. In what follows, we denote Q n
−∃

:= Q n
\ {∃...∃} and

Q n
−∀

:= Q n
\ {∀...∀}.

(i)H⇒ (ii): Suppose M be a modal preference structure. There-
fore, there is a family

T =
{
≿k1...kn : (k1, . . . , kn) ∈ K1 × · · · × Kn

}
of total preorders on X with the property that, for all x, y ∈ X and
§ = §1...§n ∈ Q n,

x ≿§1...§n y ⇐⇒ (§1k1 ∈ K1) . . . (§nkn ∈ Kn) x ≿k1...kn y.

Below we prove that properties M1–M4 hold. Let § = §1...§n and
§′

= §1′...§n′ be two lists of n quantifiers.

(M1) By definition of modal preference structure, ≿∀...∀ is the
intersection of all total preorders in T , and therefore it is
a preorder.

(M2) Suppose § ⩽ §′. We show that ≿§ is contained in ≿§′

. Let
x, y ∈ X be such that x ≿§ y. From (§1k1 ∈ K1) . . . (§nkn ∈

Kn) x ≿k1...kn y we get (§1
′

k1 ∈ K1) . . . (§n
′

kn ∈ Kn) x ≿k1...kn y,
and so x ≿§′

y.
(M3) Assume §i + §i′ is defined for all i ∈ {1, . . . , n}. We prove

≿§
◦ ≿§′

⊆ ≿§+§′

. To that end, suppose x ≿§ y ≿§′

z. By
hypothesis, we obtain

(§1k1 ∈ K1) . . . (§nkn ∈ Kn) x ≿k1...kn y

and (§
′1k1 ∈ K1) . . . (§n

′

kn ∈ Kn) y ≿k1...kn z,

and so

((§1 + §1
′

)k1 ∈ K1) . . . ((§n + §n
′

)kn ∈ Kn) x ≿k1...kn y

as well as

((§1 + §1
′

)k1 ∈ K1) . . . ((§n + §n
′

)kn ∈ Kn) y ≿k1...kn z.

By the transitivity of the preorders ≿k1...kn , we derive

((§1 + §1
′

)k1 ∈ K1) . . . ((§n + §n
′

)kn ∈ Kn) x ≿k1...kn z

and so x ≿§+§′

z, as claimed.
(M4) Let x, y ∈ X be such that ¬(x ≿§ y). We prove y ≿§ x. By

hypothesis, the formula

(§1k1 ∈ K1) . . . (§nkn ∈ Kn) x ≿k1...kn y

fails, hence

(§
1
k1 ∈ K1) . . . (§

n
kn ∈ Kn) ¬(x ≿k1...kn y)

holds true. However, since ≿k1...kn are complete, we obtain
that y ≿k1...kn x, hence y ≿§ x.

We conclude that (i) implies (ii).
9

(ii)H⇒ (i): Suppose M =
(
≿§

: § ∈ Q n
)
satisfies properties M1–

M4. Set Ki := Z for all i ∈ {1, . . . , n}. For all z1, . . . , zn ∈ Z , apply
Lemma 8 to obtain the total preorder ≿z1...zn .

Now suppose x ≿§1...§n y. We need to prove (§1z1 ∈ K1) . . .
§nzn ∈ Kn) x ≿z1...zn y. To that end, if §i = ∃, fix kzi = (x, y), and
ote that the claim holds if we show that for every task z1...zn

induced by (x, y), we have x ≿z1...zn y. Lemma 8 tells us that
every preorder indexed by such a string contains (x, y), and we
are done.

For the reverse implication, suppose

(§1z1 ∈ K1) . . . (§nzn ∈ Kn) x ≿z1...zn y.

oward a contradiction, assume ¬(x ≿§1...§n y), hence (x, y) ∈
2
\ ≿§1...§n . For every i such that §i = ∀, fix kzi = (x, y). Observe

hat the defined string must satisfy x ≿z1...zn y. However, Lemma 8
ells us that (x, y) /∈ ≿z1...zn , which is impossible. □

. Tensor product and layouts

In this section, we define an operation of ‘tensor product’ on
he collection of all modal preference structures on a given set of
lternatives. This operation delivers an MPS starting from MPSs
aving lower rank. The definition of tensor product is recursive,
nd proceeds in two steps.
The base step is ‘homogeneous’ and only goes ‘one rank up’,

ssociating an MPS of rank n + 1 to any finite family of MPSs of
ank n. It turns out that the converse holds as well, namely any
PS of rank n+ 1 always arises – but not in a unique way – as a

ensor product of a homogeneous family of MPSs having rank n.
For the recursive step, we need additional ‘instructions’, which

uide the amalgamation process of the given family of MPSs
into forming a new, more complex MPS. These instructions are
embodied in a rooted tree such that its leaves are associated to
the MPSs in the given family, and its root is associated to the new
PS of higher rank.

efinition 9. Denote by MODn(X) the collection of all modal
reference structures of rank n on the set X . Let {Mi : i ∈ I} be
finite family of elements in MODn(X).14 The tensor product

f {Mi : i ∈ I} is the modal preference structure on X given by
i∈IMi =

(
≿§′

: §′
∈ Q n+1

)
, where the generic binary relation ≿§′

n ⊗i∈IMi is defined by

§′

:=

⎧⎨⎩
⋂

i∈I ≿
§
i if §′

= ∀§⋃
i∈I ≿

§
i if §′

= ∃§.

As usual, ∀§ stands for the string ∀§1...§n, and ∃§ for the string
§1...§n.) Equivalently, denoted by Fn the collection of all fi-
ite families15 of elements in MODn(X), the operation of tensor
roduct can be seen as a collection of maps ⊗n such that

n :Fn −→ MODn+1(X) , {Mi : i ∈ I} ↦−→ ⊗i∈IMi,

ith n ranging over the set of natural numbers. In what follows,
he tensor product of the family {M1, . . . , Mk} is also denoted by
k
i=1Mi or M1 ⊗ · · · ⊗ Mk.

The next examples illustrate Definition 9 in some cases.

14 Note that we are not saying that {Mi : i ∈ I} is a subset of MODn(X): in
fact, we allow MPSs in the family to be repeated, that is, it may happen that
Mi = Mj for some distinct i, j ∈ I . This is consistent with the fact that in
applications some agents may display exactly the same preference structure.
15 Again, these are not sets, because repetitions are allowed: see Footnote 14.
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xample 8. Let M1 =
(
≿∀

1, ≿∃

1

)
and M2 =

(
≿∀

2, ≿∃

2

)
be

two MPSs of rank 1 (NaP-preferences). The tensor product of
{M1, M2} is the GNaP-preference

M1 ⊗ M2 =
(
≿∀∀, ≿∀∃, ≿∃∀, ≿∃∃

)
whose components are defined by

≿∀∀
:=≿∀

1 ∩ ≿∀

2, ≿∀∃
:=≿∃

1 ∩ ≿∃

2, ≿∃∀
:=≿∀

1 ∪ ≿∀

2, ≿∃∃
:=≿∃

1 ∪ ≿∃

2 .

In particular, if M1 and M2 have the same necessary component
≿∀

1 = ≿∀

2 := ≿∀, then we get

M1 ⊗ M2 =
(
≿∀, ≿∃

1 ∩ ≿∃

2 ,≿∀, ≿∃

1 ∪ ≿∃

2

)
.

Similarly, if ≿∃

1 = ≿∃

2 := ≿∃, then

M1 ⊗ M2 =
(
≿∀

1 ∩ ≿∀

2 , ≿∃ ,≿∀

1 ∪ ≿∀

2 , ≿∃
)
.

inally, in the very special case that the two NaP-preferences are
xactly the same, namely M1 = M2 = M =

(
≿∀, ≿∃

)
, then

⊗ M =
(
≿∀, ≿∃, ≿∀, ≿∃

)
s the rank-2-lifting of M .

xample 9. Define the following binary relations on X = R:

• x ≿∀

1 y ⇐⇒ x ≥ y + 1 ∨ x = y ;
• x ≿∀

2 y ⇐⇒ x ≤ y −
1
2 ∨ x = y ;

• x ≿∃

1 y ⇐⇒ x ≥ y − 1 ;
• x ≿∃

2 y ⇐⇒ x ≤ y +
1
2 .

ne can check that both pairs Mi = (≿∀

i ,≿
∃

i ) are NaP-preferences,
and their possible components ≿∃

i are Scott-Suppes representable
semiorders (Scott & Suppes, 1958). The tensor product M1⊗M2 =

≿∀∀, ≿∀∃, ≿∃∀, ≿∃∃
)
has some peculiar properties:

• ≿∀∀
= {(x, x) : x ∈ R};

• ≿∀∃
⊆ ∼

∃

1 (the symmetric part of ≿∃

1);
• ≿∃∀

= {(x, y) : 2x2 + 2y2 − 4xy + x − 2y − 1 ≥ 0} ∪

{(x, x) : x ∈ R};
• ≿∃∃

= R × R.

hese unusual results are semantically sound, because we are
efining an MPS starting from two ‘strongly discordant’ NaP-
references. Furthermore, the tensor product highlights some
oncordant properties which, at first sight, may be overlooked.
emantically, this example may model a group decision pro-
ess involving two conflicting properties, e.g., price (evaluated
y the Finance Department) and quality (evaluated by the Qual-
ty Control Department). Both attributes present ‘gray areas’ of
ndiscernibility, which are naturally modeled by semiorders.

The next result ensures that the operation of tensor product is
ell-defined.

emma 9. The tensor product of a finite family of modal preference
tructures of rank n is a modal preference structure of rank n + 1.

roof. Let {Mi : i ∈ I} be a family of modal preference structures
n X , where all structures Mi =

{
≿

§
i : § ∈ Q n

}
have rank n. By

efinition, for each i ∈ I there are nonempty sets K i
1, . . . , K

i
n and

family P i of total preorders on X indexed over K i
1 × · · · × K i

n
uch that

≿
§1...§n
i y ⇐⇒ (§1k1 ∈ K i

1) . . . (§
nkn ∈ K i

n) x ≿i
k1...kn y . (4)

ince we can duplicate indices in K i
j for each j = 1, . . . , n, we may

ssume without loss of generality that K i
= K i′ for all i, i′ ∈ I .
j j

10
herefore, each family P i is indexed over the same Cartesian
roduct K1 × · · · × Kn, and so (4) can be rewritten as

≿
§1...§n
i y ⇐⇒ (§1k1 ∈ K1) . . . (§nkn ∈ Kn) x ≿i

k1...kn y . (5)

or each i = 1, . . . , n, denote by △i the symbol
⋂

ki∈Ki
if §i = ∀,

nd
⋃

ki∈Ki
if §i = ∃. Thus we have ≿

§1...§n
i = △1...△n ≿i

k1...kn .
o complete the proof, we show that ⊗i∈IMi is an MPS of rank
+ 1. To that end, we define a family P ′ of total preorders,

ndexed by a Cartesian product K ′

1 × · · · × K ′
n × K ′

n+1, and show
hat the equivalence (5) holds for this new family. Let P ′ be the
nderlying set of total preorders in every P i (that is, we eliminate
epetitions); furthermore, for all i = 1, . . . , n, let K ′

i = Ki, and
′

n+1 = I . It is lengthy but straightforward to show that the
ollowing equivalence holds:

≿§1
′
...§n+1′

y ⇐⇒ (§1
′

k1 ∈K ′

1) . . . (§
n+1′

kn+1 ∈K ′

n+1) x ≿k1...kn+1 y.

This completes the proof. □

Now we show that all maps ⊗n are onto, and so any MPS of
positive rank can be built – even if not uniquely – from below.

Lemma 10. Every modal preference structure of rank n + 1 is the
product of a finite family of modal preference structures of rank n.

Proof. Let M be a modal preference structure of rank n + 1.
y definition, there is a family P of total preorders indexed over
1 × · · · × Kn+1. For all i = 1, . . . , n + 1 and § ∈ Q n+1, denote by
he symbol △

§
i either

⋂
ki∈Ki

if §i = ∀, or
⋃

ki∈Ki
if §i = ∃. Note

hat every binary relation ≿§ is equal to △
§
1...△

§
n+1P . Moreover,

or each k1 ∈ K1, let

k1 =
{
≿k1...kn+1 : (k2, . . . , kn+1) ∈ K2 × · · · × Kn+1

}
,

nd observe that Mk1 :=
(
△

§
2...△

§
n+1Pk1 : § ∈ Q n

)
is a modal

reference structures of rank n. Now the tensor product of the
amily {Mk1 : k1 ∈ K1} gives ⊗k1∈K1{Mk1 : k1 ∈ K1} = M . □

The remainder of this section is devoted to extend the notion
f tensor product to any finite family of MPSs on a given set
f alternatives. This family need not be ‘homogeneous’ (i.e., all
tructures in it have identical rank): in fact, all modal preference
tructures in this family may well have pairwise distinct ranks.
his added flexibility may be useful in applications, making the
pproach well suited to model hierarchically organized charts in
decision procedure.
In order to present the general notion of tensor product, first

e recall some notions from graph theory. A tree is an acyclic
onnected graph T = (N, E), where N is a set of nodes, and E is
set of edges. For simplicity (and slightly abusing notation), we
hall identify a tree T with the set N of its nodes, and denote
dges of T as pairs of the type st ∈ E, where s, t ∈ T . In this
aper, we assume that the set of nodes is finite, even without
xplicit mention. A tree T is rooted if there is a distinguished node
T ∈ T , called the root of T . A path in T is a list P = (t0, . . . , tn) of
airwise distinct nodes such that titi+1 ∈ E for all i; in this case, P
as length n, and the nodes t0 and tn are its endpoints.16 A branch
f T is a maximal path, that is, a path such that there is no other
ath that properly extends it.
The height of a rooted tree T , denoted by h(T ), is the maximum

ength of a branch.17 Given a rooted tree T of height n, the set
f its nodes can partitioned according to height. Specifically, the
nique node of height n is the root aT , that is, h(aT ) := n;

16 By definition, the path P = (t0) has length 0, and only has one endpoint.
17 By definition, a rooted tree having a unique node (the root) has height 0.
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Fig. 2. A rooted tree T of height 3. The node a is the root of T , and has height 3. The nodes s, t are leaves of height 0, whereas x, y, z are leaves of height 1. The
node u has height 2, and has {x, y, z} as the set of all its predecessors and the root as unique successor. Note that T is not balanced.
Fig. 3. Two different layouts T1 and T2 for the family M of modal preference structures in Example 10. The leaves of the two trees (in dark color) correspond to
he preferences in M . Note that in the layout T1 the leftmost MPS of rank 2 is the rank-2-lifting (see Example 8) of the NaP-preference obtained as the tensor
roduct of the six available total preorders.
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oreover, for any t ∈ T \ {aT }, set h(t) := n − p, where p is
the length of the (unique) path having aT and t as endpoints. A
leaf of T is a terminal node, that is, t ∈ T such that there is no
edge st ∈ E with h(s) < h(t); we denote by Leaf(T ) the set of all
leaves of T .18 A rooted tree is balanced if all leaves have height 0
(equivalently, all branches have the same length).

Since all edges st ∈ E in a rooted tree are such that |h(s) − h(t)|
1, we use the convention that the first node of the edge has

ower height, that is, h(s) = h(t) − 1: in this case, we call s a
predecessor of t , and t a successor of s. For any node t ∈ T , we
denote by Pred(t) and Succ(t) the sets of all predecessors and
successors of t , respectively. By definition of rooted tree, any node
may have several predecessors, but has at most one successor.
Fig. 2 illustrates some of the notions defined above.

Next, we associate a family of rooted trees to any collection of
odal preference structures.

efinition 10. Suppose a family M = {Mi : i ∈ I} of MPSs on X is
iven. Let r(Mi) be the rank of Mi, and rmax and rmin the maximum
nd the minimum rank of the elements of M. Moreover, for each
nteger k such that rmin ⩽ k ⩽ rmax, let mk be the nonnegative
umber of modal preference structures in M having rank k.19 A
ayout for M is any rooted tree T of height h(T ) = rmax − rmin + 1
ith the property that there are exactly mk leaves of height k for
ach k = rmin, . . . , rmax.

A family of MPSs may have several layouts, as the next exam-
le shows.

18 Thus, by definition, any node of height 0 is a leaf, but there may be leaves
ith strictly positive height.
19 Note that

∑rmax m = |I|.
k=rmin k
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Example 10. Let M = {M1, . . . , M12} be a family of MPSs on a
set X such that r(Mi) = 0 for 1 ⩽ i ⩽ 6, r(Mi) = 1 for 7 ⩽ i ⩽ 10,
and r(Mi) = 2 for 11 ⩽ i ⩽ 12. The rooted trees T1 and T2 depicted
in Fig. 3 are both layouts for M.

Finally, we define the so-called ‘T -tensor product’ of an arbi-
trary family of modal preference structures on X , where T is a
layout for that family. Definition 9 is a special case of this notion,
obtained in the case that the layout T is a rooted tree of height 1.

Definition 11. Let M = {Mi : i ∈ I} be a finite family of MPSs on
X , and T a layout forM. We recursively assign a modal preference
structure on X to each node of the tree T as follows. For the base
step, use a bijection α : Leaf(T ) → M to assign all elements of M
o the leaves of T , in a way that r(α(t)) = h(t) + rmin for every
∈ Leaf(T ). (This assignment is sound, because T is a layout for
.)
Recursively, to any node t ∈ T\Leaf(T ) such that all s ∈ Pred(t)

ave been assigned a modal preference structure Ms on X , assign
he tensor product ⊗s∈Pred(t)Ms. (By Definition 9, this assignment
s sound.) We proceed by rank, that is, before defining a certain
odal preference structure of a certain rank, all MPSs of lower

ank must have been defined (or they belong to M). At any rank,
ifferent tensor products can be performed in any order.
The last step of this process assigns an MPS of rank rmax +1 to

he root of T : we call this modal preference structure the T-tensor
roduct of M, and denote it by ⊗

TM.

It is simple to show that Definition 11 is sound (proof is
mitted):

emma 11. The T-tensor product of a family of modal preference
tructures having maximum rank n is a modal preference structure
f rank n + 1.
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We conclude this section with an example that illustrates in
detail how the operation of tensor product is performed in a
concrete scenario. Here as the input of the decision process we
have twelve MPSs of several distinct ranks. We shall provide
two slightly different outputs, obtained by applying two distinct
layouts for the amalgamation of the given modal preferences
structures into one of higher rank.

Example 11. We elaborate on the setting described in
Example 10. Let X = {a, b, c} be a set of three perspective
investments, from which a multinational corporation has to select
one or two. The agents involved in the decision process are of
several types (officers, sub-departments, departments, branches,
etc.). Suppose the pieces of preferential information provided by
these agents are given by a family M = {M1, . . . , M12} of modal
preference structures on X as in Example 10: six total preorders
≿i for 1 ⩽ i ⩽ 6, four NaP-preferences

(
≿∀

i , ≿∃

i

)
for 7 ⩽ i ⩽ 10,

nd two GNaP-preferences
(
≿∀∀

i , ≿∀∃

i , ≿∃∀

i , ≿∃∃

i

)
for 11 ⩽ i ⩽ 12,

ll defined on X .20
The input M of the decision process is provided at different

evels of the hierarchical organization of the corporation. This
appens when some elementary pieces of information coming
rom below remain hidden, being only given in an aggregated
orm. For instance, imagine a situation in which the officers of
he R&D sub-departments of a national unit give a technical eval-
ations of the three investments in the form of total preorders,
nd each sub-department forms a NaP-preference from them

without disclosing the process that guided their construction.
Then the pieces of informations provided by all sub-departments
are amalgamated into a GNaP-preference synthesizing the overall
evaluation provided by the R&D department into one MPS of
rank 2.

Now suppose the twelve modal preference structures Mi in M
are defined as follows:

(M1) a ≻1 b ≻1 c ;
(M2) a ∼2 b ≻2 c ;
(M3) a ≻3 b ∼3 c ;
(M4) a ∼4 c ∼4 b ;
(M5) b ≻5 c ≻5 a ;
(M6) b ≻6 c ∼6 a ;
(M7) b ≻

∀

7 c ≻
∀

7 a , b ≻
∀

7 a, and b ∼
∃

7 c ≻
∃

7 a , b ≻
∃

7 a ;
(M8) a ≻

∀

8 b ≻
∀

8 c , a ≻
∀

8 c , and a ≻
∃

8 b ≻
∃

8 c , a ≻
∃

8 c ;
(M9) a ≻

∀

9 b, and a ≻
∃

9 b ∼
∃

9 c , a ∼
∃

9 c ;
(M10) b ≻

∀

10 c , and a ∼
∃

10 b ≻
∃

10 c , a ∼
∃

10 c ;
(M11) a ≻

∀∀

11 b ≻
∀∀

11 c , a ≻
∀∀

11 c , ≿∀∃

11 := X2 , a ∼
∃∀

11 b ≻
∃∀

11 c , a ≻
∃∀

11 c ,
and ≿∃∃

11 := X2 ;
(M12) b ≻

∀∀

12 c , a ≻
∀∃

12 b ≻
∀∃

12 c , a ≻
∀∃

12 c , b ≻
∃∀

12 a ∼
∃∀

12 c , b ≻
∃∀

12 c ,
and ≿∃∃

12 := X2 .

In what follows, we separately apply the layouts T1 and T2 given
in Example 10, and generate two (slightly) different MPSs of rank
3, namely ⊗

T1M and ⊗
T2M.

We begin with the T1-tensor product of M. The first step is
o take the tensor product of the given family of total preorders
≿1, . . . ,≿6} to generate a NaP-preference ⊗

6
i=1Mi :=

(
≿∀

1, ≿∃

1

)
.

Intersection and union of these total preorders yield that ≿∀

1 and
≿∃

1 are respectively given by b ≻
∀

1 c and ≿∃

1 = X2. Since there
are no other modal preference structures of rank 1 to be built,
next we define those of rank 2. To start, we take the rank-2-
lifting of

(
≿∀

1, ≿∃

1

)
, which is the GNaP-preference ⊗

(
≿∀

1, ≿∃

1

)
=(

≿∀

1, ≿∃

1, ≿∀

1, ≿∃

1

)
. According to the shape of the layout T1, the

20 The setting is purely didactical, because our unique goal is to explicitly
llustrate how the T -tensor product works in a concrete case.
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next step is to take the tensor product of the four NaP-preferences(
≿∀

i , ≿∃

i

)
in M, where 7 ⩽ i ⩽ 10. This is the GNaP-preference(

≿∀∀

2 , ≿∀∃

2 , ≿∃∀

2 , ≿∃∃

2

)
such that

≿∀∀

2 = {(a, a), (b, b), (c, c)}, b≻
∀∃

2 c, b∼
∃∀

2 a∼
∃∀

2 c, b≻
∃∀

2 c,≿∃∃

2 = X2.

Since there are no other modal preference structures of rank 2 to
be built, we can finally take the tensor product of the four GNaP-
preferences

(
≿∀∀

i , ≿∀∃

i , ≿∃∀

i , ≿∃∃

i

)
, with i ∈ {1, 2, 11, 12}, which

is, by definition, the T1-tensor product of the original family M.
This is the modal preference structure(
≿∀∀∀

T1 , ≿∀∀∃

T1 , ≿∀∃∀

T1 , ≿∃∀∀

T1 , ≿∀∃∃

T1 , ≿∃∀∃

T1 , ≿∃∃∀

T1 , ≿∃∃∃

T1

)
of rank 3 whose components are defined as follows:

≿∀∀∀

T1
= {(a, a), (b, b), (c, c)} ;

b ≻
∀∀∃

T1
c ;

b ≻
∀∃∀

T1
c ;

a ≻
∃∀∀

T1
b ≻

∃∀∀

T1
c , a ≻

∃∀∀

T1
c ;

≿∀∃∃

T1
= X2 ;

≿∃∀∃

T1
= X2 ;

≿∃∃∀

T1
= X2

\ {(c, b)} ;

≿∃∃∃

T1
= X2 .

Now we take the T2-tensor product of M. Computations sim-
ilar to those above yield the modal preference structure(
≿∀∀∀

T2 , ≿∀∀∃

T2 , ≿∀∃∀

T2 , ≿∃∀∀

T2 , ≿∀∃∃

T2 , ≿∃∀∃

T2 , ≿∃∃∀

T2 , ≿∃∃∃

T2

)
defined as follows:

≿∀∀∀

T2
= {(a, a), (b, b), (c, c)} ;

b ≻
∀∀∃

T2
c , a ≻

∀∀∃

T2
c ;

b ≻
∀∃∀

T2
c ;

a ≻
∃∀∀

T2
b ≻

∃∀∀

T2
c , a ≻

∃∀∀

T2
c ;

≿∀∃∃

T2
= X2 ;

≿∃∀∃

T2
= X2

\ {(c, b)} ;

≿∃∃∀

T2
= X2 ;

≿∃∃∃

T2
= X2 .

Finally, we compare the outputs of the two aggregation pro-
cesses. The first thing that jumps into attention is that the differ-
ences between them are really few. However, this is due to the
small number of alternatives, which prevents the layouts from
producing distinctively different aggregated results. Both outputs
point in the direction that investment c should be dismissed. This
result is re-enforced by the second tensor product, which displays
a preference a ≿∀∀∃

T2
c not present in the first tensor product.

Furthermore, if a single investment has to be selected, then both
outputs suggest to choose a, due to the strict preference a≻

∃∀∀

Ti
b

for i = 1, 2, whereas b is never strictly preferred to a. The two
preferences a ≻

∃∀∀

Ti
b are indeed quite strong, because they can

be interpreted, for instance, as follows: there is a department in
the corporation such that for all its sub-departments and for all
officers of these sub-departments, investment a is always ranked
better than investment b. Therefore, to take a final decision, the
Board of Directors may want to look at the reliability of the
department that is providing this type of strong input.

8. Conclusions and future directions of research

In this paper we have introduced modal preference structures,
which are the natural extension of an approach to preference
modeling that employs multiple binary relations for a represen-
tation. Among several possible interpretations, these structures
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an be regarded as a sound way to aggregate rational prefer-
nces, aiming to describe how the two basic tenets of economic
ationality – transitivity and completeness – collectively act on
family of binary relations. In fact, modal preference structures
re characterized by the satisfaction of harmonic versions of
he two tenets of rationality, namely transitive coherence and
ixed completeness. The semantics of MPSs is connected to
roup decision making, because they offer a meaningful synthesis
f the preference structures of all agents involved in the decision
rocess.
One of the main directions of future research consists of prov-

ng further extensions of a famous theorem due to Schmeidler
1971), which establishes an intriguing connection among the
undamental properties of continuity, transitivity, and complete-
ess in a connected topological space.21 Schmeidler’s theorem
as already been (reformulated and) extended by Giarlotta and
atson (2020) to NaP-preferences. This extension is based on

he notion of order-section topology – a bi-relation refinement
f the standard order topology.22 Any further generalization of

Schmeidler’s theorem to GNaP-preferences or MPSs requires the
definition of a suitable variation of the order topology induced
by all preference relations. A possible approach to this problem
consists of defining a topology induced by the family of preorders
that represent a given MPS, and then showing that such a topol-
ogy is (i) invariant of the representation of the MPS, and (ii) the
coarsest topology such that certain continuity properties hold.

A second possible stream of work is studying representability
of a given MPS through utility functions. This could be achieved
in many ways, for instance considering utility representations
for the involved total preorders, and then representing an MPS
by an indexed family of utility functions. The approach em-
ployed for this task should extends themodal utility representation
of NaP-preferences, as suggested by Giarlotta and Greco (2013,
Section 4).

A third possible direction of research concerns the number
and the properties of the binary relations involved in an MPS.23
pecifically, since all sequences of quantifiers of length n are
onsidered, the number of binary relations in a modal preference
tructure is bounded to be exactly 2n. Ideally, our theory should
e generalized by considering any subset of these sequences, and
et modal preference structures with any number of relations.
different but related query concerns a possible variation of

he building blocks of modal preference structures, which at
resent are total preorders. It may be of some interest – although
ontrivial – to extend the theory of modal preference structures
o other basic types of binary relations, e.g., linear orders, incom-
lete preorders, semiorders, interval orders, and, more generally,
m, n)-Ferrers relations.

Still an additional direction of future research is related to
he algebraic operation of tensor product. From this perspective,
everal queries may be addressed. For instance, are there non-
omogeneous families of modal preference structures such that
heir tensor product is invariant of all possible layouts (that is,
hey produce the same structure regardless of the layout used for
he aggregation procedure)? For another example, given a family

of modal preference structures, define two layouts S, T for M
o be equivalent if ⊗

SM = ⊗
TM. What are the common features

f the layouts that belong to the same equivalence class? Fur-
hermore, we can define a ‘composition’ operator for layouts, and
onsider all the possible layouts that, when composed, give a cer-
ain layout. Is it possible to characterize the family of all layouts

21 David Schmeidler recently passed away. We believe that keep working on
opics pioneered by him is a good way to honor his memory.
22 For details, see Giarlotta and Watson (2020, Section 3).
23 We thank one of the referees for pointing out these possible developments
f our theory.
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such that their composition gives the same layout? And, finally,
what about a stochastic setting in which probability distributions
are associated to both layouts and sets of layouts? Answering
all these queries may be important in applications, once that all
pieces of information provided at a very low organizational level
need be consistently aggregated for the consideration of the CEO.

A final, purely abstract, direction of research is related to set
theory and category theory. Specifically, we have another proof
of the characterization of modal preference structures, which
is more technical and involved. However, the generality of this
alternative proof allows us to apply a similar reasoning to the
modelization of arbitrary structures (and not necessarily binary
relations) indexed by strings of quantifiers. This proof involves a
recursive construction that describes the amalgamation process
of a composite structure from simpler ones, ‘remembering’ when
a certain index has been introduced, and fetching it whenever
needed.
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