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1. Introduction

Let Ω be the unit Korányi ball in the Heisenberg group Hn (n ≥ 1); the p(·)-Laplacian problem
L(u) = ρ(ξ)|u|θ(ξ)−2u − %(ξ)|u|ϑ(ξ)−2u ξ ∈ Ω,

u > 0 ξ ∈ Ω,

u = 0 ξ ∈ ∂Ω,

(P)

with Dirichlet boundary condition is studied. Assume

ρ(ξ) = α(|ξ|Hn) and %(ξ) = β(|ξ|Hn), (1.1)

where α, β ∈ L∞(0, 1) such that α is a positive non-constant radially non-decreasing function and β is a
non-negative radially non-increasing function. p, θ, ϑ ∈ C+(Ω) such that

p+ < θ− < θ(ξ) < θ+ < p∗ and ϑ+ < θ− a.e. in Ω
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where
p
∗ =

pQ
Q − p

and p := p−s =
sp−

s + 1
for s with

s ∈ [
1

p− − 1
,+∞) ∩ (

Q
p−
,+∞).

The weighted operator L is defined by

L(u(·)) := divHn
(
w(·)|∇Hnu|p(·)−2∇Hnu

)
+ w(·)R(·)|u|p(·)−2u,

where w is a Muckenhoupt weight function of class As. And, finally, R : Ω → [0,+∞) belongs to
L∞(Ω) such that ess infΩ R > 0.

The topicality of the theory of Sobolev spaces on Heisenberg groups is explained by numerous
applications of it to the study of solutions for subelliptic differential equations, quasiconformal
analysis, and many other related problems. The Heisenberg groups represent the best known and,
in many respects, a model case of the Carnot-Carathéodory spaces.

Most papers in the literature on Muckenhoupt weighted problems focus their attention on the p-
Laplacian operator (see [1, 3, 4, 6, 13–15, 18–21, 25, 26, 28–32, 35] and the references therein). A sharp
distinction between this note and the mentioned works is that this paper discusses on the existence of
a suitable interval for embedding of weighted Heisenberg Sobolev spaces with variable exponents into
the Lebesgue spaces and using that for study of the existence of solutions for a weighted Heisenberg
p(·)-Laplacian problem.

Here, we are going to prove that the problem (P), under the aforementioned assumptions, has at
least one positive radial solution in HW1,p(·)(Ω,w) ∩ Lθ(·)ρ (Ω) ∩ Lϑ(·)

% (Ω), where

Lθ(·)ρ (Ω) := {u :
∫

Ω

ρ(ξ)|u(ξ)|θ(ξ)dξ < ∞},

which has the norm
|u|ρ,θ = in f {λ > 0 :

∫
Ω

ρ(ξ)|
u(ξ)
λ
|θ(ξ)dξ ≤ 1};

and, similarly,

Lϑ(·)
% (Ω) := {u :

∫
Ω

%(ξ)|u(ξ)|ϑ(ξ)dξ < ∞},

which has the norm
|u|%,ϑ = in f {λ > 0 :

∫
Ω

%(ξ)|
u(ξ)
λ
|ϑ(ξ)dξ ≤ 1}

for ρ, % ∈ L∞(Ω) as in (1.1), θ and ϑ are as above. We show that a radial weak solution to the problem
(P) is as follows.

Definition 1.1. We say that

u ∈ HW1,p(·)(Ω,w) ∩ Lθ(·)ρ (Ω) ∩ Lϑ(·)
% (Ω)

is a non-trivial radial weak solution of (P) if u > 0 in Ω is radial and the following equality is true:

L(u(ξ)) = ρ(ξ)|u|θ(ξ)−2u(ξ) − %(ξ)|u|ϑ(ξ)−2u(ξ),
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in the weak sense; that is∫
Ω

|∇Hnu|p(ξ)−2∇Hnu∇Hnφw(ξ)dξ +

∫
Ω

R(ξ)|u|p(ξ)−2uφw(ξ)dξ

=

∫
Ω

ρ(ξ)|u|θ(ξ)−2uφdξ −
∫

Ω

%(ξ)|u|ϑ(ξ)−2uφdξ

for any φ ∈ C∞0 (Ω).

The paper is arranged as follows. In Section 2 we present the notations and some facts related to
the Heisenberg groups and Muckenhoupt weight functions. Additionally, we obtain a suitable interval
for the embedding of weighted Heisenberg Sobolev spaces with variable exponents into the Lebesgue
spaces. Plus that we bring some briefs from variational calculus and we introduce our main tool.
Section 3 is devoted to the main result of the note and proof of the approach.

2. Notations and auxiliary remarks

In this note, Hn (n ≥ 1) is the Heisenberg Lie group which has R2n+1 as a background manifold and
is endowed with the following noncommutative law of product:

(x, y, t) ◦ (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(〈y|x′〉 − 〈x|y′〉)),

where x, x′, y, y′ ∈ Rn, t, t′ ∈ R and 〈·|·〉 denotes the standard inner product in Rn. We denote by | · |Hn

Korányi norm with respect to the parabolic dilation δλξ = (λx, λy, λ2t), i.e.,

|ξ|Hn = (|z|4 + t2)
1
4 = ((x2 + y2)2 + t2)

1
4

for z = (x, y) ∈ R2n and ξ = (z, t) ∈ Hn.

Definition 2.1. (Radial Function) Let Ω ⊂ Hn be a bounded open set. The function u : Ω → R is
called a radial function if u(x, y, t) = φ(r), where r = |(x, y, t)|Hn and φ : [0,+∞)→ R.

A Korányi ball with the center ξ0 and radius κ is defined by

BHn(ξ0, κ) := {ξ : |ξ−1 ◦ ξ0|Hn ≤ κ},

and it satisfies the following equalities:

|BHn(ξ0, κ)| = |BHn(0, κ)| = κQ|BHn(0, 1)|,

where |U | denotes the (2n+1)-dimensional Lebesgue measure of U and Q = 2n+2 is the homogeneous
dimension of Hn. The Heisenberg gradient is given by

∇Hn = (X1, · · · , Xn,Y1, · · · ,Yn),

where
Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, i = 1, 2, 3, · · · , n,
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are vector fields that constitute a basis for the real Lie algebra of left-invariant vector fields on Hn;
More precisely, the family

{X1, · · · , Xn,Y1, · · · ,Yn, [X1,Y1]}

satisfies the Hörmander’s condition which means that it spans the whole tangent space TR2n+1. Let us
recall that Hörmander’s condition is a crucial condition for many problems consisting of hypoelliptic
operators (see more details in [13] and the references therein).

For any horizontal vector field function X = X(ξ), X = {xiXi + x′iYi}
n
i=1, of the class C1(Hn,R2n), we

define the horizontal divergence of X by

divHn X :=
n∑

i=1

[Xi(xi) + Yi(x′i)].

Definition 2.2. (Horizontal Curve) A piecewise smooth curve y : [0, 1] → Hn is called a horizontal
curve if ẏ(t) belongs to the span of {Xi,Yi}

n
i=1 a.e. in [0, 1]. The horizontal length of y is defined as

follows

LHn(y) =

∫ 1

0

√
(ẏ(t), ẏ(t))Hndt =

∫ 1

0
|ẏ(t)|Hndt,

where

(X,Y)Hn =

n∑
i=1

(xiyi + x′iy
′
i),

for each X = {xiXi + x′iYi}
n
i=1 and Y = {yiXi + y′iYi}

n
i=1.

The Carnot-Carathéodory distance of two points ξ1, ξ2 ∈ H
n is defined by

dcc(ξ1, ξ2) = in f {LHn(y) : y is a horizontal curve joining ξ1, ξ2 in Hn}.

Notice that according to the Chow-Rashevsky theorem [5,24], for any two arbitrary points ξ1, ξ2 ∈ H
n,

there is a horizontal curve between them in Hn; then, the above definition is well-defined. dcc is a left
invariant metric on Hn and has a homogeneity of degree 1 with respect to dilations δλ, that is

dcc(δλ(ξ1), δλ(ξ2)) = λdcc(ξ1, ξ2)

for all ξ1, ξ2 ∈ H
n. In the case of the Heisenberg group, it is easy to check that the Lebesgue measure

on R2n+1 is invariant under left translations. Thus, from here on, we denote by dξ the Haar measure on
Hn that coincides with the (2n+1)-Lebesgue measure, this is because the Haar measures on Lie groups
are unique up to constant multipliers.
As usual, for any measurable set Ω ⊂ Hn (n ≥ 1) and m > 1, we denote by Lm(Ω) the canonical Banach
space, endowed with the norm

|u|m =
( ∫

Ω

|u|mdξ
) 1

m .

The first-order Heisenberg Sobolev space on Ω is defined as follows

HW1,m(Ω) := {u ∈ Lm(Ω) : |∇Hnu| ∈ Lm(Ω)},

endowed with the norm
‖u‖1,m = |u|m + |∇Hnu|m.
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Definition 2.3. (Poincaré-Sobolev Domain) An open set Ω of Hn is said to be a Poincaré-Sobolev
domain, if there exists a bounded open set U ⊂ Hn, with Ω ⊂ Ω̄ ⊂ U, which is a covering {B}B∈F of Ω

by Carnot-Carathéodory balls B and the numbers N > 0, α ≥ 1 and ν ≥ 1 such that
(i)

∑
B∈F 1(a+1)B ≤ N1Ω in U, where 1D is the characteristic function of a Lebesgue measurable subset

D.
(ii) there exists a (central) ball B0 ∈ F such that, for all B ∈ F there is a finite chain B0, B1, · · · , Bs(B),
with Bi ∩ Bi+1 , ∅ and

|Bi ∩ Bi+1| ≥
max{|Bi|, |Bi+1|}

N
, i = 0, 1, · · · , s(B) − 1;

and moreover, B ⊂ νBi for i = 0, 1, · · · , s(B).

This definition is purely metric. There is a multiplicity of Poincaré-Sobolev domains in Hn, as
explained in details in [10]. The next result is a special case of [11, Theorem 1.3.1].

Theorem 2.1. (i) Let Ω be a bounded Poincaré-Sobolev domain in Hn, and let 1 ≤ m ≤ Q. Then,
the embedding

HW1,m(Ω) ↪→↪→ Lσ(Ω), for 1 ≤ σ < m∗

is compact for all σ, where m∗ =
mQ

Q−m is the critical Sobolev exponent related to m.
(ii) The Carnot-Carathéodory balls are Poincaré-Sobolev domains.

Remark 2.1. Combining Theorem 2.1, with the fact that the Carnot-Carathéodory distance and the
Korányi distance are equivalent on Hn, we get that the following embedding is compact

HW1,m(Ω) ↪→↪→ Lσ(Ω), for 1 ≤ σ < m∗,

when 1 ≤ m ≤ Q and Ω is any Korányi ball centered at ξ0 ∈ H
n with a radius R > 0. Furthermore,

there exists a Cσ > 0 such that

|u|σ ≤ Cσ ‖u‖1,m, for 1 ≤ σ ≤ m∗

for all u ∈ HW1,m(Ω).

From now on we denote by Ω the unit Korányi ball centered at the origin, and we set

q− = inf
ξ∈Ω

q(ξ) and q+ = sup
ξ∈Ω

q(ξ)

for q ∈ C+(Ω̄) = {g ∈ C(Ω̄) : g− > 1}. The generalized Lebesgue space Lq(·)(Ω) is the collection of all
measurable functions u on Ω for which there exists a λ > 0 such that∫

Ω

(
u(ξ)
λ

)q(ξ)dξ < ∞,

and it has the norm

|u|q(·) = in f {λ > 0 :
∫

Ω

|
u(ξ)
λ
|q(ξ)dξ ≤ 1}.
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We know that for any u ∈ Lq(·)(Ω) and v ∈ Lq′(·)(Ω), i.e., the conjugate space of Lq(·)(Ω), the Hölder type
inequality

|

∫
Ω

uvdξ| ≤ (
1
q−

+
1

q′−
)|u|q(·)|v|q′(·) (2.1)

holds true. Following the authors of [23], for any κ > 0, we put

κř :=
{
κr+

κ < 1,
κr− κ ≥ 1,

and

κr̂ :=
{
κr− κ < 1,
κr+

κ ≥ 1

for r ∈ C+(Ω). Then the well-known proposition 2.7 of [12] will be rewritten as follows.

Proposition 2.1. For each u ∈ Lq(·)(Ω) and q ∈ C+(Ω), we have

|u|q̌q(·) ≤

∫
Ω

|u(ξ)|q(ξ)dξ ≤ |u|q̂q(·).

The next lemma was established in [9].

Lemma 2.1. Assume that q, r ∈ C+(Ω̄). If q(ξ) ≤ r(ξ) for all ξ ∈ Ω̄, then Lr(·)(Ω) ↪→ Lq(·)(Ω).

Remark 2.2. Let q ∈ C+(Ω) with q(ξ) < q+ < m∗ a.a. in Ω. Thanks to Remark 2.1 and Lemma 2.1, we
have the following compact embedding:

HW1,m(Ω) ↪→↪→ Lq(·)(Ω)

as 1 ≤ m ≤ Q. Thus, there exists a Cq(·) > 0 such that

|u|q(·) ≤ Cq(·)‖u‖1,m,

and for every bounded sequence {un} in HW1,m(Ω), up to the subsequence, {un} converges to some ū in
Lq(·)(Ω).

We continue by defining the Muckenhoupt weight functions rewritten on the Heisenberg groups.

Definition 2.4. (Muckenhoupt Weight) Let w : Hn → (0,∞) be a locally integrable function. Then, we
say that w belongs to the Muckenhoupt class Am if there exists a positive constant cm,w depending only
on m and w such that, for all Korányi balls B in Hn,

( 1
|B|

∫
B

wdξ
)( 1
|B|

∫
B

w−
1

m−1 dξ
)m−1
≤ cq,w.

A subclass of Am: Let us define a subclass of Am by

As =

{
w ∈ Am : w−s ∈ L1(Ω) for some s ∈ [

1
m − 1

,∞) ∩ (
Q
m
,∞)

}
.

Example 2.1. w(ξ) = |ξ|α ∈ As ⊂ Am, for any −Q
s < α <

Q
s , provided 1 < m < Q.
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For 1 < m < Q and w ∈ As with s ∈ [ 1
m−1 ,∞) ∩ ( Q

m ,∞), we set

ms =
sm

s + 1
& m∗s =

msQ
Q − ms

.

Notice that by simple calculations one can show that 1 ≤ ms < m < m∗s. Define

Lm
w(Ω) := {u : Ω→ Rn measurable :

∫
Ω

|u(ξ)|mw(ξ)dξ < ∞},

which has the norm

|u|m,w =
( ∫

Ω

|u(ξ)|mw(ξ)dξ
) 1

m .

We define the weighted Heisenberg-Sobolev space HW1,m(Ω,w) by

HW1,m(Ω,w) := {u ∈ Lm
w(Ω) : |∇Hnu| ∈ Lm

w(Ω)},

endowed with the norm
‖u‖1,m,w = |u|m,w + |∇Hnu|m,w.

We need the following fact for embeddings.

Lemma 2.2. We have
HW1,m(Ω,w) ↪→ HW1,ms(Ω).

Proof. Let u ∈ HW1,m(Ω,w). Since m
ms

> 1, using the Hölder inequality with the exponents m
ms

and
( m

ms
)′ = s + 1, we obtain

|u|ms
ms

=

∫
Ω

|u(ξ)|msw
ms
m (ξ)w−

ms
m (ξ)dξ

≤
( ∫

Ω

|u(ξ)|mw(ξ)dξ
)ms

m (
∫

Ω

w−s(ξ)dξ)
1

s+1 ,

which implies that

|u|ms ≤ (
∫

Ω

w−s(ξ)dξ)
1

sm |u|m,w. (2.2)

Replacing u by ∇Hnu, we gain

|∇Hnu|ms ≤ (
∫

Ω

w−s(ξ)dξ)
1

sm |∇Hnu|m,w. (2.3)

Adding (2.2) and (2.3), one has ‖u‖1,ms ≤ |w
−s|

1
sm
1 ‖u‖1,m,w. Thus,

HW1,m(Ω,w) ↪→ HW1,ms(Ω).

�
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Remark 2.3. It is easy to see that, by standard embeddings in the Heisenberg-Sobolev spaces
mentioned in Remark 2.1 and Lemma 2.2, one has

HW1,m(Ω,w) ↪→ Lσ(Ω), for all 1 ≤ σ ≤ m∗s

as 1 ≤ m ≤ Q; so, there exists a constant kσ such that

|u|σ ≤ kσ‖u‖1,m,w

for each u ∈ HW1,m(Ω,w).

Notice that embedding HW1,m(Ω,w) ↪→ Lσ(Ω) is compact if 1 ≤ σ < m∗s.

Remark 2.4. Let q ∈ C+(Ω) such that q(ξ) < q+ < m∗s a.a. in Ω. Thanks to Remark 2.2 and Lemma
2.2, for 1 ≤ m ≤ Q, we have the following compact embedding

HW1,m(Ω,w) ↪→↪→ Lq(·)(Ω).

Now, for p ∈ C+(Ω), define the weighted Lebesgue space with a variable exponent as follows:

Lp(·)
w (Ω) := {u : Ω→ Rn measurable :

∫
Ω

|u(ξ)|p(ξ)w(ξ)dξ < ∞},

which has the norm

|u|p(·),w = in f {λ > 0 :
∫

Ω

|
u(ξ)
λ
|p(ξ)w(ξ)dξ ≤ 1}.

We denote the weighted Heisenberg-Sobolev space with a variable exponent by

HW1,p(·)(Ω,w) := {u ∈ Lp(·)
w (Ω) : |∇Hnu| ∈ Lp(·)

w (Ω)},

equipped with the norm
‖u‖ := |u|p(·),w + |∇Hnu|p(·),w.

Here-in-after, for p ∈ C+(Ω) with p(ξ) ≤ p+ ≤ Q a.a. in Ω, we put

X := HW1,p(·)(Ω,w)

with the norm ‖u‖.

Remark 2.5. Let q ∈ C+(Ω) such that q(ξ) < q+ < p∗ := (p−s )∗ a.a. in Ω. Then,

X ↪→↪→ Lq(·)(Ω).

Furthermore, we denote the Sobolev embedding constant of this compact embedding by Kq(·) > 0, i.e.,

|u|q(·) ≤ Kq(·)‖u‖

for each u ∈ X.
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Proof. As a consequence of Lemma 2.1, for p, q ∈ C+(Ω̄), one has

X = HW1,p(·)(Ω,w) ↪→ HW1,q(·)(Ω,w)

if q(ξ) ≤ p(ξ) a.e. ξ ∈ Ω. In a special case, we gain

X ↪→ HW1,p−(Ω,w).

On the other hand, from Remark 2.4, for q ∈ C+(Ω) with q(ξ) < q+ < p = (p−s )∗ a.a. in Ω, we have

HW1,p−(Ω,w) ↪→↪→ Lq(·)(Ω).

So, the proof is completed. �

Remark 2.6. For u ∈ X, there exist µ,M > 0 such that

µ‖u‖p̌ ≤

∫
Ω

(|∇Hnu|p(ξ) + R(ξ)|u|p(ξ))w(ξ)dξ ≤ M‖u‖p̂.

Proof. Since ess infΩ R > 0, there exists 0 < δ < 1 such that δ < R(ξ) a.e. in Ω. Using Proposition 2.1
and the hypothesis R ∈ L∞(Ω), we gain

δ|u| p̌p(·),w ≤

∫
Ω

R(ξ)|u(ξ)|p(x)w(ξ)dξ ≤ ‖R‖∞|u|
p̂
p(·),w,

and
δ|∇Hnu| p̌p(·),w ≤ |∇Hnu|p̌p(·),w ≤

∫
Ω

|∇Hnu(ξ)|p(ξ)w(ξ)dξ ≤ |∇Hnu|p̂p(·),w.

Bearing in mind the following elementary inequality due to J.A. Clarkson: for all γ > 0, there exists a
Cγ > 0 such that

|a + b|γ ≤ Cγ(|a|γ + |b|γ)

for all a, b ∈ R. Then, we deduce

δ

C p̌
‖u‖p̌ ≤

∫
Ω

(|∇Hnu|p(ξ) + R(ξ)|u|p(ξ))w(ξ)dξ ≤ (1 + ‖R‖∞)‖u‖ p̂.

So the proof is complete; it is enough to put µ = δ
C p̌
,M = 1 + ‖R‖∞. �

We continue by providing some briefs from variational calculus; the interested reader can see more
details in [22] and the references therein.

Let V be a real Banach space and V∗ be its topological dual; and, also assume that the pairing
between V and V∗ denoted by 〈 , 〉.

Definition 2.5. (Subdifferential) Let Ψ : V → (−∞,+∞] be a proper (i.e. Dom Ψ , ∅), convex
function. The subdifferential (generalized gradient) of Ψ denoted by ∂Ψ, ∂Ψ : V → 2V∗ , for u ∈
Dom(Ψ) = {v ∈ V; Ψ(v) < ∞}, is defined as the following set-value operator

∂Ψ(u) = {u∗ ∈ V∗ : Ψ(v) ≥ Ψ(u) + 〈u∗, v − u〉 for all v ∈ V},

and ∂Ψ(u) = ∅ if u < Dom(Ψ) .
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Notice that, if Ψ is Gâteaux differentiable at u, which has a derivative that is denoted by DΨ(u),
∂Ψ(u) is a singleton. In this case, ∂Ψ(u) = {DΨ(u)}.

Definition 2.6. (Critical Point) Let V be a real Banach space , Φ ∈ C1(V,R) and Ψ : V → (−∞,+∞]
be a proper convex and lower semicontinuous function. Let K ⊂ V be a weakly closed convex set.
Define the function ΨK : V → (−∞,+∞] by

ΨK(u) :=
{

Ψ(u) u ∈ K,
+∞ u < K.

(2.4)

Consider the functional
I := ΨK − Φ; (2.5)

a point u ∈ V is called a critical point of I, if DΦ(u) ∈ ∂ΨK(u) or, equivalently, it satisfies the following
inequality:

〈DΦ(u), u − v〉 + ΨK(v) − ΨK(u) ≥ 0, for all v ∈ V. (2.6)

The following result has been proved in [2, Theorem 1.5.6].

Theorem 2.2. Let V be a reflexive Banach space and I : V → R be a continuous, convex and coercive
functional. Then, I has a global minimum point.

Notice that a global minimum point is a critical point.

Definition 2.7. ((PS) Condition) We say that I mentioned in (2.5) satisfies the Palais-Smale
compactness condition (in short, (PS) condition) if, for every sequence {un}, the following states are
satisfied:

• I(un)→ c ∈ R;
• 〈DΦ(un), un − v〉 + ΨK(v) − ΨK(un) ≥ −εn‖v − un‖ for all v ∈ V as εn → 0;

then, {un} possesses a convergent subsequence.

The following mountain pass geometry (MPG) theorem was proved in [34].

Theorem 2.3. Suppose that I : V → (−∞,+∞] is of the form (2.5) and satisfies the (PS) condition and
the following conditions:

(i) I(0) = 0;
(ii) there exists e ∈ V such that I(e) ≤ 0;

(iii) there exists a positive constant λ such that I(u) > 0, if ‖u‖ = λ;

then, I has a critical value c ≥ λ which is characterized by

c = inf
g∈Γ t∈[0,1]

I(g(t)),

where Γ = {g ∈ C([0, 1],V) : g(0) = 0 , g(1) = e}.

Definition 2.8. (Pointwise Invariance Condition) Let Φ,Ψ : V → R be defined as in Definition 2.6 and
K be any subset of V. We say that the triple (Ψ,Φ,K) satisfies the pointwise invariance condition at a
point u ∈ V if there exist a convex Gâteaux-differentiable function G : V → R and a point v ∈ K such
that

DΨ(v) + DG(v) = DΦ(u) + DG(u).
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Here, we recall a variational principle established in [16] which we apply to prove our main
approach.

Theorem 2.4. Let V be a reflexive Banach space and K be a convex and weakly closed subset of V.
Let Ψ : V → R ∪ {+∞} be a convex, lower semicontinuous function which is Gâteaux differentiable on
K, and let Φ ∈ C1(V,R). Assume that the following two assertions hold:

(i) The functional I : V → R ∪ {+∞} defined by I(w) = ΨK(w) − Φ(w) has a critical point u ∈ V in
the sense of Definition 2.6,

(ii) The triple (Ψ,Φ,K) satisfies the pointwise invariance condition at the point u.

Then, u ∈ K is a (weak) solution of the equation

DΨ(u) = DΦ(u).

Remark 2.7. Notice that if Ψ is Gâteaux differentiable on DomΨ, u is a critical point of I(w) =

Ψ(w) − Φ(w) and there exists v ∈ DomΨ such that

DΨ(v) + DG(v) = DΦ(u) + DG(u);

then u is a solution of DΨ(u) = DΦ(u), but it does not necessarily belongs to K.

The next is a fact mentioned in [17, problem 127, page 81] or in [23].

Theorem 2.5. Assume that {un} is a sequence of monotonic (continuous or discontinuous) real
functions on [c, d] which converge pointwise to a continuous function u : [c, d] → R; then, the
convergence is uniform.

Remark 2.8. Let Ω be a bounded open domain. Consider the closed convex set K as follows:

K = {u : Ω→ R : u ≥ 0, u is an increasing radial function}.

Suppose that {un} is a sequence in K such that un → ū a.e. in Ω. Then, regardless of a set of zero
measures, {|un − ū|}n∈N converge to zero uniformly.

Proof. Clearly ū is a positive radial function; moreover, u ∈ K, since K is closed. If ū is a continuous
function, then Theorem 2.5 deduces uk → ū uniformly. Otherwise, imagine that E contains all of the
discontinuous points of ū. According to [27, Theorem 4.30 ] every monotonic function is discontinuous
at a countable set of points at most, so E is at most countable with a Lebesgue measure of zero. Thus
ū is continuous on Ω\E and the convergence of {|uk − ū|}k∈N to zero is uniform. �

3. Existence result

Here, we state the main result of this paper.

Theorem 3.1. Let Ω be the unit Korányi ball in the Heisenberg group Hn (n ≥ 1) and p ∈ C+(Ω) with
p(ξ) ≤ p+ ≤ Q a.a. in Ω. Let θ, ϑ ∈ C+(Ω) such that

p+ < θ− < θ(ξ) < θ+ < p∗ and ϑ+ < θ− a.e. on Ω,
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where
p
∗ =

pQ
Q − p

and p := p−s =
sp−

s + 1
for s with

s ∈ [
1

p− − 1
,+∞) ∩ (

Q
p−
,+∞).

Let w be a Muckenhoupt weight function of the class As and R : Ω → [0,+∞) belong to L∞(Ω) such
that ess infΩ R > 0. Assume ρ, % ∈ L∞(Ω) satisfy the condition (1.1). Then the Dirichlet problem (P)
admits at least one radially increasing (weak) solution.

Set
V := Xrad ∩ Lθ(·)ρ (Ω) ∩ Lϑ(·)

% (Ω),

equipped with the norm
‖u‖V := ‖u‖ + |u|ρ,θ + |u|%,ϑ,

where
Xrad = {u ∈ X : u ≥ 0, u is a radial function}.

It is clear that V is a reflexive Banach space. Now, consider the Euler-Lagrange energy functional
corresponding to the problem (P), i.e.,

E(u) :=
∫

Ω

1
p(ξ)

(
|∇Hnu|p(ξ) + R(ξ)|u|p(ξ))w(ξ)dξ

+

∫
Ω

1
ϑ(ξ)

%(ξ)|u|ϑ(ξ)dξ −
∫

Ω

1
θ(ξ)

ρ(ξ)|u|θ(ξ)dξ,

as well as the closed convex set

K := {u ∈ V : u ≥ 0, u is increasing with respect to the radius r = |ξ|Hn}.

To adapt Theorem 2.4 to our problem, we define ψ, ϕ : V → R by

ψ(u) :=
∫

Ω

1
p(ξ)

(
|∇Hnu|p(ξ) + R(ξ)|u|p(ξ))w(ξ)dξ +

∫
Ω

1
ϑ(ξ)

%(ξ)|u|ϑ(ξ)dξ,

and
ϕ(u) :=

∫
Ω

1
θ(ξ)

ρ(ξ)|u|θ(ξ)dξ.

Notice that ψ is a proper, convex, lower semicontinuous function and Dϕ(u) = ρ(ξ)|u|θ(ξ)−2u; therefore,
ϕ is a C1- function on the space V . Let us introduce the functional I : V → (−∞,+∞] as follows:

I(u) = ψK(u) − ϕ(u), (3.1)

where ψK is defined as (2.4).
We should be aware that I is indeed the Euler-Lagrange functional corresponding to our problem
(denoted by E(·)) as restricted to K, and it is clear that the critical points of I are exactly the radially
increasing weak solutions of (P).

We prove Theorem 3.1 in two steps:

Step1. We show that I has a critical point and, for this reason, we need the following lemma.
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Lemma 3.1. Let V = Xrad ∩ Lθ(·)ρ (Ω) ∩ Lϑ(·)
% (Ω) and consider the functional I : V → R by applying

I(u) := ψK(u) − ϕ(u)

as in (3.1). Then, I has a nontrivial critical point in K.

Proof. We apply the MPG theorem (Theorem 2.3) to prove this lemma.

First, we verify that I satisfies the following MPG conditions:

It is clear that I(0) = 0. Take e ∈ K. From Remark 2.6, we have the following estimate

I(te) ≤
M
p+

t p̂‖e‖ p̂ + tϑ̂
∫

Ω

1
ϑ(ξ)

%(|ξ|Hn)|e|ϑ(ξ)dξ − tθ̂
∫

Ω

1
θ(ξ)

ρ(|ξ|Hn)|e|θ(ξ)dξ,

since θ− > ϑ+ and θ− > p+, for t sufficiently large, I(te) is negative. We now prove Condition (iii) of
the MPG theorem. Take u ∈ Dom(ψ) with ‖u‖ = λ > 0. Notice that from Lemmas 2.5 and 2.6, for
u ∈ K, we have

ϕ(u) =

∫
Ω

1
θ(ξ)

ρ(|ξ|Hn)|u|θ(ξ)dξ

≤
1
θ̌
‖ρ‖∞|u|θ̂θ(·)

≤
1
θ̌
‖ρ‖∞Kθ(·)‖u‖θ̂

≤ C3λ
θ̂.

Thus
I(u) ≥

µ

p+
λp̌ −C1λ

θ̂ > 0,

provided λ > 0 is small enough as 2 ≤ p̌ < θ̂ and C1 is a positive constant. If u < Dom(ψ), clearly,
I(u) > 0. Therefore, the MPG holds for the functional I.

Second, we verify the following (PS) condition:

Suppose that {un} is a sequence in K such that

I(un)→ c ∈ R, as εn → 0,

and let, for all v ∈ V ,
〈Dϕ(un), un − v〉 + ψK(v) − ψK(un) ≥ −εn‖v − un‖. (3.2)

We show that {un} has a convergent subsequence in V . First notice that un ∈ Dom(ψ); then,

I(un) = ψK(un) − ϕ(un)→ c, as n→ ∞.

Thus, for large values of n we have

ψK(un) − ϕ(un) ≤ 1 + c. (3.3)
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Now, consider the function g(t) = tϑ
+

− θ−(t − 1) − 1 on the interval (1,+∞) and set t̂ = ( θ
−

ϑ+ )
1

ϑ+−1 . It is
easy to see that for every t ∈ (1, t̂) we have g(t) < 0. We choose such a number t for which we have
t > 1 and tϑ

+

− 1 < θ−(t − 1). In (3.2), set v = tun; then,

(1 − t)〈Dϕ(un), un〉 + (tϑ
+

− 1)ψK(un) ≥ −εn(t − 1)‖un‖. (3.4)

Furthermore,

〈Dϕ(un), un〉 =

∫
Ω

ρ(ξ) un(ξ)θ(ξ) dξ ≥ θ− ϕ(un). (3.5)

Since tϑ
+

− 1 < θ−(t − 1), we can take γ > 0 such that

1
θ−(t − 1)

< γ <
1

tϑ+
− 1

.

Multiplying (3.4) by γ and adding it to (3.3) we obtain

[1 − γθ−(1 − t)]ϕ(un) + [1 − γ(tϑ
+

− 1)]ψK(un) ≤ 1 + c + γC‖un‖.

So, using Remark 2.6 for some suitable constant C′ > 0, we have

µ

p+
‖un‖

p̌ ≤ ψK(un) ≤ C′(1 + ‖un‖).

Therefore, {un} is a bounded sequence in the reflexive space X. Thanks to Remark 2.5, we gain that
there exists ū ∈ X such that, up to the subsequences, the following holds true

• un ⇀ ū in X;
• un → ū in Lq(ξ)(Ω), q ∈ C+(Ω) and q(ξ) < q+ < p∗;
• un(ξ)→ ū(ξ) a.e in Ω;

On the one hand, {un} ⊂ K; so, according to Remark 2.8, regardless of a set of measure of zeros,
{|un − ū|}n∈N converges to zero uniformly. Then,

ψ(un − ū) =

∫
Ω

1
p(ξ)

(
|∇Hn(un − ū)|p(ξ) + R(ξ)|un − ū|p(ξ))w(ξ)dξ

+

∫
Ω

1
ϑ(ξ)

%(ξ)|un − ū|ϑ(ξ)dξ → 0, as n→ +∞. (3.6)

On the other hand, Remark 2.6 gives

µ

p̂
‖un − ū‖ p̌ ≤ ψ(un − ū). (3.7)

From the inequalities (3.6) and (3.7), we deduce that ‖un − ū‖ → 0. As we mentioned before, by
applying the standard embeddings

un → ū in Lϑ(·)
% (Ω) & Lθ(·)ρ (Ω),

un → ū strongly in V , as desired. �
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Remark 3.1. Notice that for each n ∈ N, un ∈ K is radial, so ū is radial. K is a closed subset of V;
then, ū ∈ K. Therefore, the MPG theorem guarantees that the existence of a critical point belongs to
K, namely û.

Step2. We show that for any u ∈ K, in a special case û, the triple (ψK , ϕ,Domψ) satisfies the
pointwise invariance condition at u when G = 0. To this end, we shall need following lemma.

Lemma 3.2. Let R ∈ L∞(Ω) be a nonnegative real functional. Let f : R→ R be continuous and there
exist constants a, b > 0 such that

| f (t)| ≤ a + b|t|γ−1 for all t ∈ R, (3.8)

where γ ∈ (1, p∗); moreover,
f (t)t ≤ 0 for all t ∈ R.

Then for every h ∈ L
sp−

s(p−−1)−1 (Ω) the problem{
L(u) = f (u) + h(ξ) ξ ∈ Ω,

u = 0 ξ ∈ ∂Ω,
(3.9)

where
L(u(ξ)) = divHn(w(ξ)|∇Hnu|p(ξ)−2∇Hnu) + R(ξ)w(ξ)||u|p(ξ)−2u,

admits at least one solution.

Proof. First notice that by integration one can see that there exist a1, b1 > 0 such that

|F(t)| ≤ a1 + b1|t|γ for all t ∈ R,

and that F(t) ≤ 0 for all t ∈ R, where

F(t) =

{ ∫ t

0
f (τ)dτ t > 0,

0 t ≤ 0.

Now, consider the following energy functional on X which is corresponding to Problem (3.9):

J(u) =

∫
Ω

1
p(ξ)

(
|∇Hnu|p(ξ) + R(ξ)|u|p(ξ))w(ξ)dξ −

∫
Ω

F(u)dξ −
∫

Ω

hudξ.

Because of the growth condition (3.8) J is well-defined on X. According to the Hölder inequality, one
has

∫
Ω

hudξ ≤ |u|p|h|p′ where, by (2.2),

|u|p ≤ c|u|p−,w ≤ c′‖u‖,

and by the assumption of the lemma h ∈ Lp
′

(Ω), p′ =
sp−

s(p−−1)−1 . Then thanks to Remark 2.2 we have

J(u) ≥
µ

p+
‖u‖ p̌ −C‖u‖.

This is because p− > 1, J is coercive. Thus according to Theorem 2.2, J has a global minimum point,
meaning that Problem (3.9) admits at least one solution. �
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Lemma 3.3. Let u ∈ K, R ∈ L∞(Ω) and ρ, % ∈ L∞(Ω) be defined as in (1.1). Let p, θ, ϑ ∈ C+(Ω) with

p+ < θ− < θ(ξ) < θ+ < p∗ & ϑ+ < θ−a.e. in Ω.

Then, there exists v ∈ Domψ such that{
L(v) = ρ(ξ)uθ(ξ)−1 − %(ξ)vϑ(ξ)−1 in Ω,

v = 0 on ∂Ω,

in the weak sense.

Proof. Let u ∈ K; so, 0 ≤ u ∈ K ⊂ X; also, set

f (v(ξ)) = −%(ξ)v(ξ)ϑ(ξ)−1.

Then, thanks to Lemma 3.2, it is enough to show that

h(ξ) = ρ(ξ) u(ξ)p(ξ)−1 ∈ Lp
′

(Ω).

But u is a radial function (i.e., u(ξ) = φ(r)); so, by [7, equation (2.4)] we have |∇Hnu| = r
r |φ
′|, where

r = |ξ|Hn = |(z, t)|Hn , r = |z|. Using the fundamental theorem of calculus and Hölder inequality, one has
following estimate:

|u(ξ)| =|φ(r)| = |
∫ r

0
φ′(τ)dτ + φ(0)|

≤

∫ r

0
|φ′(τ)|dτ + |φ(0)|

≤(
∫ r

0
|φ′(τ)|pτQ−1dτ)

1
p (
∫ r

0
τ
−(Q−1)p′
p dτ)

1
p′ + |φ(0)|

≤C(ω−1
Q−1

∫
Ω

|φ′(ξ)|pdξ)
1
p r(1− (Q−1)p′

p
) 1
p′ + |φ(0)|

≤C′
( ∫

Ω

|∇Hnu|pdξ
) 1
p r(1− (Q−1)p′

p
) 1
p′ + |φ(0)|

≤C∗ ‖u‖|ξ|
(1− (Q−1)p′

p
) 1
p′

Hn ,

where ωQ−1 is the measure of the unit ball inHn and C,C′ and C∗ are positive constants. A computation
shows that u(ξ)θ−1 ∈ Lp

′

(Ω). So, the proof is complete. �

4. Conclusions

In this paper, first, we looked for a suitable interval embedding of weighted Heisenberg-Sobolev
spaces with variable exponents into the Lebesgue spaces in a step by step manner. In Remark 2.3,
using Lemma 2.2, we found the following embedding

HW1,m(Ω,w) ↪→ Lσ(Ω) for all 1 ≤ σ ≤ m∗s,
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as 1 ≤ m ≤ Q. Thanks to Remark 2.2 and Lemma 2.2, for 1 ≤ m ≤ Q, we generalized the result as
follows:

HW1,m(Ω,w) ↪→↪→ Lq(·)(Ω).

Finally, in Remark 2.5, we proved that if q ∈ C+(Ω) such that q(ξ) < q+ < p∗ := (p−s )∗ a.a. in Ω, then

HW1,p(·)(Ω,w) ↪→↪→ Lq(·)(Ω).

Employing the result and MPG theorem, we proved that I = ψK − ϕ has a critical point in K, namely
û, which is radial but may not necessarily be a solution of (P). In Lemma 3.3, we showed that, for
any u ∈ K, particularly for û, there exists v ∈ Domψ satisfying the equation Dψ(v) = Dϕ(u). Indeed,
we showed that the triple (ψ, ϕ,Domψ) satisfies the point wise invariance condition at any u ∈ K,
especially at û, given G = 0. Therefore, Theorem 2.4, Remark 2.7 and the maximum principle for the
p(·)-Laplacian operator ensure the trueness of Theorem 3.1.
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