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Abstract: Ordinary small molecule de novo drug design is time-consuming and expensive. Recently,
computational tools were employed and proved their efficacy in accelerating the overall drug design
process. Molecular dynamics (MD) simulations and a derivative of MD, steered molecular dynamics
(SMD), turned out to be promising rational drug design tools. In this paper, we report the first
application of SMD to evaluate the binding properties of small molecules toward FABP4, considering
our recent interest in inhibiting fatty acid binding protein 4 (FABP4). FABP4 inhibitors (FABP4is) are
small molecules of therapeutic interest, and ongoing clinical studies indicate that they are promising
for treating cancer and other diseases such as metabolic syndrome and diabetes.

Keywords: fatty acid binding protein; FABP4; FABP4 inhibitors; computer-aided drug design;
molecular modeling; steered molecular dynamics; drug design

1. Introduction

Fatty acids (FAs) are organic compounds characterized by a long carbon chain and a
carboxylic acid functional group responsible for several functions in human physiology [1,2].
The chronically elevated concentration of FAs in plasma is correlated to human disorders [3,4]
such as diabetes [5], atherosclerosis [6], and obesity [7]. FAs’ high lipophilicity is respon-
sible for their low water solubility; thus, their trafficking requires specialized proteins
such as fatty acid binding proteins (FABPs) [8]. Based on their localization, FABPs are
classified into different families; FABP4 (aP2 or A-FABP) is the subtype mainly produced
in the adipocytes [9]. The research on FABP4 inhibitors started when it was reported that
knockout animal models of FABP4 naturally developed protective effects against insulin
resistance [10] and other events, such as metabolic syndrome and atherosclerosis [11–13]. In-
deed, pharmacological approaches with small molecules of FABP4is demonstrated similar
results in the phenotype of FABP4-deficient mice [14].

This protein family also has a role in cancer progression [15]. In fact, renal cell
carcinoma, bladder, prostate, and other cancer cells [16–18] were reported with a non-
physiological expression of FABPs. The classical FABP4i, BMS309403, was reported to
weaken the migration and invasion of colon cancer cells. These results highlighted the
tendency of FABP4 to promote colon cancer metastasis and invasion [19]. It is known that
FABP4 leads to abnormal metastasis and aggression in ovarian cancer, contributing to poor
prognosis for this [20] and other types of cancers, such as glioblastoma [21].

All of these recent findings suggest that FABP4 targeting may represent a valid and
promising therapeutic strategy against oncological conditions.
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Various effective FABP4is were developed recently, but unfortunately, none are cur-
rently in the clinical research phase [14,22]. Computer-aided drug design is promising in
drug discovery and an effective tool for identifying molecular hits such as FABP4is [23–28].
In line with our recent interest in developing new antitumor compounds and identify-
ing novel bioactive heterocycles [29–34], we herein report the first application of SMD to
evaluate the binding properties of FABP4is to the targeted protein.

MD simulations of proteins at the atomic level are a well-established method for
describing the behavior of proteins and the protein-ligand interactions involved in cell
signaling for disease processes. A special kind of MD simulation is the SMD simulation.
With this method, a protein or molecule can be given a directing vector as part of the
SMD simulation to examine how it reacts to outside stimuli [29]. SMD simulations, which
provide atomic-level resolution of force-probe events, proved to be essential supplements
to current experimental techniques [30]. In a typical SMD simulation, one terminus of the
molecule is subjected to an external vector while the opposing terminus is fixed in space.
This allows researchers to examine how the molecule reacts to mechanical stress and how
it can clarify the structure-function relationship of a macromolecular complex that involves
either protein-ligand or protein-protein interactions [31,32]. SMD simulations for protein-
ligand complexes may be used to determine stabilizing interactions, which help inform the
development of drugs that can quickly and readily bind to the active binding site to increase
or decrease the activity of the desired protein. SMD was developed to address simple
questions from protein conformational changes relative to the study of relevant residues
involved in particular interactions. Recently, it was also used to evaluate drug-binding
affinity for drug screening. The unbinding force obtained from receptor-ligand dissociation
and SMD simulations can be used to estimate a ligand’s binding affinity with reasonable
accuracy [33–35].

The use of computational simulations proved very advantageous to the pharmaceutical
industry, where high precision, low cost, and reduced time and labor in drug development
are all priorities. The molecular mechanics Poisson–Boltzmann solvent accessible surface
area (MM/PBSA) method is one of the most extensively used computational approaches for
calculating the binding affinity, i.e., the free energy of binding (∆Gbind), between substrate
and protein. It was also proven that the MM/PBSA and SMD have a strong connection in
assessing the binding affinity of small molecules to a protein [36]. For example, recently,
SMD simulations were used to evaluate the binding affinity of antiviral compounds [37,38],
studies which also correlated simulation results and MM/PBSA data. These simulations
were also used to evaluate molecules for the treatment of cancer-specific inhibitors of
allosteric BcrAbl fusion protein for the treatment of chronic myeloid leukemia [39] and
histone deacetylases (HDAC) [40].

All of these studies demonstrate that SMD is a powerful tool for predicting the mecha-
nisms of efficient drug binding and a potent hypothesis-generating tool for screening new
drug candidates. Due to our recent interest in the design of small molecules able to inhibit
FABP4 by using structure- and ligand-based computational tools, we herein report the
first application of SMD to evaluate the binding affinity of small molecules as inhibitors of
FABP4. The aim of this study was to optimize a simple method to employ SMD for the fast
evaluation of novel small FABP4is molecules.

2. Results

The ligand binding sites of FABPs, shown in X-ray crystallographic studies, have been
known for decades. However, the mechanism of how the ligands access their binding
sites remains challenging to identify, and computational SMD proved the existence of
basically one ligand escaping its route despite identifying at least two possible portals.
In all successful dissociations, the palmitate molecule was established to come out from
essentially the same region [41]. The same area was used in our study to dissociate the
selected ligands.
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The key component for running the SMD simulation is the initial configuration of the
system. The Jarzynski equation requires configurations sampled from an equilibrium dis-
tribution with λ = λ0. These configurations can be obtained in two ways: through a Monte
Carlo simulation or by periodically saving snapshots from a molecular dynamics simulation
of the system with the reaction coordinate constrained to the desired initial value. The sec-
ond option was used in this work. The two key parameters fundamental to interpreting the
reaction unfolding are the acceleration estimated in pm/ps2 and the distance measured in
Å. These settings allowed us to calculate and obtain the total energy measured in kcal/mol
required for the ligand to travel to a previously set distance. Structural heterogeneity was
ensured by selecting different molecules as a measurement of pairwise similarity calculated
by using circular fingerprints (Figure 1). Extended-connectivity fingerprints (ECFP) are
circular topological fingerprints optimized and designed for molecular characterization,
similarity searching, and ligand-based molecular modeling. They are among the most
common and best-performing similarity search tools in drug discovery, and they are used
in many applications [42,43]. The similarity matrix from the ECFP evaluation was also com-
pared with the Tanimoto similarity index, and a similar pattern was also identified in the
Tanimoto matrix (Figure S1, Supplementary Materials), confirming the good dissimilarity
between the chosen compounds.
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Figure 1. Similarity matrix calculated with ECFP 6 for molecules 1–9.

Table 1 reports the pKi values obtained among the various molecule sets between
the calculated energies of binding by docking scoring functions, the SMD simulations’
calculated total energies and Fmax, and their experimental inhibition constants.
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Table 1. Structures of molecules 1–9, experimental and calculated (Autodock, Vina, MM/PBSA, and
MM/GBSA) pKi, total SMD energy, and SMD Fmax.

N Structure Exp. pKi
Autodock

pKi
Vina pKi

MM/PBSA
pKi

MM/GBSA
pKi

Total SMD
Energy

(kcal/mol)

SMD Fmax
(pN)

1
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The MMPB(GB)SA and the SMD simulations were superior overall at linearly corre-
lating the experimental data (employing relative and not absolute binding value) for the
studied molecules compared to the scoring functions of Autodock and Vina, which were
the least able to correlate the calculated free energy with the experimental data (Tables 2–4,
Figures 3 and 4).
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Figure 2. Total energies and Fmax from SMD experiment (20 Å) for molecules 1–9.

Table 2. FABP4 experimental Ki and free energy of binding; ∆Gbind calculated with Autodock, Vina,
MM/PBSA, and MM/GBSA (kcal/mol).

N Ki (nM) Calculated ∆Gbind from Ki Autodock ∆Gbind Vina ∆Gbind MM/PBSA ∆Gbind MM/GBSA ∆Gbind

1 160.1 −9.26 −8.36 −8.27 −6.63 −8.66
2 22 −10.44 −8.57 −6.96 −10.04 −13.45
3 60 −9.84 −6.91 −6.24 −4.40 −10.79
4 136 −9.36 −8.38 −8.01 −8.39 −10.40
5 2.16 −11.81 −7.43 −8.21 −14.21 −14.25
6 1.85 −11.90 −6.74 −7.61 −15.22 −15.15
7 0.76 −12.43 −6.57 −7.17 −14.66 −14.47
8 0.40 −12.81 −6.62 −8.22 −12.51 −12.79
9 0.21 −13.19 −7.52 −8.08 −11.72 −12.12

Table 3. Goodness of fit statistics (Autodock pKi).

R2 0.424
Adjusted R2 0.342

MSE 0.822
RMSE 0.906
MAPE 7.863

DW 1.451
Cp 2.000

AIC −0.029
SBC 0.365
PC 0.905

Press 8.411
Q2 0.158
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Table 4. Goodness of fit statistics (Autodock pKi).

R2 0.057
Adjusted R2 −0.078

MSE 1.345
RMSE 1.160
MAPE 11.219

DW 0.682
Cp 2.000

AIC 4.405
SBC 4.800
PC 1.482

Press 15.000
Q2 −0.502
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The reported data clearly shows the higher capability of SMD to score the affinities
of small molecules against FABP4 compared to Autodock and Vina. In fact, as the value
of the reference constant increased for each subset of molecules, we consistently obtained
the increase of Fmax required to extract the ligand from its receptor, following a linear
correlation. Conversely, the Autodock and Vina scoring functions were not as accurate as
the SMD data in potency evaluation, as they showed poor correlation between the increased
potency of the compounds and the calculated binding energies.
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To compare the SMD simulations’ energy evaluation with a more accurate energy of
binding calculation and also include the effect of solvation, the experimental values were
also compared to the MM-PB(GB)SA binding energies.

SMD simulation was recently shown to be as accurate as the MM/PBSA and molecular
mechanics generalized Born surface area (MM/GBSA) techniques in predicting the binding
affinity of small ligands to proteins. If a pulling speed of v = 0.005 nm/ps is used, then
SMD simulation is computationally around 30-fold quicker than the MM/PBSA method,
indicating its considerable potential for drug design [37]. Previous research found a strong
link between Fmax values and experimental free energies from 5 up to 20 protein–ligand
systems, proving that a small dataset helps evaluate such a tool [37,44].

The correlation between the experimental and calculated pKi using the MM/PB(GB)SA
and the SMD Fmax methods are reported in Figures 5–7.

Regarding molecules 1–9, MM/PBSA and MM/GBSA’s scoring functions underper-
formed the SMD-derived data. Notably, the Fmax overperformed all of the other data with
a linear relationship and an R2 of 0.891, whereas the MM/PBSA and MM/GBSA models
resulted in R2 values of 0.622 and 0.472, respectively. The three linear models were calcu-
lated using linear regression. The measured Ki was used as a dependent variable for the
SMA-derived model, and the SMA Fmax was used as the explanatory variable. Regarding
the two models derived from the MM/PBSA and MM/GBSA models’ calculations, the
experimental pKi was used as a dependent variable, and the pKi, which was calculated
using the MM/PBSA and MM/GBSA models, was used as the explanatory variable. The
predictive capabilities for the last two models, measured as R2, were 0.622 and 0.472 for
MM/PBSA and MM/GBSA, respectively, confirming the data model from the Fmax linear
model was better than the others derived from the MM/PBSA and MM/GBSA models’
calculations. The evaluation of the models was retrieved through several standard ways, as
reported in Table 5.
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Table 5. Goodness of fit statistic for MM/PBSA, MM/GBSA, and Fmax models.

MM/PBSA MM/GBSA Fmax

R2 0.622 0.472 0.891
Adjusted R2 0.568 0.396 0.875

MSE 0.539 0.753 511.691
RMSE 0.734 0.868 22.621
MAPE 6.814 7.281 1684.485

DW 0.989 0.509 1.406
AIC 2.000 2.000 57.878
SBC −3.819 −0.810 58.272
PC −3.425 −0.415 0.172

Press 0.594 0.830 5709.609
Q2 5.871 7.204 0.826

The three equations calculated from the models are:

pKi = 5.70572881585216 + 0.317475699514489 × pKi (MM/PBSA) (1)

pKi = 3.79938746554068 + 0.485623403543389 × pKi (MM/GBSA) (2)

Ki = 1026.83687658054 − 0.281997931877324 × Fmax (3)

Moreover, given the R2 of the Fmax model, 89% of the variability of the dependent
variable is explained by the explanatory variable. Considering the p-value of the computed
F statistic shown in the ANOVA table (Table 6) and given a significance level of 5%, the
information brought by the explanatory variables is significantly better than what a basic
mean would bring. Outliers were checked with studentized deleted residuals and Cook’s
distances, as reported in Figures 8 and 9, and both confirmed the presence of no outliers
among our training data.
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Table 6. Variance table of Fmax model. Pr: p-value for F statistics.

Source DF Sum of Squares Mean Squares F Pr > F

Model 1 29,229.336 29,229.336 57.123 0.00013
Error 7 3581.838 511.691

Corrected
Total 8 32,811.174
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Finally, to verify the predictive capabilities of the Fmax model toward low-activity and
inactive compounds, a second set of molecules was used; the structures of the molecules are
reported in Table 7. Molecule 10 (used as a negative control with an experimental pKi of 4.3)
was outlined as the least active, with the lowest calculated SMD energy of 337.71 kcal/mol
and an Fmax of 2387.26 pN. Another five molecules were added to this second set as
true negatives. Molecules 11–15 (decoy compounds) were generated by employing the
DUD-E webserver and using BMS309403 (a FABP4i) as the reference compound [45]. The
decoy compounds have similar physicochemical properties but different 2D topologies,
i.e., they will be inactive in the same binding pocket. Interestingly, all of the molecules
were identified as low-energy FABP4 binders in the SMD data, which was confirmed by
the low Fmax for all of the compounds, demonstrating the ability of the model to identify
true negative compounds.
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Table 7. Molecules 10 (true negative) and 11–15 (decoy compounds) and their SMD-derived data.

N Structure Total SMD Energy
(kcal/mol) SMD Fmax (pN)
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To exploit the new model in drug design, we generated a novel series of FABP4is and
evaluated them with the proposed Fmax-based approach by using the computer-assisted
scaffold hopping technique.

As shown in Figure 10, we focused on the search for bioisosteric-replacements/scaffold
hopping in the central core of a recently published novel FABP4i scaffold with a pyridazin-3-
(2H)-one central core [46]. Our bioisosteric replacement analysis led to 500 novel molecules
for each series. Among the best compounds, as scored by the generated field similarity
analysis (Tables S1 and S2), the 3-methoxy-6-phenylpyridazin-4-amine core was identified
as a common one (compounds 18 and 22) when considering the results of both series
(Table 8). The newly identified core was then evaluated by using SMD-based calculations
(Figure 11). Both compounds, 18 and 22, were identified as promising FABP4is with
calculated Fmax values of 3313.93 and 3693.72 pN, respectively.
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3. Materials and Methods
3.1. Ligand Selection

Different ligands were chosen for each set of structural affinities and tabulated ac-
cording to the type of experimentally obtained equilibrium constants taken. A total of
14 molecules were selected and tested, each known in the literature to have complexed
with the human FABP4 protein [22]. Pairwise similarity was calculated by using circular
fingerprints and by using Flare v 6.1 (Cresset Biomolecular Discovery Ltd., Cambridge,
Cambridgeshire, UK) [43]. Tanimoto similarity was calculated with ChemMine Tools
(https://chemminetools.ucr.edu/, accessed on 14 March 2023).

3.2. Initial Configuration

All of the ligand structures were initially minimized using Marvin Sketch (18.24,
ChemAxon Ltd., Budapest, Hungary) to obtain a system configured for SMD simulation.
All of the structures were subjected to molecular mechanics energy minimization using the
MMFF94 force field [47]. The 3D geometry of all compounds was then optimized using the
PM3 Hamiltonian method [48] as implemented in the MOPAC 2016 package (MOPAC2016
v. 18.151, Stewart Computational Chemistry, Colorado Springs, CO, USA) and assuming
a pH of 7.0 [49]. Each structure was then docked to the human FABP4 protein PDB code,
6LJX, with a resolution of 1.75 Å. At the end of the docking study, the most stable pose
presenting the receptor-ligand interaction, as shown by the PDB model, was chosen. Only
one FABP4 protein structure over the several structures present in the PDB was chosen
after evaluating the possible differences between the structures. Twenty different proteins
(Figure S2) were selected, and the RMSD was calculated after the alignment of the 3D
structures. An overall RMSD of 0.274 Å was calculated, demonstrating that the proteins
were almost identical and that the different ligands in the binding pocket did not influence
the 3D structures. Moreover, we performed 100 ns of MD simulation on three of them to
further investigate the variation of the structures over time. An overall RMSD of 1.154 Å
was calculated during the simulation while considering the average structures, minimum
energy structures, and structures at the end of the 100 ns of MD simulation (Figure S3).

Flexible ligand docking experiments were performed using the Autodock (4.2.6) or
Vina (1.1.2) software implemented in YASARA (v. 22.9.24, YASARA Biosciences GmbH,
Vienna, Austria) and using the three-dimensional crystal structures of the human FABP4
(PDB ID: 6LJX) obtained from the Protein Data Bank and the Lamarckian Genetic Algorithm
(LGA) as previously described [50–53]. The protein was protonated and optimized with
YASARA. Maps were generated by using AutoGrid (4.2.6) with a spacing of 0.375 Å and
sizes that included all atoms extending 7 Å from the surface of the Arg147 amino acid of
the crystallized ligand. The point charges were initially assigned based on the AMBER03
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force field and then damped to mimic the less polar Gasteiger charges used to optimize
Autodock’s scoring function. All parameters were entered with default settings, as previ-
ously reported. In the docking tab, the macromolecule and ligand were selected, and the LGA
parameters were set as follows: ga_runs = 100, ga_pop_size = 150, ga_num_evals = 25,000,000,
ga_num_generations = 27,000, ga_elitism = 1, ga_mutation_rate = 0. 02, ga_crossover_rate = 0.000,
ga_crossover_rate = 0.000. 02, ga_crossover_rate = 0.8, ga_crossover_mode = two points,
ga_cauchy_alpha = 0.0, ga_cauchy_beta = 1.0, and number of generations for selection of
the worst individual = 10. The capability of each docking protocol to obtain a reliable
binding pose for each model was validated by comparing the best-docked pose and the real
crystallized poses inside FABP4 for the following molecules, which were retrieved from
the protein data bank: 2NNQ, 5HZ6, 5EDC, 5Y12, 5Y0X, 6LJV, 6LJU, and 6LJS. All of the
calculated binding poses were compared with those retrieved from the protein data bank,
resulting in a calculated RMSD < 1.00 Å.

MM/PB(GB)SA rescoring procedures were obtained by using fastDRH as an open-
access web server (http://cadd.zju.edu.cn/fastdrh/overview, accessed on 5 December
2022) [54].

3.3. Steered Molecular Dynamics, Data Analysis, and Isosteric Replacement

For each protein-ligand system, a pull vector was defined, with the initial coordinates
being the center of mass of the ligand. The reaction coordinate was defined as the projection
of the distance vector between the Cartesian coordinates of the center of mass of the ligand
to the pull vector. The setup included optimizing the hydrogen bond network to increase
the stability of the solute and predicting the pKa to fine-tune the protonation states of the
protein residues at the chosen pH of 7.4, as in the SMD macro in YASARA [55,56]. NaCl ions
were added at a physiological concentration of 0.9 percent, with an excess of Na or Cl used
to neutralize the cell. After the steepest descent and simulated annealing minimizations
to remove the clashes, the simulation was run for the picoseconds required for the 20 Å
distance to be traveled (50–150 ps) by using the AMBER14 force field for the solute, GAFF2
and AM1BCC for the ligands, and TIP3P for the water. The cutoff was 8 Å for Van der Waals
forces, whereas no cutoff was applied to electrostatic forces. The equations of motion were
integrated with multiple timesteps of 1.25 fs for bound interactions and 2.5 fs for unbound
interactions at a temperature of 298 K and a pressure of 1 atm. After an equilibration time
of 3 ps, the SMD perturbation started with a minimum acceleration of 2000 pm/ps2 applied
to all ligand atoms and unbound forces (every 2.5 fs). Considering the mass of the ligand to
be (X) Daltons and the equation F = m × a, a tensile force of (2000 × X × 0.00166) pN was
obtained. The pulling direction was considered the vector connecting the receptors’ centers
of mass. It was provided manually to drag all ligands uniformly from the interaction pocket,
and it was continuously updated to account for the rotations of the complex. The maximum
distance between the receptor and ligand’s centers of mass was continuously updated, and
if it did not increase by 400 steps, then acceleration was increased by 500 pm/ps2. As soon
as the maximum distance increased with a MaxDisSpeed above 4000 m/s, i.e., a barrier
was crossed, and nothing prevented the ligand from accelerating, the acceleration was
reduced by a factor of 1−(1–4000/MaxDisSpeed)2 but not below the initial minimum. This
check was performed every 20 simulation steps. The simulation was stopped when the
ligand traveled 20 Å from the starting position and ultimately exited the receptor pocket.
The peak pulling force and total work done were calculated to correlate with the binding
force visible in the presented graphs. All simulations were performed using the YASARA
(v. 22.9.24, YASARA Biosciences GmbH, Vienna, Austria) software simulation package.
XLSTAT (v. 2021.4.1 by Addinsoft, Paris, Ile-de-France, France) was used for regression
analysis. The structures for the isosteric replacement were built as already described for the
others. Once built and optimized, all structures were used in the bioisostere replacement
tool Spark 10.4.0 (Cresset Biomolecular Discovery Ltd., Cambridge, Cambridgeshire, UK).
Five hundred compounds were generated for the substitution (the fifty best compounds
reported in the Supplementary Materials). The isosteric replacement was performed using
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the same 178,558 fragments for each part; notably, the fragments derived from ChEMBL
and Zinc databases had a protocol that was already reported and validated [27,57].

The run using umbrella sampling (US) methodology on molecule 6 was carried out
employing the YASARA macro written by Silva (https://www.researchgate.net/post/Do_
you_need_scripts_for_umbrella_sampling_simulations_for_use_with_YASARA, accessed
on 28 February 2023) [58].

4. Conclusions

Inhibiting FABP4 is a viable and appealing therapeutic opportunity for treating
metabolic disorders [59–62]. Furthermore, given the discovery of the protein’s role in
cancer progression, the inhibition of FABP4 might offer a viable therapeutic option for
cancer patients through the suppression or decrease of early-stage tumors and metastasis,
and they have a possible use as biomarkers for cancer detection [63–68]. Nevertheless,
no FABP4i has entered the clinical research phase so far. This is mainly due to several
unavoidable adverse effects of FAPBis, including metabolic issues, in vivo toxicity, and
rapidly acquired drug resistance [69]. Believing that this family of transporter proteins
holds promise as a valid therapeutic target, research must still try to pursue the common
aim of bringing FAPB inhibitors into clinics.

Computational approaches were used to identify novel scaffolds for FABP4 inhibition.
Our research group stayed widely active in this field by applying several structures and
ligand-based computational tools in FABP4is research [14,22,25–27,46]. SMD simulation
was never employed to study and rank small-ligand FABP4is.

SMD simulations can be used to evaluate the conformation, stability, and interactions
of proteins with surrounding macromolecules (membrane, DNA, RNA, or other proteins).
Moreover, SMD is a solid and practical approach for gaining insight into binding mecha-
nisms and acquiring the relative binding energies between candidate drugs and targeted
proteins by simply considering the mechanical components, such as ligands and target
flexibility. In contrast to the majority of previously reported computational approaches,
which focus on accurate binding energy calculations using MD simulations, SMD sim-
ulation has the potential to provide more effective ranking procedures while reducing
computational expense when combined with existing methods for endpoint free energy
calculations, such as molecular mechanics/Poisson–Boltzmann surface area, free energy
perturbation, and thermodynamic integration. Thus, we reasoned that SMD simulation
might play an essential role in FABP4is’ rational design.

For the first time, we established good agreement between SMD simulation-retrieved
data and experimental inhibition or dissociation constants for a dataset of compounds
targeting the FABP4 protein. Our study supports SMD simulation as a promising method
for evaluating new small-molecule FABP4is. The key benefit of SMD simulation is that
it is computationally less expensive than the MM/PB(GB)SA method and, in general,
substantially more accurate than the docking approach and scoring functions. Moreover,
this work proves SMD simulation is a valuable strategy for ranking novel FABP4is. It
will consequently enlarge the arsenal of tools to assist medicinal chemists working in the
field, as it demonstrates a practical approach for the future identification of FABP4is for
clinical use.

In comparison to the MM/PB(GB)SA method, despite being highly accurate, one limit
of the SMD-derived ranking is that it cannot directly predict absolute binding affinities.
Another limitation is that other MD simulation-based experiments, such as the US method,
could be more capable of calculating a ligand’s free energy of binding. US-method calcula-
tions were recently reported to be able to reliably estimate binding free energy for a complex
of small molecules/proteins. Compared with SMD, the better results obtained with the US
method come at the cost of computational resources. The total MD simulation time with
the US method was recently reported to be as long as 120 ns of simulation [70], which is
remarkably high compared to the 50–150 ps required with our SMD methodology (16 h vs.
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9–12 min with an AMD Ryzen Threadripper PRO 5975WX equipped with a GeForce RTX
3060 Ti graphics card).

Instead, the computational method presented here can be regarded as a tool to
help medicinal chemists pursue molecular modifications and new synthetic directions
in FABP4is research that would have been too risky with no computational validation sup-
port. It can also be used to readily identify compounds that would be unlikely to meet the
desired affinity [71]. This significantly lowers the risk of embarking on laborious synthetic
protocols by anticipating if such a compound is/is not projected to accomplish the potency
objectives (as informed by SMD ranking assessments), allowing researchers to focus on tar-
get molecules endowed with more promising characteristics as active FABP4is. Moreover,
the SMD methodology was used to rank a newly designed library of FABP4is that was built
from a biologically active heterocyclic framework recently identified through scaffold hop-
ping replacement [46]. Synthetic procedures are being investigated to produce compounds
18 and 22 (with the 3-methoxy-6-phenylpyridazin-4-amine core) identified in this work,
resulting in potentially valid FABP4is; this is definitely worth further biological study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062731/s1. Figure S1: Similarity matrix calculated
by Tanimoto index for molecules 1–9; Figure S2: RMSD matrix for the selected FABP4 from the
Protein Data Bank; Figure S3: RMSD matrix for selected structures during 100 ns of MD; Table S1:
Molecules from the first scaffold hopping replacement; Table S2: Molecules from the second scaffold
hopping replacement.
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