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Abstract: In the last decades, different multivariate techniques have been applied to multidimen-
sional dietary datasets to identify meaningful patterns reflecting the dietary habits of populations.
Among them, principal component analysis (PCA) and cluster analysis represent the two most used
techniques, either applied separately or in parallel. Here, we propose a workflow to combine PCA,
hierarchical clustering, and a K-means algorithm in a novel approach for dietary pattern derivation.
Since the workflow presents certain subjective decisions that might affect the final clustering solution,
we also provide some alternatives in relation to different dietary data used. For example, we used the
dietary data of 855 women from Catania, Italy. Our approach—defined as clustering on principal
components—could be useful to leverage the strengths of each method and to obtain a better cluster
solution. In fact, it seemed to disentangle dietary data better than simple clustering algorithms.
However, before choosing between the alternatives proposed, it is suggested to consider the nature
of dietary data and the main questions raised by the research.

Keywords: diet; dietary factors; dietary dataset; nutritional epidemiology

1. Introduction

One of the most important achievements of nutritional research in the last decades was
the design of several large studies, including observational cohorts and clinical trials [1].
However, their results were often controversial, particularly for specific questions about
the effect of vitamins and other micronutrients on cardiovascular diseases and cancers [2,3].
Some researchers interpreted these controversies as evidence of one of the main weaknesses
of the single-nutrient approach against chronic diseases [1]. Indeed, clinical trials often
evaluated the short-term effect of vitamin supplements in high-risk patients, while observa-
tional cohorts usually investigated the habitual intake of vitamins from diets in the general
population. This, at least in part, revealed that single-nutrient approaches were insufficient
to clarify many aspects of the effect of diet on chronic diseases [1]. For this reason, several
researchers began to focus on the recognition of relevant dietary patterns characterized
by higher intakes of fruits and vegetables, legumes, nuts, and whole grains rather than
high-calorie and processed foods rich in sugar, salt, and additives [4]. The recognition of the
importance of overall diet has initially driven forward research on popular and empirical
dietary patterns (e.g., Mediterranean, vegetarian, vegan, anti-inflammatory, etc.) [4–13].
Only more recently, however, modern approaches to data analysis have become useful for
the identification of a posteriori dietary patterns from available dietary datasets. Different
dietary patterns have so far been derived using multivariate data analysis techniques,
which are, in fact, specifically designed to identify meaningful patterns in complex multidi-
mensional datasets [14–28]. Among these, principal component analysis (PCA) and cluster
analysis represent the two most used techniques in nutritional epidemiology. In general,
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PCA works on a multidimensional dataset of correlated variables to reduce it into a low
number of uncorrelated principal components (PCs) [29]. Working on a dietary dataset,
these PCs can be used to derive different dietary patterns of the study population [16–19,30].
However, PCA does not create mutually exclusive patterns; rather, each individual receives
a score of adherence to each dietary pattern derived. By contrast, cluster analysis assigns
individuals to discrete groups, each featuring a reasonably coherent dietary pattern [31]. In
nutritional epidemiology, both hierarchical clustering and K-means clustering have found
wide applications so far [32,33]. Moreover, there are also a lot of studies that have ap-
plied these techniques in parallel, with the aim of discovering differences between dietary
patterns obtained [34–38].

In the current work, we propose a workflow to combine PCA, hierarchical clustering,
and K-means algorithm in a novel approach for dietary pattern analysis. This approach,
defined as the clustering of PCs, could be useful to leverage the strengths of each method
and to obtain a better cluster solution [39]. Here, we explain the meaning of each step in
the workflow, also providing some alternatives in relation to different dietary data used.
Moreover, we also give an example of how to apply this approach to an existing dietary
dataset and compare cluster solutions with those obtained by simple hierarchical clustering
and K-means clustering.

2. Materials and Methods
2.1. Study Design

Figure 1 summarizes the crucial steps of the workflow, from data collection to clus-
tering. As an example, a clustering of PCs was applied to a dietary dataset obtained by
integrating information from women referring to two clinical laboratories or to the cervical
cancer screening unit of Catania (Italy) for routine examinations. Women were selected
from those participating in three epidemiological studies from 2010 to 2017. Although
the studies were carried out in different periods, they shared similar objectives and the
same protocols and methods. For the purpose of the current analysis, it is important to
note that the tool used for the dietary assessment was the same between studies and that
additional information on protocols and methods was fully reported elsewhere [30,40–43].
The current analysis was performed on data from 855 non-pregnant women aged 15–85
years without a history of severe diseases (i.e., cancer, cardiovascular diseases, diabetes,
neurodegenerative, and autoimmune diseases). All women were informed about the study
and signed an informed consent statement. All the studies were conducted in accordance
with the Declaration of Helsinki, and the study protocols were approved by the ethics
committees of the involved institutions.

2.2. Data Collection

The first question to ask when approaching nutritional research is what kind of dietary
data are needed to achieve the objective. Indeed, it is not always necessary to collect
new data since a lot of dietary datasets are made openly available in research archives
and data repositories. Although using existing datasets can save a lot of time and effort,
this is not always possible, and it is necessary to collect data through ad-hoc tools. It
should be recalled that all dietary assessment tools are—to some extent—imperfect, with
each suffering from some limitations [44]. For instance, dietary recalls in general and, in
particular, 24-h recalls have the advantage of quantifying daily dietary intakes. However,
they also have high investigator costs and assess dietary intakes in a very narrow window.
By contrast, diet histories and food frequency questionnaires (FFQs) are retrospective
tools that can capture habitual dietary habits with lower investigator costs, but they are
more prone to inaccuracies and misreporting [44]. To overcome some of these limitations,
alternative and complementary tools have been proposed in recent years; however, they
are still in their infancy and not widely used [45]. With these considerations in mind, the
understanding of the pros and cons of each dietary assessment tool, as well as a thorough
exploration of the available data, are necessary to identify the optimal approach to analyze
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the dataset. For clarification purposes, it is important to underline that habitual dietary
data should be used—rather than working on point measures—if the aim of the research is
to derive dietary patterns.
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In the current example, we use dietary data obtained through a 95-item semi-quantitative
FFQ referred to the month preceding the recruitment. The structure of this FFQ has already
been described elsewhere [19,42,43,46]. In brief, participants were asked to report the monthly
frequency of consumption and portion size related to 95 foods with the support of a pho-
tographic atlas. Frequencies of consumption and portion sizes were used to calculate daily
intakes of foods, expressed as grams per day. The 95 foods were grouped into 39 predefined
food categories, reflecting similarities in nutrient profile and/or culinary use. Individual food
items constituting a distinct item or characterizing a particular dietary pattern were preserved.

2.3. Data Cleaning

Data cleaning is a fundamental element of data analysis and consists of the process
of identifying missing or inaccurate data and then handling each issue by imputation or
remotion. The next steps of our workflow will require a dataset without missing data
and potential outliers that, if present, can affect the PCA and the subsequent clustering.
As a general rule of thumb, records with more than 5% missing data should be removed.
Otherwise, the blanks can be filled with median or median values of non-missing data or
alternatively by applying dedicated algorithms. For example, the K Nearest Neighbors
(KNN) algorithm is widely used to replace missing data in similar contexts [47]. Beyond
excluding impossible data and entry errors, dealing with outliers represents a critical step
in our workflow as it presents some alternatives. Indeed, there are so many methods for
outlier detection that it is not possible to suggest one of them. The choice depends on the
data type, the accuracy of the dietary assessment tool used, and the suspected quantity of
outliers. Moreover, some methods can be more time-consuming than others.

In our example, we propose to calculate the daily energy intake for each participant
and then apply Tukey’s method for detecting outliers. This method is based on the graphical
depiction of data through the box plot. Each value of daily energy intake that was above or
below the whiskers was removed. It is worth remembering that whiskers correspond to
1.5 times the interquartile range (IQR) subtracted from the 1st quartile or added to the 3rd
quartile. Only after having removed implausible daily energy intakes, we inspect potential
outliers in other food categories.

2.4. Data Transformation

Working on a dietary dataset, it might not be necessary to standardize data since they
are often measured on the same scale. However, if there are large differences between the
ranges of continuous variables (e.g., a food category ranges from 0 to 100 g per day while
other ranges from 0 to 1), some preprocessing with normalization or standardization could
be useful. These can be respectively done by scaling the variables to a desired range or by
subtracting the mean and dividing by the standard deviation for each value of each variable
(i.e., z-score). Moreover, it is necessary to check the assumption that the relationships
between variables are linear. If this assumption is violated, data log-transformation or its
alternatives are strongly recommended. Finally, it is important to note that adjustment for
kilocalories could be useful for analyzing data from participants with different daily energy
intakes. Ideally, this should be done prior to data transformation with one of the following
approaches: the density method rescales dietary data as a proportion of total energy intake;
the residual method indirectly adjusts for kilocalories by regressing dietary intakes on the
total energy intake [48,49]. An alternative is to control for the effect of total energy intake
a posteriori in a multivariable risk model with the outcome of interest. However, dietary
patterns obtained would remain affected by differences in total energy intake.

In our example, dietary intakes were adjusted for daily energy intake using the residual
method [48], and then energy-adjusted data were standardized to their z-scores.

2.5. Principal Component Analysis

PCA has so far been applied in nutritional epidemiology to simplify the complexity
of high-dimensional datasets obtained through FFQ, dietary records, or dietary history
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questionnaires [50]. Specifically, PCA is commonly used to reduce a dietary dataset of
a set of correlated variables into fewer dimensions reflecting distinct dietary patterns.
These dimensions–generally called PCs—are rank-ordered by total variance explained,
uncorrelated, and fewer in number than the initial variables [29]. Prior to applying PCA
to a dataset, some assumptions should be verified. Firstly, the sample size should be
large enough to produce a reliable result. Secondly, there should be adequate correlations
between variables to be reduced to a few numbers of PCs. The method used to detect
sampling adequacy is the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy,
while Bartlett’s test of sphericity is applied to test the hypothesis that the correlation matrix
is an identity matrix. In general, high values of the KMO (i.e., close to 1) and small values
of Bartlett’s test (less than 0.05) indicate that the dataset is suitable for PCA.

Without discussing the mathematics underlying PCA, it derives for each PC the
eigenvalue and the eigenvector from the covariance matrix, which respectively represent
the total amount of variance explained and its orientation [29]. In the case of untransformed
data with different scales, the alternative is to use the correlation matrix as the input to
PCA [29]. The number of PCs to be retained for further analyses is usually determined
according to eigenvalues and the amount of variance explained [18,30]. In general, there
are several rules of thumb to determine an acceptable number of PCs (e.g., those reaching
a cumulative variance of ~ 80% or those with eigenvalues >1). However, most of these
criteria do not apply well to nutritional epidemiology. For example, the percentage of
variance explained is usually between 10% and 30%, while the cut-off value for eigenvalues
is around 1.6 [32,35]. This is to retain a few numbers of PCs to be interpreted and analyzed.
A third criterion is based on the visual inspection of the Scree plot (i.e., a line plot of the
eigenvalues of PCs) for identifying an elbow, following which subsequent PCs add little
to the variance explained. Each PC can be interpreted in terms of correlations with initial
variables, which are represented by the PC loadings. To simplify the interpretation of PCs,
the varimax rotation is usually applied, and individual PC scores are generated [16,17,19].

In the current example, we applied the PCA with varimax rotation on the covariance
matrix of standardized and energy-adjusted dietary data. In the main analysis, we retained
the first two PCs according to the Scree plot examination. However, we also evaluated
changes associated with retaining the first four PCs or all PCs with eigenvalues >1.

2.6. Clustering and Consolidation

The next step of our workflow is to apply hierarchical clustering to selected PCs in
order to reveal different clusters based on the hierarchical tree. In this agglomerative
clustering, the data points are iteratively merged based on their pairwise distance [31].
Although there are many methods to measure this distance, we suggest using Ward’s
Linkage because it is based on the multidimensional variance in a way similar to PCA.
There are several methods to choose the number of clusters to be generated. The first one
evaluates the inertia (i.e., the mean squared distance between each instance and its closest
centroid) with the increasing number of clusters. The second one decides the number of
clusters that maximizes the silhouette score [31].

The clustering solution obtained by hierarchical clustering is further consolidated by
K-means clustering. Since K-means clustering requires a predefined number of clusters,
the algorithm is applied considering the number of clusters defined through hierarchical
clustering. It is worth noting that the two methods could lead to slight differences in the
clustering solution [31]. The agreement between hierarchical and K-means clustering can
be assessed using the Adjusted Rand Index (ARI).

2.7. Statistical Analysis

All the steps above were performed using the SPSS (version 26.0, SPSS, Chicago,
IL, USA), but it is also possible to use other software or existing libraries for common
programming languages (e.g., Stata, R, Python). Next, we used the one-way analysis
of variance (ANOVA) to compare z-scores of dietary intakes across clusters. The cluster
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solution obtained using hierarchical clustering of PCs was also compared to clusters
obtained using simple hierarchical clustering or K-means clustering. Agreement between
different cluster solutions was expressed as ARI. Unless otherwise indicated, all statistical
tests were two-sided, and p-values < 0.05 were considered statistically significant.

3. Results

After data cleaning, the dataset used in the current example included 841 records
without missing values or outliers for the 39 food categories under investigation. We first
verified the assumptions of sampling adequacy (KMO = 0.758) and sphericity (p-value for
Bartlett’s test < 0.001). Prior to analysis, dietary data were adjusted for total energy intake,
standardized, and then subjected to PCA.

Thus, the dataset of 39 interrelated and correlated variables was reduced to 15 PCs
with eigenvalue > 1, which cumulatively explained 58.8% of the total variance. In Figure
S1, we depict the factor loadings for each PC, which reflect how initial variables loaded on
PCs. The number of PCs to be retained was selected by inspection of the Scree plot and
eigenvalues. However, the Scree plot revealed two elbows (Figure 2): the first elbow was
after PC2, while the second one was after PC4. In the supplementary file, we also presented
three Scree plots that illustrated how participants were distributed on the first four PCs
(Figure S2). According to the Scree plot, the first option was to consider only PC1 and PC2,
which cumulatively explained 15.5% of the total variance. However, as we will see later,
we also considered retaining the first four PCs (which cumulatively explained 24.6% of the
total variance and all PCs with eigenvalue > 1.
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Thus, applying the hierarchical clustering to PC1 and PC2, we obtained the dendro-
gram shown in Figure S3, which facilitated the interpretation of clusters within the dietary
dataset. Some information can be deduced from the dendrogram, such as the dissimilarities
between clusters, which were represented by the branch size that linked them. To select
the number of clusters to be retained, we calculated the Silhouette score for each cluster
solution, and we opted for the one providing the highest value (Figure S4). In Figure 3a,
we show the Scree plot of PC1 and PC2, in which participants were assigned to 3 different
clusters. Although the plot already revealed a clear separation between clusters, we also
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consolidated the clustering solution by applying the K-means algorithm (Figure 3b). Specif-
ically, most participants were assigned to the same cluster, while others were reassigned.
The partial agreement between the two cluster solutions was also demonstrated by an ARI
of 0.496.
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Figure 4 shows the average z-scores for each food category and each cluster obtained
through hierarchical clustering of PCs, simple hierarchical clustering, and K-means cluster-
ing. Notably, the hierarchical clustering of PCs led to three clusters with peculiar features:
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cluster 1 (n = 82) was characterized by a higher intake of boiled potatoes, vegetables, soup,
legumes, and fish; cluster 3 (n = 183) was characterized by higher intake of red and pro-
cessed meat, vegetable oil, sweets, dipping sauces, salty snacks, and fries; cluster 2 (n = 576)
appeared to be a mixed and balanced group without a particular preference for specific
foods. Instead, both simple hierarchical and K-means clustering led to a three-cluster solu-
tion where the first cluster shared some features with what was described above, while the
remaining clusters were difficult to interpret. The low agreement of hierarchical clustering
of PCs with simple hierarchical clustering and K-means clustering was confirmed by an
ARI of 0.102 and 0.151, respectively.
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Figure 5 shows the average z-scores for several nutrients across clusters obtained
through the hierarchical clustering of PCs. In line with the findings presented above, cluster
1 was characterized by a higher intake of magnesium, folate, vitamin A, vitamin C, and
vitamin D. Cluster 3, instead, was characterized by a higher total energy intake, as well
as a higher intake of saturated and unsaturated fatty acids. Here too, cluster 2 seemed
to be a mixed group with a slightly lower intake of minerals and vitamins. The average
z-scores obtained by working on the first four PCs and on all PCs with an eigenvalue > 1
are reported in Figure S5. It is important to note that both options led to a two-cluster
solution that differed from what was obtained previously. Indeed, in both cases, cluster
1 was mixed without any preference for specific foods, while cluster 2 was characterized
by differing dietary features. This once more pointed out the crucial step of selecting the
number of PCs to be retained.
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4. Discussion

Our work provides evidence on applying clustering to PCs to derive dietary patterns
from an existing dietary dataset. Although similar approaches have been previously applied
in other fields of research [51,52], to our knowledge, our study is the first in nutritional
epidemiology. The rationale behind our choice to combine three multivariate data analysis
techniques was to leverage the strengths of each of them [39].

In general, the results of the two techniques are somewhat different in the sense that
PCA helps to reduce the number of “features” while preserving the variance, whereas
clustering reduces the number of “observations.” Thus, if the dataset consists of N observa-
tions and T features, PCA aims at compressing the T features, whereas clustering aims at
compressing the N observations. Indeed, PCA is a non-supervised technique that helps
us in searching for patterns in a multidimensional dataset and in selecting the minimum
number of PCs accounting for the maximum variance [29]. However, findings from PCA
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are less easy to be interpreted than those obtained from cluster analysis. For instance, an
intrinsic issue of PCA pertains to the fact that its output does not refer to a distinct group
of individuals with different dietary habits but rather gives different scores of adherence
to each dietary pattern characterizing the study population. Only later can individuals be
classified in terms of adherence to each dietary pattern obtained [35]. Moreover, it may be
difficult to disentangle different foods that characterize each PC and, thus, each dietary
pattern. This was not, however, the case of PCs obtained in our example, in which the
first two PCs were respectively characterized by plant-based foods and by typical products
of the western diet. Cluster analysis is also a non-supervised technique, but it produces
an output that can be easier interpreted [31,53,54]. In general, it allows the categorization
of individuals in distinct clusters based on the degree of shared characteristics so that
individuals in the same cluster are more similar than those included in other groups [55,56].
One benefit of hierarchical clustering is its intrinsic principle of segregating individuals
on several hierarchical levels, which can be easily visualized in a dendrogram. On the
other hand, however, the choice of the level at which cutting the dendrogram may produce
clustering solutions with different meanings [31].

The novelty of our approach relies on the hypothesis of taking advantage of the char-
acteristics of PCA and clustering to improve the analysis of dietary data. In particular, the
reason for using a dimensionality reduction step—such as PCA—prior to data segmenta-
tion is to improve the performance of the clustering algorithm. The preliminary application
of PCA, in fact, decreases the number of features to be analyzed and the noise. Accordingly,
in our example, we first applied hierarchical clustering to PCs obtained by PCA of the
original dataset. Among different clustering solutions, the best number of clusters to be
retained was chosen according to their Silhouette scores. Next, the solution obtained using
hierarchical clustering was consolidated with K-means clustering. This allowed us to
balance the number of individuals in the two extreme clusters while maintaining their
meaning. After doing so, we obtained three clusters that were clearly characterized by
different dietary habits: the first one was assimilable to a healthy dietary pattern rich in
fruits, vegetables, legumes, and fish; the second one appeared as a mixed and balanced
dietary pattern; the third one, instead, represented a typical western diet rich in high-calorie
and processed foods. These clusters, besides being similar to those obtained in previous
studies [16,28,30,57], were clearly associated with different intakes of calories, fatty acids,
vitamins, and minerals.

Thus, our approach seemed useful to distinguish individuals based on their intake of
foods and nutrients. In particular, it produced separate clusters and improved the interpre-
tation of findings if compared to PCA alone, which instead does not separate observations
into clusters. As demonstrated by our findings, the combined approach also produced a
better solution than those obtained by simple hierarchical clustering or K-means clustering.
In fact, the cluster featuring high-calorie and processed foods emerged only from the clus-
tering of PCs but not from simple clustering. For these reasons, our approach appeared
promising for further downstream applications, such as studying the main determinants
of dietary choices or investigating the association between diet and chronic diseases. De-
spite these strengths, it would be appropriate to consider weaknesses that characterize the
wide range of techniques currently used to derive dietary patterns in a study population.
As for all data-driven methods, the outputs, and hence any difference between different
techniques, may depend on the dietary dataset. Moreover, a full understanding of dietary
data to interpret is important in the various options to choose through the entire process
of analysis. Accordingly, our suggestion is to decide the better technique to be used on a
case-by-case basis.

To guide the user in applying our approach, we have provided some of the possible
alternatives for all the steps of data management, from data cleaning to multivariate
analysis. The choice between different options, but also the application of other common
tools not described above, should be assessed on a case-by-case basis, depending on the
nature of the data and on research questions. In our example, we only compared clustering
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solutions obtained by selecting a different number of PCs prior to clustering. The solution
based on the first two PCs differed significantly from those obtained from working on
four PCs or on all PCs with an eigenvalue > 1. However, it was also the best in terms of
Silhouette score and cluster interpretability. Thus, our suggestion is to select the number of
PCs to be retained only after inspection of the Scree plot and, if possible, after comparing
solutions from different selections.

5. Conclusions

In summary, the present study describes an alternative pipeline to derive dietary
patterns, which combines three of the most commonly used multivariate data analysis
techniques in nutritional epidemiology. Our integrative approach seems to disentangle
dietary data better than simple clustering algorithms, discovering dietary patterns that
reflect those that have been generally obtained by previous studies. Although our workflow
overcomes some limitations of other techniques, it also presents certain subjective decisions
that might affect the final clustering solution. Thus, as stated above, we suggest considering
the nature of dietary data and the main questions raised by the research before choosing
between different techniques and alternatives to analyze dietary data.
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