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Abstract: This paper deals with the electron transport and heat generation in a Resonant Tunneling
Diode semiconductor device. A new electrothermal Monte Carlo method is introduced. The method
couples a Monte Carlo solver of the Boltzmann–Wigner transport equation with a steady-state solution
of the heat diffusion equation. This methodology provides an accurate microscopic description of the
spatial distribution of self-heating and its effect on the detailed nonequilibrium carrier dynamics.
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1. Introduction

Due to the continued miniaturization of integrated circuits and the current trend
toward nanoscale electronics, power densities, heat generation, and chip temperatures will
reach levels that will prevent the reliable operation of such circuits. In order to minimize
self-heating effects, the development of accurate electrothermal simulators is required,
which takes into account the coupling between electronic and lattice dynamics. In the active
regions of such small devices, heat generation is a direct consequence of the nonequilibrium
carrier transport. In high electric field regions, the electrons are accelerated and collide with
the lattice in such a way that the emission of a large number of phonons contributes to heat
transport in the device. In the framework of semiclassical charge transport, electrothermal
simulators are based on drift–diffusion or hydrodynamic models [1,2], which are able
to capture nonequilibrium transport effects. Alternatively, the direct simulation Monte
Carlo (MC) can provide an accurate nonequilibrium charge transport simulation, which
is free from the approximations made in the drift–diffusion or hydrodynamic model.
Electrothermal Monte Carlo simulators have been developed during these years [3–5]
but not in quantum regimes where the Boltzmann Transport Equation must be replaced
by the Wigner Transport Equation (WTE). Since electron devices are quantum systems
outside of thermodynamic equilibrium, scattering by phonons should be included in the
WTE for a realistic simulation. Many proposals for the collision operator can be found
in the literature [6,7], which provide an accurate description of the phenomena at the
price of a high requirement of computational resources. Because of that, the use of such
operators is restricted to very simple (idealized) systems. In this paper, the effects of
scattering with phonons are taken into account via a semiclassical Boltzmann collision
operator, which employs transition rates calculated using Fermi’s golden rule, obtaining
the so called Boltzmann–Wigner transport equation (BWTE). Numerical solvers of the
WTE can be based on finite-difference schemes [8–13], where scattering was restricted
to the relaxation time approximation and the momentum space to one dimension. The
Monte Carlo method allows for scattering processes to be included on a more detailed
level, assuming a three-dimensional momentum–space. In this paper, we shall use the
so-called Signed Particle Monte Carlo method (SPMC) [14,15] in which the effect of the
Wigner potential is interpreted as a probabilistic generation of couples of positive and
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negative particles, where the quantum information is carried by their sign. The huge
number of generated particles can be controlled by an annihilation process: two particles
with an opposite sign entering a given phase space cell are canceled. Recently, this method
has also been understood in terms of the Markov jump process theory [16], producing
a class of new stochastic algorithms. Algorithms that belong to this class are a standard
time-splitting algorithm and a new no-splitting algorithm that avoids errors due to time-
discretization [17,18].

Taking advantage of previous Electrothermal Monte Carlo semiclassical models, in this
paper, we shall study the heating effect in a Resonant Tunneling Diode (RTD), coupling
the SPMC solver of the BWTE with a steady-state solution of the heat diffusion equation.
To the author’s knowledge, this model is the first of its kind in terms of model accuracy.
The paper is organized as follows. Details of the Boltzmann–Wigner transport equation
are provided in Section 2, and in Section 3 we deal with the Signed Particle Monte Carlo
method. In Section 3, we introduce the Resonant Tunneling diode structure and in Section 5
the Electrothermal Signed Particle Monte Carlo Method. Simulation results are shown in
Section 6, and conclusions are drawn in Section 7.

2. The Boltzmann–Wigner Transport Equation

The BWTE writes [19]

∂

∂t
fw(t, x, k) +

h̄
m∗

k · ∇x fw(t, x, k) +
e
h̄
∇x ϕ · ∇k fw(t, x, k) = Q( fw) + C( fw). (1)

x ∈ R3 and h̄k ∈ R3 are the electron position and momentum, respectively, m∗ is the
electron effective mass, and ϕ the slowly-varying potential satisfying the Poisson equation

∇ · [ε0εr∇ϕ(x)] = −e(ND − NA − n), (2)

where e is the elementary charge, ε0 the absolute dielectric constant, εr the relative dielectric
constant, ND, NA are the donors and acceptors’ doping profiles, and n the particle density

n(t, x) =
∫

fw(x, k, t) dk . (3)

C( fw) is the Boltzmann scattering operator which, in the not-degenerate case, is as fol-
lows [20]:

C( fw) =
∫ [

ws(k′, k) fw(k′)− ws(k, k′) fw(k)
]
dk′, (4)

where ws(k, k′) is the scattering rate at which electrons suffer with phonons and impurities,
given by the Fermi’s golden rule. The quantum evolution is taken into account by the term

Q( fw) =
∫
Rd Vw(x, k− k′) fw(t, x, k′) dk′ , (5)

where Vw is the Wigner potential

Vw(x, k) =
1

ih̄(2π)d

∫
Rd dx′ e−ik·x′

[
V
(

x +
x′

2

)
−V

(
x− x′

2

)]
, (6)

and V is the rapidly-varying term of the potential energy.

3. The Signed Particle Monte Carlo Method

The quantum evolution term (5) can be interpreted like the Gain term of the collisional
operator of the Boltzmann transport equation, in which the Loss term is missing. However,
the Wigner potential (6) is not always positive and, for this reason, cannot be considered a
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scattering term. The main idea of the Signed Particle Monte Carlo method [14] consists of
separating Vw into a positive and negative part V+

w , V−w such that

Vw = V+
w −V−w , V+

w , V−w ≥ 0 (7)

Consequently, we can define an integrated scattering probability per unit time as

γ(x) =
∫

dk′ V+
w (x, k− k′) =

∫
dk′ V−w (x, k− k′) (8)

and rewrite the quantum evolution term as the difference between Gain and Loss terms, i.e.,

Q( fw) =
∫

dk′w(k′, k) fw(t, x, k′)− γ(x) fw(t, x, k) (9)

w(k′, k) = V+
w (x, k− k′)−V−w (x, k− k′) + γ(x)δ(k− k′) . (10)

The interpretation of the scattering term w(k′, k) is that a particle produces, in the same
position, a couple of new particles with weight u and −u according to a generation rate
given by the function γ(x). The momentum of the new particles is generated with probabil-
ity V+

w (x, k)/γ(x). Since usually γ is rapidly oscillating, an exponential growth of particle
numbers is expected and, in order to control the particle number, a cancellation procedure
is mandatory.

This procedure has been understood using the theory of the piecewise deterministic
Markov processes [16], where the state space is

zj(t) = (uj(t), xj(t), k j(t)), t ≥ 0 , j = 1, ..., N(t) , (11)

and uj ∈ {−1,+1} is the weight. The time evolution of the particle system (11) is assigned
by a deterministic motion according to the flow

F(t, z) = (u, x + v(k)t, k) , v =
h̄
m

k (12)

and a jump kernel Q(zj(t)). The random waiting time τ until the next jump satisfies

P(τ ≥ t) = exp
(
−
∫ t

0
Q(F(s, z)) ds

)
. (13)

For numerical purposes, we introduce a majorant V̂w such that

|Vw(x, k)| ≤ V̂w(x, k) ∀x, k ∈ R3 . (14)

If the j-th particle generates two new particles with

z
′
1 =

(
uj signVw(xj, k), xj, k j + k

)
, z

′
2 =

(
uj signVw(xj, k), xj, k j − k

)
(15)

the jump kernel takes the form [17]

Q(zj) =
1
2

∫
V̂w(xj, k) dk (16)

and Equation (13) writes

P(τ ≥ t) = exp
(
−
∫ t

0
γ̂(xj + v(k j)s) ds

)
(17)

where
γ̂(x) =

1
2

∫
V̂w(x, k) dk (18)
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represents the generation probability. It is possible to prove that functionals of the so-
lution of the Wigner equation are expressed in terms of the particle system using the
representation [16]

∫ ∫
φ(x, k) f (t, x, k)dkdx =

1
Nini

E
(

N(t)

∑
j=1

uj(t)φ(xj(t), k j(t))

)
(19)

where φ is an appropriate test function, and Nini = N(0) is the initial particle number. In
order to to separate the transport and the jump processes, usually a splitting time step ∆t is
used at the expense of a discretization error. This can be avoided by using a no-splitting
algorithm recently introduced in [17,18]. By introducing a majorant for the generation
process (8) and one for the total phonon scattering rate

Γs ≥ max λ(k) , λ(k) = ∑
α

∫
wα(k, k′) dk′ (20)

The total majorant is
Γ = Γs + γ̂ (21)

and Equation (17), for all particles, now is as follows:

P(τ ≥ t) = exp

(
−

N

∑
j=1

∫ t

0

[
Γs + γ̂(xj + v(k j)s)

]
ds

)
. (22)

In the case in which γ̂ does not depend on the position, we have

P(τ ≥ t) = exp(−ΓNt)→ τ = − 1
ΓN

log r (23)

where r ∈ U[0, 1], and τ is completely determined. With respect to the splitting case, now
the transport and the generation process can not be separated, and the results shall not be
affected by any discretization error.

4. The Resonant Tunneling Diode

A standard Resonant Tunneling Diode structure [21] has been implemented, as shown
in Figure 1. The barriers have depth b = 3 nm, height a = 0.3, and the quantum well dimen-
sion is bw = 5 nm, symmetric with respect to the mid-point L/2 (total length L = 150 nm).
The barrier structure is embedded in a 30 nm lightly doped region (ND = 1016 cm−3) which
is connected to 60 nm highly doped regions on either side (N+

D = 1018 cm−3).
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Figure 1. The quantum well region.

In this case, the Wigner potential (6) can be easily evaluated in addition to the ma-
jorant (18) (see [18] for the details). The device considered is made by Gallium Arsenide
(GaAs) (with m∗ = 0.067), and polar optical phonons (POP) within a single Γ band [20] in
the parabolic band approximation used are taken into account. The total scattering rate is
written as follows: [20]

λ(k, TL) = λ−(k, TL) + λ+(k, TL) (24)

where the first term represents POP absorption and the second one emission

λ−(k, TL) =
e2ωp

(
1

ε∞
− 1

εr

)
2πε0h̄

√
2ε(k)

m∗

n0 sinh−1

√
ε(k)
h̄ωp

(25)

λ+(k, TL) =
e2ωp

(
1

ε∞
− 1

εr

)
2πε0h̄

√
2ε(k)
m∗

(n0 + 1) sinh−1

√
ε(k)

h̄ωp
− 1 (26)

The term n0(TL) is the phonon equilibrium distribution, i.e.,

n0(TL) =
1

exp
(

h̄ωp
kBTL

)
− 1

(27)

h̄ωp is the polar optical phonon energy (0.03536 eV) and TL the lattice temperature. The
initial lattice temperature is 300 K, and ohmic boundary conditions are used.

5. The Electrothermal Signed Particle Monte Carlo Method

An important issue that arises from the coupling of an MC electronic transport algo-
rithm to any thermal model is the significant difference in the characteristic time scales of
electronic and thermal transport. Electronic transients in GaAs systems are of the order of
picoseconds, whereas thermal transients may be of the order of nanoseconds, microseconds,
or even longer. Performing MC computations for the duration of thermal transients across
the whole semiconductor die would not be feasible. Consequently, the method used in this
paper extracts steady-state electrothermal device characteristics only. The electrothermal
SPMC method of simulation is an iterative approach:
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• The initial SPMC iteration is run at a room temperature of 300 K for a few ps, in order
to reach a steady-state;

• As the steady state is reached, electronic parameters are sampled for typically 15 ps,
in order to evaluate the heat generation rate H(x);

• The lattice temperature TL(x) is obtained by solving the steady-state heat diffusion
equation

∇x(κ∇xTL(x)) + H(x) = 0 (28)

κ being the thermal conductivity in GaAs;
• The SPMC solver is rerun, in the next iteration, with the new lattice temperature TL(x).

We observe that the scattering rates (25) and (26) depend on the lattice temperature;
• We repeat this procedure until convergence is reached.

This model does not account for temperature changes beyond the semiconductor
die. Radiation losses are neglected, as their contribution at the small die surface areas is
insignificant.

The mechanism through which Joule heating occurs is that of electron scattering with
phonons, and consequently only a simulation approach which deliberately incorporates
all such scattering events will capture the complete microscopic, detailed picture of lattice
heating. The phonon emission and absorption events during a simulation run are tallied
and full heat generation statistics can be collected. We wait until the steady state has been
reached at time t0. Then, we count our events in the observation points ti , i = 0, .., Nobs.
We evaluate the heat generation rate in two ways:

1. Counting the phonon number.
We introduce the quantity [22]

Hc(ti−1, ti, x) =
n(ti, x)

Np(ti, x)
h̄ωp[C+ − C−]

dt
, (29)

where C+(ti−1, ti, x), C−(ti−1, ti, x) are the numbers of the phonon emitted and ab-
sorbed in the time interval (ti−1, ti) in the x− th grid point, n(t, x) the charge density,
and Np(t, x) the particle number at time t in the x− th cell. Then, the heat generation
rate is

〈Hc(x)〉 = 1
Nobs

Nobs

∑
i=1

Hc(ti−1, ti, x) (30)

2. using the integrated probability scattering function.
From the integrated probability scattering (26), (25) we can define

HF(ti, x) =
n(ti, x)

Nini

N(ti)

∑
j=1

ujG(ε(k j)) , G(ε) = h̄ωp
[
λ+(k)− λ−(k)

]
(31)

Then, the heat generation rate is

〈
HF(x)

〉
=

1
Nobs

Nobs

∑
i=1

HF(ti, x) . (32)

The heat generation is reduced to the usual calculation of functionals according to
Equation (19). This estimator enjoys better approximation properties due to reduced
statistical fluctuations [5].

6. Numerical Results

In order to have a significant lattice temperature increase with respect to the equi-
librium temperature of 300 K, the applied bias voltage Vb must be greater than 0.8 V. In
Figure 2, we plot the heat generation rate versus the position, evaluated by means of the
counting estimator (30) and the integrated probability estimator (32), for Vb = 0.8 V. From
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this figure, we can see that the maximum heat is produced inside the quantum well region,
representing a so-called hot spot region.
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Figure 2. The heat generation rate versus the position for Vb = 0.8 V evaluated by means of the
counting estimator (30) and the integrated probability estimator (32).

In Figure 3, we plot the corresponding standard deviation, proving the variance
reduction of the integrated probability estimator (32). In Figure 4, we plot a zoom of
Figure 2 with the error bar, proving that the integrated probability estimator is always
inside the tolerance band of the counting estimator. Figure 5 shows the density for the first
two iterations, showing no appreciable variation.
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Figure 3. The standard deviation of the counting estimator (30) and the integrated probability
estimator (32) versus position, for Vb = 0.8 V.
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Figure 4. The standard deviation of the counting estimator (30) and the integrated probability
estimator (32) versus position, for Vb = 0.8 V.
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Figure 5. The density versus position for some iterations, for Vb = 0.8 V.

Figure 6 shows the lattice temperature evaluated by means of the heat diffusion
Equation (28) for the first two iterations, which are enough to reach the convergence. We
observe that the lattice temperature is decreasing with the iteration number. To explain this
behavior, one must consider the function G(ε) in Equation (31). This function represents the
difference between the emitted and absorbed phonon probability; if this quantity is positive,
more phonons are released into the lattice and in turn the temperature increases. We plot
this quantity in Figure 7 showing that, for this particular kind of scattering mechanism,
it decreases with the lattice temperature. In Figure 8, we plot the current versus the
iteration number, proving that this quantity is constant. If we double the applied voltage to
Vb = 1.6 V, the increase of temperature is of a factor 5 as shown in Figure 9.
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Figure 6. The lattice temperature TL versus position for some iterations, for Vb = 0.8 V.

Figure 7. The function G(ε) (31)2 versus energy for some lattice temperature.
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Figure 8. The current versus iteration number, for Vb = 0.8 V.
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Figure 9. The lattice temperature TL versus position for some iterations, for Vb = 1.6 V.

7. Conclusions

The Electrothermal Signed Particle Monte Carlo algorithm provides an accurate tool
for studying heat generation and quantum effects in nanometric semiconductor devices,
at the expense of huge computational effort. The coupling between the MC charge transport
and the heat diffusion equation is given by a term called heat generation rate obtained,
usually, by counting the number of phonons emitted/absorbed during the steady-state.
Alternatively, a new estimator of the heat generation rate, based on the integrated scatter-
ing probability function (32), can be used, which enjoys reduced statistical fluctuations.
Simulation results for a Resonant Tunneling Diode are shown, proving that the heat is
produced almost entirely inside the quantum well and estimating the lattice temperature,
which depends on the applied voltage. The localization of hot spot regions can be useful in
the design of such devices, in order to optimize the heat removal.
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