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Abstract: In this paper, a novel algorithm with high computational efficiency is proposed for the
filter adaptation in a feedforward active noise control system. The proposed algorithm Zero Forcing
Block Adaptive Filter (ZF-BAF) performs filter adaptation on a block-by-block basis in the frequency
domain. Filtering is performed in the time domain on a sample-by-sample basis. Working in the
frequency domain permits us to get sub-linear complexity, whereas filtering in the time domain
minimizes the latency. Furthermore, computational burden is tunable to meet specific requirements
about adaptation speed and processing load. No other parameter tuning according to the working
condition is required. Computer simulations, performed in different realistic cases against other
high-performing time and frequency-domain algorithms, show that achievable performances are
comparable, or even better, with those of the algorithms perfectly tuned for each specific case.
Robustness exhibited in the tests suggests that performances are expected to be even better in a wide
range of real cases where it is impossible to know a priori how to tune the algorithms.

Keywords: adaptive noise cancellation; algorithms; control systems; active noise control; adaptive filtering

1. Introduction

Noise cancellation encompass all the techniques that are able to remove unwanted noise given a signal
affected by it. Two major families of noise cancellation techniques exist: passive noise cancellation and
active noise cancellation. The former involves the presence of a passive filter (either analog or digital [1,2])
operating on the noisy signal. This methodology, although simple in practice, can be implemented in very
complex fashions, involving sub-band adaptive filtering [3] or machine-learning-based techniques [4,5].
Moreover, it is often a very convenient solution in electronic power systems for Electro-Magnetic
Interferece (EMI) filtering [6,7] The latter, Active Noise Cancellation (ANC) is a technique that,
by processing two signals, namely a reference signal and an error signal, by means of adaptive
filtering, produces another signal, named antinoise, that reduces the level of an undesired noise [8–10].
This technique finds usage in different fields of application where the reduction of unwanted noise is
desirable. Notable examples include automotive [11,12], biomedical [13], power [14,15] and aerospace [16]
engineering. Moreover, this technology reached a maturity level for consumer application such as noise
canceling headphones [17,18], aid devices [19], and welcomes novel numerical techniques such as neural
networks [20]. A duct-noise cancellation system based on adaptive filter theory was developed by Burgess
in [21].

Indeed, the application field for these kinds of algorithms is very large, both in terms of physical
systems and hardware resources. For this reason, the qualities of efficiency (in terms of computational
costs), effectiveness (in terms of noise reduction) and robustness (in terms of flexibility with respect
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to sudden changes in the system) are of paramount importance when designing an ANC algorithm.
Moreover, simplicity of a minimum tuning paradigm and set-up effort are desirable. In general,
realistic ANC applications features paths with very long impulse response. The adaptive filters used
for noise cancellation inherit this length and, for this reason, the signal processing part of the algorithm
suffers from an elevated computational cost. To reduce such costs, the problem is often approached
in the frequency domain. In the frequency domain, the signals are decomposed and processed in
individual blocks by means of specific filter banks. Algorithms such as the ones presented in [22–26]
are all valid implementations for frequency-domain ANC. Authors in [24,25] propose an algorithm that
features computational advantages by performing all the signal processing in the frequency domain,
thus accelerating the algorithm for large filter-order L. With this approach, although the control filter is
adapted every L samples, instead of every sample as with conventional time-domain adaptive filters,
the filter coefficients are adapted with greater precision.

An ANC system using a Frequency-domain Filtered-x Least Mean Squares (FxLMS) algorithm is
illustrated in Figure 1. This approach has the advantage of reducing the computational costs involved
while preserving the performance in noise reduction. However, the length for the signal path delay
corresponds to one block. A variation of the block transform approach that eliminates signal path delay
has been proposed in [27,28] for an acoustic echo canceler. Moreover, the authors of [29] proposed
in their work a Block Adaptive Filtering algorithm (BAF), based on Discrete Fourier Transform
(DFT) Multidelay Adaptive Filter (DFT-MDF). The algorithm implements structures based on strictly
real arithmetic, resulting in a leaner signal processing implementation with higher computational
performance. The algorithm proposed in [29] can be generalized towards Subband Adaptive Filtering
(SAF) techniques, such as the ones in [3,30], and notably [31] for MIMO scenarios. The SAF algorithms,
whose block diagram is reported in Figure 2, make use of decomposition of reference and error signals
in subbands by means of filter banks. Signal decomposition in subbands makes it possible to use the
time domain FxLMS algorithm in each of these working at a lower frequency sample. All subbands
in the control filter are then arranged together to realize the control filter. Since filter bank can be
efficiently implemented exploiting the FFT algorithm and since each FxLMS works at a lower frequency
rate, efficient implementations are possible.

Among the SAF methods, the delayless SAF introduced by [32] provides a better approach to
meet the computational requirements for ANC system. Tuning of the SAF algorithm can be very
difficult [33], and the one proposed by [34] achieves a reduction of spectral leakage by applying
a decimation factor and a proper weight stacking methodology, resulting in an SAF algorithm with
very low computational complexity without degrading the ANC performance. This algorithm is going
to be used as standard comparison to validate the computational complexity and performance of the
algorithm herein proposed.

The algorithm ZF-BAF (Zero Forcing Block Adaptive Filter) proposed in this work aims at solving
the problem of updating the adaptation filter W periodically in the frequency domain, weighting each
component of the filter by means of spectral characteristics of the noise vector. Since the adaptation of
the filter is done in the frequency domain, the computational load is reduced to sub-linear complexity.
Filtering, on the other hand, is performed in the time domain, achieving low latency.

The paper will be structured as follows. In the first part, the general ANC system will be briefly
described, and the proposed algorithm will be described step-by-step. Following, the computational
costs for the algorithm will be thoroughly discussed. A comprehensive validation of the proposed
algorithm through simulations will be presented in the results section. Conclusions and final remarks
will close the paper.
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Figure 1. Frequency-domain FxLMS algorithm-based ANC system.
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Figure 2. Feedforward delay-less subband Active Noise Cancellation (ANC) system.

2. Materials and Methods

To describe the proposed ZF-BAF algorithm, let us refer to Figure 3 which reports the block
diagram of a feedforward ANC system using the FxLMS algorithm (Burgess [21] and Morgan [35]).
At each step n, this algorithm adjusts the coefficient vector w(n) = [w0(n), . . . , wL−1(n)]T of the filter
W(z) in order to minimize the power of the error signal e(n).
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Figure 3. Block diagram of a feedforward ANC system with the Frequency-domain Filtered-x Least
Mean Squares (FxLMS) algorithm.
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A different way to see this system is that in Figure 4, where the filter W(z) is adjusted to generate
an output z′(n) as similar as possible to the residual noise e(n) when its input is x′(n).
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Figure 4. Block diagram used to introduce the proposed algorithm.

Instead of adjusting the filter W(z) at each step n, we propose here to do it on a block-by-block
basis, generating an update of W(z) every K samples processing the vectors x’(n) = [x′(n), . . . , x′(n−
N + 1)]T and e(n) = [e(n), . . . , e(n− N + 1)]T , when n assumes the values K, 2K, . . .

N is the length of the analysis frame. In principle, it could be grater than the filter length L.
It is assumed that x(n) = e(n) = 0 when n < 0. Initially it is supposed that w(0) = 0, therefore,
when n = K, e(n) is equivalent to d(n) = [d(n), . . . , d(n− N + 1)]T .

The task to be performed is to produce an update ∆wi of w(n), where i = [n/K]. Assuming that
the signal x(n) is slowly changing, and therefore optimal W(z) as well, the vector w(n) will be used to
generate y(n) = [y(n), . . . , y(n− K + 1)]T in the next block.

After the first W(z) update, y′(n) is present affecting e(n). After other K samples (i = 2),
another W(z) update, namely ∆w2(n), is expected. This update could be thought of as the filter that,
when its input is x’(2K), produces the vector e(2K) as output.

In the end, at each block i, the problem to solve is always to find the coefficients ∆wi of W(z) that
should have minimized the difference between filter output z′(n) and the error e(n) during the last
N samples.

Adjustments of W(z) are performed every K samples, but the output y(n) is produced on a
sample-by-sample basis.

In this paper, we propose to solve this problem in the frequency domain. Since the output of the
filter is Z′(z) = W(z)X′(z), the adjustments ∆wi for w(n) able to generate E(z), can be obtained by:

∆Wi(l) =
Ei(l)
X′i(l)

l = 0, . . . , N − 1. (1)

where the terms X′i(l) and Ei(l) stands, respectively, for the lth discrete Fourier transforms (DFT)
coefficient of the vectors x’(n) and e(n) (which are supposed to be known for this algorithmic approach).
The technique proposed is based on the zero forcing equalizer presented in [36].



Electronics 2020, 9, 1504 5 of 20

If Wi(l) is the DFT of the filter coefficients vector w(n) employed in the current analysis frame,
that of the vector w(n) that will be used in the next one, namely Wi+1(l), is given by the following:

Wi+1(l) = Wi +
Ei(l)
X′i(l)

l = 0, . . . , N − 1. (2)

This approach, however, could give a too-high gain for those frequencies that have very low∣∣X′i(l)∣∣. To avoid this, it was preferred to limit W(z) to depends only on the phase of X(l), but not on
its module, that is:

Wi+1(l) = Wi + G(n) · Ei(l)

∣∣X′i(l)∣∣
X′i(l)

l = 0, . . . , N − 1. (3)

where G(n) is a gain that needs to be defined to avoid instability. If the gain is over unity for any
frequency, the loop becomes unstable. This task is quite critical, since the speed of convergence and
the power of the residual noise depend on it. First of all, G(n) should guarantee that the power of
filter output ∆Z′(l) is at most equal to that of the residual noise E(l) at each frequency l = 0, . . . , L− 1,
that is:

G(n)2 |Ei(l)|2
∣∣X′i(l)∣∣2 < |Ei(l)|2 l = 0, . . . , N − 1 (4)

that means:
G(n)2 <

1∣∣X′i(l)∣∣2 l = 0, . . . , N − 1 (5)

The following condition guarantees the previous one:

G(n)2
N−1

∑
l=0

∣∣X′i(l)∣∣2 = 1 (6)

because
G(n)2 =

1

∑N−1
l=0

∣∣X′i(l)∣∣2 <
1∣∣X′i(l)∣∣2 l = 0, . . . , N − 1 (7)

Recalling now the Parseval theorem:

G(n) =
1√

∑N−1
i=0

∣∣X′i(l)∣∣2 =
1

N
√

Px′(n)
, (8)

where Px′(n), the power of x′(n) in the current frame, could also be calculated in the time domain as:

Px′(n) =
1
N
·

N−1

∑
i=0

x′2(n− i). (9)

At each block i, therefore, the adjustment to apply to the vector w(n) is given by:

∆Wi(l) =
E(l)
X′i(l)

·
∣∣X′i(l)∣∣

N
√

Px′(n)
l = 0, . . . , N − 1 (10)

After having calculated ∆Wi = [∆Wi(l), . . . , ∆Wi(N − 1))]T , the adjustment for the coefficient
vector of W(z) is simply given by the inverse Fourier transform of ∆W:

∆w(n) = DFT−1(∆Wi). (11)
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Experimentally, it was found that the minimum frame length to have a stable behavior is N = 2L,
using only the first L elements of ∆w(n) to adapt w(n), as in the following:

w(i) = w(i) +< [∆w(i)] l = 0, . . . , L− 1, (12)

where w(i) is the i-th element of the vector w(n) and < [∆w(i)] is the real part of the ith element of
the vector ∆w(n). Since x(n) and e(n) are real signals, ∆W is real as well, therefore = [∆w(i)] = 0,
for l = 0, . . . , L− 1.

Besides the length N of the analysis frame, it is required to set the adaptation frequency fw, that is
how many times in a second the filter W(z) is adapted. The most obvious choice is to adapt W(z) every
K = N samples, but to increase adaptation speed, or to match specific requirements on computational
load, K could be less or grater than N. An adaptation rate of fw adaptations per second means to adapt
the filter W(z) every K = f s/ f w samples, where fs is the working sample frequency. It will be shown
in the next paragraphs that about 30–50 adaptations per second are good enough to have the same
adaptation speed of other commonly used algorithms. Summarizing, only a few steps are required to
be executed every K samples of x(n) and e(n):

• Step 1:
Calculate the DFTs of the vectors x(n) and e(n)

• Step 2:
Calculate ∆Wi according to (10).

• Step 3:
Adjust the vector w(n) by adding the first L elements of the inverse DFT of ∆Wi.

In Listing 1 there is a simple Matlab implementation (freely downloadable from [37]) of the
proposed algorithm working in a system like that depicted in Figure 4. The output y(n) is generated
on a sample-by-sample basis, whereas the filter W(z) is adjusted every K samples by the proposed
algorithm, whose implementation is enclosed in Listing 1.

Listing 1: Matlab implementation of the proposed algorithm.
1 for n=N:NSAMPLES

2 % --- sample-by-sample time domain filtering ---

3 y(n) = x(n:-1:n-L+1)*w;

4 z(n) = y(n:-1:n-M+1)*s;

5 e(n) = d(n) - z(n);

6 Pd = lambda*Pd + (1-lambda)*d(n)^2;

7 Pe = lambda*Pe + (1-lambda)*e(n)^2;

8 a(n) = -10*log10(Pe/Pd);

9 % --- frequency domain control algorithm -------

10 if (mod(n,K)==0)

11 % input vectors

12 xvec = xx(n-N+1:n);

13 evec = e(n-N+1:n);

14 % DFTs

15 X=fft(xvec);

16 E=fft(evec);

17 % W estimation

18 Px = sum(xvec.^2)/N;

19 W = (E./X).*(abs(X))/(N*sqrt(Px));

20 % [w(0)...w(L-1)] update

21 wd = ifft(W);

22 w = w + real(wd(1:L))';

23 end

24 end
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Theory and Calculations

To evaluate the computational burden of the algorithm described above, each step presented in
the previous paragraph is analyzed hereafter.

Step 1: A very efficient way to calculate the DFT of x(n) and e(n) is to use the Fast Fourier
Trasform (FFT) algorithm performed on a complex vector whose real part is x(n) and imaginary part
is e(n). The well-known radix-2 Cooley–Tukey [38] algorithm commonly used to calculate the FFT
of a complex vector, with length N a power of 2, requires 2N log2(N) real non-trivial multiplications,
and 4N log2(N) real additions. After that, (N/2) · 4 additions are required in order to recover real and
imaginary parts of X(l) and E(l).

Step 2: In this step the Expression (10) is evaluated. In order to analyze its computational burden,
it is useful to rewrite the ratio between E(l) and X(l) separating real and imaginary parts:

E(l)
X(l)

=
<[X(l)] ∗ <[E(l)] +=[X(l)] ∗ =[E(l)]

<2[X(l)] +=2[X(l)]

+j
=[E(l)] ∗ <[X(l)]−=[X(l)] ∗ <[E(l)]

<2[X(l)] +=2[X(l)]

l = 0, . . . , N − 1. (13)

Since both x(n) and e(n) are real vectors, their spectra are Hermitian and, as a consequence, E(l)/X(l)
as well. For this reason, only N/2 + 1 elements of (13) need to be evaluated, and the remaining N/2
elements are simply obtained by:

E(l)
X(l)

=
E(N − l)
X(N − l)

l = N/2 + 1, . . . , N − 1. (14)

In the end, it is required to perform (N/2 + 1) · 2 divisions 1/x, (N/2 + 1) · 6 multiplications,
and (N/2 + 1) · 3 additions to calculate the ratio E(l)/X(l) given by (13). After calculating this ratio,
it is also required to evaluate the weighting function:

|X(l)|
N
√

Px
=

√
<2[X(l)] +=2[X(l)]

N
√

Px
l = 0, . . . , N/2. (15)

The term 1/
(

N
√

Px
)

needs to be calculated only once every processed block, requiring one square
root, one division, and N + 1 multiply operations every K samples.
To calculate the numerator of (15), the following approximation has been found to be good enough:√

<2[X(l)] +=2[X(l)] ≈ |<[X(l)]|+ |=[X(l)]| l = 0, . . . , N/2. (16)

This operation requires only N/2 + 1 additions and N absolute value operations.
In the end, the operations required to evaluate (10) are just: (N/2 + 1) ∗ 2 + 1 divisions 1/x,

(N/2 + 1) · 8 multiplications, and (N/2 + 1) · 4 additions.
Step 3: In this step it is required to evaluate the inverse Fourier transform of W( f ). Using again

the FFT algorithm, this step requires 2N log2(N) real multiplications, and 2N log2(N) real additions.
Since the operations above are performed fw times in a second and since N = 2L, at each step

n the operations reported in Table 1 are required. Among these values, that of multiplications is the
most representative and can be used to compare the proposed algorithm with other algorithms.
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Table 1. Number of operations required by the proposed Zero Forcing Block Adaptive Filter (ZF-BAF)
algorithm per input sample.

Operation Type Ops. per Input Sample

Multiplications
(

fw
fs

)
[8L log2(2L) + 8L]

Additions
(

fw
fs

)
[16L log2(2L) + 4L]

Divisions
(

fw
fs

)
(2L)

Squareroots
(

fw
fs

)

The adaptation rate fw should be chosen in order to get a compromise between adaptation speed
and computational load, but it could also be changed dynamically. For example, it could be decreased
at a steady-state condition to reduce power consumption in mobile devices or to release computational
resources to other processes.

With the assumption fw = ( fs/L), the number of multiplications is approximately:

Nmul = 8 log2(2L) + 8 = 8 log2(4L). (17)

It will be shown in the next paragraphs that this choice allows us to get performances that are
comparable to those of other algorithms in a wide range of situations; anyway, a different value of
fw could be used in order to improve speed or to reduce computational load. In the end, it is worth
noticing that most of the processing required by the proposed algorithm is related to the FFT algorithm,
of which is available an optimized implementation for almost any hardware platform, allowing us to
easily get efficient software implementations of the whole algorithm. Considering the simple numerical
nature of the proposed ZF-BAF, it is suitable for implementation in embedded environments as well as
microcontroller units, FPGAs and programmable DSP. On this matter, the RAM memory footprint can
be different according to the size of a float in the architecture used for the implementation. The only
notable occupancy is given by the N-long complex vector of float values used to store the data to be
processed. In this case, the memory footprint is going to be sizeof(float) * 2 * N.

3. Results

This section describes the simulation experiments to verify the performances of the proposed
ZF-BAF algorithm in a feedforward active noise control system like the one depicted in Figure 3.
We investigated the ZF-BAF algorithm’s adaptation speed, noise reduction, and robustness against
plant noise, different kinds of primary noise and changes in secondary paths. In these tests, the ZF-BAF
algorithm is compared with the fixed step size normalized LMS (NLMS) algorithm and the SAF
presented in [34]. The NLMS algorithm was chosen as adaptation algorithm in the FxLMS because
it retains all the advantages of filtering the reference signal with the added benefit of normalization,
which makes it less dependent on the signal power [39]. Concerning the SAF, it was chosen to have
a comparison with one of the most efficient and performing sub band algorithms. The frequency
sample used in the experiments is 16 kHz, a quite high value that implies a high computational
load. Six test cases were proposed to validate the efficiency, effectiveness and robustness of the
ZF-BAF algorithm.

• Test case 1 involves a short control filter with length L = 256 and synthetic reference signals x(n).
Effectiveness in reducing the noise and computational efficiency are assessed.

• Test case 2 involves a long control filter with length L = 1024 and synthetic reference signals x(n).
Effectiveness in reducing the noise and computational efficiency are assessed.

• Test case 3 involves a long control filter with length L = 1024 and three real world noises as
reference signals x(n). Effectiveness in reducing noise from signals with rich and variable spectra
are assessed.
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• Test case 4 involves both short and long control filters with length L = 256 and L = 1024 and
synthetic reference signals x(n). Robustness is assessed by introducing a step-like variation in
the secondary path and plant noise.

• Test case 5 involves a long control filter with length L = 1024 and synthetic reference signals
x(n). Robustness is assessed by introducing a step-like variation in the harmonic content of the
reference signals x(n)

• Test case 6 involves a long control filter with length L = 1024 and impulsive synthetic noises
x(n). The test purpose is to push the algorithm comparison to the limit being impulsive noise
very short but with elevated intensity.

3.1. Test Case 1—Short Control Filter

For this first test case, three reference signal x(n) have been chosen to represent a wide range of
interesting cases. The first one is white noise, often used because of its unpredictability [24], the second
one is a multi-tonal signal comprising frequencies of 1, 3, 5, and 7 kHz, with white Gaussian noise
added to have an SNR of 30 dB, similar to the one used in other works [40]. The third reference
signal is a mono-tonal at 4 kHz with white noise added considering an SNR of 30 dB. The first set of
experiments is obtained by using a short control filter, that is L = 256. The impulse responses s(n)
and p(n) used in computer simulations have been obtained by truncating, at 128 samples, the impulse
responses of two IIR models provided in the disk enclosed with [39], which are considered a reference
standard in ANC literature [33]. The responses are plotted in Figure 5.

Simulations start with the estimation of the secondary path impulse response. For the estimation
of this response, a procedure described in [41] is used. This procedure is based on adaptation rules and
is completely devoid of tuning parameters. An estimation error of −20 dB is assumed to be sufficient
for ANC operations [39]. Estimation lasts 1s. After s(n) estimation, ANC operations start and the
noise attenuation level (NAL), that is the ratio between the power of the noise to be reduced d(n) and
the power of the residual noise e(n), is monitored.
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Figure 5. Impulse responses for the secondary (a) and primary (b) path.

The step size µ parameters required by the SAF and the NMLS algorithms have been
experimentally determined to achieve the best results. In Table 2 the values used for this set of
experiments are reported. It is important to underline here that this condition could be met in real cases
only by using variable step size algorithms like that proposed in [24,40] that, however, require a higher
computational load. With the proposed algorithm, only the adaptation frequency has been chosen.
The value given by the rule of thumb fw = fs/L has been used. With fs = 16,000 Hz, and L = 256,
fw is 62 adaptations per second.
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Table 2. Adaptation step size used in test case 1.

Algorithm (S/N) (dB) White Noise Multi-Tonal Real Noise

SAF 60 0.05 0.05 0.05
SAF 10 0.02 0.01 0.02

NLMS 60 0.1 0.02 0.5
NLMS 10 0.05 0.1 0.5

Figure 6 reports the attenuation achieved (averaged over 10 runs) by the three algorithms with
the three reference signals already described in two situations. The plots in the first row have been
obtained with a ratio between the power of the noise to be reduced d(n) and the power of the
plant noise very high, i.e., 60 dB. In the second row, this ratio is only 10 dB. It should be noted that
plant noise is always present and also comprises any other disturbance that come together with the
reference noise, like electrical noise, and therefore should be always taken into account. The result
interpretation highlights several interesting aspects even for this first simple test. The first aspect is the
evident performance of the SAF algorithm when the noise is composed by isolated tones, rather than
a flat white noise source. Both the proposed ZF-BAF algorithm and the NLMS are outperformed
by the SAF, and this is especially true in case of a single-tone noise. The second aspect involves
plant noise. With the exception of white noise, where the performances of the three algorithms is
comparable, the multi-tonal and mono-tonal cases shows a decreased performance from the SAF
algorithm. This shows the superior robustness of the ZF-BAF algorithm with respect to the SAF and
the NLMS. The computational efficiency of the algorithm was already described in Table 1, and for
this particular test set, the comparison of the three algorithms is reported in Table 3. The efficiency of
the ZF-BAF algorithm is notable considering the filter lenght L is very low. Other frequency domain
algorithms become preferable over the time domain only when L is big because the complexity they
introduce is not balanced by the computational burden saving.
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Figure 6. Test case 1: comparison of the noise reduction achieved in an ANC system, where: (a) x(n) is
white noise and plant noise ratio is 60 dB; (b) x(n) is multi-tonal noise and plant noise ratio is 60 dB;
(c) x(n) is mono-tonal noise and plant noise ratio is 60 dB; (d) x(n) is white noise and plant noise ratio
is 10 dB; (e) x(n) is multi-tonal noise and plant noise ratio is 10 dB; (f) x(n) is mono-tonal noise and
plant noise ratio is 10 dB; The control filter length is L = 256. Legend is the same for all subfigures
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Table 3. Computational Burden in test case 1.

Algorithm Multiplications per Input Sample

NLMS 256
SAF 1 160
ZF-BAF 2 80

1 SAF proposed in [34] with 256 subbands. 2 With adaptation rate fw = 62 adaptations per second.

3.2. Test Case 2—Long Control Filter

The second set of experiments involves the same signals x(n) used in the first set, however,
a longer filter with L = 1024 is used. Such a long control filter length is required when the primary
path is long. For this reason, the primary path impulse response p(n) used in these experiments,
has been changed with respect to the first set of them whereas the secondary path is the same one used
in the first set. The new primary path impulse response has been obtained by the convolution of the
p(n) used in the first set with the following function:

h(n) = δ(n− kD)a(n/D) k = 1, . . . , 3, (18)

where D = 400 and a = 0.5. The convolution of p(n) used in the first set with Equation (18) produces
a new p(n) made of the sum of exponentially smoothed delayed replicas of the original p(n). The new
p(n) is truncated at 1000 samples. In Figure 7 it is plotted the new p(n).

In this new scenario, in addition to a longer control filter, some adjustments are required as
well. In the ZF-BAF algorithm, only the adaptation rate has been fixed. In this case, the rule of
thumb fw = fs/L gives 16 adaptation per second that require only 110 multiplications per seconds,
whereas the SAF algorithm needs 184 of them. To increase the adaptation speed of the ZF-BAF
algorithm, a higher adaptation rate has been chosen, equal to 30, that requires 184 multiplications
per second.
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−0.5
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 0.5

 1

 1.5

 0  100  200  300  400  500  600  700  800  900

p
(n

)

time (n)
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Figure 7. Primary path impulse response used in test case 2.

Results achieved with these conditions, are plotted in Figure 8. As can be seen, apart from some
oscillations found in the SAF, the performance is very similar to the one of test case 1. SAF outperforms
other algorithms on multi-tonal and mono-tonal signals, but suffers from a performance degradation
when plant noise rises. This is especially noticeable by looking at the spectrum of the steady-state
signals d(n) and e(n) in Figure 9. Interestingly, it can be seen that both the ZF-BAF and NMLS
algorithms achieve better attenuation on the isolated tones, but the overall noise reduction performed
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by the SAF is responsible for the higher full band attenuation. The conclusion that can be drawn from
the spectral analysis is that the presence of single-tones inhibits the ability of the NMLS and ZF-BAF
algorithms to deal with the white noise background.
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Figure 8. Test case 2: (a) x(n) is white noise and plant noise ratio is 60 dB; (b) x(n) is multi-tonal noise
and plant noise ratio is 60 dB; (c) x(n) is mono-tonal noise and plant noise ratio is 60 dB; (d) x(n)
is white noise and plant noise ratio is 10 dB; (e) x(n) is multi-tonal noise and plant noise ratio is
10 dB; (f) x(n) is mono-tonal noise and plant noise ratio is 10 dB; The control filter length is L = 1024.
Legend is the same for all subfigures
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Figure 9. Test case 2: spectrum for noise to reduce d(n) and residual signal e(n) for the three tested
algorithms. White noise (a), multi-tonal (b), mono-tonal (c). The legend is the same for all sub figures.

Concerning the computational costs, Table 4 gives the operations per sample required by the
three algorithms used in the test. As for test case 1, the ZF-BAF algorithm achieves computational
speed comparable to the SAF. It is noteworthy to consider that in this case the SAF algorithm was
configured with a very large number of sub bands (1024), resulting in a lower computational cost.
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Given this context, the efficiency of the ZF-BAF algorithm can be considered at par with one of the
fastest algorithm available in literature. No other parameter required tadjusting. In this case, the step
size parameter of both the NLMS and the SAF algorithm, has been accurately tuned in each case,
resulting in the values reported in Table 5. In the working conditions of this set of experiments, since it
is impossible to estimate the µ values beforehand, the proposed algorithm is expected to provide the
best results in real practical situations, but requiring a computational load similar to that one required
by the efficient SAF proposed in [34].

Table 4. Computational Burden in test case 2.

Algorithm Multiplications per Input Sample

NLMS 1024
SAF 1 184
ZF-BAF 2 184

1 SAF proposed in [34] with 1024 subbands. 2 With adaptation rate fw = 30 adaptations per second.

Table 5. Adaptation Step Size Used in test case 2.

Algorithm (S/N) (dB) White Noise Multi-Tonal Real Noise

SAF 60 0.05 0.05 0.02
SAF 10 0.02 0.02 0.02

NLMS 60 0.1 0.01 1.0
NLMS 10 0.05 0.005 0.5

3.3. Test Case 3—Real World Noise Sources

The third test aims at applying the ZF-BAF algorithm to real world applications using actual noise
sources from different scenarios. Noise sources can be downloaded as sound files from the respository
at [42]. The first noise source was recorded inside an aircraft. The second noise source was recorded
on the side of a highway. The third noise source was recorded next to an operating jack-hammer.
The fourth noise source was recorded in a kindergarten. The noises are mono sources sampled at and
16 kHz and 16 bit per sample, as implemented in [33]. As can be seen from the spectrogramms shown
in Figure 10 the sources cover both pseudo-constant spectra (such as the aircraft example) and very
sudden changes in the spectral content (such as the kindergarten example). The filter length is kept at
L = 1024 and the step-size was kept constant at the minimum value that ensured algorithm stability.
Noise reduction for the four cases are shown in Figure 11 and the relative spectrum are shown in
Figure 12. As can be seen, the algorithm is able to achieve rapid reduction over the whole spectrum
even for rapidly varying harmonic content.
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Figure 10. Test case 3: spectrogramms for the reference signals used in test case 3. Segments for the
FFT were 210 samples long with a no-overlap segment of 28 samples.
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Figure 11. Test case 3: comparison of the noise reduction achieved in an ANC system. The reference
signal is aircraft noise (a), kindergarten noise (b), outside traffic road (c) and jack-hammer (d). The legend
is the same for all sub figures.
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Figure 12. Test case 3: spectrum for noise to reduce d(n) and residual signal e(n). The reference signal
is aircraft noise (a), kindergarten noise (b), outside traffic road (c) and jack-hammer (d). The legend is
the same for all sub figures.

3.4. Test Case 4—Robustness against Secondary Path Variations

In order to better evaluate the robustness of ZF-BAF algorithm, a set of experiments were
performed to investigate its behaviour when a sudden strong change in the secondary path is
encountered. This condition may occur, for example, when the error microphone takes a hit and
is moved from its optimal position. Both the long and short primary path cases were investigated.
The variation introduced in the secondary path it is the same one used in [40]. In the first half of
the experiments, the secondary path was the same one used in the first two sets of experiments,
whereas, the secondary path used in the second half of the experiments, addressed as s2(n), is given
by Equation (19):

s2(n) =
[2

3
s(0),

2
3

s(1) +
1
3

s(0), . . . ,
2
3

s(i) +
1
3

s(i− 1), . . . ,
2
3

s(M− 1) +
1
3

s(M− 2)
]T . (19)

In addition to this variation in the secondary path, the noise captured by the error microphone is
assumed to become much more noisy. To take into account this aspect, the ratio between the power of
the error noise and that of the plant noise, is 60 dB in the first half of the experiments, and 10 dB after
the perturbation in the second half. The plots of the attenuation provided by the three algorithms are
plotted in Figure 13. The optimal parameter tuning for the SAF and NMLS algorithms are reported in
Table 6. In this set of experiments, the proposed algorithm performed very well in each case.
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Figure 13. Test case 4: comparison of the noise reduction achieved in an ANC system, where: (a) x(n) is
white noise and filter length is L = 256; (b) x(n) is multi-tonal noise and filter length is L = 256; (c) x(n)
is mono-tonal noise and filter length is L = 256; (d) x(n) is white noise and filter length is L = 1024;
(e) x(n) is multi-tonal noise and filter length is L = 1024; (f) x(n) is mono-tonal noise and filter length
is L = 1024; Halfway through the simulation the secondary path changes suddenly. The legend is the
same for all sub figures

Table 6. Adaptation step size used in test case 4.

Algorithm L White Noise Multi-Tonal Mono-Tonal

SAF 256 0.05 0.05 0.05
SAF 1024 0.05 0.05 0.02

NLMS 256 0.1 0.02 0.2
NLMS 1024 0.1 0.01 0.001

3.5. Test Case 5—Robustness against Reference Signal Variations

Robustness can be further tested by observing the effect of a sudden spectral change in the
reference signals. In this final test, a constant step-size was used for both the SAF and (µ = 0.02) and
the NLMS (µ = 0.0005). Three commuting signals were used for the test, through a combination of
the ones used for test case 1 and 2. The first one starts as white noise and suddenly commutes to
multi-tonal. The second one starts as multi-tonal and suddenly commutes to mono-tonal. The third
one starts as mono-tonal and suddenly commutes to white noise. Analogously to the other test cases,
plant noise is added to e(n), and two cases of SNR (60 dB and 10 dB) are considered. The plots of the
attenuation provided by the three algorithms are plotted in Figure 14. As expected, although the SAF
outperforms the other algorithms in case of a clean e(n) signal, its performance degrades rapidly when
plant noise is present. The ZF-BAF algorithm performance is consistent and shows very fast recovery
times on mono and multi tonal signals.
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Figure 14. Test case 5: comparison of the noise reduction achieved in an ANC system, where: (a) is
white→multi-tonal noise and plant noise ratio is 60 dB; (b) is multi-tonal→mono-tonal noise and
plant noise ratio is 60 dB; (c) is mono-tonal→white noise and plant noise ratio is 60 dB; (d) is
white→multi-tonal noise and plant noise ratio is 10 dB; (e) is multi-tonal→mono-tonal noise and
plant noise ratio is 10 dB; (f) is mono-tonal→white noise and plant noise ratio is 10 dB; The control
filter length is L = 1024.

3.6. Test Case 6—Impulsive Noise

The purpose of this final test is to assess the algorithms capabilities with a very difficult and
challenging noise source, i.e., impulsive noise. Two noise sources were used for the test. The first one is
a train of impulses, 1 ms long, with a frequency of 50 Hz. The second one is a train of impulses, 10 ms
long, with a frequency of 10 Hz. Although both sources are synthetic, their waveform is representative
of real world disturbances that can arise in electronics due to electromagnetic compatibility issues.
The former comes from power supply units and rectifier circuits [43,44]. The latter is historically
linked to disturbances arising from pulsed HF signals from HTZ (Hover The Horizon) Radars [45].
The noise level attenuation and the steady-state spectrum are reported in Figure 15. As can be seen,
in the tests relative to the 50 Hz signal, algorithms are able to reduce the noise level without problems,
with a slight higher performance for the SAF. The 10 Hz on the other hand shows the limitation of the
approach, since all the algorithms (the NLMS reached convergence but the attenuation is practically
negligible) fail to achieve noise cancellation. The reasons for this failure lies in the length of the filter.
The filter is L = 1024 samples long, and a full period of the impulsive signal is 1600 samples long.
This result underlines the intrinsic limitation of this methodology for low-frequency impulsive noises,
where the length of the filter is a trade-off between computational costs and a lower boundary for the
filtering frequency.
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Figure 15. Test case 6: comparison of the noise reduction achieved in an ANC system, where: (a) x(n)
is a 50 Hz impulse train; (b) x(n) is a 10 Hz impulse train; (c) spectrum for noise to reduce d(n) and
residual signal e(n) in case of 50 Hz reference signal; (d) spectrum for noise to reduce d(n) and residual
signal e(n) in case of 10 Hz reference signal. The control filter length is L = 1024.

4. Conclusions

In this paper a new algorithm for the adaptive tuning of the control filter for a feedforward
ANC system is proposed. Adaptation of the control filter is made entirely in the frequency domain,
where the use of FFT algorithm makes possible to get sub-linear complexity. Computational load
achieved is comparable to those of other efficient SAF algorithms, but no tuning is required and it
is also possible to set the computational load to meet specific requirements about adaptation speed
and CPU consumption. Validation of the algorithm performance was carried over six test cases to
assess efficiency, effectiveness and robustness, involving both synthetic and real world noises from
an open-source repository [42]. Simulation performed over a wide range of difficult conditions shows
that the proposed algorithm is able to work, in each case providing good performances and without
requiring any specific tuning. Besides robustness, efficiency, and good attenuation performances,
its simple formulation makes it a very good candidate for the majority of practical ANC systems.
The Matlab code implementing the algorithm proposed in this work can be freely downloaded
from [37].
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