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Preface 

This book gathers selected peer-reviewed papers presented during the 50th Scientific 
Meeting of the Italian Statistical Society (SIS2021). Due to the Covid-19 pandemic, 
which limited the mobility of the staff of many universities and research centres, 
SIS2021 was conducted remotely from the 21st to the 25th of June 2021. 

This biennial conference is a traditional meeting for promoting interactions among 
national and international researchers in statistics, demography, and applied statistics 
in Italy. The aim of the conference is to bring together national and foreign researchers 
and practitioners to discuss recent developments in theoretical and applied statistics 
as well as in demography and statistics for the social sciences. 

The Scientific Program Committee and the Organizing Committee of SIS2021 
put together a balanced and stimulating program which was of great interest to all 
participants. 

The conference program included 4 plenary sessions, 15 specialized sessions, 20 
solicited sessions, 37 contributed sessions, and the poster exhibition. The meeting 
also hosted three Satellite Events on ‘Measuring uncertainty in key official economic 
statistics’, ‘Covid-19: the urgent call for a unified statistical and demographic chal-
lenge’, and ‘Evento SIS-PLS Statistica in classe: verso un insegnamento laborato-
riale’. There were 323 submissions accepted by the Scientific Program Committee, 
including 128 that were presented at invited plenary, specialized and solicited 
sessions, and 195 that were submitted as contributed papers for oral presentation 
and for the poster sessions. 

This book of selected papers from those presented at SIS2021 covers a wide variety 
of subjects and provides an overview of the current state of Italian scientific research 
in theoretical and applied statistics. The papers contained in this book cover areas 
that include Bayesian models, survey methods, time series models, spatial models, 
finance models, clustering methods, and new methods and applications to Covid-19. 

The Scientific Program Committee, the Organizing Committee, and many volun-
teers contributed to the organization of SIS2021 and to the refereeing of the papers 
included in this book. Our heartfelt thanks go to all of them. A special thank you
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goes to Francesco Schirripa Spagnolo for his continuous assistance and support in 
the organization of the conference and in the editing of this book. 

Wishing you a productive and stimulating reading experience. 

Pisa, Italy 
Salerno, Italy 
Pisa, Italy 
Wollongong, Australia 

Nicola Salvati 
Cira Perna 

Stefano Marchetti 
Raymond Chambers
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Multiversal Methods in Observational 
Studies: The Case of COVID-19 

Venera Tomaselli, Giulio Giacomo Cantone, and Vincenzo Miracula 

Abstract In the present study, 13 covariates have been selected as potentially associ-
ated with 3 metrics of the spread of COVID-19 in 20 European countries. Robustness 
of the linear correlations between 10 of the 13 covariates as main regressors and the 
3 COVID-19 metrics as dependent variables have been tested through a method-
ology for sensitivity analysis that falls under the name of “Multiverse”. Under this 
methodology, thousands of alternative estimates are generated by a single hypothesis 
of regression. The capacity of identification of a robust causal claim for the 10 vari-
ables has been measured through 3 indicators over a Janus Confusion Matrix, which 
is a confusion matrix that assumes the likelihood to observe a True claim as the ratio 
between the absolute difference of estimates with a different sign and the total of 
estimates. This methodology provides the opportunity to evaluate the outcomes of 
a shift from the common level of significance α = .05 to the alternative α = .005. 
According to the results of the study, in the dataset the benefits of the shifts come at 
a very high cost in terms of false negatives. 

Keywords Multiverse analysis · Model mis-specification · p-hacking, 
significance level, COVID-19 
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1 Introduction 

In hypothesis testing, the probability of randomly drawing, in the set of theoretical 
circumstances described under the null hypothesis, a value as extreme as the value 
empirically observed, is referred as the p-value. Historically, a p-value smaller than 
the level of α = 0.05 signalled a statistically significant the result of the test, which 
means that the presented evidence is not compatible with the null hypothesis. In this 
case the researcher has a justification to reject the null hypothesis [ 87]. 

Over time, the status of p-values in scientific research reached a situation of 
paradox: null hypothesis statistical testing (usually with a significance level α <  
0.05) is the most taught and the most used method for scientific inference, and at the 
same time, by its broad use, it started to be regarded as the main culprit for the lack of 
reliability in science [ 30, 55, 67, 82]. Skepticism and self-criticism towards standard 
scientific practices raised after the mediatic emergence of the so called ‘replicability 
crisis’ that invested psychological research [ 2, 10, 21, 52, 58, 85], health sciences 
[ 4, 34, 36], and is a concern for other fields [ 2, 6, 20, 61, 80, 91]. 

While there are methodological reasons why a null hypothesis statistical testing 
could lead into a lack of not replicated scientific claims, the focus is on the noxious 
practice of ‘p-hacking’ [ 33, 54, 77]. It consists in collecting a large amount of 
model specifications of a scientific claim in order to randomly see a significant 
result popping up by chance, then not reporting the exact number of attempts before 
reaching a p < α. 

Many scholars [ 35, 38, 48, 83, 88] saw an opportunity for a reflection about the 
possibilities for an advancement beyond the rule the status quo of hypothesis testing 
with α <  0.05. A widely discussed proposal is to lower conventional α into 0.005 [ 5, 
37, 42]. This proposal would not require to upgrade introductory classes in Statistics 
towards Bayesian or other methodologies. However, the raise in the false negative 
rate could prevent researcher to pursue highly innovative hypotheses. Also, to lower 
the α is virtually useless against the most extensive forms of p-hacking, e.g., on 
massive datasets with hundreds of variables (Big Data). 

The issue of p-hacking inspired a different approach that falls under the name of 
multiversal methodology or ’multiverse-style methods’ [ 18]. This methodology aims 
at observing a multivariate population (usually consisting of p-values and estimates 
β̂x ) throughout mapping every single reasonable model specification of a causal 
relationship between a dependent variable y and a set of regressors (x, Z ). This  
population is referred as ‘the multiverse’ of a study. 

The multiverse tells something about the sensitivity of specific hypotheses x → y 
to their alternative specifications or vibrations [ 65]: multiversal statistics are infor-
mative regarding the practical possibility to p-hack the hypothesis or to incur false 
positives due mis-specification. 

In the present study, the multiversal methods are discussed to estimate coeffi-
cients of multiple specifications of regressive models in Sect. 2. In Sect. 3, population, 
mobility, pollution, and public health variables in European countries and COVID-



Multiversal Methods in Observational Studies … 371

19 data are selected for the analysis. In Sect. 4, the multiverse models are employed 
to data analysis. Lastly, in Sect. 5, multiverse models provide evidences about the 
COVID-19 pandemic spread and its effects on the health-care systems. 

2 Theory: Multiversal Methods 

All the multiversal methods are based on the estimation of coefficients of a large 
number of regressive models organised as a ‘family’. The technical premises are 
the same of Extreme Bound Analysis (EBA) [ 29, 46, 71] but research questions 
are broader. The theoretical connection between the number of different attempts to 
‘make a model work’ and the robustness of its scientific claim was made explicit in 
[ 77] and [ 28], which popularised the concept of ‘Researcher’s degree of freedom’ 
with the metaphor of the “Garden of Forking Paths”, a literary invention of novelist 
Borges. 

A multiverse of specifications can be analysed through plotting: 

• The Multiverse grid [ 32, 81] is a multidimensional array with all the specifications 
represented by their p-values, clustered in the grid space by the divergences in 
the ’Garden of Forking Paths’. Significant p-values are highlighted. This tool is 
impractical for a high number of specifications and is usually uninformative on 
the estimate. 

• The Vibration-of-Effect (VoE) plot [ 65], a cartesian representation where 

– in the x-axis are represented the estimates of a standardised regressor x in the 
specifications of the multiverse, 

– in the y-axis are represented the logarithms of log10(p) associated to the null-
hypothesis of coefficient equal to 0, multiplied per −1. 

VoE is used to display the sensitivity of a causal relationship between regressor 
and dependent as the p-value decreases. At the same time, it allows to detect the 
so-called “Janus effect”, i.e., the sign discordance between estimates in the same 
family of specifications. 

• The p-curve [ 7, 81] is a representation of the probability density associated to 
multiversal p-values: the more the density in p-curve is right-skewed towards 
lower p-values, the more the regressor is validated. 

• The Specification Curve [ 78], which allows to compare different families of spec-
ifications (i.e., aggregations of micro-variants of a single causal hypothesis) and 
to associate these families both to an interval of p-values and to an interval of 
estimates. 

Worth to mention in the family of multiversal methods is the Computational 
Framework for Multimodel Analysis [ 56, 92], which is an alternative to Machine 
Learning for model selection in a multivariate context.
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An interesting application of the multiverse analysis is in [ 72]. In that paper the 
three authors had divergent results regarding the determinants of political behaviour 
of U.S. representatives. Instead of defending own theses to the bitter, the three shared 
their methodological designs (e.g., how to collect data), chose to collaborate to inves-
tigate the robustness of the divergent hypotheses through a multiverse of specifica-
tions (in the jargon of [ 65], they ‘vibrated’ them), and finally converged into a unique 
set of scientific claims. 

Other applications of multiverse analysis in empirical research are in 
[ 16, 50, 59, 70]. 

A software to perform Specification Curve Analysis and, more in general, to 
generate a multiverse from a dataset is specr [ 51] 1. 

However, a properly unified multiversal methodology is still in development. The 
most theoretical contribution to the topic is by Del Giudice and Gangestad [18]. While 
the authors highlight both promising features and pitfalls of “The Multiverse”, their 
main concern is with the phase of analytical choice in order to differentiate (vibrate) 
the specification of a hypothesis into families of model specifications. The argument 
provided by Del Giudice and Gangestad follows the more known scientific contro-
versy regarding the introduction of a collider variable as a control in a regression 
model [ 48]. 

In the context of multiverse analysis, the controversy could be simplified to only 
a question: what is a reasonable vibration for a hypothesis? 

Del Giudice and Gangestad [ 18] discuss about the covariates’ selection as a basic 
issue in the literature. According to Simonsohn et al. [ 79] the covariates are linked 
to the chance to provide different answers to different research hypotheses. On the 
contrary, Patel et al. [ 65] demonstrate that the VoE emerges only with robustness 
analyses involving selected and alternative covariates. These controversial claims 
show that the lacking of agreement about clear and accurate guidelines does not 
allow to increase the potential of multiverse methods in data analysis. 

2.1 What Is a Specification? 

A model specification of the causal relationship x → y: 

y = f (x, Z) (1) 

is a member of the family of regressive models formalised as: 

↔ 
yky ∼ 

↔ 
FkF ( 

↔ 
xkx , 

↔ 
ZkZ ) + E (2) 

where ↔ indicates an operationalization, i.e., a decision to represent a theoretical 
concept (e.g., a statistical population) through a full identified object (e.g., an empiric

1 Suggested tutorial: https://dcosme.github.io/specification-curves/SCA_tutorial_inferential. 

https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
https://dcosme.github.io/specification-curves/SCA_tutorial_inferential
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sample). In Eq. 1, Z is a set of control covariates that the researchers necessary deem 
for the correct causal inference. In Eq. 2, F represents the set of equivalent functions 
that link the joint predictors x and z ∈ Z to the outcomes y. k are indices for single 
operationalizations of the respective constructs [ 78]. 

An interesting propriety of the operationalization is that it does not only involve 
decisions about what to measure but also about how to measure it. Indeed, a core 
element of the methodology in Simonsohn, Simmons, and Nelson [ 78] is that they 
stress the importance of recoding the same observations through different scales of 
measurements. 

In the literature, five elements of a specification are often reported: 

1. The Subsetting of observations: here the decision regards mostly the inclusion 
of outliers or other peculiar clusters of observations. However, as a general rule, 
finding a reasonable criterion to split the dataset into subsets should help to assert 
the sensitivity of the relationship [ 3]. 

2. The Regressors (x, Z): this operationalization can be split into two different 
decisions: 

a. one regards the controversy about full inclusion of all the n! combinations of 
the n covariates as regressors x (and/or controls) or to make a ‘reasonable 
selection’. Anyway, already in the operationalization of the Subset there is 
an implicit decision regarding what variables to observe. In [ 65] the decision 
comes after a literature review, so it is only natural that the authors include 
all the covariates in the multiverse both as x and Z . The same approach could 
have not been feasible for the goal of convergence into a unique set of claims in 
[ 72] or for correct identification of the causal model [18]. Multi-model analysis 
[ 56, 92] is an interesting method to solve this controversy, since it includes all 
combinations to begin but then it tunes the multiverse model (“Multimodel”) 
by removing the comparatively worse specifications. However, if the goal of 
the multiverse is exploratory and not conclusive, a full inclusion could be more 
useful than risky. 
The criterion to exclude a z variable from the possibility to work as a x in the 
multiverse may be disconnected to any scientific evaluation and be more prac-
tical. For example, being older could decrease bone mass but the researchers 
could have no practical interest in just ‘revert people age’, while being inter-
ested in asserting dietary advice to contrast reduction of bone mass due aging. 
In this case the exclusion of variable ‘age’ from x does not mean that age does 
not control the impact of observed diet in the multiverse but that the statis-
tics (p-value, estimates) of ‘age’ as a regressor are not reported among the 
multiversal statistics, since they are not of research’s interest. 

b. the second decision regards how to measure the conceptual dimension implied 
in the hypothesis, for example, by adoption of proxies. 2

2 Think about the deep metrological differences between Richter and Mercalli scales in measurement 
of earthquake magnitude.
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3. The Dependent y: again, there are two approaches. In a sense, it is true that two 
different dependents provide ‘two answers for two different questions’, hence they 
generate two different multiverses [ 18]; but at the same time it also makes sense 
the adoption of different proxies of the same response variable if the question 
truly regards sensitivity of the analysis to the adoption of a proxy, which is a 
legitimate research interest that can be explored through multiversal methods. 

4. The Type of regressions: the main issue in processing the same hypothesis under 
different types of regression is that even after standardisation of the variables, 
estimates are not always comparable if not forcing some functional form for x . 
In binomial regression vs. linear regression, to keep comparability one have to 
force y to assume values in the unitary interval and then estimate the coefficient 
on log(x) and at the same time avoid the logarithmic transformation on z: there 
is an addition of variety of vibration in a sense but also a negation of variety in 
another one. However, if the research is focused on p-values and not on estimates, 
it is definitely worth to compute multiversal statistics for more than one type of 
regression. 

5. The Functional Form ( f ) has analogue issues to the type of regression. It is 
already mentioned that sometimes it depends by the decision regarding vibration 
of Regression Type. It is worth to remember that the function takes as many 
arguments as the n of covariates, hence for any n > 3 the size of the whole 
spectrum of many alternative functional forms could be impractical to compute. 
For n < 3, the impact of an exotic change in the functional form could seriously 
make impossible the interpretation of the coefficients. In absence of reasons to 
do so, having degrees of freedom regarding f design could be an error. 

Decisions on Subsetting and Regression Type impact on all of 
↔ 
yky , 

↔ 
FkF , 

↔ 
xkx , and↔ 

ZkZ . Each alternative decision about an element of the specification increases the 
number of specifications in the multiverse. 

2.2 Janus Effect 

Given a null value β0 for coefficient and a value of α of statistical significance, the 
“Janus effect” [ 62, 65] is the presence in the multiverse of regressor x of vibrated 
estimates β̂x > β0 and β̂x < β0, both such that p(β) < α 3. 

The interpretation of the presence of Janus effect is worrisome: it means that, 
given α, it is possible for a researcher to claim both positive or negative association 
between two observational variables in a population. Just by mapping a multiverse 
and specifying an ad hoc model, a desired causal claim can be p-hacked. The impli-
cations of Janus effect for clinical research are broadly discussed in [ 65] and [ 62].

3 Janus was the Roman god of gates and was always represented with two faces pointing towards 
opposite directions, hence the name of the effect. 
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Table 1 Janus matrix of a x-multiverse 

βx < β0 βx > β0 

p(βx ) < α A B 

p(βx ) ≥ α C D 

Table 2 Janus confusion matrix 

One-faced Two-faced 

p(βx ) < α |A − B| (A + B) − |A − B| 
p(βx ) ≥ α |C − D| (C + D) − |A − B| 

Given the dependency of Janus effect from α and β0 is not surprising to see 
proposals to lower α or to shift the research on estimation of intervals for coefficients 
instead of looking for significant effects. 

In [ 65] Janus effect is treated mostly as something that is there or is not, however 
in a multiverse made of many specifications, the magnitude of Janus effect can be 
observed through counting how many significant specifications hold βx > β0, and 
how many βx < β0. 

More in general, all the estimates β̂x in a x-multiverse can be represented through 
a tetrachoric matrix (Table 1): 

The two dimensions in Table 1 do not share the same proprieties, though: p(βx ) <  
α does signal a desired condition, p(βx ) ≥ α does not. The same cannot be said by 
comparing βx < β0 and βx > β0. The desirable outcome is to maximise into 1 the 
ratio: |A − B| 

A + B 
(3) 

which can be interpreted as the fraction of the significant results leading towards a 
supposedly true direction of the coefficient. 

One can catch here the analogy of the statistical measure of Precision TruePositives  Posi tives  . 
However, Precision alone does not account for sensitivity of the test to false negatives, 
so is usually paired to Recall TruePositives  T rue . 

The whole Table 1 can be remapped as a Confusion Matrix (Table 2): 
So, if Precision ~ |A−B| 

A+B , then, 

Recall ~ |A − B| 
|A − B| + |C − D| =

|A − B| 
|( A + C) − (B + D)| . (4)
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3 Materials 

3.1 Why Coronavirus 

COVID-19 emerged in Wuhan (China) in late 2019. In two years, the virus has spread 
to more than 200 countries worldwide. The outbreak was declared a pandemic by 
the World Health Organisation on February 22, 2020, and hundreds of millions of 
COVID-19 cases have been reported, causing millions of deaths [ 90]. 

Given the uniqueness of the virus and its biological characteristics, it has been 
able to spread so rapidly that COVID-19 has become a public health problem [ 49]. 
The rapid growth in infection rates in each country has had a severe impact on the 
capability of health-care services to tackle the pandemic. As discussed in [ 66], many 
policies were implemented to reduce the deaths due to the spread of the virus, to limit 
the growth in the number of infected people, and overall to empower the health-care 
services. In addition, population control strategies have been implemented, too. 

The most monitored and analysed variables associated with infection risk [ 69] to  
study the COVID-19 spread have been demographic characteristics [ 23], passenger 
mobility [ 12, 57], air pollution [ 17, 19], and comorbidity [ 8, 9, 26, 63]. 

The rapid spread of COVID-19 has triggered an uncommon increase in research 
activities leading to an extensive production of several observational studies. How-
ever, most of the studies do not go beyond modeling the relationship between COVID-
19 and some variables (e.g., air pollution). As a consequence, a data analysis based 
only on single relationships could be limited and provide misleading results. 

In particular, the case of the COVID-19 outbreak is showing the critical role of 
information dissemination which can strongly influence people’s behaviour and alter 
the effectiveness of countermeasures implemented by governments [ 27, 45]. 

It is common for researchers to explore several analytical alternatives [ 11, 41, 
68, 74], i.e., to look for a significant combination in order report only it [ 5, 48, 
84]. Multiple approaches are capable of drawing causal findings from observational 
data as shown in [ 7, 53]. In all of the approaches, substantial uncertainty remains 
about the best model to apply. A multiverse of possible alternatives (or other forms of 
robustness checks) needs in order to explore how the findings would differ if different 
assumptions were been adopted [ 36]. 

In the present study, a multiverse modeling approach is proposed to process 
COVID-19 pandemic data. Multiverse analysis is proposed as a suitable method 
to analyse data when uncertainty could lead to mis-specification of relationships 
among variables [ 73, 74].
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3.2 Selection of Covariates 

One of the challenges in epidemiology is that epidemics happen within societies, 
and societies are very complex phenomena with a lot of features being relevant for 
epidemiological models. 

Following the example of [ 62, 65], and [ 14], the present study aims at select-
ing covariates that have been broadly discussed in the epidemiological literature of 
COVID-19 and are available through National Public Health Departments. 

The dataset of the present study is made by 16 covariates (see, Table 3). Of the 
16, 3 variables are entered as dependents in the models: 

1. the count of hospitalised patients with COVID-19 
2. the count of hospitalised in intensive care (ICU) with COVID-19 
3. the reported count of cases of COVID-19, in the countries. 

The observed values of these 13 variables are summary statistics of epidemiolog-
ical dimensions observed in 20 European countries. They are counted in 4 different 
time intervals plus the cumulative count from the start of the first interval to the end 
of the fourth, so, for 20 countries, the total amount of observations in the dataset is 
(4 ∗ 20) + 20 = 100. The other 13 population variables are not collected along the 
4 time intervals but they are updated at 2019 and and 2020, so their values are fixed 
across time. 

All the variables and the counts are normalised to the population of each country 
and then standardised. Furthermore, four conceptual dimensions are detected as 
shown in Table 3: 

Details about the selected variables on the basis of the more updated research 
findings in the literature are below described. 

COVID-19 Data 

Metrics on the spread of Covid over the four phases (Sect. 4) are those collected 
by World Health Organisation 4 and the European Center of Disease and Control 
(ECDC) 5, which collect case data submitted by national governments. Where pos-
sible, they aim to report confirmed cases. 

The main difference among the three cumulative metrics of COVID-19 in their 
impact over health-care systems, is that the count of reported cases is likely to be 
biased by many sources of under-reporting while hospitalised patients, both in ICU 
and not, are unlikely to be asymptotically biased [ 89]. The variable Hosp  refers to 
people who have contracted COVID-19 and need hospitalization, both in the ICU or 
in other hospital departments and the variable ICU  includes only patients in ICU 
departments. Both the variables deal with the two conditions (infected and in need of 
hospitalisation) as if two events are causally independent. These are also referred as 
“patients-with-COVID-19” and are distinct from “patients-for-COVID-19”, which

4 https://www.who.int/. 
5 https://www.ecdc.europa.eu/en. 

https://www.who.int/
https://www.who.int/
https://www.who.int/
https://www.who.int/
https://www.ecdc.europa.eu/en.
https://www.ecdc.europa.eu/en.
https://www.ecdc.europa.eu/en.
https://www.ecdc.europa.eu/en.
https://www.ecdc.europa.eu/en.
https://www.ecdc.europa.eu/en.
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Table 3 Variables in multiverse model 

Dimension Description of variable Labels Source Year 

COVID-19 N. Confirmed Cases Cases National Public 
Health Dept. 

COVID-19 N. Intensive Care Unit ICU National Public 
Health Dept. 

COVID-19 N. Hospitalised Hosp National Public 
Health Dept. 

Demography Urban Population 
Index 

UrbanPop EuroStat 2020 

Demography N. over 65+ years Over65 EuroStat 2020 

Demography Population Density 
Index 

PopDensity EuroStat 2020 

Health % Cardiovascular risk Cardio EuroStat 2020 

Health % Diabetes prevalence Diabetes EuroStat 2020 

Health % Smokers Smoking EuroStat 2020 

Health % Obeses Obesity EuroStat 2020 

Health % High blood pressure HiPressure EuroStat 2020 

Pollution PM2.5 Index PM2.5 EuroStat 2019 

Pollution PM10 Index PM10 EuroStat 2019 

Pollution CO2 Index CO2 EuroStat 2019 

Mobility N. aeroportual 
passengers 

AirPass EuroStat 2019 

Mobility N. train passengers TrainPass EuroStat 2019 

is the case when COVID-19 induces hospitalisation. ICU  and Hosp  are two mutual 
proxies. 

Sources of under-reporting of COVID-19 cases are due to both delays in reporting 
cases and prevalence of asymptomatic infected people. In particular, the sources 
claim that suspected cases are not be reported. Another issues dealing with different 
countries and institutions is that the delay in updating the number of confirmed cases 
is never consistent among cases. This is due to differences in times of reporting a 
new tested case and its inclusion in national statistics. 

In general, especially in the first phase (see, Table 4), the number of confirmed 
cased is underestimated. Nevertheless this outcome could be a vulnus for scientific 
research about the spread of the virus, the divergence between Cases  and the two 
variables ICU  and Hosp  is useful to shown the capability of multiversal methods 
in regressive analysis. 

Demography 

Epidemics spread over populations. All the variables in the dataset are weighted to 
the total population of the countries, but three variables are selected in particular 
to summarises demographic characteristics of the country. These are: the ratio of 
people aged over 65 at 2020, the index of urbanisation and the density of population.
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Table 4 Epidemic phases 

Phase Start End What happened 

1st 30/12/2020 30/03/2020 WHO reported evidence of transmission 
from symptomatic, pre-symptomatic, and 
asymptomatic infected people with 
COVID-19 

2nd 01/04/2020 23/11/2020 The UK authorities reported a variant of 
SARS-CoV-2 to the WHO 

3rd 24/11/2020 01/01/2021 Pfizer/Biontech vaccine was the first to 
receive emergency use validation from 
WHO for efficacy against COVID-19 

4th 02/01/2021 30/03/2021 End of data collection 

Most official data sources report more severe impacts of COVID-19 on the elderly 
[ 47], probably due both to an inherent weakness of their immune system and to the 
coexistence of other chronic diseases. According to [ 66], the age is a very important 
predictor of severe COVID-19. The risk of severe outcomes increases sharply by age, 
even after controlling for other potential confounding factors, including sex and pre-
existing disease conditions. Age is also an important confounder in the associations 
between some underlying conditions and severe COVID-19 outcomes. 

The index of urbanisation is the proportion of people living in a urban center 
over total population of the country [ 25]. It measures the demographic current phe-
nomenon of population mobility from rural to urban areas. The high concentration of 
people and activities in urban areas makes vulnerable the populations to the exposure 
to COVID-19 infection due to the large amount of social networking [ 76]. 

In addition, many studies [ 1, 31] provide evidences on the correlation between 
density and the spread of the pandemic. The population density, due to economic 
and social reasons, affects the spread of COVID-19 infection and the incidence of 
the cases in the territorial areas. 

Comorbidity 

Comorbidity is the presence of two or more conditions occurring in a patient, either at 
the same time or successively. Population with multiple co-existing illness conditions 
are widespread [ 22]. This awareness has led to a growing interest among practitioners 
and researchers in assessing the impact of comorbidity on mortality, health-related 
quality of life, and efficiency of health care systems. 

In the present study, population variables observed as potentially associated to 
patients infected with COVID-19 are selected: diabetes [ 26], obesity [ 8, 9], smoking 
[ 23], hypertension, and cardiovascular risk [ 64].
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However, data related to above population variables are not collected from medical 
records of COVID-19 hospitalised patients but they are epidemiological surveillance 
data [ 40] on risk factors for the public health due to the onset or the complications 
of diseases. 

Passengers Mobility 

According to [ 12], mobility data are often used to correlate population mobility and 
the spread of an infection. 

Based on the current literature, in countries where mobility is high, the number of 
people infected with COVID-19 is higher [ 11]. Likely there is a positive association 
between a high airport mobility in a country and a high spread of COVID-19 infec-
tion and, as a consequence, the number of both ICU and other hospital admissions 
increases [ 60]. 

In addition to the number of airport passengers, to capture mobility between 
countries and within national borders, also the number of train passengers are taken 
into account due both lacking of airports in some territorial areas and regular use of 
train for mobility. 

Air Pollution 

According to [ 19, 66], there are differences in the association between the spread of 
COVID-19 and the concentration levels of particulate matter (PM10 and PM2.5), and 
CO2. Long-term previous exposure to air pollution could be an important mediator 
of deaths by COVID-19 in Europe. In addition, the latest estimates made by the 
European Environment Agency (EEA) [ 24] show that the exposure to particulate 
matter has a strong impact on health [ 57, 63]. 

Air pollution has been postulated to affect the viability and transport of viral 
particles in the air. Long-term exposure could increase the risk of infection by altering 
the immune system [ 44]. Particulate matter (PM) is able to deeply enter into the 
respiratory tract and increase the risk of respiratory diseases [ 17]. Exposure to PM2.5 
is positively associated with COVID-19 infection and with severity of the disease 
[ 15, 75]. 

Furthermore, for the purposes of the present analysis, the choice to vibrate the y 
helps to simulate the sensitivity of the linear regressive model specified on observa-
tional data to a non linear epidemic phenomenon as COVID-19 pandemic[43]. 

In order to define the timings of observation of COVID-19 pandemic, in Table 4 
are shown 4 time phases: 

Data are collected in 20 European countries: Austria, Belgium, Bulgaria, Croa-
tia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, 
Luxembourg, Netherlands, Portugal, Slovenia, Spain, Sweden, United Kingdom. 

All of countries provide summary statistics of the variables through to National 
Health Departments and Eurostat. 6

6 UK provides demographic data to Eurostat being a EU member until 2021. Other countries (e.g., 
Poland) are excluded from the dataset due to missing values.
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Table 5 Correlation coefficients among variables 

Cases ICU Hosp 

Cases 1 −0.4 −0.4 

ICU −0.4 1 0.91 

Hosp −0.4 0.91 1 

UrbanPop 0.03 0.11 0.07 

Over65 −0.09 0.01 0.06 

PopDensity 0.12 0.10 0.05 

Cardio −0.03 −0.01 0.11 

Diabetes −0.02 −0.07 −0.12 

Smoking 0.03 0.01 0.07 

Obesity −0.03 −0.11 −0.14 

HiPressure −0.04 −0.06 −0.01 

PM2.5 0.15 −0.07 −0.06 

PM10 0.14 −0.07 −0.06 

CO2 0.10 −0.03 −0.04 

AirPass −0.09 −0.03 −0.09 

TrainPass 0.01 −0.00 −0.01 

4 Methods: Multiverse Models 

The values of correlation coefficients (Table 5) show that in the dataset the cases of 
COVID-19 are unaligned with the two variables of hospital data. Only ICU  and 
Hosp  are strongly correlated (0.91), since ICU  is obviously a proportion of Hosp, 
hence the high correlation. 

All the values of Bravais-Pearson’s correlation coefficients between the 3 y and 
the other 13 covariates are much weaker than the correlations among the 3 y. This  
is the reason for vibrating the regressive models into multiverses in order to explore 
how these fixed observations are congruent with causal relationships x → y [ 43]. 

To generate the multiverse, the covariates assume the role of x or ‘first regressor’ 
in the linear model: 

y ∼ β0 + βx (x) + BKx (Kn ⊆ Zx ) + E (5) 

where Zx is the set of all possible additions of all the other non-x , z-covariates as 
control, e.g., Zx : (K1 = ∅, K2 = z1, K3 = z1 + z2, K4 = z1 + z2 + z3, . . . ,  Kn = 
z2, Kn = z2 + z3, . . . ,  Kmax(n)−1 = z11 + z12, Kmax(n) = z12) and BKx is the vector 
of coefficients associated to Kn . 

β̂x and p(x) are recorded for each vibration. However, while all the non-y covari-
ates are members of each Zx , not all the covariates assume the role of ‘first regressor’ 
x . Indeed, the variables of the Demographic dimension (Urban  Pop, Over65, and
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PopDensi ty) are excluded from this role and assume only the role of z, hence their 
p-values and βx are not recorded in the result. 

The reason for this exclusion is twofold: the first is the fact that variables as age, 
density and urban density must have an impact in epidemics does not generate any 
kind of scientific controversy, or at least it does not ask the same scientific questions 
as variables as the rate of obesity or railway mobility; the second reason of exclusion 
is that other variables have space of intervention for a specific, clear-cut public policy 
(for example, an obesity reduction program), while the claim of a causal relationship 
between old age and an epidemic would still require other circumstantial assessments 
of feasibility that cannot be captured by a linear model. 

No other functional form nor different scale of measurement for the variables are 
modeled for the multiverse with the only exception of PM10 and PM2.5, which can 
be considered mutual proxies since their value of Pearson’s correlation r ∼ 0.99. In 
this sense the adopted methodology is more akin to EBA and VoE than to Multiverse 
Analysis or Specification Curve. However, these differences regard more the goal of 
the research than the technical procedure. 

4.1 Measuring the Outcome of a Shift in α 

In the Sect. 2 is mentioned the proposal to shift the conventional α from 0.05 to 0.005. 
The multiverse offers an opportunity to evaluate the consequence of this change. The 
main expected result by the shift is to reduce ambiguity in causal interpretation of 
estimates of a regressive model. However, this result comes at the cost of a higher 
degree of false negatives. 

The goodness of α at making much harder to reach ambiguous results (see, Sect. 2) 
can be measured by the pseudo-Precision in (3). To ponder this metric to the sensi-
tivity to false negatives, pseudo-Recall (4) is measured too and the two measures are 
compounded into a indicator Jα as harmonic mean of the two ones (6): 

Jα = 2 
A+B 

|A−B| + |( A+C)−(B+D)| 
|A−B| 

= 2 A − B| 
A + B + |A − B + C − D| (6) 

which is an analogue of the F1 Score. This metric has been criticised by Chicco and 
Jurman [ 13], so the Phi correlation (φα) and tetrachoric correlation (rtet,α) on the  
Janus Confusion Matrix (Table 2) are provided as alternative metrics [ 39, 86]. 

Finally, to estimate the impact of the shift from α = 0.05 to α = 0.005, the net 
differences in J , φ, and rtet  are measured:

△(J ) = Jα=0.005 − Jα=0.05

△(φ) = φα=0.005 − φα=0.05

△(rtet  ) = rtet,α=0.005 − rtet,α=0.05. 
(7)
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5 Results 

For each y, ten linear models with a different first regressor x have been vibrated 
through all the possible combinations of 12 controls (plus the ‘no control’ case). The 
observations regarding y are expanded by splitting the counts among 4 time phases 
(see, Table 4). 

This generates 409,600 specifications for each y split in 10 groups of 40,960 
specifications for each first regressor, multiplying per 3 y, the total is of 30 groups. 
Multiverse statistics summarise information regarding these 30 groups. The total 
amount of observed specifications in the study is 409,600 * 3 = 1,228,800. 

The p-curves of the 10 multiversal linear models are plotted as density curves in 
Figs. 1, 2, and 3. 

In Fig. 1 is shown an effect between PM2.5, PM10, Air Passenger, and Cases. 
The Figs. 2 and 3 illustrate that Cardiovascular risk and Smoking are very impor-

tant predictors for ICU cases and Hosp cases. However, for ICU cases, Air Passengers 
show a significant relationship similar to Fig. 1. Instead, Obesity plays an important 
role in Hosp. 

Multivariate statistics for the multiverse x → Cases  are displayed in Table 6, for  
x → ICU  in Table 7, and for x → Hosp  in Table 8. 

For models on COVID-19 cases (Table 6), lowering α leads into an average neg-
ative impact in the indicators of evaluation, with the exception of PM10. However, 
looking at the VoE plot of PM10 and PM2.5 (Fig. 4), this result is mostly determined 
by imbalance among classes in the Janus Confusion Matrix of PM10. Indeed, once 
results are paired with those of the proxy of PM2.5, significant results for α <  0.005 
are paradoxically opposite. Given also the small effect size of the estimates, these 
are spurious occurrences determined by overfitting of the specifications. 
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PM10 

PM2.5 

HiPressure 

Obesity 

Smoking 

Diabete 

Cardio 

0.00 0.25 0.50 0.75 1.00 

p−values for Covid cases 

Fig. 1 Density of p-values in the multiverse x → Cases
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Fig. 2 Density of p-values in the multiverse x → ICU  

TrainPass 

AirPass 

CO2 

PM10 

PM2.5 

HiPressure 

Obesity 

Smoking 

Diabete 

Cardio 

0.00 0.25 0.50 0.75 1.00 

p−values for Hospitalised 

Fig. 3 Density of p-values in the multiverse x → Hosp  

In Fig. 4 is noteworthy the presence of a mirror Janus effect around β0. In this case 
this result is reached by controlling x through its proxy, which is an easy avoidable 
statistical fallacy. 

For models ICU  ∼ x (Table 7), the analysis confirms that lowering the α is not 
helpful to highlight good scientific findings and in many cases it could be detrimental. 

For example, one can consider the VoE for ICU  ∼ Diabetes, as shown in Fig. 5. 
In Fig. 5 there is a clear-cut case of Janus effect that can be common in observa-

tional studies. Since Diabetes, unlike PM, is relatively robust to ‘bad controls’, the 
estimate span is much more narrow even if all the variables are standardised.
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Table 6 Summary statistics for the multiverse Cases  ∼ x 
x rρ %(p < 

0.05) 
Med. (p) β̄ △(J ) △(φ) △(rtet  ) 

Cardio −0.03 0.06 0.52 −0.06 −0.14 −0.11 −0.52 

Diabetes −0.02 0.00 0.63 0.06 −0.01 −0.05 −0.41 

Smoking 0.03 0.01 0.63 0.06 −0.04 −0.06 −0.29 

Obesity −0.03 0.00 0.61 −0.05 −0.00 −0.03 −0.60 

HiPressure −0.04 0.05 0.59 −0.01 −0.30 −0.30 −0.17 

PM2.5 0.15 0.25 0.19 −1.14 −0.26 −0.10 −0.10 

PM10 0.14 0.22 0.21 −0.93 0.33 0.50 0.69 

CO2 0.10 0.00 0.58 0.06 −0.00 −0.01 −0.20 

AirPass −0.09 0.31 0.12 −0.24 −0.51 −0.22 −0.54 

TrainPass 0.01 0.00 0.67 0.02 0.00 0.00 0.00 

Table 7 Summary statistics for the multiverse ICU  ∼ x 
x rρ %(p < 

0.05) 
Med. (p) β̄ △(J ) △(φ) △(rtet  ) 

Cardio −0.01 0.21 0.31 0.03 −0.22 −0.02 0.30 

Diabetes −0.07 0.07 0.38 −0.07 −0.66 −0.65 −0.69 

Smoking 0.01 0.38 0.09 0.05 −0.39 −0.08 −0.19 

Obesity −0.11 0.04 0.33 −0.12 −0.16 −0.22 −0.87 

HiPressure −0.06 0.04 0.45 −0.04 −0.27 −0.04 0.26 

PM2.5 −0.07 0.07 0.52 −0.16 0.36 0.27 0.43 

PM10 −0.07 0.07 0.51 −0.33 −0.11 0.02 0.25 

CO2 −0.03 0.00 0.44 −0.03 −0.01 −0.05 −0.51 

AirPass −0.03 0.27 0.20 −0.03 −0.31 −0.16 −0.10 

TrainPass −0.00 0.06 0.49 −0.05 −0.16 −0.14 −0.22 

Table 8 Summary statistics for the multiverse Hosp  ∼ x 
x rρ %p < 0.05 Med. (p) β̄ △(J ) △(φ) △(rtet  ) 
Cardio 0.11 0.76 0.00 0.16 −0.20 0.00 −0.17 

Diabetes −0.12 0.15 0.23 −0.15 −0.28 −0.14 −0.26 

Smoking 0.07 0.21 0.24 0.08 −0.37 −0.14 −0.44 

Obesity −0.14 0.49 0.05 −0.17 −0.43 −0.06 −0.21 

HiPressure −0.01 0.12 0.33 −0.08 −0.28 −0.10 0.20 

PM2.5 −0.06 0.03 0.56 0.10 −0.06 0.02 0.58 

PM10 −0.06 0.03 0.56 −0.01 −0.13 −0.07 0.36 

CO2 −0.04 0.10 0.58 −0.04 −0.26 −0.21 −0.33 

AirPass −0.09 0.10 0.39 −0.07 −0.21 −0.13 −0.16 

TrainPass −0.01 0.12 0.30 −0.08 −0.23 −0.11 −0.30
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Fig. 5 VoE plot of ICU  patients with Covid ∼ % of people with diabetes in the country
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Fig. 6 VoE plot of Hospitalised  with COVID-19 ∼ % of people with high pressure in the country 

However, all the estimates of specifications, when run on the data available before 
April 1st, 2020 (see, Table 4) could lead to think that people affected by diabetes 
would be, in a way or another, less prone to ICU by COVID-19 (given also a negative 
linear correlation between the two variables). Indeed, this is only an effect of a hasty 
analysis that would lead into a scientific controversy: 

• α = 0.05 is already good ‘gatekeeper’ since only a minority of specifications can 
be p-hacked into a significant result. 

• Time reveals that if there is a causal relationship between diabetes and harsh-
COVID-19, it is extremely weak and positive, even if β̂ of the multiverse is nega-
tive, so it would be easy to p-hack. 

Since α = 0.05 is a good filter while α = 0.005 misses the opportunity to actually 
‘say something about’ (no specification is significant under such level), the evaluation 
indicators penalise α  0.005 so much. =

For the multiverse of Hosp, Hi Pressure is the most ambiguous case (Table 8, 
Fig. 6). For α = 0.05 this is a clear-cut case of Janus effect. Considering the whole 
dataset of 100 observations, lowering the level of significance to α = 0.005 would 
point towards a unique interpretation of the relationship: it is negative and it is weak. 
Considering only the first Phase, by α = 0.05 while the inference of the sign would 
have been correct, the size of the negative effect would be overestimated. 

The result would have been very hard to p-hack under a level of significance α = 
0.005. Indicators for Janus effect do not detect significant differences in estimates 
within the same class, they do only the relation between estimates β̂ and β0. However 
the tetrachoric correlation identifies in this case the potential benefit of adoption of 
α = 0.005.
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6 Discussion 

In this study 3 indicators of Janus effect have been employed to evaluate the con-
sequence of a shift towards the level of significance α = 0.005 in terms of risk of 
mis-specification of a small-entity causal relationship in observational small samples. 
The impact has been estimated on a multiverse which is generated by an observational 
sample with high volatility in the lagged y dependent but fixed x . 

α = 0.005 does a good job of ‘gatekeeping’ from the possibility of p-hacking a 
desired outcome but this is a tautology if compared to all of the cases where there is 
a nearly unambiguous relation (see, Fig. 5) and the relation would be lost as a False 
Negative setting such a low value of α. 

It could still be argued that the impact of False Negatives can be weighted by 
the low estimates and α = 0.005 would not miss stronger effects. If this is the case, 
then is true that null hypothesis testing provides only a limited contribution to the 
epidemiological research on observational data and, as a consequence, methodologies 
focused on effect estimation and not on the statistical significance of the relationship, 
should be adopted. 

The main limitation of the study regards the adoption of J index, φ index, and 
tetracoric correlations as indicators of the overall impact of α on the trustworthiness 
of claims from observational data. α is there to decrease false positives in scientific 
studies, so it is consequential that it is penalised by measures that evaluate the rate 
of false negatives. 

The limitation of the Janus Confusion Matrix is that it is insensitive to the actual 
rate of + and − estimates in the multiverse but only to their absolute divergence, 
i.e. there could be cases where + is dominant per p(βx ) ≥ α and − is dominant per 
p(βx ) < α. 

The above Fig. 5 highlights one of these cases. In these scenarios, the shift of α 
is actually effective at isolating a True scientific claim but the measures of the study 
could not capture it. However, occurrences like these are rare and better and more 
specific analytical choices in generation of the multiverse should totally avoid them 
[ 18]. 7
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