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Introduction

Given a homogeneous ideal I in a polynomial ring, it has a graded minimal
free resolution which contains interesting numerical data. When we know
more information about I, e.g., when I defines a special variety, we can try
to explicitly compute those numbers. In this Ph.D. thesis, we discuss several
different results about some homological invariants (e.g., graded Betti num-
bers, Hilbert function, regularity) of some special varieties. In particular,
we focus on the codimension two ACM varieties of lines in P! x P! x P! and
the edge ideals of bicyclic graphs.

Given a variety X C P™ x --- x P"  an interesting problem is the
description of the homological invariants of the coordinate ring of X. This
problem has been primarily studied for points, although there is not a general
answer in this direction. One difficulty comes from the fact that a set of
distinct points X C P™ x .. x P"™ is not necessarily arithmetically Cohen-
Macaulay (ACM). See, for instance [43, 55, 57, 58, 59, 60] for some results
on this topic, and [45, 46| for a recent characterization of the ACM property
in P! x --- x P! and, under certain conditions, in P* x P™,

The motivation to study multiprojective spaces and their subvarieties
has recently increased, since they arise in many applications. For example,
the value of the Hilbert function in multidegree (1,...,1) of a collection of
(2-fat) points in a multiprojective space is related to a classical problem of
algebraic geometry concerning the dimensions of certain secant varieties of
Segre varieties (see, for instance [8, 21, 22]) which parameterize decomposible
tensors, while the values of the Hilbert function at other multidegrees are
related to the dimensions of Segre-Veronese varieties, which parameterize
partially symmetric tensors. Another example appears in [9, 26] where the
authors deduce new results about tensors, and in [34], the author focus on
the implicitization problem for tensor product surfaces.

Chapter 2 of this thesis is concerned with finite arrangements in multipro-
jective space. In combinatorial algebraic geometry, there has been interest
in studying finite arrangements of lines (see [28, 73| for recent developments
in P?). A line arrangement over an algebraically closed field K is a finite
collection Li,..., Ly C P2, d > 1, of distinct lines in the projective plane
and their crossing points (i.e., the points of intersections of the lines).

In this thesis, we investigate special arrangements of lines in multiprojec-
tive spaces by focusing on ACM codimension two varieties in P! x P! x P,



called wvarieties of lines, since we want to generalize the codimension two
ACM property of points in P! x P!. Specifically, we study the Hilbert func-
tion of Ferrers varieties of lines, a special case of ACM variety of lines, and
we describe the trigraded minimal free resolution of the defining ideal of
a variety of lines arising from a complete intersection of points. We also
compute the Castelnuovo-Mumford regularity of the defining ideals of some
special cases of varieties of lines in P' x P* x P!, that is grids of lines and
complete intersections of lines. The study of the regularity of other more
general classes of varieties of lines in P! x P! x P! is a future research topic
we want to explore more deeply, thus extending this work.

In Chapter 3 of this thesis we study the regularity of the edge ideal of
bicyclic graphs and their powers. Castelnuovo-Mumford regularity is one
of the most fundamental invariants in commutative algebra and algebraic
geometry. One of its first hidden appearances may be found in Castelnuovo’s
work on linear systems on smooth projective space curves [20]. Castelnuovo’s
result gives a sharp upper bound on the largest degree r such that the
complete linear system of the r-fold plane sections on the given curve is
not cut out by surfaces of degree r. Another early invisible occurrence
of Castelnuovo-Mumford regularity is found in the work of Hermann [68].
The results of Hermann show that the minimal free resolution of an ideal
generated by finitely many homogeneous polynomials can be computed in
a finite number of steps which depends on the number of indeterminates of
the ambient ring and the maximal degree of the given polynomials.

In 1966, Mumford gave a first formal definition of Castelnuovo-Mumford
regularity [86], defining the notion of being m-regular in the sense of Castel-
nuovo for a coherent sheaf of ideals over a projective space and a given inte-
ger m. Although Castelnuovo-Mumford regularity was originally defined in
terms of sheaf cohomology, it may be expressed in terms of the degrees of
the syzygies. Thus, it is of basic significance in classical projective algebraic
geometry. In the classical case (standard graded algebra) the Castelnuovo-
Mumford regularity measures the maximum degree of the syzygies and pro-
vides a quantitative version of Serre’s vanishing theorem for the associated
sheaf. In particular, it bounds the largest degree of the minimal generators
and the smallest twist for which the sheaf is generated by its global sections.

The regularity has also been used as a measure of the complexity of com-
putational problems in algebraic geometry and it also found much interest
in commutative algebra (see for example [12] and [36]). In 1984, Eisenbud
and Goto [36] made explicit the link between this algebraic Castelnuovo-
Mumford regularity of a graded module over a polynomial ring and its min-
imal free resolution.

The Castelnuovo-Mumford regularity of an ideal I in a standard poly-
nomial ring R = K]xo,...,2,|, denoted by reg(I), is then an important
invariant that can be associated to a projective variety X C P" having
defining ideal /. It has been the object of many authors to estimate reg([)



since, as mentioned above, not only it bounds the degrees of a minimal set
of defining equations for X, but it also gives a uniform bound on the de-
grees of syzygies of I (we recall that there are two equivalent definitions of
Castelnuovo-Mumford regularity, the first is in terms of graded Betti num-
bers and the second is in terms of local cohomology).

The most fundamental situation is when X is a set of points (see for
example [23], [41], [49], [95]). Many authors have been also interested in
extending our understanding on regularity for sets of points in P" to sets of
points in P™ x --- x P (cf. [24], [50], [53], [55], [97]). In the context of
N2-graded rings, Aramova, Crona and De Negri [5] have introduced a finer
notion of regularity that places bounds on each coordinate of the degree of a
multi-graded syzygy. Extending the definition of regularity to multi-graded
rings is also considered in [81]. For sets of points in multi-projective spaces,
Ha and Van Tuyl [65] compute the regularity of an ideal defining a set of
distinct points in generic position and bound the regularity for a set of fat
points with generic support. Their strategy was based on viewing the ideal
defining a set of points in P™ x - - - x P™ both as N*-homogeneous ideal and
as a homogeneous ideal in the normal sense, i.e., a homogeneous ideal in a
Nl-graded ring.

Using the same approach, i.e., by considering their defining ideals as
homogeneous ideals, we compute the Castelnuovo-Mumford regularity of
some particular varieties of lines in P! x P! x P!, that is grids of lines and
complete intersections of lines.

In this thesis we also study the regularity of another special variety, i.e.,
the edge ideal of a bicyclic graph and its powers. If I is a homogeneous
ideal of the polynomial ring R = KJz1,...,x,], the Castelnuovo-Mumford
regularity of I and its powers has been an interesting and active research
topic for the past decades. An important result of the vast literature on
the study of regularity of I and its powers was given in 1999 by Cutkosky;,
Herzog, and Trung (see [32]). In 2000, Kodiyalam used a different method
to prove the same result (see [79]). In both papers, it is proved that for all
positive integers ¢ > qo, the regularity of powers of [ is a linear function
of the form reg (19) = dq + b, where ¢o is the so called stabilizing index,
and b is the so-called constant. The value of d in the above formula is well
understood. For example, d is equal to the degree of the generators of I when
I is equigenerated. The method used by Cutkoswky, Herzog and Trung does
not give precise information on ¢y and b. Since then, many researchers have
tried to compute ¢y and b for special families of ideals.

The most simple case, yet interesting, is when [ is the edge ideal of
a finite simple graph. Recall that a graph G = (V(G), E(G)) consists of
a vertex set V(G) = {x1,29,...,2,} and a collection E(G) of non empty
subsets of V(G) of cardinality 2 which are called edges of G. The graph
G is simple if it has no multiple edges or loops. Let G = (V(G), E(G)) be
a simple graph, and let R be the polynomial ring R = Klz; | x; € V(G)]



where K is any field. We recall that the edge ideal I(G) of G is the ideal
1(G) = (wia; | {zs13} € B(G) C R

Several authors have settled the problem of determining the stabilizing
index and the constant for special families of graphs. Banerjee proved that
reg I(G)? = 2q, for all ¢ > 2, when G is a gap-free and cricket-free graph (see
[10]). Moghimian, Fakhari and Yassemi answered the question for the family
of whiskered graphs (see [84]). Beyarslan, Ha and Trung settled the problem
for the family of forests and cycles (see [14]). Their results were expanded
to the family of unicyclic graphs by Alilooee, Beyarslan and Selvaraja (see
[3]). Moreover, Alilooee and Banerjee determined the stabilizing index and
the constant for the family of bipartite graphs with regularity equal to three
(see [2]). Jayanthan and Selvaraja settled the problem for the family of very
well-covered graphs (see [76]). Recently, Erey proved that if G is a gap-free
and diamond-free graph, then reg I(G)? = 2q for all ¢ > 2 (see [40]).

The above-mentioned results have given rise to the following problem:
characterize graphs G for which the edge ideals I = I(G) satisfy the equality
reg [7=2q+ v(G) — 1 for all ¢ > 0 or reg [? = 2q + reg I — 2 for all ¢ > 0,
where v(G) denotes the induced matching number of G.

The simplest situation for an edge ideal is when its powers have lin-
ear resolutions. We recall that an ideal I has a d-linear resolution if I is
generated by homogeneous elements of degree d and reg (/) = d. Among
all the interesting problems in Castelnuovo-Mumford regularity, classifica-
tion of ideals with linear resolution is of great importance. Proving that a
class of ideals has a d-linear resolution is difficult in general. However, some
classes of ideals with linear resolution may be found in [6], [27], [71], [104].
It was proved (see [48], [101]) that the edge ideal of a graph G has a linear
resolution if and only if G¢ is chordal. It also follows from [71] that if I(G)
has a linear resolution, then so does I(G)? for all ¢ > 1 and from [88] that
if a power of I(G) has a linear resolution then G is chordal. It is, thus, of
interest to characterize graphs whose (sufficiently large) powers have linear
resolutions.

Our approach in this thesis is focused on the relations between the com-
binatorics of graphs and algebraic properties of edge ideals. We refer the
reader to [4],[15], [66], [72], [78],[89] and [103] for more information on this
topic. The purpose of Chapter 3 of this thesis is to extend the results of [3]
to the family of bicyclic graphs, i.e., a graph with exactly two cycles (see
Figure 1). The base case of the family of bicyclic graphs is that of dumb-
bell graphs. A dumbbell graph C, - P, - C,, is a graph consisting of two
cycles C,, and C,, connected with a path P, whose vertices are {xy,...,z,},
{y1,--.,ym} and {z1,..., 2}, respectively (see Figure 2).



Figure 1: An example of bicyclic graph.

Figure 2: The dumbbell graph C5 - P - Cj.

We first compute the regularity of the edge ideal of a dumbbell graph,
and then we give a combinatorial characterization of the regularity of the
edge ideal of an arbitrary bicyclic graph in terms of its induced matching
number. Finally we study the regularity of powers of edge ideals of some
specific bicyclic graphs, i.e., dumbbell graphs with path having at most two
vertices. Our approach takes advantage of the notion of even-connectedness
and the relations between the induced matching number of graphs and the
regularity of the edge ideal. Our strategy is to show 2¢ +reg I(C,, - B, - Cy)
is actually an upper bound and a lower bound for reg I(C,, - B, - C,,,)? for all
q > 1 where [ < 2. To obtain the upper bound, we follow the argument of
Banerjee from [10, Theorem 5.2]. To compute the lower bound, we proceed
by looking at some specific induced subgraphs of C,, - P, - C,,.

As a side result, we answer an interesting question on the behavior of
the constant term of the asymptotycally linear regularity function. Let [
be an arbitrary ideal generated in degree d and let reg (19) = dq + b, for
¢ > qo- An interesting question is the study the sequence {b;};>;. In [38]
Eisenbud and Harris proved that if dim(R/I) = 0, then {b;};>; is a weakly
decreasing sequence of non-negative integers. In [11] Banerjee, Beyarslan
and Ha conjectured that for any edge ideal, {b;};>1 is a weakly decreasing
sequence (see [11, Conjecture 7.11]). For the edge ideal of any dumbbell
graph with [ < 2, we prove b; = by for all # > 1. However, we expect b; < by
for all # > 1 for any graph.



We now describe the structure of this thesis.

In Chapter 1, we fix some notation, and we present a survey of crucial
known results. The notions and remarks in this chapter are essential for the
remaining chapters of this thesis.

In Chapter 2, we describe varieties of lines in P! x P* x P! (see Definitions
2.1.1 and 2.1.2) and we make some observations that make clear the connec-
tion between a set of lines having the same direction and a set of points in
P! x P! (see Remark 2.1.9). In this chapter we study special arrangements
of lines, i.e., the codimension two ACM varieties of lines in P! x P! x P!
We first describe a connection between ideals of varieties of lines and some
squarefree monomial ideals (see Lemma 2.2.2). In particular, we introduce
the Hyp, (x)-property (see Definition 2.2.9) to give a combinatorial char-
acterization of ACM varieties of lines in P! x P! x P! using a well-known
property of chordal graphs:

Theorem A. (Theorem 2.2.15) Let X be a variety of lines in P! x P! x PL.
Then X is ACM if and only if X has the Hyp,(x)-property for n = 4,5,6.

Then we introduce a numerical way to check the ACM property for any
varieties of lines (see Propositions 2.3.6, 2.3.7 and 2.3.8). We also describe
the Hilbert function of Ferrers varieties of lines (see Theorem 2.4.3 and
Corollary 2.4.4), a special case of ACM variety of lines (see Definition 2.4.1).
After that, we initiate an investigation on varieties of lines whose set of
crossing points is a complete intersection of points in P! x P! x P! (see
Definition 2.5.1). Additionally we describe a set of minimal generators and
the trigraded minimal free resolution of its defining ideal:

Theorem B. (Lemma 2.5.5 and Theorem 2.5.8) Let
C:={L(A) NL(B;) N L(Cy) | i € [a],j €[],k € [c]}

be a complete intersection of points in P! x Pt x P! of type (a,b,c) and
let X := X¢ be the grid of lines arising from C. Then a set of minimal
generators of the ideal defining X is

=(OA-I5. Ma-Tc. I8 1)
i€[al JEb] i€[al ke(c] JEb] k€|
Furthermore, X¢ is ACM and a trigraded minimal free resolution of Ix, is
0 — R*(—a,—b,—c) = R(—a,—b,0)®R(—a,0, —c)DR(0, b, —c) — Ix, — 0.

We also characterize varieties of lines defined by a complete intersection
ideal in P* x P! x P

Theorem C. (Theorem 2.6.2) Let X be a variety of lines of Pt x Pt x PL.
Then the ideal Ix is a complete intersection if and only if Ix = (Fy, F),

with deg Fy = ae; and deg F> = be; + ce, with j, k # 1, for some a,b,c € N.
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We also start a preliminary investigation on the Castelnuovo-Mumford
regularity of defining ideals of varieties of lines in P! x P! x P!. In particular,
we compute the regularity of the defining ideals of grids of lines (see Corollary
2.5.11) and complete intersections of lines (see Corollary 2.6.4).

We end this chapter by proposing three possible research topics to ex-
plore: (1) the connection between our varieties of lines in P! x P! x P! and
special configurations of lines in P3; (2) the Hilbert function of any ACM
variety of lines; (3) the regularity of other more general classes of varieties
of lines in P! x P! x P!

In Chapter 3, we study the regularity of bicyclic graphs and their powers.
First, we use combinatorial techniques to compute the induced matching
number of a dumbbell graph:

Theorem D. (Theorem 3.1.4) Let n,m >3 and | > 1. Then

cuonc 3] [3] o805

Then, applying inductive methods and basing our approach on the Lozin
transformation (see [16] and [80]), we study the regularity of the edge ideals
of dumbbell graphs:

Theorem E. (Theorem 3.1.6) Let m,n >3 and l > 1.
(i) If 1 = 0,1 (mod 3), then

v(C,-PF-Cp)+2 if n,m = 2 (mod 3),

reg [(C, - P,-Cy,) = '
v(C,-PF-Cp)+1 otherwise.

(ii) If 1 =2 (mod 3), then

v(Cy - P -Cp)+2 ifn=0,1(mod 3),
reg [(C, - P -Cy,) = m=2 (mod3)
v(C,- P -Cp)+1 otherwise.

Then, for an arbitrary bicyclic graph G, we give a combinatorial character-
ization of reg I(G) in terms of the induced matching number v(G):

Theorem F. (Theorem 3.2.2) Let G be a bicyclic graph with dumbbell C,, -
P, - C,,. The following statements hold.

(1) If n,m = 0,1 (mod 3), then
regI(G) = v(G) + 1.

(1) If n =0,1 (mod 3) and m = 2 (mod 3), then
v(G)+1<regl(G) <v(G)+2,
and reg I(G) = v(G) + 2 if and only if v(G) = V(G \ T'¢(Ch)).

11



(III) If n,m =2 (mod 3) and | > 3, then
v(G)+1<regl(G) <v(G)+3.

Moreover:

(i) regI(G) =v
(i) reg I(G) =v

G)+ 3 if and only if v (G\T'¢(C,UCy,)) = v(G);
G) + 1 if and only zf the following conditions hold:

Py

(a) v(G) —v(G\Te(C,UCy)) >

(b) v(G) > v(G\T6(Cr));

(¢) V(G) > v(G\Ta(Cn)).
(IV) If n,m =2 (mod 3) and | < 2, then

v(G)+1<regl(G) <v(G)+2.

Moreover, if x is a vertex on P, and if L,(G) is the Lozin transforma-
tion of G with respect to xz, then reg I(G) = v(G) + 1 if and only if the
following conditions are satisfied:

(a) V(Lo(G)) = v(La(G) \ ', (6)(Cr U Cr)) > 1;

(b) v(Le(G)) > v(La(G) \ Tr,()(Cn));

(¢) V(Le(G)) > v(La(G)\ T, (6)(Cm))-

We then investigate the asymptotic behavior of regularity of powers of I(C,, -
P, - C,,) when [ < 2. We prove that

Theorem G. (Theorem 3.3.6) Let C,, - P, - Cy,, with | < 2. Then for any
q > 1 we have

reg [(Cy, - P, - Cp)? = 2q +1eg I(C,, - P, - Cy,) — 2.

We also give examples that show the above theorem does not hold for given
n,m,l and ¢ (see Remark 3.3.8).

12



Chapter 1

Definitions, Notation and
Preliminaries

1.1 ACM varieties in multiprojective spaces

In this section we present the relevant background on Hilbert function, reso-
lutions and Cohen-Macaulay ideals within the context of multigraded rings
(see for instance [96], [97], [98]) by extending to the multiprojective space
P x --- x P™ the definitions and results given in [59] in the biprojective
space P! x PL.

1.1.1 Multi-graded rings and Hilbert function

Throughout this thesis k will denote an algebraically closed field of charac-
teristic zero.

Now we extend the theory of graded rings to the theory of multi-graded
rings S with a special emphasis on the case that S is the quotient of a
polynomial ring, or more generally, a finitely generated k-algebra. We also
extend the definition of the Hilbert function to this context.

Let N := {0,1,2,...} denote the set of non-negative integers. We let
N":= N x --- x N and we denote (iy,...,i,) € N* by i. We set |i| := 3} ir.

h times

Let < denote the natural partial ordering on the elements of N* defined
by 2 X j in N" if and only if i, < jj for every k = 1,...,h. We also
observe that N" is a semi-group generated by {ey,...,e,} where ¢; is the i
standard basis vector of N, that is, e¢; := (0,...,1,...,0) with 1 being in
the i** position.

Definition 1.1.1. An N"-graded ring (or simply, a multi-graded ring) is a
ring R that has a direct sum decomposition

R = @ ]:f1 such that RlRl g Rﬁ_l for all l,l < Nh.

i€NP

13



An element 7 € R is said to be N"-homogeneous (or simply, homogeneous)
if r € R; for some i € N". If r is homogeneous, then we let degr := 4.

Now we will assume that R = K[Z1,0, ..., Z1n,, 205« T2ngs -« s Ths - - - s
Thn,]. We induce an N'-grading on R by setting degz; ; = e;, so that R is
a multi-graded ring. If m € R is a monomial, then

a1 Alny @20 a2,nqy () @h,np,
M =I5 Tip Tog " Tony " Tpo " Thp, -

We denote m by X' X5% -+ X;" where a; € N%*L. It follows that degm =
(la1l, lasl,-- -, lay]). If F € R, then we can write F' = Fj + --- + F; where
each Fj; is homogeneous. The F;’s are called homogeneous terms of F.

For each i € N, let R; denote the finite dimensional vector space over k
spanned by all the monomials m = X' X5 --- X; € R of degree degm =
(la1l, |asl, - - -, |lan|) = i. Tt follows that

- 21 19 lh

Definition 1.1.2. Let [ = (F3,..., F,) € R be an ideal. If each generator
F; is N"-homogeneous, then we say that I is an N"-homogeneous ideal (or
simply, a homogeneous ideal).

It can be shown that [ is homogeneous if and only if for every F' € I, all
of the homogeneous terms of F' also belong to I.
If I C R is any ideal, then we set [; := I N R; for all i € N". Each I, is

a subvector space of R;, and furthermore 1D & I;. IfIis homogeneous
i€NP h
then we have an equality, i.e., I = @ I;, because the homogeneous terms
i€Nh
of F belong to I if F € I.
When [ is a homogeneous ideal of R, then the quotient ring R/I also

inherits an N"-graded ring structure:

R/T=@(R/I);= P R/1L

€N ieNP

Remark 1.1.3. The multi-graded ring R = @ R; can also be viewed as a
ieNh T
standard graded ring if we set degz; ; = 1 and for each ¢t € N, we define

}%t::: E{) }%%

{JeN"] |jl=t}

Similarly, a homogeneous ideal I of R and the multi-graded quotient ring
R/I are also N'-graded.

Now we introduce the multi-graded analog of the Hilbert function.

14



Definition 1.1.4. Let I be a homogeneous ideal of R with the N'-grading.
The Hilbert function of R/I is the numerical function Hg/; : N* — N defined
by

Definition 1.1.5. Let H : N* — N be a numerical function. We call
AH :N" = N the first difference function of H where

AH (i) == > (DUH( =1y, i — 1),

Qsl:(lla7lh)§(1171)
where H(j) = 01if j % 0.

For example, if I is a homogeneous ideal of R = k[x1 9,211, T20, T2,1, T30,
x3,] with the N®-grading, then the first difference function of H is the nu-
merical function AH : N> — N defined by

AH(i,5,k) = 3 (=)™ (G — 1,5 —m, k —n).

(0,0,00<(l,m,n)<(1,1,1)

1.1.2 Multi-projective space P™ x --. x P™

We now generalize the classical definition of a projective space and its sub-
varieties to a multi-projective setting.

We define the multi-projective space P™ x --- x P™ to be the set of
equivalence classes

((al’o, . ,al,nl), cee (ah’o, .. .,ah,nh)) - kn1+1 X e X knh+1
with no a; = (a;0,...,6in,) =0 foralli=1,... h /N

where ~ is the following equivalence relation
(@y,...,ap) ~ (by,...,by) <= 3Ai,..., A\, € k\ {0} such that

a; = (ai,07 e ;ai,ni) = (Aibi,07 <. 7>\zbl,n,) = )\lbz ) L= 1’ N "h“

An element of P™ x --- x P™ is called a point. We sometimes denote
the equivalence class of ((a1,0,...,a1ny),---s (@hos---,anm,)) by [a10 - :
A1) X oo X [apo -+t app,]. It follows that [a;o: -+ : a;p,] is a point of
P" for every 1.

We now consider the polynomial ring R = k[z10,..., %105+, Tho,-- -,
Thn,] with the N'-grading. If FF € R is an N"-homogeneous element of
degree (dy,...,dp) and P = [a1o: -+ : Qupy| X - X [apo -+t Qpp,) is a
point of P™ x --- x P™_ then for all non-zero A\, Ao, ..., A\ € k we have

F()\lal,o, P )\2@270, . ,)\ha,hp, e ) =

di \d dp,
)\11)\22"')\h F(CLL(),...,CL270,...,CLh70,...>.

15



To say that F vanishes at a point of P" x --- x P" is, therefore, a
well-defined notion.
If T"is any set of homogeneous elements of R, then we define

V(T)={PeP" x...xP" | F(P)=0forall F eT}.

If I is a homogeneous ideal of R, then V (I) := V(T') where T is the set of all
homogeneous elements of I. If I = (Fy,..., F,), then V(I) = V(Fy,..., F,).
The multi-projective space P™ x --- x P™ can be endowed with a topology
by defining the closed sets to be all the subsets of P! x - - - x P of the form
V(T) where T is a collection of N'"-homogeneous elements of R. If Y is a
subset of P™ x --. x P" that is closed and irreducible with respect to this
topology, then we say Y is a multi-projective variety, or simply, a variety.
If Y is any subset of Pt x .. x P then we set

I(Y):={FeR|F(P)=0forall PeY}.

The set I(Y') is an N"-homogeneous ideal of R and is called the ideal associ-
ated to Y. If Y CP™ x--. x P then we set Iy := I(Y), and we call R/Iy
the N"-homogeneous coordinate ring of Y, or simply, the coordinate ring of
Y. If Hgy, is the Hilbert function of R/Iy, then we sometimes write Hy
for Hg/r,, and we say Hy is the Hilbert function of Y.

By adopting the proofs (see for example [30]) of the well known homo-
geneous case, it can be shown that

Proposition 1.1.6. If R is an N"-graded polynomial ring, then
(i) If I, C I are N"-homogeneous ideals of R, then V(1) 2 V(Iy).
(ii) If Yy C Yy are subsets of P™ X -+« x P™ then I(Y1) 2 I(Y3).
(iii) For any two subsets Y1,Ys of P x -« - x P [(Y1UY5) = I(Y1)NI(Y>).

As in the graded case, the Nullstellensatz holds in the N*-graded context.
Again, the proof follows as in the graded case (see for example [30]).

Theorem 1.1.7 (N"-graded Nullstellensatz). If I C R is an N"*-homogeneous
ideal and F' € R is an N"-homogeneous polynomial with deg F' > 0 such that
F(P)=0 forallP e V(I) CP™ x --- x P then F' € I for somet > 0.

This N*-graded version of the Nullstellensatz allows us to establish a
correspondence between N"-homogeneous ideals of R and subvarieties of
Pt x .- x P, similar to the standard correspondence between graded
ideals and varieties in P”. One difference between the standard graded case
and the N'-graded case is the notion of irrelevant ideals.

Definition 1.1.8. Set m; := (;0,%i1,...,Tipn,) for i = 1,... h. An NO-
homogeneous ideal I of R is called projectively irrelevant if m¢ C I for some
i € {l,...,h} and some positive integer a. An ideal I C R is projectively
relevant if it is not projectively irrelevant.
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Remark 1.1.9. By adapting the proof of the graded case and using the N"-
graded Nullstellensatz, it can be proved that there is a one-to-one corre-
spondence between the nonempty closed subsets of P™ x --- x P™ and the
N"-homogeneous ideals of R that are radical (I = VI ) and projectively
relevant. The correspondence is given by

Y — I(Y) and I+ V().

This construction of P* x --- x P™ and its subsets follows the classical
definition of the projective space P". While multiprojective spaces can be
constructed via the modern methods of schemes, it will suffice for our pur-
poses to only consider the classical definition because we wish to focus on
sets of distinct points and sets of distinct lines. In the language of schemes,
a set of distinct points (or lines) is a reduced scheme, and hence, the classical
approach is equivalent to the schematic approach.

We recall two known results about the ideal associated to a point or a
set of distinct points in a multi-projective space [96, Proposition 2.2.7].

Proposition 1.1.10. For any point P € P™ x --- x P, let Ip the ideal
associated to the point P. Then

(i) Ip is a prime ideal;
(ZZ) IP = <L171, c 7L17Tl17 c. 7Lh,17 ce 7Lh7nh,) where d€g Li,j = €;.

Proposition 1.1.11. Let X = {P,..., P} CP"™ x --- X P™ be a set of
s distinct points and suppose that Ip, is the ideal associated to the point P;.
Then

(Z) IX :Ipl ﬂ]p2ﬂ--~ﬂ]ps;
(i) K-dim R/Ix = h, where K-dim denotes the Krull dimension that is

defined in the next section.

1.1.3 Resolutions and Projective Dimension

Now we recall the necessary results and definitions about the resolution
and projective dimension of an R-module, where R = k[xg,...,z,] is an
Nl-graded ring, although these definitions and results hold more generally.

Definition 1.1.12. An R-module M is a graded R-module if
(i) the module M has a direct sum decomposition M = @ M; where each
i€l

M; is an additive abelian group;

(ii) R;M; € M,4, for all i € N and all j € Z.
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If I is a homogeneous ideal of R, then I can be viewed as a graded R-
module if we take I; = 0 for ¢ < 0. Similarly, for any homogeneous ideal
I C R, the quotient ring R/I is a graded R-module.

If M is any R-graded module, and d is any integer, we let M (d) denote
the direct sum M (d) = @/A Mg.;. Then M(d) is also a graded R-module,

1€

and it is sometimes referred to as the twisted graded module.

Definition 1.1.13. Let M and N be graded R-modules. A homomorphism
of graded R-modules ¢ : M — N is said to be a graded homomorphism of
degree d if (M;) C N;iq for all i € Z.

In particular, an R-module graded homomorphism ¢ : M — N has
degree 0 if p(M;) C N; for all i € Z.

Definition 1.1.14. Let M be a graded R-module. The minimal graded free
resolution of M is an exact sequence of the form

s @ R(—j)R00D 22y @ R(—j)Pa D) 2

JEN jeN
2L @ R(—j)Per ™M 25 M — 0
JEN

where each J; : 69 R(—j)%M) is a graded free R-module and each map

v+ Fi = Fiq, Wlth F_1:= M, is a graded homomorphism of degree zero
such that p;41(F;11) C mTF; for all i > 0.

The numbers 3; ;(M) are the graded Betti numbers of M. In particular,
the number 3; = Z Bi; (M) is called i-th Betti number of M and f3; j(M) is

the i-th Betti numbe'r of M of degree j.

Definition 1.1.15. Let M be a graded R-module. The projective dimension
of M, denoted proj-dimp M, is the length of a minimal graded free resolution
of M.

1.1.4 Cohen-Macaulay rings

In this section we define Cohen-Macaulay rings and collect the facts we need
in the later chapters. Our primary references for the material of this section
on theory of Cohen-Macaulay rings is developed in [17] and [82].

We assume that R = K[Z10,. .-, Z1n5 2055 T2mps -« Th0s - - Thiny |
and we induce an N'-grading on R by setting degz; ; = e;, where ¢; is the

i-th standard basis vector in N*. We define m to be the ideal m := @ R;.
0£jeNt  —
We recall the following definitions.

Definition 1.1.16. Let I C R be an homogeneous ideal of R and let p be
a prime ideal of R/I. The height of p is the largest integer ¢ such that there
exist prime ideals p; of R/I such that p =p; D pi—1 2 -+ 2 p1 2 po. We
write htR/[(p) =t.
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Definition 1.1.17. For any ideal I of R, the Krull dimension of R/I, de-
noted by K-dim(R/I), is the number

K-dim(R/I) := sup{htp/;(p) | p is a prime ideal of R/I}.

Definition 1.1.18. Let F},..., F,. be a sequence of non-constant elements
of R and let I be an N"-homogeneous ideal. Then we say Fi,...,F, is a
reqular sequence modulo I or give rise to a reqular sequence in R/I if and
only if

(i) ({,F1,...,F) Cm,
(ii) Fy is not a zero-divisor in R/I,
(iii) F; is not a zero-divisor in R/(I, Fy,...,F;_;) for 1 <i <.

The sequence Fi,..., F, is called a maximal reqular sequence modulo I if
Fi, ..., F, is a regular sequence which cannot be made longer.

Observe that for an arbitrary ring it is not true that all maximal regular
sequence have the same length. However, since we shall only consider N”-
homogeneous ideals of R, the following theorem applies.

Theorem 1.1.19. [17, Theorem 1.2.5] Suppose that I C m is an N'-
homogeneous ideal of the Noetherian ring R. Then all maximal regqular
sequence modulo I have the same length.

By this theorem arises in a natural way the following definition:

Definition 1.1.20. Let / C m be an N"-homogeneous ideal of R. The depth
of R/1, written depth(R/I), is the length of a maximal regular sequence
modulo /.

One can show, using Krull’s Principal Ideal Theorem [92, Theorem 15.2],
that depth(R/I) < K-dim(R/I) always holds. If equality occurs, then we
give the ring R/I a special name.

Definition 1.1.21. Let / C m be an N"-homogeneous ideal of R. Then
the ring R/I is called Cohen-Macaulay (or CM for short) if depth(R/I) =
K-dim(R/I). In this case we say that the ideal I is Cohen-Macaulay.

Definition 1.1.22. Let M be a module over the commutative Noetherian
ring A, and let p be a prime ideal of A. Then we say p is an associated prime
ideal of M when there exists an element m € M such that (0: m) = p. The
set of associated prime ideals of M is denoted by Ass,(M).

Remark 1.1.23. Suppose that I is a proper ideal of a commutative Noetherian
ring A and suppose that I = Q1N ---NQ, is the primary decomposition of

I. Set p; = /Q;. Then we have Asss(A/I) = {p1,...,p,}.
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Definition 1.1.24. Let A be a commutative Noetherian ring and I be an
ideal of A. Suppose that Assa(A/I) = {p1,...,p,}. We say that I is unmized
if hta(p;) =hta(f) foralli=1,... r.

Now we recall a series of results about Cohen-Macaulay local rings that
allow us to prove that if I is a homogeneous ideal of a polynomial ring R
with the property that R/I is Cohen-Macaulay, then the associated prime
ideals of I all have the same height (for the proofs of these following results,
see [7] and [82]).

Lemma 1.1.25. If (A,m) is a local CM ring, then for any ideal I C A, we
have hts(I) + K-dim(A/I) = K-dimA.

Lemma 1.1.26. If A is a CM ring, and if S is any multiplicatively closed
subset, then S™'A is also CM (i.e. the CM property is preserved under
localization).

Lemma 1.1.27. Let S be a multiplicative subset of A, and let M be a finitely
generated A-module. Put A’ = S™*A and M' = S™'M. Then there exists a
1 — 1 correspondence between the sets

Ass(MYN{p C A | p prime, pN S =0} £ Assa (M)
via the map p — pSTLA.

Proposition 1.1.28. Let (A, m) be a Noetherian local ring, and let M be a
finitely generated CM A-module. Then depth M = K-dim(A/p) for everyp €
Assa(M).

By these results it follows the next well known theorem, that also applies
in the case of a graded polynomial ring.

Theorem 1.1.29. Let I be a homogeneous ideal of R = k|xq,...,z,| and
suppose that I C m:= (xg,...,x,). Then

(i) htr(I) + K-dim(R/I) = K-dim R;
(i) if R/I is a CM ring, then the ideal I is unmized.

Definition 1.1.30. A variety X C P™ x --- x P™ is arithmetically Cohen-
Macaulay (ACM for short) if the multi-graded coordinate ring R/Ix is CM.

Remark 1.1.31. Suppose X C P™ x ... x P™ is a variety. The multi-
homogeneous ideal Iy in the N-graded polynomial ring R corresponding
to X is also a homogeneous ideal in the normal sense. We let X denote the

h
variety in PV, where N = (Z (n; + 1)) — 1, defined by Ix. The condition

=1
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of being CM is a condition on the depth of R/Ix. Because the grading of a
ring does not influence the depth of a ring,

XCP" x-..x P is ACM <— X C PV is ACM.

Note that the dimension of the variety X is bigger than the dimension of X.
Specifically, dim X = dim X + h.

The following results about CM rings will be required in the later chap-
ters.

Lemma 1.1.32. If A is a CM ring and x is a non-zero divisor in A, then
the ring A/(z) is also CM. Moreover, K-dim A/(x) = K-dim A — 1.

Lemma 1.1.33. Let J = (Fy,...,F,) € m C R be an N"-homogenecous
ideal. Suppose that Fy, ..., F, give rise a reqular sequence in R. Then R/.J
is CM.

Definition 1.1.34. Suppose that X C P™ x --. x P is a variety. If the
N"-homogeneous ideal Ix is generated by a regular sequence in R, then we
say X is a complete intersection.

Remark 1.1.35. By Lemma 1.1.33, a complete intersection is always ACM.

The following result from homological algebra, that is a special case of the
Auslander-Buchsbaum formula, allows us to link the depth of the quotient
ring R/1 to its projective dimension.

Theorem 1.1.36 (Auslander-Buchsbaum Formula). Let I be a homo-
geneous ideal in the standard graded ring R = k[xo, ..., .|, then

proj-dimg(R/I) + depth(R/I) = K-dim(R).

This theorem allows us to characterize Cohen-Macaulay rings via the pro-
jective dimension of the ring, rather than in terms of the depth of the ring
as in the definition of the CM property.

Theorem 1.1.37. Let I be a homogeneous ideal in the standard graded ring
R = k[zo, ..., x,], then

R/I is CM if and only if proj-dim(R/I) =n+ 1 — K-dim(R/I).

Proof. Thering R/I is CM if and only if depth(R/I) = K-dim(R/I). Hence,
by the Auslander-Buchsbaum formula we have

proj-dim(R/I) + K-dim(R/I) = proj-dim(R/I) + depth(R/I) = n + 1.

O
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1.1.5 General remarks on points in P! x P!

In this section we refer to [59] to recall the basic properties of a set of
points X in P! x P! and describe its associated homogeneous ideal and some
algebraic invariants of the coordinate ring Rx := R/I(X).

A point P € P! x P! has the foom P = A x B, with A,B € P! not
necessarily distinct. Given a point P = A x B of P! x P!, its associated
homogeneous ideal I(P) in the bigraded ring R = k[xq,x1, %o, y1| has the
following properties [59, Theorem 3.1]:

(i) I(P) is a prime ideal of R;
(ii) I(P) = (H,V) where deg H = (1,0) and deg G = (0, 1);

(ili) Let X = {P,..., P} C P! x P! be a set of s distinct points and
suppose that I(P;) is the ideal associated to the point P;. Then [(X) =
I(P)N---NI(P).

Remark 1.1.38. By the proof of (ii) property it follows that if P = A X
B € P! x P!, where A = [ag : a1] € P! and B = [by : by] € P!, then
I(P) = (a1m9 — agz1, biyo — boyn)-

Remark 1.1.39. The bihomogeneous ideal I(P) associated to a point P €
P! x P! corresponds geometrically to a line in P3. We now explain this point
of view. Consider the two skew lines L; and Ly in P? defined by I(L,) =
(wg,21) and I(Ly) = (yo,y1). Given a point P = [ag : a1] x [bg : b1] € P x P!,
by the previous Remark we have that I(P) = (ayjzo—aox1, biyo—boy1). Since
k[P! x P'] = k[P3] as rings, we can regard I(P) as a N'-homogeneous ideal
which defines a line L in P? through the points B = [0 : 0 : by : by] on L,
and A = [ap : a; : 0: 0] on Ly. So, as a graded ideal, I(P) defines a line
in P? that intersects both L, and L, and furthermore, the coordinates of P
describe where the line defined by I(P) intersects these two skew lines.

Now we recall a combinatorial description of a set of points in P! x P* [59,
Section 3.2, that gives us some information related to some of the algebraic
invariants of the associated bigraded coordinate ring.

On P! x P! there exist two families of lines { Ho} and {V}, each parame-
trized by C' € P!, with the property that if A # B € P!, then Hy N Hg = ()
and V,NVg = 0, and for all A, B € P*, H4NVp = Ax B is a point on P* x P!
We can thus view P! x P! as a grid with horizontal and vertical rulings. A
point P = [ag : ay] X [by : b1] € P! x P! can be viewed as the intersection of
the horizontal ruling defined by the degree (1,0) line H = a2y — apx; and
the vertical ruling defined by the degree (0, 1) line V' = byyo — boy;. Hence,
to any nonempty finite set X C P! x P! of points we associate a set Ly of
integer lattice points indicating which points lie on the same horizontal or
vertical ruling. The idea is to enumerate the horizontal and vertical rulings
whose intersection with X is nonempty. We thus obtain, say Hy, ..., H, and
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h v
Vi,...,V, where X C U H; and X C U V}, and Lx consists of all pairs
i=1 j=1

(¢,7) such that X N H; NV, # 0.

If 7 : P! x P! — P! denotes the natural projection morphism onto
the first coordinate, then note that h = |m(X)|, the number of distinct
first coordinates that appear in X. Similarly, if 7, : P! x P! — P! is the
projection morphism onto the second coordinate, then v = |my(X)| is the
number of distinct second coordinates.

Ezample 1.1.40. Let X be the following set of points in P! x P!

X = {Al X BQ,Al X B4,A1 X B5,A2 X BQ7A2 X Bg,AQ X B4,A2 X B5,
A3 X Bl,Ag X BQ,Ag X B3,A3 X B4,A3 X B5}

Using the above mentioned construction, the set of points X can be repre-
sented as in Figure 1.1.

Ve, Vs, VB, VB, Vs,

Figure 1.1: The set of points X.

We now make two conventions by which we will introduce a combinatorial
description of a set of points in P! x P

Convention 1.1.41. We shall abuse notation to let H 4, respectively Vg, de-
note both the horizontal ruling, respectively the vertical ruling, and the
degree (1,0) form, respectively the degree (0, 1) form, that defines the rul-
ing. Thus, given a point P = A x B € P! x P!, its defining ideal is given by
I(P) = (Ha,Vg), and geometrically, P = H, N V.

Convention 1.1.42. By relabeling the horizontal and vertical rulings, we can
always assume that | XNHy, | > | XNHa,| > -+ and | XNVp, | > | XNVp,| >

---. That is, we can assume that the first ruling contains the most number
of points, the second ruling contains the same number or less, and so on.

Example 1.1.43. After relabelling the horizontal and vertical rulings accord-
ing to Conventions 1.1.41 and 1.1.42, the set of points X of Example 1.1.40
can be drawn as in Figure 1.2.
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V5, Vs, V&, V&V

B 0 N G O
— o o o @ Hz,
—e ® ° Hz,

Figure 1.2: The set of points X after relabelling the rulings.

Using the previous notation and conventions, we recall the following def-
initions [59, Definitions 3.11, 3.12 and 3.13].

Definition 1.1.44. Let X C P! x P! be a finite set of distinct points and
suppose that m (X) = {Ay,..., Ay} and mo(X) = {B4,..., B, }.
Fori=1,...,h,set a; == |7 *(4;) N X|, and let ay := (a1, ..., ap).

For j =1,...,v,set B3; := |m3 ' (B;) N X|, and let Bx := (B1,...,5.).

The number «; counts the number of points in X whose first coordinate
is A;, that is the number of points of X that lie on the horizontal ruling
H;. Analogously, the number 3; counts the number of points in X whose
second coordinate is B;, that is the number of points of X that lie on the
vertical ruling V;. By Convention 1.1.42 , we have a; > ay > -+ > a3, and
similarly, Bl > ﬁQ > 2 Bu-

Every set of points X can now associated with two tuples ax and By,
both of which are partitions of | X].

Definition 1.1.45. A tuple A = (\y,...,\;) of positive integers is a par-
tition of an integer s if Y77 ; \; = s and \; > A4y for every i. We write
A=A, ) F s

The conjugate of X is the tuple \* = (A],...,A},) where A} = #{)\; €
A | Aj >i}. Furthermore, \* F= s.

Definition 1.1.46. To any partition A = (A\y,...,\,) = s we can associate
the following diagram: on an r x Ay grid, place A; points on the first hor-
izontal line, Ay points on the second, and so on, where the points are left
justified. The resulting diagram is called the Ferrers diagram of X.

Definition 1.1.47. Let X C P! x P! be a finite set of distinct points. We
say that X resembles a Ferrers diagram if after we apply Convention 1.1.42,
the set of points looks like a Ferrers diagram.

Applying Lemma 3.17, Theorem 3.21 and Theorem 4.11 in [59], we have
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Lemma 1.1.48. Let Y be a finite set of points in Pt x P*. Y is ACM if and
only if Y resembles a Ferrers diagram.

The next definition introduces an important property that allows us to
characterize ACM sets of points in P! x P!. We will generalize this property
for varieties of lines in P* x P! x P! (see Definition 2.2.9).

Definition 1.1.49. A set of points X C P! x P! satisfies property (x) if
whenever A x B and A’ x B" are in X with A # A’ and B # B’, then either
A x B"or A’ x B (or both) is also in X.

We now recall two different characterizations of arithmetically Cohen-
Macaulay sets of points in P! x P! [59, Theorem 4.11].

Theorem 1.1.50. Let X C P! x P! be a finite set of distinct points. Then
the following are equivalent:

(i) X is an ACM set of points.
(i) ox = Px-
(iii) X satisfies property ().

Note that, by the previous theorem, we can determine if a set of points
X in P! x P! is ACM directly from a combinatorial description of the points.

Furthermore, when X is ACM, the combinatorial description of the
points allows us to determine the bigraded minimal free resolution of 7(X)
(59, Theorem 5.3].

Theorem 1.1.51. Suppose that X C P! x P! is an ACM set of points with

ax = (aq,...,ap). Then the bigraded minimal free resolution of I(X) has
the form
0— @ R(—'Ul, —’02) — @ R(—Cl, —CQ) — [(X) — O,
(v1,v2)EVX (c1,e2)eCx
where
C1X = {(h7 O)a (Oa 041)} U {(Z - 17 ai) | Q; — Qi1 < 0}’
and

Vx = {(h, th)} U {(2 -1, Ozz‘_l) | o — o1 < 0}

1.2 Regularity of edge ideals

In this section we recall many recent results on the regularity of ordinary
powers of squarefree monomial ideals and we survey how to find bounds and
compute the exact value for the regularity in terms of combinatorial data
from associated simplicial complexes and/or hypergraphs. We refer to [19]
for all definitions, results and techniques recalled in this section.
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1.2.1 Combinatorial framework

We now illustrate the general framework and recall basic notation and ter-
minology from commutative algebra and combinatorics (for more details, see
[13], [19], [70], [83], [93]).

Let R = k[z1,...,x,] be a polynomial ring over k, and let m be the
maximal homogeneous ideal in R. By abusing of notation, we identify a
subset V' of the vertices X = {xy,...,2,} with the squarefree monomial
2V = [I,ey @ in the polynomial ring R.

Definition 1.2.1. A simplicial complex A over the vertex set X = {z1, ...,
x,} is a collection of subsets of X such that if ' € A and G C F then
G € A. Elements of A are called faces. Maximal faces (with respect to the
inclusion) are called facets.

For F' € A, the dimension of F' is defined to be dim F' = |F| — 1. The
dimension of A is dim A = max{dim F' | F € A}.

The complex is called pure if all of its facets are of the same dimension.

Definition 1.2.2. Let A be a simplicial complex and let Y C X be a subset
of its vertices. The induced subcomplez of A on Y, denoted by A[Y], is the
simplicial complex with vertex set Y and faces {FF € A | F CY}.

Ezxample 1.2.3. The simplicial complex A in Figure 1.3 is of dimension 3.
The facet {a, b, c,d} is of dimension 3, the facet {e, f, g} is of dimension 2
and the facet {d, e} is of dimension 1.

Figure 1.3: A nonpure simplicial complex.

Definition 1.2.4. A hypergraph H = (X,€) over the vertex set X =
{z1,...,2,} consists of X and a collection & of nonempty subsets of X
which are called edges of H.

An isolated verter is a vertex that does not belong to any edge. An
isolated loop is an edge consisting of a single vertex.

Definition 1.2.5. A hypergraph H is simple if there is no nontrivial con-
tainment between any pair of its edges.

We shall assume that hypergraphs under consideration are simple and
have no isolated vertices.

26



Definition 1.2.6. Let H = (X, &) be a simple hypergraph. An edge E € €
is incident to a vertex x € X if € E. The degree of the vertex z, denoted
by deg(x), is the number of edges incident to x.

Definition 1.2.7. Let Y C X be a subset of the vertices in H. The induced
subhypergraph of H on'Y', denoted by H[Y], is the hypergraph with vertex
set Y and edge set {F € € | ECY}.

Definition 1.2.8. Let H be a simple hypergraph. A collection C' of edges of
H is called a matching if the edges in C' are pairwise disjoint. The maximum
size of a matching in H is called its matching number.

Definition 1.2.9. Let H be a simple hypergraph. A collection C' of edges
of H is called an induced matching if C' is a matching, and C' consists of all
edges of the induced subhypergraph H[UgecE| of H. The maximum size of
an induced matching in H is called its induced matching number and it is
denoted by v(H).

Ezample 1.2.10. Let H = (X, &), with vertex set X = {a,b,¢,d, e, f} and
edge set € = {{a,b,c,d},{d,e},{f}}. The collection {{a,b,c,d},{f}} forms
an induced matching in H.

Definition 1.2.11. Let H = (X, €) be a simple hypergraph and let = be a
vertex in X. We call set of neighbors of x the set

N@z)={VCX st VU{z}eé&}

and we denote N[z| = N(x)U {z}.
Let E be an edge in H. We call set of neighbors of E the set

NE)={re X |IF C E st FU{z} €&}
and we denote N[E] = N(E) U E.

Definition 1.2.12. Let H = (X, ) be a simple hypergraph and let E be
an edge in H. We call deletion of E from H, and we denote it by H \ E, the
hypergraph obtained by deleting F from the edge set of H (but the vertices
are remained).

For a subset Y C X of vertices in H, we define H \ Y to be the sub-
hypergraph of H obtained by deleting the vertices of Y and their incident
edges.

We also define Hg to be the induced subhypergraph of H over the vertex
set X \ N[E].

Definition 1.2.13. Let H = (X, &) be a simple hypergraph. A collection
of vertices V in H is called an independent set if there is no edge F € € such
that £ C V.
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Definition 1.2.14. Let H = (X, ) be a simple hypergraph. The indepen-
dence complex of H, denoted by A(H ), is the simplicial complex whose faces
are independent sets in H.

Definition 1.2.15. A graph is a hypergraph in which all edges are of car-
dinality 2.

The complement of a graph G, denoted by G¢, is the graph with the
same vertex set and an edge E is in G° if and only if F is not in G.

Definition 1.2.16. Let G = (V| E) be a graph.

1. G is called a path with [ vertices, denoted by P, if V' = {vy,... v}
and {v;,v;1} € Eforall 1 <i<I[-—1,

2. G is called a cycle with n vertices, denoted by C,,, if V = {vy,...,v,}
and {v;,vi41} € Eforall 1 <i<mn—1and {v,, v} € E.

3. G is called a dumbbell graph if G contains two cycles C,, and C,, joined
by a path P, of [ vertices. We denote it by C,, - P, - C,,,.

Definition 1.2.17. A chord is an edge joining two not adjacent vertices in
a cycle. A minimal cycle is a cycle without chords.

Definition 1.2.18. A graph G is called chordal when all its minimal cycles
have length three, or equivalently, if it has no induced cycles of length > 4.

Remark 1.2.19. [14, Remark 2.12] Let P, be a path of [ vertices, then we

have 41
YRl
Remark 1.2.20. [14, Remark 2.13] Let C,, be a cycle of n vertices, then we

have
n

UC) = 5.

A maximal induced matching of C,, is completely determined by just choos-
ing a first edge, and then we go (for instance) in clockwise direction by
taking the third consecutive edge after the last one chosen. Thus, we shall
use r = n mod 3 to give a specific characterization of the structure of the
maximal induced matching. Depending on r we can assume the following:

1. when r = 0, the edges z;29 and x;z, do not belong to a maximal
induced matching of C,;

2. when r = 1, the edges x1x2, 12, and x,_iz, do not belong to a
maximal induced matching of C);

3. when r = 2, the edges x1xy, xox3, T2, and x,_iz, do not belong to
a maximal induced matching of C,,.
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1.2.2 Stanley-Reisner ideals, edge ideals, cover ideals
and Alexander duality

The correspondences between squarefree monomial ideals and simplicial
complexes and/or simple hypergraphs arise via the Stanley-Reisner ideal
and edge ideal constructions and allow us to pass back and forth from com-
mutative algebra to combinatorics.

Definition 1.2.21. Let A be a simplicial complex on X. The Stanley-
Reisner ideal of A is defined to be

In = (2 | F C X is not a face of A).

The edge ideal construction was introduced in [100] for graphs and later
generalized to hypergraph in [66].

Definition 1.2.22. Let H be a simple hypergraph on X. The edge ideal of
H is defined to be

I(H) = (2" | EC X is an edge in H).

Definition 1.2.23. Let H be a simple hypergraph on X. The cover ideal
of H is defined to be
JH)= [ (2i,7)).

{$i,Ij}EE

Remark 1.2.24. Recall that the Stanley-Reisner ideal of the independence
complex A of H is the edge ideal of H, that is In = I(H).

Another significant tool in the study of squarefree monomial ideals is the
Alexander duality theory for simplicial complexes.

Definition 1.2.25. Let A be a simplicial complex over the vertex set X.
The Alexander dual of A, denoted by AV, is the simplicial complex over X
with faces

{(X\F[F¢&A}

Notice that AVY = A.

If I = Ia, then we shall denote by IV the Stanley-Reisner ideal of the
Alexander dual AV. If I = I(H), then we shall denote by H" the simple
hypergraph corresponding to IV.

If G is a graph, it is a well known fact that each I(G) and J(G) is the
Alexander dual of the other, that is I(G)Y = J(G).

It is celebrated result of Terai (see [94]) that the regularity of a squarefree
monomial ideal can be related to the projective dimension of its Alexander

dual.

Theorem 1.2.26. Let I C R be a squarefree monomial ideal. Then

veg (1) = pd (R/IY).
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1.2.3 Regularity of powers of squarefree
monomial ideals

The notion of the Castelnuovo-Mumford regularity can be defined in various
way. First, we give the general definition using local cohomology modules
and then we give a definition via the minimal free resolution in the specialized
context of polynomial rings. We refer to [19] for the following definitions and
results.

Definition 1.2.27. Ler R be a standard graded algebra over a Noetherian
commutative ring with identity and let m be its maximal homogeneous ideal.
Let M be a finitely generated graded R-module. For i > 0, let

() = {max{z € Z | [Hi,(M)]i # 0} if H,(M) #0

—00 otherwise.
The regularity of M is defined to be

reg (M) = max{a’(M)}.

>0
Note that the regularity of M is well-defined since a’(M) = 0 for i > dim M.

When R is a standard graded polynomial ring, the regularity of an R-
module can also be computated via the minimal free resolution (see [25],
36]).

Definition 1.2.28. Let R be a standard graded polynomial ring over a field
and let m be its maximal homogeneous ideal. Let M be a finitely generated
graded R-module and let

0= @PR(—j)»™M - ... 5 P R(—5) M =0
jEL JEL
be its minimal free resolution. Then the regularity of M is given by

reg (M) = max{j — i | B;;(M) # 0}.

Remark 1.2.29. By looking at the minimal free resolution, it is easy to see
that reg (R/I) = reg(l) — 1, so we can work with reg (/) and reg (R/I)
interchangeably.

Remark 1.2.30. It is clear from the previous definition that the regularity of
M gives an upper bound for generating degrees of M.

Now we recall one of the most powerful results about regularity of powers
of homogeneous ideals, that was independently proved by Cutkosky, Trung
and Herzog (see [32]) and Kodiyalam (see [79]).
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Theorem 1.2.31. Let R be a standard graded algebra over a Noetherian
commutative ring with identity. Let I C R be a homogeneous ideal. Then
there exist constants a and b such that

reg 1! =aq+b forall ¢> 0.
Moreover,
a =min{d(J) | J is a minimal reduction of I},

where J C I is a reduction of I if I*t1 = JI* for some (and all) s > 0, and
d(J) denotes the maximal generating degree of J.

Determine the constants b and go = min{t € Z | regI? = aq+bV q > t}
remains a wide open problem. When we restrict this problem to the case
where I = I(G) is the edge ideal of a simple graph G, it is known that for
q>0,

regl? = 2q+b.

When [ is the edge ideal of a particular graph G, like a forest, a cycle
or a unicyclic graph, the problem of determining the constants b and ¢y =
min{t € Z | regl?! = 2q + b ¥q >t } has been solved. The regularity of the
edge ideal of a forest was first computed by Zheng (see [104]).

Theorem 1.2.32. [104, Theorem 2.18] Let G be a forest, then
reg [(G) = v(G) + 1.
The previous result was extended to chordal graphs in [66].

Theorem 1.2.33. [66, Theorem 6.8] Let G be a chordal graph, then
reg [(G) =v(G) + 1.

In [78] Katzman first noticed that the previous equality is a lower bound for
general graphs.

Theorem 1.2.34. [78, Corollary 1.2] Let G be a graph, then
reg I(G) > v(G) + 1.

This result is extended for all simple hypergraphs in [85].

The decycling number of a graph is an important combinatorial invariant
which can be used to obtain an upper bound for the regularity of the edge
ideal of a graph.

Definition 1.2.35. For a graph G and D C V(G), if G\ D is acyclic, i.e.
contains no induced cycle, then D is said to be a decycling set of G. The

size of a smallest decycling set of GG is called the decycling number of G and
denoted by V(G).
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Theorem 1.2.36. [16, Theorem 4.11] Let G be a graph, then
regI(G) <v(G)+ V(G) + 1.

Theorem 1.2.37. [85, Corollary 3.9] Let H be a simple hypergraph. Sup-
pose that {Ey, ..., Es} forms an induced matching in H. Then

reg (H) 2 (1B~ 1) + 1.

Remark 1.2.38. Note that if H consists of disjoint edges then the bound in
Theorem 1.2.37 becomes an equality.

We have also obtained the explicit computation of the regularity for spe-
cial classes of squarefree monomial ideals that have combinatorial structures
that force them to have small regularity. Note that a squarefree monomial
ideal has regularity 1 if and only if it is generated by a collection of variables.
Thus, it’s natural starting to consider ideals with regularity at least 2. The
following result was originally stated and proved by Wegner (see [101]) using
topological language, and re-stated in terms of monomial ideals by Froberg
(see [37] , [48] and [64]).

Theorem 1.2.39. Let G be a simple graph. Then reg I(G) = 2 if and only
if G is a chordal graph.

It is still an open problem to give a combinatorial characterization for
squarefree monomial ideals I such that reg (/) = 3 or to classify simple
graphs G such that reg I(G) = 3, and only few partial results have been
obtained to today.

In [14] Beyarslan, Ha and Trung provided a formula for the regularity
of powers of the edge ideal of a forest or a cycle in terms of its induced
matching number.

Theorem 1.2.40. [14, Theorem 4.5] Let G be a graph with edge ideal I(Q)
and let v(G) denote its induced matching number. Then, for all ¢ > 1, we
have

regI(G)? > 2¢ + v(G) — 1.

Theorem 1.2.41. [14, Theorem 4.7] Let G be a forest and let I = I(G) be
its edge ideal. Then for all ¢ > 1, we have

regl? =2q+v(G) — 1.

Theorem 1.2.42. [14, Theorem 5.2] Let C,, denote the n-cycle and let
I =1(C,) be its edge ideal. Let v = %] be the induced matching number of
Cy. Then

v+1 ifn=0,1 (mod3),
reg | = )

v+2 ifn=2 (mod 3).
Moreover, for all ¢ > 2

reg [(C,)? =2+ v(C,) — 1.
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In addition they prove an upper bound for graphs which contain Hamil-
tonian path. We recall that a Hamiltonian path of a graph G is a path that
goes through each vertex of G exactly once.

Theorem 1.2.43. [14, Theorem 3.1] Let G be a graph on n vertices. If G
contains a Hamiltonian path, then

n+1
3

regI(G) < | |+ 1
Theorem 1.2.44. [3, Theorem 1.2] Let G be a unicyclic graph (i.e., a graph
having ezxactly one cycle) and let I = I(G) be its edge ideal. Then for all
q > 1, we have

reg [! = 2q +regl — 2.

The simplest situation for an edge ideal is when its powers have linear reso-
lution.

Definition 1.2.45. Let I be an ideal of R. We say that I has a d-linear reso-
lution if I is generated by homogeneous elements of degree d and reg(1) = d.
That is, the graded minimal free resolution of I is of the form:

0= R(—d—5)" = -+ = R(-d—1)"" - R(=d)’ - I 0.

Among all the interesting problems in Catslnuovo-Mumford regularity, clas-
sification of ideals with linear resolution is of great importance. Proving
that a class of ideals has a d-linear resolution is difficult in general. How-
ever, some classes of ideals with linear resolution may be found in [6], [27],
[39], [71], [104]. It is a nice result (see [48], [101]) that the edge ideal of a
graph G has a linear resolution if and only if G¢ is chordal.

Theorem 1.2.46. [/8, Theorem 1] Let G be a graph. Then I(G) has a
linear resolution if and only if G is a chordal graph.

Theorem 1.2.47. [35, Theorem 3] Let G be a graph. Then I(G) has a
linear resolution if and only if J(G) is CM.

It also follows from [71] that if I(G) has a linear resolution then so does
I(G)? for all ¢ > 1. It is, thus, of interest to characterize graphs whose
(sufficiently large) powers have linear resolutions. It is known (see [88]) that
if a power of /(@) has a linear resolution then G° has no induced 4-cycles.
It is often difficult to get the exact value for the asymptotic linear function
reg [9. Linear bounds are also of interest. In [14, Theorem 4.5] it was given
a general lower bound for reg I? that was inspired by a result of Katzman
(see [78]), who proved the bound when ¢ = 1, i.e. for the edge ideal itself.
Unfortunately, there has not been any satisfactory general upper bound.
For the special class of bipartite graphs, it was obtained the following upper
bound for reg 19.
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Theorem 1.2.48. [75, Theorem 1.1] Let G be a bipartite graph and let
I = I(G) its edge ideal. Then for all ¢ > 1, we have

reg [? < 2q + co-chord(G) — 1.

We recall that the co-chordal number of G, denoted by co-chord(G), is the
least number of co-chordal subgraphs of G' (subgraphs whose complements
are chordal) whose union is G.

1.2.4 Inductive results on regularity of powers of edge
ideals

In this section, we recall some of the most important inductive results that
relate the regularity of (powers of) a squarefree monomial ideal correspond-
ing to a hypergraph to that one of smaller ideals corresponding to subhy-
pergraphs (for more details, see [19]).

Theorem 1.2.49. Let G be a graph and let H be an induced subgraph of G.
Then for any s > 1 and any i,7 > 0, we have

i (I(H)?) < Bi i (1(G)?).

Corollary 1.2.50. Let G be a graph and let H be an induced subgraph of
G. Then, for all g > 1,

reg [(H)? <regI(G)".

For a subset V of the vertices in a hypergraph H, let H: V and H+V denote
the hypergraphs corresponding to the squarefree monomial ideals I(H): 2"
and I(H) + 2V, respectively. We have the following inductive bounds (see
[19]).

Theorem 1.2.51. Let H be a simple hypergraph and let V' be a collection
of d vertices in H. Then

reg (H) < max{reg(H:V)+d,reg(H +V)}. (1.1)

Theorem 1.2.52. Let H be a simple hypergraph and let E be an edge of
cardinality d in H. Then

reg (H) <max{ d, reg(H \ F), reg(Hg)+d—1 }. (1.2)

Remark 1.2.53. [62, Lemma 3.1, Theorems 3.4 and 3.5] In particular, if
G = (V,E) is a graph, for all z € V and e € E we have:

(i) reg I(G) < max{reg [(G \ x),reg I(G \ N[z]) + 1};
(i) reg I(G) < max{2,regI(G \ ¢),reg I(G.) + 1}.
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Kalai and Meshulam (see [77]) proved the following powerful result that
allows us to use induction even when we do not necessarily split the edges
of H into disjoint subsets. This result was later extended to arbitrary (not
necessary squarefree) monomial ideals by Herzog (see [69]).

Theorem 1.2.54. Let I1,...,I, be monomial ideals in R. Then

reg (R/ ; 1i> < reg (R/I).

=1

In particular, for edge ideals of a hypergraph and subhypergraphs, we have
the following inductive bound.

Corollary 1.2.55. Let H and Hy,...,H, be simple hypergraphs over the
same vertex set X such that E(H) = U E(H;). Then
i=1

reg (R/I(H)) < Y. reg (R/I(H,).

In one of his recent works (see [10]), Banerjee provides us an inductive
method to work with regularity of powers of edge ideals. We recall the follow-
ing definitions and theorems (see [10]) that will be crucial to our treatment
in the last chapter of this thesis.

Theorem 1.2.56. [10, Theorem 5.2] Let G be a graph and let s be a pos-
itive integer. Denote the set of minimal monomial generators of 1(G)* by
{ml, e ,mk}. Then

reg I(G)*™ < max{reg I(G)*,reg (I(G)**': my) + 25,1 <1 < k}.

Definition 1.2.57. Let G = (V, E) be a graph with edge ideal I = I(G).
Two vertices v and v in G are said to be even-connected with respect to an
s-fold product M = z° ...x°, where ey, ..., e, are edges in G, if there is a

path po, ..., pos1, for some [ > 1, in G such that the following conditions
hold:

1) po = u and pyy1 = v;
2) forall 0 <j <1l—1,{psjs1,p2j4+2} = e; for some 3;
3) for all i, [ {j | {p2j1,pojaet =€} | < [{t [ e =6} |.

Definition 1.2.58. The edges e; = v11v12,...,€4 = Ug1V,2 are in an even-
connected position, if for all 1 <7 < ¢ — 1, the vertex z;9 is connected to
the vertex z;41; and there exist u € N(e;) and v € N(e,) such that u and

v are even-connected with respect to w, - - ., .
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Theorem 1.2.59. [10, Theorems 6.1 and 6.7] Let G = (V, E) be a graph
with edge ideal I = I(G), and let s > 1 be an integer. Let M = z° ... x%
be a minimal generator of I°. Then (I°TY: M) is minimally generated by
monomials of degree 2, and uv (u and v may be the same) is a minimal
generator of (I*T': M) if and only if either {u,v} € E or u and v are
even-connected with respect to M .

Remark 1.2.60. [10, Lemma 6.11] Let (157: M)P be the polarization of the
ideal (I*T1: M) (see e.g. [70, Section 1.6]). From the previous theorem we
can construct a graph G’ whose edge ideal is given by (I**': M), The
new graph G’ is given by:

(i) All the vertices and edges of G.

(ii) Any two vertices u,v, u # v that are even-connected with respect to
M are connected by an edge in G'.

(iii) For every vertex u which is even-connected to itself with respect to M,
there is a new vertex u’ which is connected to u by an edge and not
connected to any other vertex (so uu’ is a whisker).
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Chapter 2

Special arrangements of lines:
codimension two ACM
varieties in P! x P! x P!

This chapter is based upon the joint project with G. Favacchio and E.
Guardo.

In this chapter we investigate a special arrangements of lines in mul-
tiprojective spaces, i.e., we study codimension two arithmetically Cohen-
Macaulay (ACM) varieties in P! x P! x P!, called wvaricties of lines in
P! x P! x P!. We also show a connection between their ACM property
and a combinatorial commutative algebra result.

2.1 Varieties of lines in P! x P! x P!

Let R :=k[z10, %11, %20, T21, %30, T31] be the N3—graded ring with the tri-
grading induced on it by setting degx;; = e; for i = 1,2,3 (see Definition
1.1.1).

Using the notation fixed in Chapter 1, let P := ((ag, a1), (bo, b1), (co,¢1))
be a point in P! x P! x P! and let Ip := (a121,0— o211, b1@20—boTa1, 1730 —
cox3,1) be the defining ideal of P. Note that Ip is a height three prime ideal
generated by homogeneous linear forms of different multidegrees.

Throughout this chapter, linear forms are denoted by capital letters. In
particular, we use A; to denote a linear form of degree (1,0,0), B; a linear
form of degree (0,1,0), and Cj, a linear form of degree (0,0,1). We denote
by L(4;), L(B;) and L(C},) the respective hyperplanes of P! x P* x P!, and
we say that a hyperplane in P! x P! x P! is of type ¢; if it is defined by a
form of degree e;.

We recall the following definition [60, Definition 2.2].

Definition 2.1.1. Let F,G € R be two homogeneous linear forms of differ-
ent degree. In P! x P! x P! the variety £ defined by the ideal (F,G) C R is
called a line of P! x P! x P!, and we denote it by L(F, Q).
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We say that a line L(F, G) is of type e;+e;, with ¢ # j, if {deg F',deg G} =
{62', €j}.

In particular, if A € Ry, B € Ry, and C € Ry, then we denote by
L(A, B) the variety in P! x P! x P! defined by the ideal (A, B) C R, and we
call it a line of type (1,1,0). Analogously, we call the variety L(A, C) a line
of type (1,0, 1) and the variety L(B, C) a line of type (0,1,1). We also refer
to lines of type e; + e, e; + e3 and ey + eg by writing lines having direction
e3, €2 and ey, respectively.

Definition 2.1.2. We say that X C P! x P! x P! is a variety of lines if it
is given by a finite union of distinct lines in P! x P! x P!,

Definition 2.1.3. Given X C P! x P! x P! a variety of lines, we de-
note by %1(X> = {E(Al)a s 7£<Ad1)}7 %2(X> = {£(31)7 s 7£(Bd2>} and
Hz(X) := {L(C}),...,L(Cy4,)} the hyperplanes of P! x P! x P! containing
some lines of X. In particular:
(4,4)€U3(X) (4,k)eU2(X) (J,k)€UL(X)
where Ug(X) - [dl] X [dQLUQ(X) - [dl] X [d3] and UI(X) - [dg] X [dg] are
sets of ordered pairs of integers, with [n] := {1,2,...,n} C N.
For 7 = 1,2, 3, we denote by X; the set of lines of X having direction ¢;

and we call U;(X) the indez set of X;.
Thus, the ideal defining X is

Ixr=" (1 A,B)n [ A.Con [\ (B}, Ck).

(1,5)€U3(X) (i,k)eU2(X) (j,k)€U1(X)
Ezample 2.1.4. Let consider the following variety of lines in P! x P! x P!:

X :ﬁ(Al, Bg) U L(Al, B3> U ﬁ(Al, B5) U E(Ag, Bl> U ;C(AQ, BQ)U
UL(A;,C) U L(Ar, Cy) U L(As, C3) U L(By, Cs) U L(Ba, Cs).

The variety X consists of 10 lines: 5 lines of type (1,1,0), 3 lines of type
(1,0,1) and 2 lines of type (0,1, 1). In particular, the set of lines of X having
direction es is

X3 = {L(A1, B2), L(A1, Bs), L(A1, Bs), L(As, By), L(As, By) }
and the indexr set of X3 is
Us ={(1,2),(1,3),(1,5),(2,1),(2,2)} € [2] x [5].

Analogously, Xo = {L(A1,C1), L(A1,Cy), L(As,C5)} is the set of lines of
X having direction eq, with index set Uy = {(1,1),(1,4),(2,3)} C [2] x [4]
and X; = {L(B1,Cy), L(B2,Cs)} is the set of lines of X having direction ey,
with index set Uy = {(1,2),(2,3)} C [5] x [4].
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In this thesis we are interested in a combinatorial characterization of
ACM varieties of lines in P! x P! x P! and their Hilbert function. In P* x P!,
the key concept to describe combinatorially ACM sets of points was the
notion of a Ferrers diagram (see Definitions 1.1.45, 1.1.46, 1.1.47 and see for
instance [59] for more details).

We adapt Definition 1.1.46 to our context.

Construction 2.1.5. Let X be a variety of lines in P! x P xP' and consider
the set X3 of lines of X of type (1,1,0) indexed by Us(X) C [dq] x [da].
We represent X3 as a dy X dy grid, where the horizontal lines are labeled
by the L(A;)’s for i = 1,...,dy and the vertical lines by the L(B;)’s for
j=1,...,ds. By abuse of notation, we denote the horizontal lines by L(A;)
and the vertical lines by L(B;). Then, a line L(A;, Bj) € X3 is drawn as
the intersection point of L(A;) and L(B;) in the grid. Similarly, we can
construct a dy x ds grid representing Xo and a ds X ds grid representing X .

Definition 2.1.6. Let X be a variety of lines in P! x P! xP* and h € {1, 2, 3}.
We say that X resembles a Ferrers diagram with respect to the direction ey,
if the grid representing the lines of X}, constructed as above, resembles a
Ferrers diagram.

Definition 2.1.7. A finite subset U = {(u;, u;)} C N? resembles a Ferrers
diagram if it satisfies the following property:

(wi,u;) € U= (up,up) €U V1I<h<i, 1<k<j.

Remark 2.1.8. Note that Definition 2.1.6 is equivalent to saying that the
index set Uy (X) C N? resembles a Ferrers diagram as Definition 2.1.7.

Remark 2.1.9. Construction 2.1.5 makes clear the connection between X,
(h € {1,2,3}) and a set of points in P* x P1. X}, is a cone of a set of distinct
points on a hyperplane of P! x P! x P!. So, we can look at it as a set of
points in P! x P! with associated grid as described in the construction.

Ezample 2.1.10. Let X be the following variety of 15 lines in P* x P! x P!

X ={L(Ay, By), L(A1, By), L(Ay, Bs), L(As, By), L(As, By),
E(AQ,B4),£(A2,B5),£(A3,Bl) (Ag,BQ) (Ag,Bg)
L(As, By), L(As, Bs), £(As, By), L(By, Cy), £(Ba, Cs)}.

Then,

X3 :{E(Al, BQ) E(Al, B4), L(Al, B5) E(AQ, BQ) E(AQ, Bg),
E(AQ, B4) (AQ,B5), (Ag,Bl) (A37B2) E(Ag,Bg),
ﬁ(A37 ) (A3> B5)> (A4v )}

Using Construction 2.1.5, we can represent the set X3 of lines of P! x P! x P*
as the intersection points in a 4 x 5 grid as in Figure 2.1.
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L(B1) L(B2) L(B3) L(By) L(Bs)
|G

¢ ? ® o— L(As)

—o oo o o [(A3)

T L(A4)

Figure 2.1: The set of lines X3.

After relabelling, we see that X3 resembles a Ferrers diagram of type (5,4, 3, 1).
Then, using Lemma 1.1.48, X3 is ACM (see Figure 2.2).

L(B1) L(Bs) L(B3) L(Bs) L(Bs)

Figure 2.2: The set of lines X3 resembling a Ferrers diagram.

Example 2.1.11. Let X be the variety of lines as in Example 2.1.10. We have
X, = {L(By,C1),L(B3,Cy)} and the 2 x 2 grid representing X; does not
resemble any Ferrers diagram (see Figure 2.3). Thus X does not resemble a
Ferrers diagram with respect to the direction e;. Hence, from Lemma 1.1.48,

X1 is not ACM.
L(B1) L(Bo)
L(Ch)

L(C3)

Figure 2.3: The set of lines X;.

40



Since Ferrers diagrams play a crucial role in the characterization of the
ACM property for a finite set of points in P! x P! (see for instance [60]),
it is natural for us to investigate the same property for a variety of lines
X C P! x P! x P! (since X has also codimension 2). In the next section, we
will show that the ACM property of X depends on the X;’s (see Corollary
2.2.6), but the ACM-ness of the X;’s is not sufficient to ensure that X is
also ACM (see Remark 2.2.7).

2.2 A combinatorial characterization of ACM
varieties of lines

In this section, we study the ACM property for varieties of lines from a
combinatorial point of view. We refer to [70] for all the introductory material
on monomial ideals.

The next lemma can be recovered from [98, Proposition 3.2].

Lemma 2.2.1. Let X C P! x P! x P! be an ACM wvariety of lines. Then,
there exist three forms A, B and C of degree (1,0,0),(0,1,0) and (0,0, 1),
respectively, such that (A, B,C) is a reqular sequence in R/Ix.

Proof. Let A € Ryop be such that £(A) ¢ Hi(X). We claim that A is a
nonzero divisor of R/Ix. Indeed, take F' € R a homogeneous form such that
AF € Ix. Then AF € I, for any line £ € X. Since I is a prime ideal and
A ¢ I, then we get F' € I, for any L € X.

Now we prove the existence of the linear form B. Since X is ACM, then
J :=Ix + (A) is CM. Moreover, .J is homogeneous and its height is 3. Take
the primary decomposition of J, say J = q; N ---Nqq, and let p; :== /g, for
i =1,...,t. The set of the nonzero divisors of R/J is then {J; p;. In order to
prove that there exists an element B € Ry 10 nonzero divisor of R/J, it is
enough to show that (U; p:)o1.0 C Ro1,0- Since Ry is a K-vector space over
an infinite field, it is not a union of a finite number of its proper subspaces,
and so it is enough to show that (p;)o10 & Ro10 foreach i =1,... ¢

Let i € {1,...,t}, then we have Ix C J C p;. Therefore, there exists
L € X such that Ix C I, C p,;. This implies p; = I+ (A). Since Iz # Ry 10
we are done.

Analogously we prove the existence of a form C' € Ry ;. O

We set the notation for this section. Let X be a variety of lines and Ix
its defining ideal

Ix= (1 A.B)n [ Ac)n [ (B,C)CR

(4,5)€U3(X) (i,k)eU2(X) (4,k)€UL(X)

We construct a new polynomial ring in d; + dy + d3 variables where each
variable corresponds to a hyperplane containing some lines of X. We denote
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by S :=Klay,...,aq4,,b1,...,b4y, 1, ..., cCqs] the polynomial ring in d;+ds+ds
variables and dega; = (1,0,0), degb; = (0,1,0), degc, = (0,0,1). We set

JX = m (ai,bj) N ﬂ (a,-, Ck) N m (bj,Ck,) Q S.

(4,5)€Us(X) (i,k)€U2(X) (4,k)eU1(X)

Then Jx is a height 2 monomial ideal of S, and its associated primes corre-
spond to the components of X.

The next lemma is crucial since, as its consequence, we can connect
homological invariants between ACM varieties of lines and some height 2
monomial ideals. Similar arguments were also used in [45, Theorem 3.2].

Lemma 2.2.2. Let X be a variety of lines in P* x P x P*. Then X is ACM
if and only if Jx C S is CM.

Proof. Set T := S[x1,0, %11, %20, T21, %30, T31]. Consider Jx as an ideal, say
Jx, in the ring T. Since Jx is a height 2 monomial ideal in S, then Jx,
being a cone, continues to be a height 2 monomial ideal. Moreover, Jx has
the same primary decomposition as Jx. Consider the linear forms a; — A;,
b; — Bj, ¢ — Cy and let L be the ideal generated by all these linear forms.
Assume Jx is CM. Thus, in the quotient T/(Jx, L) we can view the
addition of each linear form in L as a proper hyperplane section. We have
that R/Ix and T/(Jx, L) both have height 2 and R/Ix = T/(Jx, L). Then,
since Jx is CM, we get that X is ACM.
On the other hand, if X is ACM, then, applying Lemma 2.2.1, there exists
a sequence of linear forms (A, B, C') C R that is regular in the quotient R/Iy.
Let q := (A, B,C) C R be the ideal generated by these three linear forms.
Consider the ideal (Ix +q)/q C R/q, that can be viewed as a codimension
2 monomial ideal in a polynomial ring in three variables. Since a Hilbert-
Burch matrix of Ix has the same “structure”’as the Hilbert-Burch matrix
of a monomial ideal, i.e., it is a matrix with only two non zero entries in
each column (see for instance [47, Lemma 3.21] or [87, Theorem 1.5]), then
Ix is generated by some products among the linear forms defining the lines
of X. Since the addition of each linear form in L can be seen as a proper
hyperplane section, we also have R/Ix = T/(Jx, L). Then Jx is CM.
]

Corollary 2.2.3. Let X be an ACM wvariety of lines in P! x P! x PL. Then
Ix is generated by products of linear forms.

As a consequence of Lemma 2.2.2, it is interesting to further investigate
the structure of the monomial ideal Jx associated to X. Now we refer to
(70, 99] and to Chapter 1 of this thesis for all preliminaries and for further
results on graphs.

Remark 2.2.4. Let X be a variety of lines. Let Gx = (Vx, Ex) be the graph
with vertex set

Vx :={ay,...,aq,,b1,...,bgy,C1,...,Ca5}
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and edge set

Ex ::{{ai,bj} CVy | E(AZ,BJ) S Xg}U
{{ai,ck} g VX | [,(Az,C'k) S XQ}U
{{bj,ac} € Vx | L(B;,Cr) € X1}

Then, we note that the monomial ideal Jx is the cover ideal of the graph
GX:
Jx = J(Gx) C S,

that is, the Stanley-Reisner ideal of the simplicial complex (see [70, Lemma
1.5.4])
Ax = <Vx\€ | €EE)(>.

A useful application of Remark 2.2.4 is the following lemma.

Lemma 2.2.5. Let X be an ACM variety of lines in Pt x P! x P, and let
H C P! x P x P! be a hyperplane containing some lines of X. Then the
variety of linesY ={L e X | L ¢ H} is ACM.

Proof. Let H be the linear form defining H. Denoted by z the variable of S
corresponding to H (the linear form H is one of the forms A;, B;, C} and z
is the corresponding variable among a;, b;, ¢;). We have

i) Jx :z = N  p. Both are monomial ideals, so the equality easily
p € ass(Jx)
z2¢p

follows by checking the inclusions for monomials.

ii) Jx : zis the Stanley-Reisner ideal of the simplicial complex linka , (%)
(see [70, Sections 1.5.2 and 8.1.1]). Indeed, the Stanley-Reisner ideal
of the link of z in Ax is generated by monomials corresponding to the
elements F' C Vy such that {z} U F ¢ Ax. All these monomials are
in Jy : z = In, : z and vice versa.

Then, in order to prove the statement, it is enough to show that Jx : z is
CM. From Lemma 2.2.2, we have that Jx is CM, so the statement follows
by [70, Corollary 8.1.8]. O

Corollary 2.2.6. If X is an ACM wvariety of lines, then X resembles a
Ferrers diagram with respect to the direction ey, for each h = 1,2, 3.

Proof. We show that Uj;(X) resembles a Ferrers diagram. Analogously,
one can show the same for Uy(X) and Us(X). Let us consider the vari-
ety of lines X; consisting of the lines of X of type (0,1,1). Since Ix, =

.....

over, X; = U L(Bj,Cy), ie., it is a cone of an ACM set of distinct
(4,k)€UL(X)
points on a hyperplane of P* x P! x P!, see Remark 2.1.9. A well known
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characterization, see for instance [59, Theorem 4.11], shows that this set of
points resembles a Ferrers diagram. Using Remark 2.1.8, U;(X) resembles

a Ferrers diagram. Then, the statement follows from Lemma 1.1.48.
O

Remark 2.2.7. From previous corollary, if there exists ¢ € {1, 2,3} such that
X, is not ACM, then X is not ACM. The following example shows that even
if all X;’s are ACM, X may not be ACM.

Ezxample 2.2.8. Let us consider the following variety of lines in P! x P! x P!
(see Figure 2.4):

X = {L(A1, B)), L(As, C1), L(Bs, Cs)}.

Figure 2.4: The variety of lines X (in bold).

It is clear that the sets X; = {L(Bs,C3)}, Xo = {L(A2,C4)} and X3 =
{L(A;1, B1)} resemble a Ferrers diagram, so each of them is ACM. But, in
this case, X is not ACM. This follows for instance from Lemma 2.2.2 and
from [70, Lemma 9.1.12].

The next definition introduces a property for varieties of lines in P x
P! x P! in analogy to the known (x)-property defined for sets of points in
P! x P! (see Definition 1.1.49).

Definition 2.2.9. Let X C P! x P! x P! be a variety of lines. We say that
X has the (x)-property (or explicitly, star property) if given any two lines
Ly, Ly € X, there exists L3 € X such that Ly, L3 and L, L3 are coplanar.

We slight generalize this property for varieties of lines.
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Definition 2.2.10. Let X C P! x P! x P! be a variety of lines. Let n > 4,
n € N, we say that X has the n-hyperplanes (x) property (for short, Hyp, (x)-
property) if given n hyperplanes Hy, Hs, ..., H, such that L(H;, H;) € X
for any j # i — 1,4, + 1 then L(H,, Hy+1) € X for some u € {1,2,...,n},
where Hy = H,, and H,,,, = H;.

Remark 2.2.11. Note that if n > 6, then X has the Hyp, (*)-property. In-
deed, among n > 6 hyperplanes there are at least three of the same type and
so the condition L(H;, H;) € X for any j # i —1,i,i+ 1 (where Hy = H,
and H,;; = H;) fails to be true.

Remark 2.2.12. Note that the Hypy(*)-property is equivalent to (x)-property
as Definition 2.2.9.

Ezample 2.2.13. Let us consider the following variety of lines in P! x P! x P!
(see Figure 2.5):

X =L(Ay, B1) U L(Ay, Bo) U L(Ay, Bs) U L(As, By)U
L(As, By) U L(A;,C1) U L(A;, Cy) U L(As, C1)U
L(B1,C1) U L(By,Cy) U L(By, C1) U L(Bs, CY).

L(A1,By) L(A1,B2) L(A1,B3)

L(A2,B) L(A2,B2)

L(By,C2) : L(A1,Cq)

/ L(Az2,Cy)

L(B1,Cy) L(B2,Cy) L(B3,Cq)

Figure 2.5: The variety of lines X (in bold).

Then X has the Hypy(x)-property. Indeed, if we take the 4 hyperplanes
L(Ay), L(As), L(B1), L(Bs), we have that L(Ay, By), L(A2, Bs) € X and
also L(A1, B2) € X; if we take the 4 hyperplanes £(A;), L(As), L(By), L(CY),
we have that £(Ay, By), L(As,C1) € X and also L(By,C}) € X; and so on,
if we take any two lines in X, there exists a third line in X that is coplanar
with the other two.
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Ezample 2.2.14. Let us consider the following variety of lines in P! x P! x P!
(see Figure 2.6):
X =L(Ay,B1)UL(A;, By) UL(Ay, B3) U L(As, By) U L(Ay,Cy)U
L(Ar, Cy) U L(As, C1) U L(By, Cy) U L(Bs, Cy).

L(A1,Cq)

Figure 2.6: The variety of lines X (in bold).

Then X has the Hyps(x)-property. Indeed, if we take the 5 hyperplanes
L(Ay), L(A2), L(B1),L(B2), L(C1), we have that the 5 lines L(Ay, By),
E(Al,BQ>, E(AQ,BQ), ﬁ(AQ,Cl), £(31,01> € X and also E(Al,C'l) S X,
if we take the 5 hyperplanes L(A;), L(As), L(Bs), L(Bs), L(C}), we have
that E(Al,Bg), E(Al,BQ), ﬁ(AQ,BQ), ,C(AQ,Cl), E(Bg,,cl) € X and also
L(A;,Cy) € X; and so on, if we take any 5 hyperplanes Hy, ..., H5 among
L(A1), L(As), L(B1), L(Bs), L(Bs), L(C1), L(C5) such that L(H;, H;) € X
for any j # i — 1,4, + 1, then there exists u € {1,...,5} such that
L(H,, H,1) € X, where Hy = Hs and Hg = H;.

Note that if we take L(By), L(Bs), £L(B3) among the 5 hyperplanes we
choose, the condition L(H;, H;) € X for any j # i—1,4,i+1 fails to be true
and then there is nothing to verify.

The following theorem is the main result of this section.

Theorem 2.2.15. Let X be a variety of lines. Then X is ACM if and only
if X has the Hyp, (x)-property for n = 4,5,6.

Proof. Let Ix be the ideal defining the variety of lines X C P! x P! x P!.
From Lemma 2.2.2, X is ACM if and only if Jx C S is CM. From Remark
2.2.4, the ideal Jyx is the cover ideal of the graph Gy, ie., Jx = J(Gx).
From Theorem 1.2.47, the face ideal I(Gx) has a linear resolution and then,
using Theorem 1.2.46, G5 is a chordal graph, that is, X has the Hyp, (x)-
property for any n. Remark 2.2.11 completes the proof. O
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2.3 A numerical characterization of the ACM
property

Since we are interested in the study of the ACM property for varieties of
lines X, from now on we assume that U,(X) resembles a Ferrers diagram
for each h = 1,2,3. In order to give an alternative characterization of the
ACM property we introduce the following notation.

Definition 2.3.1. Let P = P, = L(A;) N L(B;) N L(Cy) be a point of a
variety of lines X. We call the multiplicity of P the number of lines of X
passing through the point P and we denote it by p;jp.

Remark 2.3.2. Since at most three lines of X (one of each type) pass through
the point P, p, < 3.

Definition 2.3.3. Given a variety of lines X, we define a 3-dimensional
matrix My = (i) € NI*92xds whose (i, j, k)-entry is the multiplicity of
P, ;. We call it the matriz of the multiplicities of X.

We also define

Definition 2.3.4. M) = (pij0) € Nxd2 where

1 if (4,5) € Us(X), e, L(A;, B;) € X
Hijo = .
0 otherwise.

Analogously, M? = (juor) € N® % where 105 1= ‘
0 otherwise

1 if ﬁ(BJ,Ck> e X

and M)((l) := (pojk) € N¥2%% where g5, 1= )
0 otherwise

Example 2.3.5. Let us consider X C P! x P! x P! as Figure 2.7:

X :E(Al, Bl) U E(Al, Bg) U £(A27 Bg) U E(Al, Cl) U E(AQ, Cl)
L(As,Cy) U L(By,Ch) U L(By,Cy) U L(Bg, Cy).

We have

M1l = fo22 = 3, fi21 = Ho21 = fo11 = Mi12 = Mi22 = 212 = 2

@ (11 @ (1 0 a (11
MX_(Ol)’MX_<11’MX_Ol'

and
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L(B1,C1)

E(A27 B2)

Figure 2.7: The variety of lines X (in bold).

Now we provide a criterion to establish if X is ACM or not just looking at
the matrices of the multiplicities My, M)((l), M)((Q) and M)(?).

Proposition 2.3.6. Let X be a variety of lines. Then X has the Hypg()-
property if and only if for all a1, as € [di],b1,be € [da], c1, 2 € [d3]

. Haibrer  Haibacy 3 2 Harbica  Maybacs 2 2
cither ( Hasbicr  Masbacy > 7é ( 2 2 > o ( Hasbica  Masbacs ) ?é < 2 3 ) '
Proof. If X does not have the Hypg(x)-property, then there exist six planes,
say L(A1), L(As), L(By), L(Bs), L(C1), L(Cy), such that the lines L( A1, By),
L(Ay, Bs), L(A1,CY), L(Ag, By), L(As,Cy), L(As,Cy), L(By,Ch), L(By,Ca),
E(BQ,CQ) belong to X and ﬁ(AQ, Bl), /:(BQ, Cl), ﬁ(Al, CQ) ¢ X. Then we
have that

H111 Hi121 _ 3 2 and Hi12  Hi122 _ 2 2
f211 221 2 2 f212 222 2 3 )
On the other hand if
H111 Hi121 _ 3 2 and Hi12  Hi122 _ 2 2 7
fo11 221 2 2 f212 222 2 3
then it is easy to check that X does not have the Hypg(*)-property since

E(AIJ B1)7 E(Ala BQ)? £(A17 Cl)a £(A27 B2)7 E(A27 Cl)a £<A27 02)7 £<B17 Cl);
£(Bl,CQ), ,C(BQ,CQ) € X and £(A2,Bl), ﬁ(Bg,Cl), ,C(Al,cg) ¢ X. Ll
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Proposition 2.3.7. Let X be a variety of lines. Then X has the Hyps(*)-
property if and only if for all ay,as € [di],b1,ba € [do],c1,c0 € [d3] the
following three conditions hold:

. Haibice Haibye 2 1 Mai1b10 Haqbs0 1 ].)
1) either 191 1h2el or 101 1b2
) ( Masbicr  Masbaer ) 75 < 2 2 ) < Hasbi0  Hasbo0 ) # ( 0 1

2) cither ( Haibier  Maibies ) # < 2 1 ) or < Hai0cy  Haq0co ) 7& ( 1 1 )
Hagbicr  Hazbica 2 2 Haz0er  Hax0cy 01

3 Haibic Haibic 2 1 Hob; ¢ Hobyc 1 1)
3) either e 10162 or 1c1 102 '
) ( Maibaer  Maibacs ) # < 2 2 ) < Hobser  HObaceo ) # ( 01

Proof. 1f X does not have the Hyps(x)-property, we say, without loss of gen-
erality, that exist five planes L£(A;), L(A2), L(B1), L(Bs), L(Cy) such that,
among all, only the lines L£(As, By), L(A;,C1), L(B2,C;) ¢ X. Then we

have
pair paor \ _ (21 and [ H10 Az ) _ 11 _
fo11 221 2 2 [210 4220 01

On the other hand, assume, for instance, we have the following equalities

paiy pazr \ _ (21 and [ F0 Hazo ) _ 1

H211 21 2 2 H210  H220 0 1)
From the previous equalities, we get £(A;, Cy) ¢ X thus, since 111 = 2, we
have L(Ay, B), L(By,C1) € X. Analogously L£(A;, By) € X and so, since
p121 = 1, we have L£(By,C1) ¢ X. Moreover L(As, By) € X and so, since

f221 = 2, we have L(Ay, C1) € X. Finally L(As, By) ¢ X since po10 = 0. So
X does not have the Hyps(*)-property. O

Proposition 2.3.8. Let X be a variety of lines. Then X has the Hypy(x)-
property if and only if for all ay,as € [di],b1,ba € [da],c1,c0 € [d3] the
following three conditions hold:

. Haibic 1 Hai1b10 1
1) either 1ore or 1o .
) (uazm)#(l) <ua2blo>%<0)
. Haibie 1 Haq0c 1
2) eith 1ore r e .
)¢ er(ualblcz>7é<1) ’ <ua10cz>7é<0)
. Haibyc 1 Hobyc 1
3) either 1ore or 1o .
) <ua1b2cl>#<1> (uoz)zcl)%(O)
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Proof. Suppose that X does not have the Hyp,(x)-property. Since we are
assuming there do not exist four planes £(A;), L(As), L(B1),L(Bs) such that
£(A1,Bl), ,C(AQ,BQ) € X and E(A17B2) or E(AQ,BI) ¢ )(7 then, X fails
the Hyps(*)-property if, without loss of generality, there exist four planes
L(A1), L(As), L(By), L(Cy) such that, among all, only the lines £(As, By),
L(By,C),L(A1,Cy) ¢ X. Then we have

()= (1) ma(lm )= (o)

On the other hand, assume, for instance, we have the following equalities

() =(3) ma (i) = (o)

From the previous equalities, we get £(A;, By) € X thus, since pi1; = 1,
we have L(A;,Ch),L(B1,C1) ¢ X. Analogously L£(As,By) ¢ X and so,
since po13 = 1, we have L£(Ay, C1) € X. So X does not have the Hyp,(x)-
property. ]

Ezample 2.3.9. Let X be as in Example 2.3.5 (see Figure 2.7). We observe

that
Hiir M1z ) _ 3 2 and Hiiz Hiz22 | _ 2 2
H211  H221 2 2 H212  fh222 2 3
and then, by Proposition 2.3.6, we have that X does not have the Hypg(x)-

property and so, by Theorem 2.2.15, X is not ACM.

Ezxample 2.3.10. Let us consider the variety W = X U L(As, By), where X
is as Example 2.3.5.

E(A27 C2)

‘C(Bla C2)

L(B1,Cy) £(As, Ba)
2, B2

Figure 2.8: The variety of lines W (in bold).
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We have pi111 = piage = plo11 = fo12 = 3, fi21 = [o21 = 112 = 122 = 2.
And for all ay,as € [2], by, by € [2], ¢1, ¢ € [2], we have:

< /“Lalblcl ,u’a1b261 ) # ( 3 2 ) < ,u/alblcl /“LaleCl ) 7£ ( 2 1 )

Hasbier  Masbacy 2 2 ’ Hasbicr  Mazbacy 2 2 ’
Haibicr  Maibies 7§ ( 2 1 Maibier  Maibiea # 2 1
Hasbier  Masbica 2 2 ’ Haibser  Maibaca 2 2 ’

Haibie; 1 Haibre 1 Hayibie 1 )
G )2 00) G ) () G ) 2 (0)
So, by Propositions 2.3.6, 2.3.7 and 2.3.8, the variety of lines W has the
Hyp,,(x)-property for n = 4,5,6 and then, by Theorem 2.2.15, W is ACM.

2.4 The Hilbert function of ACM codimen-
sion two varieties in P! x P! x P!

In this section we study the Hilbert function of varieties of lines in P! x P! x
P!. We start from the following specific case.

Definition 2.4.1. If X is a variety of lines such that the index sets U (X),
Us(X) and U3(X) are Ferrers diagram, then we call X a Ferrers variety of
lines. That is, after renaming, we assume that if £(A;, B;) € Uy(X), then
L(Ay,By) € Up(X) for every 1 <4’ <4, 1 <j" < jand for each direction
h=1,2,3.

Lemma 2.4.2. Let X C P! x P! x P! be a Ferrers variety of lines. Then X
is ACM.

Proof. The variety of lines X has the Hyp, (*)-property for n = 4,5,6 and
then, by Theorem 2.2.15, is ACM. O

Now, let X be a Ferrers variety of lines and let X3 = ( )U ( )ﬁ(AﬁBS)
r,s)eU3 (X

be the variety of lines consisting of the lines of X of type (1,1,0). Since
Us(X) is a Ferrers diagram, the variety X3 is ACM (in P! x P!) and we can
explicitly write out a set of minimal generators of Iy, see Remark 2.1.9 and
[59]. We denote by Ds(X) := {(as1,b31,0), ..., (ass,bss,0)} the set of the
degrees of the minimal generators of Ix,.

Analogously, if we consider the varieties of lines X; and X5 consist-
ing of the lines of X of types (0,1,1) and (1,0, 1), respectively, we obtain
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the sets of degrees Dy(X) = {(0,b11,¢11), -, (0,014, ¢14,)} and Do(X) =
{(a2,1,0,¢21), ..., (a2, 0,c24,)}. Then we denote by

D(X) = {(max{agﬂ-, ag’k}, HlaX{bgﬂ', bl,j}; Inax{cl,j, CQ&}) |
\V/ (a3,i7 b3,i7 0) S D3(X)a (az,kv 07 CQ,k) S DQ(X)7
(0, b17j7 CLJ‘) < Dl(X)}

Finally, we denote by D(X) the set of the minimal elements of D(X) with
respect to the natural partial order < on the elements of N3.

Theorem 2.4.3. Let X be a Ferrers variety of lines,
X = LA, B)u U LA, Cy)U | L(B;, Cy).

i€lal i€lal je]
JeEb] kelc] kele]

Then Ix is minimally generated by the following set of forms

ITAIIB; I Cx | for each (a,b,c) € D(X)}.
i<a 71<b k<c

Proof. First, we prove that if (a,b,¢) € D(X), then [Li<a Ai Ilj<p Bj [k<c Ci

€ Ix. Indeed (a,b, ¢) € D(X) implies [T,<, A [Tj< Bj € Iy, [1j<p B [Te<e Ci

€ Ix,, [li<a Aillk<. Ck € Ix, and they are not necessarily minimal elements

of the respective ideal. Thus

ITATIB I Cx € Ix, N Ix, NIx, = Ix.

i<a i<b k<c
Now, we show that if (a,b,¢) € D(X) and a > 0, then

IT ATIB I Cx ¢ Ix.
i<a—1  j<b  k<c
This fact follows by contradiction. Indeed if [T;<,—; Ai [1;<p Bj [lx<. Cr € Ix,
then (a — 1,0,0),(a — 1,0,¢),(0,b,¢) are degrees of some (not necessar-
ily minimal) elements in the ideal and therefore there is an element in
D(X) less than or equal to (a — 1,b,¢), contradicting the minimality of
(a,b,¢) € D(X). Analogously, it can be easily showed that if (a,b,c) €
D(X) and b > 0 (or ¢ > 0), then [lica Aillj<p1 Bj i<e Ck ¢ Ix (or
[lica Aillj<p Bj [j<e—1 Cx ¢ Ix). Finally, we claim that Ix is minimally
generated by the forms [1;<, A; [T;<; Bj [Ir<. Cr With (a,b,c) € D(X). Take
a form F € Ix, without loss of generality we can assume that it is product

of linear forms
F = HAlHBJHCk
icA  jeB keC

By contradiction we assume A; divides F' and A;_; does not divide F'. Then
[Lica Ailljes Bj € Ix,. Then F' € ([1;<, Ai 1<y Bj) for some @', b'. Repeat-
ing the same argument with respect to the other two directions we get the
proof. The minimality come from the minimality of the degrees in ﬁ(X ). O
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The following corollary is an immediate consequence of Theorem 2.4.3 and
the ACM property. Set

(D(X)) = {(3,4, k) | (525, k) > (a,b,¢), for some (a,b,¢) € D(X)}.
Corollary 2.4.4. Let X be a Ferrers variety of lines. Then

0 if (i,5,k) € (D(X)) .

1  otherwise

AHX(iaja k) = {

Example 2.4.5. Let us consider the following variety of lines
X ={L(A;, Bj))UL(A;, Cr)UL(B;,Cy) | 1 <i<4, 1<j<3, 1<k<2}

In this case D3(X) = {(4,0,0),(0,3,0)}, Do(X) = {(4,0,0),(0,0,2)} and
D(X) ={(0,3,0),(0,0,2)}. So we have D(X) = {(4,3,2), (4, 3,0), (4,0,2),
(0,3,2)} and D(X) = {(4,3,0), (4,0,2),(0,3,2)}. Therefore, from Theorem
2.4.3, a minimal set of generators of Ix is given by:

A1 Ay A3 AyB1 By By, A1 AsAsAyCLCy, B1ByB3CiCy
and

0 if (4,7,k) > (4,3,0) or (4,0,2) or (0,3,2)
1 otherwise '

AHx(i,j,k) = {

2.5 Case study: grids of lines

In the previous sections we focused on the study of special arrangements
of lines in P! x P! x P! having the ACM property. Recall that for a point
P € P! x P! x P! there are exactly three lines passing through P, one for
each direction. We have the following definition.

Definition 2.5.1. Let ) be a finite set of points in P! x P* x P!. We call
grid of lines arising from ), and denote it by X3, the set containing all the
lines of P! x P! x P! passing through some point of ).

In other words, if ) is a finite set of points in P! x P! x P!, then

Xy:= |J L(4; B;)UL(A;Cr) U L(Bj, C)

Pijrey

where Py, := L(A;) N L(B;) N L(Cy).

Example 2.5.2. Let Y = {Piaa, Pa1a, Pao1} be a set of points in P! x P! x P
Let us consider the grid of lines Xy arising from ) (see Figure 2.9):
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L(A1,B2)

L(Bz,C2)
/ P9

L(A1,C2)

L(A2,C2) Po1

L /»C(Bz, C1)
£B1.C2)” |- R B

L(A2,Cq)

-

L(A2,B2)

Figure 2.9: The grid of lines Xy (in bold).

The grid Xy is formed by 9 lines of P! x P! x P!

X =L(A1, Bs) U L(As, B1) U L(A2, By) U L(Ay,Cy) U LAy, C1)U
L(As,Cy) U L(By,Cy) UL(By, C1) U L(By, Cs).

The next example shows that, even if ) is an ACM set of points, Xy could
be not ACM.

Example 2.5.3. Suppose YV := {Pi12, P2, Pia1, Pa1a} € P! x P! x PL. Ac-
cording to [45], Y is an ACM set of points. Let us consider the grid of lines
Xy arising from Y (see Figure 2.10). We have L(As, By), L(Bs,C1) € Xy
and L(As, By), L(As2,CY), L(By,Cy) ¢ Xy, that is, Xy does not have the

Hypy(x)-property. Thus Xy is not ACM.

L(B2, Ca2)

L(Aq,C2)

L(B2,Cy)

L(A1,Cq)

Figure 2.10: The grid of lines Xy arising from ) (in bold).
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It is interesting to ask which sets of points ) C P! x P! x P! lead to an
ACM grid of lines Xy,. A special class of CM rings are complete intersections
(see Definition 1.1.34 and Remark 1.1.35).

Recall that in P! x P! x P!, a set of points C is a complete intersection of
points of type (a1, aq,a3) if Ic = (Fy, Fy, F3) is a complete intersection and
deg F; = a;e; for ¢+ = 1,2, 3, where each F; is product of linear forms.
Example 2.5.4. LetC = {P1117 P1127 P121; P122, P2117 P212, P221, PQQQ} be a com-
plete intersection of points in P! x P! x P! of type (2,2,2). The grid of lines

arising from C (see Figure 2.11) is formed by 12 lines of P! x P! x P!: 4 lines
of type (1,1,0), 4 lines of type (0,1,1) and 4 lines of type (1,0, 1).

E(A17B1) E(Al,Bg)
L(B2,C2)
Piis P2y
L(A1,C2)
L(A2,C2) Por Poz L(B2,Cq)
Py Pyay
[,(Bl,Cz) E(Alacl)
Po Pooy
[’(A27 Cl)
L(B1,C1)
L(A2,By) L(A2,B>)

Figure 2.11: The grid X¢ arising from a CI of points of type (2,2, 2).

Lemma 2.5.5. Let C := {L(A;,) N L(B;)NL(Cy) | i € [a],j € [b],k €[]}
be a complete intersection of points in P1 x P! x P! of type (a,b,c) and
let X := X¢ be the grid of lines arising from C. Then a set of minimal
generators of the ideal defining X is

=(OA-I5. Ma-T o 6 1)
1€[a] JE[b] i€al ke[c] JE[b] keld]
Proof. Of course we have
IXQ(HA 5. [TA I[C. II5B Hck>
1€[a] JE[b] i€[a] ke[c] JE[b] ke[c]
On the other hand we have

]X_<HAZ~,HB H(Jk>ﬂ(HBJ,HCk>.

i€la] EE ke JE[b] ke(c]
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Thus if F' € Ix is a multihomogeneous form

i€(a) JEb] kel

Since Fy [[ B;- [ C’k€< Il Bj, 11 C’k> we get

Jeb] keld] jelb] keld]

FOHA,-E<H HCk>,

i€]a] JE[b] ke

therefore, by a multigrading argument,

E(HBmHCk)

JE[b] kelc]
and we are done. O

Remark 2.5.6. The ideal defining a grid of lines arising from a complete
intersection of points of type (a, b, ¢) is generated by 3 polynomials of degree
(a,b,0),(a,0,c) and (0,b,c), respectively. This does not characterize the
ideals of these particular grids of lines. Indeed, take

Y = £(Ay, B1) UL(A,C1) U L(By, Cy),

one can check that [y is minimally generated by three forms of degree
(1,1,0), (1,0,1) and (0,1,1) but Y is not a grid of lines arising from a
CI of points.

Remark 2.5.7. Let Hy := {L(A1),...,L(A)}, Ha = {L(B1),...,L(By)}
and Hs := {L(CY),...,L(C.)} be sets of hyperplanes defined by forms of
degree (1,0,0), (0,1,0) and (0,0, 1), respectively. Let J be the ideal gener-
ated by [[ A;- Il By, Il Ai- Il Crand [] B;- [l Ck. Then J is the

i€[a) JE[b] i€[a) ke[ JE[b] kel
ideal of a grid of lines arising from a CI of points of type (a, b, c).

Theorem 2.5.8. Let C C P! x P! x P! be a complete intersection of points
of type (a,b,c). Then X¢ is ACM and a trigraded minimal free resolution of

IXC 18

0 — R*(—a,—b,—c) = R(—a,—b,0)®R(—a,0, —c)®R(0, —b, —c) — Ix. — 0.

Proof. The grid of lines X := X has the Hyp, (x)-property for n = 4,5,6
and then, by Theorem 2.2.15, X is ACM. Moreover, by Lemma 2.5.5, a set
of minimal generators of Iy is

IX_<HA B, ITATIlC. IIB; H0k>,

i€a] JE[b] i€la] ke(c] JEb] kelc]
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and then a Hilbert-Burch matrix of Ix is

1A II A

i€[a) i€[al
B 0
Jef]
0 [I Ck

ke(c]
O

Ezample 2.5.9. If C C P! x P! x P! is a complete intersection of points of
type (2, 3,2), then the grid X¢ (see Figure 2.12) is formed by 6 lines of type
(1,1,0), 4 lines of type (1,0,1) and 6 lines of type (0,1, 1):

L(A1,B1) L(A1,B3) L(A1,B3)
L:(B17C2) ‘C(B2;CZ) ‘C(B37C2)

L(A41,C2)

L(A2,C2)
ﬁ(A17 Cl)

L(Az,Cy)

E(Blycl) E(B%Cl) E(B37CI)

L(A2,B;) L(A2,B2) L(A2,B3)

Figure 2.12: The grid of lines X, arising from a CI of points of type (2, 3, 2).

By Lemma 2.5.5, a set of minimal generators of Iy, is
Ix. = (A1 A2 B1 By B3, A1 AyC1Cy, By By B3C1Ch).

In particular, by Theorem 2.5.8, Ix, has a trigraded minimal free resolution
of the following type

0 — R*(—2,-3,-2) = R(—2,—3,0)®&R(—2,0, —2)&R(0, —3, —2) — I, — 0.

Corollary 2.5.10. Let X C P! x P! x P! be a grid of lines arising from a

complete intersection of points of type (a,b,c). Then the first difference of
Hilbert function of R/Ix is:

0 i (i,4,k) = (a,,0) or (i, ], k)
AHx(i,j, k?) — or (i7j7 k)

1 otherwise.
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Proof. From the trigaded minimal free resolution of Theorem 2.5.8 we have
that the Hilbert function of R/Ix is:

Hx(i,7, k) =G+ )G +D)k+1) =G+ DG —-b+ 1) (k—c+1)+
—(i—a+1);(G+1)(k—c+ 1)1+
—(l—a+1)4(j—b+ 1) (k+ 1)+
+20—a+1)+(j—b+1)s(k—c+1)4,

where (n); := max{n,0}.

Suppose, to fix ideas, that (i,j,k) > (a,b,0). There are two cases to
consider: k > c and k < c. Using the previous equality and by the definition
of first difference of Hilbert function, it’s easy to check that in each case
AHx(i,j, k) = 0. Moreover, if (i,7,k) # (a,b,0),(a,0,c),(0,b,¢c), we have
that Hx(i,7,k) = (i +1)(j + 1)(k + 1) and then AHx(i,7,k) = 1. O

Corollary 2.5.11. Let X C P! x P! x P! be a grid of lines arising from a
complete intersection of points of type (a,b,c). Then we have

reg(Ix)=a+b+c—1

Proof. We can consider the ideal Iy as homogeneous in the normal sense,
i.e., a homogeneous ideal in a N'-graded ring S = k|1, ..., 7¢]. By Theorem
2.5.8, a minimal free resolution of Iy C S is

0= S*(~a—b—c)—=S(—a—b)@®S(~a—c)@®S(~=b—rc) = Ix — 0.
By Definition 1.2.27), we have
reg (Ix) =max{a+b,a+c,b+c,a+b+c—1}=a+b+c—1.
U

Remark 2.5.12. Note that a grid of lines arising from a complete intersection
of points is a Ferrers variety of lines. So the statements of Lemma 2.5.5 and
Corollary 2.5.10 are in agreement with the statements of Theorem 2.4.3 and
Corollary 2.4.4 for the particular case of grids of lines arising from a CI of
points.

Example 2.5.13. Let us consider the following grid of lines arising from a CI
of points of type (4,3,2):

X = {L(A;, B))UL(A;, C)UL(B;, C) | i =1,2,3,4, j=1,2,3, k=1,2}.

It is formed by 26 lines of P! x P! x P!: 12 lines of type (1,1,0), 6 lines of
type (0,1,1) and 8 lines of type (1,0,1).
By Lemma 2.5.5, a set of minimal generators of Ix is given by:

A1A2A3A4Bl Bng, A1A2A3A4CICZ7 BIB2B3C1C27
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of degree (4,3,0), (4,0,2) and (0, 3,2), respectively. By Theorem 2.5.8, I
is ACM and its generators came from the following Hilbert-Burch matrix:

A A AsA, 0
B1By;Bs B B3B3
0 C1C;

The trigraded minimal free resolution of [y is:
0 — R*(—4,-3,-2) = R(—4,-3,0)®R(—4,0,-2)®R(0, -3, -2) — Ix — 0.

By Corollary 2.5.11, we have reg (Ix) = 8.
By Corollary 2.5.10, the first difference of Hilbert function of R/Ix is
then given by:

0123456...
1111111...
1111111...
1111111...
1100000...
1100000...
1100000...

Vi=0,1,2,3, AHx(i,j k)=

O R N~ O

0123456 ...
1100000...
1100000...
1100000...
0000000...
0000000...
0000000...

Vi>4, AHx(i,jk) =

Ot R W N = O

The following example shows that there exists an ACM grid of lines Xy
arising from a non-ACM set of points ).

Example 2.5.14. The following set of points

Y :={ P11, Pio1, Po11, Piaa, Po1a, Poso }

is not an ACM set of points in P' x P! x P! (see [45]). However, Xy = X¢
where C := {Pijx | 1 < 1,7,k <2} (see Figure 2.13), and then Xy is an ACM
grid of lines.
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E(AlyBl) E(A17B2)

L(Bs,C2)
Py £(A1.Cy)
L(Ag, Cp)_L2r2 Foz £(Bs,C1)
£(B1, Ca) il iz L(A1,Cy)
£(Ag. Cy)—2
L(B1,Cy)
L(As,B1) L(As,By)

Figure 2.13: The grid Xy arising from a non-ACM set of points ).

2.6 Case study: complete intersections of lines

From Theorem 2.5.8, we note that the ideal Iy, is generated by three forms
that do not form a regular sequence. That is, even if C is a complete inter-
section of points, then its associated variety of lines X¢ is not a complete
intersection of lines. Thus, it is natural to study which varieties of lines
are defined by a complete intersection, i.e., their defining ideal has only two
generators. Theorem 2.6.2 and Remark 2.6.5 will describe complete inter-
sections of lines in P! x Pt x P!,

Remark 2.6.1. If X is an ACM variety of lines, from Corollary 2.2.3, Ix is
generated by products of linear forms. Then

(HAH AT I05 H@).

€la] JElb) i€(a) ke(d] JE[b] kelc]

So any set of minimal generators of [x contains one element of degree
(a3, bs, 0), one element of degree (as, 0, c2) and one element of degree (0, by, ¢1).

Theorem 2.6.2. Let X be a variety of lines of P* x P! x P*. Then the ideal
Ix is a complete intersection if and only if Ix = (F1, Fy), with deg Fy = ae;
and deg F, = be; + ce, with j, k # i, for some a,b,c € N.

Proof. One implication is trivial. Let I'x be a complete intersection, i.e., Ix
is generated by a regular sequence of length 2, then X is ACM. So, from
Remark 2.6.1, any set of minimal generators of Ix contains one element
G of degree (0, by, 1), one element Gy of degree (as, 0, c2) and one element
G5 of degree (ag,bs,0) for some integers a;, bj, cx. Since Ix is a complete
intersection, one of these three generators say, without loss of generality,
the one of degree (0, by, ¢y), is not minimal, i.e. Gy € (G, G3). This easily
implies asag = 0. O
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Corollary 2.6.3. Let X be a complete intersection of lines of P* x P! x P!,
To fix ideas, suppose that Ix = (Fy, Fy), with deg Fy = ae; and deg Fy =
bey + ces. Then a trigraded minimal free resolution of Ix is

0 — R(—a,—b,—c) - R(—a,0,0) ® R(0,—b, —c) = Ix — 0.

Corollary 2.6.4. Let X be a complete intersection of lines of P! x P x P!,
To fiz ideas, suppose that Ix = (Fy, Fy), with deg I} = ae; and deg Fy =
bes + ces. Then we have

reg(Ix)=a+b+c—1

Proof. We can consider the ideal Iy as homogeneous in the normal sense,
i.e., a homogeneous ideal in a N'-graded ring S = k|1, ..., zg]. By Corollary
2.6.3, a minimal free resolution of Iy C S is

0= S(—a—b—c)—= S(—a)®dS(-=b—c) = Ix — 0.
By Definition 1.2.27), we have
reg (Ix) =max{a,b+c,a+b+c—1}=a+b+c—1.
0J

Remark 2.6.5. From Theorem 2.6.2, a complete intersection of lines X is
then obtained from a grid arising from a complete intersection of points by
removing either all the lines having direction e; for some %, or all the lines
having direction e; and e; with ¢ # j. For instance, if we remove all the
lines having direction e, from Remark 2.6.1, we have

Ix = (H A 11 B 11 Ok) = (1 (A, B) N ) (4, Cy).

i€[al JE[b] kelc] ;z [ﬁ,} ; ee [[13

Ezxample 2.6.6. Let X be the set of lines of P! x P* x P! obtained by a grid
of lines X¢ arising from a complete intersection of points C of type (2,3, 2)
removing all the lines having direction e, (see Figure 2.14). That is,

X=U LA, B)) U £(B;,C).

i€[2] JE[3]
JE[3] ke[2]

Then the ideal Iy is a complete intersection and it is generated by the regular
sequence Fy = B1ByBs and Fy = A1 A;C1C5 of degree (0,3,0) and (2,0, 2),
respectively. By Corollary 2.6.4 we also have reg (Ix) = 6.
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L(A2,B1) L(A2,B3) L(A2,B3)

Figure 2.14: A complete intersection of lines (in bold).

We end this chapter with three research topics that are currently investigat-
ing.

1. Guida, Orecchia and Ramella, in [61], studied the complete grids of
lines in P2, whose defining ideal is the 1-lifting ideal of a specific mono-
mial ideal J in a polynomial ring S in three variables. In particular,
from [61, Example 4.9] and Corollary 2.4.4, we noted that the first dif-
ference of the Hilbert function of the ideal Iy, of a grid of lines arising
from a complete intersection of points of type (2,2,2) in P! x P! x P!
in degree (i, j, k) is equal to 1 if and only if (7, j, k) belongs to the order
ideal N(J) C N? of the specific monomial ideal J = (2223, 2222, 23232)
in S. So we make the following question:

Question 2.6.7. For complete intersection of points of type (a,b,c), is
b

the Hilbert function related to the order ideal of J = (zx}, 2§, x525)?

2. Let us consider the ACM varieties of lines X and the Ferrers variety
of lines X’ as in Figure 2.15 and Figure 2.16, respectively. We have
that, for each h = 1,2, 3, Xj, and X}, have the same Hilbert functions.
We also get Hxy = Hx.
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L(A1,B1) L(A1,B1)

E(Al,Cl) ¢ E(Al,Cl)

L£(B2,C1) L(B1,Cy)

Figure 2.15: The ACM variety X. Figure 2.16: The Ferrers variety X'.

According to many experimental computations using CoCoA, [1], we
ask the following question:

Question 2.6.8. Let X be an ACM variety of lines and X’ be a Ferrers
variety of lines such that, for h = 1,2,3, X}, and Xj, have the same
Hilbert functions. Is it true that Hxy = Hx/?

3. In this chapter we have computed the regularity of the defining ideals
of grids of lines and complete intersections of lines in P* x P! x P!, A
future research topic to explore is the computation of the regularity of
other more general classes of varieties of lines in P! x P! x P
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Chapter 3

Regularity of bicyclic graphs
and their powers

This chapter is based upon the joint project with Y. Cid-Ruiz, S. Jafari and
N. Nemati.

The purpose of this chapter is to extend the results of [3] to the family of
bicyclic graphs (i.e. graphs with exactly two cycles). In particular, let I(G)
be the edge ideal of a bicyclic graph G. We characterize the Castelnuovo-
Mumford regularity of I(G) in terms of the induced matching number of G.
The simplest case of the family of bicyclic graphs is that of dumbbell graphs.
A dumbbell graph C), - B, - C,, is a graph consisting of two cycles C,, and C,,
connected with a path P, where n, m, and [ are the number of vertices (see
Example 3.1.1). For dumbbell graphs, we explicitly compute the induced
matching number. Moreover, we prove that reg I(G)? = 2q + reg I(G) — 2,
for all ¢ > 1, when G is a dumbbell graph with a connecting path having no
more than two vertices.

By abuse of notation, we think of the vertices of G = (V, E) as the vari-
ables of R = Klzy,...,x,]. Following this notation, we consider the edges
of G as squarefree monomials of degree two. When there is no confusion,
we use e to denote an edge and x. for the monomial correspond to e. If we
need to specify the vertices of an edge, we use ¢; ; = x;x;.

3.1 Regularity and induced matching num-
ber of a dumbbell graph

In this section we compute the induced matching number of a dumbbell
graph and the regularity of its edge ideal. Recall that C), - P, - C,, denotes
the graph constructed by joining two cycles C), and (), via a path P,. In this
section, we denote the vertices of C,,, C,, and P, by {x1,..., 2.}, {¥1,- -+, Ym}
and {z1,..., 2}, respectively. We make the identifications z; = z; and
Y1 = <.
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Ezxample 3.1.1. Two simple cases when [ = 2 and [ = 1 are the following:

Figure 3.1: The graphs C3 - P, - C3 and Cs - P; - Cy.

Notation 3.1.2. Let &5 be the function defined as below

1 if n=0,1 (mod 3),
0 if n=2 (mod 3).

Let C), - P, be the graph given by connecting the path P, to the cycle C,,.
For instance, the graph C3 - P3 can be illustrated as:

2

T = 21 29

xrs3
Proposition 3.1.3. Letn >3 and [l > 1. Then

b= 3] + [ =5
Proof. Case 1: From Remark 1.2.20, in the case n = 2 (mod 3) we have that
in clockwise and anticlockwise directions the two consecutive edges to the
vertex z; are not chosen in a maximal induced matching of C),. Then, we
can choose the edges in P, without any constraint coming from the maximal
induced matching chosen in C),, and so we have
n [+1
ACo P = 5]+ 15,

Case 2: It remain to consider the case £5(n) = 1, i.e., n = 0,1 (mod 3).
Let M be an induced matching of maximal size in G. We analyze separately
the two cases of whether z;25 (the edge adjacent to the cycle C,,) is in M
or not.

Suppose that 2325 is not an edge of M. Then M can be considered as
the union of a maximal matching of C), as introduced in Remark 1.2.20 and
a maximal matching of the path P\ z;. Thus

J+L(l_1)+1

M| = (o) + v(Pi) = | :

3 -
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If 2129 € M, then none of the edges incident to the vertices in N¢, [z1] =
{z1, 29, 2,} are in M¢, == {e € M | e € C,}. Hence |M¢,| = v(P,_3),

and since n = 0,1 (mod 3), then it follows [Mc, | = [%52] = [2] — 1. From

2129 € M we get |Mp| =v(B) = LHTIJ So, by joining both computations
we get
[+1 n [—2

Ml =15] =1+ == = 5]+ =),

Therefore, we obtain that

uC,- ) = o)+ [

3 3 I

Theorem 3.1.4. Let n,m > 3 andl > 1. Then

v(Cpr- P - Cp) = gJ + {%J + V — &) —3€3(m) + 1J.

Proof. We use the same argument as in Proposition 3.1.3. By Remark 1.2.20
we have that when either n = 2 (mod 3) or m = 2 (mod 3), then the maximal
induced matching in C), or in ), does not affect the way we choose edges
in the path F,.

In the case n = 0,1 (mod 3) we can choose a maximal induced matching
that does not use the edge connected to the cycle C,, which is the same
as saying that we are not going to use one extreme vertex of the path F.
Similarly, when m = 0,1 (mod 3) we can drop the other extreme vertex. [J

The aim of the rest of this section is to explicitly compute the regularity
of I(C, - P, - Cy,) in term of the induced matching number. We divide the
section into three subsections depending on the value of [ mod 3. The base
of our computations is given by the following proposition.

Proposition 3.1.5. Let n,m >3 and [ > 1. Then
regI(Cn ' Pl : Cm)_y(CnPlCm) = regI<Cn : PH—S : Cm)_’/(cn'Pl+3'Cm)'

Proof. From the formula obtained in Theorem 3.1.4 or [80, Lemma 1], we
have the equality

U(Ch - Py - C) = v(Ch - P C) + 1.

We can apply the Lozin transformation (e.g., see [16], [80]) to any of the
vertices in the bridge P. Then from [16, Theorem 1.1] we have

reg [(Cy, - Pys - Cp) =r1egI(C, - B - Cp) + 1.

Thus, the statement of the proposition follows by subtracting these equali-
ties. O
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From the previous proposition, it follows that we only need to consider
the cases | = 1,1 = 2 and [ = 3. We treat each case in a separate subsection.
In the following theorem we compute the regularity of the edge ideal of the
dumbbell C), - B, - C,,.

This theorem is proved in the next three sections.

Theorem 3.1.6. Let m,n >3 and [ > 1.
(i) If L =0,1 (mod 3), then

v(Cp- P -Cp)+2 if n,m =2 (mod 3),

reg I( 1 ) {V(Cn P -Cp)+1 otherwise;

(ii) If 1 =2 (mod 3), then

v(C,-B-Cp)+2 ifn=0,1(mod 3),
reg [(C, - P -Cy,) = m = 2 (mod 3);
v(C,- P -Cp)+1 otherwise.

Proof. Follows from Proposition 3.1.5, and Theorem 3.1.8, Theorem 3.1.14,
and Theorem 3.1.16, giving below. O

3.1.1 Thecasel=1

Throughout this subsection, we consider the dumbbell graph C,, - P; - C,,,.
Proposition 3.1.7. Let n,m > 3. Then

reg [(C, - P, - Cp) < max{{gJ + {%J + 1, LRQQJ + {mT—QJ +2}.

Moreover, reg I(C,, - P, - Cy,) is equal to one of these terms.

Proof. We use [33, Lemma 3.2], that gives an improved version of the exact
sequence coming from deleting the vertex z;. We have

reg [(C,, - P, - Cy) E{ reg[((C’n - P C) \ zl),
veg I((Cr - Pt~ Cn) \ N[za]) + 1}.

Since (CnplCm)\zl = Pn_lqu_l and (Cn.PlCm)\N[Zl] = Pn_3UPm_3,
we get the result by applying Theorem 1.2.32. O
Theorem 3.1.8. Let n,m > 3. Then

v(Cp- P -Cp)+2 ifn=2(mod3), m=2(mod 3);

reg I( 1 ) {V(Cn'Pl'Cm)+1 otherwise.
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Proof. Suppose n = 2 (mod 3) and m = 2 (mod 3). Since [52| = |£]
when k = 2 (mod 3), we have

n m n—2 m — 2 n m
max{[ 2]+ 2]+ 1 122 4 | T2 42y = 5]+ ) 42
Thus Proposition 3.1.7 yields
reg [(C, - P - Cp,) < [gj + L%j + 2. (3.1)

Consider the induced subgraph H = (C, - P, - Cy,) \ {z,} where z,, is in
C, and it is incident to z; (e.g., see x3 in Example 3.1.1). In fact, H is
the graph given by joining C,, and a path P,_q, that is, H = C,, - P,,_1.
Now from Proposition 3.1.3, we have that v(H) = | 5] + [%]. By Corollary
1.2.50, we get reg I(C,, - P, - Cy,) > regI(H). From [3, Theorem 1.1], we
have reg I[(H) = v(H) + 2. Therefore, the equality holds in Equation 3.1.
The proof of this part is complete since Theorem 3.1.4 yields v(C,,- P, -C,,) =
3]+ 15
For any case distinct to n = 2 (mod 3) and m = 2 (mod 3), we have

n m n—2 m — 2 n m
e - 1 2} == — 1.
max{| 5]+ 5]+ 1 [ 4 P 2y = 5]+ L5
Therefore, from Proposition 3.1.7, we have
reg [(Cyy - Py - C) < [gj + L%J + 1. (3.2)

From Theorem 3.1.4, we have v(C, - P - C,) = |5] + [%]. Moreover,
Theorem 1.2.34 gives reg I(C,, - P, - Cp,) > v(C,, - Py - Cy,) + 1. Thus, the
equality in Equation 3.2 holds. Therefore the proof is complete. O

3.1.2 The case [ =2

Throughout this subsection, we consider the dumbbell graph C,, - P - C,,.

Remark 3.1.9. The regularity of I(C,) is given in Theorem 1.2.42. For
simplicity of notation, we use the equivalent formula reg I(C,,) = [%52] + 2.

Proposition 3.1.10. Let n,m > 3. Then

R n— 2 m — 2
Copmcy St it

v(Cp - Py-Cy) <reg (] |+2. (3.3
Proof. We only need to prove the inequality on the right since the lower
bound is given due to Theorem 1.2.34 and reg(J) — 1 = reg (?) for any
ideal J C R. In the original graph C,, - P, - C,, we shall remove the edge
that connects the two cycles C,, and C,,. The set of vertices of C,, and C,,
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are given respectively by {z1,...,x,} and {y,...,yn}, and we assume that
the edge e = x1y; is the bridge between the two cycles. Also, we denote by
C, UC,, the resulting graph given as the disjoint union of the two cycles C,
and C,,. Thus Remark 1.2.53(i7) yields the inequality

re i <max{re ul +1,re R}
s\1C, P-C) = s\1C, uCye) B\ T, ue )T

From [74, Lemma 3.2] we have that the regularity of the two disjoint
cycles C,, U C,, is given by

s (1(07]30”1)) o <I<§n>> T (Hgm))’

and using Remark 3.1.9 we get the equality

e Frenren) Rl e M

Consider the graph H = {2, x,} U P,—3 U {y2, Ym } U Pp_3, where {2, x,}
and {ya, Y} are incident vertices of graph C,, - P, - C,, to x; and yy, re-
spectively (see Example 3.1.1). Moreover, P, 3 is the path with vertices
xr3,...,T,_1 and P,,_3 is the path with vertices ys,...,yn_1. It is easy to
see that reg [(H) = reg I(C, U C,,) : (e). Hence from Remark 1.2.19, Theo-
rem 1.2.54 and again [74, Lemma 3.2] we get

reg <1(cnugm) : (e)) = VL?J * {m?:QJ +1

that proves the proposition. O

As a result of the previous proposition, we can prove the following corol-
lary.

Corollary 3.1.11. Let n =0,1 (mod 3) and m = 0,1 (mod 3). Then

S Fremyxrem) UG RCRR LR b

Proof. We note that [£] = [%2] + 1 when k& = 0,1 (mod 3). From The-
orem 3.1.4, in Equation 3.3 the lower and upper bound coincide for these
cases. So the equality is established. O

Now we have only three more cases left to deal with, i.e., the case n =
0 (mod 3), m = 2 (mod 3), the case n = 1 (mod 3), m = 2 (mod 3), and
the case n =2 (mod 3), m = 2 (mod 3).
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Lemma 3.1.12. Let n =2 (mod 3) and m =2 (mod 3). Then

R
S\TC, B Oy

Proof. We shall divide the graph into three subgraphs H;, H, and H;. We
make Hy = C,, \ {z1} and Hy = C,;, \ {y1}. The subgraph Hj is defined by
taking the bridge e = z7y; and the neighboring vertices {2, ,,, Y2, Ym }, i.€.
the graph below.

) =[5 [3] 1.

Ym

Using this decomposition and Theorem 1.2.54 we get the inequality
reg R/I(C,, - Py-Cp,) <reg(R/I(Hy))+ reg (R/I(Hs)) +reg (R/I(Hj)).

Then have that H; and Hs are paths of length n — 1 and m — 1 respectively,
and using Theorem 1.2.32 we get
m

reg R/1(C, - Py-Cp,) < LEJ + {3

1.
i) l5)

Finally, in the case n = 2 (mod 3) and m = 2 (mod 3), we have the equality
v(Cy,-Py-Cy) = |5] + %] +1, and the proof follows from Theorem 1.2.34.
U

Lemma 3.1.13. Let n = 0,1 (mod 3) and m = 2 (mod 3). Then

R
S\TC, POy

>:u(Cn-P2-Cm)+1={%JJ%%JWLL

Proof. In this case we will delete the vertex z; from the cycle C,,. We have
that H = (C,, - P, - Cy,) \ {x1} is an induced subgraph of C, - P, - C},
which is given as the union of a path of length n — 1 and a cycle m, i.e.,
H =P, 1UC,,. From Corollary 1.2.50 we get that

veg (R/1(Cly - Py - Cyy)) > reg (R/I(H)) = {%J 4 gJ +1.

It follows from Proposition 3.1.10 and the fact that [k/3] = [(k—2)/3] +1
when £ = 0,1 (mod 3) that

reg R/1(Cy, - Py - Cry)

[l
+
2
_I_
;
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Theorem 3.1.14. Let n,m > 3. Then

v(Cp-Py-Cp)+2 ifn=0,1(mod3),
reg [(C, - Py - Cy,) = m =2 (mod 3);
v(C, - Py-Cy)+1 otherwise.

Proof. This theorem follows by Corollary 3.1.11, Lemma 3.1.12, and Lemma
3.1.13. .

3.1.3 The case [ =3
Throughout this subsection, we consider the dumbbell graph C,, - P3 - C,,,.
Proposition 3.1.15. Let n,m > 3. Then

(i) regI(Cy, - Py - Cy,) < v(Cp - P3-Cp)+2, ifn,m=2(mod3);

(it) reg I(C,, - Py - Cy,) = v(Cy, - P3- Cy) + 1, otherwise.

Proof. Let E(Ps) = {e, e’} be the set of the edges of P3, where e = 2125 and
e/ = z23 are connected to C,, and C,,, respectively.

Since reg (I(C, U (¢ - C)) : e) =reg (I(P,_3U P,,_1)), then Remark 1.2.53
(2) yields the inequality

R R
<
re8 (I(Cn ;- cm)> = ax { ree (I(Pn_g U Pm_1)> +1,

ree (1(@ U}(%e’ : cm)> }

From Proposition 3.1.3 and [3, Lemma 3.2], it also follows that

reg (1(e' - C) = | 2] + 225

Thus, using Remark 3.1.9, [74, Lemma 3.2] and Theorem 1.2.32, we get

e i) <meed 57 ¢ 5]
] 5] )

On the other hand, from Theorem 3.1.4 we have that

" m 4 —&(n) —&(m
V(Co- P Ca) = 5] + 5] + | 3<; s(m),
Therefore, we can check that reg (L) < (C,- Py Cyp) + 1 when

I1(Cp-P3-Cpy)
n,m = 2 (mod 3), and that reg (W) = v(C, - P;-C,,) in all the

remaining cases. O

]+ 1
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Theorem 3.1.16. Let n,m > 3. Then

veg I(C, - Py Cy) — {I/(Cn -P3-Cp)+2 if n,m'z 2 (mod 3),
v(C,-P3-Cp)+1 otherwise.

Proof. Using Proposition 3.1.15, we only need to prove that reg I(C,, - P5 - C,,)

> v(C, - P3-Cp) + 2 in the case n,m = 2 (mod 3). Hence, we assume

n,m = 2 (mod 3). Let 2o be the middle vertex of C,, - P5 - C,,. By deleting

z9 we see that H = (C), - P3- Cp,) \ 29 = C,, U C,, is an induced subgraph of

C, - P3 - Cp,. From Theorem 1.2.42 and [74, Lemma 3.2], we have that

regI(H) =reg I(C,,) +reg I[(Cy,) — 1 = v(Cy,) +v(Cp,) + 3.

Since v(C,, - P - Cy,) = v(C,,) + v(C,y,) + 1, then using Corollary 1.2.50 we
get
reg I(Cy, - Py - Cy,) >regI(H) = v(C, - P3- Cp,) + 2.

O

3.2 Combinatorial characterization of reg (I(G))
in terms of v(G)

Let G be a general bicyclic graph. Then its decycling number (see Definition

1.2.35) is smaller or equal than 2, and so from Theorem 1.2.34 and Theorem

1.2.36, we get
v(G)+1<regl(G) <v(G)+3.

Example 3.2.1. The following graph G

has regularity reg I(G) = 6 and induced matching number v(G) = 3.

In this section, we give a combinatorial characterization of the bicyclic
graphs with regularity v(G) + 1, v(G) + 2 and v(G) + 3. For the rest of this
chapter, we shall use the term “the dumbbell” of the bicyclic graph G, and
it denotes the unique subgraph of G of the form C, - B, - C},,. The theorem
below contains the characterization that we found.
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Theorem 3.2.2. Let G be a bicyclic graph with dumbbell C,, - P, - C,,. The
following statements hold:

(1) If n,m = 0,1 (mod 3), then
reg I(G) = v(G) + 1.

(II) If n = 0,1 (mod 3) and m = 2 (mod 3), then
v(G)+1<regI(G) <v(G)+ 2,
and reg I(G) = v(G) + 2 if and only if v(G) = v(G \ T'c(Cy)).
(II) If n,m =2 (mod 3) and | > 3, then
v(G)+1<regl(G) <v(G)+3.
Moreover:

(i) reg I(G)
(ii) reg 1(G)

1%

v(G) + 3 if and only if v (G \ T'¢(C, UCy)) = v(G).
(G) + 1 if and only if the following conditions hold:

(a) v(G) = v(G\T(CnUCr)) >
(b) v(G) > v(G\Ta(Ch));
(¢c) v(G) >v

(
(G\Ta(Cn))-
(IV) If n,m = 2 (mod 3) and | < 2, then

v(G)+1<regl(G) <v(G)+2.

Moreover, if x is an edge on P, and if L.(G) is the Lozin transforma-
tion of G with respect to x, then reg I(G) = v(G) + 1 if and only if the
following conditions are satisfied:

(a) V(Lo(G)) = (La(G)\T,e)(Cn U Cr)) > 1

(0) V(Lo(G)) > v(Le(G)\ Tryc)(Cn));

(¢c) V(La(G)) > v(Le(G)\ Try(6)(Cim))-
Proof. This statement summaries our work below. In particular, statement
(1) follows from Proposition 3.2.4. In Theorem 3.2.13, (II) is proved. By
Theorem 3.2.18 and Theorem 3.2.23, we get (1II). Finally, from Corollary
3.2.24, we obtain (1V). O

The following simple remark will be crucial in our treatment.

Remark 3.2.3. [3, Observation 2.1] Let G be a graph with a leaf y and its
unique neighbor x, say e = {z,y}. If {e1,...,es} is an induced matching in
G\ N[z, then {ey,...,es e} is an induced matching in G. So we have

v(G\ N[z]) + 1 < v(G).
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Proposition 3.2.4. Let G be a bicyclic graph with dumbbell C,, - P, - C,,.
The following statements hold:

(1) When n,m = 0,1 (mod 3), we have reg I(G) = v(G) + 1.

(i) When n = 0,1 (mod 3) and m = 2 (mod 3), we have
reg I(G) < v(G) + 2.

(1) When | <2, we have reg I(G) < v(G) + 2.

Proof. (i) Again, it is enough to prove the upper bound reg I(G) < v(G)+1.
Let E’ be the set of edges F' = E(G) \ E(C,, - P, - C},). We proceed by
induction on the cardinality of E’. If |E’| = 0 then the statement follows
from Theorem 3.1.6, so we assume |E’| > 0. There exists a leaf y in G such
that N[y] = {z}. Let G'’ = G\ =z and G” = G \ N[z]. Then by Remark
1.2.53 we have

reg I(G) < max{reg I(G"),reg [(G") + 1}.

The graphs G’ and G” can be either bicyclic graphs with the same dumbbell
C, - P, - Cp,, or unicyclic graphs with a circle C,. (r = n or r = m) of the
type r = 0,1 (mod 3), or forests. Using either the induction hypothesis, or
[3, Theorem 1.1] and Theorem 1.2.54, then we get reg I[(G') = v(G’)+ 1 and
reg [(G") = v(G") + 1. Since we have v(G’) < v(G) and v(G") + 1 < v(G)
(by Remark 3.2.3), then we obtain the required inequality.

(77) and (zii) follow by the same inductive argument, only changing the
fact that G’ and G” could be unicyclic graphs with cycle C, of the type
r =2 (mod 3). O

Remark 3.2.5. The inductive process of the previous proposition cannot con-
clude reg I(G) < v(G) + 2 in the case | > 3. Here we may encounter two
disjoint subgraphs G and Gy with reg I(G;) = v(G;) + 2, which implies
reg [(Gh UG2) = v(G1 UG2) + 3. This is exactly the case of Example 3.2.1.

An alternative proof of the inequality reg I(G) < v(G) + 3 can be given
by using the same inductive technique of Proposition 3.2.4.

For the rest of this chapter we shall use the following notation.
Notation 3.2.6. Let G be a graph, H C G be a subgraph, and v and w be

vertices of G. Then, we assume the following:

(i) d(v,w) denotes the length (i.e., the number of edges) of a minimal
path between v and w. In particular, d(v,v) = 0.

(ii) d(v, H) denotes the minimal distance from the vertex v to the subgraph
H. that is
d(v, H) = min{d(v,w) | w € H}.

In particular, d(v, H) = 0 if and only if v € H.
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(iii) Let H C G be a subgraph, then the distance between H and H' is
given by
d(H,H') = min{d(v,H) | v e H}.

In particular, d(H, H') = 0 if and only if H N H' # 0.

(iv) T'¢(H) denotes the subset of vertices

Te(H) = {veG|dw H) =1}

(v) In the case & > 0, Sgx(H) denotes the induced subgraph given by
restricting to the vertex set

V(Ser(H)) ={veG|dw H) > k}.

(vi) S, denotes the subgraph given by the vertex set
V(Seo(H)) ={veG|dv,H)>0or deg(v) > 3}.
and the edge set

E(Sgo(H)) = {(v,w) € E(G) | v,w € V(Sgo(H))}
\ {(v,w) € E(G) | v,w e H}.

We clarify the previous notation in the following example.

Ezample 3.2.7. (i) Let G be the graph of Example 3.2.1 and H = C5UC5
be the subgraph given by the two cycles of length 5. Then, we have
that I'¢(H) is the set containing the vertex in the middle of the bridge
joining the two circles, that S o(H) is a graph of the form

<3

2

T

and that the graph

represents Sgo(H).

(ii) Let G be the graph given by
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and H be the triangle induced by the vertices {x1,z2, z3}. Then, we
have that I'¢(H) = {24, w6, vs}, that Sgo(H) is a graph of the form

and that the graph

g @7

represents Sgo(H ).

We have already computed reg I(G) in the case n,m = 0,1 (mod 3). For
the remaining cases we shall divide this section into subsections.

3.2.1 Casel

In this subsection we shall focus on the case n = 0,1 (mod 3) and m =
2 (mod 3). This case turns out to be almost identical to a unicyclic graph,
and our treatment is influenced by [3, Section 3].

Notation 3.2.8. Let G be a bicyclic graph with dumbbell C,, - P, - C,,, such
that n = 0,1 (mod 3) and m = 2 (mod 3). We shall denote by Fi,..., F,
the connected components of S¢o(C,y,), and in this case each Fj is either a
tree or a unicyclic graph with cycle C,, (and n = 0,1 (mod 3)). Then, the
graph Sg2(C),) can be given as the union of the components Hy,..., H,,
where each one is defined as

Hy = F\ {ve G |d(v,Cy) < 1},

We note that each H; can be a non-connected graph or even the empty
graph.
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Remark 3.2.9. The following statements hold.
(i) The graph G \ I'¢(C,,) has a decomposition of the form

G\ Ta(Cp) = ClJ <EJ1 HZ-) ,

and in particular
v(G\Ta(Cn)) =v(Cp) + > v (H,)
i=1

because d(C,,, H;) > 2 for all 1 < i < ¢ and d(H;, H;) > 2 for all
1<i<j<ec
(ii) For each i = 1,..., ¢, we have that |F; N C,,| = 1.
Example 3.2.10. Let G be the graph

and Cs be the cycle given by {y1,v2,ys,ys,ys}. We have that ['¢(Cs) =
{#1,y5}. The graph S¢o(Cs) is given by

z3

Y3 Ys Y6

with connected components Fy = {y1, 21, 22, 23, X1, T2, 5 } and Fy = {y3, ya, Ys }-
The graph S¢2(C5) is given by

z3
T2 IZZ Yye
(4]

5
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and following our notations we have Hy = {x1, o, x5, 22, 23} and Hy = {ys}.

Lemma 3.2.11. Adopt Notation 3.2.8. If v(H;) = v(F;) for all1 <i <,
then v(G\ T'¢(Cp)) = v(G).

Proof. Follows identically to [3, Lemma 3.5]. O

Proposition 3.2.12. Adopt Notation 3.2.8. If v(G\T'¢(Cy,)) < v(G), then
reg [(G) =v(G) + 1.

Proof. Once more, we shall only prove that reg I[(G) < v(G) + 1. Assume
that v(G \ I'¢(Cyn)) < v(G). Then the contrapositive of Lemma 3.2.11
implies that there exists some ¢ with v(H;) < v(F;).

Fix i such that v(H;) < v(F;). From Remark 3.2.9 (i7), let x be the
vertex in F; N Cp,. Let us use the notations G' = G \ z and G" = G \ N|z].
Again, we have the inequality

reg I(G) < max{reg I(G"),reg I(G") + 1}.

Note that both G' and G” can be either unicyclic graphs with cycle C,, (and
n = 0,1 (mod 3)), or forests. Hence, from [3, Theorem 1.1] and Theorem
1.2.32, we get that reg I(G") = v(G’) + 1 and reg [(G") = v(G") + 1.

In the case of G', we have that regI/(G') = v(G') +1 < v(G) + L.
Let H be the induced subgraph of GG obtained by deleting the vertices of
F; U Ng[z]. Then we have G” = H U H;. Let M; and My be maximal
induced matchings in H and H;, respectively, then v(G”) = |M;| + |M,|
because d(H, H;) > 2. By the condition v(F;) > v(H;), then there exists a
maximal induced matching Mj in Fj, such that |Mj| > |Ms|. From the
fact that H U F; is an induced subgraph in G' and H N F; = (), we then get

I/(G) > V(HU FZ) = |M1| + |./Vl3| > |M1| + |./Vl2| = IJ(GH).

Hence reg I(G") = v(G") + 1 < v(G), and so we get the statement of the
proposition. ]

Theorem 3.2.13. Let G be a bicyclic graph with dumbbell C,, - P, - C,, such
that n = 0,1 (mod 3) and m = 2 (mod 3). Then the following statements
hold.

(i) vV(G)+1<regl(G) <v(G)+2;
(i7) reg I(G) = v(GQ) 4 2 if and only if v(G) = v(G \ I'¢(Cy)).

Proof. In Proposition 3.2.4 we proved (i). In order to prove (ii), we only
need to show that v(G \ I'c(Cy,)) = v(G) implies reg I(G) > v(G) + 2,
because the reverse inequality follows from Proposition 3.2.12.
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From Remark 3.2.9 (i), G\ I'¢(Cy,) = C,, U (UL, H;) where each H; is
either a forest or a unicyclic graph with cycle C), (and n = 0,1 (mod 3)).
Then, from [3, Theorem 1.1] and Theorem 1.2.32 we get

reg [(G\ Tg(Cp)) =reg I(C,,) + reg I(O H;) —

i=1

= W(Cp) +2)+ UH’+U—1
= (G \Ta(Cp)) + 2
=v(G) + 2.

Finally, since G\I'¢(C),) is an induced subgraph of G then we have reg I(G) >
V(G + 2. 0

3.2.2 Case Il

The object of study of this subsection is the case n,m = 2 (mod 3), [ > 3,
and in particular, when reg I(G) = v(G) + 3. More specifically, we shall give
necessary and sufficient conditions for the equality reg I(G) = v(G) + 3.

Notation 3.2.14. Let G be a bicyclic graph with dumbbell C,, - B, - C),, such
that n,m = 2 (mod 3) and [ > 3. As in Notation 3.2.8, let F}, ..., F, be the
components of the graph S¢ o(C,,). We order the F’s in such a way that F}
is a unicyclic graph with cycle C,,, and for all 7 > 1 we have that F; is a
tree. The graph Sg2(C),) can be decomposed into components Hy, ..., H.
where

Hy = F\{veG|d(v,C,) <1}.

Remark 3.2.15. From the previous notation, we get the following simple
remarks.

(i) The graph G \ I'¢(C},) has a decomposition of the form
G\ La(Cy (Q )
and in particular
v(G\Ta(Cn)) = v(Cn) + > v (H)

because d(C,, H;) > 2 for all 1 < i < ¢ and d(H;, H;) > 2 for all
1<i<j<e

(ii) The graph G \ I'¢(C,, U C,,) has a decomposition of the form

G\Ta(C,UC,,) = ou(UH) (H\ T, (C))

=2
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and in particular

C

V(G\Ta(C,UCy)) =v(Cp) + Y v(H;) +v(H \ Ty (C)).

i=2
(iii) For each i =1,...,¢, we have that |F; N C,| = 1.

(iv) The statement of Lemma 3.2.11 also holds in this case, that is, if
v(H;) =v(F;) for all 1 <i <e¢, then v(G\T'¢(C,)) = v(G).

(v) Due to the assumption ! > 3, then we have that C,,, must be an induced
subgraph of H;. Throughout this subsection and the next one, we shall
fundamentally use this fact. It will allow us to inductively “separate”
the two cycles C,, and C,,.

Lemma 3.2.16. Adopt Notation 3.2.14. If v(H;) = v(F;) forall1 <i<c¢
and v(Hy) = v(Hy \ Ty, (Cr)), then

v (G\Ta(Cy UC)) = v(G).

Proof. Since G \ I'¢(C,, U C},) is an induced subgraph of G, then we have
v(G\T¢(C,UCy)) <v(G). From Remark 3.2.15 (i) we get

v(G\Tg(CpUCyy) +Z H;) +v(Hi \ T'u, (Cp))
+Z )+ v(Hy)
=v(C,) + ;I/(F
and so v (G \T'g(C,UC,,)) =v(G). O

Proposition 3.2.17. Adopt Notation 3.2.14. If v(G\I'¢(C,,UC},)) < v(G),
then
reg I(G) < v(G) + 2.

Proof. 1t follows from the contrapositive of Lemma 3.2.16, that there exists
some i with v(H;) < v(F;) or we have v(Hy \ I'y, (Cr,)) < v(Hy). Then we
divide the proof into two cases.

Case 1: In this case, we assume that for some 1 < i < ¢ we have v(H;) <
v(F;). This case follows similarly to Proposition 3.2.12. Let x be the vertex
in ;N C,. Let us use the notation G' = G\ z and G" = G\ N[z]. Once
more, we have the inequality

reg [(G) < max{reg I(G'),reg I(G") + 1}.

80



Note that both G’ and G” are unicyclic graphs, and so we have reg I(G’) <
v(G') + 2 and reg I(G") < v(G") 4+ 2 (see Theorem 1.2.36). Since we have
v(G') < v(G) and v(G") + 1 < v(G) (see the proof of Proposition 3.2.12),
then the inequality follows in this case.

Case 2: Now we suppose that v(H; \ I'y, (Cy,)) < v(Hi). Let = be the
vertex in F; N C,, and set G' = G\ z and G” = G\ N[z]. We use the
inequality

reg [(G) < max{reg I(G'),reg I(G") + 1}.
The graphs G" and G” are unicyclic. For the graph G" we have reg I(G") <
v(G")+2 < v(G)+2. The graph G” can be given as the disjoint union of H;
and another graph H defined by H = G\ (Fy U N|[z]), that is, " = HU H,
and H N Hy = (. Since H is a forest, then using [3, Theorem 1.1] we
obtain that reg I(G") < v(G") + 1. So we get the inequality reg I(G")+1 <
v(G") 42 < v(G) + 2, because G is an induced subgraph of G. O

Now we are ready to completely describe the case where regI(G) =

v(G) + 3.
Theorem 3.2.18. Let G be a bicyclic graph with dumbbell C,,-P,-C,,. Then
reg [(G) = v(G) + 3 if and only if the following conditions are satisfied:
(i) n =2 (mod 3);

(i) m =2 (mod 3);

(7ii) 1 > 3; and

(iv) v(G\Tg(C,UCy)) =v(G).
Proof. In Proposition 3.2.4 we proved that the conditions (i), (ii) and (i)
are necessary, and from Proposition 3.2.17 we have that the condition (iv)
is also necessary. Hence, we only need to prove that reg I(G) = v(G) + 3
under these conditions.

From Remark 3.2.15, and using [3, Theorem 1.1] and Theorem 1.2.32,
we can compute

reg (1(G\T6(Cy U Cn))) = reg (1(C)) + reg (I( U H;))+
+reg (I(Hl\FH1< m))) —2
= (v(C,) +2) + (Z/(U H)+ 1)+

(v(Hy \ Ty (G ))+2)—2
(G\FG(C U Cm)) +
v(G) +

_|_
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Since G \ I'¢(C,, U C,,) is an induced subgraph of G, then we get
reg [(G) > reg I(G\ I'c(Cn U C)) = v(G) + 3,

and so, from Theorem 1.2.36, the equality it is obtained. O

3.2.3 Case III

In this subsection we assume that G is a bicyclic graph with dumbbell C,, - P;-
C,, such that n,m = 2 (mod 3) and | > 3. Now that we have characterized
when reg I(G) = v(G) + 3, we now want to distinguish between reg I(G) =
v(G)+ 1 and reg I(G) = v(G) + 2.

Lemma 3.2.19. Adopt Notation 3.2.14. Ifv(G)—v (G\T¢(C,UCy)) =1,
then
reg [(G) = v(G) + 2.

Proof. From Theorem 3.2.18 we have that reg (I(G)) < v(G) + 2. Using the
same method as in Theorem 3.2.18, we can obtain a lower bound

reg I(G) > reg (G\T'¢(C,UC)) =v(G\T(C,UCy)) +3=v(G) + 2,

and so the equality follows. O

Lemma 3.2.20. Adopt Notation 3.2.14. If v(G) = v(G \ I'¢(Cy)), then
reg I(G) > v(G) + 2.

Symmetrically, the same argument holds for C,,.

Proof. The proof follows similarly to Theorem 3.2.13. From Remark 3.2.15
(), [3, Theorem 1.1] and Theorem 1.2.32 we get

Cn

reg [(G\T¢(Cp)) =reg I(Cy) +reg I(| ) H;) — 1

-
[
R

=

I
I
—

(v(Cn)+2)+ w((JH:)+1)—1

\]

v(G\Ta(Cn)) +
v(G) + 2.

So the inequality follows from the fact that G\I'¢(C,,) is an induced subgraph

The following very simple logical argument will be used several times in
the next theorem.
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Observation 3.2.21. Let Py, Py, Py be boolean values, (i.e., true or false).
Assume that Py is true if and only if P, and P are true, that is

P = (R N Pj).
Suppose that if Py is true, then Pj is false, that is
P, = P
Then, Py is false.

Notation 3.2.22. Let X be a mathematical expression. Then, P[X] repre-
sents a boolean value, which is true if X is satisfied and false otherwise.

Taking into account the induced matching numbers v(G), v(G\T'¢(C, U
Cn)), V(G\T'¢(C,)) and v(G\T'¢(C,,)), we can give necessary and sufficient
conditions for the equality reg I(G) = v(G) + 1.

Theorem 3.2.23. Let G be a bicyclic graph with dumbbell C,, - P, - C,, such
that n,m = 2 (mod 3) and | > 3. Then reg I(G) = v(G) + 1 if and only if
the following conditions are satisfied:

(i) V(G) — V(G \Te(Co UCy)) > 1;
(it) v(G) > v(G\Tc(Cr));
(iii) v(G) > V(G \ Ta(Ch)).

Proof. From Lemma 3.2.19 and Lemma 3.2.20, we have that the conditions
(), (it) and (4i7) are necessary. Hence, it is enough to prove reg I(G) <
v(G) + 1 under these conditions.

Again, for any z € G we let G’ = G\ z and G” = G'\ N|z], and we have
the upper bound

reg [(G) < max{reg I(G"),reg I(G") + 1}.

We shall prove that under the conditions (i), (i7) and (ii7) there exists a
vertex x € C,, such that reg [(G') < v(G)+1 and reg I(G")+1 < v(G) + 1.
We divide the proof into three steps.
Step 1. In this step we prove that for any x € C,, we have reg I(G') <
v(G) + 1. First we note the following two statements:
o From Theorem 1.2.36 we have that reg I(G') < v(G') + 2. Hence,
v(G") < v(G) implies that reg I(G') < v(G') +2 < v(G) + 1.
« From [3, Theorem 1.1] we obtain that reg I(G') = v(G') +2 if and only
if v(G") =v(G'\Te(Cn)).
Thus, it follows that

reg 1(G') = v(G) + 2 = <V(G) — »(G') and w(G') = (G'\ PG,<cm))).
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In Observation 3.2.21, let P, = P[reg I(G") =v(G) + 2} ,
Py = P[v(G) =v(G")] and Py =[v(G") = v(G'\Te(Cw))].

From the logical argument of Observation 3.2.21, if we prove that v(G') =
v(G) implies v(G') > v(G'\I'¢:(C}y,)), then we will get the required inequal-
ity reg I(G') < v(G) + 1. Assume that v(G) = v(G’). From the hypothesis
v(G) > v(G\I'¢(C),)) and the fact that G'\['¢/(C),,) is an induced subgraph
of G\ I'¢(C,,), then we get

v(G) =v(G) > v(G\Tg(Cy)) > v(G'\ Ta/(Ch)).

Therefore, we have reg I(G') < v(G) + 1.

Step 2. Since v(G) > v(G\ I'¢(C,)), it follows from Remark 3.2.15 (iv)
that there exists some 1 < i < ¢ such that v(F;) > v(H;). Following
Notation 3.2.14, we have that F} is a unicyclic graph containing the cycle
C,, and that F; is a tree for all 4 > 1. In this step, assume 7 > 1 where Fj is
a tree and v(F;) > v(H;).

Let = be the vertex in F; N C,, and H be the induced subgraph H =
G\ (F; U Ng[z]). Note that G" = H U H;, d(H, H;) > 2 and d(H, F};) > 2.
Then

v(G")=v(H)+v(H;) <v(H)+v(F;) <v(Q)

follows from the condition v(H;) < v(F;). So we have that v(G") < v(G).
Let K be the induced subgraph defined by K = (G\I'¢(Cy,))\ (F;UN|[z]).
Since ¢ > 1, then F; N F; = (), and so we get the following statements:
e G” \ FG//(Cm> = KUH,.
o K U F; is an induced subgraph of G\ I'¢(C},).
o We have the following inequalities

V(G \ Tr(Cn)) = V(K) + v(H;) < V(K) + v(F) < (G \ Te(Cr)).

Again, as in Step 1, [3, Theorem 1.1] and Theorem 1.2.36 yield the fol-
lowing equivalence

reg 1(G") +1 = (G) +2 <V(G) — »(G") + 1 and

W(G") = v(G"\ FG//(Cm))).

In Observation 3.2.21, let P, = P[reg I(G")+1=v(G)+ } = P[V(G) =
v(G" + 1)] and P = P[V(G”) = v(G"\T'e(C )} So it is enough to
prove that v(G) = v(G") + 1 implies v(G") > v(G" \ I'g#(C},)). Assuming
v(G) = v(G") + 1, then we can get

V(G") = v(G) — 1> v(G\Ta(Chp)) — 1 > v(G" \ Tn(Ci))-
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Therefore, in this case we have reg I(G”) +1 < v(G) + 1.

Step 3. In this last step we assume that v(F}) > v(H,) and that v(F;) =
v(H;) for all i > 1. Let x be the vertex in F}; N C,,. Then as in Step 2 we
have the statements:

. V(@) < v(G).
.« reg I(G") +1 = v(G) +2 <V(G) — U(G") + 1 and V(@) =

V(G FG,,(cm)))
Once more, if we prove that v(G) = v(G”) + 1 implies v(G") > v(G" \
L (Cr)), then we obtain that reg I(G") + 1 < v(G) + 1.
We denote by L the induced subgraph of G” \ I'¢(C,,,) given by discon-
necting all the trees F; with ¢+ > 1, that is

L = (G"\Tgn(Cm)) \ T'a(Ch).

From the conditions v(F;) = v(H;) for all i > 1, then we get v(L) = v(G"\
Ler(Ch)) (see the proofs of Lemma 3.2.11 or Lemma 3.2.16). We also have
that L is an induced subgraph of G\ I'¢(C, U C},) because we have the
equality

L= (G \ FG(Cn U Om)) \ N[.T]

Finally, from the hypothesis v(G) — v(G \ T'¢(C,, UC},)) > 1 we can obtain
v(G")=v(G)—1>v(G\Tg(C,UCy)) > v(L) =v(G"\Tg(Cy)).

Therefore, in this case we also have reg I(G") + 1 < v(G) + 1.

3.2.4 Case IV

In this short subsection we deal with the remaining case. We assume G is a
bicyclic graph with dumbbell C,, - P, - C,, such that n,m = 2 (mod 3) and
1 <2.

When [ < 2, the two circles are too close to each other, and it is difficult to
make a direct analysis (with our methods). Fortunately, with the complete
characterization of the case [ > 3, then the problem can be solved with the
Lozin transformation. Suppose that z is one vertex on the bridge P, (at
most two), then we can apply the Lozin transformation of G with respect
to x, and this can give a bicyclic graph £,(G) with dumbbell of the type
C, - Py - C,, where k > 4. From [80, Lemma 1] and [16, Theorem 1.1] we get
the equality

reg (1(£.(G))) — v (La(G)) = reg (1(G)) — v (G), (3.4)

therefore we get a characterization in the following corollary.
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Corollary 3.2.24. Let G be a bicyclic graph with dumbbell C,, - P, - C,, such
that n,m = 2 (mod 3) and | < 2. Let x be a point on the bridge P, and let
L.(G) be the Lozin transformation of G with respect to x. Then we have
that v(G) + 1 <regI(G) < v(G) + 2, and that reg I(G) = v(G) + 1 if and
only if the following conditions are satisfied:

(1) V(Le(G)) = (Le(G)\ T, (6)(Cn U Crn)) > 15
(i) v(L:(G)) > v(La(G)\ T, ) (Cn));
(i) V(£,(G)) > V(L.(G)\ Tevier (Cn)).
Proof. 1t follows from Proposition 3.2.4, Equation 3.4, and Theorem 3.2.23.
O

3.2.5 Examples

In this last subsection we shall give examples for each one of the statements
in the characterization of Theorem 3.2.2.

Ezample 3.2.25. Statement (I) of Theorem 3.2.2. Let G be the graph below.

z2 Y2 z2 z3

Y3

Then we have reg I(G) = 4 and v(G) = 3.
Ezample 3.2.26. Statement (/1) of Theorem 3.2.2. Let G be the graph below.

o Y2 Y3

Then we have reg I(G) = 5 and v(G) = 3.
On the other hand, let G' be the graph below.
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Then we have reg I(G) = 5 and v(G) = 4.
Ezample 3.2.27. Statement (/1) of Theorem 3.2.2. In Example 3.2.1 we
saw a graph G where reg I(G) = 6 and v(G) = 3.

Let G be the graph below.

Then we have reg I(G) = 5 and v(G) = 3. If we move the outer edge to the
left, then we get a different result. Let G be the graph below.

22

Then we have reg I(G) = 5 and v(G) = 4.

Ezample 3.2.28. Statement (V) of Theorem 3.2.2. Let G be the graph
below.
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Then we have reg I(G) = 4 and v(G) = 2. By adding an edge, let G be the
graph below.

Then we have reg I(G) = 4 and v(G) = 3.

3.3 Castelnuovo-Mumford regularity of pow-
ers

In this section, we study the regularity of powers of I(C, - P, - C},) when
I < 2. Our strategy is to obtain a lower bound and an upper bound for
reg [(C,, - B, - Cy,)9, such that both coincide and are equal to 2g+ reg I (C,, -
P, - C,,). To obtain the upper bound, we follow the argument of Banerjee
from [10, Theorem 5.2]. To calculate the lower bound, we proceed by looking
at “nice" induced subgraphs of C,, - P, - C,,.

As a side result, we answer an interesting question on the behavior of
the constant term of the asymptotycally linear regularity function. Let [
be an arbitrary ideal generated in degree d and let b, := reg () — dq for
g > 1. An interesting question is the study the sequence {b;};>1. In [38]
Eisenbud and Harris proved that if dim(R/I) = 0, then {b;};>; is a weakly
decreasing sequence of non-negative integers. In [11] Banerjee, Beyarslan
and Ha conjectured that for any edge ideal, {b;};>1 is a weakly decreasing
sequence (see [11, Conjecture 7.11]). For the edge ideal of any dumbbell
graph with [ < 2, we prove b; = by for all # > 1. However, we expect b; < by
for all # > 1 for any graph.

Remark 3.3.1. From Theorem 3.1.4 and Theorem 3.1.6, for any [ < 2 we

have that
n+m-+1{+1

3 I
The previous inequality is not satisfied when [ > 3, because reg I(Cy - Ps - Cy)
=3and [HEH ] =4
3 .
We will use the notation of even-connection from Banerjee (see Theorem
1.2.56 and Definition 1.2.57). The following lemma is crucial in our treat-

ment of the even-connected vertices, and its proof is similar to [10, Lemma
6.13].

reg [(C, - P -Cp) > |
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Lemma 3.3.2. Let G be a graph. As in Remark 1.2.60, let G' be the graph
associated to (I(G)it1: e, - ~~eq)p01. Suppose u = po,P1,...,Prsr1 = UV IS a
path that even-connects u and v with respect to the q-fold e - - -e,. Then we

have
2s+1

U N(;/[pi] C N(;/[u] UN(;/[U].

i=0
Proof. Let U be the set of vertices U = {po,p1,...,pass1}. For each 1 <
k < s we have that po,_1par = €, for some 1 < j, < ¢, i.e., u and v are even
connected with respect to the s-fold e; ej, - - -e;..

Let w be a vertex even-connected to some vertex z € U with respect
to the g-fold ey ---e,. Then, there exists a path z = 79,71,..., 7941 = W
that even-connects z and w with respect to the ¢g-fold e; - - - e,. Let ¢ be the
largest integer such that r; € U. From the fact that 1o = z € U, we have
that the integer ¢ is well defined and ¢ > 0. Let k& be an integer such that
Pr = Ti.

The proof is now divided into four different cases depending on i (mod 2)
and k (mod 2). When i and k are both odd integers, we have that r;r;,; is
equal to some edge of {ey,eq,...,¢,} and that pp_1ps is not equal to any
edge of {e;,,ej,,...¢e;,}. By the definition of i we have

{riv1,iv2, - r2 } NU =0,
So, in this case, it follows that

U=DPoy--3Pk—1,Pk = Ti5Ti415 -3 T241 = W

is a path that even-connects v and w with respect to the g-fold e; - - - e,.
The other three cases follow in a similar way. O

Remark 3.3.3. Let G = C,,- B;-C,,. If (I(G)?*!: ey - - - ¢,) is not a square-free
monomial ideal and G’ is the associated graph, then there exist a vertex z;
which is even-connected to itself. Therefore G’ has a leaf. By Lemma 3.3.2
one can see Ngv[x;] contains one of the two cycles. In particular, if we denote
the leaf by e, then G, is an induced subgraph of a unicyclic graph.

Theorem 3.3.4. Let G =C,, - P, - Cp, with 1 <2, and I = I(G) be its edge
ideal, then
reg (17 : ey ---e,) <rvegl

for any 1 < q and any edges ey, ..., e, € E(Q).

Proof. We split the proof into two cases.
Case 1. First, suppose (I771: e;---¢,) is a square-free monomial ideal.
In this case (I7"': ey ---e,) = I[(G') where G’ is a graph with V(G) = V(G’)
and E(G) C E(G"). Let E(G') = E(G) U{ay,...,a,}. By Remark 1.2.53,
we have
reg I(G') < max{regI(G"\ a1),reg I(G,,) + 1}.
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From Lemma 3.3.2, G, is obtained from G’ by removing one of the cycles
or deleting at least 6 vertices.

Suppose Gy, is obtained by removing one of the cycles. Without loss
of generality assume that C), is deleted. Then there exists a Hamiltonian
path of length < m when [ = 2 and of length < m — 1 when [ = 1. From
Theorem 1.2.43 and Remark 3.3.1, if C), has n > 4 vertices, then we have
reg [(G}, ) < regI(G)— 1. In the case n = 3, there is a Hamiltonian path
of length < m — 3, and so Theorem 1.2.43 and Remark 3.3.1 again imply
reg I(G),) <regI(G) — 1.

Suppose G is obtained by removing at least 6 vertices. Let H' be
the graph given by deleting Ngla;]. From the assumption of deleting at
least 6 vertices we have that |H'| < |G| —6 < n+m + [ — 8. We note
that we can add two vertices to H' and connect them in such a way that
we obtain a Hamiltonian path. Let H be a graph obtained by adding two
vertices and certain edges connecting these two new vertices, such that H
has a Hamiltonian path. Note that G, is an induced subgraph of H. Since
|H| <n+m+1—6, Theorem 1.2.43 yields

n+m+101-5 n+m-+1+1

reg I(H) < |[“ 1 = (P

Applying Remark 3.3.1, we get
reg I(G), ) <regI(H) < regI(G) — 1.

Therefore
reg [(G') < max{reg I[(G' \ a1),reg I(G)}.

In the same way, for any subgraph H = G’ \ {ay,...,a;}, we have that

reg (I(H,

Qit1

) <reg(I(G)) — 1.
So, we also obtain
reg I(G'\ a1) < max{reg I(G'\ {a1,a2}),reg I(G)}.

By continuing this process, we get reg I(G') < reg I(G).

Case 2. Suppose (I9%1: e;---¢,) is not square-free and G’ is the graph
associated to (I771: ¢y - - eq)pOI. Let {by,bs,...,bs} be the subset of edges
of E(G') \ E(G) that are generated by square monomials , i.e., each b; is a
whisker.

From Remark 1.2.53 we have the inequality

reg I(G') < max{reg I(G"\ b1),1 +1eg I(G},)}.

Remark 3.3.3 implies that one of the cycles is deleted from G . Then there
exists an edge e € G such that d(e, G} ) > 2. So, for such an edge e we
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get that the disjoint union G, U e is an induced subgraph of G” \ b;. Thus,
Remark 1.2.53 and [74, Lemma 3.2] yield that

reg (1(Gy,)) + 1 =reg (I(G, Ue)) < reg(1(G")).

Therefore, we obtain that reg I(G') < reg (G \ by).
By applying the same argument, it follows that
reg [(G') <reg I(G'\ by) <regI(G"\ {b1,bo}) <--- <
<reg I(G'\ {br,-. ., ba}).

Since the graph G’ \ {b1,...,bs} has no whiskers, then Step 1 implies that
reg I(G') <reg I(G"\ {by, ..., bs}) < reg I(G).
Therefore, the proof is completed. O

Remark 3.3.5. The previous theorem is a generalization of a work done by
Yan Gu in [52] for the case [ = 1.

Theorem 3.3.6. For the dumbbell graph C,, - P, - C,, with | < 2, we have
reg[(Cn : Pl : Cm)q Z QQ+regI(Cn : ]Dl . Cm) - 2a
for any q > 1.

Proof. Using the inequality reg I(C,, - Py - Cp,)* > 2q+v(C,, - Py - Cp,) — 1 of
(14, Theorem 4.5], for the cases where reg I(C,, - P, - Cp,) = v(C,,- P-Cp,) +1,
we get the expected inequality. We now divide the proof into the cases [ = 1
and [ = 2.

Case 1. Let I = 1. We only need to focus on the case where n,m =
2 (mod 3). Let H be the induced subgraph of C,, - P; - C,,, mentioned in the
proof of Theorem 3.1.8, i.e., H = (C, - P, - Cp,) \ {zn} = Po—1 - Cp,. Using
Theorem 3.1.4, Proposition 3.1.3, and the modularity n,m = 2 (mod 3), we
can check that

v(H)=v(C, P -Cp)

and that
v(H) =v(H\Tu(Cp)).

From Theorem 3.1.8 and [3, Theorem 1.1] we get
reg [(C, - P, -Cp) =v(C- P -Cp)+2=v(H)+2=regI(H).

Since H is an induced subgraph of C,, - P, - Cy,, then from [3, Theorem 1.2]
and [14, Corollay 4.3] we get the inequality

re n P On)! >re = 2q +re — 2=
gl(Cr - Py Cp)" >regI(H)" = 2q +reg I(H) — 2
=2q +reg[(C, - P, -Cp) — 2.
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Case 2. Let I = 2. We only need to focus on the cases where n =
0,1 (mod 3) and m = 2 (mod 3). We take the same induced subgraph H
as in Lemma 3.1.13. The induced subgraph H = (C, - P, - C},,) \ {x1} of
C, - P,-C,, is given as the union of a path of length n — 1 and the cycle C,,,
ie, H=PFP, 1UC,,.

By Theorem 3.1.14, for the cases n = 0,1 ( mod 3) and m = 2 ( mod 3),
we have

o

n

regI(Cn'PZ'Cm):V(Cn'PQ'Cm)+2:Lg

m
—|+2
[RELApE
and from [3, Theorem 1.1] we have
reg I(H) = v(H) +2 = v(Pot) +(C) +2= | 2] + |

Hence, we get reg I(C,, - P> - Cy,) = regI(H). Finally, using [3, Theorem
1.2] and [14, Corollary 4.3|, we get the inequality

reg [(Cp, - Py - Cy)? >regI(H)" =2q +reg[(H) — 2 =
=2q +reg[(C,, - Py -Cp) — 2.

Therefore, the proof is completed. O

Theorem 3.3.7. For the dumbbell graph C,, - P, - C,, with | < 2, we have
reg [(C,, - B - Cp,)? =2q+regI(Cy, - P, - Cy) — 2

forall ¢ > 1.

Proof. 1t follows by Theorem 3.3.4, Theorem 1.2.56 and Theorem 3.3.6. [J

Remark 3.3.8. One may ask whether
reg [(Cy - P - Cp)? =2q+1eg I(Cy, - P, - Cp,) — 2

always holds for given n, m,[ and ¢. Unfortunately, this is not the case. In
fact, it can be checked that

6 =1egI(Cs-Py-C5)* <4+regl(Cys-Py-Cs) —2=T.
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