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Abstract: Isoflavones are a group of (poly)phenols, also defined as phytoestrogens, with chemi-
cal structures comparable with estrogen, that exert weak estrogenic effects. These phytochemical
compounds have been targeted for their proven antioxidant and protective effects. Recognizing the in-
creasing prevalence of cardiovascular diseases (CVD), there is a growing interest in understanding the
potential cardiovascular benefits associated with these phytochemical compounds. Gut microbiota
may play a key role in mediating the effects of isoflavones on vascular and endothelial functions, as it
is directly implicated in isoflavones metabolism. The findings from randomized clinical trials indicate
that isoflavone supplementation may exert putative effects on vascular biomarkers among healthy
individuals, but not among patients affected by cardiometabolic disorders. These results might be
explained by the enzymatic transformation to which isoflavones are subjected by the gut microbiota,
suggesting that a diverse composition of the microbiota may determine the diverse bioavailability
of these compounds. Specifically, the conversion of isoflavones in equol—a microbiota-derived
metabolite—seems to differ between individuals. Further studies are needed to clarify the intricate
molecular mechanisms behind these contrasting results.
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1. Introduction

Oxidative stress and inflammation are pivotal players involved in the disruption of
endothelial equilibrium, leading to its dysfunction and affecting the overall cardiometabolic
system [1,2]. This imbalance is the main cause of the development of cardiovascular
disease (CVD) and related vascular and metabolic disorders, such as obesity, diabetes,
hypertension, dyslipidemia, and atherosclerotic vascular diseases [2]. For these reasons,
a better understanding of the mechanisms and risk factors involved in these processes,
as well as effective strategies for prevention and management are necessary. Genetic,
environmental, and lifestyle factors, such as diet, play a critical role in the development
of CVD [3,4]. Diets rich in plant-based foods have been reported to substantially reduce
the risk of CVD [5–7]. One of the main mechanisms, among others, is hypothesized to
depend on their content in (poly)phenol, natural compounds with a variety of properties
related to their chemical composition, which can also exert effects on human health. A
recent summary of evidence suggests that a higher intake of certain (poly)phenol classes is
associated with a lower risk of hypertension [8], CVD [9], and CVD-related mortality [10].

A peculiar group of (poly)phenols are phytoestrogens—molecules with a chemical
structure similar to estradiol—which can exert some effects on the human system through
the interaction with estrogen receptors (ERs) [11]. Isoflavones, mainly represented by
daidzein and genistein, are phytoestrogens that raised great interest for their potentially
hormone-related relevant effects on human health [11]. Many studies have demonstrated
that isoflavone intake was associated with reduced menopausal symptoms [12], decreased
incidence of different types of cancers (breast and prostate cancers) [13], and osteoporo-
sis [14,15]. Isoflavones per se have a low bioavailability, while they are metabolized by
enteric cells and the gut microbiota to produce more available and active metabolites [16,17].
In particular, equol is a gut microbiota-derived metabolite showing a greater estrogenic
effect than isoflavones [18,19]. However, while all animals are able to convert isoflavones
in equol, human studies demonstrated that individuals may have substantially different
responses to isoflavone intake (such as being equol-producers and equol-non-producers)
depending on genetic factors (given the considerable inconsistencies observed by geo-
graphical area [20]. In this regard, investigation of the gut microbiota composition and
the differences between equol-producers and equol-non-producers is important to under-
stand other potential variables related to the ability to metabolize isoflavones. Improving
our knowledge on this matter would allow the development of possible interventions
to modify gut microbiota in order to increase equol production and the benefit derived.
In this review, we will discuss the clinical evidence known to date on isoflavone inter-
ventions and vascular outcomes. Furthermore, we will sum up the implication of gut
microbiota in isoflavone metabolism and the main molecular mechanisms of action of
major gut-derived metabolites.

2. Gut Microbiota and Its Implication in Cardiovascular Disease

The microbiota is defined as the whole microorganisms that cohabit inside/outside
of a host [21]. It is composed of bacteria, archaea, viruses, and eukaryotes, although
most of the studies are focused on the analysis of bacterial composition. In the last few
years, researchers have moved their attention to the microbiota that inhabit the gut for
its implication in health and disease [22]. The gut microbiota is composed mainly of the
phyla Firmicutes and Bacteroidetes, followed by Proteobacteria and Actinobacteria [23].
Generally, a low Firmicutes/Bacteroidetes ratio is considered a health marker while on
the contrary a high ratio is attributed to an unhealthy status [24,25]. More deeply, alter-
ations in the microbiota composition have been correlated to different pathologies, such
as neuropsychiatric disorders, obesity, irritable bowel disease, and CVD [21]. Oxidative
stress and inflammation are risk factors involved in the pathogenesis of CVD [26,27] and
gut microbiota play a key role in their regulation [28]. Indeed, a healthy microbiota is
associated with reduced harmful metabolite production and tight junction integrity, which
is linked to lower inflammation and oxidative stress, whereas an unhealthy microbiota is
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correlated with the production of harmful metabolites, such as trimethylamine (TMA) and
p-cresol, increased gut permeability (leaky gut), and the onset of a low-grade inflammatory
state [29–31] (Figure 1).
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Figure 1. Gut-microbiota derived metabolites involved in cardiovascular disease. High protein intake
leads to an increased production of TMA and p-cresol that negatively impacts gut permeability lead-
ing to systemic low-grade inflammation. IL-1beta (Interleukin-1 beta), ICAM (Intercellular Adhesion
Molecule 1), NF-kB (Nuclear factor kappa B), TMA (Trimethylamine), TMAO (Trimethylamine N-
Oxide), TNF-alpha (Tumor necrosis factor alpha), VCAM (Vascular cell adhesion protein). ↑ denotes
increase.

Many studies have investigated the role of the microbiota in CVD onset and patholog-
ical raise in blood pressure (BP). When comparing the microbiota composition of healthy
with hypertensive and pre-hypertensive participants it was observed a significant increase
in the abundance of pro-inflammatory taxa such as Prevotella and Klebsiella genera and a
significant reduction of Faecalibacterium, Oscillibacter, Roseburia, Bifidobacterium, Coprococcus,
and Butyrivibrio. These alterations were also associated with changes in circulating metabo-
lites, such as increased levels of stearic acid in hypertensive patients, and possibly related
to the onset of a low-grade inflammatory state [32]. Similar results have demonstrated
decreased levels of Faecalibacterium prausnitzii and Lachnospiraceae family and increased
levels of Ruminococcus, Prevotella, Hungatella, and Succinclasticum genera [33]. Furthermore,
recent studies described a case of bacteria translocation from the gut to the heart [34] and
the detection of gut microbial DNA in the plaques [35]. Gut dysbiosis is strictly correlated
to an alteration in gut permeability that leads to the translocation of bacteria products into
host circulation resulting in a proinflammatory state [30]. Indeed, when the gut barrier is
impaired, lipopolysaccharides (LPS) can cross the intestinal lumen, reaching the circulation
and binding the Toll-like receptor (TLR) on the surface of immune cells [36] triggering
an inflammatory process that leads to the production of proinflammatory cytokines [37].
In a recent study, it was observed that increased LPS concentrations were predictive of
major adverse cardiac events in subjects with atrial fibrillation [38]. However, it should
be noted that other factors contribute to the development of CVD. In this regard, it is also
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important to consider that change in the microbiota composition led to an alteration in
microbial-derived metabolites which could affect the physiological function of different
organs. One of the most famous and discussed metabolites produced by gut bacteria
in literature is TMA [39]. TMA is produced starting from different precursors, such as
choline [40], phosphatidylcholine [41] and carnosine [42]. TMA reaches systemic circulation
and is further metabolized in the liver by the enzyme flavin monooxygenases to produce
trimethylamine N-oxide (TMAO) [43]. Circulating levels of TMAO have been associated
with CVD outcome [44,45] and it was observed to promote platelet reactivity [46,47], vas-
cular inflammation [48,49], and heart failure [50,51]. However, TMAO is not the only
metabolite associated with CVD. Indeed, another candidate showed a strong association
with a major adverse cardiac event identified as phenylacetylglutamine (PAG), a metabolite
produced during gut phenylalanine metabolism [52]. A study conducted on 4000 partici-
pants showed an increase in the incidence of major adverse cardiac events like heart attack,
stroke, and death associated with PAG [52]. PAG was shown to interact with adrenergic
receptors (ARs) which are involved in heart disease and platelet functions [53–55]; and
its detrimental effects could be attenuated by β-blocker carvedilol [52]. However, more
studies are necessary to further characterize the function of PAG in host physiology.

3. Isoflavones Metabolism and Impact on Gut Microbiota Composition

The phytoestrogen isoflavones, of which genistein and daidzein are the main stud-
ied, are flavonoid compounds that, due to their molecular structure and size, resemble
vertebrate steroid estrogen and interact with their receptors [15]. The orally ingested phy-
toestrogens are mainly in the form of glycosides (genistin and daidzin) that are rapidly
cleaved during the passage in the intestinal lumen by the glycosidase enzyme produced
by the intestinal epithelium [16] or by the bacteria in the small intestine [17] to release the
aglycone. The latter is rapidly absorbed and modified in the liver to be released in the colon
and further metabolized by colon bacteria [56]. Daidzein and genistein, the aglycone of
daidzin and genistin, are converted by gut bacteria to produce equol or 5-OH-equol, re-
spectively [18,19]. However, while all animals tested in in vivo experiments demonstrated
to produce equol, in humans only 25–50% of subjects (named equol-producers) possess
the capability to produce it while the great part of humans does not synthesize equol
but convert daidzein and genistein into O-desmethylangolensin (O-DMA) and 6′-OH-O-
DMA, respectively [19,20]. The inter-individual difference in equol production could be
attributed to the microbiota composition. Many studies showed that bacteria with the
capacity to convert daidzein into equol are largely of the Coriobacteriaceae family. Among
these, different bacteria included in the Eggerthella genus [57], such as Eggerthella julong
732 strain [58], and the species Adlercreutzia equolifaciens have been observed to produce
equol [59]. Other strains that have been reported to be equol-producers without being
included in the Coriobacteriaceae family are Lactococcus garvieae 20–92 [60] and Pediococcus
pentosaceus [61]. Genomic analysis identified three genes in the daidzein-equol conversion
which are daidzein reductase (DZNR), dihydrodaidzein reductase (DHDR) and tetrahy-
drodaidzein reductase (THDR) [20]. Analysis of the GC content in bacteria outside the
Coriobacteriaceae family revealed higher GC content in these genes compared to the over-
all genomic GC content, suggesting that these genes were acquired through horizontal
transfer [62,63]. Different studies have observed that isoflavone and isoflavone-derived
metabolite supplementation can influence microbiota composition. Dietary supplemen-
tation with soy bars containing isoflavones led to an increase in Bifidobacterium genus
with a greater increase of Bifidobacterium and Eubacterium observed in equol-producers
versus non-equol-producers [64]. In another study, equol supplementation was positively
correlated with an increase in Bifidobacterium and negatively correlated with Clostridium
cluster IV [65]. Similar results have been observed in an in vivo study, which demonstrated
that isoflavone supplementation was associated with a significant change in the microbiota
composition with an increase in SCFA production and in Bifidobacterium spp. [66]. Similarly,
in another in vivo study isoflavones administration was associated with the augmented
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composition of bacteria belonging to the genus Bifidobacterium, Akkermansia, Bacteroides
and Firmicutes compared to the control [67]. Another study aimed to evaluate the effects
of genistein supplementation on glucose metabolism and adipose tissue browning, in-
vestigated the genistein-mediated microbiota changes showing a significant increase in
Ruminiclostridium_5, Ruminiclostridium_9, and Blautia which were significantly correlated
with browning markers and glucose tolerance [68].

4. Clinical Evidence on the Effect of Isoflavones on Vascular Outcomes

Isoflavones, present mainly in soy and soy-based foods, represent a subclass of
flavonoids that comprises a group of molecules with pleiotropic effects, including weak es-
trogenic activity. Various studies have demonstrated the beneficial effects of phytoestrogens
on vascular and endothelial parameters (Table 1).

Several RCTs explored the effect of soy and soy-derived products, including soy
legumes, soy flour, and soy protein, in both healthy and disease-affected individuals,
reporting contradictory results. In a double-blind, RCT 179 healthy participants (96 men and
83 postmenopausal women) with a mean age of 62 years were supplemented with 56 g/day
of powdered soy protein (providing 118 mg of total isoflavones, 75.6 mg genistein, 36.96 mg
daidzein, 5.04 mg glycitein) or placebo: results showed that soy supplementation reduced
mean BP (from 93 ± 1 to 87 ± 1 mmHg; p < 0.01), SBP (from 130 ± 2 to 123 ± 2 mmHg;
p < 0.05) and DBP (from 76 ± 1 to 72 ± 1 mmHg; p < 0.01) compared to the placebo
group; furthermore, it was observed a significant improvement of the femoro-dorsal PWV
(from 11.1 ± 0.2 to 10.3 ± 0.2; p = 0.02) and a significant reduction in brachial artery
FMD only in men (p < 0.05) compared to the placebo group [69]. In a crossover RCT,
23 healthy volunteers aged between 60 and 70 years were recruited to analyze the effects of
64 g/day of soy nuts containing 174 mg of isoflavones: after the intervention, a significant
increase in FMD (p = 0.040) was reported in the soy nuts group compared to the control
group [70]. Similar findings were reported in studies on individuals at CVD risk. A
double-blind, parallel-group dietary intervention RCT evaluated the effects of 20 g/day
of soy powder supplementation (providing 80 mg of isoflavones) on BP in 50 men with
relatively higher BP and/or total cholesterol levels with a mean age of 52 years. Results
showed that soy supplementation was able to significantly reduce SBP (from 142.0 ± 3.0
to 131.2 ± 3.1 mmHg, p = 0.001) and DBP (from 87.1 ± 1.8 to 82.0 ± 1.8 mmHg, p = 0.002)
compared to baseline values, while no differences were observed for the placebo group [71].
In a double-blind, RCT it was investigated the effects of 40 g/day of soybean consumption
(providing 79.4 mg total isoflavone, 44.9 mg genistein, 26.5 mg daidzein, 4.9 mg of glycitein)
on BP in 302 participants (mean age of 49 years) with untreated BP for 12 weeks: results
showed a significant decrease in SBP (−7.88, 95% CI: −4.66 to −11.1) and DBP (−5.27,
95% CI: −3.05 to −7.49) [72]. However, other studies conducted on healthy and unhealthy
individuals using soy-derived products reached null results. A double-blind RCT, which
investigated the effects of isoflavone intake among 89 hypercholesterolaemic participants
with a mean age of 60 years who were randomly divided to receive 30 g/daily of soy
protein (providing 100 mg of isoflavones) or 30 g/day of placebo (casein) for 24 weeks,
reported no differences in FMD after treatment [73]. Furthermore, a double-blind, RCT
conducted on 180 postmenopausal women (mean age 59 years) evaluated the effects of
100 mg/day of isoflavone supplementation (providing 35 mg daidzin, 59 mg genistin, 4 mg
glycitin) combining soy or milk protein, or placebo on BP showed that after 6 months of
treatment no differences between groups were observed [74]. In another double-blind RCT,
61 postmenopausal women (mean age 50 years) were supplemented with 33 g/day of
soy-derived products, providing 54 mg of isoflavones, or placebo for 8 weeks leading to no
differences were observed for SBP and DBP [75]. Similar results have been obtained from a
parallel-group, double-blind, RCT conducted on 253 postmenopausal women (mean age
56 years) and supplemented with 40 g/day of soy flour (providing 49.3 mg isoflavones)
or 40 g low-fat milk powder plus 63 mg daidzein or placebo for 6 months on BP and
endothelial function leading to no differences independently of the type of treatment [76].
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Other RCTs focused on the investigation of the isoflavone-containing capsules on
vascular outcomes, reporting contradictory findings. A double-blind, RCT evaluated the
effects of genistein tablets administration (providing 54 mg/day of genistein) or placebo
on 60 healthy postmenopausal women, with a mean age of 56 years, for 6 months. At the
end of the treatment genistein group showed a significant increase in the brachial artery
diameter (from 3.9 ± 0.8 to 4.4 ± 0.7 mm; p < 0.05 vs. placebo and p < 0.01 vs. before
genistein) accompanied by an increase in the brachial arterial blood flow (from 25 ± 5 to
75 ± 7 mm; p < 0.05 vs. placebo and p < 0.01 vs. before genistein) during reactive hyperemia.
No effects were observed concerning other parameters [77]. In another double-blind, RCT
involving 85 postmenopausal women supplemented with 70 mg/day of isoflavone capsule
(providing 38 mg glycitin, 20 mg daidzin, and 12.4 mg genistin) or placebo for 12 weeks
demonstrated that isoflavone supplementation was able to decrease SBP (from 116.1 ± 14.3
to 110.8 ± 11 mmHg, p < 0.05) and DBP (from 74.6 ± 10 to 71.6 ± 7.7 mmHg, p < 0.05) in the
treated group compared to baseline [78]. Other works, conducted on unhealthy participants,
showed similar results. In a double-blind RCT conducted on 102 participants with prior
ischaemic stroke (mean age 66 years) and supplemented for 12 weeks with 80 mg/day of
isoflavone capsules (providing 80 mg purified isoflavones) or placebo, demonstrated that
isoflavone consumption was correlated with a significant improvement of brachial FMD
(OR 0.32, 95% CI: 0.13 to 0.80, p = 0.014) reversing their endothelial dysfunction status [79].
Another double-blind RCT investigated the effects of genistein tablets administration
(providing 54 mg of genistein) for 6 months on 20 postmenopausal women (mean age
of 58 years) with metabolic syndrome. At the end of the study, genistein-supplemented
participants showed a significant increase of FMD (from 3.2 ± 4.9 to 8.9 ± 3.1) compared to
the baseline (p < 0.001) and placebo group (p = 0.04) after 6 months [80]. A double-blind,
RCT, including 108 postmenopausal women with metabolic syndrome, investigated the
effects of 54 mg/day of genistein for 12 months: results showed a significant reduction of
SBP (from 135.7 to 123.7 mmHg, p < 0.001 vs. baseline and p < 0.0002 vs. placebo group) and
DBP (from 78.7 to 74.5 mmHg, p = 0.047 vs. baseline and p = 0.0541 vs. placebo group) [81].
However, other works showed opposite results. A double-blind, parallel, RCT conducted
on 24 postmenopausal women with a mean age of 50 years demonstrated that 81.02 mg/day
of isoflavone tablets supplementation (providing 44.02 mg daidzein, 27.08 mg glycitein and
9.92 mg genistein) for 6 weeks had no effects on BP and other cardiovascular parameters
compared to the placebo group [82]. Similarly, a 2-year prospective, double-blind, RCT
conducted on 431 postmenopausal women with a mean age of 57 years, and supplemented
with isoflavone tablets (providing 300 mg of isoflavones), showed a slight reduction in SBP
and DBP in both groups not associated with the treatment [83]. In another double-blind,
RCT conducted on 50 obese postmenopausal women (mean age 60 years) supplemented
with 4 isoflavone capsules daily (providing 70 mg/day of isoflavone, 44 mg daidzein,
16 mg glycitein, 10 mg genistein) or placebo for 6 months: results did not show any
significant change in the treated group [84]. A double-blind, case–control study aimed
to investigate the effects on cardiovascular functions of one-year genistein intervention
in 22 postmenopausal women with metabolic syndrome (mean age 55 years). After the
daily consumption of two tablets containing 54 mg of genistein, no significant results were
detected in SBP and DBP compared to the placebo [85]. Similar results have been observed
in a double-blind, RCT including 82 patients with non-alcoholic fatty liver disease (mean
age of 43 years) that received 250 mg/day of genistein capsules or placebo for 8 weeks.
After intervention, no differences were observed in SBP and DBP [86]. Also in another
double-blind, RCT which included 38 peritoneal dialysis patients who randomly received
100 mg of soy isoflavone tablets (providing 63.72 mg genistin, 2.98 mg genistein, 26.42 mg
daidzin, 3.5 mg daidzein, 2.28 mg glycitin, 1.1 mg glycitein) or a placebo for 8 weeks did
not show any significant change related to treatment [87].
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Table 1. The main characteristic of the selected randomized clinical trials concerning isoflavones and cardiovascular risk factors.

Author, Year,
Country Study Design Participants

(Mean Age) Duration Treatment Isoflavones Constituent
(Daily Intake) Comparison Main Findings

Teede, 2001,
Australia [69]

Double-blind,
placebo-controlled

179 healthy participants
(96 men and

83 postmenopausal
women) (62 y)

3 mo 56 g/d powdered soy
protein isolate

118 mg isoflavones,
75.6 mg genistein,
36.96 mg daidzein,
5.04 mg glycitein

Placebo (casein)

Significant reduction in BP (p < 0.01)
and PWV(FD) improvement

(p = 0.02). Brachial artery FMD was
significantly reduced only in men

(p < 0.05).

Squadrito, 2002,
Italy [77]

Double-blind,
placebo-controlled

60 healthy
postmenopausal

women (56 y)
6 mo Genistein tablets 54 mg genistein Placebo tablets

Increase in brachial artery diameter
and brachial artery blood flow

(p < 0.01).

Sagara, 2004,
UK [71]

Double-blind,
placebo-controlled

50 men with relatively
higher BP and/or total

cholesterol (52 y)
5 wk Diet containing at least

20 g/d of soy powder
At least 80 mg of

isoflavones Placebo diet Decrease in SBP (p = 0.001) and DBP
(p = 0.002) compared to baseline.

He, 2005, China [72] Double-blind,
controlled

302 participants
untreated BP (49 y) 12 wk

40 g/d of isolated
soybean protein

supplement

79.4 mg total isoflavone,
44.9 mg genistein, 26.5
mg daidzein, 4.9 mg/d

of glycitein

40 g/d of complex
carbohydrate

Reduction in SBP (p = 0.01) and DBP
(p = 0.007).

Hermansen, 2005,
Denmark [73]

Double-blind,
placebo-controlled

89
hypercholesterolaemic

subjects (60 y)
24 wk

Soy supplement with
30 g/d soy protein

9 g/d and
cotyledon fibre

100 mg isoflavones Placebo (30 g/d casein) No differences in FMD.

Aubertin-Leheudre,
2008, Canada [84]

Double-blind,
placebo-controlled

50 obese
postmenopausal

women (60 y)
6 mo Isoflavone capsules

70 mg total isoflavones,
44 mg daidzein, 16 mg

glycitein, 10 mg
genistein

Placebo capsules No differences were observed.

Chan, 2008,
China [79]

Double-blind,
placebo-controlled

102 participants with
prior ischaemic stroke

(66 y)
12 wk Isoflavone capsules 80 mg purified

isoflavones
Placebo (powdered

cellulose)
Improvement of brachial FMD

(p = 0.014).

Wong, 2012,
USA [82]

Double-blind,
placebo-controlled

24 postmenopausal
women (50 y) 6 wk Isoflavone tables

81.02 mg total
isoflavone (44.02 mg
daidzein, 27.08 mg

glycitein and 9.92 mg
genistein)

Placebo tablets (<1.0 mg
aglycone)

No effects were observed comparing
treated and placebo groups.

Irace, 2013,
Italy [80]

Double-blind,
placebo-controlled

20 postmenopausal
women with metabolic

syndrome (58 y)
6 mo Genistein tablets 54 mg genistein Placebo tablets

Significant increase of FMD
compared with placebo group

(p < 0.001).
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Table 1. Cont.

Author, Year,
Country Study Design Participants (Mean

Age) Duration Treatment Isoflavones Constituent
(Daily Intake) Comparison Main Findings

Kim, 2013, South
Korea [78]

Double-blind,
placebo-controlled

85 postmenopausal
women (53 y) 12 wk Isoflavone capsules

70 mg total isoflavone
(38 mg glycitin, 20 mg
daidzein, and 12.4 mg

genistein)

Placebo capsules Significant reduction of SBP and
DBP compared to baseline (p < 0.05).

Liu, 2013,
China [74]

Double-blind,
placebo-controlled

180 postmenopausal
women with pre or
early diabetes (59 y)

6 mo

(i) 15 g soy + 100 mg
isoflavones; (ii) 15 g

milk protein + 100 mg
isoflavone

100 mg total isoflavones
(35 mg daidzein, 59 mg
genistein, 4 mg glycitin

Placebo (15 g milk
protein)

Subgroup analysis among pre and
hypertensive women showed a

significant reduction in SBP
(p < 0.05) and sICAM1 compared to

placebo group (p = 0.02).
Squadrito, 2013,

Italy [81]
Double-blind,

placebo-controlled
108 postmenopausal

women with MetS (58 y) 12 mo Genistein tablets 54 mg genistein Placebo tablets Significant reduction of SBP
(p < 0.0002) and DBP (p = 0.0541).

Cheng, 2015,
China [83]

Double-blind,
placebo-controlled

431 postmenopausal
women (57 y) 2 y Isoflavone tablets 300 mg isoflavone

aglycone Placebo tablets No differences were observed
between treatment groups.

Husain, 2015,
Iran [75]

Double-blind,
placebo-controlled

61 postmenopausal
women (50 y) 8 wk 33 g of soy in the form

of biscuits 54 mg isoflavones Placebo biscuits No differences were observed
after treatment.

Liu, 2015,
China [76]

Double-blind,
placebo-controlled

253 postmenopausal
women (56 y) 6 mo

(i) 40 g soy flour;
(ii) 40 g low-fat milk

powder + 63 mg
daidzein

(i) 49.3 mg isoflavones,
(ii) 63 mg daidzein

Placebo (40 g low-fat
milk powder)

No differences were observed
after treatment.

De Gregorio, 2017,
Italy [85]

Double-blind,
placebo-controlled

22 postmenopausal
women with MetS (55 y) 12 mo Genistein tablets 54 mg genistein Placebo tablets

No significant findings were found
in SBP and DBP in the

genistein group.
Amanat, 2018,

Iran [86]
Double-blind,

placebo-controlled
82 patients with
NAFLD (43 y) 8 wk Genistein capsule 250 mg genistein Placebo capsule

(cornstarch)
No differences in SBP and DBP

were observed.

Movahedian, 2021,
Iran [87]

Double-blind,
placebo-controlled

38 peritoneal dialysis
patients (soy group:
54 y; placebo group:

51 y)

8 wk Soy isoflavone tablets

63.72 mg genistein,
2.98 mg genistein,
26.42 mg daidzein,
3.5 mg daidzein,

2.28 mg glycitin, 1.1 mg
glycitein

Placebo tablets (starch) SBP and DBP did not significantly
change at the end of the treatment.

Tischmann, 2022,
The Netherlands

[70]

Single-blind, controlled,
crossover

23 healthy volunteers
(64 y)

2 × 8 wk (8 wk
washout) 64 g/d soy nuts 174 mg isoflavones No treatment

A significant increase in FMD
(p = 0.040) was detected following
the soy nut intervention compared

to the placebo.

Abbreviations: BP (blood pressure); d (day); DBP (diastolic blood pressure); FD (femoro-dorsal); FMD (flow-mediated dilation); mo (month); PWV (pulse wave velocity); RCT
(randomized clinical trial); SBP (systolic blood pressure); sICAM1 (soluble intercellular cell adhesion molecule 1); wk (week); y (year).
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5. Mediating Effect of Equol-Production Status on Clinically Relevant
Vascular Outcomes

The evidence from RCTs investigating the effects of soy and isoflavone supplementa-
tion on vascular outcomes indicates contrasting results. The discrepancies in the findings
may be attributed, at least partially, to several factors influencing the real exposure to
isoflavone metabolites. Among them, interindividual variations in the physiological re-
sponse to isoflavone intake, related to the differences in the microbiota composition, and
the possible interactions, including accumulating, synergistic and antagonistic effects, with
other compounds from diet seems to play a major role [88].

A limited number of intervention studies explored how equolproduction status may in-
fluence the above-mentioned relation, generally reporting more pronounced effects among
equol-producers compared to equol-non-producers. A double-blind RCT conducted among
190 postmenopausal women stratified into equol-producers and equol-non-producers
tested the effects of 100 mg/day soy isoflavone supplementation on vascular markers.
After 6 months of intervention the malondialdehyde (MDA) concentrations, an oxidative
stress marker, were significantly lower in the soy-isoflavone equol-producers compared
with equol-non-producers (p = 0.021). Although not statistically significant, similar results
were also found for VCAM-1 and NO concentrations (p = 0.413 and p = 0.724, respec-
tively) [89]. In line, another double-blind RCT comprising 202 postmenopausal women
showed that 12-month supplementation with soy protein containing 99 mg isoflavones/d
decreased systolic and diastolic blood pressure and improved endothelial function in the
equol-producers, while when considering equol-non-producers systolic and diastolic blood
pressure increased and endothelial function deteriorated during the trial [90]. A crossover
RCT conducted on 60 postmenopausal women stratified based on the metabolic syndrome
status and following a soy nut enriched diet for 8 weeks or control diet, reported significant
reductions in diastolic BP (p = 0.02), TG (p = 0.02), C-reactive protein (CRP) (p = 0.01) and
sICAM (p = 0.03) among women with MetS following soy-enriched diet, However, changes
were observed only among equol-producers compared to control diet, but not among equol-
non-producers. Likewise, when considering women without metabolic syndrome, only
equol-producers had significant reductions in diastolic BP (p = 0.02) and CRP (p = 0.04) [91].
Among 270 equol-producing postmenopausal women a 6-month supplementation with
whole soy, but not purified daidzein, decreased serum LDL-C and hs-CRP levels, when
compared to the control group [92].

On the contrary, some studies exploring the effect of isoflavone supplementation on
vascular inflammation markers reported no significant differences in the clinical outcomes
between equol-producing and equol-non-producing individuals. In particular, a double-
blind, crossover RCT comprising 117 postmenopausal women consuming either isoflavone-
enriched or control cereal bars for 8 weeks did not observe any significant differences in
the vascular and inflammatory markers in response to isoflavones or placebo between
equol-producers and non-equol-producers [93]. Similarly, a crossover RCT conducted
among 117 healthy postmenopausal women and exploring the effect of 50 mg/d isoflavone
supplementation on different markers of CVD, reported no differences in response to
isoflavones according to equol-production status [94]. Finally, an acute RCT conducted
among male equol and non-equol-producers showed that after soy intake carotid-femoral
PWV significantly improved in equol-producers at 24 h, which was significantly associated
with plasma equol concentrations, while no vascular effects were observed in non-equol-
producers at any time point [95].

Although the findings from the RCT suggest the differences in response to soy or
isoflavone supplementation between equol-producers and nonproducers, with more pro-
nounced clinical effects among the former, the majority has been conducted among post-
menopausal women. Therefore, further research exploring the potential effects of clinically
significant isoflavone doses among different populations, considering both males and
females, is warranted to better elucidate the mediating effect of equol production status
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as well as food and dietary matrix, in the relation between isoflavone intake and vascu-
lar health.

6. Potential Mechanisms Mediating the Effect of Isoflavones and Gut-Derived
Metabolite Equol on Endothelium

Isoflavones are also known as phytoestrogen for their similarity with estradiol and
the ability to bind estrogen receptors (ERs) distinguishable into ER-alpha and ER-beta and
distributed across different systems including the cardiovascular system [96]. Equol, the
microbial-derived isoflavones metabolite, has aroused great interest for its greater positive
effects on health compared to isoflavones per se (Figure 2).
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Figure 2. Main equol mechanisms of action in equol-producers. Equol can increase eNOS activity
resulting in higher levels of NO. This can react with superoxide producing peroxynitrite and increas-
ing Nrf2 levels leading to upregulation of antioxidant genes. ARE (antioxidant response elements),
CAT (Catalase), eNOS (Endothelial nitric oxide synthase), EC (Endothelial cell), ERK (Extracellular
signal-regulated kinases), GPx (Glutathione peroxidase), HO-1 (Heme oxygenase 1), NO (Nitric ox-
ide), PI3K (Phosphatidylinositol 3-kinase), NADPH (Nicotinamide adenine dinucleotide phosphate),
SOD (Superoxide dismutase). ↑ denotes increase, ↓ denotes decrease.

Indeed, it was observed that equol has higher antioxidant activity compared to
isoflavones [97–99] and higher bioavailability because of its reduced propensity to bind
serum proteins [100]. Furthermore, equol shows an increased affinity for ER-beta compared
to daidzein [101] and it is more lipophilic than isoflavones, resulting in a greater bioavail-
ability [102]. Different studies have investigated the beneficial effects of equol on health,
even if results from human studies are more inconsistent because of the great variabil-
ity that distinguishes individuals in equol-producers and equol-non producers [103–105].
Oxidative stress and inflammation are the pivotal causes of an increased risk of devel-
oping CVD [26,27]. Increased accumulation of oxidized lipids leads to atherosclerosis
through the activation of proinflammatory pathways and the increase of proinflammatory
cytokines such as interleukin- (IL) 1beta, tumor necrosis factor-alpha (TNF-alpha), and nu-
clear factor-kB (NF-kB) [26]. Proinflammatory cytokines induce the expression of vascular
cell adhesion molecule-1 (VCAM-1) by endothelial cells (ECs) increasing the adhesion of
leukocytes, monocytes, and T lymphocytes to the arterial wall [106,107]. Once adhered to
the endothelium, monocytes enter the vessel wall and initiate the production of monocyte
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chemoattractant protein-1 (MCP-1) [106] and become the mature form macrophages and be-
gin to accumulate cholesterol into the cytoplasm transforming into foam cells [108]. Several
in vivo and in vitro studies reported the anti-inflammatory effects of equol which showed
the ability to reduce the expression of inflammatory biomarkers, such as prostaglandin
E2 [109] and MCP-1 [110] as well as the reduction of IL-6 release and its receptor [111].
Myeloperoxidase (MPO) and nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase are enzymatic sources of reactive oxygen species (ROS) that lead to the production of
oxidized LDL (oxLDL) [112,113]. Equol protects from oxidative stress by reducing the lipid
peroxidation product malondialdehyde (MDA), enhancing the antioxidant glutathione, or
increasing the activities of the enzyme superoxide dismutase (SOD) [114,115] and increas-
ing the expression of nuclear factor erythroid 2 (Nrf2) [116]. Equol also showed the ability
to reduce the NADPH-induced superoxide production [97] and to increase the expression of
phosphorylated-p38 mitogen-activated protein kinase and Bcl-2 [117]. Oxidative stress and
inflammation cause damage to the endothelium and alter its functions. It was observed that
equol can stimulate the phosphorylation of phosphatidylinositol 3-kinase/protein kinase
B (PI3K/Akt) and enhance the activity of endothelial NO synthase (eNOS) through the
binding to the ER-beta receptor [118,119]. Equol can activate eNOS also via ER-independent
pathways through the activation of extracellular signal-regulated kinase (ERK) 1/2 and
Akt [119]. Furthermore, equol can directly upregulate eNOS transcription [120,121] while
eNOS gene contains an estrogen-response element, it is reasonable that the binding of equol
to ER-beta can enhance eNOS expression [122]. The NO can react with the superoxide
anion producing peroxynitrite and enhancing the nuclear accumulation of Nrf2, which
in turn binds the antioxidant response elements (ARE) and increases the expression of
antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase,
glutathione peroxidase, and heme oxygenase-1 [123].

7. Conclusions

In vivo and in vitro studies demonstrated the beneficial effects of isoflavones and,
in particular, of the microbial-derived metabolite equol [96]. The interaction with ERs
seems to be the main mechanism of action that recapitulates the cardioprotective effects
exerted by equol [96]. However, according to up-to-date knowledge, analysis of gut
microbiota revealed that isoflavone metabolism is restricted to bacteria belonging to the
Coriobacteriaceae family and some species that seem to have received the genes involved
in these metabolic pathways through horizontal transmission [19]. Furthermore, data
reported in the literature did not result in univocal findings showing that interventions
with dietary food sources of isoflavone seem to have more significant results when in
the context of healthier diets; similarly, supplementation of isoflavones through tablets
would provide more consistent benefits among healthier individuals. These discordant
results are probably due to the effect of several factors that influence the real exposure to
isoflavone metabolites. Among which are the interindividual variations in the physiological
response to isoflavone intake, linked with the differences in the microbiota composition,
providing more beneficial effects on equol-producers compared to nonproducers. Also, the
possible interactions, including accumulating, synergistic and antagonistic effects, with
other compounds from diet cannot be ruled out [88]. In this regard, it is necessary to
further explore the relationship between microbiota, isoflavones, and equol production
to understand which other factors are involved in these differences and how it could be
possible to intervene in order to spread equol beneficial effects even to equol-non producers.
In this context, a more complex approach of dietary interventions with synbiotics that
promote the bioconversion of isoflavones to equol is warranted.



Pharmaceuticals 2024, 17, 236 12 of 17

Author Contributions: Conceptualization, J.G. and G.G.; investigation, S.L., J.G., F.M.D.D. and G.G.;
writing—original draft preparation, S.L., J.G., G.L.R., L.G., F.M.D.D. and G.G.; writing—review and
editing, S.L., J.G., G.L.R., L.G., F.M.D.D., I.D.A., R.M.D., F.G. (Francesca Giampieri), J.L.Q., M.B., F.D.,
F.G. (Fabio Galvano) and G.G.; table visualization, S.L., J.G. and F.M.D.D.; figure visualization, S.L.;
supervision, M.B., F.D., F.G. (Fabio Galvano) and G.G.; project administration, G.G. All authors have
read and agreed to the published version of the manuscript.

Funding: J.G. was supported by the co-financing of the European Union—FSE-REACT-EU, PON
Research and Innovation 2014–2020 DM1062/2021; CUP: E65F21002560001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Acknowledgments: The figures have been generated by using Servier Medical Art available at
smart.servier.com (12 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

ARE (antioxidant response elements); ARs (adrenergic receptors); BP (blood pressure); CAT
(catalase); CVD (cardiovascular disease); DBP (diastolic blood pressure); DHDR (dihydrodaidzein
reductase); DZNR (daidzein reductase); FMD (flow-mediated dilation); ECs (endothelial cells); eNOS
(endothelial nitric oxide synthase); ERK (extracellular signal-regulated kinase); ERs (estrogen re-
ceptors); GC (guanine-cytosine); GPx (glutathione peroxidase); HO-1 (heme oxygenase 1); ICAM
(intercellular adhesion molecule 1); IL (interleukin); LPS (lipopolysaccharides); MCP-1 (monocyte
chemoattractant protein-1); MDA (malondialdehyde); MPO (myeloperoxidase); NADPH (nicoti-
namide adenine dinucleotide phosphate); NF-kB (nuclear factor-kB); Nrf2 (nuclear factor erythroid
2); O-DMA (O-desmethylangolensin); oxLDL (oxidized low-density lipoprotein); PAG (phenylacetyl-
glutamine); PI3K (phosphatidylinositol 3-kinase); PI3K/Akt (phosphatidylinositol 3-kinase/protein
kinase B); PWV (pulse wave velocity); RCT (randomized clinical trial); ROS (reactive oxygen species);
SBP (systolic blood pressure); SCFAs (short chain fatty acids); SOD (superoxide dismutase); THDR
(tetrahydrodaidzein reductase); TLR (Toll-like receptor); TMA (trimethylamine); TMAO (trimethy-
lamine N-Oxide); TNF-alpha (tumor necrosis factor-alpha); VCAM-1 (vascular cell adhesion molecule-1).

References
1. Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in

endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018, 100, 1–19. [CrossRef]
[PubMed]

2. Wang, L.; Cheng, C.K.; Yi, M.; Lui, K.O.; Huang, Y. Targeting endothelial dysfunction and inflammation. J. Mol. Cell. Cardiol. 2022,
168, 58–67. [CrossRef] [PubMed]

3. Badimon, L.; Chagas, P.; Chiva-Blanch, G. Diet and cardiovascular disease: Effects of foods and nutrients in classical and emerging
cardiovascular risk factors. Curr. Med. Chem. 2019, 26, 3639–3651. [CrossRef]

4. Ding, Q.-Y.; Tian, J.-X.; Li, M.; Lian, F.-M.; Zhao, L.-H.; Wei, X.-X.; Han, L.; Zheng, Y.-J.; Gao, Z.-Z.; Yang, H.-Y.; et al. Interactions
between therapeutics for metabolic disease, cardiovascular risk factors, and gut microbiota. Front. Cell. Infect. Microbiol. 2020, 10,
530160. [CrossRef] [PubMed]

5. Angelino, D.; Godos, J.; Ghelfi, F.; Tieri, M.; Titta, L.; Lafranconi, A.; Marventano, S.; Alonzo, E.; Gambera, A.; Sciacca, S.; et al.
Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2019,
70, 652–667. [CrossRef]

6. Tieri, M.; Ghelfi, F.; Vitale, M.; Vetrani, C.; Marventano, S.; Lafranconi, A.; Godos, J.; Titta, L.; Gambera, A.; Alonzo, E.; et al.
Whole grain consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 668–677.
[CrossRef]

7. Martini, D.; Godos, J.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; Trigueiro, H.; Gambera, A.; Alonzo, E.; et al.
Nut and legume consumption and human health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2021, 72,
871–878. [CrossRef]

smart.servier.com
https://doi.org/10.1016/j.vph.2017.05.005
https://www.ncbi.nlm.nih.gov/pubmed/28579545
https://doi.org/10.1016/j.yjmcc.2022.04.011
https://www.ncbi.nlm.nih.gov/pubmed/35460762
https://doi.org/10.2174/0929867324666170428103206
https://doi.org/10.3389/fcimb.2020.530160
https://www.ncbi.nlm.nih.gov/pubmed/33194785
https://doi.org/10.1080/09637486.2019.1571021
https://doi.org/10.1080/09637486.2020.1715354
https://doi.org/10.1080/09637486.2021.1880554


Pharmaceuticals 2024, 17, 236 13 of 17

8. Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake,
Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152.
[CrossRef]

9. Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive
Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [CrossRef]

10. Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and
Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185,
1304–1316. [CrossRef]

11. Gómez-Zorita, S.; González-Arceo, M.; Fernández-Quintela, A.; Eseberri, I.; Trepiana, J.; Portillo, M.P. Scientific evidence
supporting the beneficial effects of isoflavones on human health. Nutrients 2020, 12, 3853. [CrossRef]

12. Chen, M.N.; Lin, C.C.; Liu, C.F. Efficacy of phytoestrogens for menopausal symptoms: A meta-analysis and systematic review.
Climacteric 2015, 18, 260–269. [CrossRef]

13. Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A
comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol.
Nutr. Food Res. 2017, 61, 1600930. [CrossRef]

14. Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell,
M.; et al. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxid. Med. Cell. Longev. 2021, 2021, 6331630.
[CrossRef]
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