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We study the thermodynamic curvature, R, around the chiral phase transition at finite temper-
ature and chemical potential, within the quark-meson model augmented with meson fluctuations.
We study the effect of the fluctuations, pions and σ−meson, on the top of the mean field thermody-
namics and how these affect R around the crossover. We find that for small chemical potential the
fluctuations enhance the magnitude of R, while they do not affect substantially the thermodynamic
geometry in proximity of the critical endpoint. Moreover, in agreement with previous studies we
find that R changes sign in the pseudocritical region, suggesting a change of the nature of inter-
actions at the mesoscopic level from statistically repulsive to attractive. Finally, we find that in
the critical region around the critical endpoint |R| scales with the correlation volume, |R| = Kξ3

with K = O(1), as expected from hyperscaling; far from the critical endpoint the correspondence
between |R| and the correlation volume is not as good as the one we have found at large µ, which is
not surprising because at small µ the chiral crossover is quite smooth; nevertheless, we have found
that R develops a characteristic groove structure, suggesting that it is still capable to capture the
pseudocritical behavior of the condensate.

INTRODUCTION

The thermodynamic theory of fluctuations allows to
define a manifold spanned by intensive thermodynamic
variables, {βk} with k = 1, 2, . . . , N , and equip this with
the notion of a distance, d`2 = gij(β

1, β2, . . . , βN )dβidβj

where gij is the metric tensor, that depends in general of
the {βk} and measures the probability of a fluctuation
between two equilibrium states. The metric tensor can
be computed from the derivatives of the thermodynamic
potential, therefore the knowledge of the latter is enough
to define the metric on the manifold. Thermodynamic
stability requires g > 0 where g is the determinant of the
metric; the condition g = 0 determines a phase boundary
in the {βk} space and g < 0 corresponds to regions of
thermodynamic instability.

By means of gij it is possible to define the scalar cur-
vature, R, using the standard definitions of the Riemann
geometry; in this context, R is named the thermody-
namic curvature, and the theory that studies R is called
thermodynamic geometry [1–44]. One of the merits of
R is that it carries the physical dimensions of a volume
and because of hyperscaling, around a second order phase
transition |R| ∝ ξd where d denotes the spatial dimen-
sion and ξ is the correlation length: as a consequence,
R diverges at a second order phase transition, and by
means of R it is possible to estimate ξ by virtue of pure
thermodynamic functions. In general, the divergence of
R at a second order phase transition occurs in correspon-
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dence of the condition g = 0, therefore looking for phase
transitions in the {βk} space it is equivalent to look for
the zeros of g or for the divergences of R; there are how-
ever other possibiliteis, like the divergence of one of the
metric elements or of their derivatives (see eq. (10)).

In this study, we analyze the thermodynamic geome-
try, and in particular the thermodynamic curvature, of
the Quark-Meson (QM) model of Quantum Chromody-
namics (QCD), augmented with the fluctuations of the
σ−meson and pions, see [45–50] and references therein.
Despite the abundant literature about thermodynamic
curvature, a systematic study of the effect of fluctuations
on R is missing, therefore we aim to fill this gap ad-
dressing the questions of how fluctuations influence the
thermodynamic geometry.

Being this a first study on fluctuations in the context of
thermodynamic curvature, we introduce the fluctuations
in the simplest way possible, namely using the Cornwall-
Jackiw-Toumbulis (CJT) effective action formalism for
composite operators [51] and limiting ourselves to the
largely used Hartree approximation [49, 50] in which mo-
mentum dependent self-energy diagrams are neglected.
Within these approximations, the effect of the interac-
tion of the fluctuations with the medium is a shift in
their mass that can be computed solving self-consistently
the Schwinger-Dyson equations for the propagators and
for the mean field condensate. Moreover, it is possible
to write down in a simple form the contributions of the
fluctuations to the thermodynamic potential, therefore
to evaluate the effect on the thermodynamic curvature.
Possible future improvements are mentioned briefly in
the Conclusions.

Although this is a study about thermodynamic geome-
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try, the model we use has been built up for modeling the
chiral phase transition of QCD at high temperature and
finite chemical potential, therefore it is useful to sum-
marize briefly a few known facts about the QCD phase
diagram and how this relates to that of the QM model,
to give more context to the subject that we discuss here.
At zero baryon chemical potential, from first principles
Lattice QCD calculations we learn that QCD matter ex-
periences a smooth crossover from a low temperature con-
fined phase, in which chiral symmetry is spontaneously
broken, to a high temperature phase in which chiral sym-
metry is approximately restored [52–56]. Since the chiral
restoration at large temperature is a smooth crossover, it
is not possible to define uniquely a critical temperature,
rather it is more appropriate to define a pseudo-critical
region, namely a range of temperature in which several
physical quantities (chiral condensate, pressure, chiral
susceptibility and so on) experience substantial changes.
This crossover is reproduced by the QM model, and the
pseudo-critical temperature predicted by the model is in
the same ballpark of the pseudo-critical temperature od
QCD, that is Tc ≈ 150 MeV ≈ 1012 K. At large finite
baryon chemical potentials the sign problem forbids reli-
able first principle calculations, therefore effective mod-
els like the QM model have been used to study the phase
structure of QCD at finite µ and it has been found that
the smooth crossover becomes a first order phase transi-
tion if µ is large enough: this suggests the existence of
a critical endpoint (CEP) in the (T, µ) plane at which
the crossover becomes a second order phase transition
with divergent susceptibilities, and this point marks the
separation between the crossover on the one hand and
the first order line on the other hand. Recently, infor-
mation theory has also been applied to the QCD phase
diagram [57].

We anticipate here the main results. The curvature
is found to be positive at low temperature, as for an
ideal fermion gas; then a change of sign is observed near
the chiral crossover, where R develops a local minimum
which becomes more pronounced when the chemical po-
tential is increased; finally, R becomes positive again at
high temperature and approaches zero from above. A
change of sign of R has been observed for many sub-
stances [18, 20, 22, 23, 25, 27–29, 31] as well as in previ-
ous studied on the thermodynamic curvature of the chi-
ral phase transition [43, 44] and it has been interpreted
in terms of the nature of the attractive/repulsive mi-
croscopic interaction. We support this idea here, and
we interpret the change of sign of R around the chi-
ral crossover as a rearrangement of the interaction at
a mesoscopic level, from statistically repulsive far from
the crossover to attractive around the crossover. More-
over, |R| increases along the critical line as µ is increased
from zero to the corresponding CEP value and diverges
at the CEP: this is in agreement with |R| ∝ ξ3 since the
correlation length remains finite at the crossover but in-
creases as the crossover becomes sharper and eventually
diverges at the critical endpoint. We check quantitatively

the relation between R and ξ near the CEP by identifying
ξ = 1/Mσ, where Mσ is the pole mass of the σ−meson
that carries the fluctuations of the σ field. Even more,
we find that fluctuations enhance |R| at the crossover at
small µ, and we interpret this as the fact that the fluctu-
ations make the chiral broken phase more unstable and
favor chiral symmetry restoration at finite temperature;
near the CEP we do not find substantial effects of the
fluctuations on R, and we interpret this as the fact that
even without fluctuations, the mean field thermodynamic
potential predicts a second order phase transition at the
CEP with divergent susceptibilities and a divergent cur-
vature [43, 44], and the fluctuations cannot change this
picture but can only alter the values of the critical expo-
nents.

The plan of the article is as follows. In Section I we
briefly review the thermodynamic geometry and in par-
ticular the thermodynamic curvature. In Section II we
review the QM model. In Section III we discuss R for the
QM model. Finally, in Section IV we draw our conclu-
sions. We use the natural units system ~ = c = kB = 1
throughout this article.

I. THERMODYNAMIC GEOMETRY

Consider a thermodynamic system in the grand-
canonical ensemble whose equilibrium state is character-
ized by the pair (T, µ), where T is the temperature and
µ is the chemical potential conjugated to particle den-
sity. In order to define the thermodynamic geometry it
is convenient to shift to new coordinatesX = (X1, X2) =
(β, γ) with β = 1/T and γ = −µ/T .

It is well known that a thermodynamic system at equi-
librium can fluctuate to another equilibrium state char-
acterized by different values of X, and the probability
of this fluctuation can be computed within the standard
thermodynamic fluctuation theory. In order to formu-
late this as well as the geometry of thermodynamics, it
is possible to define a metric space on the 2-dimensional
manifold spanned by (β, γ) introducing a distance be-
tween two points, analogously to what is done in Rie-
mannian geometry. In particular, we define the distance
d`2 as [3, 15]

d`2 = gββdβdβ + 2gβγdβdγ + gγγdγdγ, (1)

where for a system with grand-canonical partition func-
tion Z we have put

gij ≡
∂2logZ
∂Xi∂Xj

=
∂2φ

∂Xi∂Xj
≡ φ,ij (2)

with φ ≡ βP , the pressure P = −Ω, with Ω representing
the thermodynamic potential per unit volume; moreover
φ,ij denotes the second derivative of φ with respect to i
and j.

The distance in Eq. (1) can be connected to the the-
ory of thermodynamic fluctuations as follows. The prob-
ability of the system fluctuating from X = (β, γ) to
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X + dX = (β + dβ, γ + dγ) is given by

dp ∝ √g exp

(
−d`

2

2

)
dβdγ, (3)

where g is the determinant of the metric tensor defined in
Eq.(2). Large probability of a fluctuation corresponds to
small d`2, while small probability to large d`2. Therefore,
a large thermodynamic distance between two equilibrium
states, X and X + dX, means a small probability to
fluctuate from X to X+dX; vice versa, a small distance
implies a large probability of fluctuate. In this sense,
Eq. (1) measures the distance in the (β, γ) plane between
two thermodynamic states in equilibrium.

Thermodynamic stability requires that gββ > 0 and
g > 0, while g = 0 corresponds to a phase boundary and
regions with g < 0 are unstable. The stability conditions
ensure that d`2 is a positive definite quantity. The second
derivatives are related to the fluctuation moments:

φ,ij = 〈(Fi − 〈Fi〉)(Fj − 〈Fj〉)〉, (4)

where Fi denotes the physical quantities conjugated to
Xi and 〈· · · 〉 is the standard ensemble average. In our
case we have:

φ,ββ =
1

V
〈(U − 〈U〉)2〉, (5)

φ,βγ =
1

V
〈(U − 〈U〉)(N − 〈N〉)〉, (6)

φ,γγ =
1

V
〈(N − 〈N〉)2〉, (7)

where U,N denote the internal energy and the particle
number respectively.

Equipped with a metric tensor in the (β, γ) manifold,
it is possible to define the Riemann tensor,

Riklm =
∂Γikm
∂xl

− ∂Γikl
∂xm

+ ΓinlΓ
n
km − ΓinmΓnkl, (8)

where the Christoffel symbols are given by

Γikl =
1

2
gim

(
∂gmk
∂xl

+
∂gil
∂xk
− ∂gkl
∂xm

)
. (9)

Standard contraction procedure allows to introduce the
Ricci tensor, Rij = Rkikj and the scalar curvature,
R = Rii that in this context is called the thermody-
namic curvature. For a two-dimensional manifold the
expression for R simplifies considerably, namely [15]

R =
1

2g2

∣∣∣∣∣∣
φ,ββ φ,βγ φ,γγ
φ,βββ φ,ββγ φ,βγγ
φ,ββγ φ,βγγ φ,γγγ

∣∣∣∣∣∣ , (10)

where |
. . . | denotes the determinant of the matrix. No-

tice that the curvature diverges for g = 0 namely on a
phase boundary, unless the determinant in the numerator
of Eq. (10) vanishes on the same boundary.

It has been postulated that |R| ∝ ξ3 in proximity of a
second order phase transition, where ξ is the correlation
length of the fluctuations of the order parameter [3]. This
relation is natural in the hyperscaling hypothesis because
R brings the physical dimension of a volume; being based
on scaling, this relation should be valid only in proxim-
ity of a second order phase transition. It is remarkable
that many independent theoretical calculations based on
different models confirm this hypothesis [3, 15, 37, 58];
therefore, not only the study of R in the (β, γ) twofold
brings information about the phase transitions, but it al-
lows for an estimate of the correlation volume based only
on the thermodynamic potential rather than computing
correlators: this is one of the merits of the thermody-
namic geometry.

It has also been suggested that the sign of R conveys
details about the nature of the interaction, attractive
or repulsive, at a mesoscopic level in proximity of the
phase transition. Within our sign convention, R < 0 for
an attractive interaction while R > 0 corresponds to a
repulsive one. These interactions not only include real
interactions [20, 28, 59–61], but also the statistical at-
traction/repulsion that ideal quantum gases feel in phase
space [32, 62–65], so an ideal fermion gas has R > 0 due
to the statistical repulsion of the Fermi-Dirac statistics
while an ideal boson gas has R < 0 due to the statistical
attraction of bosons. The thermodynamic curvature is
known to be identically zero only for the ideal classical
gas. Other fields of application concern Lennard-Jones
fluids [60, 61], ferromagnetic systems [66], gravitational
systems and Black Holes [67–83], strong interacting mat-
ter [34, 42–44] and others [66–68, 84, 85].

II. THE QUARK-MESON MODEL

In this section, we review the quark-meson (QM)
model in which fermions (in our context, quarks) interact
with mesons (that are the σ-meson and the pions in our
work), and is based on the Lagrangian density

L = Lm + Lf , (11)

with the mesonic and fermionic parts respectively given
by

Lm =Tr
[
(∂νΦ)

†
(∂νΦ)

]
−m2 Tr

(
Φ†Φ

)
−

− λ
[
Tr
(
Φ†Φ

)]2
+ h σ

(12)

and

Lf = Ψi γµ∂µΨ− 2 gΨΦΨ . (13)

Here Φ is the matrix field

Φ ≡ 1

2
σ τ0 +

i

2
−→π · −→τ , (14)

with τ0 the unity matrix and −→τ = (τ1, τ2, τ3) the Pauli
matrix, −→π = (π1, π2, π3) is an isotriplet of pion fields, σ
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is the isosinglet field and Ψ is a massless isodoublet quark
field.

A common approximation, done in particular in the
context of effective field theories for the quark chiral con-
densate of QCD, is that of mean field in which the me-
son fields are replaced by their uniform, time indepen-
dent saddle point values σ = fπ and −→π = 0. In this
study we want to go beyond the mean field approxima-
tion, including the quantum fluctuations of the meson
fields and studying their effect on the thermodynamic
geometry (the functional integral over the fermion fields
can be done exactly on top of the mean field solution).
Within a gaussian approximation, the partition function
of the model is given by

Z = Zf Zm , (15)

where the subscripts f and m stand for fermions and
mesons respectively; in this model, both quarks and me-
son fluctuations propagate on the background of the con-
densate of the σ field, the value of which is determined
consistently by solving the gap equations (see below).
The thermodynamic grand potential is

Ω = Ωf + Ωm . (16)

Before giving the expression for Ω, we emphasize that
both Ωf and Ωm contain ultraviolet divergent contribu-
tions arising from momentum integration of the single
particle energies, that correspond to the usual zero point
energy of ideal gases of fermions and bosons; these contri-
butions cannot be simply subtracted since they contain a
dependence from the condensate that in principle affects
the response of the condensate itself to temperature and
chemical potential.

We now give the expression of Ω. Starting with Ωf ,
the standard renormalization procedure gives

Ωf =
g4NcNf

8 π2
σ4 ln

Qf
gσ

− 2NcNfT

∫
d3k

(2π)3
ln
(

1 + e−β(
√
k2+g2 σ2−µ)

)
− 2NcNfT

∫
d3k

(2π)3
ln
(

1 + e−β(
√
k2+g2 σ2+µ)

)
.

(17)

In the second and third lines of the right hand side
of Eq. (17) we recognize the standard relativistic free
gas thermodynamic potential at finite temperature and
chemical potential; on the first line of the right hand side
of the same equation we show the zero temperature, zero
chemical potential contribution that is potentially diver-
gent and has been renormalized at the scale Qf .

The mesonic contribution, Ωm, can be obtained via
the standard the CJT effective action formalism in the
Hartree approximation in which momentum-dependent
self-energy corrections are neglected. Differently from
[49, 50] we do not include the vacuum term of the meson
potential, so the pressure of the pions and σ−meson is

zero at T = µ = 0: the condensation energy takes contri-
butions only from the classical potential plus the fermion
loop, while the mesons appear as excitation of the ground
state at finite temperature. This choice is done also for
the sake of simplicity because including a further zero
temperature, zero chemical potential renormalized term
of the mesons would introduce an additional renormal-
ization scale that would lead to unexpected behaviors of
the thermodynamic quantities [50]. Within these approx-
imations we have [49, 50]

Ωm = Ω0
m + 3 Bπ +Bσ −

3 λ

4

(
2 Aπ Aσ + 5 A2

π +A2
σ

)
,

(18)
where

Ω0
m =

m2

2
σ2 +

λ σ4

4
− h σ , (19)

is the mesonic part without fluctuations, and for ` = σ, π
we have put

A` =−
∫
d3k

(2π)3

1

E`

1

1− eβ E`
, (20)

with E` =
√
k2 +M2

` , and

B` = 2 T

∫
d3k

(2π)3
ln
(
1− e−β E`

)
. (21)

Within this model, for given temperature and chemical
potential the unknown are the value of the condensate,
namely the expectation value of σ, as well as the in-
medium meson masses Mσ and Mπ: these are obtained
by solving the gap equations, that are

h =
[
m2 + λσ2 + 3 λ (Aσ +Aπ)

]
σ

− g4 Nc Nf σ
3

8 π2

(
1 + 4 ln

g σ

Qf

)
− 2 Nc Nf

β

∂ΩfT
∂Σ

∣∣∣∣∣Σ=σ
Π=0

, ,

(22)

M2
σ =m2 + 3 λ

(
Aπ +Aσ + σ2

)
− g4 Nc Nf σ

2

8 π2

(
7 + 12 ln

g σ

Qf

)
− 2 Nc Nf

β

∂2ΩfT
∂Σ2

∣∣∣∣∣Σ=σ
Π=0

, ,

(23)

M2
π =m2 + λ

(
5 Aπ +Aσ + σ2

)
− g4 Nc Nf σ

2

8 π2

(
1 + 4 ln

g σ

Qf

)
− 2 Nc Nf

β

∂2ΩfT
∂Π2

∣∣∣∣∣Σ=σ
Π=0

,

(24)
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with

ΩfT =

∫
d3k

(2 π)3
ln
(

1 + e−β(
√
k2+g2(Σ2+Π2)−µ)

)
+

∫
d3k

(2 π)3
ln
(

1 + e−β(
√
k2+g2(Σ2+Π2)+µ)

)
.

(25)

The gap equations depend of the renormalization scale,
Qf , as well as of three parameters, m, λ and h. At
the tree-level, namely when no meson and quark loops
are considered, the parameters m, λ and h are fixed to
reproduce the physical values mσ, mπ as well as σ = fπ
at T = 0 and µ = 0, where we use small letters to denote
physical masses at T = µ = 0; without the fermion and
meson loops these give

h ≡ htree = m2
π fπ , (26)

m2 ≡ m2
tree = −m

2
σ − 3m2

π

2
− f2

π g
4 Nc Nf
4 π2

, (27)

λ ≡ λtree =
m2
σ −m2

π

2 f2
π

, (28)

where the subscript tree reminds that these are quanti-
ties computed using the tree-level potential. In order to
fix the renormalization scale we have to adopt one renor-
malization condition, that is

λ = λtree, (29)

where λ results from the gap equations at T = µ = 0,
namely

λ =
m2
σ −m2

π

2 f2
π

+
g4NcNf

8π2

(
3 + 4 ln

g fπ
Qf

)
. (30)

m2 and h from the gap equations at T = µ = 0 are always
equal to the tree value:

m2 = m2
tree , h = htree . (31)

Finally, from eq.s (29) and (30) we have

Qf = e3/4 fπ g . (32)

III. RESULTS

In this section we report and discuss our results.
Firstly, we show briefly the effect of fluctuations on the
condensate, then we focus on the thermodynamic geom-
etry. Our purpose is to show the existence of a pseudo-
critical region in which the condensate substantially de-
creases with temperature, then study the elements of the
thermodynamic metric as well as the scalar curvature
around this region. For the parameters we take fπ = 93
MeV,mσ = 700 MeV,mπ = 138 MeV and finally g = 3.6:
the latter is chosen so that the constituent quark mass
at T = µ = 0 is M = 335 MeV. The resulting value of
the renormalization scale is Qf = 709 MeV.

μ=0 MeV

μ=100 MeV

μ=200 MeV

μ=300 MeV

0 50 100 150 200 250
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μ=200 MeV

μ=300 MeV
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100

120

T [MeV]

σ
[M

e
V
]

Figure 1. Condensate, σ, as a function of T and for different
values of the chemical potential. Upper panel corresponds
to the case in which meson fluctuations are neglected, lower
panel to the case in which meson fluctuations are included.

A. The condensate and the meson masses

In Fig. 1 we plot the condensate, σ, as a function of T
for several values of the chemical potential: µ = 0 MeV
(continuous line), µ = 100 MeV (dashed), µ = 200 MeV
(dot-dashed) and 300 MeV (dotted). The upper panel
corresponds to the case in which meson fluctuations are
neglected (in this case the thermodynamic potential is
Ω0 = Ωf + Ω0

m, with Ωf and Ω0
m in eq.s (17) and (19),

respectively), lower panel to the case in which the fluc-
tuations are included. In both cases, a range of temper-
ature where σ decreases exists, that signals the partial
restoration of chiral symmetry (chiral symmetry cannot
be restored exactly due to the soft explicit breaking in
the action).

In Fig. 2 we plot the in-medium masses of the σ-meson
and pions as a function of temperature, for several values
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Mσ

Mπ

0 50 100 150 200 250
0

200

400

600

800

T [MeV]

M
[M

e
V
]

Figure 2. In-medium masses Mσ (black) and Mπ (orange) as
a function of T , for several values of the chemical potential:
µ = 0 MeV (continuous line), µ = 100 MeV (dashed), µ =
200 MeV (dot-dashed) and µ = 300 MeV (dotted). Case with
mesonic fluctuations.

μ=0

μ=300

50 100 150 200 250

0

5.0× 10
9

1.0× 10
10

1.5× 10
10

T [MeV]

P
[M

e
V

4
]

Figure 3. Pressure versus temperature for the models with
(solid lines) and without (dashed lines) meson fluctuations,
for µ = 0 (black lines) and µ = 300 MeV (red lines).

of the quark chemical potential. These have been com-
puted for the model with fluctuations included. We no-
tice that for each of the values of µ considered, a range of
temperature exists in which the σ-meson mass decreases
while the pions mass increases, and the two match at high
temperature signaling the approximate restoration of the
O(4) symmetry, as well as the decoupling of these parti-
cles from the low energy spectrum of the model. More-
over, the lowering of Mσ to a minimum is a sign that
the fluctuations of the scalar field are enhanced near the
chiral crossover.

In Fig. 3 we plot the pressure versus the temperature
for the models with and without fluctuations, for µ = 0
(black lines) and µ = 300 MeV (red lines). At fixed µ and
T the fluctuations increase the pressure as expected; how-
ever, we notice that at large values of µ the contribution
of the fluctuations becomes less important in comparison

μ=100 MeV

μ=200 MeV

μ=300 MeV

50 100 150 200 250

-0.6

-0.4

-0.2

0.0

0.2

0.4

T [MeV]

R
[f
m

3
]

μ=100 MeV

μ=200 MeV

μ=300 MeV

50 100 150 200
-1.0

-0.5

0.0

0.5

1.0

T [MeV]

R
[f
m

3
]

Figure 4. Scalar curvature, R, as a function of T for
µ = 100 MeV (continuous), µ = 200 MeV (dashed) and
µ = 300 MeV (dotted). Upper and lower panels correspond
to the cases without and with mesonic fluctuations.

with the mean field pressure.

B. The thermodynamic curvature

In Fig. 4 we plot the scalar curvature, R, versus tem-
perature for three values of the quark chemical potential:
the upper panel corresponds to the case without fluctu-
ations, the lower panel to that with fluctuations. We
notice that in both cases, R develops a groove around
the chiral crossover, in agreement with [43, 44]. This is
expected thanks to the relation between R and the cor-
relation volume around a phase transition: as a matter
of fact, at a second order phase transition R diverges due
to the divergence of the correlation volume, while at a
crossover the correlation length increases but remains fi-
nite and susceptibilities are enhanced so |R| is expected
to grow up in the pseudocritical region. Therefore, the
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0 50 100 150 200 250 300 350
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10 000

15 000
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g
(T

c
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fπ
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Figure 5. Determinant of the thermodynamic metric versus
µ computed at the chiral crossover temperature obtained as
TTG(µ): solid line corresponds to the case with fluctuations
while dashed line to the mean field thermodynamics.

thermodynamic curvature brings information about the
correlation volume also near a crossover.

In addition to this, we find that at small µ the values
of |R| are more pronounced when the fluctuations are in-
cluded. This is an interesting, new observation about the
thermodynamic geometry and is related to the fact that
fluctuations make the chiral broken phase more unstable.
This can be seen from the determinant of the thermody-
namic metric, g, see Fig. 5: in the figure we define TTG

as the temperature at which R develops its local mini-
mum, which is in agreement with other definitions, see
also Fig. 6. At small µ in the critical region the deter-
minant with fluctuations is smaller than the one without
fluctuations (g = 0 corresponds to thermodynamic in-
stability and infinite curvature), while increasing µ the
determinant in the critical region is not very affected by
the presence of the fluctuations. This is in line with the
results of the pressure in Fig. 3 in which we show that
fluctuations do not give a substantial contribution in the
critical region at large µ. When µ is large enough, R
is enhanced in the critical region both with and without
fluctuations (see also Fig. 7 below). This is most likely
related to the fact that the critical endpoint with the sec-
ond order phase transition and the divergent correlation
length already appears within the mean field approxima-
tion, so the main role of the fluctuations is that to change
the critical exponents but not to change the phase struc-
ture.

The scalar curvature changes sign around the
crossover, both with and without fluctuations: this is
in agreement with [43, 44] and can be interpreted as a
rearrangement of the collective interactions in the hot
medium around the chiral crossover, from statistically
repulsive (due to the fermionic nature of the bulk) to at-
tractive. This piece of information was not accessible to

TTG

Max[σ, β]

Max[Mσ, β]

Min[Mσ]

0 100 200 300 400
0

50

100
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200
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T
[M

e
V
]

Figure 6. Crossover temperature versus µ obtained with four
definitions: from the maximum of Mσ,β (orange dotted line),
from the maximum of σ,β (orange dot-dashed line), from the
minimum ofMσ (orange dashed line) and from the local min-
imum of R (black line). Case with mesonic fluctuations.

previous model calculations on the QCD phase diagram
and represents a merit of the thermodynamic geometry.

C. The critical temperature and the endpoint

The crossover nature of the transition to the chiral
symmetric phase at high temperature leaves an ambigu-
ity on the definition of a critical temperature: in fact,
it is possible to adopt several definitions to identify the
critical region, in which the order parameter decreases
substantially. We compare the predictions of the model
using four different definitions. Firstly, we define the
pseudocritical temperature, Tc(µ), as the temperature
corresponding to the maximum of ∂σ/∂β (which coin-
cides with the maximum of ∂σ/∂γ). A second definition
is the temperature at which ∂Mσ/∂β is maximum (the
same of ∂Mσ/∂γ). Thirdly, we can define Tc as the one
at which Mσ is minimum (since at this temperature the
correlation length of the fluctuations of the order param-
eter is the largest). Finally, the peculiar structure of
R = R(T ) at a given µ allows for the fourth definition,
namely the temperature at which R presents its local
minimum.: we denote this by TTG.

In Fig. 6 we show Tc versus µ obtained with the four
definitions. We notice that the different definitions give
consistent results with each other. This supports the
idea that we can use the local minima of R to identify
the chiral crossover, which in turn suggests that R is
sensitive to the crossover from the broken to the unbroken
phase even though this is not a real second order phase
transition.

In the phase diagram shown in Fig. 6 the crossover
line terminates at a critical endpoint, CEP, located at
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Figure 7. Thermodynamic curvature versus temperature for
several values of µ close to the critical endpoint. Case with
mesonic fluctuations.

(µCEP, TCEP) = (350 MeV, 30 MeV). Approaching this
point along the critical line, the crossover turns into a
second order phase transition with divergent susceptibil-
ities, then the transition becomes first order with jumps
of the condensate across the transition line.

In Fig. 7 we plot R versus temperature for values of
µ close to the critical endpoint (the case without fluctu-
ations is not shown because it is very similar). As ex-
pected, approaching the critical endpoint the magnitude
of |R| becomes larger, as it should be since the crossover
becomes a second order phase transition there and R
should diverge at the CEP.

D. Thermodynamic curvature and correlation
volume

It is interesting to compare the thermodynamic curva-
ture around the critical line, with the correlation volume
ξ3, where ξ is the correlation length. This comparison
is interesting since according to hyperscaling arguments,
around a second order phase transition |R| = Kξ3 withK
of the order of unity; restoration of chiral symmetry is a
crossover rather than a real phase transition, at least far
from the critical endpoint, therefore we can check how
the hyperscaling relation works around such a smooth
crossover and how it changes approaching the CEP.

In Fig. 8 we compare the thermodynamic curvature,
computed along the critical line, with the correlation vol-
ume, the latter being estimated by taking ξ = 1/Mσ as
a measure of the correlation length of the fluctuations of
the order parameter. We find that both the correlation
volume and the thermodynamic curvature behave qual-
itatively in the same way near the CEP; moreover, the
numerical values of the two quantities is comparable in
the critical region. We conclude that our study supports

|R|

1/Mσ
3

0 50 100 150 200 250 300 350
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4

6
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10
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Figure 8. Thermodynamic curvature versus µ at the criti-
cal line, compared with the inverse of the correlation volume
1/M3

σ . Case with mesonic fluctuations.

the idea that |R| = Kξ3 in proximity of the second order
phase transition.

In the small µ regime the relation between the cur-
vature and the correlation volume does not need to be
satisfied since in this regime the critical line is a smooth
crossover. In fact, we find that for small values of µ
the agreement between |R| and ξ3 is not as striking as
the one in proximity of the CEP; nevertheless, we still
find that the two quantities behave qualitatively in the
same way, namely they stay approximately constant for
a broad range of µ then grow up as the CEP is reached.

IV. CONCLUSIONS

We have studied the thermodynamic geometry around
the chiral phase transition at finite temperature and
chemical potential. The phase transition has been stud-
ied within the quark-meson (QM) model augmented with
meson fluctuations; within this model the phase transi-
tion at large temperature and small chemical potential
is actually a smooth crossover, which turns to a second
order phase transition at the critical endpoint then be-
comes a first order phase transition at large values of the
chemical potential.

The main goals have been to analyze the relation be-
tween the thermodynamic curvature, R, and the correla-
tion volume for smooth crossovers, and how this changes
approaching a second order phase transition at the criti-
cal endpoint. Moreover, we have studied the effect of the
fluctuations, pions and σ−meson, on the top of the mean
field thermodynamics and how these affect the thermo-
dynamic curvature around the crossover. Of particular
interest is the σ−meson since it corresponds to the am-
plitude fluctuation mode and its mass can be related
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directly to the correlation length of the fluctuations of
the order parameter. Fluctuations have been introduced
within the Cornwall-Jackiw-Toumbulis effective potential
formalism [51] in the Hartree approximation; we have
neglected the zero point energy contributions of the me-
son fields, both for the sake of simplicity and to avoid
the unexpected behavior of thermodynamic quantities
when these are included and two renormalization scales
are needed [50]. Within this approach, the Schwinger-
Dyson equations for the meson propagators become sim-
ple equations for the meson masses that can be solved,
consistently with the gap equations, to get the conden-
sate and the masses as a function of temperature and
chemical potential. This study is a natural continuation
of previous works [43, 44] in which the same problem has
been analyzed within the mean field approximation.

We have found that in the region of small values of
µ, the fluctuations enhance the magnitude of the curva-
ture. We understand this in terms of the stability of the
phase with broken chiral symmetry, that can be analyzed
by the determinant of the metric, g: in fact, the condi-
tion of stability reads g > 0 while g = 0 corresponds
to a phase boundary where a phase transition happens
and R diverges, so the smaller the g the closer the sys-
tem is at a phase transition and the larger is R. We
have found that the determinant with fluctuations and
around the crossover is smaller than g without fluctua-
tions in the same range of T and µ, meaning that fluc-
tuations make the chiral broken phase less stable. This
result is expected, since fluctuations of the order param-
eter represented by the σ−meson tend to wash out the
σ−condensate.

On the oher hand, at larger values of µ and in proxim-
ity of the critical endpoint, the fluctuations do not bring
significant changes to the mean field solution around the
critical line and R is less sensitive to the fluctuations.
This is also easy to understand, because the mean field
thermodynamics already predicts the existence of the
critical endpoint with a divergent curvature [43, 44], so
the role of the fluctuations is just that to change the mean
field critical exponents.

We have found that R changes sign in the pseudocriti-
cal region: this suggests that around the chiral crossover,
the interaction changes at mesoscopic level from being

statistically repulsive to attractive. This change in the
nature of the interaction is not accessible to methods
based on standard thermodynamics, and this prediction
represents one of the merits of the thermodynamic geom-
etry.

We have verified that in the critical region around the
critical endpoint |R| scales with the correlation volume,
|R| = Kξ3 with K = O(1), in agreement with hyperscal-
ing arguments: thus |R| brings information on the corre-
lation volume. In proximity of the crossover at small µ
the correspondence between |R| and the correlation vol-
ume is not as good as the one we have found at large
µ, which is not surprising because at small µ the chiral
crossover is quite smooth; nevertheless, we have found
that R develops a characteristic groove structure with a
pronounced local minimum, suggesting that it is capable
to capture the pseudocritical behavior of the condensate.

This study presents the natural continuation of the
work started in [43, 44], and offers possibilities for fur-
ther investigations. From the fields theory point of view,
two natural questions are whether it is worth to relax the
Hartree approximation to get a more realistic description
of the quantum fluctuations, and whether the renormal-
ization of the zero point energy of mesons has to be done
on the same footing of that of quarks. Investigating these
topics might bring to a more confident application of the
theory of quantum fluctuations to the thermodynamic ge-
ometry. Moreover, fluctuations can be treated also with
the Functional Renormalization Group (FRG) approach
[86, 87] under suitable assumptions on the full effective
potential: it is of a certain interest to study the effects
of the fluctuations on the thermodynamic geometry us-
ing FRG. We plan to report on these topics in the near
future.
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