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Abstract: The role of infections in the pathogenesis of autism spectrum disorder (ASD) is still
controversial. In this study, we aimed to evaluate markers of infections and immune activation in ASD
by performing a meta-analysis of publicly available whole-genome transcriptomic datasets of brain
samples from autistic patients and otherwise normal people. Among the differentially expressed
genes, no significant enrichment was observed for infectious diseases previously associated with
ASD, including herpes simplex virus-1 (HSV-1), cytomegalovirus and Epstein–Barr virus in brain
samples, nor was it found in peripheral blood from ASD patients. Interestingly, a significant number
of genes belonging to the “prion diseases” pathway were found to be modulated in our ASD brain
meta-analysis. Overall, our data do not support an association between infection and ASD. However,
the data do provide support for the involvement of pathways related to other neurodegenerative
diseases and give input to uncover novel pathogenetic mechanisms underlying ASD.

Keywords: autism; infection; prion; meta-analysis

1. Introduction

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders
defined by significantly abnormal social interaction, impaired communication and language abilities,
and a narrow pattern of interests [1]. It is estimated that the prevalence of ASD is 1%–2% in the
general population with an average male-to-female ratio of 5:1 [2]. However, only about 10% of
patients with a diagnosis of ASD have a defined etiology (so-called syndromic autism, secondary to
Fragile X syndrome, neurofibromatosis and exposure to thalidomide) [3], while 90% of ASD cases are
considered idiopathic.

Many authors have hypothesized a connection between genetic and epigenetic factors in ASD
etiopathogenesis. In particular, infections have been suggested as a potential trigger of the disease [4–6].
In line with this, altered cellular immunity and an altered cytotoxic function of natural killer (NK)
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cells have been reported in ASD patients [7–9]. It has also been shown that fungal mycotoxins, such
as deoxynivalenol in urine and Ochratoxin A in serum, are increased in autistic children [10,11].
Finally, expression of immune response genes has been described in cortical tissues from older ASD
subjects [12,13].

In the present study, we investigated the expression levels of transcriptional markers of infections
and immune activation in brain and blood samples from autistic patients by performing a meta-analysis
of publicly available whole-genome expression datasets. The analysis of the data suggests common
transcriptional features between ASD and prion-related diseases but does not support the role of
infectious disease in the etiopathogenesis of ASD.

2. Materials and Methods

2.1. Data Collection and Metanalysis

The NCBI (National Center for Biotechnology Information) Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) was used to identify microarray datasets comparing
the transcriptomic profiles of healthy donors and ASD patients. The GEO database was manually
searched using the terms “autism” and “autistic disorder”. The collected datasets were further selected
if they met the following inclusion criteria: (a) whole-genome transcriptomic profiling; (b) brain or
blood samples; (c) consisted of one cohort of ASD patients and another cohort of healthy people; and
(d) species of origin was “Homo sapiens”. Finally, five datasets were included in the meta-analysis of
brain samples: GSE28521, GSE38322, GSE62098, GSE64018 and GSE102741, while three datasets were
used for the meta-analysis of blood samples: GSE6575, GSE42133 and GSE18123. When a dataset
included more than one tissue type, data from each tissue type were processed as a separate dataset.
The datasets were uploaded to NetworkAnalyst 3.0 software (Ste. Anne de Bellevue, Quebec, Canada).
Data were auto-scaled, and an integrity check was performed prior to the meta-analysis stage. Batch
effects were corrected using the “ComBat” function. A random effects model of effect size (ES) measure
was used to integrate gene expression patterns from the three datasets. The random effects model
presumes that different studies present substantial diversity and evaluates between-study variance as
well as within-study sampling error. Genes with a False Discovery Rate (FDR) < 0.05 were identified
as differentially expressed genes (DEGs) and selected for further analysis. The characteristics of the
samples in the datasets used are described in Table 1.

Table 1. Characteristics of the datasets used in the meta-analyses.

Dataset ID Tissue Samples Platform Reference

GSE28521

Temporal cortex n = 13 ASD
n = 13 HD *

Illumina HumanRef-8 v3.0
Expression BeadChip

[14]Frontal cortex n = 16 ASD
n = 16 HD *

Cerebellum n = 10 ASD
n = 11 HD *

GSE38322

Occipital cortex
(BA19)

n = 6 ASD
n = 4 HD * Illumina HumanHT-12 V4.0

Expression BeadChip
[15]
[16]

Cerebellum n = 8 ASD
n = 8 HD *

GSE62098 Corpus callosum n = 6 ASD
n = 6 HD *

Illumina HiSeq 2000 (Homo
sapiens) [17]

GSE64018 Superior
temporal gyrus

n = 12 ASD
n = 12 HD *

Illumina HiSeq 2000 (Homo
sapiens) [18]

GSE102741 Dorsolateral
prefrontal cortex

n = 13 ASD
n = 39 HD *

Illumina HiSeq 2000 (Homo
sapiens) [19]

http://www.ncbi.nlm.nih.gov/geo/
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Table 1. Cont.

Dataset ID Tissue Samples Platform Reference

GSE102741 Dorsolateral
prefrontal cortex

n = 13 ASD
n = 39 HD *

Illumina HiSeq 2000 (Homo
sapiens) [19]

GSE6575 Whole blood n = 35 ASD
n = 12 HD *

Affymetrix Human Genome
U133 Plus 2.0 Array [20]

GSE42133 Leukocytes n = 91 ASD
n = 56 HD *

Illumina HumanHT-12 V4.0
Expression BeadChip

[21]
[22]

GSE18123 Whole blood n = 31 ASD
n = 33 HD *

Affymetrix Human Genome
U133 Plus 2.0 Array [23]

* HD: Healthy donors.

2.2. Pathway Selection and Gene Intersection

Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (https://www.genome.jp/kegg/) implemented in the Enrichr (http://amp.pharm.mssm.
edu/Enrichr) web-based utility [24]. Higher-level biological functions are represented by networks of
molecular interactions, reactions and relations that are integrated in the pathways from the KEGG
database. KEGG integrates the current knowledge on molecular interaction networks and uses a
knowledge-based approach for network prediction that aims to predict, given a complete set of genes
in the genome, the protein interaction networks that are responsible for various cellular processes [25].
Enrichr computes the p value using the Fisher exact test. The adjusted p value is calculated using the
Benjamini–Hochberg method for correction for multiple hypotheses testing. The z-score is computed
using a modification to the Fisher exact test and assesses the deviation from the expected rank. Finally,
the combined score is calculated using the p value and the z-score (Combined Score = ln(p value) ×
z-score).

2.3. Machine Learning Prediction and Network Construction

The webtool “ASD Genome-wide predictions of autism-associated genes” was used to evaluate the
probability value of association between the selected gene and ASD. This webtool is based on a machine
learning approach that, using a Bayesian method, allows the user to predict the role of candidate
genes [26]. Briefly, Krishnan et al. developed an evidence-weighted, network-based machine-learning
method that uses this brain-specific network to systematically discover new candidate ASD risk genes
across the genome. The brain-specific network was constructed using a Bayesian method that extracts
and integrates brain-specific functional signals from a gene-interaction network model containing
predicted functional relationships for all pairs within 25,825 genes in the human genome. In order to
produce a comprehensive, robust, genome-wide ranked list of autism candidate genes, Krishnan et al.
first curated 594 genes linked with autism from publicly available databases and based on the strength
of evidence of association with ASD. Next, an evidence-weighted support vector machine classifier,
using the connectivity of genes to all the genes in the human brain-specific network, was employed to
identify novel ASD candidates, defined as those genes whose interaction features in the network most
closely resemble those of known ASD-related genes [26].

2.4. Statistical Analysis

For the meta-analysis, a random-effect model of effect size measure was used to integrate gene
expression patterns from the selected datasets. Genes with an adjusted p value (FDR, q-value) < 0.05
were identified as DEGs and selected for further analysis. Pathway enrichment analysis was performed
using the online server Enrichr (http://amp.pharm.mssm.edu/Enrichr) [24]. For all the analyses, an
adjusted p value ≤ 0.05 was considered as the statistical significance threshold.

https://www.genome.jp/kegg/
http://amp.pharm.mssm.edu/Enrichr
http://amp.pharm.mssm.edu/Enrichr
http://amp.pharm.mssm.edu/Enrichr
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3. Results

3.1. Identification of an ASD Brain Transcriptomic Profile

Five GEO whole-genome transcriptomic datasets were identified (see Table 1) and used in the
following analysis. These datasets included 84 brain samples from ASD patients (n = 55 unique patients)
and 109 brain samples from otherwise normal people (n = 81 unique subjects). The meta-analysis
identified 516 DEGs: 218 upregulated and 298 downregulated. The most enriched pathways were
represented by “Synaptic vesicle cycle”, “Huntington’s disease” and “Sphingolipid signaling pathway”
(Table 2).

Table 2. Top 10 enriched KEGG pathways in brain samples from ASD patients.

Term p Value Adj. p-Value Odds Ratio Combined Score

Synaptic vesicle cycle 8.95E-04 0.030642 3.975353 27.90006

Huntington’s disease 5.06E-04 0.031192 2.811584 21.33503

Sphingolipid signaling pathway 0.001034 0.031855 3.257117 22.38962

Thyroid hormone signaling pathway 8.49E-04 0.03269 3.341353 23.62788

Parkinson’s disease 3.20E-04 0.032842 3.275467 26.35943

Gap junction 4.43E-04 0.034103 3.964059 30.61119

VEGF signaling pathway 7.81E-04 0.034369 4.598607 32.90204

Prion diseases 2.46E-04 0.037893 6.644518 55.21555

Valine, leucine and isoleucine degradation 0.001402 0.03926 4.844961 31.83014

Lysine degradation 7.81E-04 0.040097 4.598607 32.90204

Figure 1 shows the results from the enrichment analysis for infectious-related pathways enlisted
in the KEGG database. No significant enrichment was observed among the DEGs with the exception
of the “prion diseases” pathway (q = 0.038) (Figures 1 and 2; Supplementary File 1). In particular,
in the “prion diseases” pathway, our analysis identified significantly higher levels of Complement
Component 1, q Subcomponent, B Chain (C1QB), Heat Shock Protein Family A Member 5 (HSPA5),
Proto-Oncogene Tyrosine-Protein kinase Fyn (FYN), Laminin Subunit Gamma 1 (LAMC1) and ETS
Like-1 Protein (ELK1) and significantly lower levels of Mitogen-Activated Protein Kinase 1 (MAP2K1)
(Figure 2).

We next wanted to evaluate the enrichment of immune-related processes among the ASD brain
DEGs. As shown in Figure 3, only the “Sphingolipid signaling pathway” was significantly enriched,
encompassing four downregulated DEGs (MAP2K1, Protein Kinase C Beta (PRKCB), Sphingosine
Kinase 2 (SPHK2), Ras-Related C3 Botulinum Toxin Substrate 3 (RAC3)) and six upregulated DEGs
(G Protein Subunit Alpha I3 (GNAI3), Sphingosine-1-phosphate receptor 1 (S1PR1), FYN, Rapidly
Accelerated Fibrosarcoma 1 (RAF1), TNF Receptor Superfamily Member 1A (TNFRSF1A), G Protein
Subunit Alpha I2 (GNAI2)).
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Figure 1. Infection-related pathways enriched in brain samples from ASD patients. Dotted line
indicates the threshold of significance.
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3.2. Machine Learning Prediction

The brain autism DEGs belonging to the “prion diseases” pathway from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) were investigated for their potential role in ASD using a network
machine learning approach implemented in the “ASD Genome-wide predictions of autism-associated
genes” web-tool (http://asd.princeton.edu/). The network constructed using the brain ASD DEGs
belonging to the “prion diseases” pathway is presented as Figure 4. Among the input genes, the
only one significantly associated with ASD is FYN, with an estimated probability of 0.665 and a
q-value = 0.0256. Table 3 shows the genes mostly interacting with the input genes, ordered by the edge
score. The prioritization and prediction of ranking is based on the network-based approach developed
by Krishnan et al. [26]. Among the top-ranking ASD genes associated with the DEGs belonging to
the “prion diseases” pathway, Mesencephalic Astrocyte Derived Neurotrophic Factor (MANF), Heat
Shock Protein 90 Beta Family Member 1 (HSP90B1) and Mitogen-Activated Protein Kinase 1 (MAPK1)
showed edge scores of 0.791, 0.79 and 0.789 with HSPA5, HSPA5 and MAP2K1, respectively (Table 3).
The top-ranking ASD gene interacting with the DEGs belonging to the “prion diseases” pathway is
Ataxin 1 (ATXN1), with a rank position of 5, a probability value of association with ASD of 0.808 and a
q-value = 0.0186. ATXN1 was the most connected gene to FYN (edge score 0.705) (Table 4). None of
the predicted top 10 genes are present in the Genome-Wide Association Study (GWAS) Catalog 2019.

http://asd.princeton.edu/
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Figure 4. Network constructed using the differentially expressed genes in the ASD brain belonging
to the “prion diseases” pathway using a minimum confidence score of 0.04 and a maximum of
20 interacting genes.

Table 3. Top 10 genes interacting with ASD brain DEGs belonging to the “prion diseases” pathway.

Query Gene Gene Gene Description Edge Score

HSPA5 MANF mesencephalic astrocyte-derived neurotrophic factor 0.791

HSPA5 HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 0.79

MAP2K1 MAPK1 mitogen-activated protein kinase 1 0.789

HSPA5 RAB1A RAB1A, member RAS oncogene family 0.761

MAP2K1 PGK1 phosphoglycerate kinase 1 0.728

MAP2K1 YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta
polypeptide 0.706

FYN ATXN1 ataxin 1 0.705

HSPA5 ARF4 ADP-ribosylation factor 4 0.702

HSPA5 HERPUD1 homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like
domain member 1 0.69

LAMC1 AKT3 v-akt murine thymoma viral oncogene homolog 3 0.669

Table 4. Top 10 ranking ASD genes interacting with brain DEGs belonging to the “prion diseases” pathway.

Gene Description
Avg. Edge

Score to
Query

Rank
Probability

of ASD
Association

p-Value q-Value

ATXN1 ataxin 1 0.216 5 0.828 0.002 0.0186

GNB1 guanine nucleotide binding protein (G protein), beta
polypeptide 1 0.231 24 0.811 0.001 0.0113

AKT3 v-akt murine thymoma viral oncogene homolog 3 0.205 75 0.722 0.001 0.0113

YWHAB tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein, beta polypeptide 0.176 107 0.71 0.006 0.0438

YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein, zeta polypeptide 0.212 269 0.697 0.08 0.3199

RAB1A RAB1A, member RAS oncogene family 0.257 453 0.696 0.066 0.2786

MACF1 microtubule-actin crosslinking factor 1 0.205 715 0.667 0.005 0.0381

PPIB peptidylprolyl isomerase B (cyclophilin B) 0.152 753 0.666 0.221 0.6426

BHLHE40 basic helix-loop-helix family, member e40 0.187 1054 0.663 0.149 0.4976

MAPK1 mitogen-activated protein kinase 1 0.234 1128 0.661 0.133 0.4605
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3.3. Identification of an ASD Blood Transcriptomic Profile

Three GEO whole-genome transcriptomic datasets, GSE6575, GSE42133 and GSE18123, were
identified, as indicated in Table 1, for the following analysis. These datasets included blood samples
from 157 ASD patients and blood samples from 101 otherwise normal people. The meta-analysis
identified only 24 DEGs: 19 upregulated and 5 downregulated. As shown in Table 5, no significant
enrichment for any KEGG pathway was detected (Table 5).

Table 5. Top 10 enriched KEGG pathways in blood from ASD patients.

Term p-Value Adjusted p-Value Odds Ratio Combined Score

Autophagy 0.01023 0.450115 13.02083 59.6672

Osteoclast differentiation 0.010077 0.517306 13.12336 60.33413

cGMP-PKG signaling pathway 0.016766 0.573785 10.04016 41.04796

Tuberculosis 0.019321 0.595073 9.310987 36.74661

Oocyte meiosis 0.009775 0.60217 13.33333 61.70503

Cellular senescence 0.015641 0.602172 10.41667 43.31114

AMPK signaling pathway 0.009039 0.695998 13.88889 65.36409

Thermogenesis 0.031025 0.73505 7.215007 25.05748

Regulation of actin cytoskeleton 0.026947 0.754518 7.788162 28.14549

Insulin resistance 0.007379 0.757574 15.4321 75.75804

4. Discussion

According to the current DSM-5 criteria, two requirements are needed to obtain an ASD diagnosis:
(1) persistent deficits in social communication and social interaction across multiple contexts, and
(2) restricted, repetitive patterns of behavior, interests or activities [1]. Although ASD has a complex
multifactorial etiology, twin studies have proven a strong genetic contribution, with a concordance
rate of autistic disorders in monozygotic twins of 70%–90% and in dizygotic twins of 30% [27,28].

However, the complexity of the disease requires omics approaches to integrate and extrapolate more
information. Genome-wide association studies, candidate gene studies and microarray experiments of
differential gene expression have been largely used in autism. These studies produce extensive and
information-rich data that represent a snapshot of all genetic and/or molecular events occurring in
a diseased cell at one particular point in time and can be used to generate hypotheses. The use of
whole-genome expression databases has been largely exploited by our group and others [29–33] for
the characterization of the etiopathogenesis of a variety of diseases (e.g., autoimmune diseases [34–42]
and cancer [36,43,44]) and has allowed researchers to characterize pathogenic pathways [45–48] and
potential novel therapeutic targets [49–57].

Many authors have suggested that the role of infection during pregnancy or in the first phases of life
could trigger the immune system to alter normal neurodevelopment, causing neuronal damage [8,58,59].
In particular, the role of the Herpesviridae family has been largely investigated. For instance,
cytomegalovirus (CMV) can directly damage key structures in the developing brain when contracted
during pregnancy [60], and indeed, in vitro studies have shown that CMV infection can inhibit neuronal
differentiation and induce apoptosis in neural precursor cells [61,62]. Also, other infectious diseases
such as influenza A [58], toxoplasmosis [63,64] and measles [6,65] are suspected to be related to ASD.

However, the role of infections in the pathogenesis of autism is still highly debated. The levels
of D-arabinitol, a marker of candidiasis fungal infection, as well as of a phenylalanine metabolite
of Clostridia species, the 3-(3-hydroxyphenyl)-3-hydroxypropionic acid, are increased in the urine of
autistic children [66,67]. Accumulating evidence also suggests that latent chronic toxoplasmosis plays
a role in the triggering and development of many psychiatric and neurological disorders, including
ASD [68]. On the other hand, other studies have not shown a significant prevalence of infections in
ASD [5,69–71]. The aim of our analysis was to evaluate, by performing a meta-analysis of available
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whole-genome transcriptomic datasets, whether infection alone or infection and immune activation
processes could be detected in the brains or peripheral blood of autistic patients. To our knowledge,
this is the largest meta-analysis of both ASD brain samples and leukocytes to date.

In our study, no significant enrichment for infection-related pathways, including Epstein-Barr virus
(EBV), CMV, HSV-1, measles, influenza A and toxoplasmosis, was found among the DEGs identified in
the meta-analyses. On the other hand, a significant enrichment of the “prion diseases” pathway was
observed. However, it should be pointed out that, with the present data, it is currently not possible to
identify ASD as a prion-related disease, but it is possible to describe common biomolecular pathways
underlying ASD pathogenesis. Indeed, prion infection is known to affect microglial sensing and
homeostasis ability and to reduce microglial phagocytosis of aberrant proteins, including PrPsc (scrapie
isoform of the prion protein) and apoptotic debris or cells, despite production of proinflammatory
mediators. Furthermore, the effects of PrPsc on microglia appear to be mediated by Toll-like Receptors
(TLRs) in a Src-like kinase-dependent manner (reviewed in [72]). So, it may not be surprising to find
that prion pathways are modified in the brains of ASD patients, as it may reflect prior inflammatory
processes, having modified microglia.

In the present paper, we have combined transcriptomic meta-analysis, pathway enrichment and
machine learning prediction in order to prioritize genes of interest with potential pivotal pathogenetic
effects in autism. Computational methods have been largely used to investigate the etiopathogenesis of
polygenic and idiopathic disorders. Functional interaction networks that integrate gene interaction
data can be exploited to identify which genes are most strongly implicated in a disorder. Given a list
of genes that are altered in a disease, we can apply methods to identify genes that are near the input
genes within a functional interaction network that rely on the connections among genes in a functional
interaction network. The major limitation of this kind of approach is that it relies on the methods of
selection by which functional terms are included in the network-based prediction. Hence, the better
tailored this set of genes is to the disease of interest, the higher reliability we have in the final predictions.
The use of the machine learning prediction tool developed by Krishnan and colleagues [26] allows us to
evaluate the probability value of association between the selected gene and ASD in the context of the
human brain-specific network. With this approach, we likely arrive at a robust set of candidates that
are relatively unbiased by previously published works. The final output of this strategy, i.e., a ranked
list of candidate genes, is easy to interpret and provides a limited set of hypotheses to test in further
investigations. However, while we cannot definitively identify the causal gene or genes, it does provide
a much-reduced set of candidates to investigate. In particular, a role for tyrosine kinase Fyn is proposed.
Fyn has been described as expressed in the mouse hippocampus, amygdala and cerebellum [73,74].
Mutations of Fyn in mice lead to alteration in the architecture of the hippocampus [75] with consequent
impairment in learning and in the amygdala long-term plasticity [73]. Fyn regulates the focal adhesion
kinase (FAK), which is required for normal neuronal development [73,76].

In our analysis, Fyn was strongly correlated with ATXN1, a DNA-binding protein that forms
a transcriptional repressor complex with capicua (CIC). It has been previously described that the
deletion in chromosome 6p22.3-p24.3, which harbors ATXN1, is associated with developmental
delay and ASD [77,78]. Moreover, alteration of the ATXN1-CIC complex determines a spectrum of
neurobehavioral phenotypes, including intellectual disability, attention deficit/hyperactivity disorder
(ADHD) and autism spectrum disorder [79].

Finally, we need to address some important limitations to our study. First, the number of available
gene expression datasets of brain samples derived from ASD patients is limited, and the number
of samples included in each dataset is often negligible. Second, the meta-analysis here performed
encompasses different brain regions (temporal, occipital and frontal cortex, as well as corpus callosum
and cerebellum). These facts undermine the statistical power of the differential expression analysis and
impede patients’ stratification, in terms of clinical phenotype, which is advisable given the heterogeneity
of ASD. It is likely that different subgroups of patients may have peculiar brain transcriptomic patterns.
Moreover, gene expression analysis is not enough to determine whether particular biological processes
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are activated or not, limiting the reliability of the conclusions that can be drawn. Hence, more
population- and molecular-based studies are warranted to confirm or negate hypotheses.

Characterizing molecular pathways underlying ASD represents a crucial step for personalized
medicine where comprehensive phenotyping of individual patients could be available, providing
novel tailored treatment options. The data from this study suggest that infections may not necessarily
be responsible for ASD development. However, since some genes involved in the infectious processes
can interact with other key genes in autism, infections may likely act as co-factors, possibly causing
worse clinical presentations. Future studies are necessary to validate these findings and prove if these
genes can be used as biomarkers or even as eventual therapeutic targets. Finally, we have to point
out that the present analysis cannot evaluate the potential role of infections in the prenatal period or
contracted in the early stage of life.

5. Conclusions

In this paper, we investigated the relationship between infections and autism, proving that they
should not be considered as etiological factors but probably as co-factors. We analyzed the gene
expression profiles of brain and blood from autistic patients and compared them with the genes
involved in the most frequent infectious diseases associated with pregnancy and suspected to be
related to ASD. Our analysis does not show any statistically significant associations between ASD and
previously studied infectious agents. However, it does show a statistical association between prion
disease and autism. Finally, based on a Bayesian machine learning approach, we predicted that new
genes may be associated with ASD and possibly, after validation, used as markers or therapeutic targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/4/200/s1:
File 1: Prion diseases pathway.
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Nicoletti, F.; Mijatović, S.; et al. Senescence as a main mechanism of Ritonavir and Ritonavir-NO action
against melanoma. Mol. Carcinog. 2019, 58, 1362–1375. [CrossRef] [PubMed]

55. Paskas, S.; Mazzon, E.; Basile, M.S.; Cavalli, E.; Al-Abed, Y.; He, M.; Rakocevic, S.; Nicoletti, F.; Mijatovic, S.;
Maksimovic-Ivanic, D. Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth
of melanoma cells in vitro and in vivo. Investig. New Drugs 2019, 37, 1014–1028. [CrossRef]

56. Fagone, P.; Mangano, K.; Quattrocchi, C.; Cavalli, E.; Mammana, S.; Lombardo, G.A.G.; Pennisi, V.;
Zocca, M.-B.; He, M.; Al-Abed, Y.; et al. Effects of NO-Hybridization on the Immunomodulatory Properties
of the HIV Protease Inhibitors Lopinavir and Ritonavir. Basic Clin. Pharmacol. Toxicol. 2015, 117, 306–315.
[CrossRef]

57. Maksimovic-Ivanic, D.; Mojic, M.; Bulatovic, M.; Radojkovic, M.; Kuzmanovic, M.; Ristic, S.; Stosic-Grujicic, S.;
Miljkovic, D.; Cavalli, E.; Libra, M.; et al. The NO-modified HIV protease inhibitor as a valuable drug for
hematological malignancies: Role of p70S6K. Leuk. Res. 2015, 39, 1088–1095. [CrossRef]

58. Atladóttir, H.Ó.; Henriksen, T.B.; Schendel, D.E.; Parner, E.T. Autism after infection, febrile episodes, and
antibiotic use during pregnancy: An exploratory study. Pediatrics 2012, 130, e1447–e1454. [CrossRef]

59. Lee, B.K.; Magnusson, C.; Gardner, R.M.; Blomström, Å.; Newschaffer, C.J.; Burstyn, I.; Karlsson, H.;
Dalman, C. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders.
Brain Behav. Immun. 2015, 44, 100–105. [CrossRef]

60. Engman, M.L.; Sundin, M.; Miniscalco, C.; Westerlund, J.; Lewensohn-Fuchs, I.; Gillberg, C.; Fernell, E.
Prenatal acquired cytomegalovirus infection should be considered in children with autism. Acta Paediatr.
2015, 104, 792–795. [CrossRef]

61. Odeberg, J.; Wolmer, N.; Falci, S.; Westgren, M.; Sundtröm, E.; Seiger, Å.; Söderberg-Nauclér, C. Late human
cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytes.
J. Neurosci. Res. 2007, 85, 583–893. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/jcp.26223
http://dx.doi.org/10.18632/oncotarget.23862
http://dx.doi.org/10.3390/ijms19030831
http://dx.doi.org/10.1016/j.jad.2019.11.127
http://dx.doi.org/10.3892/ijmm.2015.2264
http://dx.doi.org/10.3390/molecules23102463
http://dx.doi.org/10.3390/molecules25020291
http://www.ncbi.nlm.nih.gov/pubmed/31936865
http://dx.doi.org/10.3390/medicina55110747
http://www.ncbi.nlm.nih.gov/pubmed/31752240
http://dx.doi.org/10.3390/brainsci9100265
http://www.ncbi.nlm.nih.gov/pubmed/31623367
http://dx.doi.org/10.1002/mc.23020
http://www.ncbi.nlm.nih.gov/pubmed/30997718
http://dx.doi.org/10.1007/s10637-019-00733-3
http://dx.doi.org/10.1111/bcpt.12414
http://dx.doi.org/10.1016/j.leukres.2015.06.013
http://dx.doi.org/10.1542/peds.2012-1107
http://dx.doi.org/10.1016/j.bbi.2014.09.001
http://dx.doi.org/10.1111/apa.13032
http://dx.doi.org/10.1002/jnr.21144
http://www.ncbi.nlm.nih.gov/pubmed/17154414


Brain Sci. 2020, 10, 200 14 of 14

62. Odeberg, J.; Wolmer, N.; Falci, S.; Westgren, M.; Seiger, A.; Soderberg-Naucler, C. Human Cytomegalovirus
Inhibits Neuronal Differentiation and Induces Apoptosis in Human Neural Precursor Cells. J. Virol. 2006, 80,
8929–8939. [CrossRef] [PubMed]

63. Spann, M.N.; Sourander, A.; Surcel, H.M.; Hinkka-Yli-Salomäki, S.; Brown, A.S. Prenatal toxoplasmosis
antibody and childhood autism. Autism Res. 2017, 10, 769–777. [CrossRef]

64. Prandota, J. Autism spectrum disorders may be due to cerebral toxoplasmosis associated with chronic
neuroinflammation causing persistent hypercytokinemia that resulted in an increased lipid peroxidation,
oxidative stress, and depressed metabolism of endogenous and exo. Res. Autism Spectr. Disord. 2010, 4,
119–155. [CrossRef]

65. Taylor, B.; Miller, E.; Farrington, C.P.; Petropoulos, M.C.; Favot-Mayaud, I.; Li, J.; Waight, P.A. Autism and
measles, mumps, and rubella vaccine: No epidemiological evidence for a causal association. Lancet 1999,
353, 2026–2029. [CrossRef]
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