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Abstract—Autonomous systems operate in
environments that can be observed only through noisy
measurements. Thus, controllers should compute actions
based on their beliefs about the surroundings. In these
settings, we design a Model Predictive Controller (MPC)
based on a continuous-state Linear Time-Invariant (LTI)
system model operating in a discrete-state environment
described by a Hidden Markov Model (HMM). Environment
constraints are modeled as chance constraints and envi-
ronment observations can be asynchronous with system
state measurements and controller updates. We show how
to approximate the solution of the MPC problem defined
over the space of feedback policies by optimizing over
a trajectory tree, where each branch is associated with
an environment measurement. The proposed approach
guarantees chance constraint satisfaction and recursive
feasibility. Finally, we test the proposed strategy on nav-
igation examples in partially observable environments,
where the proposed MPC guarantees chance constraint
satisfaction.

Index Terms—Predictive control for linear systems,
uncertain systems, Markov processes.

I. INTRODUCTION

AUTONOMOUS systems operating in uncertain
environments make decisions based on noisy measure-

ments. When uncertainties are uni-modal, the decision-making
process is usually divided into two steps. First, noisy mea-
surements are leveraged to estimate the system state. Then,
the controller is designed assuming perfect state feedback [1].
This separation strategy is optimal for stabilizing linear
unconstrained systems affected by additive Gaussian dis-
turbances and noises [2]. For systems subject to state and
input constraints, the estimation and control problems can
be separated, but it is necessary to compute error bounds
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associated with the state estimate. These bounds should then
be leveraged in a robust control design to guarantee constraint
satisfaction [3].

When uncertainties are multi-modal, the optimal control
policy minimizing the expected cost can be computed by
modeling the problem using a Partially Observable Markov
Decision Process (POMDP), which is a decision-making
formalism to jointly model estimation and control prob-
lems. Unfortunately, solving POMDPs is computationally
intractable, even for systems with discrete state and action
spaces [4]. For this reason, several strategies have been
proposed in the literature to approximate the solution to
POMDPs [5], [6], [7], [8], [9].

We focus on Mixed-Observable Markov Decision Processes
(MOMDPs) where perfect state feedback is not available
only for a subset of the state space [10]. In particular, we
focus on control problems where perfect state feedback is
available for the system state, whereas only partial noisy
discrete measurements are available to estimate the environ-
ment mode. These settings are common in several practical
applications such as autonomous driving and robot naviga-
tion, where it is often possible to compute a reasonably
accurate estimate for the vehicle state, but it is hard to esti-
mate the state of the surroundings which is multi-modal. For
instance, in autonomous driving the environment state could
encode the intentions of other vehicles or pedestrians, e.g.,
the intent of drivers to perform lane change or lane-keeping
maneuvers [11], [12], [13].

Several strategies have been proposed for the control design
of autonomous systems operating in partially observable envi-
ronments [11], [12], [13], [14], [15], [16], [17], [18], [19].
These approaches leverage a Model Predictive Controller
(MPC) which solves an optimization problem over a trajec-
tory tree. Each branch of the tree is associated with either a
sensor measurement, a disturbance realization, or an environ-
ment mode; thus such a trajectory tree encodes a policy.1 The
resulting MPC policy computes control actions to influence
the environment or to gather sensor measurements that can be
used for inference [13], [14], [15], [16].

In this letter, we model the environment evolution and
the sensor accuracy using a Hidden Markov Model (HMM).
Then, we design an MPC policy that optimizes a trajectory
tree constructed based on the environment’s HMM and the

1In [20], it was shown that for linear systems subject to state and input
constraints optimizing over a trajectory tree is equivalent to optimizing
over the space of feedback policies, when the objective is to minimize the
worst-case cost and perfect state feedback is available.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1682-0551
https://orcid.org/0000-0001-5007-7207
https://orcid.org/0000-0001-5027-9239
https://orcid.org/0000-0001-8919-6430


2162 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

Algorithm 1: Chance Constraint Approximation

1 inputs: bt, t, ε;
2 Compute bi

k|t for all k ∈ {t, . . . , t + N − 1} and for all

i ∈ {1, . . . , |O|Mt:t+N };
3 for k ∈ {t, . . . , t + N − 1} do
4 for i ∈ {1, . . . , |O|Mt:t+N } do
5 Ci

k|t = ∅;

6 bsort = Sort(bi
k|t);

7 esort = ArgSort(bi
k|t);

8 penv = 0, j = 0;
9 while penv ≤ 1 − ε do

10 penv = penv + bsort[j];
11 Ci

k|t.append(esort[j]);
12 j = j + 1;
13 end
14 end
15 end
16 Return: Ci

k|t

current belief. Our contribution is twofold. First, we show
how to construct a trajectory tree that guarantees chance con-
straint satisfaction. Compared to previous works, we update
the constraint enforced at each branch of the tree based on
the environment belief and the imposed chance constraints.
In particular, we design Algorithm 1 to compute a set of
constraints that guarantee chance constraint satisfaction. As
shown in the results section, the proposed strategy guarantees
chance constraint satisfaction, while standard scenario MPC
approaches fail. Second, we show that our MPC design guaran-
tees recursive feasibility. To guarantee recursive feasibility in
the case of asynchronous observations and chance constraints,
we design an MPC problem where the optimization is defined
for a trajectory tree, where each branch is associated with an
observation sequence and a different set of constraints that
are time-varying. Finally, we test our strategy on a navigation
example, where the environment state is unknown to the con-
troller. We show that our MPC guarantees chance constraint
satisfaction and recursive feasibility, even when only noisy
environment measurements are available.

Notation: We denote the ith element of a vector v ∈ R
n

as v[i]. For a function Z : Rn → R and a vector v ∈ R
n, we

indicate Z(v) as the value of the function Z at the point v.
Furthermore, for a vector v, we define the function Sort(v)
sorting the elements of v in descending order and the function
ArgSort(v) returning the indices of the vector v that would
sort the vector, i.e., v[ArgSort(v)] = Sort(v). Given a set
S ⊂ R

n, we define its complement as Sc = R
n \ S and its

cardinality as |S|. The set of positive integers is denoted as
Z0+ = {0, 1, 2, . . .}, and the set of positive reals as R0+ =
[0,∞). Finally, we use the symbol ∅ to denote the empty set.

II. PROBLEM FORMULATION

A. System and Environment Models
We consider the following linear time-invariant system:

xt+1 = Axt + But, (1)

where xt ∈ R
n and ut ∈ R

m denote the state and the control
input at time t. The above system operates in an environment
represented by partially observable discrete states. We model

the environment evolution as a hidden Markov model (HMM)
given by the tuple H = (E,O, T, Z), where:

• E = {1, . . . , |E |} is a set of partially observable environ-
ment states;

• O = {1, . . . , |O|} is the set of observations.
• The function T : E×E → [0, 1] describes the probability

of transitioning to a state e′ given the current environment
state e, i.e., T(e′, e) = P(e′|e).

• The function Z : E×O×Z0+ → [0, 1] describes the prob-
ability of observing o at time step t, given the environment
state e, i.e., Z(e, o, t) = P(o|e, t).

As the environment state et is partially observable, it is
common practice to introduce the following belief vector [21]:

bt ∈ B = {b ∈ R
|E |
0+ :

|E |∑

e=1

b[e] = 1}, (2)

where each element bt[e] represents the posterior probability
that the state of the environment et equals e ∈ E , given the
observation vector ot ∈ Ok collecting k observations stored
up to time t, the system trajectory xt ∈ R

n×(t+1), and the
belief vector b0 at time t = 0, i.e., bt[e] = P(e|ot, xt, b0). We
recall that the belief vector is a sufficient statistic and it can
be recursively updated by using the Bayes rule [21].

System (1) is subject to the input and state constraints:

ut ∈ U and P
(
xt ∈ X (et)|bt

) ≥ 1 − ε, ∀t ∈ {0, 1, . . .}. (3)

Notice that at each time t the constraint set X (et) is a func-
tion of the partially observable environment state et that is
not known at execution. For this reason, the above chance
constraint is conditioned on the environment belief bt.

B. Control Objectives
Our goal is to design a control policy π mapping the state

xt ∈ R
n and the environment belief bt ∈ B to a control action

ut ∈ R
m, i.e.,

πMPC : Rn × B → R
m. (4)

The above policy (4) in closed-loop with system (1) should
guarantee that input and state constraints (3) are satisfied.
Throughout this letter we make the following assumptions.

Assumption 1: The input and state constraint set U and
X (e) are compact sets containing the origin for all e ∈ E .

Assumption 2: During the control task, we collect K envi-
ronment observations. Furthermore, we know the time steps
t1, . . . , tK at which these K observations are collected. Thus,
we introduce the following set collecting these time instances:

Tobs = {t1, . . . , tK}. (5)

Our problem is motivated by the navigation task shown in
Figure 1, where a drone has to fly from an origin to a desti-
nation while avoiding high windy areas. In this example, the
system state xt represents the position of the drone, while the
environment state et represents the location of the windy area.
Such a location is unknown, but we know that it may be either
in region #1 (blue ellipse) or region #2 (red ellipse). In this
example, a robust plan (blue trajectory) would simply avoid
the possible windy areas. On the other hand, a policy based on
observations about the wind location would first fly the drone
toward the windy regions and then adjust its trajectory based
on measurements (green tree of trajectories).
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Fig. 1. Navigation task where a drone has to plan a route without
knowing the exact location of the windy region, which will be inferred
during navigation via noisy measurements.

III. CONTROL DESIGN

This section describes the proposed control strategy.
First, we introduce an MPC policy that meets the design
requirements from Section II-B, but it requires solving an
infinite-dimensional chance-constrained optimization problem.
Afterward, we propose a finite-dimensional approximation.
The properties of this approximation are discussed in
Section IV.

A. Belief Update
In this section, we present the belief update equation. The

belief vector from (2) is a sufficient statistic for an HMM and
it can be recursively computed based on observations [21].
As discussed in Assumption 2, the time instances at which
observations are collected are known and stored in the set
Tobs. Given such a set of time instances, we write the belief
update as follows [21]:

bt = fb(bt−1, ot, t) =
{

�(ot, t)�bt−1/ηt If t ∈ Tobs
�bt−1 otherwise (6)

where ηt = P(ot|bt−1),

� =

⎡

⎢⎢⎣

T(1, 1) . . . T(1, |E |)
T(2, 1) . . . T(2, |E |)

...
...

T(|E |, 1) . . . T(|E |, |E |)

⎤

⎥⎥⎦ (7)

and

�(ot, t) = diag
([

Z(1, ot, t) . . . Z(|E |, ot, t)
])

. (8)

B. The MPC Optimization Problem
Given the system state xt and the environment belief bt at

time t, we introduce the following MPC optimization problem:

J∞(xt, bt) = min
π t

E

[ t+N−1∑

k=t

h(xk|t, uk|t) + V(xt+N|t)
∣∣∣bt

]

subject to xk+1|t = Axk|t + Buk|t,
bk+1|t = fb(bk|t, ok+1|t, k + 1),

xt|t = xt, bt|t = bt,

uk|t = πk|t(xk|t, bk|t),
uk|t ∈ U ,

P
(
xk|t ∈ X (ek|t)|bk|t

) ≥ 1 − ε,

xt+N|t ∈ XF,∀k ∈ {t, . . . , t + N}. (9)

where π t = {πt|t, . . . , πt+N−1|t}. In the above problem,
h : Rn × R

m → R and V : Rn → R represent the stage cost
and the terminal cost, respectively. Furthermore, the terminal
constraint XF satisfies the following assumption:

Assumption 3: The terminal constraint set XF ⊂ X (e) for
all e ∈ E is a control invariant set, i.e., for all x ∈ XF there
exists a u ∈ U such that Ax + Bu ∈ XF.

In problem (9), the variable xk|t indicates the predicted state
at time k for a prediction computed at time t. The same nota-
tion is used for the control action uk|t, the belief vector bk|t,
the observation ok|t, and the environment state ek|t. Note that
if k /∈ Tobs, we have that ok|t = ∅. Thus at the predicted time
k, the policy πk|t maps the predicted state xk|t and belief bk|t
to the control action uk|t.

Solving problem (9) is challenging for two reasons: (i)
the optimization is defined over the space of feedback poli-
cies {πt|t, . . . , πt+N−1|t} that are continuous functions with
uncountable degrees of freedom which render the optimization
problem infinite-dimensional, and (ii) the system predicted
states are subject to chance constraints. To overcome these
challenges, in the next section we first rewrite the above
problem as an optimization over a tree of trajectories. Then,
we leverage this reformulation to approximate the chance con-
straints. The proposed reformulation builds upon our previous
work [16] where we did not consider constraint sets that
change as a function of the environment state.

C. Finite-Dimensional Reformulation
In this section, we reformulate the chance-constrained

optimization problem (9) as a finite-dimensional problem.
First, we introduce the observation vector ot:t+N collecting
the observations from time t to time t + N, i.e.,

ot:t+N = [otk , . . . , otj ], (10)

where tk and tj are the time steps at which the kth and jth obser-
vations are collected. Without loss of generality, we assume
that t ≤ tk < . . . < tj ≤ t + N. Let Mt:t+N be the number
of observations collected from time t to t + N, we have that
there are |O|Mt:t+N possible sequences of observations that we
denote as:

oi
t:t+N = {oi

tk , . . . , oi
tj} for all i ∈ {1, . . . , |O|Mt:t+N }. (11)

Leveraging the St:k = |O|Mt:k sequence of observations (10),
we define the finite-dimensional optimization problem:

Jf (xt, bt) =

min
ut

t+N−1∑

k=t

St:k∑

i=1

vi
k|th(xi

k|t, ui
k|t) +

St:t+N∑

i=1

vi
t+N|tV(xi

t+N|t)

subject to xi
k+1|t = Axi

k|t + Bui
k|t, (12a)

bi
k+1|t = fb(b

i
k|t, oi

k+1|t, k + 1), (12b)

vi
k+1|t = fv(v

i
k|t, oi

k+1|t, k + 1), (12c)

xi
t|t = xt, bi

t|t = bt, vi
t|t = bt, (12d)

ui
k|t = uj

k|t, if oi
t:k = oj

t:k, (12e)

ui
k|t ∈ U , xi

t+N|t ∈ XF, (12f)

P
(
xi

k|t ∈ X (ei
k|t)|bi

k|t
) ≥ 1 − ε, (12g)

∀k ∈ {t, . . . , t + N},
∀i ∈ {1, . . . , St:t+N},∀j ∈ {1, . . . , St:t+N}.
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where ut = {u1
t|t, . . . , uSt:t+N

t+N−1|t} and ui
k|t is the predicted control

action at time k for a prediction computed at time t and obser-
vation sequence i. Constraint (12e) enforces causality, i.e., if
observation sequences oi

t:t+N and oj
t:t+N are indistinguishable

up to time k̄, then the control actions ui
k|t must be equal to uj

k|t
for all k ∈ {t, . . . , k̄}. As we collect Mt:k observations from
time t to time k, the causality constraint (12e) guarantees that
at the predicted time k we have at most |O|Mt:k different con-
trol actions, i.e., ui

k|t �= uj
k|t if and only if oi

t:k �= oj
t:k. In

problem (12), vi
k|t is the unnormalized belief vector and con-

straint (12c) represents the unnormalized belief vector update
equation:

vt = fv(vt−1, ot, t) =
{

�(ot, t)�vt−1 If t ∈ Tobs
�vt−1 otherwise

where � and � are defined as in (7)–(8). The unnormalized
belief vector is initialized using the belief bt and it allows us
to rewrite the expectation as a summation [16, Proposition 1].

Proposition 1: For all x ∈ R
n and b ∈ B, we have that

J∞(x, b) = Jf (x, b). Furthermore, let {π∗
t|t, . . . , π∗

t+N−1|t} and

{u1,∗
t|t , . . . , uSt:t+N ,∗

t+N−1|t} be the optimizer of problems (9) and (12)

respectively, we have that π∗
t|t(xt, bt) = u1,∗

t|t .
Proof: As the predicted belief bk|t is defined by the belief

bt and the Mt:k observations collected from time t to time
k, we have that the policy πk|t is evaluated at most |O|Mt:k

times. Thus, optimizing over the set of policies from (9)
is equivalent to optimizing over the set of control actions
from (12), each associated with an observation sequence oi

t:k
for i ∈ {1, . . . , |O|Mt:t+N }. Thus, as from [16, Proposition 1]
we have that the expected cost from (9) is equivalent to the
cost function in (12), we conclude that J∞(x, b) = Jf (x, b)

and π∗
t|t(xt, bt) = u1,∗

t|t for all x ∈ R
n and b ∈ B.

The key assumption leveraged by the proposed reformula-
tion is that the HMM is defined for a set of discrete states.
This allows us to reformulate the expectation as a summa-
tion and the policy as a finite set of control actions. Thus, no
assumption on the cost function is required.

D. Chance Constraint Reformulation
We present the chance constraint approximation strategy.

For each predicted time k and observation sequence i, we use
Algorithm 1 to compute the set of environment states Ci

k|t such
that P(ei

k|t ∈ Ci
k|t|bi

k|t) ≥ 1 − ε. Then, we leverage such a set
to reformulate the chance constraint from problem (12).

In Algorithm 1, we first compute the predicted belief bi
k|t.

Then, we sort the belief vector (line 6) and compute the vector
esort collecting the environment states sorted in descending
order by their belief (lines 7), i.e.,

P(esort[j] = ei
k|t) = bsort[j],∀j ∈ E .

See Section I for further details on notation. In line 8, we
initialize the scalar penv to keep track of the probability that
ei

k|t ∈ Ci
k|t, i.e., penv = P(ei

k|t ∈ Ci
k|t). Finally, we append

esort[j] to the set Ci
k|t, until the probability that ei

k|t belongs
to Ci

k|t is greater than 1 − ε.
Given the sets Ci

k|t computed with Algorithm 1, we introduce
the following finite time optimal control problem:

min
ut

t+N−1∑

k=t

St:k∑

i=1

vi
k|th(xi

k|t, ui
k|t) +

St:t+N∑

i=1

vi
t+N|tV(xi

t+N|t),

subject to (12a) − (12f),

xi
k|t ∈ X (e),∀e ∈ Ci

k|t,
∀k ∈ {t, . . . , t + N − 1},∀i ∈ {1, . . . , St:t+N}, (13)

Given the optimal solution from the above problem
{u1,∗

t|t , . . . , uSt:t+N ,∗
t+N−1|t}, we define the MPC policy as:

πMPC(xt) = u∗,1
t|t . (14)

Next, we show that the above policy is recursively feasible
and it guarantees that state and input constraints are satisfied.

IV. PROPERTIES

First, we show that the policy (14) returns a feasible control
action at all times, if (13) is feasible at time t = 0.

Theorem 1: Let Assumptions 1–3 hold. If problem (13) is
feasible at time t = 0, then problem (13) is feasible at all time
steps t ∈ {1, 2, . . .}. Furthermore, we have that πMPC(xt) ∈ U
for all t ∈ {0, 1, . . .}.

Proof: Assume that the belief and control sequences

{b1,∗
t|t , . . . , b|O|Mt:t+N ,∗

t+N|t },
{u1,∗

t|t , . . . , u|O|Mt:t+N ,∗
t+N−1|t }, (15)

are the optimal solution from problem (13) at time t. For
j ∈ {1, . . . , |O|Mt+1:k}, we define the observation vector ōj

t:k
collecting the jth sequence of observations from time t + 1 to
k and the observation ot measured at time t if t ∈ Tobs, i.e.,

ōj
t:k =

{
[ot, oj

t+1:k] If t ∈ Tobs
oj

t+1:k Otherwise.
(16)

Let T = {t + 1, . . . , t + N − 1} and tf = t + N − 1,
we leverage (15) and (16) to define the following candidate
solution:

b̄j
k|t+1 =

{
bi,∗

k|t If oi
t:k = ōj

t:k and k ∈ T ,

fb(b
i,∗
tf |t, oi,∗

tf |t, tf ) If oi
t:t+N−1 = ōj

t:t+N−1

ūj
k|t+1 =

{
ui,∗

k|t If oi
t:k = ōj

t:k and k ∈ T ,

ūi If oi
t:t+N−1 = ōj

t:t+N−1

(17)

where ūi satisfies Axi,∗
t+N|t + Būi ∈ XF . Note that the existence

of such a control action is guaranteed from Assumption 3.
Furthermore, from definition (16) we have that b̄i

t+1|t+1 = bt+1

for all i ∈ {1, . . . , |O|Mt+1:k}. From this fact we have that b̄i,∗
k|t+1

is feasible for all k ∈ {t, . . . , t+N} and i ∈ {1, . . . , St+1:t+1+N}.
Furthermore, by equation (17) we have b̄j

k|t+1 = bi,∗
k|t for all

k ∈ T , which in turn implies that Cj
k|t+1 = Ci

k|t. Thus, the tree
of trajectories associated with the predicted candidate input
from (17) satisfies state and input constraints. Finally, from
Assumption 3, we have that XF ⊂ X (e) for all e ∈ E , which
implies that for all e ∈ E , x ∈ XF and b ∈ B, we have that
P(x ∈ X (e)|b) = 1. This fact, together with the feasibility
of the optimal solution (15), implies that (17) is a feasible
solution for problem (13) at time t + 1. Thus, πMPC(xt) =
u∗,1

t|t ∈ U at all times.
In Proposition 1, we showed that the infinite-dimensional

problem (9) is equivalent to the finite-dimensional chance con-
straint problem (12), which is still challenging to solve. Next,
we show that the optimal solution from problem (13) is feasi-
ble for problem (12), i.e., the chance constraint problem (12)
can be approximated by solving (13).



ROSOLIA et al.: MODEL PREDICTIVE CONTROL 2165

Proposition 2: An optimal solution to problem (13) is a
feasible solution for problem (12).

Proof: Let (15) be an optimal solution to problem (12). By
definition, we have that (15) satisfies constraints (12a)–(12f)
of problem (12). Furthermore, by construction we have that
xi,∗

k|t ∈ X (e),∀e ∈ Ci
k|t implies that P(xi,∗

k|t ∈ X (e)|bi,∗
k|t ) ≥ 1−ε,

which leads to the desired result.
Note that the result from Proposition 2 and the recursive

feasibility from Theorem 1 imply that the chance constraint
from (3) is satisfied at all times.

V. NAVIGATION EXAMPLE

We consider the following LTI system:

xt+1 =
⎡

⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤

⎥⎦xt +
⎡

⎢⎣

0 0
1 0
0 0
0 1

⎤

⎥⎦ut, (18)

where at each time t the state xt collects the system position
(Xt, Yt) and velocity (vx

t , vy
t ). The control action ut = [ax

t , ay
t ],

where ax
t and ay

t represent the acceleration subject to saturation
constraints, i.e., ut ∈ U = {u ∈ R

m : ||u||∞ ≤ 20} for all time
t ∈ {0, 1, . . .}.

For the initial condition x0 = [−4, 0, 0, 0] and b0 =
[0.5, 0.5], we tested the proposed strategy on a navigation task
where a drone has to reach a goal state xgoal = [14, 0, 0, 0],
while avoiding with high probability a windy region Xwind.
The MPC problem with horizon N = 22 is solved with
CasADi [22] and the cost function h(x, u) = 0.1||x−xgoal||22+||u||22 and V(x) = 103||x−xgoal||22.2 The exact location of the
wind region is partially known and it has to be inferred by par-
tial noisy observations. In particular, we know that the center
of the windy region may be either at loc0 = [7,−0.2] or
loc1 = [6, 0.2]. We design a controller that avoids the windy
region Xwind with high probability by enforcing the following
chance constraint:

P(xt �∈ Xwind|bt) = P(xt ∈ X c
wind|bt) ≥ 0.8, (19)

for all t ∈ {0, 1, . . .}. In the above chance constraint, each
element of the two-dimensional belief vector bt represents the
center of the windy region being in locations loc0 or loc1.
The belief is computed based on the noisy observations col-
lected at time t1 = 4 and t2 = 8. At time t1 the sensor returns
an observation that is exact with probability 0.6, and at t2 the
probability of the observations being correct is 0.75. Notice
that as time passes the accuracy of the sensor increases as it
would be in a real scenario, since we get closer to the area
of interest. Furthermore, we assume to know the region where
the measurements can be taken.

We performed the control task 1000 times by randomly sam-
pling the wind location and the noisy observations collected
by the controller. Out of these 1000 trials, the controller flew
the drone over the windy region only 106 times. Thus, we
verify that the chance constraint is empirically satisfied for
the closed-loop system. We emphasize that the controller does
not know the exact location of the windy area and the control
action is computed based on noisy observations and the known
sensor accuracy. Figure 2 shows the closed-loop trajectories

2Code available online at: https://github.com/urosolia/Mixed_
observable_MPC. All experiments are run on a 2015 Macbook Pro with
a 2.5GHz i7 and 16 GB of RAM.

TABLE I
COMPARISON WITH A SCENARIO MPC APPROACH

TABLE II
COMPUTATIONAL TIME

for all possible wind locations and noisy observations. Notice
that in the scenarios from Figures 2(b), 2(c), 2(f), and 2(g), the
controller receives contradicting observations about the wind
location, thus it decides to avoid both regions where the wind
may be located. Indeed when the observations collected at time
t1 and t2 are not in agreement, the controller does not have a
strong belief about the wind location and to satisfy the chance
constraint (19) it is forced to avoid both regions. On the other
hand, when the two observations are in agreement the con-
troller decides to fly over one of the possible windy areas, as
shown in Figures 2(a), 2(d), 2(e), and 2(h). It is important to
underline that, as the sensor accuracy is 0.6 at time t1 and 0.75
at time t2, there is a low probability that both measurements
are incorrect and that the controller flies over the wind region.

Figure 3 shows the planned tree of trajectories at time
t ∈ {1, 5, 9} for an experiment where ot1 = loc0 and
ot2 = loc0. Note that observations about the wind location are
collected at time t ∈ Tobs = {t1 = 4, t2 = 8}. Thus, for time
t < t1 the controller plans a trajectory tree that branches twice,
as the controller will behave differently as a function of the
collected observation (Fig. 3(a)). For t1 < t < t2, the controller
plans a trajectory that branches once, as only one observation
will be collected in the future (Fig. 3(b)). Finally, for t > t2 the
controller plans a single trajectory (Fig. 3(c)). This example
shows that the tree of trajectories encodes a policy where each
branch represents how the closed-loop system would evolve
depending on the collected observations. Most importantly,
we notice that each branch satisfies different constraints, i.e.,
the planned trajectory avoids either the wind location #1 (red
ellipse), the wind location #2 (green ellipse), or both regions.
These constraints are computed via Algorithm 1 and they allow
us to guarantee chance constraints satisfaction.

We compare the proposed approach with a scenario MPC,
where the optimization problem is carried out over a trajec-
tory tree and in each branch only the constraint associated
with one environment mode is considered, as in [11], [13].
Table I shows the percentage of constraint violations over 1000
random simulations. Notice that only the proposed approach
empirically satisfies the chance constraint (19). Finally, in
Table II we report the computational time.

VI. CONCLUSION

We presented an MPC design for autonomous systems
operating in partially observable discrete environments. First,
we reformulated the MPC problem as a finite-dimensional
optimization problem over a trajectory tree. Then, we
presented an algorithm to compute the constraints enforced
at each branch of the tree. We demonstrated that our
approach guarantees recursive feasibility and chance constraint
satisfaction.
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Fig. 2. The above figures show the closed-loop trajectories (in blue) for different wind region locations (red ellipse) and noisy observations ot1 and
ot2 that are collected at t1 = 4 and t2 = 8. The red dots represent the location of the drone when the observations are collected, and the figures’
sub-captions detail which observations are collected in each scenario.

Fig. 3. Trajectory tree planned by the MPC at different time steps for an experiment where ot1 = loc0 and ot2 = loc0.
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