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Abstract

Precision Medicine is growing every day as a key methodology to decide which therapy is the

best choice, in terms of efficacy and adverse effects, for each patients. The Personalized Medicine

much rely on molecular data produced by Next Generation Sequencing (NGS). The extraction

of knowledge from such kind of data makes use of Bioinformatics. Unfortunately, bioinformatics

analysis results quite uncomfortable and difficult for non expert users. For this reason, pipelines

and tools have been created to easily analyze cancer data. However, most of them are still not

suitable for clinicians and life scientists in general. To going beyond such limitation in this thesis

we will introduce the following tools: (i) Oncoreport, a system for the analysis of NGS data in

clinical context; (ii) TMBCalc a pipeline for the construction of a light weight targeted gene panel

for immunoterapy; (iii) a tool for variant prioritization based on machine learning techniques. The

results presented here provide an advances in the actual usage of NGS data in clinical setting.

Keywords: NGS, Tumor, Report, Precision Medicine, Immunotherapy, Genome, Microbiome,

Tools.
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Aim of the project

The aim of my PhD research project was to improve technologically and methodologically the

study of cancer to enhance the cancer therapies setting. A particular focus was put on developing

software to help to reach this goal. In this thesis I expose several results. First of all, a tool called

OncoReport used for the study of NGS results of patients for the development of a personalized

therapy. The idea under this software development was to help laboratories and clinicians in the fast

comprehension of big data deriving from sequencing. Secondly, a tool called TMBCalc implemented

for the calculation of the TMB through a docker container. This pipeline was developed jointly with

a small genes signature for the research of the TMB in all type of cancers to try to harmonize this

methodology. Next, an algorithm called VarPrAl built to prioritize variants thanks to survival curves

and pathogenity score. This in order to help also in the therapies construction focusing on those

mutations that are believed to worsen the patient situation. At the end, I show a literature review

of several bioinformatic tools for the research of viruses in RNAseq of patients. The oncovirus study

is fundamental since they can provoke cancer due to the mutations that they can cause inside the

human genome. A summary of that is showed in Fig 1. The results displayed here have been reached

thanks to the collaboration with the IOM Ricerca and the International Agency for Research on

Cancer (IARC) of Lyon.

Figure 1: Aim of the project in the cancer research
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Chapter 1

Introduction

1.1 Cancer, Oncogenes and Oncosuppressors

Cancer is one of the leading diseases in the world. The cancer cases rise as the population become

older and adopt behaviors that increase cancer risk. According to the World Health Organization

(WHO) in 2020 near 10 million people died of cancer in the world. The most common cases of

cancer can be found in breast, lung, colon and rectum, prostate, skin and stomach. While the most

common causes of death are lung, colon and rectum, liver, stomach and breast Fig. 1.1.

Cancer arises because of the transformation of normal cells in tumor cells as a cause of mutations

in human body especially due to risk factors such as tobacco, air pollution, unhealthy diet, lack

of physical activity, radiation, chemical carcinogens, etc. A mutation is an alteration of the DNA

which can bring to different types of changes. The ones of our interest are those that occur on

oncosuppresors or oncogenes. The genes involved in cancer are commonly divided in oncogenes

and oncosuppressors. The former genes when activated are involved in tumor transformation while

the latter ones lead to cellular proliferation when inactivated. As a matter of fact, oncogenes are

Figure 1.1: A. Number of new cancer cases in 2020 worldwide. B. Estimated number of cancer deaths in
2020 worldwide.
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genes involved in the cellular cycle whereas oncosuppressors are normally designated to the cellular

apoptosis. The mutations in these genes can be both inherited or, as said before, acquired by

DNA replication errors or/and for exposure to carcinogens. In particular, an oncogene is a gene

that, when over-expressed or mutated, has the potential to cause cancer. Normal oncogene are

indicated as proto-oncogenes since they are involved in cell growth, proliferation or inhibition of

apoptosis. Their mutations cause the cells survival even if cells are altered or malfunctioning. The

first oncogene discovered was src in chicken rous sarcome virus. After this one 40 highly oncogenic

retrovirus have been discovered in animals. These retrovirus contain oncogenes responsible for cells

transformation, but not for virus replication. These oncogenes derive from host cells proto-oncogene,

that are cells regulatory genes which control cells proliferation, that have been incorporated in viral

genome. However, not all oncogenes are derived from retrovirus. Retrovirus indeed might cause

cancer especially in animals, the human oncogenes, most of the time, derive from mutation or over-

expression. Examples of other oncogenes are RAS; WNT, MYC and ERK. For instance, MYC codes

for transcription factors that are produced at higher rates when it is mutated [11]. Instead, tumor

suppressor genes or oncosuppressors are genes that are inactivated in tumor development. These

genes normally inhibit cellular proliferation. With a loss or reduction in their function the negative

control is absent and the cells proliferate out of control. The first tumor suppressor gene, Rb, was

identified in retinoblastoma. The second and most important tumor suppressor identified is p53, it

can be found inactivated in a wide of human cancers such ad leukemia, brain tumors, colon cancer

and so on. Most of the time oncosuppressors and oncogenes work together in tumor proliferation

[12]. The identification of mutations that bring to the tumor raise is essential to establish anti-

tumoral therapies. In order to identify these mutations we need to apply first of all a biopsy and

after that a Next Generation Sequencing (NGS) analysis.

1.1.1 Biopsy and Precision medicine

Biopsies A Biopsy is a medical exam consisting in the collection of a portion of tissue to analyze it.

It is done to confirm a suspect of a disease like cancer. The biopsies in cancer allow the histological

recognition of the disease and, thanks to the sequencing techniques, also the study of the genetic

profile of the tumor. It is now under study the possibility to use multiple biopsy for tumor since

tumors show an extensive heterogeneity. The classic solid biopsy is difficult to obtain because of

the pain that costs to the patient and the clinical risk, more or less dangerous depending on the

site of the tumor. In the last years is more and more common to use liquid biopsy, but the study

of the genomic composition of the tumor with this it is still under study. The liquid biopsy consists

in the collection of a blood sample to search for circulating tumor DNA (ctDNA). This biopsy is
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possible because tumor DNA enters into the circulation through the apoptosis of the cells. ctDNA

is higher in sick patients because in normal condition phagocytes clear the apoptotic debris [13, 14]

but in tumor the clearance is not efficient [15]. Furthermore, it is also believed that there is a

release of DNA fragments into the circulation fixed and circulating tumor cells (CTCs) [16]. ctDNA

is obtained from serum or plasma deriving from blood. Plasma is collected putting blood in a tube

treated with an anticoagulant and then removing cells by centrifugation. Serum is collected after

the blood form clot and after centrifugation. The ctDNA is then extracted through a commercial

kit [17].

Tumoral Biomarkers A biomarker is “A defined characteristic that is measured as an indicator of

normal biological processes, pathogenic processes or responses to an exposure or intervention” [18].

Find new biomarkers is a critical step in scientific research, especially in cancer. New biomarkers

could lead to the discovery of new treatments or new prevention methods. However, it takes time

to approve their clinical use and most of the time researching them is difficult and expensive. A

biomarker can be diagnostic, so it confirms the presence of the disease of interest. In particular,

it can be an early biomarker useful to prevent the disease. Another kind of biomarker is the

pharmacodynamic/response biomarker. It is a biomarker of which the level changes in response

to exposure to a medical product. Examples of these biomarkers are the genes for which we can

associate a drug. A predictive biomarker is a biomarker that identifies an association with the effect

of an intervention, it identifies the patient that will respond or not to a therapy. A prognostic

biomarker is a biomarker used to identify the likelihood of a clinical event, disease recurrence or

disease progression. This is used after there has been already a diagnosticated disease and it is

associated with differential disease outcomes. The susceptibility/risk biomarker instead indicates

the potential of developing a disease in a patient without clinically apparent medical conditions.

A biomarker to be good should not only be correlated with a clinical outcome but it should also

explain the change in the clinical outcome [19].

Precision medicine Nowadays, thanks to the identification of specific genomics alterations due

to the biopsy and the follow high-throughput analysis we are able to identify targeted therapies.

We are focusing our attention on precision and personalized medicine. Precision medicine tries to

identify which therapy is the most suitable for a specific patient considering lifestyle, cancer staging

and biological characteristics. Personalized medicine is another face of the same coin because, while

precision medicine relies only on data and information, it refers to the genetic of the patient focusing

on attitudes, knowledge and social context. These personalized therapies are necessary because

each cancer type indeed underlies a huge heterogeneity, the clinicians analyse patient biological
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features and alteration to make treatment decisions. The National Research Council’s Toward

Precision Medicine adopted the definition of precision medicine in 2008 from the President’s Council

of Advisors on Science and Technology. The Definition is "The tailoring of medical treatment to the

individual characteristics of each patient...to classify individuals into sub-populations that differ in

their susceptibility to a particular disease or their response to a specific treatment. Preventative or

therapeutic interventions can then be concentrated on those who will benefit, soaring expense and

side effects for those who will not". Precision medicine is used to guide health care decision to the

most effective treatment for a specif patient in that specific time, improving in this way health-care

quality. This permit to avoid useless diagnostic test and possibly threatening therapies for the

patient. The use of precision medicine is possible thanks to the discover of biomarkers, like the

markers for efficacy or for adverse effects of a therapy. The discover of the biomarkers themselves

and the possibility to approach to precision medicine is due to the advance in these last years of

NGS. This technology have made researchers able to analyze thoroughly cancer genome profile using

Whole Genome Sequencing (WGS), Whole Exome Sequencing (WES or WXS) or target sequencing

or even RNA-Seq. Precision medicine is also used to make a prognosis, prevent and diagnose the

disease, not only for treating it [20]. Its development has been helped by the use of the multiomics

technology through the production of Big Data. The aim of precision medicine is to develop a

specific treatment for each individual and for his condition to maximize the power of that therapy

and minimize adverse reactions [21]. The hope is that in few years the sequencing of tumor will be

a routine exam for patients, in this way we will be able to increase patients’ quality of life and life

expectancy.

1.2 Human genome Sequencing

The human genome sequencing has been finished in draft form in 2001 [22, 23] and definitively

in 2003 [24] after 13 years of working thanks to the Sanger DNA sequencing technology. This

technique was very expensive and permitted only the sequencing of small parts of the genome per

time, this brought to a cost between 0.5 and 1 billion dollars. In those years in fact the personal

genome sequencing was unthinkable. After the release of the completed human genome in 2004 the

National Human Genome Research Institute (NGHRI) created a 70 million dollar DNA sequencing

technology initiative setting the goal toward a cost per genome of one thousand dollars [25]. The

decrease was fast, in 2006 the cost of a human genome sequencing was between 20-25 million dollars.

This price had a significant decrease with the advent of NGS sequencing. Indeed, in 2020 it was

under 1 thousand dollars Fig.1.2. Though, all these costs do not consider the one of the clinical

interpretation of the data. [26]

Grete Francesca Privitera 5



1.2. Human genome Sequencing

Figure 1.2: Human Genome sequencing cost from 2001 to 2020

The DNA sequencing is the process that is need to determine each bases of the DNA. It is now

fundamental because the comparison between the genome reference with a new sequenced genome

can help in the diagnosis of diseases. The sequencing is used also for forensic analysis, virology,

metagenomics and so on. Starting from 1970 to today we can find three generations of sequencing

methods, each of them created to fasten the analysis, reducing costs and amplify quality.

1.2.1 First generation methods of sequencing

The first sequencing methods were the Sanger dideoxy synthesis and the Maxam-Gilbert chemical

cleavage invented in 1977 Fig.1.3. In particular, the Sanger method consists in specific chain termi-

nating dideoxy nucleotides that lack the 3’ -OH group, thus they cannot form the DNA chain. These

nucleotides possess a fluorescent label, different for each nucleotide, that is detected to understand

the specific sequence of the DNA. The first genomes sequenced with Sanger have been ΦX174 [27]

and bacteriophage λ [28]. Even if now the method is automatic and uses an electrophoresis capillary

instead of a slab gel, it is still employed in laboratories for some analysis. The main limitations

of this method are that it does not allow the sequencing of complex genomes, its speed and the

cost [27]. The Maxam-Gilbert method instead cleave the nucleotides leading to a series of marked

fragments that are separated with electrophoresis by their size. Here the DNA is not cloned [29].
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Figure 1.3: Process of sequencing using A) Maxam Gilbert method B) Sanger method Fig.1 from Kang et
al. (2009) [1]

1.2.2 Second generation methods of sequencing

From 2005 a new generation of sequencers has emerged, the second generation methods have been

invented because of the need of higher throughput sequencing of large genomes at a lower cost. This

second generation is able to generate many million of short reads in parallel, it is faster than the first

generation, it cost less and it does not need electrophoresis for the output detection. These methods

can be grouped in two categories: sequencing by hybridization (SBH) and sequencing by synthesis

(SBS). The most commonly used platforms of this generation are Roche/454 [30], Illumina/Solexa

[31] and ABI/SOLiD [32] launched between 2005 and 2007 and also Ion Torrent launched [33] in

2010.

The first methods use pyrosequencing technique Fig.1.4A. It is based on the detection of py-

rophosphate released after each nucleotide incorporation in the new strand of DNA that is formed.

Each DNA fragment is attached to a bead in which there are primers. The reads generated by

this methods are long between 100 to 700 bp depending on the instrument, the main errors seen in

this methods are insertion and deletion in homopolymers regions [34]. The Ion Torrent Technology

Fig.1.4B is conceptually similar to the Roche/454 pyrosequencing. It is based on the detection of

the hydrogen ion released during the sequencing process. When a nucleotide is incorporated in the

DNA chain, while it is duplicated on the bead, a hydrogen ion is released changing the pH of the

solution that is detected by a sensor and converted into a voltage signal. Avoiding optical scanning

to discern nucleotide the process is faster. It takes between 2 and 8 hour to sequence producing
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Figure 1.4: Process of sequencing using A) Roche/454 method Fig.1 from Voelkerding et al. (2009) [2] B)
Ion Torrent Fig.2B from Reauter et al. (2015) [3]

reads of length between 200 and 600 bp. Also here it is difficult to interpret the homopolymer

sequences with an error rate of about 1%. The most used system of sequencing in this moment is

the Illumina technology Fig.1.5A. It consists in one step in which samples are randomly fragmented

into sequences in which adapters are ligated. These adapters ligate to other adapters on a solid

plate. Each fragment is amplified by a bridge PCR which creates cluster of the same sequence.

Modified nucleotides are employed to identify each base, in particular fluorescently-labeled 3’-O-

azidomethyldNTPs. The light of each nucleotide incorporated is detected by a coupled-charge device

(CCD) camera. Now the length of short reads sequenced by Illumina is around 125bp. The error

rate of this technology is about 1% and most of the time consist in the substitution of nucleotides.

The ABI/SOLiD (Supported Oligonucleotide Ligation and Detection) Fig.1.5B sequencing process

consists in attaching adapters to the DNA fragments, put it on beads and cloning it by PCR. These

beads are placed on a glass where fluorescent labels are ligated to the DNA sequentially. After the

ligation the nucleotide is removed and the ligation is done on the nucleotide -1. The cycle keeps

going until the sequence is finished. Four different fluorescent colors are also used here. Each based

is sequenced twice. ABI/SOLiD reads length is about 75 bp. In this platform the main error type

is substitution, most of the time due to the noise during the ligation. All these methods described

above are SBS.
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Figure 1.5: Process of sequencing using A) Illumina B) ABI/SOLiD Fig.2-3 from Voelkerding et al. (2009)
[2]

1.2.3 Third generation methods of sequencing

The second generation methods need the PCR amplification step which is a long and expensive

procedure. Moreover, the presence of repetitive areas causes problems in the amplification and the

short reads analyzed make it difficult to assembly the genome. For this reason, third generation

methods were created with the aim to sequence long DNA and RNA molecules without the PCR

process [35]. These new methods have a lower cost and an easier sample preparation and they

can produce longer reads simplifying the assembly of the genome [36]. They can be split in two

approaches, the Single-Molecule Real-Time sequencing (SMRT) approach [37] and the nanopore

approach. These approaches are employed respectively by Pacific Biosciences (PacBio) and Oxford

Nanopore sequencing (ONT) [38]. PacBio [39] Fig.1.6A is the most used third generation sequencer.

The DNA synthesis occurs in a zeptoliter-sized chambers, called zero-mode waveguides (ZMW), with

a polymerase immobilized in the bottom. This is done to reduce background noise. It uses the same

fluorescent labelling as the ones of the second generation methods detecting the signal in real time

when they are incorporated, avoiding in this way the amplification step. The signal released by the

nucleotide incorporation is recorded in real time by a sensor. Unfortunately, for this method the

error rate is about 13% most of the time given by insertion and deletions errors. The length of the

reads reach 60 kbp with an average of 10 kpb. A sequencer with the ONT technology Fig.1.6B is

the MinION sequencing device [40]. This technique consists in link the first strand of the DNA with
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Figure 1.6: Third generation sequencing workflow. A) Pacific Biosciences. B) Nanopore Sequencing Fig.3
from from Reauter et al. (2015) [3]

its complementary by an hairpin. The DNA fragment is passed through a protein nanopore. When

the DNA passes through the pore it generates a variation of a ionic current caused by the different

nucleotides. This variation is recorded and then interpreted. Both strands are read. The reads

produced by MINiON exceed the 150 kbp, but the error rate is of 5.1% for substitution, 4.9% for

insertion and 7.8% for deletions [41]. The best characteristic of this sequencer is that it is portable

and USB-powered [42].

1.2.4 Next Generation Sequencing: Importance and applications

The release of Second generation methods, better known as Next Generation Sequencing (NGS)

methods, in the mid-2000s has revolutionized the way we do science. It brought to a huge cut in

the cost of sequencing and opened to new perspective for genome analysis and exploration. The

NGS platforms produce a huge quantity of data with an error rates between 0.1-1% and the read

length is shorter than those used in Sanger. Since they were commercialized as technology capable

of producing very high throughput sequence they are also called “High Throughput Sequencing

Technologies”. These techniques can sequence in parallel billions of reads in a single run. As told

before, their main disadvantage is that they require high computer resource to do genome assembly

[3, 36]. In this moment the main machines used are the ones of Illumina, example of them are
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"MiSeq", "MiniSeq", "iSeq" and "NetxSeq". The uninterrupted decreasing of the cost is bringing

more and more to the insertion of the NGS analysis in clinical practice, making possible study

and understand deeply and fast all the living organisms. The NGS advances gave the possibility

to perform also different kind of analysis, such as the metagenomic ones. In this way we now

have a better vision on the insight of the diversity of the microbial species from the human body

to the soil. For this reason, it was also possible to characterize the human microbiome through

The Human Microbiome Project [43] between 2007 and 2013. Thanks to these analysis we have

been able to understand the difference that exist between the microbiome of different individuals

and the possibility to restore a healthy microbioma. As well as we understood which bacteria

can cause specific disease. Bringing also to the discovery of new bacteria that are not culturable

in laboratories. Regarding human the NGS analysis performed can be split in WGS, WES and

target sequencing. From WGS we obtain a complete information since we have the sequencing of

all the genome of the individual. Even if we have not the complete information, but only the one

of the exome with WES we can have a major depth of the study thanks to the dimension of the

sequencing. In particular, for cancer NGS analyses are performed both on solid tumor biopsy and

on liquid biopsy. Another way of study tumors with NGS is the Single Cell Sequencing (SCS). It can

be done both on DNA and RNA. This system consist in isolating a single cell, avoiding the mixed

signal that it is obtained from normal sequencing obtaining cell specific information. In this way it

is possible to investigate the tumor heterogeneity. A NGS experiment on a patient produces large

amount of data, requiring time consuming tasks to extract knowledge. Users have to be specifically

trained to be able to install and use tools able to interpret the results. The road to bring genomics

analysis integrated into clinic for good is open, even if the cost and the computer resource needed

have still to be reduced.

NGS tools

Seeking for a user-friendly way to digest NGS data in the last few years many pipelines have been

developed for their analysis. In particular:

• In 2019 Joo T. et al. introduced SEQprocess [44], a tool implemented in R for the analysis of

patients NGS samples in FASTQ format. It can be applied on both DNAseq and RNAseq and

has six pre-customized pipelines. The user can analyze WGS, WES or liquid biopsy DNA-seq

samples. It allows allele frequencies estimation for each variant by determining read depths

of the mutated and wild-type sequences withing an RNA sample. However, the tool has been

releases only for Linux Operating System (OS).

• SEQVitA [45] is an open source platform for the prediction of SNVs and small INDELs in
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WGS, WES and in custom next generation sequencing data. The user can load one or multiple

BAM or mpileup files to start the analysis. It can also analyze vcf outputs produced directly

by the user. According to the number and type of samples, the detection of the mutations

is divided in Germline, Population and Somatic, if the user employs paired tumor-control

samples. Variants annotation is done both for coding and non-coding variants and they are

provided with a functional impact score allowing prioritization.

• DNAscan [46] can annotate and visualize variants in a NGS sample. The user is able to analyze

a sub-region of the genome. The annotation step is performed by Annovar [47] involving the

Clinvar [48, 49], Exac [50], dbSNP [51] and dbNSFP [52] databases. At the end of the analysis

a quality control and a results reports are generated with a tab-delimited list of the variant

found in the analysis process. The pipeline is available on Amazon web Services (AWS), as a

Singularity image and as a Docker image.

• VARIFI [53] is a web-based pipeline for the automatic variant identification, filtering and

annotation. The user can load a sample up to 400MB, making impossible the analysis of

larger samples. It combines different aligners and variant callers to improve accuracy. It is

easy-to-use and does not need any users computational power because it is conducted on the

VARIFI server. The user can load two input files (a BAM or FASTQ file and a BED file).

Reads mapping is done with bowtie2 [54], BWA [55] and NextGenMap [56], then reads are

realigned using Genome Analysis Toolkit. Variants are called using UnifiedGenotyper and

bcftools. Finally, annotation is done with Annovar, removing potential false positive. A final

report is produced containing variants sorted by a confidence score and a plot with amplicon

coverage information.

• iWhale [57] is a pipeline that allows the identification of somatic SNVs and indels in tumors.

It is based on Docker. It analyzes fastq samples using BWA with the possibility to use both

GRCh37 or GRCh38 reference genome. To improve the quality of the alignment several GATK

command are used. After that, various variant callers are combined to obtain more reliable

results. For variants annotation it employs databases such as Clinvar, dbSNP, gnomAD [58]

and so on, to identify relevant variants to help the interpretation of the patient’s tumor

landscape and to create specific therapies based on driver mutations.

Unfortunately, the results produced by such systems are often strenuous to be obtained and their

interpretation in a clinical context could result challenging and therefore useless to support decisions.

To try to fill this gap, several commercial systems have been proposed. One example is TGex [59],

an online knowledge-driven clinical genetics analysis platform that combines variant annotation and
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filtering capabilities with a user interface that permits the interactive interpretation and filtering of

the variants by scientist without any bioinformatics skills. To perform the analysis the user needs

to upload the patient VCF and as output he can have a report file in PDF or Word with a detailed

variant annotation file in Excel.

1.3 Immunity and Immunotherapy in cancer

1.3.1 Immunity

Each human owns two types of immunity, innate immunity and acquired immunity. The innate

immune system is the natural defense mechanism encoded by the genes of the host. It includes

physical barriers such as cell junctions, the secretes mucus layer (which we can find for instance in the

respiratory epithelium), the epithelial cilia, small molecules such as cytokines, chemokines, etcetera.

Some parts of the innate immunity are constantly active, but others are activated when there is

an interaction with chemical structures invading from external. In the innate immune response

the white blood cells that participates are neutrophils and macrophages. They secrete destructive

substances such as enzymes that digest proteins and chemicals. After that, they engulf and digest

through the process of phagocytosis. One of the first reaction after innate immunity response is

the inflammation, it is stimulated by the chemical factors released and it is needed to establish

a barrier against the spread of the infection. The inflammation starts thanks to macrophages,

dendritic cells, histiocytes and mast cells. The chemical factors produced during inflammation

are histamine, brakydinin, serotonin which sensitize pain receptor, cause vasodilation and attract

macrophages. Macrophages produce cytokines that mediate inflammatory response. The infection

that survive to this attack brings to the activation of the lymphocytes. These cells are involved in

adaptive immunity to make specific response and to remember the infection, so after a reinfection

the attack is faster and more effective. The adaptive or acquired immune system is based on antigen-

specific receptors expressed on T and B lymphocytes. Antigens are usually peptides processed from

proteins. The antigenic receptors are formed by genes that had somatic rearrangement of germ-line

genes elements. This assembly of the antigens receptor permits the formation of million of antigen

receptors each with a unique specificity. In the adaptive immunity we have the recognition of the

"non-self" antigens thanks to the Antigen Presenting Cells (APC). All cells except the erythrocytes

can present antigens, but the specialized APC are Dendritic cells, B-cells and macrophages. We have

two types of responses of adaptive immunity one for exogenous antigens and one for endogenous

antigens. The former are displayed from dendritic cells on its surface coupling them with the

Major Histocompatibility Complex (MHC) that it is also called Human Leukocyte Antigen (HLA).

Thus MHC-antigen complex is after recognized by T-cells. The MHC exists in two forms I and II,

Grete Francesca Privitera 13



1.3. Immunity and Immunotherapy in cancer

normally the exogenous antigens are displayed on MHC II and activate the CD4+ T helper cells.

T helper cells cannot kill infected cells or pathogens but they direct other cells to accomplish these

tasks. The latter ones are displayed on MHC I and activate instead CD8+ cytotoxic T-cells that

kill infected cells directly. When cytotoxic T-cells are activated they undergo a process of clonal

selection in which they split rapidly searching into the body for cells with the couple MHC I +

peptide. B cells have the role of create antibodies. Antibodies (called also immunoglobulin) are

Y-shaped proteins that identify and neutralize foreign objects. In mammals we can find IgA, IgD,

IgE, IgG and IgM each can handle different kinds of antigens. The bond between antibody and

antigen makes the antigens a target for phagocytes. The B cells that produce antibodies are called

plasma cells and part of them differentiate in memory B cells, which act when there is a re-infection

in the host. The innate response is our first line of defense, while adaptive immunity comes after

T and B cells have undergone to clonal expansion. Synergy between the two immunity is essential

for a fully immune response [60, 61]. The main goal of the immunity system is to discriminate the

appropriate target. The immunotherapy activation of the immunity system might be risky since a

too strong reaction can be deleterious for the host, it might be even deadly [62].

1.3.2 Immunotherapy and Tumor Mutational Burden

William Bradley Coley is the man considered as the father of Immunotherapy. In 1891 he tried

for the first time to use the immune system to treat bone cancer. This idea of taking advantage

of immune system to fight cancer came to his mind by observing cases of patients that went into

spontaneous remission after streptococcal infection. So he decided to inject mixtures of live and

inactivated Streptococcus pyogenes and Serratia marcescens into patients’ tumors. However, the

so called "Coley’s toxins" were not so appreciated by oncologists that preferred to continue to

using surgery and radiotherapy avoiding the risk of infecting already sick patients with pathogenic

bacteria. After 1945 advances in immunity and cancer research brought to the re-discovery of the

immune system as possible therapy. In that period in fact interferon was discovered and Ruth and

John Grahams invented the first cancer vaccine. Between 1860 and 1980 T cells, dendritic cells

and natural killer cells were discovered and studied enhancing the knowledge about the immune

system [63]. In the meantime, at the University of Minnesota there was the first bone marrow

transplant as a treatment for hematological cancers [64]. About 50 years ago professor Lloyd J.

Old, considered the pioneer of cancer immuno-onclogy, noted that between cancer cells and normal

cells there are differences which can be recognized by the body’s immune system [65]. In 1957

Thomas and Burnet proposed a theory about immunosurveillance, they suggested that lymphocytes

act as sentinels in order to identify and eliminate the cells that had been transformed by mutations
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[66]. This theory re-emerged in 1974 when Stutman showed that mice with impaired immune

system developed cancer faster than wild type ones [67, 68]. Even the identification of natural

killer cells providing additional support to the immunotherapy possibility [69]. Only at the end of

1900 Schreiber, Dunn, Old and their teams proved that T cells were able to provide anti-tumor

surveillance and immune response. Subsequent discoveries were about immunoediting, cancer cell

escape and the higher risk of cancer development in immunosuppressed patients [70, 71, 72, 73, 74].

Since a lot of tumors block their own recognition by the immunity system the fundamental role

of the immunotherapy it is to make the human immunity system recognize the tumor as an alien.

Immunotherapy in cancer is used to activate or boost the patient immune system to let it attacks

tumor cells. This is necessary because tumor cells evade recognition and elimination by T cells that

bring to their uncontrolled growth and to clinical progression. The only way for our immune system

to recognize the tumor cells is its production of two class of antigens called Tumor-Associated

Antigens (TAA) and neoantigens or Tumor-Specific Antigens (TSA) that are over-expressed in

tumor cells. These antigens are produced only in tumor cells as a cause of amino acid change

due to mutations. The mechanism of immune elimination of tumor is explained by the fact that

the adaptive immunity system recognized these neoantigens released by necrotic and/or apoptotic

tumor cells. Tumor specific cytotoxic T cells go back to the tumor and destroy their target. Several

drugs have already been approved by FDA for more than nine cancer types. The ones used in this

moment are immune checkpoint inhibitors that hinder molecules which suppress immune response.

The first immune checkpoint molecule was discovered in 1987 by Brunet and his team and was named

Cytotoxic T-Lymphocyte Antigen number 4 (CTLA-4) [75]. However, only in 1995 Jim Allison et

al. discovered the crucial role of this molecule as immune checkpoint molecule [76]. Nowadays

more than 2000 cancer immunotherapy agents exist. [77]. In 2011 FDA [78] approved ipilimumab

as the first checkpoint inhibitor for treating advanced melanoma. Over than 20% that have been

enrolled in the first ipilimumab trial before 2011 are still alive and they have no evidence of disease.

Nivolumab, instead, was in 2014 the first PD-1 inhibitor to gain approval for the treatment of

Melanoma in Japan [79]. Other actually approved inhibitors of the PD1-receptor or of its ligands,

PD-L1 and PD-L2, are pembrolizumab, atezolizumab, durvalumab and avelumab. In these last

years cancer immunotherapy is revealing as the therapy with the most durable and outstanding

benefits across tumors, with actual treatments between 16% and 30% of patients survive melanoma

and lung cancer. However, often immunotherapy results useless or toxic for patients leading to

unpleasant side effects, such as skin rash, colitis, hepatotoxicity, pneumonitis, endocrinopathies and

autoimmune disease [80]. Nowadays, only 20% of patients benefits from cancer immunotherapy

[81, 82] for two reasons, the lack of a proper Biomarker and the lack of the patients of anti-tumor

immunity. The Tumor Microenviroment (TME) is fundamental for immunotherapy success, if the
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TME has region of hypoxia and elevate lactate levels that do immunosuppression. The TME is

composed by cancer cells, stromal features, blood vessels and infiltrating immune cells. It is highly

variable between individuals and different tumors [83]. An example of the pathways correlated

to the TME are the downregulation of the MHC class I on the surface of tumor cells[84]. In the

TME we can found upregulated cells such as Myeloid-Derived Suppressor Cells (MDSCs), tumor-

associated macrophages (TAMs) and mast cells that prevent the immune system from eliminating

tumor cells [85]. The tumor associated macropahes are capable of suppress immune response [86,

87]. As routine biomarkers we can already find Programmed Death Ligand-1 (PD-L1), MisMatch

Repair (MMR), Microsatellite Instability (MSI) and Tumor-infiltrating Lymphocyte (TIL). The

most used biomarker for immunotherapy decision is the PD-L1, the higher its expression the higher

the probability of response, but its performance are not satisfying. The rate of response is between

19 and 30% [88]. PD1 and PDL1 are indeed involved in immune evasion [89] because PDL1, when

expressed in high levels, binds on PD1 and can cause the inactivation of T cell and apoptosis of

them, the blockage of their pathway can led the tumor system to attack the tumor. Moreover, some

PDL1-negative patients respond also positively to the immunotherapy leading to the idea that there

are other contributors to the therapy [90]. Another important biomarker, especially in colorectal

cancer, is MSI. Over 80% of cases of Hereditary Non-Polyposic Colorectal Cancer (HNPCC) show

this instability of microsatellites [91]. MSI is a unique molecular alteration and hypermutable

phenotype, which is the result of a defective DNA MMR system. It can be defined as the presence

of repetitive DNA sequences of alternating sizes that are not present in the corresponding Germline

DNA. Determining MSI status in tumors can show prognostic, therapeutic implications and can

even be used as a diagnostic tool for tumor classification. A recently used biomarker is the Tumor

Mutational Burden (TMB), it counts the number of neoantigens existing in the tumor to calculate

the possibility to activate immunotherapy in the patient. The goal of TMB searching is its use in

clinical practice. This searching technique makes possible to obtain a real complete photograph

of the tumor, from the molecular point of view, for each patient: this allows to realize precision

medicine for immunotherapy. The immune response is able to fight tumors mainly in the initial

phase, but then the tumors learn to react and escape from it through the production of a series

of molecules. Immunotherapy removes the brakes of the immune response through the inhibitors

of the immune check points. Tumors which have a greater load of neoantigens and mutations, are

precisely those that benefit the most from this strategy, as they are more able to stimulate the

immune response.

TMB TMB is one of the most promising emerging biomarker. The TMB calculation is commonly

used for melanoma, that is one of the tumor with the higher mutation rate, but now the common
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goal is to make it feasible for lung and colon cancer that are the two forms of cancer with the

worst prognosis. TMB is a very complex biomarker that requires sophisticated NGS techniques for

its determination. It is calculated counting the mutations found in a tumor sample, excluding the

ones that are already known as cancer mutation, and dividing the sum by the total length of the

sequenced sample DNA in Megabase (Mb). Calculating the TMB patients are split in two groups,

the high TMB group where patients would benefit from immunotherapy and the low TMB group

where patients would not. Higher is the TMB of the patient higher is its possibility to respond to

immunotherapy because a higher TMB corresponds to a higher number of neoantigens. There is

not a standardized value to decide which TMB is high or low because the threshold depends from

the study, the drugs [92], but especially on the tumor treated [93]. Unfortunately, its use is not

standardized yet, bringing to the use of different methods of calculation and thresholds. Nowadays,

the gold standard to measure the TMB is using the WES analysis with tumor and normal sample,

but it is under study the possibility to employ specific panels [94, 95] to speed up the analysis with

the same precision and sensitivity and to make them feasible for clinical practice. As a matter of

fact, WES analysis have high cost and require extensive data management, moreover for the TMB

analyses two sample are needed, the tumor and the normal one to discard germline mutations.

Unfortunately, the availability of this matched sample in clinical practice varies across organization.

Germline variants in a tumor-only sequencing can be filtered out using available databases, but this

procedure needs a high level of standardization for each type of tumor and for each population [96].

In addition, there is a lack of standardization of current TMB methods both by research laboratories

and bioinformatic analyses. The actual commercial panels endorsed for TMB research are The

FoundationOne CDx assay approved by FDA and the MSK-IMPACT (Memorial Sloan Kettering

Cancer Center) which has been authorized by the 510k pathway [97, 98, 99]. Furthermore, panel

such as "Thermo Fisher Scientific Oncomine Tumor Mutation Load Assay" [100], "TruSight Tumor

170" [101] and "Foundation Medicine FoundationOne" [95] are used in clinical, but are not approved

yet. Some authors recommend to use targeted gene panel assays that have larger genome coverage

(ideally with ∼ 1 megabase as lower limit) because they yield more reliable TMB estimation than

smaller panels [102, 103, 104]. Notwithstanding the existance of all this panels, according to Wu et

al. [105] the current available panels can assess TMB accurately only in several particular cancer

types. They explain that the correlation itself is unreliable to evaluate the performance of panels

and that accuracy is a superior index of the situation.

Differential expression of genes in TMB Differential Expression Genes (DEGs) analysis have

permitted to clarify the role of the genes in cancer patients, and between high and low TMB

patients. Comparing tumor and normal colon sample Gao et al. [106] found that differential
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expressed genes (DEGs) were mainly involved in protein transport and apoptotic and neurotrophin

signaling pathway. Wang et al. [107] screened TCGA-BRCA data-set splitting patients in TMB

high and TMB low and analysed them with KEGG and GO databases. They found that DEGs

were mostly enriched in epidermis development, extracellular matrix, and receptor-ligand activity

among Biological process, Cellular Components, and Molecular Functions, respectively and showing

that 343 genes were expressed differential in the 2 groups of TMB. Zhang et al. [108] found that in

bladder urothelial carcinoma differential genes were involved in catalytic activity, acting on DNA,

single-stranded DNA-dependent ATPase activity. Moreover, TMB-enrichment of related signature

correlates with multiple cancer-related crosstalk, including cell cycle, DNA replication, cellular

senescence, and p53 signaling pathway.

1.4 Variant Prioritization

Thanks to NGS we are able to collect every day huge quantities of genomics data which are employed

in clinical practice. The study of the genomics variants inferred from NGS is fundamental for

predictive and precision medicine. Therefore, to arrange a specific not toxic therapy for a patient

is decisive to recognise pathogenic variants responsive to specific drugs. The interpretation of these

variants results complex due to the need to integrate a lot of bioinformatics tools that require

a computer science expertise. Moreover, to perform such analysis is needed a huge computational

power that it is not always disposable. There is a demand for both easy to use bioinformatic pipeline

and for variants prioritization databases. The recognition of a causative variant is difficult because

WES and WGS produce thousands of sequence variants for which the detection rate of casual variant

is lower than 20-30% [109, 110]. Nowadays, multiple unrelated individuals with similar phenotype

with the same gene mutation are required to define a variant causative [111]. For all these reasons, a

lot of variants are classified as "VUS" i.e. "Variant of Uncertain Significance", which means that a

variant that damages a gene is not necessarily damaging to an individual’s health, or as "Unknown".

This class is the most common in personal genome sequences and can include both novel variants on

coding sequence of disease-causing genes but it can refer also to variants in genes unlinked to disease.

Usually, to predict the deleteriousness of a variant, so to do a variant prioritization, a pathogenicity

score is employed. As a matter of fact, a variant can be considered pathogenic only when its DNA

alteration has a role in the disease process. A right assignment of variants is fundamental, wrong

assignment indeed could lead to severe consequences for patients, resulting in incorrect prognosis

and therapy. Some recent analysis showed that the 27% of mutations found in 104 individuals

were either common polymorphisms or lacked direct evidence for pathogenicity [112]. The "Variant

prioritization" or "Variant Filtration" is the practice of annotate and interpret the variants to
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identify variants conceivably associated with pathological condition. Most of the time this process

requires manual curation by expert clinician. Often, different institutions and operators apply

different criteria and filters that limit the overall reproducibility of the results of these analyses.

The identification of pathogenic variants could lead to correlate variants and phenotype identifying

causative variants for a specific disease. A lot of gene and variants prioritization methods have

been implemented, all this tools filter, evaluate and prioritize thousand of variants using public

databases. Unfortunately, there are a great number of intergenic or intronic regulatory variations

or unidentified structural variants that are not prioritized yet. Example of the Gene and/or Variant

Prioritization methods are:

• GeneDistiller [113] can be used as a prioritization tool or with other prioritization tools to

display rich information on human candidate’s genes obtained with those. It offers different

approaches such as Projection, Selection, Sorting and Prioritisation. In the first approach it

is the user that chooses the genes that are of interest to him. In the second approach the

user applies filters to the genes decreasing them to a smaller group. In the third approach the

genes are sorted according to certain parameters. Finally, the forth approach, that is the pri-

oritisation one, offers a function which ranks genes according to the researcher’s specifications.

This methods can be combined.

• MutationDistiller [114] prioritize monogenic disease variant, with the help of GeneDistiller.

It filters the polymorphism using databases such as ExAC and 1000Genome and use Clinvar

to identify known disease-causing mutations. After the analysis MutationDistiller presents a

prioritized list of the most likely candidate variants with information about them and their

genes that can be downloaded as a summary table. The table shows the variant in class so

the user can focus on certain types of alteration more than in others.

• VINYL [115] derives a pathogenicity score aggregating different public databases. The idea

that stands behind the tool construction is that affected individuals have and excess of dele-

terious variants compared to a matched population of unaffected ones. The tool is highly

flexible permitting the incorporation of different types of annotation and resources by the

user. It seems to have highly levels of sensitivity and specificity.

• KGGSeq [116] does an analysis procedure for the discovery of human Mendelian disease genes

combining filtration and prioritization functions. It filters and prioritizes the variants at

three levels, genetic, variant-gene and knowledge according to the resource used. Such as

MutationDistiller it filters out common variants using public databases like 1000Genome and

the allele frequency threshold.
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• vPot (variant prioritization ordering tool) [117] is a command line python-based program

that creates a pathogenicity score making the user able to prioritize variants. Taking the

ANNOVAR-annotated file the tool will annotate the variant based on the annotation elements

found using several databases as CADD, LRT, etc. At the end the tool calculates a score that

is normalized.

• Variant Ranker [118] is a web based tool to interpret genomic data that gives back a list of

prioritized variants generated computing a score thanks to several databases.

In clinical practice and in this tools is common to use SIFT [119], CADD [120], PolyPhen-2 [121]

and other pathogenicity score predictor to help variants interpretation. They derive an impact score

using amino acid or nucleotide conservation and most of the time classify the variants as "Damaging

or tolerate".

1.5 Human Microbiome

Human microbiome is a complex machine composed by bacteria, virus and archaea that interact

with each other and with the host permitting the maintenance of the function of the host organism.

The microbiome of each individual is diversified by multiple factors such as diet and environment.

Studying the bacteria of microbiome nowadays is pretty easy thanks to the standardization of the

tool QIIME [122] that permits to analyze the 16s rRNA gene of the bacteria, region that is highly

conserved. The database of 16s rRNA sequences is constantly updated and curated. Instead, since

viruses do not possess phylogenetically conserved region it is not possible to build a phylogenetic

tree and so their study is a difficult task to achieve. Therefore, little is known about the function of

virome in human microbiome. [123, 124, 125] Viruses are parasites that infect cells thanks to their

surface proteins that bind with cellular receptors [126]. They can have single or double stranded

DNA or RNA. In particular, RNA viruses form a highly diverse group, they can be single-standed

(ss) plus or minus oriented, or ssRNA with a dsFNA as an intermediate product, or double-stranded

(ds). Their genomes are small going from 3400nt to 31000nt [127]. A study of 2013 of Anthony

et al. [128] estimated the existence of at least 320000 species of viruses that infect mammals. The

2016 database release from the International Committee for the Taxonomy of Viruses classified

just 8 orders, 122 families, 735 genera, and 4404 species. In 2020, after only 4 years, ICTV have

affirmed that 6 realms, 10 kingdoms, 17 phyla, 2 subphyla, 39 classes, 59 orders, 8 suborders, 189

families, 136 subfamilies, 2224 genera, 70 subgenera, 9110 species exist [129]. Thus, it is normal

to think that we cannot even image the extent of viral diversity that exist in the environment.

Even if viruses have been the first biological system to be sequenced (bacteriophage MS2 in 1976
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[130] and ΦX174 in 1977) the recognition of viruses nowadays is still difficult. There are a lot of

causes that can explain this problem, first of all the cultivation of virus in lab it is a complicated

and long task. Secondly, not all existing viruses are currently correctly annotated in databases.

Moreover, the high number of viruses that already exists does not allow to create a comprehensive

database. Finally, the tools for virus research are not consistent with each other, not user-friendly

and demand a huge quantity of computing resources [131]. The development of tools for the research

of viruses it is necessary especially for clinical diagnostic and public health. At this time, two

methods exist for the discovery of virus: sequence-dependent and sequence-independent methods.

Between the former ones are included PCR, using consensus primers, and hybridization methods

such as microarrays. These methods, though, require the knowledge of specific nucleic acids like

consensus sequences of previously known viruses. They permit to discover novel virus, but with

a common root with others. For instance, this method was used for Human Immunodeficiency

Virus (HIV) [132] and for simian retrovirus [133]. The latter ones do not require the knowledge of

viruses in the samples. The methods utilized are suppression subtractive hybridization (SSH) and

representational difference analysis (RDA). However, the best choice for viruses discovery is viral

metagenomics. Metagenomics is the study of microbial community genomes taking them directly

from the environment. This approach is culture-independent and sequence-independent. It is not

only less biased, but it is also helpful for the research of both known and novel virus. These new

viruses could be recognized as potentially infectious agents and associated with human diseases.

A metagenomic analysis is composed by three steps: (i) sample preparation, (ii) high-throughput

sequencing and (iii) bioinformatic analysis. At the beginning metagenomic was applied through

the Sanger method, nowadays NGS methods such as Illumina/Solexa and Roche 454 are employed.

Normally a tool for virus research does an alignment between the host genome and the sample, so it

deletes all the host sequences leaving only the microorganisms sequences. After that, it can both use

unassembled reads or reconstructed contigs, arising from the assembly process, to classify viruses.

Most of the time this classification is done using BLAST or through a homology research with

already existing sequences in database such as ncbi one. This latter technique, though, does not

permit the identification of new viruses and requires precise post-process to keep only meaningful

classification without risking the loss of real important data. Regarding BLAST, even if it permits

to discover new viruses it takes a lot of time and CPU to classify virus, so now is common to use

abundance estimation programs and k-mer programs. Abundance estimation programs create a

database that is smaller than the collection of the entire genomes so the classification is faster, but

they classify only a small part of the sequences of a metagenomics sample. These tools are only

meant to characterize the distribution of the organisms present in a given sample. K-mer tools,

instead, are based on kmer methods which find exact matches between small substrings (k-mers),
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from the reads sequenced, and a viral reference sequence from a database. This method permits

rapid sequence classification, but struggles identifying divergent sequences of viral origin because is

less sensitive and specific when it has to identify species [134]. Some tools use high-sensitivity protein

alignment, but it takes too much time and RAM use to be done. Certainly, there is a desperate

need for a standard protocol and algorithm for virus metagenomic downstream analysis to study

and understand the large number of sequences that have not yet similarity with anything already

known [135]. The major pros and cons of metagenomic are indeed that it produces a huge quantity

of data that have to be analysed. As a matter of fact, it is esteemed that in each metagenomic virus

study there are between 40% to 90% of not detectable sequences that are probably virus sequences

[136] limiting the possibility to understand the virome structure and function in health and disease.

Each of the tools that exists in this moment has its advantages and disadvantages and it is necessary

to evaluate which is the best tool to use depending on the analysis situation [137]. Furthermore,

most of the time software are not updated and/or they are not well developed and so cannot be

employed for long time. Software should be not only functional, but they should be also sustainable

developed, documented and tested and be distributed through robust and user friendly channels

such as non-online application. Additionally, it is difficult to find pre-built indexes for virus that

are up-to-date and built them require big memory usage.
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Chapter 2

OncoReport

OncoReport is a flexible and easy-to-use tool able to generate reports from DNA NGS data for

supporting decisions in clinical settings. It focuses on the gene annotations with drugs to under-

stand which can be the best patients’ customized therapy. OncoReport was developed using both

bash and R. Its Graphical User Interface (GUI) Fig.2.2 has been developed in Javascript using the

Electron framework (https://electronjs.org/). Electron is an open-source framework developed and

maintained by GitHub, allowing the development of desktop GUI applications using web technolo-

gies. As it can be seen in subsection 1.2.4 called "NGS tools" there is a lack of a free platform

pipeline with an user interface which is able to produce a readable report with information about

drugs sensible/resistant mutations. So, we developed this new software usable by clinicians and

laboratories. Its aim is to be feasible for non-informatic expert user in order to be implemented in

every day clinical practice.

2.1 The Pipeline

The pipeline is thought to be as smart as possible, so the user can upload different kinds of samples

to start the analysis. It can upload directly the FASTQ resulting from the NGS analysis, the SAM,

the BAM, the UBAM, the VCF or even the varianttable file built from illumina experiment. The

pipeline will automatically recognize the extension of the file and will start the analysis. The time

of the analysis depends on different factors. Firstly, if the user decides to analyse a WGS or a

WES sample the analysis will be longer than an analysis of a targeted panel. Secondly, an analysis

starting from a VCF is faster than an analysis starting from a FASTQ. Finally, a lot depends also

on the computer resource available for the user. For sure, for WGS analysis are needed at least

64Gb of RAM, 8 core and 1Tb HDD. The oncoreport pipeline Fig.2.1 comprises four main part:

1. Pre-processing : The pre-processing step consists in removing the sequencing adapters with
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TrimGalore[138, 139], aligning the sample with bowtie2 [54] and sorting and cleaning the BAM

file, with the erasing of duplicates in case of tumour-normal analysis, via Picard [140].

2. Variant Call-Filtering : The variant calling is done with Mutect2 GATK [141], the parameters

are set according to the different types of samples analysis. Mutect2 has been chosen for its

performance in the detection of the somatic variants that are the main focus in this research.

However, in a future version we are planning to add other variant caller such as VarScan [142]

to create a consensus variant file that will be even more reliable. The Variant filtering is done

with GATK tools. In particular, the filtering in the liquid biopsy and only tumour pipeline

comprise the Depth (DP) and the Allele Fraction (AF) filters, the former to specify the depth

required for the analysis and the latter to divide the germline and the somatic mutations. For

instance, in liquid biopsy analysis we can set AF to 0.3, while in a solid tumour analysis it

can be set to 0.4. This because normally a variant with an AF < 0.3 is more probably a new

somatic variant showing less than a germline variant. This variant splitting in germinal and

somatic is instead done automatically if the user pass to the pipeline two samples for the same

patient, one normal sample and one tumor sample. This makes the analysis more accurate.

3. Variant Annotation: The Variant annotation is done through a custom R script using the

following databases, Civic, CGI, Refgene, PharmGKB and Cosmic.

4. Report Generation: The report is created using R, css and HTML, it is developed to be easily

understood by clinicians and even by oncology patients. It consists on a description of the

most important mutations variants found in the patient’s tumor. These mutated variants are

reported with their associated drugs, the details of the specific mutation and the clinical trials

that are available for the mutation and its associated drug.

Figure 2.1: Oncoreport pipeline
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Drugs Score Calculation Throughout the report creation, each drug coupled with a variant

acquire a confidence score. This score calculation depends on three considerations: (i) the year of

publication of the association between it and the variant, (ii) the pathogenicity of its mutation,

(iii) how many times it is repeated in our report. Depending on such score each drug will have a

different color, such as green which will suggests that the drug is the best choice for the patient.

In particular the drug will receive 3 points if the paper of the drug-variant association has been

published in the last years (between 2021 and 2019), 2 points if has been published between 2018

and 2016, 1 point if has been published between 2012 and 2010 and 0 point if it has been published

before 2010. To calculate the score of pathogenicity we make use of dbsnfp41c. For each of the

8 pathogenicity predictors inside this database we assign to the variant a score between 1 and 0.

Concerning the presence in our report, the drug will obtain 1 point for each variant mutation in

which it is mentioned. At the end all these temporary scores are summed and give back the final

score.

2.2 The Report

The final output is a report composed by different sections which are reachable from a Table Of

Contents (TOC) Fig. 2.3A: At the beginning we can find a horizontal panel which holds patients’

information supplied by the user while uploading the NGS files. Such information include patient’s

name and a code to identify uniquely the specific patient. The user could supply also the information

about the drugs taken in that moment by the patient to understand the interaction between the

drug already taken and the drugs suggested by the report. The section are split in this way:

• Detected Variant Therapeutic Benefit Fig. 2.3B,C,D consists of a description of the

most important variants mutation found for the patient’s tumor. These variants are reported

with their associated drugs, the details of the specific mutation, the clinical trials that enroll

patients harbouring them (found in clinicaltrials.gov), the confidence score and the year in

which the paper of the drug-variant association was published. Higher is the confidence score,

more reliable is the suggestion. This section has a division in two tables. The first one with all

the drugs stated as “Clinical Evidence” or in general approved, for instance by FDA and/or

NCCN, and already used. The second one with drugs used only in clinical trials, in case

study or tested only in vitro. The user can also find the approval information for each drug,

understanding which one is feasible in his country. The institutions that we have already

integrated are FDA[78], EMA[143] and AIFA[144].

• Drug-Drug interactions Fig. 2.4A lists the drug-drug interaction among the drugs recom-
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mended by our tool and the other drugs found in drugbank[145]. This permits the patient to

avoid unpleasant effects caused by the drug mixting. Moreover, the user can upload the drugs

already taken by the patient and have the drug interactions information also about them.

• Drug-Food interactions Fig. 2.4B lists the possible drug-food interactions derived from

our system suggestion using drugbank.

• ESMO Guidelines Fig. 2.4C reveals the European Society for Medical Oncology (ESMO)

[146] guidelines related to the patient’s cancer type. The ESMO is the main entity in Europe

for the dissemination of best practices for the prevention, diagnosis, treatment and follow-up

of cancer diseases. This area of the report shows on the left a scrollable list of all clinical

practice guidelines limited to patient’s disease. The information related to each element of

the list are displayed at the center of the page in the form of text or dynamic algorithm.

• Mutations’ Annotation Fig.2.5B lists all the mutations that have been found in the pa-

tient’s sample describing their role as pathogenic, benign and so on. It is built using Refgene

and Clinvar [48]. It focuses on the function and the clinical significance of the mutation.

• Drug response Fig. 2.5A lists the mutations found in the PharmGKB [147] database. It

gives information about the efficacy or the toxicity of a drug associated with a mutated variant,

but it does not include specification of the diseases.

• Off label drugs Fig. 2.5C includes the variants that, according to the current knowledge,

are associated with drugs in tumors distinct from the patient’s one.

• Known resistance Fig. 2.5D contains annotations from the Cosmic [148] database that are

useful to discover the existence of drug-resistant mutations.

• Reference Fig. 2.4D the user will find the literature references for each feature in the report.

In this way he can go directly in the pubmed archive to check all the information about the

couple mutation-drug.

OncoReport can be used in connection to NGS data coming from Liquid biopsy and tumor tissue

both alone or with normal pair sample. It can be used for WGS, WES and/or target panel analysis.

We prepared a user manual that explains step-by-step how to use the tool which is provided in the

github page. OncoReport can be downloaded both with its Graphic Interface or, for informatic

expert users, also from Docker Hub. The system is completely offline to assure the security of the

patients data.
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Figure 2.2: OncoReport Interface. A. Home page B. Patients list C. New patient creation C. List of patient
analysis

Figure 2.3: Report. A) Patient information B) Detected Variant Therapeutic Benefit section with drug-
mutation information C) Detected Variant Therapeutic Benefit section with Evidence details D) Detected
Variant Therapeutic Benefit section with Variant Details
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Figure 2.4: Report A) Drug-Drug interaction B) Drug-Food Interaction C) ESMO Guidelines for patient
disease D) Reference

Figure 2.5: Report. A) Drug Response section with PharmGKB database’s information about the muta-
tions found in the patient B) Annotation of all the mutations found in the patient C) Off label Drugs D)
Known Mutations Resistance found in Cosmic database
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2.3 Databases

Oncoreport employs several free databases to understand the role of the mutations found in the

patient. Most of them include databases used for coupling variants with drugs to find the perfect

therapy for the patient’s mutational profile. Each of these databases was modified in a specific way

to be used inside the pipeline. A summary of these can be seen in table 2.1.

Figure 2.6: Databases used by Oncoreport

CIViC Clinical Interpretation of Variants in Cancer [149] (CIViC) is an open source database

that describes the therapeutic, prognostic, diagnostic and predisposing relevance of inherited and

somatic variants of all types. It was released in 2015. Currently it contains 2969 variants and 460

genes for 8441 items. Each of its interpretations are matched with fundamental information for the

study of the variable such as the disease were we can find the variant, its clinical action, its clinical

significance, its evidence type and its evidence level. The association between the gene and the

variant has different levels depending on the force of their relation. In particular we found 5 levels:

(A) Validated associations: those which have proven/consensus associations in human medicine;

(B) Clinical evidences: associations supported by Clinical trials or other primary patients data;

(C) Case study: Variants found in case reports from clinical journals;

(D) Preclinical evidences: associations supported by in vivo or in vitro models;

(E) Inferential associations: Indirect evidences.

Each CIViC mutation is manually curated. Every month there is a new CIViC release, but it is also

Grete Francesca Privitera 29



2.3. Databases

possible to download a nightly version of the database. The download can be done both directly or

via API.

Cancer Genome Interpreter Cancer Genome Interpreter (CGI) [150] is a free platform that

annotates all variants of the tumor that constitute state-of-the-art biomarkers of drug response

organized using different clinical evidence. It comprises 5601 validated oncogenic alterations, 1631

biomarkers of drug response, 765 cancer genes. Its catalog, which it is downloadable directly or via

API, was obtained using bioinformatic analysis and manually curated literature. As in CIViC each

gene is annotated with its mode of action in tumorigenesis, the diseases and the drugs that act on

it.

PharmGKB Pharmacogenomics Knowledgebase (PharmGKB) [147] is a resource that collects

and curates information about human genetic variant and their drug responses. It provides clini-

cally relevant information such as dosing guidelines, annotated drug labels, potentially actionable

gene-drug associations and genotype-phenotype relationships. Also here the gene-drug-disease re-

lationships are extracted from literature using manual curation and natural-language-processing

techniques. We took the feature with the relationship between variant and drug followed by the

attribute of sensitivity or resistance and the respective pubmed reference. As in CIViC each clinical

association has a level of evidence that goes from 1, a clinical evidence, to 4 case report or in vitro

study associations. PharmGKB was enriched using ensembl to add the position of the variant and

the alternative base and using the efetch API to add literature information.

Cosmic The Catalogue Of Somatic Mutations In Cancer (Cosmic) [148] is a resource for exploring

the effects of somatic mutations in human cancer. It exists since 2004 when it was only a survey

of four genes. In the actual version (v95) it comprises 9.215.470 gene expression variants curated

over 28.551 papers. It covers non-coding mutations, gene fusions, copy-number variants and drug-

resistance mutations. In particular, we use the drug-resistance mutations database to search for the

drugs that can be deleterious for the patient’s health. Cosmic includes this database since 2016.

From Cosmic we took two files, one that contains all the known mutation related to cancer and one

which consists on all the resistance mutations. These two are merged to identify the variants that

have a correlation of resistance with a specific drug.

ClinVar ClinVar [48] provides a freely available archive of reports of relationships among med-

ically important variants and phenotypes. It gives the interpretations of the relationship of the

variation to human health and the evidence supporting each interpretation. It was created to pro-

vide a centralized, public open-access database for data needed to interpret variants. It was created
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in 2012. We use it to give an interpretation of all the mutations found in each patients along with

RefSeq.

RefSeq NCBI Reference Sequence Database (Refseq) [151] is a project that maintains and curates

publicly available databases at the National Center for Biotechnology Information (NCBI).

DrugBank DrugBank [145, 152] is a freely available web resource which contains information

about drugs. It has been created in 2006. It evolved year by year, in its first version it included drugs

data with their drugs targets. In the last versions it was updated adding pharmacogenomic data,

molecular data, pharmacometabolomics data, pharmacotranscriptomics data, pharmacoproteomics

data and so on. At the moment it possess information about 14594 drugs. The aim of DrugBank

is to help to achieve major advancement in medicine industry.

Table 2.1: OncoReport Databases information
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Chapter 3

Tumor Mutational Burden

Aim of the TMB research We sought to better comprehend the TMB calculation in particular

in colon cancer, trying to simplify its calculation designing a specific pipeline, testing a commercial

panel and designing a new possible signature. Our research starts from survival analysis and arrives

to enrichment analysis with the purpose of enhancing our knowledge about TMB and patient

classified as TMB high (H-TMB) and TMB low (L-TMB).

Dataset To reach this goal we have used The Cancer Genome Atlas (TCGA) samples of several

cancers. We downloaded raw samples of Colon adenocarcinoma (COAD, n = 298) which has been

used as main tumor in our study. BAM files of tumor and normal tissues biopsies were analyzed to

extract the somatic mutations. Other solid cancer types downloaded were: Ovarian serous cystade-

nocarcinoma (OV, n = 441); Cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC, n = 305); Thyroid carcinoma (THCA, n = 496); Bladder Urothelial Carcinoma (BLCA,

n = 412); Uterine Corpus Endometrial Carcinoma and Uterine Carcinosarcoma (UCEC and UCS,

n = 628); Esophageal carcinoma (ESCA, n = 181); Kidney renal papillary cell carcinoma (KIRP,

n = 288); Kidney renal clear cell carcinoma (KIRC, n = 339); Liver hepatocellular carcinoma

(LIHC, n = 415); Stomach adenocarcinoma (STAD, n = 450); Pancreatic adenocarcinoma (PAAD,

n = 183); Prostate adenocarcinoma (PRAD, n = 497); Adrenocortical carcinoma (ACC, n = 240);

Skin Cutaneous Melanoma (SKCM, n = 466); Lung Squamous Cell Carcinoma (LUSC, n = 494);

Lung Adenocarcinoma (LUAD, n = 512). For these we directly downloaded the VCF samples

supplied by TCGA. We also used, as independent dataset to test our signature, a dataset of 101

WES samples of breast cancer obtained from dbGaP [153]. Such samples were analyzed with our

pipeline starting from the hg19 BAM.
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3.1 TMBCalc

The analysis of patients samples for the calculation of TMB takes a lot of time since it is necessary

to use two samples per patient, one normal and one tumoral. The calculation of TMB is done

through the somatic mutations which are the ones that cause the creation of neoantigens. The

somatic mutations are the mutation that we can find in the tumor sample excluding the germline

mutations already existing in the normal sample. Since a standardized pipeline for the study of

TMB does not exist we decided to create a pipeline using already existing tools Fig. 3.1. Our

pipeline can be started through FASTQ or BAM files. It comprises four modules listed below.

1. Alignment: The samples have been aligned with bowtie2 [54] using the Genome assembly

hg38. It is also possible to use hg19 reference genome.

2. Bam Processing: Each bam was modified adding the right readgroups, sorting and cleaning

it erasing the possible duplicates derived from the NGS analysis using picard.

3. Variant calling: The Variant calling has been done using Gatk Mutect2 with its subsequent

Filtration, keeping only the mutation labeled as "PASS"; and VarScan with the specific

command "somatic" and the consecutive "somaticFilter" with min-var-freq set to 10. A

feature of Varscan ("processSomatic") allows to split the vcf file in several vcf with two

principal groups, snp and indel. This allows users to apply some filter only to the former one.

To get a more precise variant calling, the two vcf resulting from the callers at the end are

intersected.

4. Annotation: The annotation has been done using Annovar [110, 47], an annotation tool

written in perl that holds several databases helping to annotate variants in gene based way,

region-based way or to filter them. We used the databases 1000genome (2015_08) [154],

snp146 [51], cosmic88 [155], NHLBI Exome Sequencing Project (ESP6500) [156]. All the

variants found in this databases were filtered out. We have as output two simple test file

one with all the variants that contribute to the TMB calculation and one with the TMB

calculation itself.

In our study we had to perform a previous step of conversion from bam to fastq by making use

of bedtools’ command bamtofastq after a sorting did with samtools for both TCGA and dbGaP

samples.

TMB calculation and Thresholds Although the TMB is commonly defined as «the number of

the counted non-synonymous mutations that alter the amino acid sequence of a protein» we decided
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Figure 3.1: Upstream analysis with TMBCalc Pipeline and Downstream analysis for the study of a new
gene panel for the TMB research

to include also the synonymous mutations since they result useful to improve sensitivity, because

they are explanatory of a mutational process [157, 97]. The TMB has been calculated esteeming

the size of genome to 38 MB [157] and applying the formula: TMB = #mutations
GenomeSize . All our analysis

on the panels consist of correlation and logistic regression analysis. Regarding Colon cancer each

analysis was done for five different threshold found in literature. These threshold were 5, 10, 20,

25.29 and 36.66. The first one was used as the default threshold. For the other tumors we used the

threshold of 20 as suggested by Calmers et al. [157] except for Breast Cancer samples of dbGaP

were we used a threshold of 10 as suggested by Sammons et al. [158] and Meara et al [159].

Panels We perform our analysis on several panels. (i) The Illumina commercial panel named

"Ampliseq for Illumina Comprehensive Cancer Panel" that is constituted by 409 cancer-associated

genes exons to understand if it was possible to run simultaneously an analysis of mutations and
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TMB with this panel used in clinical routine. This panel has a length of 1.7Mb so it exceeds the

minimal length suggested in previous work for a TMB panel. (ii) We built several custom panels

to understand which are the characteristic that a TMB panel should have. In particular, we built

1000 panels with for each 50, 100, 200 and 300 genes using the gene found in the WES analysis.

(iii) Additionally, we built a panel with the 500 most frequently mutated genes.

3.2 Survival Analysis and Microsatellite Instability

First of all we analyzed the overall survival of patients stratified with different TMB thresholds.

We performed survival analysis using the R packages survival and survminer generating survival

curves. The analysis of MSI were then conducted using the information about the MSI found in

TCGA portal. In this occasion the survival analysis on colon cancer patients were done employing

the TMB thresholds 5 and the presence or absence of MSI and also with the presence or absence

of metastasis. The resultant curves show that there is not a significative difference in the survival

both between patients with H-TMB and L-TMB and between patients with TMB lower than the

threshold and no MSI and patients with a TMB higher than the threshold and MSI Fig. 3.2 A,B.

A significative difference is detected in the Fig. 3.2 C where the patients with H-TMB, MSI and

Metastasis have a lower survival. Splitting the patients in High and Low TMB for the Panel of the

500 mostly mutated genes Fig. 3.3A the difference of survival is significative, with a decrease of

the survival for the H-TMB patients with an Hazard Ration (HR) of 1.68. In Fig. 3.3 we can see

that with the MSI information the results remain stable with the WES one. For the Ampliseq for

Illumina Comprehensive Cancer Panel the curves with and without MSI information had both a

not significative p.value Fig. 3.4.

3.3 Panel analysis

Correlation analysis Using the Pearson Correlation without splitting the patient in H-TMB

and L-TMB our results show that even a small TMB panel with 50 randomly selected mutations

give a strong correlation between WES-TMB and panel TMB. Though in Fig.3.5 we can see that

such a correlation of course increases while the number of genes increase in the panel.

Stratifying samples in H-TMB and L-TMB this correlation remain strong only for H-TMB

patients. Even if this trend is similar for the 100, 200 and 300 genes panels groups we can see that

L-TMB correlation raises when the number of genes increase. Regarding the 500 most frequently

mutated genes the correlation coefficient for low TMB patients its higher than 0.7 Fig.3.6. We

can conclude that a panel built with the most frequently mutated genes in WES could be a good
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3.3. Panel analysis

Figure 3.2: Survival curves. A) Survival curves at threshold 5 for all patients with survival information.
B) Survival curves with TMB threshold 5 and MSI information. C) Survival curves with threshold 5, MSI
and Metastasis information.
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3.3. Panel analysis

Figure 3.3: Survival curves of the 500 most frequently mutated genes in colon cancer A) With threshold
5. B) With Threshold 5 and MSI information.

Figure 3.4: Survival curves of the Ampliseq for Illumina Comprehensive Cancer Panel in colon cancer A)
With threshold 5. B) With Threshold 5 and MSI information.

Figure 3.5: Correlation between TMB calculated with WES data and TMB calculated with custom panels
with 50,100,200 and 300 genes in colon cancer

solution for TMB analysis, but unfortunately, this specific panel has a length of 6.44 Mb resulting

too big for the use in clinical. Concerning the "Ampliseq for Illumina Comprehensive Cancer Panel"

we can see in Fig. 3.7 that the total correlation is high, but when we split the patients in H-TMB

and L-TMB with threshold 5 this correlation decrease dramatically.

Grete Francesca Privitera 37



3.4. Ten most frequently mutated genes in colon cancer

Figure 3.6: Correlation between TMB calculated with WES data and TMB calculated with the custom
panel with the 500 most frequently mutated genes in colon cancer with threshold 5. A) Pearson correlation
of all patients. B) Spearman correlation of all patients. C) Pearson correlation of H-TMB patients. D)
Pearson correlation of L-TMB patients

Figure 3.7: Correlation between TMB calculated with WES data and TMB calculated with Ampliseq
for Illumina Comprehensive Cancer Panel in colon cancer with threshold 5. A) Pearson correlation of all
patients. B) Pearson correlation of H-TMB patients. C) Pearson correlation of L-TMB patients

3.4 Ten most frequently mutated genes in colon cancer

Next we analysed the 19269 mutated genes found in the samples using the refSeq gene Annovar

database [160]. Among these we selected the ten top frequently mutated genes in colon cancer:

TTN, SYNE1, MUC19, RYR2, NEB, LRP1B, MUC16, DYNC2H1, RYR3, COL11A1. Such genes

were then analyzed to establish their actual TMB predicting power. For each gene we counted the

actual number of mutations in each patient, the number of patients with such mutations, the mean

number of mutations for each patient. Then we split the patients according to a TMB threshold, and
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3.5. Classification Tree and logistic regression

we reported the same statistics for each patient group. We can clearly see that the mean number

of mutations for each gene in the patient with TMB higher than the threshold is significantly

higher than the corresponding one in the low TMB group. By making use of the number of genes

mutations in each class (high vs low TMB) we computed Odds Ratio. The results show the strong

discriminative power of such signature of genes. In tables 3.1, 3.2, 3.3, 3.4, 3.5 we can see the results

for each threshold. This high number of mutations per patients in each of the ten single genes is

not explicable with the length of such genes. Except for TTN, that is the longest gene between the

ones that contribute to the TMB in WES, the other genes are not the longest. We found SYNE1

as the fifth longest gene, MUC16 as the seventh and the other cannot even be found between the

first twenty longest genes. In the past, some authors have already studied the role of several of

these genes in TMB samples. For instance Kang et al. found that TTN (72%), MUC16 (67%),

and LRP1B (38%) are between the 10 more frequent gene in melanoma. [161]. The same study

of the ten most frequently mutated genes was conducted for each of the other sixteen tumors with

threshold 20 and it can be seen in Tables 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16,

3.17, 3.18, 3.19, 3.20, 3.21.

3.5 Classification Tree and logistic regression

To further understand the actual predictive power of TMB computed using the Ampliseq for Illumina

Comprehensive Cancer Panel, we computed the relation between its value and real one (computed

using WES). The real TMB was then partitioned in two values: High TMB and Low TMB according

to different thresholds ranging from 5 to 34.66. Such a binary variable was used as dependent variable

within two different prediction models: decision trees and logistic regression. The reliability of the

classification has been computed using a 10-fold cross validation with the caret R package. Measures

such as Sensitivity (the proportion of positive that are correctly identified, in our case the H-TMB

patients), Specificity (the proportion of negatives that are correctly identified, in our case the L-

TMB patients) and Accuracy were computed. In table 3.22 we report the results of the classification

of the two models using different thresholds. Both models show that using a threshold of 20 the

TMB calculated with the panel matches perfectly the one calculated with WES. Therefore, such a

panel could be suitable for TMB computation in clinical setting. A second analysis with logistic

regression was conducted using the ten most frequently mutated genes (see Table 3.23). This showed

that patients can be classified in high and low TMB using only these data. In each of the studied

threshold we have a specificity higher than 90% and a sensitivity above the 60%, the overall accuracy

was greater than 70%.
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3.5. Classification Tree and logistic regression

Table 3.1: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 5

Table 3.2: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 10
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3.5. Classification Tree and logistic regression

Table 3.3: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 20

Table 3.4: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 25.29
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3.5. Classification Tree and logistic regression

Table 3.5: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 34.66

Table 3.6: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 20 for Bladder Cancer
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3.5. Classification Tree and logistic regression

Table 3.7: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 20 for Cervix Cancer

Table 3.8: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 20 for Ovarian serous cystadenocarcinoma
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3.5. Classification Tree and logistic regression

Table 3.9: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test with
threshold 20 for Esophageal Carcinoma

Table 3.10: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Lung Adenocarcinoma
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3.5. Classification Tree and logistic regression

Table 3.11: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Lung Squamous Cancer

Table 3.12: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Kidney Renal Clear Cell Carcinoma
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3.5. Classification Tree and logistic regression

Table 3.13: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Kidney Renal Papillary Cell Carcinoma

Table 3.14: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Liver Hepatocellular Carcinoma
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3.5. Classification Tree and logistic regression

Table 3.15: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Pancreatic adenocarcinoma

Table 3.16: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Skin Cutaneous Melanoma
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3.5. Classification Tree and logistic regression

Table 3.17: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Prostate adenocarcinoma

Table 3.18: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Thyroid carcinoma
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3.5. Classification Tree and logistic regression

Table 3.19: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Stomach adenocarcinoma

Table 3.20: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Adrenocortical carcinoma
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3.5. Classification Tree and logistic regression

Table 3.21: Ten most frequently genes percentage, mean, standard deviation, fisher and Welch’s t-Test
with threshold 20 for Uterus Corpus Endometrial Carcinoma and Uterine Carcinosarcoma

Table 3.22: Accuracy, Sensitivity and Specificity of all colon cancer’s thresholds calculated with GLM and
RPART
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Table 3.23: Ten most frequently genes GLM results

3.6 The 44 genes panel

For the ten genes signature of each of the seventeen tumors that we have studied, we built a 44

genes panel which has a size of 1.05 Mb. We tested this panel on each of the seventeen tumors

using threshold 20. This pan-cancer signature shows promising results for each cancer here under

study. Indeed, as shown in table 3.24, the Pearson correlation in all tumors is major than 80%. We

performed the Pearson correlation also splitting the samples in H-TMB and L-TMB. The results of

this show that the correlation is always higher than 70% in more than 80% of the tumors. Moreover,

we calculated the accuracy, the sensitivity and the specificity of this panel in each tumor using glm

(Generalized Linear Model). In all tumors the accuracy of the panel is more than 80%. Therefore,

this signature is promising to be used as a new TMB specific panel easy to build and analyze since

its length. Moreover, we tested this new possible panel on the dataset of 101 samples of breast

cancer from dbGaP. As we can see in Fig 3.8A the Pearson correlation is 0.77 and if we split the

samples in H-TMB (Fig. 3.8B) and L-TMB (Fig. 3.8C) groups with a threshold of 10 [158, 159]

we have respectively a correlation of 1 for H-TMB and 0.79 for L-TMB. We can conclude that this

panel is the best solution to calculate the TMB with a good accuracy for almost each type of cancer.

With this panel is possible to speed the analysis of TMB and cut the cost of it reaching almost the

same results as WES.

Figure 3.8: Correlation of dbGaP samples TMB calculated with WES and the 44 genes panel. A) All
patients. B) High TMB patients. C) Low TMB patients
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3.6. The 44 genes panel

Table 3.24: Correlation, Accuracy, Sensitivity and Specificity of each tumor between TMB analyzed with
the panel built with the 44 most mutated genes and WES TMB
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3.7. Transcriptome and Enrichment analysis

3.7 Transcriptome and Enrichment analysis

DEGs analysis on RNA-seq (HTSeq-Counts) data of TCGA has been performed using the R pack-

ages TCGAbiolinks and Limma. Two different analyses have been conducted: (i) a comparison

between the H-TMB group vs the L-TMB group; (ii) a comparison of the patients with or without

one of the ten most frequently genes at the time. Genes with logFC > 0.6 and with an adjusted

p.value < 0.05 were selected. Enrichment analysis has been performed using MITHrIL [162]. The

results of the perturbation analysis, showed in Tab 3.25, yielded several perturbed pathways in each

of the threshold studied for colon cancer. In particular, among the pathways that are implicated

in immunitary and inflamatory response we have found that "Cytokine-cytokine receptor interac-

tion" and "Viral protein interaction with cytokine and cytokine receptor" were upregulated in all

threshold, "Chemokine signaling pathway", "Antigen processing and presentation", "Intestinal im-

mune network for IgA production", "Th1 and Th2 cell differentiation", "Th17 cell differentiation",

"Natural killer cell mediated cytotoxicity", "Fc epsilon RI signaling pathway", "T cell receptor

signaling pathway", "JAK-STAT signaling pathway", "Leukocyte transendothelial migration" have

been found in 4 out of 5 threshold and "Toll-like receptor signaling pathway" in 3 out of 5 threshold.

Only in threshold 34.66 analysis we also found the pathways "B cell receptor signaling pathway"

and "NF-Kappa B signaling pathway".

Table 3.25: COAD Perturbated Pathways with p.value ≤ 0.05, analyzed with MITHrIL
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Chapter 4

Variant Prioritization

Understanding which variants sustain the tumor development it is a hard path. Databases such as

clinvar and intervar are built to help researcher to understand the role of each variant in cancer.

Unfortunately, it is not always possible to understand each variant’s role and some of them are

classified as VUS or as “Unknown”. To help to understand the function of them in cancer, we

developed an algorithm which prioritized variants found in TCGA for each tumor.

4.1 VarPrAl: Variant Prioritization Algorithm

Dataset used We collected all the VCF samples available in TCGA using as primary site: Adrenal

gland (ACC, n = 240), Bladder (BLCA, n = 412), Brain (LGG, n = 911), Breast (BRCA, n =

1034), Cervix (CESC, n = 305), Colorectal (COAD, n = 389), Esophagus (ESCA, n = 181), Head

and neck (HNSC, n = 511), Kidney (KIRP, KIRC, n = 695), Liver (LICH, n = 419), Lung (LUAD,

LUSC, n = 1067), Ovary (OV, n = 411), Pancreas (PAAD, n = 183), Pleura (MESO, DLBC,

n = 115), Prostate (PRAD, n = 498), Skin (SKCM, n = 470), Soft Tissue (SARC, PCPG, n = 126),

Stomach (STAD, n = 450), Thyroid (THCA, n = 496) and Uterus (UCEC, UCS, n = 628). In

particular we downloaded all the four types of VCF in TCGA generated with different variant

caller, namely MuSe [163], MuTect2 by GATK [141], VarScan2 [142] and SomaticSniper [164]. We

intersected the VCFs of the same patient to obtain a more reliable variants calling prediction.

Algorithm Our algorithm is implemented in R and bash, the VCFs are annotated with Anno-

var [47] using the RefSeq [160], intervar [165], dbscnv11 and dbNSFP v4. [166] databases. The

databases Clinvar [48], Open Regulatory Annotation database (ORegAnno)] [167], the Ensembl

regulatory build annotation [168], genome-wide association studies (GWAS) [169] and Genotype-

Tissue Expression (GTEx) [170] are employed in R to obtain a substantial pathogenicity score.
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4.1. VarPrAl: Variant Prioritization Algorithm

4.1.1 Databases for variant prioritization

• Clinvar is a public archive that reports the relationships among human variants and their

phenotype. It was employed to classify the mutations in pathogenic, benign and unknown.

• Intervar together with Clinvar was employed for the first classification of the variants. It is

a tool developed to help to interpret the clinical significance of variants using 18 criteria. We

have used the last Annovar Intervar version.

• ORegAnno is a resource for curated regulatory annotation. It contains information about

distinct regulatory elements such as regulatory regions, transcription factor binding sites, RNA

binding sites, regulatory variants, haplotypes and others. It includes annotations schemes

that describe both the elements and outcomes of regulatory events. The current release of

ORegAnno include for human 261 660 516 bp in the GRCh38/hg38 genome assembly version.

• GWAS is a Catalog which delivers a high-quality curated collection of published genome-wide

association studies enabling the user to identify causal variants, understand disease mechanism

and establish targets for new therapies thanks to the strong association between common

genetic variation at loci and human traits. In June 2021 it contained 5106 publications and

258738 associations.

• GTEx is a project that has established tissue specific databases to study the relationship

between genetic variation and gene expression in human tissues thanks to Expression quanti-

tative trait loci (eQTL). The V8 release include 17382 samples.

• dbNSFP The actual version of dbnsfp (v4.1) is based on hg38 and includes 81,782,923 nsS-

NVs and 2,230,170 ssSNVs and it includes several score predictor. Precisely, we employed

the predictions of SIFT, SIFT4G, LRT [171], MutationTaster [172], MutationAssessor [173],

FATHMM [174], PROVEAN [175], MetaSVM and MetaLR [176], M.CAP [177], PrimateAI

[178], DEOGEN2 [179], BayesDel_addAF, BayesDel_noAF [180], LIST.S2 [181], fathmm-

MLK [182] and fathmm.XF [183].

• dbscnv11 [184] is a database of pre-computed scores for all potential scSNVs across the human

genome, advantageous to identify splice-altering scSNVs. This database is fundamental to

compute a pathogenicity score because mutations on splicing-site can be very deleterious for

protein function.
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4.1.2 Mutation classification and Validation

We started our analysis intersecting each patient’s mutation set with the Clinvar database in R.

Next, the variants that could not be found in Clinvar were annotated with Intervar using Anno-

var. The variants were split in three big categories: (i) Pathogenic, which include "Pathogenic" and

"risk_factor" variants from Clinvar and "Pathogenic" variants from intervar ; (ii) Benign, which in-

clude "Benign" and "protective" from Clinvar and "Benign" from Intervar and (iii) Unknown, which

include "interpretations_of_pathogenicity","Uncertain_significance", "not_provided", "drug_

response", "other", "association" and "Affects" from Clinvar, "Uncertain significance" and "Un-

known" from intervar and also the variants that could not be classify by the two databases. As

it can be seen in Fig. 4.1, we noticed by building survival curves that unknown mutations seemed

to be more pathogenic or benign in comparison to the ones classified by Clinvar and Intervar, so

we decided to build prioritization databases using these curves. These curves were assembled using

the genes of one commercial Illumina panel called "AmpliSeq for Illumina Comprehensive Cancer

Panel" and, for colon cancer, also customised prepared matrices built with the most significative

gene in colon cancer. These matrices were validated to assure the worth of the method. To vali-

date the matrices we employed a leave-one-out method splitting each of them in a train and a test

matrix. The ratio of the training set to the validation set was 2. We tested in this way two dif-

ferent matrices and a group of similar matrices. In detail, a matrix created intersecting the TGA’s

VCFs the AmpliSeq for Illumina Comprehensive Cancer Panel and, specifically for colon cancer, a

series of matrices created using the most meaningful genes founded in OMIM (Online Mendelian

Inheritance in Man) [185] and the most frequently mutated genes in this specific cancer type. The

significative genes found in OMIM are "PLA2G2A", "NRAS", "BUB1", "CTNNB1", "PIK3CA",

"FGFR3", "TLR2", "APC", "MCC", "PTPN12", "DLC1", "PDGFRL", "RAD54B", "PTPRJ",

"CCND1", "MLH3", "AKT1", "BUB1B", "TP53", "FLCN", "AXIN2", "DCC", "BAX", "SRC",

"AURKA", "EP300", "MSH2", "MLH1", "PMS1", "PMS2", "MSH6", "TGFBR2", "MUTYH",

"CHECK2", "KRAS", "BRAF", "MYH11", "PARK2" and "RNF43". The most frequent genes

have been added to these matrices using the probability of mutation. The two matrices obtained

from the commercial panel after its splitting in train and test were tested with a survival analysis

between these two groups and ROC curves were built to inspect the sensitivity and the positive

predictive value (PPV). The matrices specific for colon instead were validated splitting each one

in two initial groups, a train and validation set, moreover, the validation set was also prioritized

and the result were used to check if there was over-fitting. Later, the train group was validated

with ROC curves, as in the first two matrices. The results of each analysis were compared and

they proved that the matrices could be used as prioritization ones. The analysis were all conducted
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only on somatic variants thanks to the presence of the matched normal sample for each tumor that

permitted to exclude from the analysis the germline variants.

Figure 4.1: Survival curves of colon cancer patients with pathogenic and unknown mutations. It can
bee seen that the patients with at least one pathogenic and one unknown mutation (blue line) have the
worst survival compared with the patients with only unknown mutations (red line) and patients with only
pathogenic mutations (green line) that appeared to be the ones with the best outcome.

4.1.3 Unknown Classification

Each unknown variant was compared with both pathogenic and benign variants through a survival

analysis. In this way we have been able to assign to each an Hazard Ration (HR) and a p.value. The

comparison was done with the survival and survminer R packages comparing the survival curves of

groups of patients with and without these "unknown" mutations. Since in this way some mutations

could result classified both as Pathogenic and as Benign we also assigned a pathogenicity score to

each unknown variant. This score was calculated using different databases to decrease the possible

False positive variant classification.

Computation of the Pathogenicity score The Pathogenicity score was computed using the

databases OregAnno, Refseq Function, GTEx, GWAS, dbscnv11 and dbsnpf35. We attribute 1 point

to each variant that in dbsnpf database is assigned as deleterious more than 8 times, -0.5 point if

the variant is assigned as deleterious less than 7 times, 0 point if a variant is assigned as tolerate 8

times. 1 point to the variant that in the database dbscnv11 has the score "ADA" and "RF" higher

than 0.6. 1 point if a variant is assigned as "Non-synonymous" or "frameshift", 0.5 point if a variant

is assigned as "synonymous SNV", 0 point if a variant is assigned as "Unknown". 1 point if the
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variant exists in the database OregAnno, 0 if it does not exist. 1 point if the variant exists in the

database GWAS, 0 if it does not exist. 1 point if the variant exist in the database GTEx, 0 if it

does not exist.

4.1.4 Results

The aim of VarPrAI is to classify the "Unknown" Variants found in the NGS analysis to predict

their deleteriousness in cancer. Thanks to Kaplan-Meyer survival curves and our pathogenic score

we have been able to classify the unknown mutations as likely pathogenic or likely benign. In

particular, we have been able to prioritize 101 variants as benign and 40 variants as pathogenic

in colon cancer (Fig. 4.1) using the commercial panel and the pathogenity score. Our results

indicate that for colon cancer the prioritization has a sensitivity of 1 and a PPV of ∼ 0.6 with a

p.value ≤ 0.05 and a sensitivity between 0.99-0.67 and a PPV of 0.65 with a p.value between 0.06

and 0.99.

Table 4.1: Some of the mutations prioritizated as "Likely Pathogenic" in colon cancer
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Chapter 5

Virus in Disease and in Cancer

Viruses research in vitro is not always feasible. Microorganisms cultivation is not always possible,

so it now common their study using metagenomics. This research of viruses is important especially

in cancer since a lot of them can cause tumors ad a cause of their integration inside the human

genome. New discoveries of oncovirus could lead to better understand several tumors or to the

development of new possible therapies. Among the oncovirus we can find the Human Papilloma

virus that cause cervical tumors and head and neck tumors. To study these viruses in the organism

it is common to use tools that analyze the DNAseq and the RNAseq of the pratients. Here we

have analyzed 8 of them, comparing the performance of each of these tools on both a simulated

dataset and a real dataset using the same computational resources. Between these tools two have

been already inspected by Nooji et al. [186] review (ViruSeq and VirusFinder) but they were not

tested with the same dataset. We inspect their sensitivity to understand which is the tool that has

currently the best performance and to understand which is the most suitable for different situation.

5.1 Tools

• VirusFinder : VirusFinder [187] goal is to detect virus in a host sample, both integrated or un-

integrated, and to detect virus integration. It works on RNAseq, WGS or target sequencing

data and it accepts both raw sequencing reads (FASTQ) or alignment file (BAM). It is able

also to detect novel virus thanks to the use of the viral database of BLAST. Its pipeline is

constituted by three steps: (i) preprocessing, (ii) virus detection and (iii) virus integration

site detection. It maps the raw sequencing reads with the host genome, keeping aside only the

reads that are not mapped with the human genome itself. This reads are then used for viruses

research. In the second step, in fact, the tool align the unmapped reads to a virus database,

this databases can be downloaded from VirusFinder page. It is the one included in the RINS
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package and it has 32,102 viruses [188]. This database can be replaced by the user with a

custom one. After that, the tool de novo assembles the reads aligned to the virus DB into

contigs and maps these to host genome and virus database. The virus that is ranked as the

most abundant is used for the integration step. If the users know the virus and only want to

discover the integration sites, they only need to skip this step and pass directly to the detection

integration step. In the integration step VirusFinder combines human reference genome and

virus sequence and than, employing BWA, aligns the reads recruited in the preprocessing

to the new reference. From the result VirusFinder calls intercromosomal structural variants

(SVs) using SVDetect [189] and CREST [190] reporting the breakpoint of the SVs that involve

both Virus and Human. VirusFinder gives as output the candidates viruses identified, the

contigs mapped to these viruses, the virus insertion sites detected and, if they exist, the

possible novel contigs. The pipeline can be used splitting the three steps or launched with

only one command that calls all the three scripts. Unfortunately, it has not be updated since

2014 and new updates in Trinity make impossible to use the second step where trinity is

involved. We managed to solve the problem changing a part of the script and using the trinity

version 2.8.5. In this way the tools is only feasible for advanced bioinformatic users, but not

for non-expert user. The tool is implemented in Perl and it uses Bowtie2 [54], BWA, BLAST

[191], BLAT [192], Samtools [193], Trinity [194], SVDetect and CREST. It is able to work

with both Single-end (SE) samples and paired-end (PE) samples. The last update of the tools

was in 2014.

• VirusSeq : VirusSeq [195] subtracts human reads and identifies virus and their potential inte-

gration sites. It uses MOSAIK [196] as alignment software. As input the user can insert both

WGS or RNAseq samples. The non-human reads that are generated are aligned against a

database that include all known viral sequence from Genome Information Broker for Viruses

(http://gib-v.genes.nig.ac.jp/ - momentarily unavailable) and mapped reads are quantified.

A cutoff set by the user is used to cut the classification that are probably wrong. The cutoff

script though it is not perfectly functioning, so the tool give back only the most abundant

virus found. Fortunately, it is possible to find a list of all the virus found in the sample in the

log. This tool it is not able to discover novel viruses and it works on both SE and PE even if

it is claimed to work only on PE. There are no information about the last update of the tool,

probably 2013.

• DAMIAN : DAMIAN (Detection & Analysis of viral and Microbial Infectious Agents by NGS)

[197] is called as a user-friendly open source software that enables clinical personnel to identify

potentially pathogenic agents in clinical specimens. It has the ability to analyze also cohorts
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and it is able to identify novel pathogens. It works both with DNA and RNA samples and

the users can choose the host of their interest. It assembles reads into longer contigs prior

to classification and annotation, because the longer sequences increase the sensitivity and the

specificity of sequence similarity searches and the quality of the taxonomic assignments. It

requires reads in FASTQ-format that can be both gzip compressed or not. It runs both with

PE and SE. It removes low quality bases and adapters using trimmomatic. For each contig the

tools determine length, circularity, GC-content and ORFs, which sequences are translated into

amino acid sequences. So DAMIAN not only searches for nucleotide correspondence but also

for known protein domains that can be specific for bacteria, virus or fungi in some occasion.

As Database it employs the complete NCBI nt and nr database to perform the classifications.

It can be run with different settings, searching matches only with nt or with nr, with both

nt and nr or start searching with nt and if the match cannot be found searching with nr

(independently, redundantly and iteratively). DAMIAN report is built with a summary page

of all pathogens found, a page with the software information and a page for each of the

pathogen. The report includes information as contig length, abundance, taxID and so on.

The entries are sorted with a color code with six different categories. One category is colored

in grey and it includes the pathogens that DAMIAN considers as contaminant or artifacts.

This "contaminators" are specific viral sequence that are frequently detected as contaminators

in DNA or RNA experiments. As output DAMIAN gives also three files for each pathogen

two are fasta which contain respectively the contig sequence and the amino acids sequence

and one bed file which contains the list of the orfs. DAMIAN has also another optional

analysis that allows the identification of sequences from pathogens shared among groups of

samples. The samples should be split in unclassified, positives and negatives. The pipeline

performs pairwise BLAST alignment among the assembled contigs and create clusters that

sort by a score. As output we have a spreadsheet with results and FASTA file with the contig

sequence for each cluster, even for those that are not classified, so it can be easy to find novel

pathogens. Bowtie2 is used as alignment software, IDBA-ud [198] is used for the assemble

of sequence reads with a modification of the code to support reads up to a length of 250bp.

The sequence complexity is assessed using dustmasker [199] from the NCBI Blast+ suite and

contigs abundance is calculated based on the alignment of sequence reads to contigs using

Bowtie2. Using HMMER and PFAM database a screening of the amino acid sequence is

done. BLAST is used to identify similar sequences in NCBI’s nt and nr database performing

only MEGABLAST search if the user not specify anything. Though, it is also possible to do

BLASTN and BLASTP analysis on all contigs or only in that contigs that not match with

anything in the megablast search. NCBI’s taxnames and taxnodes are used to determine the
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lowest common ancestor (LCA). The software is written in Ruby and can be used on Linux.

A PostgreSQL database is need to store analysis results and associated metadata. The last

update of the tool was done in 2020.

• VirTect : VirTect [200] detects viruses in RNAseq data. It includes filters to discriminate real

viral sequences from noise and artifacts minimizing false positive rates. The filters used in

VirTect are three: (I) A threshold for the number of mapped reads (500), (II) A threshold for

the coverage of mapped reads (5X) and (II) A threshold of the length of continuous mapped

regions for any pathogen genome in their virus database (100). The inputs that should be

provided are reads in FASTQ. This FASTQ sequences are mapped against human genome

using TopHat2 [201]. The unaligned sequences are then aligned using BWA-MEM against the

VirTect virus database that is composed by 757 viruses. It is possible to change this database

with a custom one building the index for bowtie2 and bwa. At the end, the filtration are

performed removing noise/artifact and poly(A) sequence that are well known to have high

coverage with thousands of reads mapped to virus genomes. The main limitations of this

methods are that we have not the possibility to detect new viruses and that we cannot use SE

samples. To be able to use VirTect we had to add in the row 162 of the script a back slash

because the tool stopped itself in the samtools depth transition. The last update of the tool

was done two years ago.

• VirDetect : VirDetect [202] is also a tool based on subtraction that detects viruses from RNA-

seq data. It aligns the reads to the human genome using STAR (Spliced Transcripts Alignment

to a Reference) [203]. The reads not aligned to human genome are mapped to a database of

viral genomes. The VirDetect databases has 1893 manually-curated vertebrate virus reference

genome from GenBank from 16 December 2015. It is possible to use a custom database that

has to be modified with a script supplied by VirDetect authors. The authors performed

specific modification to the database used because RNAseq data have problems regarding

low complexity reads that can lead to false positive. They have optimized the database to

increase specificity masking the viral genomes for areas of human homology and areas of low

complexity. The tool cannot be used to find novel viruses, but it takes both SE (with slide

modification) and PE reads. The last update of tool was done 17 months ago.

• MetaMap: Metamap [204] is a k-mer program. It is not released as a command line tool, but

is an ensemble of two tools, STAR and CLARK [205], that the user should run separately. Its

goal is to classify not only virus but also bacteria and archaea coming from RNAseq data. Also

in this tool the reads are aligned against the human genome and only the unmapped reads
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are classified with CLARK-S [206]. The authors claim to have chosen these tools for their

scalability and accuracy. The reads are classified using a set of uniquely discriminative short

sequences at species level. CLARK-S output are a OTUs (Operational taxonomic units) count

matrix and two csv. In the first csv the user can find all the reads matched with a pathogen,

in the second each pathogen name and reads number. STAR is set to give as output not

only the alignment of the genome but also the gene expression quantification. CLARK needs

the generation of a large index file consisting of discriminative k-mers. This means that "it

assigns a read r to a reference genome G if r and G share more discriminative k-mers than other

genomes in the database". In CLARK the authors allowed mismatched between shared k-mers

in a limited number of position to increase the sensitivity of the classification. Metamap can

be used both with SE and PE samples. Unfortunately, it cannot be used to find novel, it

identifies some reads as "Unknown" in its report, but there is no the possibility to use them

to do a blast research for new viruses. The tool was update 3 years ago.

• ViGen: The aims of the pipeline called ViGen [207] is to detect and quantify read counts

at the individual viral-gene level and to detect variants from human RNAseq. The input file

necessary for this pipeline are reads in fastq format. It can be used not only for viruses, but

also to detect other microbes if the information can be found in NCBI. The pipeline comprises

four modules, in the first module, called "filtered human sample input", the RNAseq is aligned

to human genome using RSEM tool which takes advantage of bowtie [208] or bowtie2 or STAR.

Even though the authors recommend the use of bowtie, we have used bowtie2 for our analysis.

The unaligned sequence are aligned with Bowtie2 and BWA against viral reference file. The

unaligned sequences that result from step 1 are then re-aligned to viral reference file using

Bowtie2 in Module 2 called "unfiltered human sample input". The alignment of the virus is

done two times to be more comprehensive in viral detection. The reads aligned are used to

obtain reads counts for each viral genome using samtools. The third module called "Viral

Gene Expression Analysis" was not important for our analysis, but it calculates quantitative

read counts at the individual viral-gene level. The same thing for module 4 called "Viral RNA

Variant Calling Module" that is used to detect mutations in the transcripts from the viruses

obtained in step1 and step2. The database used to detect the viruses can be easily replaced

with another customed one creating for it the bowtie2 indexes. The database used by the

authors include 745 human viruses. This tool does not permit the discovery of novel viruses

since it is dependent from reference genome. It can manage both SE and PE samples. The

tool was updated 3 years ago.

• Kraken: Kraken [209] is a k-mer tool that use memory-intensive algorithm that associate

Grete Francesca Privitera 63



5.1. Tools

Table 5.1: Tools features comparison

the k-mers with the lowest common ancestor (LCA) taxa. Unfortunately the tool has a high

memory requirement. Kraken2 [210] was developed with a reduction in memory usage and

to perform a quicker classification. It introduces a probabilistic and compact hash table that

maps minimizers [211] to LCAs using one third of the memory of a standard hash table. The

speed of Kraken2 is also achieved because it stores only minimizers with length `(` ≤ k),

this minimizer will be the substring compared against the reference. Compared to Kraken

it indexes with about 6 times of giga less. The authors claim the database of kraken2 to

be about 85% smaller than the database of Kraken 1. Kraken2 does some modification on

the ncbi taxonomy, it finds a minimal set of nodes that consist of all the nodes to which

a reference sequence is assigned. The vertices between nodes are not modified. Then the

tool assign to the nodes sequentially increasing internal taxonomy ID numbers, in this way

ancestor nodes will have smaller ID numbers than their descendants. Naturally, a map of its

internal taxonomy numbers with the external taxonomy numbers is saved to make the results

interpretable. These internal IDs are used to facilitate the research of the LCA, since two

nodes that have near number are near in the three. The Kraken2 database is built using the

NCBI taxonomy [212], but it is possible for the user to create a custom database. Kraken2

takes both SE and PE samples and it is able to find novel viruses, because it gave back also

the unclasiffied reads. It does not need the step of alignment and this makes it faster that the

other tools that we have analysed. The tool was update 5 months ago.

The features comparison of these tools can be found in table 5.1.
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5.2 Methods

To test each tool we used two different types of datasets, one simulated and one real. The simulated

dataset was built with more than one virus. The real dataset samples have only one confirmed

virus.

Simulated dataset creation The simulated dataset was built using the tool fluxsimulator [213].

We took thirty viruses’ genome from NCBI and the human genome (version GRCh38) and we cre-

ated a simulated paired-end RNAseq sample. We downloaded the genomes of these viruses from

NCBI nucleotide, downloading both the FASTA and the GFF3 format. Subsequently, we used

the tool AGAT [214] to transform the GFF3 files in GTF files. After running fluxsimulator to

simulate RNAseq for each virus we joint each of the thirty viruses together with the simulated

human RNAseq and we performed the virus research with all the tools cited above. The virus

chosen for the simulated dataset are: Human Rhinovirus 3 (NC_038312), Human Rhinovirus 1

(NC_038311), Tomato mosaic virus (NC_0026921), Molluscum contagiosum virus (NC_001731),

Apple mosaic virus (NC_003480), Encephalomyocarditis virus (X743121), Human papillomavirus

52 (MT815274), Hepatitis C virus (NC_004102), Human papillomavirus type 31 (U37410), Hu-

man papillomavirus type 54 (NC_001676), JC polyomavirus (NC_001699), Marine RNA virus

SF-2 (NC_043518), Marine RNA virus JP-B (NC_009758), Hepatitis A virus (M14707), Human

immunodeficiency virus 1 (NC_001802), Anguillid herpes virus (MW580855), Apis mellifera virus

14 isolate BFH508NG (MH973769), Human enterovirus (AB807826), Escherichia phage T7 iso-

late T7 (MZ318363), Human herpesvirus 6B (NC_000898), Human measles virus (NC_001498),

Cyprinid herpesvirus 3 (NC_009127), Rotavirus C segment 8 (AJ549087), Japanese encephalitis

virus (NC_001437), Human papillomavirus 116 (NC_013035), Influenza A virus (NC_007366),

Rotavirus RCU (AF181864), Human parvovirus B19 (NC_000883), Hepatitis A virus (M14707)

and Human papillomavirus 16 (NC_001526). We tried to mix human, animal and vegetable viruses

to give an inclusive view of the power of these tools.

Real dataset To assure the functionality of the methods in real condition, we used 6 real datasets

from which we took from 3 to 5 samples. These datasets assure the real presence of one virus verified

with other methods or inserted intentionally in the cellular samples. We took for good only the

annotation of the single virus and we discarded the other annotation as we do not have trustworthy

information about them. Each dataset was picked from GEO and downloaded through ENA Browser

Fig.5.2.
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Table 5.2: Real dataset code: HPV16 [4], Hepatitis B Virus [5], Human Rhinovirus 16 [6], Human alpha-
herpesvirus 1 [7], Sars-CoV-2 [8], Hepatitis C virus [9], Ebola [10]

Database As explained in the section Tools each tool has its own database with some modification.

Since viGen and VirTect were the two tools for which was easier to use a custom database and with

default database with less of 800 viruses we decided to test them with two other databases. For

the simulated dataset we used virusite [215] database and a database composed by the virtect

database and the ncbi viral database. For real datasets we used only the latter one since the

results of simulated dataset were better. We simply downloaded the ncbi viral database and we

intersected the VirTect database with it. We chose not to use only the ncbi viral database since

virtect database possess also PaVE [216, 217] database papillomavirus so the union of them give

back better performance.

5.3 Results

Performance With 64 Gb of RAM and 64 cpu the Simulated dataset composed by two paired

fastq each of 110.7 Mb took to be analyzed: 44 minutes with VirTect, 20 minutes with VirusSeq,

3 minutes with viGEN, 21 seconds with VirDetect, 42 minutes with DAMIAN, 12 minutes with

Metamap, 7 minutes with VirusFinder and 6 minutes with Kraken2. For one of the HPV16 sample

with two fastq of about 11 Gb for each it took 4h and 16 minutes with VirTect, 2h and 42 minutes

with VirSeq, 6h and 43 minutes with Virus Finder, 3h and 7 minutes with ViGen, 1 day and 16h with

DAMIAN, 25 minutes with VirDetect, 15 minutes with Metampap and 8 minutes with Kraken2.

In particular DAMIAN was launched using 32 threads, VirusFinder with 8 threads, VirusDetect,

viGen, Kraken2 and VirTect with 16 and VirSeq with 14. So evaluating the two different situation

the fastest tool is kraken2.
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Classification Only DAMIAN and VirTect have a step of trimming. In the first tool there is

trimmomatic [218] included in the pipeline, in the second cutadapt [139] it has another script which

needs adapter sequence to be executed. For this reason each of the real dataset samples was trimmed

using Trim-Galore [138] before using the tools. We used for each tool the default options for filtering.

For Kraken2 where there was no information about the filter threshold we used 10, for viGen where

there was only information for the filter of copy number, we cut read counts at 50. VirTect give

back two output called "continuous region" and "final continuous region" where the second one is

filtered from the first one. We took the results from the non-filtered one as it appear to be more

precise, indeed the "final continuous regions" file looses a lot of real existing viruses. The results

obtained employing the simulated dataset and the results obtained with the real one are consistent.

As it can be seen in table 5.3 we have calculated for each tool the true positive, the false positive

and the false negative values having as result sensitivity and PPV. The best results for the PPV

have been obtained by DAMIAN, Virtect, VirDetect and viGen with 1. However, viGen, VirTect

and VirDetect have only respectively 5, 12 and 13 true positive of 30, so the best result is obtained

by DAMIAN. The best 3 sensitivity can be found in Metamap, viGen with the merge database and

with VirTect with the merge database with a value of 0.93. Overall the best result is achieved by

DAMIAN and by viGen using the database merge. The user needs to consider that viGen is about

13 times faster than DAMIAN and requires less computer resources, but that DAMIAN is able to

discover new viruses.

Concerning the real dataset in table 5.4 we can notice that for the HRV16 samples only VirusSeq

and DAMIAN are able to classify the virus correctly. The other tools are not able to classify it maybe

because they miss the Human Rhinovirus 16 in their databases. Instead, they have found rhinovirus

that have sequence similarity with HRV16 as Human Rhinovirus 89 and Human Rhinovirus 1 which

are part of the same species (Rhinovirus A), they have also found Human Rhinovirus 14 and Human

Rhinovirus NAT001 that are part respectively of Rhinovirus B and Rhinovirus C species. Metamap

classifies these samples as Human Rhinovirus A. This last tool, indeed, does not give always specific

serotype classification, but it stop at higher classification level. In addition to HRV, it classified the

Human papillomavirus 16 as alphapapillomavirus 9 namely the species name and not the serotype.

This can be considered a problem since alphapapillomavirus 9 species includes 7 serotypes and

Rhinovirus A even 82 different serotypes. Metamap is not specific also regarding the SARS-CoV-

2 samples. For the sample 11550056 it classifies the virus as bat coronavirus instead of SARS

coronavirus 2. As it can be seen in the sample SRR1946685 for viGen with its database the virus

is not detected with the filter cut, but without the filter we are able to find the virus.
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Table 5.3: Simulated dataset results
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Table 5.4: Real datasets results
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Chapter 6

Discussions and Conclusions

As a matter of fact, the pipelines developed in the scientific and research context need expert users

due to the peculiarity of the installation, the databases download, and the usage of specific tools.

Furthermore, in most of the cases such pipelines are command line tools which result uncomfortable

for life scientists and clinicians. The aim of my PhD project was to realize a technological and

methodological advancement for answering questions on cancer therapies that nowadays have an

important social and economic impact. The goal has been reached by developing a sensitive and

efficient approach to identify oncological signature and suggest oncological therapies.

• The OncoReport software allows to acquire, store and analyse clinical and NGS cancer pa-

tients’ data. OncoReport makes possible the clinical interpretation of NGS data through the

generation of rich and comprehensive reports. Indeed, it clearly represents an effective de-

cision support tool for oncologists. It has been developed to (i) be User-friendly, (ii) speed

up the clinician work, (iii) help to prescribe a personalized therapy, (iv) be used in a clinical

context without the need of technical knowledge [219].

• The pipeline TMBcalc has been developed for the study of TMB in patients to help the

decision on the possibility to use immunotherapy. Immunotherapy is one of the most promising

therapies of the last years, with a full regression for the patients where it works. The TMB

study indeed permits to predict the quantity of neoantigens produced by a patients, higher its

that number, higher is the possibility to respond to the therapy. The TMB standardization

protocols are not mature yet, so our goal was to develop a pipeline that permitted a faster

study of the biomarkers assisted by a pan-cancer panel as smaller as possible to speed up

the analysis maintaining the same accuracy of WES analysis. Even if our pipeline has not

an easy-to-use user interface yet, it is the first free pipeline to calculate the TMB through a

docker container [220].
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• The VarPrAl algorithm was developed to try to comprehend the role of single variants in

specific diseases. This knowledge can be useful in cancer studies when the role of a vari-

ant is unknown or undefined. For instance, for patients for which does not exist a specific

drug-mutation interaction the clinician can decide to study the role of each tumor variant to

understand to what to focus on. Moreover, the variants listed by the system can be used

as prognostic or diagnostic markers. The key point of a prioritization system is to separate

genuine disease causing or disease-associated genetic variants from other variants that could

be rare or not pathogenic for the disease under investigation. Unfortunately, the deleterious-

ness of a variant it is not sufficient to implicate a variant as playing a casual role in disease,

but this data could aid clinicians in the study of possible new pathogenic variants. Seeing

that, many pathogenicity-prediction algorithms exists, but no one is universally accepted as

the best. So, using score predictors and survival information we developed an algorithm that

prioritizes several variants from different type of tumors, particularly focusing on colon cancer.

This type of prioritization, being tumor-specific, could bring to a more reliable identification

of pathogenic variants.

• The study of the tools of RNAseq analysis for viruses research allowed us to understand the

best characteristic of each tools to suggest which one is suitable for specific clinical analysis.

The study of viruses metagenomics indeed it is still an hard path. Even if different tools exist

there is no one that is able to classify perfectly all the viruses. The choice of which tool utilize

it is imposed by the type of analysis that the user needs to do. If the user needs to discover

new viruses and he has enough available computer resources it is recommended the use of

DAMIAN. VirusFinder or Kraken2 can be a good alternative with less computer resource,

even though this two tools need a more expert user for the study of novel viruses. If the user,

instead, need only to research the already known virus existing in the sample viGen with the

database formed by VirTect database and ncbi database is the best choice.
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Appendix A

Appendix

All these works have been conducted in partnership with the IOM ricerca of Viagrande and with the

International Agency for Research on Cancer (IARC) in Lyon with the help respectively of Dott.

Stefano Forte and Dott. Massimo Tommasino.
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