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ABSTRACT

Emulating human learning is a fundamental component in research to-
wards artificial intelligence (AI).

However, despite the substantial progress in the last decades, humans
continue to outperform machines in many visual tasks. The motivation
for this discrepancy might be rooted in the lack of a fully understanding
the human learning process that is featured by being resilient to task and
data changes and keep increasing over time. In contrast, Artificial Neural
Networks (ANN) are highly susceptible to shifts in data distribution over
time, a shortcoming that hinders the development of intelligent agents that
can rapidly adapt to different context and experiences.

Continual Learning (CL) is a paradigm in AI that focuses on the abil-
ity of models to learn continuously over time, assimilating new knowledge
while concurrently preserving and building upon previously acquired in-
sights. Traditional AI models, when exposed to new data or tasks, often
suffer from ”Catastrophic Forgetting”, where the introduction of new infor-
mation can overwrite previously learned knowledge, or even erase it. The
essence of CL is to counteract this limitation, pioneering algorithms and
strategies that empower models to seamlessly integrate new information
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without compromising the integrity of their existing knowledge base.
Drawing inspiration from the human cognitive system’s remarkable

ability to learn, adapt and remember over decades, in this thesis we aim
to propose new solutions for AI systems that reflect this adaptability and
long-term retention. The ambition is to help usher in a new era of AI where
systems not only evolve in response to changing data landscape but also
become repositories of accumulated knowledge over extended periods.

We propose to address the problem of Forgetting from two perspec-
tives. In the first part, we design new methods inspired by the human
ability to draw on existing knowledge to address new challenges and de-
vise effective solutions. Past experience serves as a valuable reservoir of
insights that can be leveraged when tackling new problems. We emulate
prior knowledge within a neural network by employing an auxiliary stream
of data, that may encompass relevant features for both the current and sub-
sequent tasks. Alternatively, we introduce an hybrid transfer learning ap-
proach based on a fixed pre-trained sibling network, which propagates the
knowledge inherent in the source domain throughout the continual learn-
ing process. Then, we present an efficient strategy for coupling the primary
classification task with an orthogonal task that guides training, yielding ad-
ditional useful knowledge without the need to use external auxiliary data.

In the second part of this dissertation, we present two innovative so-
lutions, deeply inspired by cognitive theories, that attempt to replicate in
artificial networks some fundamental human cognitive processes. The first
approach exploits the mechanism of human visual system, showing the re-
markable property of selective attention to be resistant to forgetting. This
inherent robustness of the saliency prediction task, perfectly suits with the
continual learning context, improving the performance of a continual clas-
sifier. Finally, we introduce a novel wake-sleep learning framework, where
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the phase of acquiring new knowledge from the current task (wake) alter-
nates with a phase dedicated to consolidating and preparing for subsequent
experiences (sleep). This emulation mirrors the role of dreaming in easing
the learning process and enhancing the generalization capability.
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Part I

INTRODUCTION

“Without the ability to accumulate the learned knowledge and
use it to learn more knowledge incrementally, a system will
probably never be truly intelligent.”

Bing Liu, Lifelong Machine Learning, 2017
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CHAPTER

ONE

OVERVIEW

1.1 Introduction

From the moment of birth, and even before, biological organisms are capa-
ble to continuously absorb, adapt and evolve based on their interaction with
their surroundings. Neuroscientists and biologists, in their quest to unravel
the mysteries of the brain, have proposed numerous theories to explain this
inexhaustible capacity for learning. In parallel, Machine Learning (ML) re-
searchers have attempted to emulate such organic learning process within
Artificial Neural Networks (ANN), with varying degrees of success. Ide-
ally, neural networks should reflect the same ability to learn on a continual
basis. However, the journey has not been straightforward.
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4 Chapter 1. Overview

1.2 The World is not stationary

In contrast to the common learning process observed in nature, the predom-
inant approach in ML is Isolated Learning. In this approach, once a neural
network is defined, it is assumed that all training data is available since the
beginning; the model is then trained on this data and subsequently applied
to real-world tasks, where it is expected to perform. This static approach
overlooks a critical aspect of learning: the dynamic nature of information.
In real-world scenarios, information is not always available in its entirety
at the outset. Data may become available only later, requiring neural net-
works to adapt and expand the knowledge sequentially.

Isolated Learning does not account for the retention and accumulation
of knowledge. Humans, in contrast, never learn in isolation. We consis-
tently retain past knowledge, leveraging it to facilitate future learning and
problem-solving. When faced with a new problem, it is rarely completely
new to us: often we recognize parts of it from past experiences or different
contexts and we use them as starting points for understanding. This cog-
nitive richness underscores a pivotal aspect of human learning: we never
truly start from scratch.

The human mind is never a blank sheet. Even as newborns, humans
possess a genetically inherited knowledge base – a set of instincts, re-
flexes, and basic cognitive structures – that serves as the foundation for
all subsequent learning. It is dynamic, evolving with layers of memories,
experiences, and skills, enabling us to navigate an ever-changing world and
tackle more and more complex challenges.

While Isolated Learning has demonstrated to be effective for neural
networks, its efficacy heavily relies on the availability of huge amounts of
training samples. On the other hand, humans can learn effectively with few
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examples. This effectiveness stems from the vast reservoir of accumulated
knowledge from the past, allowing us to grasp new concepts with limited
data or effort. For instance, assuming we already have embedded knowl-
edge of what a horse is, we do not need thousands of samples of horses
and zebras to distinguish between them; our prior knowledge provides the
necessary context.

Unlike the human brain, which seamlessly integrates new knowledge
with old, for neural networks it is extremely hard to emulate this behaviour:
they struggle with accumulating knowledge incrementally. When exposed
to new data or concepts, they tend to adapt to the new data distribution,
often at the expense of previously acquired knowledge. This phenomenon
is also known as ”Catastrophic Forgetting”.

Catastrophic forgetting is more than just a minor hiccup in the journey
of machine learning; it’s a fundamental roadblock. It challenges the very
essence of creating models that can learn and adapt over time, much like
humans. Addressing this challenge bring us to the paradigm of Continual
Learning (CL). At its core, CL studies the problem of enabling ANNs to
learn continuously, acquiring new knowledge while retaining and building
on previously learned information. It seeks to emulate the human ability to
learn from sequential experiences without the need for revisiting old data
constantly. As an ultimate goal, CL aims to find solutions to mitigate the
forgetting problem.
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1.3 Catastrophic Forgetting: a persistent chal-
lenge in Machine Learning

Catastrophic Forgetting is a pervasive issue that potentially affects any neu-
ral network. Regardless of complexity, when a neural network is sequen-
tially trained on multiple tasks, the weights and the biases of the network
– which hold the learned knowledge – are updated to reflect the new in-
formation. However, without a specific mechanism to preserve the old
knowledge, these updates can interfere or disrupt the representations of
the previous tasks.

The phenomenon of catastrophic forgetting has been recognized and
examined since the dawn of ML. In the 1980s, researches identified and
described it as a potential fundamental limitation of what distributed ar-
chitectures (referred to as the early name of multi-layer perceptron pre-
cursors) could do [1, 2, 3, 4, 5, 6]. McCloskey and Cohen [5] observed
that under certain conditions, the process of learning new patters partially
o completely erase the knowledge that the network had already learned.
They termed this event as ”catastrophic interference” (now replaced by
the more common term forgetting) and their investigations concluded that
a significant part of the issue was due to the fact that neural networks are
organized as one single set of shared weights, which allow them remark-
able abilities to generalize, but at the same time to progressively degrade.
Ratcliff [6] conducted extensive experiments examining various alternative
ways of updating network weights (e.g., modifying all weights; adjusting
only a subset of them; incorporating new hidden units; adding hidden units
while changing only connections to and from the new units) discovering
that none of the tested methods produced satisfactory results for the entire
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test sequence samples. Furthermore, he noted that all the considered cases
always led to two alternative behaviours: the last test samples were better
identified at the expenses of the early samples, or vice-versa, indicating
an inevitable trade-off between recent and older memories. Ratcliff’s find-
ings were a concrete illustration of a very complex problem concerning all
neural networks trained with gradient-based optimization methods, known
as the stability-plasticity dilemma [7]. The dilemma revolves around the
two opposing needs of neural networks: the requirement of plasticity to
acquire new data, and the need to stability to retain prior knowledge. Ex-
cessive plasticity results in high forgetting as old knowledge makes room
for the new one. Conversely, excessive stability causes the network to be
resistant to learning new experiences. Managing this delicate balance is
critical to the development of robust and versatile learning systems.
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CHAPTER

TWO

BACKGROUND

While the implications of Continual Learning traverse various domains,
this thesis specifically focuses on the problem of continual learning for im-
age classification. Image classification is one of the most pivotal problems
in the field of computer vision; indeed, the task of correctly categorizing
images is not only integral to diverse applications such as medical diagno-
sis, autonomous driving and content recommendation, but it also serves as
a benchmark for assessing the robustness and adaptability of AI systems.

2.1 Continual Learning: Formal Definition

CL is the problem of learning from a non-i.i.d. (independent and identically
distributed) stream of data, with no or limited access to old training sam-
ples. More formally, let D = {D1, . . . ,DT} be a sequence of data streams,
where each pair (x, y) ∼ Di denotes a data point x ∈ X with the corre-
sponding class label y ∈ Y; the sample distributions (in terms of both the

9



10 Chapter 2. Background

data point distribution and the class label distribution) of different Di and
Dj may vary — for instance, class labels from Di might be different from
those from Dj . In other words, although the data point within Di are i.i.d,
the global D deviates from this assumption. Given a classifier f : X → Y ,
parameterized by θ, the objective of CL is to train f on D, organized as
a sequence of T tasks {τ1, . . . , τT}, under the constraint that, at a generic
task τi, the model receives inputs sampled from the corresponding data
distribution only, i.e., (x, y) ∼ Di.

The training objective is to optimize a classification loss over the se-
quence of tasks (without losing accuracy on past tasks) by the model in-
stance at the end of training:

argmin
θT

T∑︂
i=1

E(x,y)∼Di

[︂
L
(︂
f (x;θT ) , y

)︂]︂
(2.1)

where L is a generic classification loss (e.g., cross-entropy).

2.2 Scenarios

Given the complexity of learning over a series of tasks, and the underlying
need to find effective solutions, CL has received considerable attentions
from researches. In recent years a plethora of methods have been proposed
to alleviate the problem of forgetting. However, a multitude of subtle, but
crucial differences between evaluation protocol made systematic compari-
son of early CL methods extremely complex, even among those using the
same datasets. The need for a uniform categorization, trying to structure
the CL problem, and identifying common frameworks widely shared by the
community became imperative. With this aim, three fundamental types, or
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Figure 2.1: Example of Task Incremental Learning (Task-IL). (x, y and
task-ID) represents (input image, label, task identity). In Task-IL, task-
ID is explicitly provided. A typical network has a ”multi-headed” output
layer: each task has its own output units, while the rest of the net is shared
between tasks.

scenarios, of CL were identified in order to categorize the most of the pro-
posed methods. Essentially, categorization is based on the availability of
the task identity at inference time, and if not, if the model is required to
explicitly identify the task [8].

2.2.1 Task-Incremental Learning

Task-Incremental Learning (or Task-IL) is the case where a neural network
is designed to learn multiple distinct sets of classes incrementally (i.e.,
Yi∩Yj = ∅,∀i, j ∈ {0, . . . , T} with T the number of tasks). Additionally,
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the model explicitly receives the information about the task to solve t, as
input, also at inference time. Since the model is always informed about
the task to tackle, and thus the dimension of the problem is simplified to
distinguish between the classes of the task at hand, this is considered the
easiest CL scenario. It is also possible to design models equipped with
task-specific components. A typical neural network for this scenario has a
common backbone net shared for all the tasks, and a multi-headed output
layer; at inference time, only the t-th head is activated to make predictions.

Figure 2.2: Example of Class Incremental Learning (Class-IL). (x, y and
task-ID) represents (input image, label, task identity). In Class-IL, task-
ID is not available at testing time. The model must incrementally learn to
discriminate between a growing number of classes.
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2.2.2 Class-Incremental Learning

In the Class-Incremental Learning (or Class-IL) scenario, similarly to
Task-IL, each task consists of a unique set of classes, but at inference time
the identity of the task to be solved is not available. This makes the clas-
sification problem considerably more challenging. In practice, the neural
network has to discriminate between an increasing number of classes as the
number of tasks grows. The main difficulty lies in distinguishing between
classes belonging to different tasks, since the network tends to predict bet-
ter those of the last task. Due to its intricate nature, Class-IL is considered
the most complex among the three CL scenarios. For the same reason,
Class-IL is the most popular benchmark when a new CL method is pro-
posed.

2.2.3 Domain-Incremental Learning

In the Domain-Incremental Learning (or Domain-IL) scenario, the com-
plexity emerges due to varying domain context, while the class labels re-
main invariant. The overall class number is fixed since the beginning: each
task yields the same possible outputs, and at inference time the task iden-
tity is unknown. The challenge arises from shifts in class distribution,
resulting in different internal representation with each task. Such domain
shifts may be due, for example, to different permutations within tasks. De-
signed specifically for scenarios that require domain adaptation [9, 10, 11],
the objective of Domain-IL is to maintain proficient performance levels
on previous tasks while utilizing one single model. Practical examples of
this CL scenario are recognizing objects under different lighting conditions
(e.g., the first task involves identifying items indoors, while the second
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Figure 2.3: Example of Domain Incremental Learning (Domain-IL). (x, y
and task-ID) represents (input image, label, task identity). In Domain-IL,
task-ID is not available at testing time. In Domain-IL, each task has the
same possible outputs, since the same classes are used in each task, but
the in-data distribution changes at each task.

task focuses on the outdoors), or recognizing traffic signs under distinct
weather conditions [12]. Despite the change in environmental context, the
categories remain the same, but their appearance and representation might
vary significantly, thereby requiring the model to adapt without forgetting
its prior learning.
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2.2.4 A more complex setting: Online Continual Learn-
ing

The three CL scenarios just presented, also known as academic scenarios,
have received significant attention from the research community. However,
since they represent abstractions of diverse real-world applications, they
also come with some simplifications. One of them concerns the number
of training iterations per task. The academic scenarios do not impose any
limitation on the number of times an individual data-item can be shown
to the model within the boundaries of a given task. Nevertheless, some
real cases may impose more severe restrictions on the data availability.
Online Continual Learning (OCL), addresses situations where data-item
are received in a temporal sequence and must be processed immediately. It
is generally based on either Class-IL (oCIL), or Task-IL (oTIL), imposing
the constraint that the model cannot review past samples or store them
for future reference due to constraints such as memory limits or real-time
processing. The problem of OCL will be faced in Chapters 5 and 6.

2.3 Benchmarks

To benchmark and evaluate CL strategies, researchers have predominantly
relied on common datasets originally designed for supervised image classi-
fication, but appropriately re-organized for a context of incremental learn-
ing. Here we provide a list of the dataset that will be used in the following
chapters:

• Sequential CIFAR-10 (Seq-CIFAR-10): derived from the CIFAR-
10 dataset [13], which offers 60,000 32x32 RGB images across 10
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classes. It is split into 5 binary tasks, with 5,000 and 1,000 images
for training and testing, respectively, per task.

• Sequential CIFAR-100 (Seq-CIFAR-100): it is obtained by divid-
ing the original 100 classes of the CIFAR-100 dataset [13] into 10
consecutive tasks, with 20 classes each organized into 20 classes
with 500 32x32 color images per class for training, 100 for testing.

• Sequential Mini-ImageNet (Seq-Mini-ImageNet): it includes a
subset of 100 classes from the popular ImageNet dataset [14], de-
vised in a sequence of 20 tasks. Each tasks includes 84x84 RGB
images from 5 different classes; for each class, 500 images are used
in training and 100 for evaluation.

• Sequential Tiny-ImageNet (Seq-Tiny-ImageNet): it is obtained
by splitting the Tiny ImageNet dataset [15] into 10 tasks with 20
classes each. Images are reshaped to 64x64, and for each class there
are 500 images for training and 50 images for testing.

• Sequential Micro-ImageNet (Seq-Micro-ImageNet): designed as
a subset of Seq-Tiny-ImageNet, it consists of 20 classes, split into 5
tasks of 4 classes each.

• Sequential FG-ImageNet (Seq-FC-ImageNet): it is a fine-grained
image classification benchmark with 100 classes of animals ex-
tracted from ImageNet [14], used to test CL methods on a more
challenging task. Each class contains 500 samples for training and
50 for evaluation1.

1FC-ImageNet is derived from https://www.kaggle.com/datasets/

ambityga/imagenet100

https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100
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• Sequential CUB-200 (Seq-CUB-200): it derives from Caltech-
UCSD Birds-200 datasets [16], split into 10 tasks of 20 classes each,
with just around 30 training and testing images per class resized to
224x224.

2.4 Metrics

Here we list the main evaluation metrics proposed for CL in literature:

• Final Average Accuracy (FAA) is the final average accuracy of the
model after learning the last task T , defined as:

FAA ≜
1

T

T∑︂
i=1

aTi . (2.2)

where ati is the model accuracy on the i-th task after training on
task t. FAA is the primary evaluation metric, used in every CL
manuscripts.

• Final Backward Transfer (FBWT) [17] measures how learning the
current task t affects on the performance on a previous task k <

t. There is a positive backward transfer when learning about task t

increases the performance on some preceding task k, while negative
backward transfer suggest the opposite:

FBWT ≜
1

T − 1

T−1∑︂
i=1

aTi − aii (2.3)

• Final Forward Transfer (FFWT) measure the influence that learn-
ing the current task t has in the performance on a future task k > t.



18 Chapter 2. Background

Positive forward transfer implies that the knowledge from prior tasks
have enhanced the learning of a new task. FFWT is computed as the
difference between the accuracy just before starting training on a
given task and the one of the random-initialized network, averaged
across all tasks:

FFWT ≜
1

T − 1

T∑︂
i=2

ai−1
i − arandomi (2.4)

where arandomi is the accuracy of the network with random initializa-
tion on the i-th task.

For all these metrics, the larger these values, the better the model. In
the ideal scenario, we would observe:

– Positive Forward Transfer: this means that learning earlier tasks
makes it easier to learn subsequent task due to the shared knowledge
or generalizable features.

– No negative Backward Transfer, i.e., when new tasks are learned, the
performance on previously learned tasks remains unaffected.

The typical scenario encountered is, instead, as follows:

– Backward Transfer is always negative, as a direct consequence of
catastrophic forgetting.

– In terms of Forward Transfer, in the Class-IL and Task-IL scenar-
ios, where distinct classes are learned in distinct tasks, a positive
transfer is essentially impossible (the model should be capable of
correctly classifying unseen classes); in Domain-IL setting, where
original images are provided with different transformation, positive
values might be feasible.
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Finally, forgetting, as a measure of the severity of performance degra-
dation, can be quantified as follow:

• Final Forgetting (FF) measures the average performance degrada-
tion occurring on past tasks between their best values and the current
accuracy:

FF ≜
1

T − 1

T−1∑︂
i=1

max
l∈{1,...,T−1}

ali − aTi (2.5)

If FF is a positive value, it indicates that the model has forgotten some
of what it learned initially. If negative, it implies that subsequent training
improved the model performance on the original task.

Other possible (secondary) criteria in order to evaluate the model per-
formance may be:

• Memory consumption: the amount of required memory.

• Amount of stored data: how much past data-item does the model
need to retain?

• Task boundaries: does the model require a clear division among
tasks?

• Prediction oracle: does the model require knowing the task identi-
fier for prediction? If yes, the model is explicitly designed for Task-
IL scenario.

2.5 State of the Art

A wide range of methods have been introduced in the last few years to
address the problem of forgetting. These methods are typically classified
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into three large groups, based on how they store or use task-specific infor-
mation during the sequential learning process [18]. This section presents
the most important CL methods for each category, with a brief description
of them. We will encounter many of them in the following chapters, where
they are compared against our methods. We report them also here to ease
understanding for readers.

2.5.1 Regularization-based methods

The regularization-based methods aim to find a balance between retain the
knowledge representation acquired from past task, while granting enough
adaptive capacity to integrate new information into the model. This bal-
ance is most achievable if tasks exhibit substantial similarities in their
complex feature embeddings, indicating that many acquired features can
be mutually utilized across task.

Regularization techniques can be further divided into two sub-
categories:

– Functional methods are broadly inspired from knowledge distilla-
tion [19, 20]. They focus on maintaining consistent model outputs
for previously seen task, storing the prediction of data samples and
reusing them in the future as soft target using additional distillation
losses.

– Structural methods emphasize rigid protection of model parameters.
Generally, they identify a subset of network parameter highly corre-
lated with the performance of each task at every level of the model
architecture and prevent them from critical updates.
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Functional Methods

• Learning without Forgetting (LwF) [21] is probably the most fa-
mous functional method. Before learning the next task, the old
model’s predictions are stored and then reused during training as a
form of pseudo-labels to distill prior knowledge. The aim of this type
of regularization is to maintain the output related to previous tasks,
thereby conserving earlier knowledge, even though these predictions
(made before training on the current task) probably are no-sense.

• Encoder Based Lifer Long Learning (EBLL) [22] extends LwF
using autoencoders to preserve knowledge from prior tasks when
learning new ones. Each task has its own under-complete autoen-
coder to capture essential features. When faced with a new task,
the feature reconstructions from these autoencoders are kept stable,
ensuring preservation of crucial features of previous tasks.

Structural methods

• Elastic Weight Consolidation (EWC) [23] preserves performance
on previously learned task penalizing large changes to the neural net-
work weights that are crucial for tasks the model has already learned.
After the training of the current task, the importance of each weight
for the task is computed using the Fisher Information Matrix. When
the model is trained on the next task, EWC adds a regularization
term to the loss function. This term penalizes changes to important
weights, with the strength of the penalty determined by the previ-
ously computed importance values.

• online Elastic Weight Consolidation (oEWC) [24] is an efficient
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approximation of the original EWC. In fact, EWC requires com-
puting the Fisher Information Matrix for each task, a computation-
intensive procedure whose cost is proportional to the number of
tasks. This online variant of EWC approximates the original method
with similar performance.

• Synaptic Intelligence (SI) [25] is conceptually similar to EWC, but
SI operates in an online manner, trying to estimate the importance of
the parameters during the training on the tastk itself.

2.5.2 Architectural methods

Architectural methods involve adapting or expanding the network’s archi-
tecture to accommodate new tasks while preserving knowledge of previ-
ous tasks. These methods allow to dedicate distinct sets of parameters to
every task. Upon encountering a new task, the model can create new sub-
modules specifically for that task, allowing the network capacity to expand
based on the number of the task to solve. While architectural approaches
usually offer simple training procedures and are able to achieve high per-
formance, they generally require the availability of the task-identifier at
testing time, making them predominantly designed for the Task-IL sce-
nario.

• Progressive Neural Networks (PNN) [26] were originally proposed
to tackle Reinforcement Learning, but the method can be effectively
adapted to other contexts, such as CL. When a new task arrives, in-
stead of modifying the existing network, a new network (named col-
umn) specific for the new task is added. To employ the previous
knowledge, the new network is linked to older columns by lateral
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connections, that let the newer task to access information from the
older tasks, but not vice versa. Although PNN is designed to prevent
forgetting, it requires a significant amount of memory that increases
linearly with the number of tasks.

• Packing Multiple Tasks into a Single Network (PackNet) [27] ef-
ficiently ”packs” knowledge of multiple tasks into a single neural
network by pruning less important weights from earlier tasks and
reusing this freed space for new tasks. It employs binary masks
to determine which weights are preserved and which are adapt-
able. This approach avoids significant network expansion, making
it memory-efficient while retaining prior knowledge.

• Hard Attention to the Task (HAT) [28] employs attention masks
to define which parts of a neural network are active for a specific
task. When training on a new task, the model learns both weights
and these attention masks. The masks ensure only certain network
regions are updated, preserving knowledge from previous tasks.

2.5.3 Replay-based methods

Replay-based methods counteract catastrophic forgetting by periodically
replay some of the previously encountered data while learning new tasks.
They are generally based on a small, fixed size buffer in which informa-
tion from old data can be stored and reused in future. During the train-
ing of a new task, the model learns not only from the new data but also
from random batches of old data fetched from this buffer. Despite lack-
ing of correlation with biological insights, they generally outperform all
regularization-based methods and, unlike architectural methods, do not re-
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quire the information of task-ID at inference time. Their primary limita-
tion is the need to maintain a memory buffer to store some samples, which
could be raise privacy concerns in some real-world applications. To tackle
this issue, a subcategory of methods known as generative methods opt for
producing synthetic samples using GANs [29, 30], instead of storing real
samples, as rehearsal methods do. However this approach introduces an
additional level of complexity, as generative models trained in continual
tend to collapse quickly. In fact, the results obtained by generative models
are inferior to those of rehearsal methods generally.

• Incremental Classifier and Representation Learning
(iCaRL) [31] utilizes a distillation loss term similar to LwF to
prevent forgetting. It computes exemplars, representative samples
from previous classes; when a new class is introduced, iCaRL
updates features using new data and exemplars. Classification is
based on a nearest-mean-exemplars classifier. To manage memory,
it effectively selects the most representative exemplars, balancing
memory constraints with knowledge retention.

• Experience Replay (ER) [32] is a pioneering work among the
replay-based methods. It proposes to interleave training samples
from the current task and past samples from the buffer in the training
batches. The reservoirs sampling [33] can be adopted to randomly
select images from the input stream, with the guarantee that all seen
classes are equally represented in the buffer. ER has inspired most
of the subsequent methods.

• Gradient-based Sample Selection (GSS) [34] introduces a specific
optimization of the basic rehearsal formula meant to store maximally
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informative samples in memory.

• Gradient Episodic Memory (GEM) [17] extends the use of a mem-
ory that gets replayed episodically with constraints on the gradients
to be non-conflicting with updates for previous tasks.

• Averaged Gradient Episodic Memory (A-GEM) [35] proposes an
efficient approximation of GEM, introducing significant improve-
ments on computational and memory cost.

• Function Distance Regularisation (FDR) [36], similarly to LwF
and iCaRL, introduces a distillation loss term in order to minimize
interference of prior learning.

• Hindsight Anchor Learning (HAL) [37] individuates synthetic re-
play data points that are maximally affected by forgetting.

• Dark Experience Replay (DER) [38], and its improved versions
DER++ [38] and X-DER [39] are enhanced versions of ER. Along
with the samples in the buffer, these methods also store previous
network responses and with additional self-distillation loss terms,
they push the model to replicate the same outputs.

• Experience Replay with Asymmetric Cross-Entropy (ER-
ACE) [40] is an enhanced version of ER that proposes to separate
the contributions of cross-entropy loss of samples in the buffer from
those of the input stream, aimed at preventing imbalances due to the
simultaneous optimization of current and past data.

• Contrastive Continual Learning (CO2L) [41] proposes to facili-
tate knowledge transfer from samples stored in the buffer by opti-
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mizing a contrastive learning objective [42], avoiding any potential
bias introduced by a cross-entropy objective. To perform classifica-
tion, a linear classifier needs to be first trained on the samples stored
in the buffer.

• DualNet [43] is a dual-backbone architecture decoupling the issue of
incremental classification from the one of learning an overall trans-
ferable representation. The latter task is demanded to one of the
backbones (slow learner), trained with a self-supervised loss term
on i.i.d. data coming from the replay buffer; the other backbone
(fast learner) is instead tasked with fitting the CL tasks while taking
advantage of the representations produced by the slow learner.

• Continual Prototype Evolution (CoPE) [44] proposes a classifier
based on class prototypes, whose careful update scheme allows for
learning incrementally while avoiding sudden disruptions in the la-
tent space.



Part II

EXPLOITING PRIOR/ADDITIONAL
EXPERIENCES FOR CONTINUAL
LEARNING

“I have to believe in a world outside my own mind. I have to
believe that my actions still have meaning, even if I can’t re-
member them. I have to believe that when my eyes are closed,
the world’s still there. Do I believe the world’s still there? Is
it still out there? . . . Yeah. We all need mirrors to remind
ourselves who we are. I’m no different . . . now . . . where was
I?”

Leonard ”Lenny” Shelby, Memento, 2000
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A fundamental truth of human cognition is that no one starts as a blank
slate. Our lives are complex and full of innate knowledge and instinctual
understanding from the beginning. And this foundational knowledge is
not static. It keeps evolving, adapting and growing, drawing from each
single experience, each challenge and each learned lesson. It is reservoir of
accumulated knowledge that enables people to undertake new tasks, find
innovative solutions to unprecedent challenges, and continue to broaden
the bounds of our knowledge.

This inherent human ability of using past experiences as a foundation
for future learning serves as our inspiration for the following Chapters.

In Chapter 3 we highlight the importance of prior knowledge – specif-
ically, how past experience can be used to enable more efficient and ef-
fective problem solving. Therefore, we emulate the reactivation of prior
knowledge using an auxiliary data stream.

In Chapter 4 while we strive with emulating human cognition by lean-
ing on pre-trained models, we address the inherent limitations of Transfer
Leaning in the CL paradigm. The challenge lies in observing that the im-
pact of pre-training decreases as the number of tasks increases. We propose
a novel method where each task of the sequence can equally leverage prior
knowledge from pre-training.

Chapter 5 presents a shift in perspective, where we face CL by pairing
the classification task with an auxiliary task, from which some knowledge
can be re-used to address the primary task. This synergy is designed to
guide the learning process, with particular emphasis on the use of self-
supervised equivariant tasks.



CHAPTER

THREE

LEVERAGING PAST KNOWLEDGE

THROUGH AUXILIARY DATA

Our journey in tackling catastrophic forgetting starts with a work that
aims at includes principles of human learning, specifically trying to har-
ness prior knowledge derived from past experiences that can be reused for
learning new tasks and solving new problems more effectively. In our first
attempt, the past knowledge is emulated through the use of an auxiliary
data stream. By incorporating such auxiliary information during training,
the model becomes more adept at disentangling underlying patterns and
generalizing knowledge. As a result, when new tasks arise, the model can
leverage its enriched understanding of shared features to adapt and learn
more efficiently.

29
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3.1 Motivation

Human beings and animals are naturally able to memorize information
presented in a sequence [45]; on the contrary, Artificial Neural Networks
(ANNs) learning from a non-i.i.d. stream of data incur in Catastrophic
Forgetting [5, 6]. Continual Learning (CL) [46, 44] aims at designing
methods that compensate for this issue and facilitate the retention of pre-
vious knowledge either by means of regularization [23, 21], architectural
designs [26, 28] or (pseudo-)replay of past data [6, 47, 29].

The insurgence of catastrophic forgetting is ascribed to the tendency of
models to rewrite their hidden representations as they adjust their param-
eters to best fit an input distribution that changes in time [48]. However,
McRae & Hetherington highlight a meaningful difference in the way hu-
mans and ML models learn from a sequence of data: whenever human
subjects are evaluated on their ability to memorize a sequence of concepts,
they start out possessing an already-large body of knowledge [49]. In other
words, humans are generalists that can anchor novel data in the context of
previous knowledge, while ANNs must specialize on a limited pool of data
at each time without any additional reference.

An obvious choice to bridge this gap is pre-training the models on a
large amount of available off-the-shelf i.i.d. data, leading to a better ini-
tialization for the learning procedure [49, 50]. However, we observe that
pre-training is not always rewarding in a CL setting, especially in case of
small-size replay memories: the ever-changing stream of data entails large
changes in model parameters, leading to the forgetting of the pre-training.

We instead propose a learning strategy to limit catastrophic forgetting
by providing an additional data stream (uncorrelated from the target data),
from which the network can draw auxiliary knowledge. The role of this
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data stream is to provide models with a more stable representation of the
world that can be re-used for incrementally learning new classes or cate-
gories leveraging the already-learned low-level features. Indeed, it appears
that the human brain can adapt and rewire itself more easily when learning
new things related to familiar skills because pre-existing neuronal structure
constrains what one can learn [51]. We attempt to enforce this concept
into CL through the definition of an associative rule that helps learning
new classes by measuring the simultaneous firing of neurons between past
knowledge and the current data stream. This is implemented through a
simple yet effective strategy named MAH, that, during a new task, assigns
new classes to model’s corresponding Most Activated Heads.

Experimental results carried out on standard CL settings, involving
CIFAR-10 and (a subset of) Tiny-ImageNet benchmarks, demonstrate that
using a separate auxiliary data stream is mostly beneficial with limited size
buffer leading to a performance gain of several percent points w.r.t. state-
of-the-art methods. Analogously, the MAH strategy reveals to be more ef-
fective than the standard class mapping procedure independently from the
buffer size. We also investigate the role of model pre-training as compared
to sustained auxiliary data employment highlighting that, for small-size
buffers, auxiliary data is to be preferred to pre-training.

Our strategy is beneficial in Continual Learning from multiple perspec-
tives: the model avoids overfitting current examples, learns more general
features and – as auxiliary data-points stand in for future examples – bet-
ter prepares to learn future classes by suitably associating past knowledge
to the new acquired one. All these aspects are mainly observed with re-
duced buffer size, thus contributing to the efforts that aim at generalizing
CL approaches to real-world scenarios.

Our contribution can be summarized as follows:
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• We propose Most Activated Heads (MAH) strategy, that aims at
mitigating the problem of Catastrophic Forgetting by using an auxil-
iary stream of data during training and by effectively assigning each
new class of the main stream to the most appropriate model classifi-
cation head.

• Compared to other rehearsal-based methods, our MAH achieves
state-of-the-art results on several continual learning benchmarks.
Significantly, our MAH scores remarkably results when used with
small buffer, suggesting it is efficient in retaining and utilizing past
information with limited memory capacity.

• We conduct a detailed analysis of the benefits of using auxiliary data
over a pre-trained network and find that for limited-size buffer using
an external stream leads to better results. In addition, auxiliary data
can be synthesized through generative models maintaining compa-
rable results, freeing us from the need to store auxiliary data for the
training period.

3.2 Related Work

The seminal study by McCloskey and Cohen first drew attention to the
tendency of ANNs to forget previously learned knowledge catastrophi-
cally [5]. In spite of the outstanding results achieved by deep learning
models in recent years [52, 53], this problem still persists and prevents
ANNs from learning flexibly from non-i.i.d. data-streams. To tackle this
issue, researchers and practitioners design CL methods, i.e., strategies that
make machine learning models retain high accuracy on previously seen



3.2. Related Work 33

data when trained on an ever-changing input distribution [46, 44]. While
many distinct strategies have been applied for this purpose, CL approaches
can be broadly categorized into two families: structuring or generalization.

3.2.1 Structuring approaches to Continual Learning

Methods in the first class aim at making interference between distinct
concepts less likely by endowing the stored knowledge with a disentan-
gled structure. [54] first pioneered the idea to reduce forgetting by or-
thogonalizing feature representations. A similar approach was recently
taken by [55]. Alternatively, structuring can be pursued at an architec-
tural level, by explicitly allocating distinct subsets of model parameters
to distinct tasks [26, 27, 56], encouraging non-overlapping activation pat-
terns for different data [28, 57], or by simply applying dropout [58, 59].
Finally, several approaches regularize back-propagation by projecting the
gradient to minimize the interference between tasks learned at different
times [17, 60, 61]. While structuring approaches are usually characterized
by a simpler training procedure, they typically require the availability of a
task-identifier at test time.

3.2.2 Generalization approaches to Continual Learning

At the opposite end of the spectrum, generalization methods prevent for-
getting by encouraging the model to compare and contrast input data en-
countered throughout the sequence, thus recovering the i.i.d. property of
training [49]. Most notably, rehearsal-based approaches do so by main-
taining a working memory of previously seen examples and interleaving
them with the input data [6, 47, 38, 34, 62], while pseudo-rehearsal meth-
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ods approximate this procedure with a generative model [63, 29]. Other
works prioritize the learning of high-level representations either by adopt-
ing learning objectives designed not to disrupt the performance on previous
tasks [31, 64, 21, 65], or by making use of semi-supervised learning tech-
niques to learn general features [41, 43, 66]. The generalization approach
is taken to an extreme by [67], which shows satisfactory results on CL
benchmarks by training a model in an i.i.d. fashion on samples gathered
greedily from the input stream.

Generalization strategies naturally blend knowledge gathered at differ-
ent times to build a unified predictor, making them more reliable than their
structuring counterparts in the realistic settings where no task-identifier
is given at testing-time [68, 8]. The approach proposed in this paper
aligns with the former group of methods; indeed, we argue that generaliza-
tion should be extended beyond already-seen data and embrace yet-unseen
knowledge as well.

3.3 Method

Most CL methods use current and, if the method implies a rehearsal strat-
egy, past task classification heads during the training of the current task.
Future heads, that will be mapped to classes from following tasks, are not
involved in the process at all. This poses a potentially dangerous situation
due to the model minimizing its prediction scores for future heads, which
results in a high loss peak when these heads are used at the beginning of
future tasks.

We propose to leverage an auxiliary data stream, not correlated with
the main task stream, in order to keep these future heads activated since
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Figure 3.1: We propose to mitigate forgetting by introducing an extra data
stream, which serves as source of auxiliary knowledge for the network.
This auxiliary stream plays a crucial role in offering the network a more
consistent representation of the world, which can be utilize to learn new
classes sequentially while leveraging the previous acquired low-level fea-
tures.

the beginning of training. The proposed strategy is also beneficial to learn
more distinguishing and reusable features, as the model cannot focus on
simply discriminating between the classes from the task at hand. Further-
more, since auxiliary training leads future task heads to learn to recognize
their own specific patterns, we exploit this property to devise a “most acti-
vated heads” (MAH) assignment strategy for future classes, that minimizes
the loss peak that the model typically incurs at the beginning of a new task.
Hence, the use of an auxiliary stream favors the current task and improves
forward transfer to future tasks. The proposed approach is illustrated in
Fig. 3.2.

Formally, a typical CL classification problem requires solving several
tasks sequentially, where each task Tt, with t ∈ {1, ..., T} and T being
the number of tasks, consists in learning to classify a set of classes Ct. In
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this work, we follow the common Class-IL and Task-IL settings [8], which
assume no overlap between classes from different tasks.

Each task is associated with an i.i.d. distribution Dt of (x, y) pairs
of a data point with the corresponding class label from Ct. In prac-
tice, the distribution is approximated by a finite set of samples, i.e.,
Dt = {(x1, y1) , (x2, y2) , . . . , (xNt , yNt)}, where Nt is the number of ex-
amples for task t.

The objective of CL is to find a function fθ, depending on a set of
learnable parameters θ, that minimizes a classification objective over the
entire task sequence, such as:

argmin
θ

T∑︂
t=1

∑︂
(xi,yi)∈Dt

LC (fθ(xi), yi) , (3.1)

where LC is the classification loss (e.g., cross-entropy).
While training for the current task, most recent CL approaches [23, 21,

47, 38] attempt to reduce forgetting by adding an additional loss term that
attempts to retain accuracy on previously-seen tasks. The in-task objective
at task t then becomes:

argmin
θ

∑︂
(xi,yi)∈Dt

LC (fθ(xi), yi) + LCL, (3.2)

where LCL is a generic additional loss term that implements countermea-
sures against catastrophic forgetting and may vary depending on the spe-
cific method. For example, in rehearsal-based approaches, LCL could be
an additional cross-entropy loss term computed on buffered samples from
previous task, or it could be a distillation loss that aims to match current
network’s outputs with past ones on the same samples, as used in [38].

In the proposed scenario, an additional distribution of i.i.d. auxil-
iary data A, where A ̸= Dt ∀t, is available to the model at training
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time. Again, the distribution is represented by a set of sample/label pairs
A = {(x1, y1) , (x2, y2) , . . . , (xNt , yNt)}, where labels belong to the class
set CA.

In the following, we explain the two key aspects of the proposed ap-
proach: head pre-activation and “most activated heads” class mapping.

3.3.1 Head pre-activation

To ensure that the model employs all of its classification heads from the
start, we use classes from the auxiliary dataset as “place-holders” for
classes from future tasks.

The basic requirement of an auxiliary dataset A is related to the cardi-
nality of its set of classes, |CA|, which should satisfy the following condi-
tion:

|CA| ≥
T∑︂
t=2

|Ct| . (3.3)

In other words, the number of auxiliary classes should be at least equal
to the total number of classes in the sequence of continual learning tasks,
minus the number of classes from the first task. This guarantees that, when
training on the first task, the auxiliary dataset provides enough classes for
the classification heads reserved to future tasks.

Before starting to train on the first task t = 1, we randomly choose a
subset CA,t ⊆ CA, with cardinality |CA,t| =

∑︁T
t=2 |Ct|. Samples from

the selected classes are included in the auxiliary sub-dataset At and class
indexes from CA,t are re-mapped to the indexes of classes in ∪Tt=2Ct cor-
responding to future tasks.

At task t, we merge the corresponding dataset Dt and the auxiliary
sub-dataset At and train on the joint set of classes, in order to minimize
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the following new in-task objective:

argmin
θ

∑︂
(xi,yi)∈Dt∪At

LC (fθ(xi), yi) + LCL. (3.4)

As a result, we ensure that all classification heads are employed, reduc-
ing the risk of loss peaks on new tasks, and encourage the model to learn
more complex, discriminative and stable features.

3.3.2 “Most activated heads” (MAH) class mapping

At the beginning of each task t > 1, it is necessary to update the set of
auxiliary classes in At, since |Ct| classes must be removed to make room
for classes from the new task.

Moreover, in this scenario, it also makes sense to assign the specific
heads that will correspond to classes in the new task, rather than simply
associating them to the next available heads. An appropriate class mapping
can make better (re)use of features learned by the model for classification
of auxiliary classes, and reduce high losses that may lead to forgetting
previously-learned features.

Our head assignment approach, named MAH from “most activated
heads”, acts before beginning to train on task t > 1, by first computing
the average logits lc, i.e., pre-softmax head activations, for each task class
c ∈ Ct: to this aim, we select the subset Dt,c ⊂ Dt which only contains
elements of class c, and average the corresponding logit vectors as returned
by model fθ:

lc =
1

Nt,c

∑︂
(xi,yi)∈Dt,c

fθ (xi) , (3.5)

where Nt,c is the number of elements of class c in Dt.
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Figure 3.2: During the training of the current Task Ti the model is trained
combining the “current” data coming from the Task Stream and the “past”
data stored inside the buffer. In addition, the remaining heads are trained
using the auxiliary data stream. At the beginning of a new Task Ti+1 the
MAH procedure is conducted as follows: 1) Only the heads trained with
the auxiliary data are kept activated; 2) the Ti+1 task is forwarded to the
frozen model in order to store activation information about the heads; 3)
for each class in task Ti+1, each new class is assigned to the head that
activates the most, replacing the corresponding auxiliary data class.

Then, each new class in Ct is simply associated to the classification
head that maximizes its predicted score, i.e., argmax lc. In case of in-
dex collisions, largest values are given priority. Finally, the new auxiliary
sub-dataset At is updated by removing from At−1 the set of classes corre-
sponding to selected indexes, i.e., {argmax lc}c∈Ct

, and training proceeds
as previously described.
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3.4 Experimental Result

3.4.1 Datasets

We focus our experiments on two common evaluation protocols [8]: class-
incremental (Class-IL), where the model is asked to gradually solve the
complete problem but classes become available at different times; task-
incremental (Task-IL), where the model is guided by the task-identity and
can only focus to solve each task independently. Specifically, we leverage
Seq-CIFAR-10 [25], a widely-used image classification dataset obtained
by splitting the 32×32 images of CIFAR-10 into 5 binary tasks. For a
more comprehensive evaluation, we also test on the larger 64×64 Seq-
Micro-ImageNet: a novel benchmark composed of a 20-class subset of
Tiny-ImageNet [15], split into 5 tasks of 4 classes each.

As for the choice of the auxiliary data, we pair the original data
with similarly-sized datasets. In particular, the auxiliary dataset for Seq-
CIFAR-10 consists of a subset of 10 super-classes from CIFAR-100, se-
lected among those which are not semantic-related to those contained in
CIFAR-10. For Seq-Micro-ImageNet, we select a subset of 20 classes from
ILSVRC-2012, making sure that the chosen data is as unrelated as possible
with the original Tiny-ImageNet classes. In detail, we first remove Tiny-
ImageNet classes from the entire label set; then, we group the remaining
800 classes into 293 super-classes, corresponding to synsets found at dis-
tance 8 from the entity root node. Finally, we apply Spectral Clustering to
select the 20 classes which are most representative of the super-classes.
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3.4.2 Training procedure

We apply the approach described in Section 3.3 by adapting the
DER++ [38] method, a recent rehearsal-based approach inspired by knowl-
edge distillation principles. For a fair comparison among different models,
in our experiments we follow [38] and adopt the same training settings.
As backbone, we use ResNet-18 [69] (not pre-trained). We optimize our
model with SGD, for 50 epochs on Seq-CIFAR-10 and 100 on Seq-Micro-
ImageNet. During training, samples from the current task and from auxil-
iary classes are combined so that each mini-batch contains data from both
domains. We apply random crops and horizontal flips as data augmenta-
tion. All hyperparameters are as defined in [38].

3.4.3 Results

To validate the effectiveness of our approach using auxiliary data dur-
ing training, we compare our method with other CL methods based on
rehearsal strategies: ER [70], GEM [17], A-GEM [60], iCaRL [31],
FDR [36], GSS [34], HAL [37], DER [38] and vanilla DER++ [38]. Per-
formance for these methods is reported from [38], except for the setup with
buffer size equal to 501.

As performance metrics, we report the Final Average Accuracy in the
Class-IL and in the Task-IL settings.

Table 3.1 and Table 3.2 report results on Seq-CIFAR-10 and Seq-
Micro-ImageNet, respectively. Our method yields the best Class-IL per-
formance when tested with small/medium buffer size. It is also noteworthy

1In this case, results were computed using the Mammoth framework for PyTorch:
https://github.com/aimagelab/mammoth

https://github.com/aimagelab/mammoth
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Class-IL

Buffer size 50 200 500 5120

ER [70] 32.69 ± 0.39 44.79 ± 1.86 57.74 ± 0.27 82.47 ± 0.52
GEM [17] 22.10 ± 0.41 25.54 ± 0.76 26.20 ± 1.26 25.56 ± 3.46

A-GEM [60] 20.02 ± 0.08 20.04 ± 0.34 22.67 ± 0.57 21.99 ± 2.29
iCaRL [31] 55.51 ± 1.64 49.02 ± 3.20 47.55 ± 3.95 55.07 ± 1.55

FDR [36] 28.32 ± 4.51 30.91 ± 2.74 28.71 ± 3.23 19.70 ± 0.07
GSS [34] 26.62 ± 1.36 39.07 ± 5.59 49.73 ± 4.78 67.27 ± 4.27
HAL [37] 25.26 ± 1.73 32.36 ± 2.70 41.79 ± 4.46 59.12 ± 4.41
DER [38] 44.85 ± 2.71 61.93 ± 1.79 70.51 ± 1.67 83.81 ± 0.33

DER++ [38] 49.28 ± 3.16 64.88 ± 1.17 72.70 ± 1.36 85.24 ± 0.49
Ours 56.33 ± 0.95 70.86 ± 0.95 75.07 ± 0.41 84.56 ± 0.55

Task-IL

Buffer size 50 200 500 5120

ER [70] 86.98 ± 1.19 91.19 ± 0.94 93.61 ± 0.27 96.98 ± 0.17
GEM [17] 81.36 ± 1.43 90.44 ± 0.94 92.16 ± 0.69 95.55 ± 0.02

A-GEM [60] 81.09 ± 1.88 83.88 ± 1.49 89.48 ± 1.45 90.10 ± 2.09
iCaRL [31] 88.86 ± 2.51 88.99 ± 2.13 88.22 ± 2.62 92.23 ± 0.84

FDR [36] 85.23 ± 1.24 91.01 ± 0.68 93.29 ± 0.59 94.32 ± 0.97
GSS [34] 85.22 ± 1.03 88.80 ± 2.89 91.02 ± 1.57 94.19 ± 1.15
HAL [37] 78.73 ± 3.16 82.51 ± 3.20 84.54 ± 2.36 88.51 ± 3.32
DER [38] 85.04 ± 1.17 91.40 ± 0.92 93.40 ± 0.39 95.43 ± 0.33

DER++ [38] 86.14 ± 2.56 91.92 ± 0.60 93.88 ± 0.50 96.12 ± 0.21
Ours 89.57 ± 2.47 93.30 ± 0.64 93.62 ± 0.58 95.84 ± 0.42

Table 3.1: Final Average Accuracy (FAA) [↑] on Seq-CIFAR-10 for several
replay-based Continual Learning methods. Best results in bold, second-
best in italic.
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that as the performance gain of our approach increases as the size of the
buffer decreases. When buffer size becomes significantly larger, vanilla
DER++ still achieves the best results, showing that retaining and replaying
enough data (5,120 samples represent more than 10% of the entire training
set of CIFAR-10) is still the best option to alleviate catastrophic forget-
ting, although this goes in stark contrast to generalizing continual learning
methods to real-world problems. A similar behavior can be observed on
the simpler Task-IL setting, where our method obtains the highest per-
formance or is on par with existing methods under low–data availability
regimes.

We also compare our approach to Co2L [41], that recently achieved
state-the-art performance in both settings2. Nevertheless, on Seq-CIFAR-
10, our method yields better Class-IL performance than Co2L [41], that
reaches 65.57±1.37 with buffer size of 200 and 74.26±0.77 with buffer
size of 500, respectively compared 70.86±0.95 and 75.07±0.41 by our
method. The lower standard deviation also shows that our approach tends
to be more stable across tasks.

Finally, we monitor the loss over consecutive tasks in order to evaluate
the impact of auxiliary data during training. Fig. 3.3 shows the average
training loss for vanilla DER++ and our method on Seq-Micro-ImageNet.
It can be observed that, as new tasks come in (every 100 epochs), the pro-
posed approach shows a smoother loss surface, conversely to the vanilla
counterpart that, instead, exhibits more noticeable peaks. Thus, the pro-
posed strategy also improves forward transfer and prevents disrupting
gradient peaks when the model switches to new tasks, resembling non-
continual learning scenarios.

2Co2L is not reported in Tables 3.1 and 3.2, as its training strategies are significantly
different from the methods shown in those tables.
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Buffer Method Class-IL Task-IL

ER [70] 22.58 ± 0.71 66.28 ± 1.83
DER [38] 29.35 ± 2.16 70.88 ± 0.83

DER++ [38] 31.92 ± 2.15 69.86 ± 1.96
50

Ours 37.24 ± 2.76 71.84 ± 1.82

ER [70] 36.22 ± 1.06 77.82 ± 1.24
DER [38] 46.18 ± 1.44 81.12 ± 1.59

DER++ [38] 51.84 ± 1.32 82.66 ± 1.60
50

Ours 52.83 ± 0.83 78.48 ± 1.42

ER [70] 49.70 ± 0.71 84.35 ± 0.79
DER [38] 56.58 ± 2.44 84.56 ± 1.19

DER++ [38] 60.28 ± 2.31 85.10 ± 0.93
50

Ours 59.36 ± 0.81 79.95 ± 0.61

ER [70] 70.40 ± 1.30 89.20 ± 0.01
DER [38] 68.75 ± 0.25 89.35 ± 0.85

DER++ [38] 74.98 ± 0.66 90.72 ± 0.65
50

Ours 71.65 ± 0.82 85.93 ± 1.29

Table 3.2: Final Average Accuracy (FAA) [↑] on Seq-Micro-ImageNet for
Experience Replay-based methods.

3.4.4 Ablation study

In order to substantiate our design choices, we perform an ablation study
to quantify the contribution of a) using the auxiliary data stream and b) the
MAH strategy. The obtained results are reported in Table 3.3 and compared
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Figure 3.3: Training loss trend for our approach (red) and DER++ (blue)
on Seq-Micro-ImageNet. When the model switches to a new task, MAH
reduces loss peaks by assigning new classes to the most suitable available
heads trained on auxiliary data.

to vanilla DER++ and DER++ with auxiliary data but without MAH.
When the MAH strategy is not used, the classification heads are selected
in a sequential order without making use of neural activation mapping be-
tween past (auxiliary) and current classes. Results show that training with
auxiliary data yields significant performance gains for all buffer sizes but
5,120, where replayed knowledge becomes prevalent. In all cases, MAH
outperforms sequential head mapping.

3.4.5 Effect of Pre-training

We further investigate whether it is better to employ a backbone pre-trained
on auxiliary data or to train it from scratch using the proposed strategy. The
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Buffer Method Class-IL Task-IL

DER++ 49.28 ± 3.16 86.14 ± 2.56
↪→ + AUX 52.74 ± 1.02 88.51 ± 2.0150
↪→ + MAH 56.33 ± 0.95 89.57 ± 2.47

DER++ 64.88 ± 1.17 91.92 ± 0.60
↪→ + AUX 69.91 ± 1.48 92.57 ± 1.02200
↪→ + MAH 70.86 ± 0.95 93.30 ± 0.64

DER++ 72.70 ± 1.36 93.88 ± 0.50
↪→ + AUX 74.24 ± 0.61 93.93 ± 0.47500
↪→ + MAH 75.07 ± 0.41 93.62 ± 0.58

DER++ 85.24 ± 0.49 96.12 ± 0.21
↪→ + AUX 84.26 ± 0.22 95.58 ± 0.22500
↪→ + MAH 84.56 ± 0.55 95.84 ± 0.42

Table 3.3: Ablation Study. Final Average Accuracy (FAA) [↑] obtained by
the vanilla DER++ (first row of each block), DER++ with auxiliary data
(second row), and the proposed method (third row), combining DER++
with auxiliary data and MAH strategy, for different buffer sizes.
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results of this analysis are reported in Table 3.4: pre-training on auxiliary
data appears to be always beneficial compared to training from scratch
in DER++ and as the buffer size increases. On the contrary, on small
buffers, using auxiliary data with our approach on a model trained from
scratch yields better performance than pre-training. Furthermore, with our
method, pre-training on auxiliary data leads instead to lower performance
than training from scratch, showing that pre-training is not always a reli-
able alternative to continuously training with auxiliary data.

3.4.6 Generative Auxiliary Model

In the previous sections, we have consistently observed that using auxiliary
data helps retaining knowledge of previous tasks, especially with limited
buffer size. However, it is not efficient to maintain the auxiliary data in
memory, as in that case it is still preferable to simply use a larger buffer.

A viable alternative would be to replace the auxiliary stream with a
generative replay model and use generated samples during task training.
In order to investigate the feasibility of this option, we use a generative
adversarial network (GAN) [71] to learn the distribution of auxiliary data,
and employ synthetic images in place of real ones in Eq. 3.4 in our method.

We then replicate the experiments carried out on Seq-CIFAR-10 by
pre-training a BigGAN model [72] on super-classes of CIFAR-100 used as
auxiliary data, and compare the results with those obtained when using real
images. As it can be seen in Table 3.5, performance achieved when using
generated images follow the same behavior observed with real data, i.e.,
performance increase in settings with small buffer size, while the approach
is less beneficial when the replay memory increases.
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Buffer Method Class-IL Task-IL

DER++ 49.28 ± 3.16 86.14 ± 2.56
DER++ with pre-training 50.82 ± 3.34 84.02 ± 2.98
Ours 56.33 ± 0.95 89.57 ± 2.47

50

Ours with pre-training 53.52 ± 3.60 89.52 ± 0.88

DER++ 64.88 ± 1.17 91.92 ± 0.60
DER++ with pre-training 68.71 ± 1.01 92.43 ± 0.53
Ours 70.86 ± 0.95 93.30 ± 0.64

200

Ours with pre-training 65.17 ± 2.67 91.35 ± 1.71

DER++ 72.70 ± 1.36 93.88 ± 0.50
DER++ with pre-training 75.91 ± 0.26 94.39 ± 0.29
Ours 75.07 ± 0.41 93.62 ± 0.58

500

Ours with pre-training 71.39 ± 2.77 91.77 ± 0.76

DER++ 85.24 ± 0.49 96.12 ± 0.21
DER++ with pre-training 86.60 ± 0.42 96.29 ± 0.09
Ours 84.56 ± 0.55 95.84 ± 0.42

5120

Ours with pre-training 82.20 ± 1.37 94.65 ± 0.36

Table 3.4: Effect of Pre-training. Final Average Accuracy (FAA) [↑]
obtained by the vanilla DER++ (first row of each block), DER++ pre-
trained with auxiliary data (second row), the proposed method trained
from scratch (third row), and the proposed model pre-trained with aux-
iliary data (fourth row), for different buffer sizes.
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Buffer Aux. data Class-IL Task-IL

none 49.28 ± 3.16 86.14 ± 2.56
real 56.33 ± 0.95 89.57 ± 2.4750
synthetic 54.47 ± 3.05 89.23 ± 1.83

none 64.88 ± 1.17 91.92 ± 0.60
real 70.86 ± 0.95 93.30 ± 0.64200
synthetic 68.84 ± 0.77 92.85 ± 0.24

none 72.70 ± 1.36 93.88 ± 0.50
real 75.07 ± 0.41 93.62 ± 0.58500
synthetic 74.35 ± 1.04 93.42 ± 0.40

none 85.24 ± 0.49 96.12 ± 0.21
real 84.56 ± 0.55 95.84 ± 0.425120
synthetic 84.14 ± 0.45 95.65 ± 0.23

Table 3.5: Effect of replacing auxiliary data with a GAN. Final Average
Accuracy (FAA) [↑] obtained on Seq-CIFAR-10 when using no auxiliary
data (vanilla DER++), real auxiliary data (the proposed method) and syn-
thetic data.
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3.5 Discussion

In this work, we propose a novel approach for improving continual learning
accuracy by leveraging external data. Our experiments show that provid-
ing the model with an additional auxiliary stream leads to an increase in
performance, especially when the employed memory buffer is small, and
to more stable training at the beginning of each task. We also observe that
our approach works consistently better, on small buffer settings, than alter-
native knowledge transfer strategies such as direct pre-training on auxiliary
data. The approximation of the auxiliary data distribution through the use
of generative models also outperforms state-of-the-art models, thus indi-
cating the future direction of this work, i.e., a more effective modeling of
previous real-world knowledge as it seems to happen in the human hip-
pocampus [73].

3.6 Publications

Bellitto, G., Pennisi, M., Palazzo, S., Bonicelli, L., Boschini, M., Calder-
ara, S., & Spampinato, C. (2022). Effects of auxiliary knowledge on con-
tinual learning. In 2022 26th International Conference on Pattern Recog-
nition (ICPR) (pp. 1357-1363). IEEE.



CHAPTER

FOUR

LEVERAGING PAST KNOWLEDGE

THROUGH PRE-TRAINING

In the previous chapter, we shown how the use of past knowledge can be
emulated through the use of auxiliary data. Another alternative solution
is given by transferring and reusing knowledge from models trained on
different data domains, as typically done in Transfer Learning. In this
case, the simplest approach is to pre-train a neural network on a source
domain, and then fine-tune the same on a target domain. Unfortunately,
applying this type of approach straightforwardly in Continual Learning,
turns out to be not as effective as it is for other tasks. The main reason is
that even pre-training incurs in forgetting: only the first task can take fully
advantage of pre-training; for subsequent tasks, the effect of pre-training
becomes increasingly marginal.

In this chapter we investigate the entanglement between Continual
Learning and Transfer Learning. We propose a new method, specifically

51
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designed for a Continual Learning scenario, with the aim that the entire
tasks sequence, equally for the first task as well as for the subsequent ones,
can fully exploit past knowledge deriving from pre-training.

4.1 Motivation

Thanks to the enthusiastic development carried out by the scientific com-
munity, there exist a myriad of deep learning models that can be either
readily deployed or easily adapted to perform complex tasks [74, 52, 53,
75, 76]. However, the desiderata in practical applications [77] often over-
steps the boundaries of the typical i.i.d. paradigm, fostering the study of
different learning approaches.

In contrast with the natural tendency of biological intelligence to seam-
lessly acquire new skills and notions, as we have already widely dis-
cussed, deep models are prone to catastrophic forgetting [5], i.e., they
fit the current input data distribution to the detriment of previously ac-
quired knowledge. In light of this limitation, the sub-field of Contin-
ual Learning (CL) [18, 46, 8] aspires to train models capable of adap-
tation and lifelong learning when facing a sequence of changing tasks,
either through appositely designed architectures [26, 24, 27], targeted
regularization [21, 23, 25] or by storing and replaying previous data
points [31, 70, 38, 47].

On a similar note, human intelligence is especially versatile in that it
excels in contrasting and incorporating knowledge coming from multiple
domains. Instead, the application of deep supervised learning algorithms
typically demands for large annotated datasets, whose collection has sig-
nificant costs and may be impractical. To address this issue, Transfer
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Learning (TL) techniques are typically applied with the purpose of trans-
ferring and re-using knowledge across different data domains. In this set-
ting, the simplest technique is to pre-train the model on a huge labeled
dataset (i.e. the source) and then finetune it on the target task [78, 79, 80].
Such a simple schema has been recently overcome by more sophisticated
domain adaptation algorithms [81, 82, 83] mainly based on the concept of
feature alignment: here, the goal is to reduce the shift between the fea-
ture distributions of target and source domains. Unfortunately, these ap-
proaches often require the availability of the source dataset during training,
which clashes with the usual constraints imposed in the CL scenarios.

In this work, we explore the interactions between pre-training and CL
and highlight a blind spot of continual learners. Previous work underlined
that naive pre-training is beneficial as it leads the learner to reduced for-
getting [84]. However, we detect that the pre-training task itself is swiftly
and catastrophically forgotten as the model veers towards the newly in-
troduced stream of data. This matter is not really detrimental if all target
classes are available at once (i.e., joint training): as their exemplars can be
accessed simultaneously, the learner can discover a joint feature alignment
that works well for all of them while leaving its pre-training initializa-
tion. However, if classes are shown in a sequential manner, we argue that
transfer mostly concerns the early encountered tasks: as a consequence,
pre-training ends up being fully beneficial only for the former classes. For
the later ones, since pre-training features are swiftly overwritten, the ben-
efit of pre-training is instead lowered, thus undermining the advantages of
the source knowledge. In support of this argument, this work reports sev-
eral experimental analyses (Sec. 4.3.1) revealing that state-of-the-art CL
methods do not take full advantage of pre-training knowledge.
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4.2 Related Work

Continual Learning (CL) [18, 46] is an increasingly popular field of ma-
chine learning that deals with the mitigation of catastrophic forgetting [5].
CL methods are usually grouped as follows, according to the approach they
take.

Regularization-based methods [23, 17, 35, 85] typically identify sub-
sets of weights that are highly functional for the representations of previous
tasks, with the purpose to prevent their drastic modification through appo-
site optimization constraints. Alternatively, they consolidate the previous
knowledge by using past models as soft teachers while learning the current
task [21].

Architectural approaches dedicate distinct sets of parameters to each
task, often resorting to network expansion as new tasks arrive [26, 27, 28].
While capable of high performance, they are mostly limited to the Task-IL
scenario (described in Sec. 4.4.1) as they require task-identifiers at infer-
ence time.

Rehearsal-based methods employ a fixed-size buffer to store a frac-
tion of the old data. ER [6, 32] interleaves training samples from the cur-
rent task with previous samples: notably, several works [68, 38] point out
that such a simple strategy can effectively mitigate forgetting and achieve
superior performance. This method has hence inspired several works:
DER [38] and its extension X-DER [86] also store past model responses
and pin them as an additional teaching signal. MER [70] combines re-
play and meta-learning [87, 88] to maximize transfer from the past while
minimizing interference. Other works [34, 89] propose different sample-
selection strategies to include in the buffer, while GEM [17] and its relax-
ation A-GEM [35] employ old training data to minimize interference. On
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a final note, recent works [39, 90] exploit the memory buffer to address
semi-supervised settings where examples can be either labeled or not.
Transfer Learning (TL) [9] is a machine learning methodology aiming at
using the knowledge acquired on a prior task to solve a distinct target task.
In its classical formulation [91], a model is trained on the source dataset
and then finetuned on the (possibly much smaller) target dataset to adapt
the previously learned features. Alternatively, transfer can be induced via
multi-level Knowledge Distillation, guided by meta-learning [92], atten-
tion [93] or higher-level descriptions of the flow of information within the
model [94].

4.3 Method

Setting

In CL, a classification model f(θ,ϕ) (composed of a multilayered feature
extractor hθ = h

(l)
θl

◦ h(l−1)
θl−1

◦ · · · ◦ h(1)
θ1

and a classifier gϕ, f(θ,ϕ) = gϕ ◦ hθ)
is trained on a sequence of N tasks Ti = {(xij, yij)}|Ti|j=1. The objective of
f(θ,ϕ) is minimizing the classification error across all seen tasks:

min
θ,ϕ

L = E
i

[︃
E

(x,y)∼Ti

[︂
ℓ(y, f(θ,ϕ)(x))

]︂]︃
, (4.1)

where ℓ is a suitable loss function. Unfortunately, the problem framed
by Eq. 4.1 cannot be directly optimized due to the following key assump-
tions: i) while learning the current task Tc, examples and labels of previ-
ous tasks are inaccessible; ii) the label space of distinct tasks is disjoint
(yim ̸= yjn ∀i ̸= j) i.e., classes learned previously cannot recur in later
phases. Therefore, Eq. 4.1 can only be approximated, seeking adequate
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Figure 4.1: Forgetting of the initialization, measured as the distance from
the pre-train (1−CKA [95]) (lower is better) and kNN accuracy (higher
is better). Features extracted by a pre-trained model remain closer to the
initialization w.r.t. a randomly initialized model. Furthermore, the steady
decrease in kNN accuracy as training progresses reveals that features be-
come less specific for past tasks.

performance on previously seen tasks (stability), while remaining flexible
enough to adapt to upcoming data (plasticity).

4.3.1 Pre-training incurs Catastrophic Forgetting

Mehta et al. [84] have investigated the entanglement between continual
learning and pre-training, highlighting that the latter leads the optimiza-
tion towards wider minima of the loss landscape. As deeply discussed
in [38, 86], such property is strictly linked to a reduced tendency in incur-
ring forgetting.

On this latter point, we therefore provide an alternate experimental
proof of the benefits deriving from pre-training initialization. In partic-
ular, we focus on ResNet-18 trained with ER [32] on Seq-CIFAR-1001

1This preliminary experiment follows the same setting presented in Sec. 4.4.1
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and measure how each individual layer differs from its initialization. It can
be observed that a randomly initialized backbone (Fig. 4.1, left) signifi-
cantly alters its parameters at all layers while tasks progress, resulting in
a very low Centered Kernel Alignment [95] similarity score already at the
first CL task. On the contrary, a backbone pre-trained on Tiny ImageNet
(Fig. 4.1, right) undergoes limited parameter variations in its layers, with
the exception of the last residual layer (although to a lesser extent w.r.t. ran-
dom init.). This latter finding indicates that its pre-training parametrization
requires relevant modifications to fit the current training data. This leads to
the catastrophic forgetting of the source pre-training task: namely, the lat-
ter is swiftly forgotten as the network focuses on the initial CL tasks. This
is corroborated by the decreasing accuracy for pre-training data of a kNN
classifier trained on top of Layer 3 and Layer 4 representations in Fig. 4.1
(right).

To sum up, while pre-training is certainly beneficial, the model drifts
away from it one task after the other. Hence, only the first task takes full
advantage of it; the optimization of later tasks, instead, starts from an ini-
tialization that increasingly differs from the one attained by pre-training.
This is detrimental, as classes introduced later might be likewise advan-
taged by the reuse of different pieces of the initial knowledge.

4.3.2 Transfer without Forgetting

To mitigate the issue above, we propose a strategy that enables a continu-
ous transfer between the source task and the incrementally learned target
problem.
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Figure 4.2: Overview of TwF and detail of LFP: Given a batch of samples
from the current task or from B, we i) extract intermediate features from
both the student and fixed sibling backbones at multiple layers; ii) compute
the corresponding binarized attention maps M(·); iii) pull the attention-
masked representations of the two models closer.

Feature Propagation

As the training progresses, the input stream introduces new classes that
might benefit from the adaptation of specific features of the pre-trained
model. To enable feature transfer without incurring pre-training forget-
ting, we maintain a copy of it (the sibling model) and adopt an intermediate
feature knowledge distillation [96, 97, 93, 98, 99] objective. Considering
a subset of L layers, we seek to minimize the distance between the acti-
vations of the base network h

(l)
θ ≜ h

(l)
θ (x) and those from its pre-trained
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sibling ˆ︁h(l) ≜ h
(l)
θt (x):

E
x∼Tc

[︃ L∑︂
l=1

||h(l)
θ − ReLUm(ˆ︁h(l))||22

]︃
, (4.2)

where c is the current task and ReLUm(·) indicates the application of a mar-
gin ReLU activation [98]. It is noted that the objective outlined by Eq. 4.2
leads the CL model to focus on mirroring the internal representations of
the pre-trained teacher and maximizing transfer. However, focusing on
the latter solely can lead to excessive rigidity, thus preventing the model
from fitting the data from the current task altogether. On these grounds,
we take inspiration from [93] and use a weighted version of Eq. 4.2. In
particular, an apposite learnable module computes a gating attention map
M(·) over the feature maps of the sibling, which serves as a binary mask
selecting which spatial regions have to be aligned. The resulting objective
is consequently updated as follows:

E
x∼Tc

[︃ L∑︂
l=1

||M(ˆ︁h(l))⊙
(︂
h
(l)
θ − ReLUm(ˆ︁h(l))

)︂
||22
]︃
, (4.3)

where ⊙ indicates the Hadamard product between two tensors of the same
dimensions. The attention maps M(·) are computed through specific lay-
ers, whose architectural design follows the insights provided in [100].
Specifically, they forward the input activation maps into two parallel
branches, producing respectively a Channel Attention MCh(·) map and a
Spatial Attention MSp(·) map. These two intermediate results are summed
and then activated through a binary Gumbel-Softmax sampling [101],
which allows us to model discrete on-off decisions regarding which in-
formation we want to propagate. In formal terms:

M(ˆ︁h(l)) ≜ gumbel(MCh(ˆ︁h(l)) +MSp(ˆ︁h(l))). (4.4)
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The Spatial Attention MSp(ˆ︁h(l)) regulates the propagation of spatially lo-
calized information and is obtained by stacking four convolutional lay-
ers [100] with different configurations:

MSp(ˆ︁h(l)) ≜ C1×1 ◦C3×3 ◦C3×3 ◦C1×1(ˆ︁h(l)). (4.5)

More in detail, MSp(ˆ︁h(l)) is computed on top of the activations of a given
layer of the fixed sibling network ˆ︁h ∈ Rb×c×h×w, processed through a
ResNet-inspired bottleneck structure [69, 100]:

MSp ≜ CC
1×1 ◦ReLU ◦BN ◦CB

3×3 ◦ReLU ◦BN ◦CB
3×3 ◦ReLU ◦BN ◦CA

1×1,

(4.6)
where ReLU denotes a ReLU activation, BN indicates a Batch Normaliza-
tion layer (conditioned on the task-identifier) and C indicates a Convolu-
tional layer. More specifically, CA

1×1 is a 1×1 convolution, projecting from
c channels to c/4; CB

3×3 is a 3× 3 dilated convolution with dilation factor 2
and adequate padding to maintain the same spatial resolution as the input,
with c/4 channels both as input and output; CC

1×1 is a 1×1 convolution pro-
jecting from c/4 channels to 1 channel. This results in MSp having shape
b× 1× h× w.

On the other hand, the Channel Attention MCh(ˆ︁h(l)) estimates the in-
formation across the channels of ˆ︁h(l); in its design, we draw inspiration
from the formulation proposed in [102]. Formally, considering the resultˆ︁h(l)
GAP of the Global Average Pooling (GAP) applied on top of ˆ︁h(l), we have:

MCh(ˆ︁h(l)) ≜ tanh(BN(WT
1
ˆ︁h(l)
GAP))·σ(BN(WT

2
ˆ︁h(l)
GAP))+WT

3
ˆ︁h(l)
GAP, (4.7)

where W1, W2, and W3 are the weights of three fully connected layers
organized in parallel and BN indicates the application of batch normaliza-
tion.
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Diversity loss

Without a specific loss term supervising the attention maps, we could in-
cur in useless behaviors, e.g., all binary gates being either on or off, or
some channels being always propagated and some others not. While recent
works provide a target expected activation ratio [103, 28] as a countermea-
sure, we encourage the auxiliary modules to assign different propagation
gating masks to different examples. The intuition is that each example has
its own preferred subset of channels to be forwarded from the sibling. To
do so, we include an additional auxiliary loss term [104] as follows:

LAUX ≜ −λ
L∑︂
l=1

E
x1,...,xn∼Tc

[︃ n∑︂
j=1

log
eg

T
ijgij/T

1
n

∑︁n
k=1 e

gT
ijgik/T

]︃
,

gij ≜ NORM(GAP(M(ˆ︁h(l)(xj)))),

(4.8)

where n indicates the batch size, NORM a normalization layer, T a tem-
perature and finally λ is a scalar weighting the contribution of this loss
term to the overall objective. In practice, we ask each vector containing
channel-wise average activity to have a low dot product with vectors of
other examples.

4.3.3 Knowledge Replay

The training objective of Eq. 4.3 is devised to facilitate selective feature
transfer between the in-training model and the immutable sibling. How-
ever, to prevent forgetting tied to previous CL tasks to the greatest extent,
the model should also be provided with a targeted strategy. We thus equip
the continual learner with a small memory buffer B (populated with ex-
amples from the input stream via reservoir sampling [33]) and adopt the
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simple labels and logits replay strategy proposed in [38]:

LCL ≜ E
(x,y,l)∼B

[︃
α · ||f(θ,ϕ)(x)− l||22 + β · ℓ(y, f(θ,ϕ)(x))

]︃
, (4.9)

where (x, y, l) is a triplet of example, label and original network responses
l = f(x) recorded at the time of sampling and α, β are scalar hyperparam-
eters. Although extremely beneficial, we remark that the model need not
optimize LCL to achieve basic robustness against catastrophic forgetting
(as shown in Sec. 4.5): preserving pre-training features already serves this
purpose.

Replaying past propagation masks

With the purpose of protecting the feature propagation formulated in
Eq. 4.3 from forgetting, we also extend it to replay examples stored in
memory. It must be noted that doing so requires taking additional steps
to prevent cross-task interference; indeed, simply applying Eq. 4.3 to re-
play items would apply the feature propagation procedure unchanged to all
tasks, regardless of the classes thereby included. For this reason, we take
an extra step and make all batch normalization and fully connected layers
in Eq. 4.4, 4.5 and 4.7 conditioned [105] w.r.t. the CL task. Consequently,
we add to B for each example x both its task label t and its correspond-
ing set of binary attention maps m = (m1, ...,ml) generated at the time of
sampling. Eq. 4.3 is finally updated as:

LFP ≜ E
(x,t=c)∼Tc
(x;t)∼B

[︃ L∑︂
l=1

||M(ˆ︁h(l); t)⊙
(︂
h(l) − ReLUm(ˆ︁h(l))

)︂
||22
]︃

+ E
(x,t,m)∼B
l=1,...,L

[︃
BCE

(︂
M(ˆ︁h(l); t),m(l)

)︂]︃
,

(4.10)
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where the second term is an additional replay contribution distilling past
attention maps, with BCE indicating the binary cross entropy criterion.

Overall objective

Our proposal – dubbed Transfer without Forgetting (TwF) – optimizes
the following training objective, also summarized in Fig. 4.2:

min
θ,ϕ

E
(x,y)∼Tc

[︁
ℓ(yij, f(θ,ϕ)(x

i
j))

]︁
+ LCL + LFP + LAUX. (4.11)

We remark that: i) while TwF requires keeping a copy of the pre-trained
model during training, this does not hold at inference time; ii) similarly,
task labels t are not needed during inference but only while training, which
makes TwF capable of operating under both the Task-IL and Class-IL CL
settings [8]; iii) the addition of t and m in B induces a limited memory
overhead: t can be obtained from the stored labels y for typical classifi-
cation tasks with a fixed number of classes per task, while m is a set of
Boolean maps that is robust to moderate re-scaling (as we demonstrate by
storing m at half resolution for our experiments in Sec. 4.4). We finally
point out that, as maps m take discrete binary values, one could profit from
lossless compression algorithms (such as Run-Length Encoding [106] or
LZ77 [107]) and thus store a compressed representation into the memory
buffer. We leave the comprehensive investigation of this application to
future works.
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4.4 Experiments

4.4.1 Experimental Setting

Metrics

We assess the overall performance of the models in terms of Final Average
Accuracy (FAA), defined as the average accuracy on all seen classes after
learning the last task, and Final Forgetting [85] (FF), defined as:

FF ≜
1

T − 1

T−2∑︂
i=0

max
t∈{0,...,T−2}

{ati − aT−1
i }, (4.12)

where ati denotes the accuracy on task τi after training on the tth task.

Settings

We report results on two common protocols [8]: Task-Incremental Learn-
ing (Task-IL), where the model must learn to classify samples only from
within each task, and Class-Incremental Learning (Class-IL), where the
model must gradually learn the overall classification problem. The former
scenario is a relaxation of the latter, as it provides the model with the task
identifier of each sample at test time; for this reason, we focus our evalu-
ation mainly on the Class-IL protocol, highlighted as a more realistic and
challenging benchmark [68, 34].

Datasets

We initially describe a scenario where the transfer of knowledge from the
pre-train is facilitated by the similarity between the two distributions. Pre-
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cisely, we use CIFAR-100 [13] as the pre-train dataset and then evalu-
ate the models on Seq-CIFAR-10 [25] (5 binary tasks) (see Tab. 4.1). In
Tab. 4.2 we envision a second and more challenging benchmark, which
relies on Seq-CIFAR-100 [25] with the opportunity to benefit from the
knowledge previously learned on Tiny-ImageNet [15]. Due to the size
mismatch between CIFAR-100 and the samples from Tiny ImageNet, we
resize the latter to 32× 32 during pre-training. The last scenario (Tab. 4.3)
involves pre-training on ImageNet [108] and learning incrementally Seq-
CUB-200 [35, 109], split into 10 tasks of 20 classes each. With an average
of only 29.97 images per class and the use of higher-resolution input sam-
ples (resized to 224 × 224), this benchmark is the most challenging. We
use ResNet18 [69] for all experiments involving Seq-CIFAR-10 and Seq-
CIFAR-100, as in [31, 38], while opting for ResNet50 on Seq-CUB-200.

Competitors

We focus our comparison on state-of-the-art rehearsal algorithms, as they
prevail on most benchmarks in literature [47, 38, 8].

• Experience Replay (ER) [6, 32] is the first embodiment of a re-
hearsal strategy that features a small memory buffer containing an
i.i.d. view of all the tasks seen so far. During training, data from the
stream is complemented with data sampled from the buffer. While
this represents the most straightforward use of a memory in a CL
scenario, ER remains a strong baseline, albeit with a non-negligible
memory footprint.

• Dark Experience Replay (DER) [38] envisions a self-
distillation [110] constraint on data stored in the memory buffer and
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represents a simple extension to the basic rehearsal strategy of ER.
In this work, we compare against DER++, which includes both ER
and DER objectives.

• Incremental Classifier and Representation Learning
(iCaRL) [31] tackle catastrophic forgetting by distilling the
responses of the model at the previous task boundary and storing
samples that better represent the current task. In addition to simple
replay, those exemplars are used to compute class-mean prototypes
for nearest-neighbor classification.

• ER with Asymmetric Cross-Entropy (ER-ACE) [40] recently in-
troduced a method to alleviate class imbalances to ER. The authors
obtain a major gain in accuracy by simply separating the cross-
entropy contribution of the classes in the current batch and that of
the ones in the memory buffer.

• Contrastive Continual Learning (CO2L) [41] proposes to facili-
tate knowledge transfer from samples stored in the buffer by opti-
mizing a contrastive learning objective, avoiding any potential bias
introduced by a cross-entropy objective. To perform classification, a
linear classifier needs to be first trained on the exemplars stored in
the buffer.

In addition, we also include results from two popular regularization meth-
ods. Online Elastic Weight Consolidation (oEWC) [23] penalizes
changes on the most important parameters by means of an online estimate
of the Fisher Information Matrix evaluated at task boundaries. Learn-
ing without Forgetting (LwF) [21] includes a distillation target similar to
iCaRL but does not store any exemplars. We remark that all competitors
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FAA (FF) Seq-CIFAR-10 (pretr. CIFAR-100)

Method Class-IL Task-IL

Joint 92.89 (−) 98.38 (−)

Finetune 19.76 (98.11) 84.05 (17.75)

oEwC [24] 26.10 (88.85) 81.84 (19.50)

LwF [21] 19.80 (97.96) 86.41 (14.35)

Buffer Size 500 5120 500 5120

ER [32] 67.24 (38.24) 86.27 (13.68) 96.27 (2.23) 97.89 (0.55)

CO2L [41] 75.47 (21.80) 87.59 (9.61) 96.77 (1.23) 97.82 (0.53)

iCaRL [31] 76.73 (14.70) 77.95 (12.90) 97.25 (0.74) 97.52 (0.15)

DER++ [38] 78.42 (20.18) 87.88 (8.02) 94.25 (4.46) 96.42 (1.99)

ER-ACE [40] 77.83 (10.63) 86.20 (5.58) 96.41 (2.11) 97.60 (0.66)

TwF (ours) 83.65(11.59) 89.55(6.85) 97.49(0.86) 98.35(0.17)

Table 4.1: Final Average Accuracy (FAA) [↑] and Final Forgetting (FF)
[↓] on Seq-CIFAR-10 w. pre-training on CIFAR-100.

undergo an initial pre-training phase prior to CL, thus ensuring a fair
comparison.

To gain a clearer understanding of the results, all the experiments in-
clude the performance of the upper bound (Joint), obtained by jointly
training on all classes in a non-continual fashion. We also report the results
of the model obtained by training sequentially on each task (Finetune),
i.e., without any countermeasure to forgetting.
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FAA (FF) Seq-CIFAR-100 (pretr. Tiny-ImageNet)

Method Class-IL Task-IL

Joint (UB) 75.20 (−) 93.40 (−)

Finetune 09.52 (92.31) 73.50 (20.53)

oEwC [24] 10.95 (81.71) 65.56 (21.33)

LwF [21] 10.83 (90.87) 86.19 (4.77)

Buffer Size 500 2000 500 2000

ER [32] 31.30 (65.40) 46.80 (46.95) 85.98 (6.14) 87.59 (4.85)

CO2L [41] 33.40 (45.21) 50.95 (31.20) 68.51 (21.51) 82.96 (8.53)

iCaRL [31] 56.00 (19.27) 58.10 (16.89) 89.99(2.32) 90.75 (1.68)

DER++ [38] 43.65 (48.72) 58.05 (29.65) 73.86 (20.08) 86.63 (6.86)

ER-ACE [40] 53.38 (21.63) 57.73 (17.12) 87.21 (3.33) 88.46 (2.46)

TwF (ours) 56.83(23.89) 64.46(15.23) 89.82 (3.06) 91.11(2.24)

Table 4.2: Final Average Accuracy (FAA) [↑] and Final Forgetting (FF)
[↓] on Seq-CIFAR-100 w. pre-training on Tiny-ImageNet.

4.4.2 Comparison with State-Of-The-Art

Regularization methods

Across the board, non-rehearsal methods (oEWC and LwF) manifest a pro-
found inability to effectively use the features learned during the pre-train.
As those methods are not designed to extract and reuse any useful fea-
tures from the initialization, the latter is rapidly forgotten, thus negating
any knowledge transfer in later tasks. This is particularly true for oEWC,
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FAA (FF) Seq-CUB-200 (pretr. ImageNet)

Method Class-IL Task-IL

Joint (UB) 78.54 (−) 86.48 (−)

Finetune 8.56 (82.38) 36.84 (50.95)

oEwC [24] 8.20 (71.46) 33.94 (40.36)

LwF [21] 8.59 (82.14) 22.17 (67.08)

Buffer Size 400 1000 400 1000

ER [32] 45.82 (40.76) 59.88 (25.65) 75.26 (9.82) 80.19 (4.52)

CO2L [41] 8.96 (32.04) 16.53 (20.99) 22.91 (26.42) 35.79 (16.61)

iCaRL [31] 46.55 (12.48) 49.07 (11.24) 68.90 (3.14) 70.57 (3.03)

DER++ [38] 56.38 (26.59) 67.35 (13.47) 77.16 (7.74) 82.00 (3.25)

ER-ACE [40] 48.18 (25.79) 58.19 (16.56) 74.34 (9.78) 78.27 (6.09)

TwF (ours) 57.78(18.32) 68.32(6.74) 79.35(5.77) 82.81(2.14)

Table 4.3: Final Average Accuracy (FAA) [↑] and Final Forgetting (FF)
[↓] on CUB-200 w. pre-training on ImageNet.

whose objective proves to be both too strict to effectively learn the cur-
rent task and insufficient to retain the initialization. Most notably, on Seq-
CUB-200 oEWC shows performance lower than Finetune on both Task-
and Class-IL.

Rehearsal methods

In contrast, rehearsal models that feature some form of distillation (DER++
and iCaRL) manage to be competitive on all benchmarks. In particular,
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iCaRL proves especially effective on Seq-CIFAR-100, where it reaches
the second highest FAA even when equipped with a small memory thanks
to its herding buffer construction strategy. However, this effect is less
pronounced on Seq-CIFAR-10 and Seq-CUB-200, where the role of pre-
training is far more essential due to the similarity of the two distributions
for the former and the higher difficulty of the latter. In these settings, we
see iCaRL fall short of DER++, which better manages to maintain and
reuse the features available from its initialization. Moreover, we remark
that iCaRL and DER++ show ranging Class-IL performance in different
tasks, whereas our method is much less sensitive to the specific task at
hand.

While it proves effective on the easier Seq-CIFAR-10 benchmark,
CO2L does not reach satisfactory results on either Seq-CIFAR-100 or Seq-
CUB-200. We ascribe this result to the high sensitivity of this model to
the specifics of its training process (e.g., to the applied transforms and the
number of epochs required to effectively train the feature extractor with a
contrastive loss). Remarkably, while we extended the size of the batch in
all experiments with CO2L to 256 to provide a large enough pool of nega-
tive samples, it still shows off only a minor improvement on non-rehearsal
methods for Seq-CUB-200.

Interestingly, while both ER and ER-ACE do not feature distillation,
we find their performance to be competitive for large enough buffers. In
particular, the asymmetric objective of ER-ACE appears less sensitive to a
small memory buffer but always falls short of DER++ when this constraint
is less severe.
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Transfer without Forgetting

Finally, results across all proposed benchmarks depict our method (TwF)
as consistently outperforming all the competitors, with an average gain of
4.81% for the Class-IL setting and 2.77% for the Task-IL setting, w.r.t.
the second-best performer across all datasets (DER++ and ER-ACE, re-
spectively). This effect is especially pronounced for smaller buffers on
Seq-CIFAR-10 and Seq-CUB-200, for which the pre-train provides a valu-
able source of knowledge to be transferred. We argue that this proves the
efficacy of our proposal to retain and adapt features available from ini-
tialization through distillation. Moreover, we remark that its performance
gain is consistent in all settings, further attesting to the resilience of the
proposed approach.

4.5 Ablation Studies

Breakdown of the individual terms of TwF

To better understand the importance of the distinct loss terms in Eq. 4.11
and their connection, we explore their individual contribution to the final
accuracy of TwF in Tab. 4.4. Based on these results, we make the following
observations: i) LCL is the most influential loss term and it is indispens-
able to achieve results in line with the SOTA; ii) LFP applied on top of
LCL induces better handling of pre-training transfer, as testified by the in-
creased accuracy; iii) LAUX on top of LFP reduces activation overlapping
and brings a small but consistent improvement.

Further, in the columns labeled as w/o/buf., we consider what happens
if TwF is allowed no replay example at all and only optimizes LFP and
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LCL LFP LAUX Seq-CIFAR-10 Seq-CIFAR-100 Seq-CUB-200

Buffer Size w/o/buf. 500 5120 w/o/buf. 500 2000 w/o/buf. 400 1000

✓ ✓ ✓ − 83.65 89.55 − 56.83 64.46 − 59.67 68.32
✓ ✗ ✗ − 75.79 87.54 − 44.01 57.84 − 56.53 67.29
✓ ✓ ✗ − 83.29 89.53 − 55.50 63.53 − 59.06 67.83
✗ ✓ ✗ 60.07 62.63 62.75 49.14 50.20 50.22 37.57 38.43 38.93
✗ ✓ ✓ 60.90 63.19 63.79 49.74 50.88 50.52 37.99 39.20 39.31

Table 4.4: Impact of each loss term and of using no memory buffer on TwF.
Results given in the Class-IL scenario following the same experimental
settings as Tab.4.1-4.3.

LAUX on current task examples. Compared to oEWC in Tab. 4.1-4.3 –
the best non-replay method in our experiments – we clearly see preserving
pre-training features is in itself a much more effective approach, even with
rehearsal is out of the picture.

Alternatives for the preservation of pre-training knowledge

TwF is designed to both preserve pre-training knowledge and facilitate its
transfer. However, other approaches could be envisioned for the same pur-
pose. Hence, we compare here TwF with two alternative baselines for
pre-training preservation.
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Figure 4.3: Class-IL (left) and Task-IL (center) FAA performance compar-
ison of our proposal with different possible methods to retain knowledge
from pre-train. (Right) Influence of different allocation rates of pre-train
examples in B for DER++, |B| = 2000.

Pre-training preservation with EWC

We complement a strong approach such as DER++ with an additional reg-
ularization term based on EWC:

LEWC = λ(θ − θt)T diag(F )(θ − θt), (4.13)

where diag(F ) indicates the diagonal of the empirical Fisher Informa-
tion Matrix, estimated on the pre-training data at the optimum θt. When
equipped with this additional loss term, DER++ is anchored to its initial-
ization and prevented from changing its pre-training weights significantly,
while its replay-based loss term prevents forgetting of knowledge acquired
in previous tasks. As shown by Fig. 4.3 (left, center), the EWC loss allows
DER++ to improve its accuracy on Seq-CIFAR-100 with Tiny ImageNet
pre-training (especially in the Task-IL setting). However, this improvement
is not actively incentivizing feature reuse and thus falls short of TwF. We
finally remark that TwF and DER++ w/ EWC have a comparable memory
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footprint (both retain the initialization checkpoint).

Pre-training preservation through rehearsal

An alternative for preserving the source knowledge is to assume that
pre-training data is available and can be treated as an auxiliary data
stream [111]. To evaluate this strategy with a bounded memory footprint,
we test our baseline method (DER++) on Seq-CIFAR-100 with different
percentages of the buffer dedicated to pre-training images (from Tiny Im-
ageNet). The results shown in Fig. 4.3 (right) confirm our main claim:
DER++ coupled with pre-training rehearsal improves over DER++ with
only pre-training. This finding proves that, if pre-training is available, it is
beneficial to guard it against catastrophic forgetting.

Furthermore, we highlight that TwF outperforms the baseline intro-
duced here. When replaying pre-training data, indeed, the model has to
maintain its predictive capabilities on the classes of the source task, i.e.,
we enforce both backward and forward transfer. TwF, instead, allows the
model to disregard the classes of the source dataset, as long as the transfer
of its internal representations favors the learning of new tasks (⇒ it only
enforces forward transfer). This substantial distinction helps to under-
stand the merits of TwF: namely, a full but still functional exploitation of
the pre-training knowledge.

Role of pre-training datasets

Here, we seek to gain further proof of our claim about the ability of TwF
to adapt features from the pre-train. Specifically, we study a scenario
where the source data distribution and the target one are highly dissimilar:
namely, we first pre-train a ResNet18 backbone on SVHN [112] and then
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FAA (FF) Class-IL Task-IL

Buffer size 500 2000 500 2000

iCaRL [31] 39.59 (21.81) 42.02 (18.78) 78.89 (4.04) 80.65 (2.24)

DER++ [38] 36.46 (53.47) 52.29 (24.04) 75.05 (16.22) 83.36 (8.04)

TwF (ours) 43.56(40.02) 56.15(21.51) 80.89(10.12) 87.30(3.12)

Table 4.5: Dissimilar pre-training tasks: (FAA) [↑] and Final Forgetting
(FF) [↓] on Seq-CIFAR-100 pre-trained on SVHN.

follow with Seq-CIFAR-100. We compare our model with the second-best
performer from Tab. 4.2, i.e., iCaRL, and DER++. The results, reported in
Tab. 4.5, suggest that our method outranks the competitors not only when
pre-trained on a similar dataset – as in Tab. 4.2 – but also when the tasks are
very dissimilar. We argue that this result further shows the ability of TwF
to identify which pre-training features are really advantageous to transfer.

4.6 Discussion

We introduced Transfer without Forgetting, a hybrid method combining
Rehearsal and Feature transfer, designed to exploit pre-trained weights in
an incremental scenario. It encourages feature sharing throughout all tasks,
yielding a stable performance gain across multiple settings. We also show
that TwF outperforms other hybrid methods based on rehearsal and regu-
larization and that it is able to profit even from pre-training on a largely
dissimilar dataset.
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FIVE

EFFECTIVENESS OF EQUIVARIANT

REGULARIZATION IN CONTINUAL

LEARNING

Chapter 3 and Chapter 4 have delved into two alternative ways to exploit
past knowledge for continuously solving new tasks. However, the pro-
posed methods have one aspect in common: they both rely on the use of
external data (used in conjunction with the primary data stream in one case,
or as source data employed during the pre-training of the sibling network
in the other). In this chapter, we attempt to overcome this ”limitation” by
removing the need of additional data beyond the stream one.

Another potential way we investigate to leverage auxiliary knowledge
is by coupling the continual classification task with a different auxiliary
task that guides learning. However, the main assumption to make this ap-
proach effective is a forgetting-free behaviour. This means that the surro-
gate task should act on a ideally i.i.d. data within the context of continual

77
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learning. In Self-Supervised Learning (SSL), it has been demonstrated that
a pretext task allows for learning a semantically good representation that
may impact positively performance of downstream task [113]. In this chap-
ter we propose to leverage equivariant tasks, as a form of self-supervision,
and verify that they are particularly effective in extreme scenario such as
the Online Continual Learning (OCL), where only one iteration of the in-
put dataset is permitted.

5.1 Motivation

Motivated by the success of Contrastive Self-Supervised Learning
(CSSL) [114, 115, 116], several recent CL approaches pivot on self-
supervised representation learning [43, 41, 117, 118]. Indeed, as self-
supervised representations are generally acknowledged to be agnostic and
easily transferable to diverse downstream tasks [81], their exploitation ap-
pears especially promising in the online scenario, where learning a shared
representation across tasks is as important as the prevention of forgetting.
Moreover, we argue that binding the incoming classes to general-purpose
representations encourages the emergence of a horizontal and shareable
knowledge base, that will be less subject to forgetting.

However, we reckon that the CSSL paradigm is not a silver bullet: in-
deed, contrastive learning methods are characterized by low sample effi-
ciency as their convergence requires large amounts of resources. As a re-
sult, CL methods need a higher number of training epochs when equipped
with contrastive regularization [41], which clashes with the constraints of
OCL. Moreover, they usually focus their representation learning on a small
memory buffer [43], which entails a high risk of overfitting [119].
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Figure 5.1: Effects of SSL in OCL (Seq-CIFAR-100) comparing a Finetun-
ing baseline with no additional regularization (green), with a Contrastive
SSL auxiliary objective (orange) and with an Equivariant rotation predic-
tion pretext task (blue). (a) Similarity between the gradients induced on
the model by task Ti and Ti+1 after training on Ti. (b) Accuracy on task
Ti after training on Ti. Results are reported after a warm-up task (best in
colors).

This work addresses these limitations, revealing the benefits of equiv-
ariant self-supervised tasks (e.g., rotation prediction, jigsaw puzzle, ...)
for the OCL scenario. To provide an insight, Fig. 5.1 considers a simple
learner based on Finetuning (i.e., no counter-measure against forgetting)
and reports its performance in the online scenario allowing only one epoch
per task: in doing so, we compare the effects of the auxiliary objective
based either on equivariant self-supervised learning (in this case, four-fold
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rotation prediction) or on Barlow Twins [115], a recent CSSL-based ap-
proach that has also shown its merit in CL [43]. We observe that both rep-
resentation learning tasks allow for a lower interference between features
learned by SSL, as supported by the more favorable alignment of gradients
between current and subsequent tasks (Fig. 5.1a). Surprisingly, Fig. 5.1b
shows that only the rotation-aided model has a significant profit in terms
of individual task accuracy for the CSSL-based objective. We conjecture
that the limited amount of training steps in online CL is not sufficient for
contrastive approaches (such as Barlow Twins) to produce effective repre-
sentations for the downstream task.

To address the aforementioned CSSL limitations in the OCL set-
ting, we propose Continual Learning via Equivariant Regularization
(CLER), a novel OCL regularizer built on top of equivariant pretext tasks
– to the best of our knowledge, this is the first attempt to exploit equiv-
ariant information in CL. We demonstrate that our proposal can be easily
combined with existing state-of-the-art CL approaches, leading to a gener-
alized improvement in performance. Through additional experiments, we
highlight the structural and predictive properties conferred by CLER and
draw a detailed comparison with CSSL-based alternatives.

5.2 Related Work

(Online) Continual Learning is a field of machine learning that studies
training over sequences of non-i.i.d. tasks, with the objective of retain-
ing as much knowledge as possible from older tasks and mitigating catas-
trophic forgetting [5]. The existing literature offers different techniques to
tackle this problem: regularization-based [23, 21] methods are designed
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to control parameter updates in order to prevent disruptive modifications
to features important for previous tasks; segregation-based [27, 28] ap-
proaches identify subsets of task-relevant parameters and prevent their al-
teration by combining parameter freezing, model expansion, and feature
gating; replay-based [32, 70, 38, 40] methods store examples from the
past in a memory buffer, with the objective of periodically refreshing older
knowledge. Despite its simplicity, the latter approach is usually regarded
as the most effective solution to date [68, 8, 47].

These methods are typically evaluated in a relaxed training setting,
where the current task can be experienced over multiple epochs. In
practical applications, this requirement is rarely satisfied; Online CL
(OCL) [120, 17, 34] is a challenging and realistic scenario that adds the
condition that each sample of the stream can be seen only once. Works
targeting OCL typically all belong to the replay-based family [17, 47]1.
Among recent proposals, MIR [62] and GSS [34] propose enhanced re-
play sample selection procedures, ER-AML/ER-ACE [40] encourage bal-
ance in learning by means of carefully designed loss functions, CoPE [121]
learns by exploiting slowly evolving class summaries.
Self-Supervised Representation Learning in CL. Self-Supervised
Learning aims at learning useful representations directly from the data,
i.e., with no need for manual annotations. Recent SSL works show that
these methods are able to learn strong representations that can reach or
even outperform those of supervised learning [81, 114, 115]. In the con-
text of CL, SSL methods are typically trained to encourage the backbone
network to be invariant to the given transformations [41, 117, 43, 118, 66].
Co2L [41] learns the representations for new tasks with a modified super-

1All contemporary OCL works consider only replay approaches, due to their clear
performance superiority over all alternatives [120, 40].
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vised contrastive learning procedure [42], where current task samples are
used as anchors and elements in the buffer are used as negative samples
– all this while preserving past knowledge through distillation. However,
applying SSL methods in CL is not straightforward: SSL benefits from
large batch sizes and require several training steps to converge [81]; this
represents a limit for Co2L, as the number of negative samples is limited
by the small buffer size. DualNet [43] decouples representation learning
from the CL objective through two complementary networks: a slow net
exploits buffer samples to learn an overall representation, while a fast net
sequentially learns from the input stream, using the features from the slow
net to guide the process.
Pretext Self-Supervised Learning and Rotations. Differently from
CSSL, [122] employs a four-fold rotation prediction pretext task to pro-
vide a powerful learning signal for representation learning. In [123], the
rotation pretext task is applied in the context of few-shot learning; simi-
larly, [124] pairs rotation prediction to existing SSL methods, leading to
a consistent performance improvement. Recently, the authors of [125] in-
vestigated the role of invariance and equivariance in SSL, suggesting that
some transformations (e.g., four-fold rotations, jigsaw puzzle) can be effec-
tive when employed to encourage equivariance, but can lead to disruptive
effects when enforcing invariance.

5.3 Method

5.3.1 Online Continual Learning

In Online Continual Learning (OCL) [34, 126], a single DNN fθ is trained
on a sequence of classification tasks T1, . . . , TT . Each task consists of dis-
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Figure 5.2: Overview of CLER. Two versions of the input image are fed
into the in-training model: i) standard data augmentation is used to train
the classification head (green); ii) an equivariant transformation-based
task (rotation, alternatively jigsaw) is used to train the pretext head (blue).

joint input and output distributions (Ti = (Xi,Yi), with Yi ∩ Yj = ∅ for
i ̸= j) and each example-label pair may only be shown to the model once.
At task Tc, CL aims at optimizing fθ on all T tasks, while only having
access to data from Tc itself:

L =
T∑︂
i=1

Ri =
c−1∑︂
i=1

Ri⏞ ⏟⏟ ⏞
1

data no longer
available

+ Rc⏞⏟⏟⏞
2

data available

+
T∑︂

j=c+1

Rj⏞ ⏟⏟ ⏞
3

data not yet
available

, (5.1)

where Ri = E(x,y)∈Ti
[︁
ℓ(fθ(x), y)

]︁
denotes the empirical risk associated

with the data of task Ti.
In Eq. 5.1, term 1 (stability) requires fθ to maintain predictive efficacy

on previously encountered data, whereas term 3 (plasticity) suggests that
the model should prepare for fitting novel data distributions in later tasks.
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Only 2 can be directly pursued by training on data; instead, 1 and 3
are achieved by means of auxiliary loss terms. CL methods endeavor to
balance the three terms, which are typically understood to interfere with
one another [70, 127, 128].

5.3.2 OCL via Equivariant Regularization

The objectives 1 and 3 from Eq. 5.1 characterize the main challenges
that come when designing a CL model. However, both can be addressed
by learning a representation that can be shared across multiple tasks. To
achieve this, we equip the online learner with an auxiliary SSL objec-
tive. Works in current literature pursue this objective through CSSL loss
terms [41, 43]; instead, we follow the insights presented in Sec. 5.1 and
opt for an equivariant pretext task [124], defined as follows.

Let A = {Ai}Ki=1 be a family of input transforms Ai : X → X (e.g.,
rotations, jigsaw puzzle), we transform each input exemplar with a ran-
domly chosen Ak and request the in-training model to recognize the trans-
formation by predicting the correct label k ∈ YA = {1, . . . , K}. For this
purpose, we rewrite fθ as hϕ ◦gψ, where gψ is the early part of the network,
devoted to the extraction of features, and hϕ encompasses the latter part
of the model, including the final multi-layer classification head for the CL
task. Subsequently, we introduce hξ: a separate sub-network following the
same structure as hϕ, finally projecting the representation gψ(·) on the set
YA.

We treat the choice of A as a hyperparameter. In our experiments, we
explore two different kinds of transformations: the set of 4 non-distorting
image rotations {Rot0◦ ,Rot90◦ ,Rot180◦ ,Rot270◦} [123, 122], and the 24

permutations of patches produced by a 2 × 2 jigsaw puzzle [129]. The
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resulting approach, called CLER, consists of a regularization term Lr that
can be readily applied on a backbone network as shown in Fig. 5.2. Let
x ∈ Bin be a sample coming from the input batch, we define Lr as:

Lr = λr · E
x∼Bin
k∼YA

[︄
CE

(︂
hξ(gψ(Ak(x))), k

)︂]︄
, (5.2)

where CE is the cross-entropy loss and λr is a scalar hyper-parameter to
control the strength of the regularization. We highlight that the label space
YA of the pretext task remains constant over time. The objective of CLER
can hence be compared to classification problems where only the data-
generating distribution is subject to changes (Domain-Incremental learn-
ing [8]).

Equivariance & invariance

A function fθ is said to be equivariant w.r.t. A if there exists a mapping
MA such that:

fθ(A(x)) = MA(fθ(x)), ∀x ∈ X . (5.3)

While the learning objective in Eq. 5.2 promotes sensitivity to the chosen
set of transformations, solving the CL task forces the model to become in-
variant w.r.t. employed data augmentations. To avoid overlapping between
the two objectives, we compute Eq. 5.2 only on non-augmented inputs.
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5.4 Experiments

5.4.1 Experimental setting

Benchmarks

We build our OCL benchmarks by taking image classification datasets and
splitting their classes equally into a series of disjoint tasks. In the online
learning scenario, the learner will then experience each task only once
(single epoch). For additional details regarding the experiments, we refer
the reader to the supplementary material.

• Seq-CIFAR-100 [25, 31, 47] is obtained by splitting the original 100
classes of CIFAR-100 [13] into 10 consecutive tasks. For each class,
train and test sets include 500 and 100 32×32 RGB images respectively.

• Seq-Mini-ImageNet [47, 130, 131] is a challenging dataset that includes
a total of 100 classes from the popular ImageNet dataset and a longer
sequence of tasks. While the number of samples is the same as in Seq-
CIFAR-100, images are resized to 84× 84 and split into 20 5-way tasks.

Evaluation protocol

We primarily focus our evaluation on the online Class-Incremental (oCIL)
setting, where the model is asked to gradually learn to solve all tasks, with
no information regarding the task identifier (Task-ID). Differently from the
online Task-Incremental (oTIL) setting, where the task Task-ID is available
during inference, oCIL forces the learner to build a single-headed classifier.
We present extensive results in both the oCIL and oTIL settings.
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Baseline methods

We report the results of CLER on a selection of current state-of-the-art
(SOTA) methods viable for the oCIL setting.

• Experience Replay with Asymmetric Cross-Entropy (ER-ACE) [40].
Starting from the popular store-and-replay baseline (Experience Re-
play [6, 32]), the authors propose an alteration aimed at preventing im-
balances due to the simultaneous optimization of current and past data.

• eXtended Dark Experience Replay (X-DER) [86] is a model that com-
bines replay with self-distillation, while adopting careful design choices
to harmonically blend predictive functions learned at different times.

• Continual Prototype Evolution: Learning Online from Non-
Stationary Data Streams (CoPE) [121] proposes a classifier based on
class prototypes, whose careful update scheme allows for learning incre-
mentally while avoiding sudden disruptions in the latent space.

• DualNet [43] is a dual-backbone architecture decoupling the issue of in-
cremental classification from the one of learning an overall transferable
representation. The latter task is demanded to one of the backbones (slow
learner), trained with a CSSL loss term on i.i.d. data coming from the
replay buffer; the other backbone (fast learner) is instead tasked with fit-
ting the CL tasks while taking advantage of the representations produced
by the slow learner.

All models are trained for a single epoch with SGD, with a fixed batch
size of 10 both on the input stream and the replay buffer. We benchmark
all models with two different sizes for the memory buffer: 500 and 2000

for Seq-CIFAR-100 and 2000 and 8000 for Seq-Mini-ImageNet. For these
methods the input Bin in Eq. 5.2 is the concatenation of the images coming
both from the stream and the buffer.
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oCIL Seq-CIFAR-100 Seq-Mini-ImageNet

Joint-offline 69.47 (−) 63.31 (−)

Joint-online 23.14 (−) 10.68 (−)

Finetune 7.00 (100) 3.21 (100)

Buffer Size 500 2000 2000 8000

ER-ACE [40] 20.17 (38.75) 26.95 (23.69) 15.03 (35.01) 16.07 (37.94)

+ CLER 24.53JS (33.76) 30.89JS (20.24) 18.08R (32.53) 18.43JS (33.22)

X-DER [86] 25.80 (39.54) 30.44 (31.52) 17.51 (34.25) 18.01 (50.84)

+ CLER 29.35JS (35.56) 34.57JS (29.71) 21.26JS (34.07) 21.71JS (34.76)

CoPE [121] 19.98 (75.32) 34.09 (46.39) 22.67 (57.96) 24.54 (55.09)

+ CLER 26.15JS (69.28) 38.48JS (45.50) 25.91R (57.73) 26.76R (52.69)

DualNet [43] 11.09 (92.42) 19.93 (73.44) 16.21 (80.35) 25.33 (59.60)

+ CLER 11.89R (89.97) 20.88JS (73.02) 18.66R (72.74) 30.90R (52.14)

Table 5.1: Final Average Accuracy (FAA) (↑) and Final Average Adjusted
Forgetting (F̄ ∗

F ) (↓) on the oCIL setting. R indicates a result obtained with
rotation, JS a result obatined with 2× 2 jigsaw puzzle.

To better compare the effect of CLER, we also include the results of
a model jointly trained on all classes for one epoch (Joint-online) and for
30 and 50 epochs respectively on Seq-CIFAR-100 and Seq-Mini-ImageNet
(Joint-offline). Also, we include the results of a model trained on the task
sequence with no forgetting countermeasures (Finetune).

Architecture We rely on ResNet18 [69] as backbone in all experiments. For
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DualNet, we use this model as the slow learner and – in line with [43] –
construct the fast learner as a feed-forward network with the same number
of convolutional layers as residual blocks in the slow learner.

Regardless of the underlying CL method, we define the feature extrac-
tor gϕ and the classification heads hϕ and hξ by splitting the ResNet back-
bone at the second-last residual block; namely, hϕ and hξ are comprised of
the last residual block, followed by a linear projection onto the respective
sets of classes Y = ∪Ti=1Yi and YA.

Metrics

As a primary indicator of a model’s performance at the end of OCL, we
report its Final Average Accuracy (FAA). Let aji be the accuracy of the
model at the end of task j computed on the test set of task Ti, FAA is
computed as:

FAA =
1

T

T∑︂
i=1

aTi . (5.4)

To further assess learning as tasks progress, we report the Final Average
Adjusted Forgetting (F̄ ∗

F ), defined as follows:

F̄
∗
F =

1

T − 1

T−1∑︂
i=1

[︃
a∗i − aTi

a∗i

]︃+
,

where a∗i = max
t∈{i,...,T−1}

ati, ∀i ∈ {1, . . . , T − 1}.
(5.5)

F̄
∗
F is a novel measure derived from the widely employed Forgetting met-

ric [85] to facilitate the comparison between unevenly performing ap-
proaches. In particular, while the original Forgetting is upper-bounded by
a model’s accuracy, F̄ ∗

F varies in [0, 100]. F̄ ∗
F = 100 denotes a method that
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oTIL Seq-CIFAR-100 Seq-Mini-ImageNet

Joint-offline 82.69 (−) 87.55 (−)

Joint-online 54.12 (−) 52.62 (−)

Finetune 35.42 (44.32) 31.55 (28.75)

Buffer Size 500 2000 2000 8000

ER-ACE [40] 56.06 (9.48) 64.94 (3.19) 64.68 (3.77) 66.17 (4.10)

+ CLER 61.60JS (9.21) 69.33JS (3.04) 68.02R (5.27) 69.13JS (4.11)

X-DER [86] 63.10 (4.31) 69.00 (1.38) 67.67 (4.71) 68.97 (4.39)

+ CLER 68.19JS (2.98) 73.45JS (0.97) 71.32JS (3.01) 72.39JS (2.66)

CoPE [121] 51.89 (23.46) 66.56 (7.48) 70.10 (4.89) 73.61 (3.58)

+ CLER 60.19JS (20.34) 71.91JS (6.42) 71.17R (5.30) 75.33R (2.54)

DualNet [43] 49.38 (25.20) 57.05 (13.85) 68.43 (9.99) 73.89 (5.54)

+ CLER 50.11R (23.94) 59.66JS (12.99) 70.26R (7.39) 76.97R (3.87)

Table 5.2: Final Average Accuracy (FAA) (↑) and Final Average Adjusted
Forgetting (F̄ ∗

F ) (↓) on the oTIL setting. R indicates a result obtained with
rotation, JS a result obtained with 2× 2 jigsaw puzzle.

retains no accuracy on previous tasks (e.g., Finetune) and F̄
∗
F = 0 one that

has no performance decrease on past tasks.
We repeat each experiment 10 times and report the mean FAA and F̄

∗
F ,

and the standard deviation of the former. Please refer to the supplementary
material for the standard deviations and statistical significance.
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5.4.2 Comparison with the State-Of-The-Art

We include the results of our evaluation on Seq-CIFAR-100 and Seq-Mini-
ImageNet for oCIL and oTIL in Tab. 5.1 and 5.2 respectively. For each
experiment, we report the best performer among the 2×2 jigsaw and ro-
tation pretext tasks2. The evidence we present strongly supports our ini-
tial claims, with CLER improving the SOTA methods in all benchmarks.
Specifically, we witness an improvement across the board regarding the
FAA, while F̄

∗
F indicates stronger resistance against forgetting.

Interestingly, the effect of our regularization is maintained regardless of
the choice of buffer size, with an average oCIL improvement of 3.59 and
3.40 on Seq-CIFAR-100 and 3.12 and 3.46 on Seq-Mini-ImageNet. We
find the only notable exception is in the case of DualNet on Seq-CIFAR-
100. Indeed, even without our regularization, the lower FAA and higher
forgetting compared with the other baselines suggests that the model can-
not profit from the memory buffer. This might be due to the fact that
the slow learner is only trained with a CSSL objective on samples from
the buffer, which limits the quality of its representation when the latter
is of moderate size. However, its results on the challenging Seq-Mini-
ImageNet, when combined with CLER, suggest that such an effect can be
mitigated by leveraging equivariant SSL, which allows the fast learner to
develop better representations during OCL.
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Figure 5.3: Structural analysis of ER-ACE with and without CLER on Seq-
CIFAR-100. (a) Percentage of important neurons in each layer with higher-
than-average importance score Î(1)

m ; (b) within-layer similarity score g

after pruning with Geometric Median; (c) accuracy after dropping conv.
filters and training on a few batches from T6, with the pre-drop accuracy
serving as a target value (red line).
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5.5 Model Analysis

In the remainder, we analyze the various contributions of CLER and gather
further insights on its overall effect on the CL tasks. To the best of our
knowledge, our work is the first to consider the effect of equivariant-based
pretext tasks in an incremental setting.

5.5.1 Effects of CLER on the Backbone

For an in-depth analysis of the effects induced on the backbone, we con-
sider ER-ACE with and without CLER and conduct three additional ex-
periments, drawing inspiration from the Network Pruning literature [132].
Our aim here is to unveil how the information carried by the learned fea-
tures distributes across the parameters of the backbone.

Importance and redundancy

First, we quantify each parameter’s contribution to the overall loss after
training on Seq-CIFAR-100 by computing the importance measure Î(1)

m

proposed in [132]. In Fig. 5.3a, we focus on the convolutional layers and
report the proportion of parameters whose importance score is higher than
the layer’s average to provide a compact per-layer evaluation.

Additionally, we perform a Geometric Median pruning [133] on the
model, thus discarding those filters Fd that are the most redundant - i.e.,
averagely most similar to all others in the same layer. In Fig. 5.3b we report

2Please refer to Sec. 5.5.2 for a detailed comparison between the two choices of pretext
task.
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Model Seq-CIFAR-100 (oCIL) Seq-CIFAR-100 (oTIL)

Buffer Size 500 2000 500 2000

ER-ACE [40] 20.17 (38.75) 26.95 (23.69) 56.06 (9.48) 64.94 (3.19)

+ CSSL 20.89 (36.03) 27.80 (21.12) 56.22 (9.88) 65.91 (2.42)

+ CLER 24.53JS (33.76) 30.89JS (20.24) 61.60JS (9.21) 69.33JS (3.04)

X-DER [86] 25.80 (39.54) 30.44 (31.52) 63.10 (4.31) 69.00 (1.38)

+ CSSL 21.91 (36.07) 23.59 (40.53) 57.26 (2.76) 62.56 (0.85)

+ CLER 29.35JS (35.56) 34.57JS (29.71) 68.19JS (2.98) 73.45JS (0.97)

CoPE [121] 19.98 (75.32) 34.09 (46.39) 51.89 (23.46) 66.56 (7.48)

+ CSSL 17.23 (74.28) 25.76 (54.72) 49.56 (18.98) 62.48 (3.64)

+ CLER 26.15JS (69.28) 38.48JS (45.50) 60.19JS (20.34) 71.91JS (6.42)

Table 5.3: Performance comparison between our proposal CLER and a
similar Contrastive-based SSL (CSSL) method, as measured by Final Av-
erage Accuracy FAA ± std (↑) and Final Average Adjusted Forgetting
(F̄ ∗

F ) (↓) on the Seq-CIFAR-100 benchmark.

the average within-layer similarity g for the discarded kernels:

g(Fd) =
1

F

F∑︂
j=1

|Fd −Fj|, (5.6)

with F the total number of filters in the considered layer.
Our results reveal that CLER pushes the model to fit the learned task

with dense configurations of parameters (higher Î(1)

m in Fig. 5.3a) that are
also more similar to each other (lower g in Fig. 5.3b). We conjecture that
this can be linked to the performance increase reported in Sec. 5.4.2: as
the knowledge of a specific task does not rely on only a few parameters but
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instead appears more distributed, it is less likely that subsequent weights’
updates will entirely erase the previously acquired knowledge. Moreover,
the higher rate of important parameters, coupled with the higher redun-
dancy, suggests that those important filters erased by forgetting could be
restored as needed, by simply leveraging redundant groups of parameters.

Recovery

To support our intuitions, we conducted an additional evaluation probing
the dynamics of learning with CLER. After training on the 6th task of Seq-
CIFAR-100, we randomly drop a portion of the convolutional filters in
our models and retrain using only the cross-entropy loss on a few batches
from the same task, reporting the accuracy after each batch in Fig. 5.3c.
Interestingly, the distributed importance induced by our training objective
leads to a higher initial drop in accuracy for CLER. However, our proposed
approach swiftly recovers its performance, reaching the target pre-drop
accuracy in fewer steps w.r.t. the baseline.

5.5.2 Invariance & Equivariance

While in previous sections we explored the role of equivariance as a reg-
ularizer for OCL, we now wish to better characterize the different pretext
tasks, as well as compare with an invariance-based CSSL objective.

Rotations vs Jigsaw

The results presented so far depict a clear advantage of the jigsaw puzzle
pretext task, which might suggest that the performance gain is not specif-
ically tied to equivariance but to the former. To address such concern, in
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Figure 5.4: Final Average Accuracy (FAA) [↑] of various baseline methods
when equipped with different equivariant pretext tasks: four-fold rotation
prediction and 2 × 2 jigsaw solving. Both methods achieve higher results
w.r.t. the baseline, with jigsaw solving usually leading to the best perfor-
mance.
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Fig. 5.4 we present detailed results for the evaluation of Sec. 5.4.2 on the
oCIL setting both with four-fold rotation and jigsaw puzzle. Our results
depict a clear advantage of both equivariant pretext tasks w.r.t. the baseline
method. Moreover, the similar performance achieved by the two (espe-
cially on the challenging Seq-Mini-ImageNet benchmark) further proves
our initial assumption about the effectiveness of equivariant-based SSL
methods in CL.

Comparison with CSSL methods

Our initial analysis shows that enforcing equivariance to a set of input
transformations efficiently allows CLER to learn a representation robust
against forgetting, by spreading the contribution of each feature on all the
learnable parameters. This is in contrast with current CL literature, which
instead relies on CSSL tasks [41, 43] to learn a representation that is in-
variant to strong data augmentation and input transformations.

To further prove our contribution, in Tab. 5.3 we compare our proposal
of an equivariant loss term against one that promotes invariance by means
of a CSSL objective. For the latter, we take inspiration from [43] and
opt for Barlow Twins. Our results indicate a superior regularization effect
for CLER, with CSSL even hurting the performance in some scenarios.
This suggests that the few training iterations allowed in OCL do not allow
CSSL to transfer useful knowledge, thus eventually hindering incremental
learning.

Applicability to the multi-epoch setting

While we focus our evaluation on OCL, we reckon that our proposed ap-
proach might also prove beneficial in a less strict environment that allows
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ER-ACE [40] + CSSL + CLER

Epochs Buffer size 500

1 (OCL) 20.17 (38.75) 20.89 (36.03) 25.08JS (32.84)

5 32.47 (47.70) 33.53 (46.29) 34.88JS (45.52)

20 37.38 (46.79) 37.78 (50.55) 39.35JS (46.84)

50 37.94 (51.49) 39.61 (43.75) 41.27JS (46.78)

Epochs Buffer size 2000

1 (OCL) 26.95 (23.69) 27.80 (21.12) 30.89JS (20.24)

5 42.35 (27.49) 43.62 (27.11) 45.67JS (24.92)

20 48.03 (33.33) 49.16 (31.86) 50.27JS (31.20)

50 49.05 (33.91) 50.66 (34.48) 52.17JS (32.56)

Table 5.4: Performance comparison for Equivariant- and Contrastive-
based SSL objectives in a multi-epoch setting, evaluated on Seq-CIFAR-
100. We measure the Final Average Accuracy (FAA) [↑] and find generally
stronger performance for CLER even when the online constraint is relaxed.

for multiple iterations. Such a setting simulates a realistic low-latency sce-
nario, where the desiderata is an algorithm capable of rapidly adapting to
the changing data stream while retaining knowledge from the past. Results
of this evaluation on the Seq-CIFAR-100 benchmark are summarized in
Tab. 5.4. Due to space constraints, we only include results on the Class-
Incremental scenario.

Unsurprisingly, as the number of epochs increases, the model can start
to fully leverage the knowledge that comes from the stream. However, as
CSSL tasks usually require a large number of iterations to converge, our
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Method Seq-CIFAR-100 Seq-Mini-ImageNet

Joint-offline 69.85±1.43 62.42±1.13

+ CSSL 70.24±0.47 63.10±0.61

+ CLER 70.92JS±0.74 63.11JS±0.16

Joint-online 23.14±0.74 10.68±0.67

+ CSSL 23.16±0.82 13.79±0.79

+ CLER 28.38JS±1.82 14.77JS±0.78

Table 5.5: Accuracy of Joint methods with CSSL and CLER. The epochs
are set to 30, 50 for Seq-CIFAR-100 and Seq-Mini-ImageNet respectively.

CLER remains a better choice for the task of preventing forgetting while
boosting the representation of the base model.

5.5.3 Is CLER’s advantage actually tied to OCL?

The consistently enhanced performance of baseline methods when com-
bined with CLER could raise the suspicion that SSL regularization is gen-
erally effective and not particularly relevant to Continual Learning per se.
To shed light on this point, we apply both CSSL and CLER regularization
on a multi-epoch Joint upper bound (Joint-offline) and report the results in
Tab. 5.5; this simple test clearly shows that – if enough epochs are allowed
and the method achieves full convergence – the presence of additional SSL
terms does not impact the attained accuracy significantly.

To complement this result, we also apply the proposed technique on
top of single-epoch Joint training. In this context, CLER proves effective
and more so than CSSL. In line with what shown in Fig. 5.1, this result
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Method Seq-CIFAR-100 Seq-Mini-ImageNet

LWF.MC [31] 36.15 (49.78) 20.75 (63.67)

+ CLER 37.07R (49.37) 21.64R (62.79)

R-DFCIL [134] 34.98 (54.59) 13.15 (83.47)

+ CLER 36.74R (52.31) 18.80JS (75.43)

Table 5.6: Class-IL Final Average Accuracy (FAA) [↑] of DFCIL methods
(no buffer) with and without CLER. We conduct 30, 50 epochs on Seq-
CIFAR-100, seq-Mini-ImageNet respectively.

confirms that SSL facilitates the convergence of the learner when having
only few data-points and that the equivariant approach of CLER is more
sample-efficient than typical CSSL methods.

In conclusion, we summarize that self-supervised regularization is
not effective in a multi-epoch non-continual setting (Tab. 5.5 top); it
becomes relevant in either single-epoch (Tab. 5.5 bottom) or continual
(Tab. 5.4) setting. Due to its enhanced sample efficiency, the equivari-
ant approach pursued by CLER is particularly effective when fewer
epochs are performed. For this reason, its application is ideal for the OCL
setting.

5.5.4 Applicability to Data-Free Continual Learning

The SOTA competitors on top of which we validate CLER in Sec. 5.4
belong to the rehearsal-based family of CL methods. These represent by
far the preferred approach in the challenging oCIL scenario, on which the
performance of other classes of methods is severely compromised [120,
40, 135, 136]. However, a very recent line of works raises criticism on the
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adoption of replay, citing potential privacy issues [137, 134]. They instead
focus on the so-called Data-Free Class-Incremental Learning (DFCIL)
setting, i.e., multi-epoch Class-Incremental Learning without a memory
buffer.

To provide a clear picture of the flexibility of our proposal, we
further showcase its application on top of two DFCIL methods: the
model inversion-based Relation-Guided Representation Learning (R-
DFCIL) [134] and the distillation-based Multi-Class Learning without For-
getting (LWF.MC) [31]. The results in Tab. 5.6 illustrate that CLER deliv-
ers a steady performance improvement even in DFCIL, which reveals that
its effectiveness is not dependent on the availability of replay data.

5.6 Discussion

We present Continual Learning via Equivariant Regularization
(CLER), a novel approach for Online Continual Learning (OCL) that en-
courages representations to be sensitive to a set of input transformations.
Our method introduces a regularization technique based on equivariant
SSL pretext tasks (jigsaw puzzle solving and four-fold rotation prediction).
By experimental means, we show that the application of CLER to state-
of-the-art methods consistently leads to better performance. Furthermore,
we provide an in-depth analysis of the effect of CLER on the parameters
of the backbone network and compare it against other Contrastive Self-
Supervised Learning methods.

Our strong results with different choices of equivariant pretext tasks
further support our initial hypothesis, laying the foundation for better OCL
models based on equivariant constraints. We leave this analysis for future
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work.

5.7 Publications

The approach described in this chapter is currently under review at IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) jour-
nal.

Bonicelli, L., Boschini, M., Frascaroli, E., Porrello, A., Pennisi, M.,
Bellitto, G., Palazzo, S. Spampinato, C., Calderara, S. (2023). On the
Effectiveness of Equivariant Regularization for Robust Online Continual
Learning. Submitted to IEEE Transaction on Pattern Analysis and Ma-
chine Learning.



Part III

TOWARDS NEUROCOGNITIVE
CONTINUAL LEARNING

“Dreams feel real while we’re in them. It’s only when we wake
up that we realize something was actually strange.”

Dom Cobb, Inception, 2010
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The intricate and adaptable structure of human neural connections al-
lows for the seamless assimilation of knowledge across diverse contexts.
This adaptability underscores a stark contrast between human cognition
and the current capabilities of AI systems. While both entities process in-
formation, there are striking differences in their perceptual systems, neural
architectures, and learning paradigms. Compounding these differences is
our limited understanding of the fundamental mechanisms of the human
brain, which poses a significant challenge to replicating its capabilities.

To bridge the gap between machine and human cognition, the second
part of the thesis is devoted to methods that draw inspiration from neu-
rocognitive theories. These theories, while still experimental, provide in-
valuable insights into human cognitive processes. Two processes stand out:
first, the inherent visual attention mechanisms that have evolved in humans
over millennia; and second, the critical role of off-line states, particularly
sleep, in consolidating memories and forming new semantic structures.

In Chapter 6, the focus shifts to the human visual system, a sophisti-
cated network of structures fundamental to the processing of visual stimuli
from the environment. Taking advantage of the specific neurophysiolog-
ical features of the primary visual cortex, we propose a method that uses
auxiliary saliency prediction features to improve the stability and accuracy
of learning sequences in non-i.i.d. classification tasks.

Chapter 7 explores the enigmatic but essential domain of dreaming and
its role in cognitive functions. Far from being a merely passive state, sleep
actively facilitates the reinforcement and integration of neural representa-
tions of new experiences into established knowledge matrices. Drawing
on the dualistic nature of wake-sleep memory acquisition in humans, this
chapter explores the potential of these mechanisms to inform and innovate
knowledge storage strategies in neural networks.



CHAPTER

SIX

SELECTIVE ATTENTION-BASED

MODULATION FOR CONTINUAL LEANING

In Chapter 5, we explored the effective combination of a continuously
trained classifier combined with an additional task to guide the learning
process. In this chapter, we continue this perspective by taking an approach
inspired by how the human brain works, in particular by drawing insights
from some peculiarities of the Human Visual System (HVS) [138, 139].
The HVS is a complex and sophisticated networks of structures and pro-
cesses responsible for processing visual information from the environment.
It includes the eyes, and various components of the central nervous system
(retina, optic nerve, optic tract and visual cortex). It empowers humans to
see, perceive and comprehend the world around them.

As we delve into bio-inspired methodologies, we uncover valuable in-
sights that pave the way for enhancing classification models in a continual
learning setting. Inspired by neurophysiological evidence that the primary
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visual cortex does not contribute to object manifold untangling for catego-
rization and that primordial attention biases are still embedding in the mod-
ern brain, here we propose to employ auxiliary saliency prediction features
as a modulation signal to drive and stabilize the learning of a sequence of
non-i.i.d. classification tasks.

6.1 Motivation

Humans possess the remarkable capability to keep learning, with lim-
ited forgetting of past experience, and to quickly re-adapt to new tasks
and problems without disrupting consolidated knowledge. Machine learn-
ing, on the contrary, has shown significant limitations when dealing with
non-stationary data streams with a limited possibility to replay past ex-
amples. The main reason for this shortcoming can be found in the inher-
ent structure, organization and optimization approaches of artificial neu-
ral networks, which differ significantly from how humans learn and how
their neural connectivity is built when accumulating knowledge over a
lifetime. According to the Complementary Learning Systems (CLS) the-
ory [140, 141], the human ability to learn effectively may be due to the
interplay between two learning processes that originate, respectively, on
the hippocampus and on the neocortex. These two brain regions interact
to support learning representations from experience (the neocortex) while
consolidating and sustaining long-term memory (the hippocampus). This
theory has inspired several continual learning methods [142, 143, 144]. In
particular, the recent DualNet method [43] translates CLS concepts into a
computational framework for continual learning. Specifically, it employs
two learning networks: a slow learner, emulating the memory consoli-
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dation process happening in the hippocampus through contrastive learning
techniques, and a fast learner, that aims at adapting current representations
to new observations.

Figure 6.1: Comparison between the forgetting-free behavior of saliency
prediction and the typical catastrophic forgetting observed on classifica-
tion tasks in continual learning scenarios. Saliency accuracy (measured
as similarity [145]) improves as the saliency network is presented with
more tasks, while classification accuracy drops. This suggests that saliency
detection is an i.i.d. task even in presence of a non-i.i.d. data distribution.
Images on the x axis show how predicted saliency maps are approximately
constant over tasks.

However, this strategy still appears insufficient for addressing the prob-
lem of continual learning, because it starts from the (possibly wrong) as-
sumption that human neural networks directly process visual input with
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the objective of performing categorization from early vision layers. On
the contrary, neurophysiological studies [146, 147] are in near universal
agreement that the object manifolds conveyed to primary visual cortex V1
(one of the earliest areas involved in vision) are as tangled as the pixel
space. In other words, the neurons of the earliest vision areas do not con-
tribute to object manifold untangling for categorization, but rather enforce
luminance and contrast robustness [147]. This suggests that training early
neurons with a visual categorization objective — as done not only in Dual-
Net, but in all existing continual learning methods — is in stark contrast to
the biological counterparts observed in primates. Moreover, recent stud-
ies on the causes of forgetting in artificial neural networks showed that
deeper layers (i.e., closer to the output) are less stable in presence of task
shifts [148], which is consistent with the hypothesis that earlier layers do
not bear specific categorization responsibilities.

Given these premises, it is peculiar that existing bio-inspired continual
learning methods tend to ignore all upstream neural processes underlying
visual categorization, such as visual attention. Indeed, the ability to select
relevant visual information appears to be the hallmark of human/primate
cognition. Moreover, recent findings in cognitive neuroscience have shown
that the visual attention priorities of human hunter-gatherer ancestors are
still embedded in the modern brain [149]: humans pay attention faster to
animals than to vehicles, although we now see more vehicles than animals.
This primordial attention bias embedded in human brains suggests that the
neuronal circuits of the ventral visual pathway are somehow inherited, as a
form of genetic legacy from ancestral experience, and tend to remain stable
over time — thus not subject to forgetting, though we have long stopped
hunting to survive.

Interestingly, we observed the same forgetting-free behavior for
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saliency prediction on artificial neural networks. Fig. 6.1 shows the trend
of the similarity [145] metric for a saliency prediction model trained in a
continual learning scenario, and compares it to the accuracy of a classifi-
cation model under the same settings. While classification accuracy drops
as the classifier learns new classes, the saliency metric remains stable, and
even slightly improves.

From this observation, in this paper we propose SAM, a Selec-
tive Attention-driven Modulation strategy that employs saliency predic-
tion [150] to drive the learning of a sequence of classification tasks in a
continual learning setting. To emulate what has been observed in primates,
where visual attention modulates the firing rate of neurons that represent
the attended stimulus at different stages of visual processing [151, 152],
SAM adopts a two-branch model: one branch performs visual saliency
prediction [153, 154, 155], and its responses modulate (through multipli-
cation) the features learned by a paired classification model in the sec-
ond branch. SAM is model-agnostic and can be used in combination to
any continual learning method. We demonstrate that saliency modulation
positively impacts classification performance in online continual learn-
ing settings, leading to a significant gain in accuracy (up to 20 percent
points) w.r.t. baseline methods. We further demonstrate the usefulness of
saliency modulation on different benchmarks (including a challenging one
that tackles fine-grained classification) and substantiate our claims through
a set of ablation studies. We finally show that saliency modulation, besides
being biologically plausible, leads to learn saliency-modulated features
that are more robust to the presence of spurious features and to adversarial
attacks.

In summary, we make the following contributions:
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• We introduce a new continual learning strategy named Selective
Attention-driven Modulation (SAM), where the image classifier is
coupled with a saliency prediction model that drives its learning by
effectively reducing forgetting. Interestingly, our approach is model-
agnostic and can be easily used with all existing methods.

• We evaluate our SAM strategy in the more complex Online
Continual Learning scenario, on the well-established Seq-Mini-
ImageNet [47, 130, 131] benchmark, and on a even more challenging
dataset containing only image of animals. We discover that meth-
ods trained according to our strategy significantly increase the final
accuracy, outperforming existing multi-branch solutions like Dual-
Net [43], CoPE [121] and TwF [156].

• We show that saliency modulation, besides being biologically plau-
sible, leads to learn saliency-modulated features that are more robust
to the presence of spurious features and to adversarial attacks.

6.2 Related Work

Continual Learning

Continual Learning (CL) [18, 46] is a recently-popularized branch of ma-
chine learning whose objective is to bridge the gap in incremental learning
between humans and neural networks. McCloskey and Cohen [5] highlight
that the latter experience a catastrophic forgetting of previously acquired
knowledge in the presence of distribution shifts in the input data stream. To
compensate for this problem, countless solutions have been proposed that
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introduce either adequate regularization terms [23, 25], specific architec-
tural organization [24, 27] or the rehearsal of a small number of previously
encountered data points [32, 31, 38].

While current solutions help mitigating forgetting, their application
to real-world settings proves difficult, as typical CL evaluations are con-
ducted in accordance to unrealistic benchmarks [157, 158]. Online CL
(OCL) [120] addresses this issue by forbidding multiple epochs on the in-
put stream. This is meant to model the realistic assumption that any data
point captured in the wild occurs only once.

To reach reasonable performance, most approaches tackling this chal-
lenging scenario adopt a replay strategy [6, 32]. Some works focus on
memory management: GSS [34] introduces a specific optimization of
the basic rehearsal formula meant to store maximally informative sam-
ples in memory, while HAL [126] individuates synthetic replay data points
that are maximally affected by forgetting. Other approaches propose tai-
lored classification schemes: CoPE [121] uses class prototypes to ensure
a gradual evolution of the shared latent space; ER-ACE [40] makes the
cross-entropy loss asymmetric to minimize imbalance between current and
past tasks. Finally, other works introduce a surrogate optimization objec-
tive: SCR [159] employs a supervised contrastive learning objective and
OCM [160] leverages mutual information objectives: both aim at learning
informative features that are less subject to forgetting.
Our proposal adopts a remarkably different approach w.r.t. these classes of
methods, in that we take inspiration from cognitive neuroscience theory of
learning and exploiting the features of a conjugate forgetting-free task (i.e.,
saliency prediction) to modulate the responses of our OCL model. Doing
so produces a stabilizing effect on our model and makes it more resilient
to forgetting.
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An approach that is similarly inspired by cognitive theories is Dual-
Net [43], which employs two networks that loosely emulate how slow and
fast learning work in humans. However, DualNet employs contrastive
learning on the slow network (the earliest layers of the model), while
it seems that object-identifying transformations happens later in the hu-
man visual system [146, 147]. Our results, reported later, substantiate
the suitability of our choice to use low-level processes, such as selective
attention, to drive continual learning tasks, rather than contrastive learn-
ing or classification pre-training techniques as, respectively, in DualNet
and TwF [156]. Finally, our work, like DualNet, follows the emerging
NeuroAI [161] paradigm promoted by deep learning pioneers, according
to which human neural computation will drive the next revolution in AI,
bringing machines closer to human capabilities.

Despite the idea of using saliency prediction maps in continual learning
has never been proposed, we have assisted to a recent trend where forget-
ting can be mitigated if the model is encouraged to recall the evidence for
previously made decisions, stored as activation maps [162]. Specifically, it
employs explainability techniques as Gradient-weighted Class Activation
Mapping (Grad-CAM [163]) to store visual model explanations for each
sample in the buffer and ensures model consistency with previous deci-
sions during the training phase. Similarly, EPR [164], instead of retaining
whole images, employs Grad-CAM to identify the important patches and
stores them in the episodic memory.
The above methods rely on using activation maps (sometime referred to
as saliency maps) as regularizers to limit forgetting. However, it is worth
to highlight that there exist a fundamental difference with our approach.
Within the context of explainable artificial intelligence (XAI), techniques
as Grad-CAM are utilized to generate attribution maps to support a model
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prediction in term of relevant input features. While they aim to identify
important visual areas for a pre-trained classifier, a saliency predictor is
a neural network trained with the aim to predict the area of a scene that
will capture the attention of a human observer. Moreover, as reported in
our experimental results, attribution maps tend to degrade over time, since
they strictly depend on the internal state of a neural network, which is sub-
ject to forgetting. In contrast, our saliency-based modulation, stemming
directly from neuroscience theory and from our finding of forgetting-free
behaviour of saliency is novel and unexplored.

Saliency Prediction

When exposed to visual stimuli, being either static (image) or dynamic
(video) scenes, humans have the ability to focus visual attention toward
the area of the scene that contain the most important information. Saliency
prediction is the task of predicting the gaze fixation of an observer when
viewing a scene, and it has long been investigated by computer vision
researchers. Initially, prior works focused exclusively on images. Static
saliency was studied extensively, using biological-inspired methods [165]
and employing hand-crafted features [166, 167, 168]. They are also re-
ferred as bottom-up methods, since they focused on low-level features,
such as contrast, colors, edge, etc. Thereafter, with the emergence of deep
learning and CNNs, a new plethora of methods, termed top-down, have
been proposed, achieving superior results and establishing the new state-
of-the-art [169, 170, 171, 172, 173, 174, 155]. Most of them are based on
the idea of exploiting existing pre-trained image classification model (such
as VGG, ResNet or DenseNet) as saliency encoders, while several decoder
architectures have been introduced.
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Dynamic saliency is more complex than static saliency because it involves
the temporal dimension and requires additional computational complex-
ity, but it is arguably more relevant to human visual experience. Early
attempts were based on adapting methods originally designed for image
saliency and applying them frame-by-frame. To extract temporal informa-
tion, prior video saliency models relied on optical flow [175] or LSTM
modules [176, 177, 178]. These methods outperforms state-of-the-art im-
age saliency model because the latter do not use any temporal or motion
information. Recently, the release of a new large-scale dataset for video
saliency prediction, i.e. the DHF1K benchmark [178], has allowed newer
methods to take a step further in performance. The latest TASEDNet [179],
HD2S [180] and STSANet [181] exploit 3D Convolutional-based encoders
that, unlike previous methods, allow spatial and temporal information to
be jointly processed, while VSFT [182] and TMFI [183] adopt a spatio-
temporal encoder based on Transformers [184] architecture, setting the
current state-of-the art.

6.3 Method

6.3.1 Online Continual Learning

Following the recent literature, we pose OCL as a supervised image clas-
sification problem with an online non-i.i.d. stream of data, where each
training sample is only seen once. Although our attention-driven modula-
tion does not require the presence or knowledge of task boundaries, in this
formulation and in our experiments we assume that these are given, to the
benefit of any baseline method enhanced by the proposed extension.

More formally, let D = {D1, . . . ,DT} be a sequence of data streams,
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Figure 6.2: Architecture of the proposed selective attention-based mod-
ulation (SAM) strategy. The classification backbone is paired with a
saliency prediction network that, given its capability of being forgetting-
free, aims at adjusting the learned classification features in order to miti-
gate overall forgetting.

where each pair (x, y) ∼ Di denotes a data point x ∈ X with the corre-
sponding class label y ∈ Y; the sample distributions (in terms of both the
data point distribution and the class label distribution) of different Di and
Dj may vary — for instance, class labels from Di might be different from
those from Dj , though both must belong to the same domain Y . Given
a classifier f : X → Y , parameterized by θ, the objective of OCL is to
train f on D, organized as a sequence of T tasks {τ1, . . . , τT}, under the
constraint that, at a generic task τi, the model receives inputs sampled from
the corresponding data distribution, i.e., (x, y) ∼ Di, and sees each sample
only once during the whole training procedure. The classification model
may optionally keep a limited memory buffer M of past samples, to reduce
forgetting of features from previous tasks. The model update step between
tasks can be summarized as:

⟨f,θi−1,Di−1,Mi−1⟩ → ⟨f,θi,Mi⟩ (6.1)
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where θi and Mi represent the set of model parameters and the buffer
at the end of task τi, respectively. For methods that do not exploit buffer,
Mi = ∅,∀i.

The training objective is to optimize a classification loss over the se-
quence of tasks (without losing accuracy on past tasks) by the model in-
stance at the end of training:

argmin
θT

T∑︂
i=1

E(x,y)∼Di

[︂
L
(︂
f (x;θT ) , y

)︂]︂
(6.2)

where L is a generic classification loss (e.g., cross-entropy), which a
continual learning model attempts to optimize while accounting for model
plasticity (the capability to learn current task data) and stability (the capa-
bility to retain knowledge of previous tasks) [5].

6.3.2 SAM: Selective Attention-driven Modulation

Our method is grounded on the neurophysiological evidence that attention-
driven neuronal firing rate modulation is multiplicative and the scaling of
neuronal responses depends on the similarity between a neuron’s preferred
stimulus and the attended feature [151, 152]. This hypothesis is trans-
lated into a general artificial neural architecture, where we emulate the
the process of human selective attention through a visual saliency predic-
tion network whose activations modulate, through multiplication, neuron
activations of a paired classification network at different stages of visual
processing. Formally, let S : X → S be a saliency prediction network,
where X is the space of input images and S the space of output saliency
maps. Generally, if X = R3×H×W for RGB images, then S = RH×W ,
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where each location of a map s ∈ S measures the saliency of the corre-
sponding pixel in the RGB space. We assume that S can be decomposed
into two functions, an encoder E : X → H and a decoder D : H → S ,
such that S (x) = D (E (x)), for x ∈ X . Then, given an online continual
learning problem with data stream D and set of classes Y , let C : X → Y
be a classification network, such that C and the saliency encoder E share
the same architecture (with independent parameters). An illustration of the
proposed architecture is shown in Fig. 6.2.

At training time, both S and C observe the same data stream, from
which pairs (x, y) of input data and class label are iteratively sampled.
Through the use of an external saliency oracle, we extend each data sam-
ple to a triple (x, y, s), where s is the target saliency map associated to
x. The oracle can be either a set of ground-truth maps, when available,
or pseudo-labels provided as the output of a pre-trained saliency predic-
tor (unrelated to S). We therefore proceed to optimize a multi-objective
loss function L = Ls + λLc, with λ being a weighing hyperparameter.
Loss term Ls is computed on the output of saliency predictor S, and com-
pares the estimated saliency map S(x) with the target s by means of the
Kullback-Leibler divergence (commonly employed as a saliency predic-
tion objective [145, 155, 180, 181, 185]):

Ls =
∑︂
i

si log

(︃
si

Si(x) + ϵ
+ ϵ

)︃
(6.3)

with si and Si(x) iterating over map pixels in s and S(x), respectively.
Loss term Lc encodes a generic online continual learning objective, as in-
troduced in Eq. 7.2. As the proposed approach is method-agnostic, details
on the formulation of Lc may vary.

In order to enforce selective attention-driven modulation of classifica-
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tion neuronal activations, we leverage the architectural identity of saliency
prediction encoder E and classifier C to alter the feedforward pass of the
latter, by multiplying pre-activation features in C by the corresponding
features in E, before applying a non-linearity and feeding them to the next
layer of the network. Formally, let us assume that the C and E networks
consist of a sequence of layers {l1, l2, . . . , lL}. Without loss of general-
ity, let each layer li compute its output as zi = σ (Wizi−1), with σ being
an activation function, Wi the network-specific layer parameters (i.e., not
shared between E and C) and zi−1 the output of the previous layer (or the
network’s input x, if appropriate). Then, let us distinguish between fea-
tures z

(s)
i and z

(c)
i , respectively representing the output of layer li by the

saliency prediction encoder S and the classifier C. We apply attention-
driven modulation by modifying the computation of z(c)i as follows:

z
(c)
i = σ

(︃
W

(c)
i

(︂
z
(c)
i−1 ⊙ z

(s)
i−1

)︂)︃
(6.4)

where ⊙ denotes the Hadamard product. Intuitively, the proposed ap-
proach encourages the classification model to attend to “salient” features
of the input, where the concept of saliency is generalized from the pixel
space to hidden representations. It is important to note that, at training
time, gradient descent optimization of Lc would also affect on the saliency
encoder E. This is undesirable, as we previously showed (see Fig. 6.1)
that saliency features are robust to task shifts, unlike classification fea-
tures: hence, in order to guarantee this property, we stop the gradient flow
from Lc to parameters in E, and use it to update the parameters of classifier
C only.

In the above formulation, we assumed the presence of a classification
network with fully-connected layers; however, our method can be applied
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in an agnostic manner to any method employing, at least in part, a fea-
ture extractor implemented as a neural network. As such, the proposed
method can be equally applied, for instance, both to end-to-end classifica-
tion models (e.g., DER++ [38]) and to approaches with a neural backbone
that computes class-representative prototypes (e.g., CoPE [121]).

6.4 Experimental Results

6.4.1 Benchmarks

We build two OCL benchmarks by taking image classification datasets and
splitting their classes equally into a series of disjoint tasks:
• Seq-Mini-ImageNet [47, 130, 131] is a challenging dataset that includes

100 classes from ImageNet, allowing for a longer task sequence. For
each class, 500 images are used for training and 100 for evaluation.

• Seq-FG-ImageNet1 is a benchmark for fine-grained image classifica-
tion that we use to test CL methods on a more challenging task than
traditional ones. It includes 100 classes of animals extracted from Im-
ageNet, belonging to 7 different species (annelids, arachnids, birds,
clams, fishes, reptiles, shellfish), reducing inter-class variability and
leading to harder tasks. Each class contains 500 samples for training
and 50 for evaluation.

For both datasets, images are resized to 288×384 pixels and split into
twenty 5-way classification tasks.

1Seq-FG-ImageNet is derived from https://www.kaggle.com/datasets/

ambityga/imagenet100

https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100
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6.4.2 Training and Evaluation Procedure

Baseline Methods

We evaluate the contribution of the SAM strategy when paired to a clas-
sification network trained using several state-of-the-art continual learning
approaches, including rehearsal and non-rehearsal methods:

• DER++ [86]: a seminal work that combines rehearsal and knowledge
distillation strategies for supporting model plasticity while limiting for-
getting.

• ER-ACE [40]: a variant of experience replay [6, 32] which aims to pre-
vent imbalances due to the simultaneous optimization of the current and
past tasks by selectively masking softmax outputs.

• CoPE [121]: a prototype-based classifier with experience replay, whose
careful update scheme prevents sudden disruptions in the latent space
during incremental learning.

• LwF [21]: a non-rehearsal method that enforces a model to preserve
outputs of past model instances on new samples to limit forgetting.

• oEWC [186]: a non-rehearsal method that mitigates forgetting by selec-
tively limiting the changes on weights that are most informative of past
tasks.

All above methods employ ResNet-18 [69] as a feature extraction back-
bone. We also report the results of jointly training the model on all classes
for one epoch (Joint), and of training sequentially on each task without
any particular countermeasure for avoiding forgetting (Fine-tune).
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Implementation details

We apply the SAM strategy at five feature modulation points of ResNet-
18’s architecture, namely, the outputs of the first convolutional block and
of the four main residual blocks. In compliance with online learning, all
models are trained for a single epoch, using SGD as optimizer, with a fixed
batch size of 8 both for the input stream and the replay buffer. Rehearsal
methods are evaluated with three different sizes of the memory buffer
(1000, 2000 and 5000). When applying SAM, besides each method’s spe-
cific training objective, we also optimize the saliency prediction loss Ls
from Eq. 6.3. Saliency is estimated using DeepGaze IIE network [153] as
oracle.

When using SAM, classifier C and saliency predictor S are identical
ResNet-18 architectures, followed — respectively — by a linear classifica-
tion layer and a saliency map decoder. While C is trained from scratch, we
employ a pre-trained saliency predictor S, consistently with neuroscience
evidence showing that humans have selective attention already embedded
in the brain [149]. For a fair comparison, feature extraction backbones
of baseline methods are initialized to the same pre-trained weights as S.
Care was taken to ensure that the set of OCL classes C did not semanti-
cally overlap with pre-training data, to prevent any contamination from the
saliency predictor to the classification task. Specifically, S was pre-trained
for 20 epochs on a subset of 100 ImageNet classes (disjoint from our two
main benchmark datasets), using DeepGaze IIE as oracle. No class label
information was used at this stage.
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Figure 6.3: Overview of the Saliency Prediction Network used for our
experiments

Additional details on the Saliency Predictor

The Saliency Predictor S employs a ResNet-18 as encoder as to be sim-
ilar to the paired classifier C, thus easing the attention-based modulation
between the two branches. The saliency decoder is instead broadly in-
spired by UNISAL [155]. This architectural choice is motivated by the
low number of parameters it requires, which leads to a short runtime if
compared to other saliency models. In particular, the decoder consists of
a stack of pointwise convolutions and deptwhise separable 3 × 3 convo-
lutions, interleaved with bilinear upsampling blocks until the size of the
original input image is recovered, while features from second and third
residual blocks of the Encoder are used as skip connections, through two
modules named Skip-2 and Skip-4, to fuse features extracted at different
abstraction levels. The architecture of the proposed model is illustrated
in Fig. 6.3. Essentially, features from the bottleneck are upsampled with
a factor α = 2 and concatenated with the output of Skip-2 module. The
obtained features maps are upsampled again with a factor β = 2 and con-
catenated with the output of Skip-4 module, while the number of feature
maps is progressively scaled from the original value of 512 to 64. One last
1×1 convolution, followed by an upsampling layer and logistic activation,
reduces the feature maps to 1 and the spacial sizes are restored to those of
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the input image. More details are reported in Table 6.1.

Saliency Model: Decoder

Name type kernel/(stride) Batch Norm Activation Input shape Output shape

Post-cnn
SepConv2D 3× 3/(3, 3) Yes ReLU 512× 036× 048 512× 036× 048

Conv2D 3× 3/(1, 1) Yes — 512× 036× 048 256× 036× 048

Upsampling-1 Upsample α = 2 — — — 256× 036× 048 256× 072× 096

Skip-2
Conv2D 1× 1/(1, 1) Yes ReLU 256× 072× 096 512× 072× 096

Conv2D 1× 1/(1, 1) Yes — 512× 072× 096 512× 072× 096

Upsampling-2

Conv2D 1× 1/(1, 1) Yes ReLU 384× 072× 096 768× 072× 096

SepConv2D 3× 3/(1, 1) Yes ReLU 768× 072× 096 768× 072× 096

Conv2D 1× 1/(1, 1) Yes — 768× 072× 096 128× 072× 096

Upsample β = 2 — — — 768× 072× 096 128× 144× 192

Skip-4
Conv2D 1× 1/(1, 1) Yes ReLU 128× 144× 192 256× 144× 192

Conv2D 1× 1/(1, 1) Yes — 256× 144× 192 064× 144× 192

Post-Upsampling-2
Conv2D 1× 1/(1, 1) Yes ReLU 192× 144× 192 384× 144× 192

SepConv2D 3× 3/(1, 1) Yes ReLU 384× 144× 192 384× 144× 192

Conv2D 1× 1/(1, 1) Yes — 384× 144× 192 064× 144× 192

Fusion
Conv2D 1× 1/(1, 1) — Sigmoid 064× 144× 192 001× 144× 192

Upsample γ = 2 — — — 001× 144× 192 001× 288× 384

Table 6.1: Detailed input-output sizes of the Decoder of our Saliency Pre-
diction Network

Metrics and evaluation

As a primary metric of OCL model performance, we report the final av-
erage accuracy as FAA = 1

T

∑︁T
i=1 a

T
i , where aTi is the accuracy of the

final model on the test set of task τi. Accuracy aTi can be computed in a
Class-Incremental Learning (Class-IL) or in a Task-Incremental Learning
(Task-IL) setting. In the latter, we assume that a task identifier is provided
to the model at inference time, simplifying the problem by restricting the
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set of class predictions for a given sample. While task-incremental learn-
ing is often depicted as a trivial scenario in recent literature [68, 8, 34], we
emphasize its usefulness, as it isolates the effect of within-task forgetting
from the model’s bias towards the currently learned classes [65, 64, 86].
For this reason, we report both Class-IL and Task-IL performance in the
results. Results are reported in terms of mean and standard deviation over
five different runs.
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6.4.3 Results

Model Seq-Mini-ImageNet Seq-FG-ImageNet

Class-incremental learning

Joint 14.79±1.17 9.06±1.07

↪→SAM 16.10±0.30 9.73±0.73

Fine-tune 3.43±0.35 2.43±0.81

↪→SAM 4.20±0.27 3.68±0.44

Buffer size 1000 2000 5000 1000 2000 5000

DER++ 14.95±3.11 12.82±4.97 14.58±2.55 8.08±1.54 8.27±1.72 9.20±0.86

↪→SAM 19.13±1.62 22.92±2.25 25.35±2.56 11.71±2.36 12.97±1.62 13.73±1.95

ER-ACE 20.86±3.69 24.93±3.20 26.31±5.22 14.28±0.96 16.45±1.24 18.21±3.45

↪→SAM 27.48±2.83 33.09±1.28 35.58±1.79 20.03±3.13 23.80±2.11 28.68±0.50

CoPE 21.58±1.60 23.58±4.39 24.77±3.56 16.45±1.38 16.81±0.83 17.77±2.02

↪→SAM 26.66±2.22 33.35±4.67 45.04±2.44 18.17±2.79 27.14±1.62 34.34±3.51

Task-incremental learning

Joint 63.12±1.19 56.33±2.51

↪→SAM 64.18±0.60 56.72±1.09

Fine-tune 34.08±2.28 28.81±1.66

↪→SAM 57.07±3.44 51.24±2.36

DER++ 73.07±3.07 75.11±5.61 77.71±3.04 68.65±2.14 70.24±3.97 74.74±1.14

↪→SAM 79.75±1.56 82.97±0.25 84.10±0.81 72.83±3.90 75.40±2.29 78.26±1.10

ER-ACE 71.00±3.21 75.60±3.47 77.17±4.08 66.27±0.92 69.09±3.15 70.88±5.72

↪→SAM 77.51±2.72 82.22±0.96 83.56±1.55 73.08±2.14 75.60±2.28 79.46±0.56

CoPE 68.00±0.73 71.76±2.95 74.31±2.25 63.77±2.32 67.29±3.33 69.14±2.93

↪→SAM 72.69±0.80 77.57±1.57 84.64±1.20 64.79±1.60 73.39±1.11 78.66±1.59

Table 6.2: Final Average Accuracy FAA [↑] in Class-IL and Task-IL for
rehearsal-based methods with and without SAM.
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OCL performance

We first evaluate the contribution that attention-driven modulation provides
to state-of-the-art OCL baselines. For each method, we compute class-
incremental and task-incremental accuracy and compare to those obtained
when integrating SAM, as described in Sect. 6.3.

Results for rehearsal methods are reported in Table 6.2, showing a pat-
tern of enhanced performance when integrating SAM, for all tested buffer
sizes. Table 6.3 shows results for non-rehearsal methods. In this case,
SAM improvements are more evident in task-incremental; a marginal gain
in class-incremental accuracy is also noticeable, though the low perfor-
mance of baselines limits the room for improvements.

Model
Seq-Mini-ImageNet Seq-FG-ImageNet
CLASS-IL TASK-IL CLASS-IL TASK-IL

Joint 14.79±1.17 63.12±1.19 9.06±1.07 56.33±2.51

↪→SAM 16.26±0.30 64.34±0.59 9.51±0.93 56.72±1.09

Fine-tune 3.43±0.35 34.08±2.28 2.43±0.81 28.81±1.66

↪→SAM 4.20±0.27 57.07±3.44 3.68±0.44 51.24±2.36

LwF 3.18±0.41 30.61±1.80 3.25±0.45 27.55±1.64

↪→SAM 4.22±0.31 48.61±2.14 3.57±0.23 36.57±2.09

oEwC 2.68±0.24 24.10±1.55 2.38±0.23 24.98±1.15

↪→SAM 3.08±0.31 35.33±3.18 2.55±0.55 26.02±1.64

Table 6.3: Final Average Accuracy FAA [↑] in Class-IL and Task-IL for
non-rehearsal methods with and without SAM.

Since our strategy foresees two paired networks for classification and
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saliency prediction, we also compare with similar multi-branch CL base-
lines:
• DualNet [43], mentioned in Sect. 6.1, employs a dual-backbone archi-

tecture to decouple incremental classification (by a fast learner) from
self-supervised representation learning [115] (by a slow learner). We
adapt SAM to DualNet by replacing the slow learner and its training ob-
jective with our saliency prediction backbone, forcing the fast learner to
use saliency features for classification.

• TwF [156] employs a frozen pre-trained classification backbone to stabi-
lize the learning of class-incremental features, by means of an attention
mechanism. To enable SAM, the pre-trained classification backbone and
the feature distillation strategy are replaced with the saliency encoder,
and the features of the two backbones are combined through multiplica-
tion, as described in Sect. 6.3.

Table 6.4 shows results for different buffer sizes (we could not run TwF
with buffer size of 5000, due to excessive computing requirements). In-
tegrating SAM outperforms baseline versions of both methods, suggest-
ing that controlling learning through visual attention leads to better rep-
resentation for classification than, for instance, contrastive learning. This
is inline with cognitive neuroscience findings [146, 187], for which ob-
ject identity-preservation, that also involves contrastive learning, happens
mostly at later layers (e.g., IT neurons), while selective attention acts dur-
ing the whole categorization process.

Effect of classification pre-training

Additionally, in order to demonstrate generalization capabilities of our
attention-modulated strategy, and to ground our approach to the CL meth-
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B
uf

fe
r

Model
Seq-Mini-ImageNet Seq-FG-ImageNet
CLASS-IL TASK-IL CLASS-IL TASK-IL

TwF 23.78±1.67 73.57±1.27 15.32±2.59 64.32±5.18

↪→SAM 28.36±3.72 79.28±2.24 20.04±1.63 71.35±1.70

DualNet 20.57±0.91 72.65±0.56 15.62±1.54 67.60±1.5610
00

↪→SAM 28.58±1.40 81.79±0.59 19.48±0.59 75.76±0.51

TwF 29.05±2.02 78.38±1.66 18.72±1.75 72.15±2.82

↪→SAM 35.55±0.61 82.98±0.85 22.54±2.20 73.34±2.94

DualNet 27.41±1.79 76.49±0.65 21.04±1.08 71.54±0.7220
00

↪→SAM 33.76±1.21 83.79±0.27 22.53±1.56 78.35±0.36

DualNet 32.08±1.55 80.26±0.97 22.07±2.08 74.53±1.27

50
00

↪→SAM 36.44±0.77 85.72±0.40 24.83±2.01 80.18±0.52

Table 6.4: Comparison of our saliency-attention mechanism to computa-
tional attention mechanisms (TwF [156]) and contrastive learning (Dual-
Net [43]) for stabilizing learned classification features in CL tasks.

ods that exploit pre-training, we also compute performance when the clas-
sifier backbone and saliency encoder are pre-trained on a classification pre-
text task (despite using classification-pretrained fetures appears to be in
contrast to what it happens in the human brain). Differently from what de-
scribe in 6.4.2, here we use the same disjoint subset of ImageNet classes to
train the backbone of the classifier, then we initialize the saliency Encoder
to the same weights.

Also in this setting, methods combined to SAM achieve better results,
as show in Table 6.5. However, the performance gain is lower than the
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Model Seq-Mini-ImageNet Seq-FG-ImageNet
Buffer 1000 2000 5000 1000 2000 5000

CLASS-IL CLASS-IL

DER++ 30.35±0.74 30.96±0.59 32.55±1.47 15.76±0.58 16.61±0.26 16.83±0.44

↪→SAM 31.20±2.39 33.91±2.31 37.91±1.07 17.06±1.51 20.43±2.11 22.53±0.82

ER-ACE 42.33±0.57 45.84±0.50 48.77±1.28 30.91±1.02 34.09±0.57 37.49±0.47

↪→SAM 46.56±1.10 50.52±0.69 53.23±0.35 32.46±1.09 36.08±1.60 40.73±0.84

TASK-IL TASK-IL

DER++ 89.98±0.75 91.14±0.20 91.37±0.10 83.87±0.81 85.61±0.29 86.19±0.21

↪→SAM 89.34±0.54 90.47±0.32 91.36±0.30 82.34±0.54 84.04±0.40 84.83±0.32

ER-ACE 88.28±0.50 90.14±0.05 91.23±0.13 82.83±0.40 85.39±0.38 87.29±0.08

↪→SAM 89.99±0.46 90.83±0.20 91.84±0.08 82.94±1.15 84.25±0.95 86.51±0.25

Table 6.5: Final Average Accuracy FAF [↑] in Class-IL and Task-IL when
the classifier backbone and saliency encoder are pre-trained on a classifi-
cation task with classes different from those available in the CL settings.

one obtained with saliency pre-training. This is possibly due the fact that
classification pre-trained features are better than saliency one (as also evi-
denced by the general higher performance obtained with classification pre-
training) and have reched their maximum capacity. Thse results confirm
again the contribution of the forgetting-free behaviour of the saliency pre-
diction task to classification task.
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Figure 6.4: Saliency prediction accuracy, measured in terms of Similarity
(SIM), Pearson’s Correlation Coefficient (CC) and Kullback-Leibler di-
vergence (KLD) metrics, in continual learning settings on the Seq-Mini-
Imagenet and Seq-FG-ImageNet benchmarks.

Saliency Prediction vs Attribution Maps

We also compute the saliency metrics obtained by our saliency predictor
S, in the considered class-incremental setting. In particular, we use three
widely used metrics for image saliency prediction [145]: Persons’s Corre-
lation Coefficient (CC), Similarity (Sim) and Kullback-Leibler divergence
(KLD). As shown in Fig. 6.4, all metrics do not degrade as new tasks are
processed, but rather they exhibit a trend of enhancement with the number
of CL tasks.

This behaviour is further corroborated by the qualitatively results
shown in Fig. 6.5. The predicted saliency maps show no significant for-
getting when training on a sequence of twenty tasks (from τ0 to τ20).

Conversely, the attribution maps computed through Grad-CAM [163]
significantly deteriorates, showing a high level of forgetting. These results
thus demonstrate that pairing a saliency prediction model with a classifier
yields better results than storing attribution maps as done in [162].
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τ1 τ5 τ10 τ15 τ20

Figure 6.5: Qualitative comparison of attribution maps computed
through GradCAM (first row) and the saliency maps produced by the
saliency predictor S (second row) during a continual training on a se-
quence of 20 tasks. GradCAM attributions maps show significant forget-
ting, while saliency maps tend steadily to improve while training.

Cost analysis

We finally perform cost analysis to assess the efficiency of our SAM
approach compared to existing methods that employ two branches, i.e.,
TwF [156] and DualNet [43]. It is important to note that in a continual
learning settings, efficiency at training time might be more relevant than
the one at inference times as the main assumption is of a deep model that
keeps training from an infinite strem of data. The comparison in carried
out on an NVIDIA A100 and using the ResNet18 backbone for all mod-
els. The results in Table 6.6 reveals that SAM is much more efficient than
DualNet and TwF at training time, while it shows higher costs at inference
time (but also an accuracy gain of ∼10 points).
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Metric DualNet [43] TwF [156] SAM

Train parameters 16 M 58 M 23 M
Train time ∼ 6.5 h ∼ 3.0 h ∼ 1.0 h
Inference parameters 16 M 11 M 22 M
Inference time 3.45 ms 3.15 ms 7.50 ms

Table 6.6: Efficiency analysis. Comparison of training and inference times
and parameters between SAM, DualNet and TwF.

6.4.4 Ablation Studies

The proposed strategy is grounded on cognitive neuroscience literature,
according to which selective attention modulates neuronal responses of all
layers involved in the categorization process, in a multiplicative fashion.
Our next experiments are meant to assess whether this hypothesis (i.e.,
feature modulation through multiplication for all classification layers) is
optimal also for artificial neural networks, or if other integration modal-
ities of saliency information may be equally effective. We thus compare
our SAM strategy with the following baselines, all exploiting saliency in-
formation in different ways:
• Saliency-based input modulation (SIM): the input image is multiplied

by the corresponding estimated saliency map (thus highlighting salient
regions only).

• Saliency as additional input (SAI): we modify the classification net-
work to receive as input a 4D data tensor, with the saliency map concate-
nated to RGB channels.

• Learning saliency-based modulation (LSM): rather than multiplying
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(a) Seq-Mini-ImageNet

(b) Seq-FG-ImageNet

Figure 6.6: Comparison of SAM to alternative saliency integration
strategies. SIM modulates input images by saliency maps. SAI provides
saliency maps as an additional input channel to the classification network.
LSM merges classification and saliency features through a learnable con-
volutional layer.
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classification features z
(c)
i−1 and saliency features z

(s)
i−1 (see Eq. 6.4), we

feed them to convolutional layer with 1×1 kernel to produce z(c)i , and let
the model learn the corresponding parameters.

Fig. 6.6 reports the results of this analysis, using DER++ and ER-ACE as
baseline methods, and clearly indicates the superiority the SAM strategy
to other saliency integration variants. However, it is interesting to note
that saliency helps classification performance in all cases, demonstrating
its usefulness for continual learning tasks. We argue that this is due to the
intrinsic nature of saliency prediction, which we found to be i.i.d. with
respect to the data stream.

We then investigate whether the impact of attention-driven modulation
is uniform across the backbone layers. To this aim, we define a positional
binary coding scheme, controlling the application of the SAM strategy at
the predefined points of the network (see Sect. 6.4.2): if position i of the
coding scheme is 1, then the i-th feature modulation point is enabled, i.e.,
features from the i-th block of the classification network are multiplied by
the features of the i-th block of the saliency network. Results are reported
in Table 6.7 for both DER++ and ER-ACE, and indicate that the best strat-
egy is to modulate the features of all classification layers through the cor-
responding saliency ones, similarly to what neurophysiological evidence
reports [151, 152].

6.4.5 Model Robustness

We finally assess the robustness of the SAM strategy in dealing with spu-
rious features and adversarial attacks. Spurious features are information
that correlates well with labels in training data but not in test data (e.g., in a
classification task between birds and dogs, training with yellow birds and
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SAM Seq-Mini-ImageNet Seq-FG-ImageNet
Scheme Class-IL Task-IL Class-IL Task-IL

DER++

1 1 1 0 0 12.97±2.62 74.55±3.62 6.54±0.67 67.34±1.38

1 1 1 1 0 17.46±1.02 80.15±0.34 8.77±1.45 71.51±2.92

1 1 1 1 1 22.92±2.25 82.97±0.25 12.97±1.62 75.40±2.29

ER-ACE

1 1 1 0 0 23.72±0.77 74.15±1.38 18.08±0.96 70.44±2.08

1 1 1 1 0 26.44±2.33 77.14±2.73 16.55±2.55 67.32±5.07

1 1 1 1 1 33.09±1.28 82.22±0.96 23.80±2.11 75.60±2.28

Table 6.7: Performance comparison in term of FAA [↑] when applying
SAM to DER++ and ER-ACE at different layers of the ResNet-18 back-
bone, with buffer size 2000.

black dogs only), leading to low generalization [188]. This effect is ex-
acerbated in continual learning settings, where the covariate shift between
train data and test data increases as new tasks come in. Thus, we measure
to what extent our SAM strategy can mitigate the tendency of learning
methods to exploit spurious features to solve classification tasks.

We crafted an ad-hoc benchmark consisting of ten classes from Im-
ageNet. For each class, we added a class signature for training images,
leaving the test images unaltered. In detail, we modified each training im-
age by increasing the brightness of all pixels by a class-dependent offset,
computed as 5(c + 1) (in a 0-255 brightness range), where c is a numeric
class label. We then define five continual learning tasks with two classes



136 Chapter 6. Selective Attention-based Modulation for Continual Leaning

Method Class-IL Task-IL

ER-ACE 50.07±3.88 86.77±1.63

ER-ACESF 28.46±3.46 74.40±4.37

↪→SAM 44.08±3.67 83.04±3.06

Table 6.8: Effect of the SAM strategy in the presence of spurious features.
The SF apex indicates that the method is trained on the biased dataset
containing spurious features, while the one without apex when ER-ACE it
trained on the original, spurious-free, dataset.

each. We then compare ER-ACE to the corresponding SAM-enabled vari-
ant and ground its performance with the one obtained when it is trained
with original images (i.e., without enforcing spurious features in the data).
Results in Table 6.8 show that SAM effectively limits the possibility for the
classifier to use spurious features, resulting in a more robust and general-
izing model. The drop of performance (about 22 percent points) observed
between training with the original data and training with data biased by
spurious features is almost completely recovered when SAM is used.

Finally, we evaluate the robustness of SAM against adversarial pertur-
bations of the input space. To this aim, we apply the Projected Gradi-
ent Descent (PGD) attack [189] with different ε values (determining the
strength of the attack) and compare the average performance drop ex-
perienced by ER-ACE, in its original version and when combined with
SAM. We conduct the evaluation on both Seq-Mini-ImageNet and Seq-
FG-ImageNet, repeating each experiment three times. As shown in Fig-
ure 6.7, SAM considerably improves model stability, counteracting pertur-
bations by regularizing classification features with saliency ones.



6.5. Discussion 137

Figure 6.7: Robustness to adversarial attacks. ER-ACE baseline drops
even with small attacks, while SAM significantly enhances robustness.

6.5 Discussion

We presented SAM, a biologically-inspired selective attention-driven mod-
ulation strategy for online continual learning, which regularizes clas-
sification features using visual saliency, effectively reducing forgetting.
The proposed approach, grounded on neurophysiological evidence, sig-
nificantly improves performance of state-of-the-art OCL methods, and
has been shown to be superior to other multi-branch solutions, either
biologically-inspired (e.g., DualNet) or based on feature attention mech-
anisms (e.g., TwF).

Our results confirm that adapting neurophysiological processes into
current machine learning techniques is a promising direction to bridge the
gap between humans and machines. Future research directions will address
both limitations and extensions of the proposed approach. Indeed, while
SAM is model-agnostic, its formulation requires that the saliency encoder
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and the classifier are architecturally identical. The application to hetero-
geneous networks will be explored by defining or learning a mapping be-
tween activations at different network stages. Moreover, our finding that
saliency prediction is i.i.d. with respect to classification distribution shifts
will lead to investigate whether other low-level visual tasks enjoy this prop-
erty.

6.6 Publications

The approach described in this chapter is currently under review at IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) jour-
nal.

Bellitto, G., Proietto Salanitri, F., Pennisi, M., Boschini, M., Bonicelli,
L., Porrello, A., Calderara. S., Palazzo, S., Spampinato C., 2023. Selective
Attention-based Modulation for Continual Learning. Submitted to IEEE
Transaction on Pattern Analysis and Machine Learning.



CHAPTER

SEVEN

WAKE-SLEEP CONSOLIDATED LEARNING

In this final step of our journey, we leverage the Complementary Learning
System theory, already discussed in the previous Chapter 6, and comple-
ment it with theories on off-line brain states to propose another neuro-
inspired method able to reduce forgetting in CL settings.

Sleep, which appears to be a passive state, is actually a dynamic process
that plays a crucial role in various cognitive functions in humans. Research
over the past few decades has highlighted the role of sleep in memory con-
solidation [190]. During sleep, neural representation of new experiences
are strengthened and integrated into existing knowledge bases. Sleep en-
sures that learning is not just a fleeting event that exclusively occurs dur-
ing wake stage, when an agent experiments with new visual stimuli, but
that learning is ingrained and retained over time during sleep, which fa-
cilitates the consolidation of newly encoded information through unique
neuromodulatory activities.

This chapter draws an intriguing parallel between the benefits of sleep
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in humans and the desire to maintain and consolidate prior knowledge in
continual learning. Taking inspiration from the underlying mechanisms of
wake-sleep memory acquisition and consolidation in humans, we aim to
glean insights that can inform and inspire novel strategy for knowledge
preservation in AI systems.

7.1 Motivation

Humans and machines learn in different ways: the inherent structure and
optimization approaches of artificial neural networks differs significantly
from how humans build neural connectivity over a lifetime. The Com-
plementary Learning Systems (CLS) theory [191, 192] suggests that ef-
fective human learning occurs through the interplay of two learning pro-
cesses originating from the hippocampus and neocortex brain regions.
These regions interact to learn representations from experience (neocor-
tex) while consolidating and sustaining long-term memory (hippocampus).
This theory has inspired continual learning methods [43, 193] which trans-
late CLS concepts into computational frameworks. DualNet [43] employs
two learning networks: a slow learner that emulates the memory consol-
idation process in the hippocampus and a fast learner that adapts current
representations to new observations. DualPrompt [193] addresses the chal-
lenge of adapting transformer models to new tasks while minimizing the
loss of previous knowledge, using learnable prompts that are responsible
for adapting to new data quickly, while preventing catastrophic forget-
ting. The specialization of prompt sets to their respective tasks is simi-
lar to how the hippocampus and neocortex specialize in complementary
learning processes. DualNet and DualPrompt suggest that grounding ar-
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tificial neural networks to cognitive neuroscience may result in improved
performance, as they both achieve state-of-the-art performance on mul-
tiple benchmarks. Though promising, these approaches are rather rigid
as the structures of the two learning parts (network architecture in Dual-
Net; prompt format and positioning in DualPrompt) are defined a priori,
while neural networks in primates perform fast adaptation by flexibly re-
configuring synapses while learning from new experience. Moreover, prior
work does not consider the role of offline brain states such as sleep. Cur-
rent theories suggest that sleep and dreaming play a crucial role in consol-
idating memories and facilitating learning, by increasing generalization of
knowledge [194, 195, 196]. During sleep, neurons are spontaneously ac-
tive without external input and generate complex patterns of synchronized
activity across brain regions [197, 198]. This strong neural activity is be-
lieved to be due to the brain replaying and consolidating memories, while
reorganizing synaptic connections.

In this work we propose Wake-Sleep Consolidated Learning (WSCL),
extending the CLS theory by including wake-sleep states, in order to im-
prove artificial neural networks’ continual learning capabilities. This in-
tegration is achieved by introducing a sleep phase at training time that
mimics the offline brain states during which synaptic connection, mem-
ory consolidation and dreaming occur. In WSCL, a deep neural network
(DNN) replicates the functions of the neocortex, while a two-layered buffer
for short-term and long-term memory mimics the role of the hippocampus.
Training is organized in two main phases: 1) a wake phase, where fast
adaption of the DNN to new sensory experience is carried out and episodic
memories are stored in the short-term memory; 2) a sleep phase, consisting
of two alternating stages: a) Non-Rapid Eye Movement (NREM), where
the network replays episodic memories collected during the wake step,
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consolidates past experiences in the long-term memory, and optimizes its
neural connections to support synaptic plasticity; b) Rapid Eye Movement
(REM), where dreaming simulates new experience, preparing the brain for
future events. The hypothesis is that dreaming serves as an “anticipatory”
mechanism, helping the brain to identify relationships between different
types of information and making it easier to learn and remember new in-
formation.

Our computational formulation of the week-sleep process is tested
on several benchmarks, including CIFAR-10, Tiny-ImageNet and FG-
ImageNet. In all cases, our method outperforms the baselines and prior
work, yielding a significant gain in classification tasks. Remarkably,
WSCL approach is the first continual learning method yielding positive
forward transfer, demonstrating its ability to prepare synapses to future
knowledge. We also show that all three steps are necessary: the wake
stage is essential to ensure efficiency and to favor network plasticity by the
NREM stage, while the REM stage helps to increase feature transferability
and reduce the forgetting of acquired knowledge.

In summary, we make the following contributions:

• We present Wake-Sleep Consolidated Learning (WSCL), a novel
continual learning framework for enhancing neural networks capa-
bility by incorporating wake-sleep states, inspired by the brain’s of-
fline activities.

• We propose our WSCL framework which consist of two primary
phases: a wake phase focused on rapid adaptation to new experi-
ences and memory storage, and a sleep phase with Non-Rapid Eye
Movement (NREM) stage for memory consolidation, interspersed
with a Rapid Eye Movement (REM) stage that simulate optimiza-
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tion and anticipation.

• We conduct extensive experiments to demonstrate the effectiveness
of our WSCL, and we discover that methods trained with WSCL
achieve superior results across various challenging benchmarks.
Noteworthy, WSLC has a positive impact on forward transfer, prov-
ing that all the three phases are essential in finding the proper trade-
off between retention of prior knowledge and adaptation to future
tasks.

7.2 Related Work

Continual Learning (CL) [18, 46] is a branch of machine learning whose
objective is to bridge the gap in incremental learning between humans
and neural networks. McCloskey and Cohen [5] highlight that the lat-
ter undergo catastrophic forgetting of previously acquired knowledge in
the presence of input distribution shifts. To mitigate this problem, several
solutions have been proposed, introducing either adequate regularization
terms [23, 25], specific architectural organization [24, 27] or the rehearsal
of a small number of previously encountered data points [32, 31, 38].

While current solutions help reducing forgetting, real-world applica-
tion proves difficult, as typical CL evaluations are carried out on unreal-
istic benchmarks [157, 158]. Most approaches tackling this challenging
scenario combine a replay strategy [6, 32, 47] to regularization on logits
sampled throughout the optimization trajectory [38]. Some works focus
on memory management: GSS [34] introduces a specific optimization of
the basic rehearsal formula meant to store maximally informative sam-
ples; HAL [126] individuates synthetic replay data points that are maxi-
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mally affected by forgetting. Other works propose tailored classification
schemes: CoPE [121] uses class prototypes to ensure a gradual evolu-
tion of the shared latent space; ER-ACE [40] makes the cross-entropy loss
asymmetric to minimize imbalance between current and past tasks. Recent
works introduce a surrogate optimization objective: CR [159] employs a
supervised contrastive learning objective and OCM [160] leverages mutual
information: both aim at learning features that are less subject to forget-
ting.

Our approach differs from these classes of methods, in that we take in-
spiration from cognitive neuroscience theory of learning (Complementary
Learning Systems and wake-sleep) and exploits brain off-line states such as
sleeping and dreaming. We demonstrate that alternating standard training
with a revisited strategy that combines on-line and off-line stages makes
the model more resilient to task shifts. Recently, a few neuroscience-
informed CL methods have been proposed. Elastic Weight Consolidation
(EWC) [23] and Synaptic Intelligence [25] employ regularization to pre-
serve important weights learned during previous tasks while allowing the
network to adapt to new tasks, emulating fast adaption happening in the
neocortex. FearNet [144] adopts an auxiliary network (in line with CLS
theory) to detect catastrophic forgetting and trigger knowledge-preserving
regularization. Co2L [41] learns stable representations through contrastive
learning and self-supervised distillation.

Two approaches similarly inspired by CLS theory are DualNet [43]
and DualPrompt [193]. DualNet employs two networks that loosely em-
ulate slow and fast learning in humans. DualPrompt [193] also takes a
cognitive approach, using learnable prompts to be paired to a pretrained
transformer backbone. While both approaches yield good results, they ig-
nore off-line states, that appear fundamental in human learning. Though
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not applied to continual learning yet, the wake-sleep algorithm has been
shown to have the potential for learning improved and robust semantic rep-
resentations [199, 200]. Another related approach is Sleep Replay Consol-
idation [201] that employs sleep-based training using local unsupervised
Hebbian plasticity rules for mitigating catastrophic forgetting of ANN.

WSCL further unfolds the sleep phase by detailing the NREM and
REM stages, integrating the dreaming process into the learning loop. This
integration, which appears to contribute significantly to human learning,
has a positive impact on the training of neural networks (as shown in the re-
sults). The computational formulation of the wake-NREM-REM of WSCL
is inspired by [202], where the role of adversarial dreaming for learning vi-
sual representations is preliminary investigated. However, simple strength-
ening of existing connections through unsupervised learning as proposed
in [201, 202] does not seem sufficient to build robust representations dur-
ing sleep [196]: our work thus explores more sophisticated restructuring
of neural connections in the neocortex guided by the hippocampus.

7.3 Method

An overview of the WSCL approach is presented in Fig. 7.1, showing how
the training stage on a new task is divided into two phases: a wake phase
and a sleep phase.

During the wake phase, the model is exposed to the new task, with
the objective of performing fast adaptation of existing knowledge to the
task characteristics. In this stage, the model quickly updates its parame-
ters in order to find a balance between previously-acquired knowledge and
new information, storing the latter in a short-term memory for later reuse
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during the sleep stage. In implementation terms, this balance is achieved
by dynamically and adaptively freezing layer representations, identifying
plasticity requirements for learning the new task while enforcing stability.
Thus, during the wake stage, WSCL focuses primarily on learning general
and transferable representation by combining both current and past expe-
rience. In the sleep phase, the model consolidates newly acquired knowl-

Figure 7.1: Wake-Sleep Consolidated Learning: in the wake stage, the
model (which emulates the neocortex) fast adapts to the new sensory ex-
perience, storing episodic memories (as in the hippocampus) in the short-
term memory to be replayed during sleep. The sleep phase foresees two
alternating processes: 1) the NREM stage, where the DNN model consoli-
dates its synapses based on the replayed (recent and past) samples and the
long-term memory is updated; 2) the REM stage, where the DNN is trained
with dreamed samples to prepare the model for future sensory inputs.

edge by revisiting the hippocampus short-term memory containing the task
data, merging it into existing knowledge by updating synaptic connections,
moving it into a long-term memory for future reference, and exploring the
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representational space through task-agnostic “dreaming”. These stages are
mapped into our training procedure by means of supervised training on
task data, buffering task information in a (small) long-term memory, and
employing an auxiliary dataset (uncorrelated to task data) as a surrogate
for the generative process associated to dreaming.

7.3.1 Problem formulation

Following the established literature, we pose continual learning as a su-
pervised classification problem on a non-i.i.d. stream of data, with the as-
sumption that task boundaries, marking changes in the data distributions,
are known at training time. More formally, let D = {D1, . . . ,DT} be a se-
quence of data streams, where each pair (x, y) ∼ Di denotes a data point
x ∈ X with the corresponding class label y ∈ Y; the sample distributions
(in terms of both the data point distribution and the class label distribu-
tion) of different Di and Dj may vary — for instance, class labels from Di

might be different from those from Dj . Given a classifier f : X → Y ,
parameterized by θ, the objective of continual learning is to train f on
D, organized as a sequence of T tasks {τ1, . . . , τT}, under the constraint
that, at a generic task τi, the model receives inputs sampled from the corre-
sponding data distribution only, i.e., (x, y) ∼ Di. The classification model
may also keep a limited memory buffer M (assumed to be our long-term
memory in the hippocampus) of past samples, to reduce forgetting of fea-
tures from previous tasks. The model update step between tasks can be
summarized as:

⟨f,θi−1,Mi−1⟩ Di−→ ⟨f,θi,Mi⟩ (7.1)

where θi and Mi represent the set of model parameters and the memory
buffer at the end of task τi.
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The training objective is to optimize a classification loss over the se-
quence of tasks (without losing accuracy on past tasks) by the model in-
stance at the end of training:

argmin
θT

T∑︂
i=1

E(x,y)∼Di

[︂
L
(︂
f (x;θT ) , y

)︂]︂
(7.2)

where L is a generic classification loss (e.g., cross-entropy), which a con-
tinual learning model attempts to optimize while accounting for model
plasticity (the capability to learn current task data) and stability (the ca-
pability to retain knowledge of previous tasks) [5].

Wake phase

According to the established cognitive foundation, we define the waking
stage in the proposed learning paradigm as the combination of two simul-
taneous processes, short-term memorization and fast model adaptation.
Short-term memorization has the objective of storing part of the current
task experience, for later reuse — in particular, for processing and consol-
idation during the sleep stage. In a continual learning setting, we model
short-term memorization into Ms as a sampling of task data Di:

Ms = {(xj, yj) ∼ Di}Ns

j=1 , (7.3)

where Ns is the amount of samples collected from the Di distribution1.
Note that Ms is reset during each wake phase and is distinguished from
the long-term memory Mi, which includes a smaller permanent number

1For brevity, we drop task index i from short-term memory Ms, as it is re-created at
each task.
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of samples Nl from past tasks (in practice, the buffer of rehearsal-based
methods).

Fast model adaptation

In accordance to CLS theory [191, 192], we propose a method for fast
model adaptation that employs parameter freezing during the wake stage
to maximize stability and plasticity. Specifically, we propose to train the
model for a limited number of iterations under varying parameter freezing
settings, providing an opportunity to the model to rapidly learn new infor-
mation in the wake stage while retaining the previous knowledge; in-depth
consolidation of task information will be carried out separately in the sleep
stage. Unlike approaches such as DualNet, where the structure of the slow
and fast networks are predefined, in WSCL the part of the network that
reuses past knowledge and the part accounting for plasticity are identified
on-line during the wake phase.

Formally, we want to model the joint probability between task data
Di, previous experience Mi−1, model parameters θi and a binary freezing
mask mi, with the same dimensions as θi and such that mi,j = 1 indicates
that parameter θi,j should be frozen:

P (x, y,θi,mi) = P (y | x, f (x,θi,mi))P (θi,mi)P (x), (7.4)

where x and y represent samples and labels from Di∪Mi−1. The first term
of the decomposition of Eq. 7.4 is the likelihood of correct labels given the
input and the model prediction, while the joint distribution P (θi,mi) de-
scribes the relation between model parameters θi and the freezing strategy
defined by mi. Assuming the independence between θi and mi, this dis-
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tribution can be expressed as:

P (θi,mi) = P (θi |mi)P (mi), (7.5)

where

P (θi |mi) =
∏︂
j

N
(︁
θi,j; θi−1,j, σ

2
i )
)︁1−mi,j . (7.6)

In this formulation, we model the distribution of each parameter θi,j as
a Gaussian distribution depending on the corresponding mask value mi,j ,
which removes a term from the overall probability when mi,j = 1. Note
that the mean of each parameter is set to θi−1,j , i.e., its value at the end of
the previous task (or to 0 for the first task, based on common initialization
strategies).

In order to model P (mi) in a practically feasible way, we employ some
simplifying assumption based on the layered structure of deep learning
models. Given f = l1 ◦ l2 ◦ · · · ◦ lL, where each lk represents a network
layer with parameters θ|k and θ =

[︁
θ|1, . . . ,θ|L

]︁
, let us similarly define

0|k and 1|k as two tensors with the same size as θ|k, with all values set to 0
and 1, respectively. Then, we impose that possible values for mi must be
parameterized by a value l as follows:

mi(l) =
[︁
1|1, . . . ,1|l,0|l+1, . . . ,0|L

]︁
∨mi−1 (7.7)

with l ∈ {1, . . . , L}. In practice, parameters frozen at previous tasks must
remain so at the current task, and a layer’s parameters can only be frozen
altogether if all previous layers are also frozen.

Given these constraints, our goal is to find the optimal binary mask
mi that maximizes the likelihood of the labels y given the inputs x from
current task Di and from long-term memory Mi−1.This is expressed as the
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following optimization problem:

argmax
mi,θi

P (y | x, f (x,θi,mi))P (θi |mi)P (mi)P (x) (7.8)

where the optimization is over parameters θi and all feasible binary masks
mi. Fast adaptation is thus carried out by maximizing this likelihood
through the optimization of a loss function L:

Lfma = E(x,y)∼Di
[L (y, f (x,θi,mi))]+αE(x,y)∼Mi−1

[L (y, f (x,θi,mi))] ,

(7.9)
where mi varies as described above, and α is a weighing factor between
data sources. It is important to notice that, while optimizing for mi nec-
essarily requires updating θi as well (since freezing, per se, does not alter
inference performance), the objective is to prepare the model by identify-
ing the optimal set of parameters that should be kept from previous tasks in
a way that ensures both knowledge retainment and room for plasticity. For
this reason, optimization is carried out for a single epoch over Di. Note that
the choice of L is arbitrary: the proposed formulation allows for plugging
in any existing continual learning method, enhancing it with the proposed
training strategy.

Sleep phase

During sleep, the brain cycles multiple times through two phases, known as
rapid eye movement (REM) and non-rapid eye movement (NREM) sleep.
In the NREM phase, the hippocampus replays and consolidates the infor-
mation acquired at waking time by facilitating its transfer to the neocortex,
where long-term memory storage occurs [203, 194]. REM sleep is thought
to play a role in creativity and problem-solving [204, 205], allowing the
brain to form new connections and generate novel ideas.
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In our WSCL approach, we analogously distinguish between two alter-
nating training modalities, conceptually mapped to the NREM and REM
phases. During the former, we access examples from the current task
(stored in the short-term memory) and from previous tasks (retrieved from
long-term memory) to train the model — partially frozen during the wake
stage — and stabilizing present knowledge. In the REM stage, we emu-
late the dreaming process by providing the model with examples from an
external data source, with classes unrelated to any continual learning task.
This approach allows the model to learn task-agnostic features which can
be interpreted as a prior knowledge supporting task-specific learning and
forward transfer.

NREM stage

The main objective of this stage is to transfer information from the short-
term memory Ms, built in the precedent wake phase, to the model,
strengthening the synaptic connections associated to the current task and
thus enforcing plasticity, while retaining previously acquired knowledge
thanks to long-term memory Mi−1. In this setting, we apply parameter
freezing mask mi (defined in the wake phase), which is however not up-
dated in the process.

Formally, in this stage we model the same distribution as in Eq. 7.4,
but optimize for θi alone, while leaving mi constant. The objective thus
becomes:

argmax
θi

P (y | x, f (x,θi,mi))P (θi |mi)P (x), (7.10)

where the prior on parameters P (θi |mi) is essentially the same as in
Eq. 7.6, with the difference that the mean of the distribution is the value of
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θi as computed at the end of the wake stage, rather than θi−1. Optimizing
the above objective amounts to minimizing a variant of the loss in Eq. 7.9:

LNREM = E(x,y)∼Ms [L (y, f (x,θi,mi))]+αE(x,y)∼Mi−1
[L (y, f (x,θi,mi))] ,

(7.11)
where Ms is employed instead of the whole dataset Di.

In this stage, we also gradually update long-term memory Mi, using
reservoir sampling [17] to inject task experience from short-term memory
Ms into Mi, so that it becomes available to future tasks.

REM stage

We approximate the sleeping mechanism performed by the human brain in
the REM stage by providing the model with an additional source of previ-
ously unseen knowledge (a “dreaming” dataset with no semantic overlap
with CL classes), that can help the model to generalize better to new and
unseen data, as suggested by cognitive literature [202].

Let Ddream be the dreaming dataset from which we can sample data
points (x, y) ∼ Ddream, with x ∈ X and class label y ∈ Ydream. We assume
that Ydream ∩ Y = ∅ (the latter being the set of continual learning classes),
to prevent any overlap between auxiliary and continual learning classes.
Given this premise, the proposed optimization objective becomes:

argmax
θi

P (y | x, f (x,θi,mi))P (θi |mi)P (x), (7.12)

where (x, y) ∼ Ddream, while the other terms are the same as in Eq. 7.10.
This objective is then mapped to a training loss function defined as:

LREM = E(x,y)∼Ddream [L (y, f (x,θi,mi))] . (7.13)
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During REM stage, training with two distinct class label sets, Y from the
continual learning problem and Ydream from the dreaming dataset has been
addressed following the procedure reported in [111].

7.4 Experimental Evaluation

7.4.1 Benchmarks

We test WSCL on several continual learning benchmarks obtained by tak-
ing image classification datasets and splitting their classes equally into a
series of disjoint tasks. Moreover, since REM stage requires additional
dreaming samples, for each benchmark we also identify its dreamed-
counterpart:
• Seq-CIFAR-10 [25], a widely-used image classification dataset obtained

by splitting CIFAR-10 images into 5 binary classification tasks. Its coun-
terpart used for the REM stage consists of a subset of 50 CIFAR-100
classes, selected after removing those with semantic relations to CIFAR-
10.

• Seq-FG-ImageNet2 is a fine-grained image classification benchmark
with 100 classes of animals, used to test CL methods on a more challeng-
ing task. The dreaming counterpart consists of additional 100 classes
taken from ImageNet, after removing all synsets derived from “organ-
ism”.

• Tiny-ImageNet [15] is a subset of ImageNet consisting of 200 classes
with 500 images each, resized to 64×64. We employ the first 100 classes
as the main training dataset Seq-Tiny-ImageNet1/2 (organized as 5 tasks

2Seq-FG-ImageNet is derived from https://www.kaggle.com/datasets/

ambityga/imagenet100

https://www.kaggle.com/datasets/ambityga/imagenet100
https://www.kaggle.com/datasets/ambityga/imagenet100
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of 20 classes) and the remaining 100 classes as the dreaming dataset.

7.4.2 Training Procedure

Figure 7.2: ResNet-18 architecture and selective freezing strategy. After
an initial convolutional layer (apart from the last fully-connected layer),
each colored portion represents a network’s main block, consisting of two
residual basic blocks, each applying two convolutions. For our freezing
strategy, we treat each basic block as the smallest unit of freezing, named
layer.

Our approach employs a ResNet-18 backbone for feature extraction
and classification. As showed in Fig. 7.2, ResNet-18 includes, at a high
level, four main blocks (depicted with distinct colors in the figure), each of
which includes two basic blocks3; each basic block applies two convolu-
tions with a residual connection. With reference to the definition of model
f in Sect. 7.3.1, we will treat each block as the smallest unit of freezing,

3https://pytorch.org/vision/master/_modules/torchvision/

models/resnet.html

https://pytorch.org/vision/master/_modules/torchvision/models/resnet.html
https://pytorch.org/vision/master/_modules/torchvision/models/resnet.html
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named layer. Consequently, the network is divided in L = 8 layers. The
first convolution of the network is assumed to be part of the first layer.

In the wake stage of task i, we train multiple instances of the model,
starting from parameters θi, with all possible configurations of mi: if the
deepest frozen layer is lj , the number of possible values for mi is L−j+1,
with L being the total number of layers. Training is carried out for a sin-
gle epoch with mini-batch SGD and a learning rate of 0.03. Batch size is
set to 32 for CIFAR-10 and Tiny-ImageNet1/2, and to 8 for FG-ImageNet.
The α hyperparameter in Eq. 7.9 is set to 1, and the Ns dimension of the
short-term buffer to 5,000. It is important to mention that, in our imple-
mentation, the optimization of Eq. 7.9 (fast model adaptation loss Lfma)
and Eq. 7.11 (NREM loss LNREM) on long-term memory Mi is carried out
on disjoint portions of the whole set of stored samples. In particular, 10%
of Mi is used when optimizing Lfma, while the remaining 90% is used for
LNREM. This separation mitigates the risk of overfitting of LNREM on data
that will be used, in the wake phase, to determine to which extent model
layers should be frozen: indeed, in case of overfitting, the wake phase
would encourage model freezing, as it would more easily minimize the
corresponding loss term.
In the sleep stage, we train the model using LNREM and the LREM losses
at alternately batches. We perform 10 epochs of training, with the same
optimizer settings and hyperparameters as above.

7.4.3 Results

We first evaluate how WSCL contributes to classification accuracy of state-
of-the-art models. To accomplish this, we select recent rehearsal-based
methods, namely, DER++ [38], ER-ACE [40] and ER [47], and compare
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their performance when the WSCL training strategy is employed, by plug-
ging them in as the L loss term in Eq. 7.9, 7.11, 7.13. We address rehearsal-
based methods only, as WSCL requires a memory buffer to model long-
term memory. We report final average accuracy (FAA) after training on
the last task in the Class-Incremental and Task-Incremental settings.

We further provide a lower bound, consisting of training without any
countermeasure to forgetting (Fine-tune), and an upper bound given by
training all tasks jointly (Joint). Results in Table 7.1 show that, on all
three benchmarks, WSCL leads to a significant performance gain that
varies from about 2 percent points on FG-ImageNet to 12 percent points
on CIFAR-10, substantiating our claims on the importance of leveraging
human learning strategies for building better computational methods. Ta-
ble 7.1 also reports the comparison with: a) DualNet [43], which leverages
CLS theory and the same backbone, i.e., ResNet-18; b) CoPE [121] that
integrates contrastive learning — another technique inspired by cognitive
neuroscience [202] — for better feature transferability to later tasks4. We
do not include DualPrompt [193] as it uses a large pre-trained ViT [206]
as a backbone, leading to an unfair comparison with the simpler ResNet-
18. All methods combined with our WSCL strategy improve over DualNet
(up to about 40 percent points) and CoPE, demonstrating how mimicking
human learning more strictly improves performance even in a purely dis-
criminative supervised learning regime. We also measure forward trans-
fer (FWT), a desirable property in CL that indicates how much a model
leverages previous knowledge for learning a new task [17]. Forward trans-
fer is estimated as the average difference between a task’s accuracy when
learning it in a CL setting and when learning it from random initializa-

4Results for DualNet and CoPE are computed using their original implementations
and hyperparameters.
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Method Seq-CIFAR-10 Seq-Tiny-ImageNet1/2 Seq-FG-ImageNet

Class-IL

Joint 85.15±1.99 50.81±1.65 43.39±1.76

Fine-tune 19.47±0.10 13.84±0.55 3.88±0.33

Buffer size 200 500 200 500 200 1000

ER [40] 48.76±0.57 59.75±2.51 16.25±0.85 21.07±1.43 4.23±0.15 5.05±0.51

↪→WSCL 51.86±4.40 63.71±1.35 18.81±0.48 23.63±0.95 6.01±0.64 15.26±3.39

DER++ [38] 57.35±5.47 69.06±1.24 16.62±1.76 23.40±1.66 5.95±0.49 8.59±1.11

↪→WSCL 63.97±3.38 72.33±0.99 23.70±0.91 31.81±0.70 6.48±1.22 11.70±0.14

ER-ACE [47] 59.98±2.65 67.17±1.54 27.81±1.24 32.10±2.21 9.42±0.78 11.58±3.59

↪→WSCL 71.15±2.15 74.18±1.28 35.68±1.18 41.25±1.75 12.51±0.86 20.51±0.56

Task-IL

Joint 96.90±0.14 71.50±1.31 85.47±1.56

Fine-tune 66.53±5.66 33.87±1.39 30.33±3.12

Buffer size 200 500 200 500 200 1000

ER [40] 90.88±0.69 91.88±1.43 48.79±1.51 57.49±1.87 50.85±1.43 59.33±0.70

↪→WSCL 92.32±0.70 94.43±0.18 57.13±0.97 61.96±0.91 56.47±0.49 69.96±2.52

DER++ [38] 90.53±1.52 92.98±0.37 51.31±2.17 59.30±2.06 51.45±4.45 65.25±0.86

↪→WSCL 93.38±1.12 94.28±0.46 61.48±0.78 67.23±1.01 49.21±4.14 57.00±1.73

ER-ACE [47] 91.81±0.31 92.96±0.33 53.00±1.86 57.35±2.00 57.32±1.80 60.00±6.16

↪→WSCL 94.78±0.75 94.96±0.49 59.82±1.10 65.38±1.75 56.90±2.63 67.39±1.24

Table 7.1: Final average accuracy (FAA) [↑] of rehearsal-based methods,
with and without WSCL, for different buffer sizes.
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FWT Seq-CIFAR-10 Seq-Tiny-ImageNet1/2 Seq-FG-ImageNet

Joint 85.15 50.81 43.39

Fine-tune 19.47 13.84 3.88

Buffer size 200 500 200 500 200 1000

ER [40] −7.36 −12.20 −1.00 −1.32 −1.05 −1.02

↪→WSCL 1.68 6.03 12.41 12.60 3.82 3.17

DER++ [38] −12.29 −6.23 −0.84 −1.06 −0.08 −1.05

↪→WSCL 1.06 2.83 12.16 12.24 1.78 2.31

ER-ACE [47] −8.58 −8.97 −0.73 −0.94 −1.04 −1.17

↪→WSCL 0.48 −1.87 8.60 9.06 1.83 1.19

DualNet [43] −5.89 −7.41 −0.78 −0.96 −1.03 −1.96

CoPE [44] −3.63 −4.23 −0.87 −1.05 −0.98 −1.23

Table 7.2: Forward Transfer (FWT) of rehearsal-based methods, with and
without WSCL, for different buffer sizes.

tion (details in [17]). Table 7.2 shows how WSCL tends to enhance FWT,
bringing it from negative to positive values. This is highly remarkable as
the majority of existing CL methods show a negative forward transfer. It
is equally important to measure forgetting (the lower, the better) to assess
how well an approach tackles no-i.i.d. data. Cross-checking results in Ta-
ble 7.3 with those in Tables 7.1 and 7.2 highlights how WSCL effectively
reduces forgetting while enhancing Forward Transfer skills and accuracy
performance in a way sensibly higher than the baselines. Therefore, this
set of experiments underscores the capabilities of the WSCL strategy for
reducing forgetting and preparing the network for future tasks.
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Method Seq-CIFAR-10 Seq-Tiny-ImageNet1/2 Seq-FG-ImageNet

Buffer size 200 500 200 500 200 1000

ER [40] 56.66 43.21 62.63 58.16 74.04 73.45

↪→WSCL 50.23 36.04 56.71 50.63 76.79 63.93

DER++ [38] 31.23 22.63 62.15 50.81 67.10 63.63

↪→WSCL 35.53 23.52 51.30 43.91 59.84 52.39

ER-ACE [47] 16.55 15.21 34.41 28.15 32.61 36.44

↪→WSCL 11.78 10.69 28.23 23.29 27.24 33.53

Table 7.3: Forgetting of rehearsal-based methods, with and without WSCL,
for different buffer sizes, in Class-IL setting.

7.4.4 Model Analysis

Model analysis is mainly carried out using ER-ACE (the best-performing
method from Table 7.1) as baseline, on the Tiny-ImageNet1/2 dataset. We
first ablate the processing phases of WSCL: results in Table 7.4 show how
the NREM/REM sleep states equally contribute to the final model per-
formance. Interestingly, the REM phase is responsible for positive for-
ward transfer, which is consistent with cognitive neuroscience evidence
that REM prepares brain synapses to future experience [204, 205].

We then evaluate the impact of the quality of dreaming, by adding
Gaussian noise (at different percentages) and reducing the spatial resolu-
tion of dreaming samples. Fig. 7.3 indicates that WSCL still outperforms
the baseline when dreaming images are affected by noise up to 30% or
scaled down by 6×, suggesting that the role of REM stage in consolidating
knowledge is mostly independent from the visual details of the dreamed
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Method FAA FWT

Only Wake 4.70 -0.93
Wake + REM 25.68 11.89
Wake + NREM 27.61 -0.67
Wake + REM + NREM 35.68 8.60

Table 7.4: Ablation on the WSCL processing stages: results refer to ER-
ACE on Tiny-ImageNet1/2.

samples, which merely serve to learn additional reusable features.
Besides the quality, the quantity may also be a crucial issue. Here we

further investigate the impact of the size of the dreaming dataset in the re-
sults. Figure 7.4 illustrates how the dreaming stage allows for enhanced
performance even when the additional dreaming dataset is reduced by ap-
proximately 70%.

We finally assess the efficiency aspects of WSCL. Indeed, the human
brain is capable of performing complex tasks with remarkable speed and
accuracy, at a relatively low energy cost: cerebral parallel processing ar-
chitecture, plasticity, and ability to adapt to changing environments are all
factors that contribute to its efficiency [207, 208]. In WSCL, efficiency is
encouraged in the wake stage, by letting the model selectively freeze dif-
ferent portions of the network: this is analogous and consistent to cognitive
neuroscience evidence that a synchronization of neural activity across dif-
ferent brain regions and changes in the balance between excitation and
inhibition enable efficient processing [209, 210].

Fig. 7.5 shows the most frequent (over 10 different runs) set of frozen
backbone layers at each task, when training ER-ACE with WSCL on Tiny-
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Figure 7.3: Impact of dreaming quality, in terms of noise (left) and image
resolution (right). Results refer to ER-ACE and DER++ with WSCL (solid
lines) and without it (dotted line).

Figure 7.4: Impact of dreaming dataset dimension. Results refer to ER-
ACE and DER++ with WSCL (solid lines) and without it (dotted line).

ImageNet1/2, as well as the total number of performed parameter updates
using the training procedure presented in Sect. 7.4.2. WSCL’s training
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procedure reduces the overall number of updates for the entire training of
the ResNet-18 model, by a quantity that tends to increase with the number
of training epochs (from 2% to about 17% less updates), thus confirming
the suitability of the wake stage in supporting efficient training.

Figure 7.5: WSCL model efficiency: Left: the most frequent automatically
learned freezing scheme (values within bars are number of parameters)
during the wake phase for ER-ACE on Tiny-ImageNet1/2. Right: number
of parameter updates for the whole training of ER-ACE with and without
WSCL on Tiny-ImageNet1/2 (from 10 epochs to 100 training epochs).

7.5 Discussion

The integration of Complementary Learning Systems (CLS) theory and
sleep mechanisms in artificial neural networks holds great potential for
enhancing continual learning capabilities. Inspired by the interaction be-
tween the hippocampus and neocortex in humans, Wake-Sleep Consoli-
dated Learning (WSCL) introduces a sleep phase that mimics off-line brain
states during which memory consolidation and synaptic reorganization oc-
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cur. By leveraging the wake phase for fast adaptation and episodic memory
formation, and the sleep phase for memory consolidation and dreaming,
WSCL shows superior performance compared to prior work on various
benchmarks. Importantly, WSCL achieves positive forward transfer, ex-
hibiting the ability to prepare synapses for future knowledge. These find-
ings highlight the importance of all three stages — wake, NREM and REM
— in supporting network plasticity and reducing forgetting for improved
learning and memory.

Future research will address the advancement of memory and dream-
ing modeling techniques, which currently rely on conventional rehearsal
methods to facilitate memory retention and on the employment of exter-
nal datasets for generating dream-like experiences. With regard to mem-
ory modeling, it is essential to delve into more nuanced and dynamic ap-
proaches that accurately capture the intricacies of memory formation, stor-
age, and retrieval, by also devising mechanisms to account for memory
decay and interference. Likewise, for dream modeling, there is an oppor-
tunity to push beyond the current reliance on external datasets and explore
more sophisticated techniques. This could entail developing generative
models capable of simulating dream-like experiences based on the net-
work’s existing knowledge and latent representations. By accomplishing
this, the model’s ability to generate diverse, creative, and contextually rel-
evant dream scenarios can be elevated to a new level of realism.

It is important to acknowledge that, while the pursuit of more realistic
memory and dreaming modeling techniques is desirable, their integration
into the WSCL framework is possible thanks to its modular architecture,
which provides a solid foundation that can accommodate the inclusion of
advanced components dedicated to specific aspects of memory manage-
ment or sample generation.
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7.6 Publications

The approach described in this chapter has led to two publications.
An initial work investigating the possibility of selectively freezing parts
of the backbone network while maintaining competitive performance and
reducing computational and energy requirements was presented at the 2023
International Conference on Computer Vision (ICCV), Visual Continual
Learning Workshop, Paris, France:

• Sorrenti, A. Bellitto, G., Proietto Salanitri, F., Pennisi, M., Spamp-
inato, C., Palazzo, S. (2023). Selective Freezing for Efficient Con-
tinual Learning. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (pp. 3550-3559).

A second paper presenting the proposed WSCL framework is currently
under review at IEEE Transactions on Neural Networks and Learning Sys-
tems (TNNLS) journal:

• Sorrenti, A., Bellitto, G., Proietto Salanitri, F., Pennisi, M., Palazzo,
S., Spampinato, C. (2023). Wake-Sleep Consolidated Learning.
Submitted to IEEE Transactions on Neural Networks and Learning
Systems.
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Part IV

CONCLUSIONS

In this thesis we delved into the study of classical problems encountered
in Continual Learning from a new perspective, i.e., the one of emulating
human cognitive mechanisms. As the AI researchers push the boundaries
of what neural networks can achieve, the complexity increases and so do
the challenges. Continual Learning, once a peripheral task of the computer
vision community, is now at the center of these challenges, especially be-
cause of the problem of catastrophic forgetting. It currently represents an
almost insurmountable barrier to developing the next generation of intelli-
gent agents equipped with effective incremental learning capabilities.

The aim of this dissertation was to provide new contributions, inspired
by how humans learn, which might enable the community to take a step
forward in this direction.

After a high-level introduction to the Catastrophic Forgetting problem
discussed in Chapter 1, in Chapter 2 we delved into the formal definition of
the task of Continual Learning for image classification, analyzing its main
challenges, the benchmarks used, and giving a brief overview of the state
of the art.
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The innate human ability to value past experiences for enhancing future
learning lays the foundation for next chapters.

In Chapter 3 we highlighted the importance of using past experience,
elucidating how previous encounters can improve problem solving. In this
first approach, knowledge is replicated via an auxiliary data stream that
enhances the model’s pattern recognition and knowledge generalization
during training, allowing it to quickly adapt to new tasks.

In Chapter 4, while we aimed to mimic human cognitive processes by
utilizing pre-trained models, we face the inherent limitations of transfer
learning within the CL structure, finding that pre-training suffers from for-
getting as well. Then, in Chapter 5, we proposed to merge the CL classifi-
cation with a supplementary task that steering the learning process, with a
pronounced focus on the integration of self-supervised equivariant tasks.

While these chapters focused on solutions to replicate prior knowledge
in neural networks, in later chapters we shift our effort towards strategies
that attempt to emulate the learning process, drawing broadly on neurocog-
nitive theories of human learning.

In Chapter 6 we found that selective attention, encoded as a saliency
prediction task, is robust to catastrophic forgetting, and that saliency fea-
tures can improve a CL model, while in Chapter 7 we proposed a method
that emulates the wake-sleep alternation, which in humans is fundamental
to consolidate memories and facilitating learning, by increasing general-
ization of knowledge.

While we are still a long way from creating machines that can learn
as seamlessly as humans, the journey has begun with renewed vigor and
perspective. As we continue to learn from the complexities and wonders of
human learning, the solutions to the CL problems will hopefully become
clearer, paving the way for an era in which machines can learn, adapt, and
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evolve as effortlessly as humans do.
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