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Abstract

Let K X= ( , )v
(3) be the complete hypergraph, uniform

of rank 3, defined on a vertex set X x x= { , …, }v1 , so that

 is the set of all triples of X . Let H V= ( , )(3) be a

subhypergraph of Kv
(3) , which means that ⊆V X and

⊆  . We call 3‐edges the triples of V contained in the

family  and edges the pairs of V contained in the

3‐edges of, that we denote by x y[ , ] . A H (3) ‐design Σ is

called edge balanced if for any ∈x y X, , ≠x y, the

number of blocks of Σ containing the edge x y[ , ] is

constant. In this paper, we consider the star hypergraph

S m(2, + 2)(3) , which is a hypergraph with m 3‐edges
such that all of them have an edge in common. We

completely determine the spectrum of edge balanced

S m(2, + 2)(3) ‐designs for any ≥m 2, that is, the set of

the orders v for which such a design exists. Then we

consider the casem = 2 and we denote the hypergraph

S (2, 4)(3) by P (2, 4)(3) . Starting from any edge‐balanced

( )S 2,
v(3) + 4

3
, with ≡v 2 mod 3 sufficiently big, for any

∈p , ≤ ≤






 p v

v

2
, we construct a P (2, 4)(3) ‐design of

order v2 with feasible set ∪ p v{2, 3} [ , ] , in the context

of proper vertex colorings such that no block is either

monochromatic or polychromatic.
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1 | INTRODUCTION

Let λK X= ( , )v
r( ) be the complete hypergraph, uniform of rank r , defined on a vertex

set X x x= { , …, }v1 , so that  is the set of all subsets of r elements of X and all these sets
have multiplicity λ. In this paper, we consider the case r = 3. We say that H V= ( , )(3) is a
subhypergraph of λKv

(3) if ⊆V X and ⊆  . This means that H (3) is a uniform hypergraph
of rank 3. We call 3‐edges the triples of V contained in the family  and edges the pairs of V
contained in the 3‐edges of . Such pairs will be denoted by x y[ , ] .

An H (3) ‐decomposition of λKv
(3) is a pair XΣ = ( , ) , where  is a collection of hypergraphs

all isomorphic to H (3) that partition the edge set of λKv
(3) . An H (3) ‐decomposition is also called

a H (3) ‐design of order v and index λ and the elements of  are called blocks.
If XΣ = ( , ) is a H (3) ‐design, for any ∈x X we call degree of the vertex x the number d x( )

of blocks of  containing x ; for any ∈x y X, , ≠x y, we call degree of the edge x y[ , ] the number
d x y( , ) of blocks of  containing the edge x y[ , ] .

Following the classical definition of balanced designs, it is possible to define balanced
H (3) ‐designs.

Definition 1.1. A H (3) ‐design Σ is said to be balanced if the degree d x( ) of each vertex
∈x X is a constant.

In [18], generalizing this idea, the concept of edge balanced designs has been introduced.

Definition 1.2. A H (3) ‐design is called edge balanced if for any ∈x y X, , ≠x y, the
degree d x y( , ) is constant.

We will call a balanced hypergraph design vertex balanced, to make a distinction with edge
balanced hypergraph designs. The concept of balanced G‐design, in the case that G is a graph,
was introduced by Hell and Rosa in [20]. Later, a lot of work has been done in this field (see
e.g., [2,4,5,6,7,10,11,12,21]) both for graph designs and hypergraph designs.

In this paper, we consider star‐hypergraphs:

Definition 1.3. A hypergraph X( , ) uniform of rank r is called a star‐hypergraph if
there exists ⊂Y X such that ∩E E Y′ ″ = for any ∈ E E′, ″ . If  Y c= and  E m= for
all ∈ E , we denote such a hypergraph by S c k c m c( , ( − ) + )k( ) and Y is called center of
the star‐hypergraph.

Clearly any S m(1, 2 + 1)(3) ‐design is edge balanced of constant degree 1. In this paper, we
consider S m(2, + 2)(3) ‐designs and from now on we will take the index λ = 1. Answering
also to a problem given in [18], in the first part of the paper we determine the spectrum of
edge balanced S m(2, + 2)(3) ‐designs for any ≥m 2, by showing the existence of a cyclic
S m(2, + 2)(3) ‐design for any admissible order v. This easily implies that, for any ≥m 2, every
edge balanced S m(2, + 2)(3) ‐design is also vertex balanced.

In the second part of the paper we consider the casem = 2. In this case, coherently with the
notation used previously in other papers (see, e.g., [9,8,18]), the hypergraph S (2, 4)(3) will be
denoted by P (2, 4)(3) . Indeed, continuing the work done in [9], we will consider Voloshin
colorings of P (2, 4)(3) ‐designs. In general, given a H (3) ‐design XΣ = ( , ) , for some hypergraph
H (3) , a k‐coloring of Σ is a map →φ X C: , where C is a set of k colors. A k‐coloring is strict if
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exactly k colors are used. From now on, we assume that all our colorings are strict. Motivated
by Voloshin's works, it is possible consider these type of colorings:

• colorings such that any block of  contains at least two vertices of a common color; if Σ is
colored in this way, we call it a CH (3) ‐design;

• colorings such that any block of  contains at least two vertices of different colors; if Σ is
colored in this way, we call it a DH (3) ‐design;

• colorings for which Σ is, at the same time, a CH (3) and a DH (3) ‐design; if Σ is colored in
this way, we call it a BH (3) ‐design.

In a CH (3) ‐design a block is called monochromatic if all its vertices have the same color;
in a DH (3) ‐design a block is called polychromatic if any two of its vertices have different
colors.

Given an H (3) ‐design XΣ = ( , ) , the feasible set of Σ is:

∃k kΩ(Σ) = { a ‐coloring of Σ}.

The system Σ is uncolorable if ∅Ω(Σ) = . If Σ is colorable, the minimum and the maximum
of Ω(Σ) are the lower and upper chromatic number of Σ and we denote them by, respectively,
χ (Σ) and χ (Σ) . The feasible set is said to be broken if there exists an integer k such that
∉k Ω(Σ) and i k j< < for some ∈i j, Ω(Σ) and such an integer k is called a gap. In this paper,

we will extend such concepts and notations to decompositions of subhypergraphs of the
complete hypergraph Kv

(3) in hypergraphs all isomorphic to some H (3) .
The concept of gaps in feasible sets was introduced by L. Gionfriddo in [15,16,17] in the

context of P3 ‐designs. In [1], gaps in the feasible set for P4 ‐designs are explored in the context of
regular equicolourings. Colorings of Steiner systems, mainly STS, SQS, and S v(2, 4, ) , have
been considered in many papers (see, e.g., [13,14,19,22,23,24]), but the problem in such cases is
open.

In [9], feasible sets of BP (2, 4)(3) ‐designs have been studied, determining bounds for lower
and upper chromatic numbers and proving the existence of BP (2, 4)(3) ‐designs with the largest
possible feasible set. Moreover, in [9] it is proved the existence of uncolorable BP (2, 4)(3) ‐
designs for any order ≥v 28.

In the second part of this paper, having as a starting point any edge‐balanced

( )S 2,
v(3) + 4

3
‐design of sufficiently high order v, with ≡v 2 mod 3, we construct in

Theorem 5.1 a BP (2, 4)(3) ‐decomposition of the complete multipartite hypergraph Kv×2
(3)

(with v partite sets of cardinality 2) with broken feasible set and color classes having a
precise correspondence with the partite sets. This general construction easily leads in
Theorem 6.1 to BP (2, 4)(3) ‐designs of order v2 and broken feasible set. Such a feasible set is

of type ∪ p v{2, 3} [ , ] for any ∈p , ≤ ≤






 p v

v

2
, with v sufficiently high, where for any

∈a b, , ≤a b, we set ∈ ≤ ≤a b i a i b[ , ] = { } .
At last let us fix some notation. If x x{ , …, }m1 +2 is the set of vertices and the 3‐edge set is

x x x i m{{ , , } = 1, …, },i m m+1 +2

we denote the hypergraph S m(2, + 2)(3) also by x x x x[( , ), , …, ]m m m+1 +2 1 .
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2 | EDGE BALANCED S m(2, + 2)(3) ‐DESIGNS

If x x x x[( , ), , …, ]m m m+1 +2 1 is a S m(2, + 2)(3) , then we say that the edge x x[ , ]m m+1 +2 occupies
the central position and the other edges occupy lateral positions. Let XΣ = ( , ) be a
S m(2, + 2)(3) ‐design and let ∈x y X, , ≠x y. The central degree C x y( , ) of x y[ , ] is the number
of blocks of Σ containing the edge x y[ , ] in the central position. The lateral degree L x y( , )

of x y[ , ] is the number of blocks of Σ containing the edge x y[ , ] in a lateral position. Then we
prove that:

Theorem 2.1. If XΣ = ( , ) is an edge balanced S m(2, + 2)(3) ‐design of order v and
index 1, then for any ∈x y X, , ≠x y, we have:

• d x y( , ) =
m v

m

(2 + 1)( − 2)

3
,

• C x y( , ) =
v

m

− 2

3
,

• L x y( , ) =
v2( − 2)

3
.

Proof. We know that  B =
v v v

m

( − 1)( − 2)

6
and that there exists ∈d such that d x y d( , ) =

for any ∈x y X, , ≠x y. So we have:

⋅ ⇒


 


  d

v
m B d

m v

m2
= (2 + 1) =

(2 + 1)( − 2)

3
.

Moreover, for any ∈x y X, , ≠x y, we have:

⇒









C x y L x y d

mC x y L x y v

C x y

L x y

( , ) + ( , ) =

( , ) + ( , ) = − 2

( , ) =

( , ) = .

v

m

v

− 2

3

2( − 2)

3

This proves the statement. □

So clearly we also have:

Corollary 2.2. If XΣ = ( , ) is an edge balanced S m(2, + 2)(3) ‐design of order v, then
≡v m2 mod 3 , ≥v m3 + 2.

Moreover, in [18] it is proved the base case of the spectrum of edge balanced P (2, 4)(3) ‐
designs:

Theorem 2.3 (Gionfriddo [18, theorem 4.4]). There exists an edge balanced P (2, 4)(3) ‐
design of order 8.

Remark 2.4. Note that if XΣ = ( , ) is an S m(2, + 2)(3) ‐design of order v such that for
some ∈c C x y c( , ) = for any ∈x y X, , ≠x y, then Σ is edge balanced.
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3 | CYCLIC EDGE ‐BALANCED S m(2, + 2)(3) ‐DESIGNS

Let us consider the complete graph K X E= ( , )v of order v and let X v= {0, …, − 1} . Then it is
well known that any edge in E is of the type i i r{ , + } , for some ∈i v{0, …, − 1} and

∈






{ }r 1, …,

v

2
. In this case, we say that the edge i i r{ , + } has difference r and that it is a

translated form of the edge r{0, } .
The natural action of v on the vertices X v= {0, …, − 1} , defined by →i i j+ for any

∈j v and ∈i v{0, …, − 1} , induces an action on the edges. So the edge i i r{ , + } in the
complete graph Kv corresponds to the edge r{0, } under this action. Similarly, if XΣ = ( , ) is a
H (3) ‐design, ∈ B B, ′ and B′ corresponds to B under the action of Kv on X , then we say that B′
is a translated form of B.

Now we are going to prove the following:

Theorem 3.1. For any ∈ ≥v v m m, = 3 + 2, 2 there exists a cyclic edge balanced
S m(2, + 2)(3) ‐design of order v.

Proof. Let v m= 3 + 2, for some ≥m 2. By [3, theorem 3.3] we see that base triples in
Kv

(3) are:

∈ ∈a a b a m b a m a{0, , + }, with {1, …, }, { , …, 3 + 1 − 2 },

so that the difference triples in these triples are a b a b{ , , + } . To get a cyclic edge
balanced S m(2, + 2)(3) ‐design of order v we just need to choose one of the differences in
each base triple in the following way for any ∈a m{1, …, } :

≡
≡
≡







b a a
b a b
b a a b

for mod 3 we take the difference
for + 1 mod 3 we take the difference
for + 2 mod 3 we take the difference + .

(1)

Ifm is odd, we just need to show that any ∈ { }i 1, …,
v − 1

2
is repeated exactlym times

in (1) (here we clearly identify ∈ { }i 1, …,
v − 1

2
with v i− ). In this way, for any

∈ { }i 1, …,
v − 1

2
them base triples corresponding to i determine a base block (where we do

not need to check that the vertices are all different because two distinct base triples
determine different triples) and we get a cyclic edge balanced S m(2, + 2)(3) ‐design
of order v.

If m is even, we need to show that any ∈ { }i 1, …,
v − 2

2
is repeated exactly m times

in (1) and that v

2
is repeated exactly m

2
times. As in the case that m is odd, for any

∈ { }i 1, …,
v − 2

2
them base triples corresponding to i determine a base block. For each of

the m

2
base triples corresponding to v

2
we take the two translated triples containing the

edge { }0,
v

2
and in this way we get another base block. All these blocks determine a cyclic

edge balanced S m(2, + 2)(3) ‐design of order v.
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To prove this it is sufficient to show that in (1):

• ∈i m{1, …, + 1} is repeated






m −

i − 1

2
times

• ∈i m m{ + 2, …, 2 + 1} even is repeated






m

2
times

• ∈i m m{ + 2, …, 2 + 1} odd is repeated








m

2
times

• ∈i m m{2 + 2, …, 3 − 1} is repeated








m i3 + 1−

2
times (for ≥m 3).

It is easy to prove this by induction. Indeed, considering that the base casesm = 2 and
m = 3 are immediate and supposing that the statement holds for m − 1, we see that
from the m − 1 case we have:

• ∈i m{1, …, } is repeated






m − 1 −

i − 1

2
times

• ∈i m m{ + 1, …, 2 − 1} even is repeated






m − 1

2
times

• ∈i m m{ + 1, …, 2 − 1} odd is repeated








m − 1

2
times

• ∈i m m{2 , …, 3 − 4} is repeated








m i3 − 2−

2
times.

When we consider the m case we are adding the following differences:

• a, m a3 − − 1, m a3 − 2 + 1 for ∈a m{1, …, − 1}
• m and m + 1 for a m=

and it is not difficult to see that the above conditions are satisfied. □

4 | EDGE BALANCED AND VERTEX BALANCED
DESIGNS

In this section, we study the possible link between edge balanced and vertex balanced
hypergraph designs. Precisely, we want to show the following:

Theorem 4.1. Let XΣ = ( , ) be an edge balanced S m(2, + 2)(3) design of order v. Then
Σ is vertex balanced.

Proof. For any ∈x X we denote with d x( ) the number of blocks containing x , with c x( )

the number of blocks containing x as an element of degreem (number of triples containing
x) and with l x( ) the number of blocks containing x as an element of degree 1. Then,
recalling the notation given in the beginning of the paper, we have:

∈

≠

 C x y c x( , ) = ( ).
y X

y x
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Since Σ is edge balanced C x y( , ) =
v

m

− 2

3
and so c x( ) =

v v

m

( − 1)( − 2)

3
for any ∈x X .

Moreover, for any ∈x X :

⇒


 


mc x l x

v
l x

v v
( ) + ( ) =

− 1

2
( ) =

( − 1)( − 2)

6
.

So, for any ∈x X we have:

d x c x l x
v v m

m
( ) = ( ) + ( ) =

( − 1)( − 2)( + 2)

6
.

This means that Σ is vertex balanced. □

So by Theorem 4.1 we have:

Theorem 4.2. There exists a vertex balanced S m(2, + 2)(3) ‐design of order v for any
≥m 2 and any ≡v m2 mod 3 , ≥v m3 + 2.

At last we show that a vertex balanced hypergraph design is not necessarily edge
balanced.

Example 4.3. Let us consider on X = {0, 1, …, 7} the P (2, 4)(3) ‐design having as blocks:

• [(0, 1), 2, 3] , [(0, 1), 4, 5] , [(0, 6), 1, 3] and their translated forms;
• [(0, 4), 2, 6] , [(2, 6), 0, 4] , [(1, 3), 5, 7] and [(5, 7), 1, 3] .

Let  be the set of all these blocks. Then, by [3, theorem 3.3] we immediately see that
XΣ = ( , ) is an P (2, 4)(3) ‐design, that is also vertex balanced because d x( ) = 14 for

any ∈x X . However, Σ is not edge balanced, as, for example, C (0, 3) = 0.

5 | DECOMPOSITIONS OF r ‐PARTITE HYPERGRAPHS
WITH BROKEN FEASIBLE SET

Now we are going to consider colorings of P (2, 4)(3) ‐designs. To do this, in this section we
consider the following hypergraph. The complete v‐partite 3‐uniform hypergraph Kv n×

(3) is the
3‐uniform hypergraph having vertex set ∪ ⋯∪V X X= v1 , where any X x x= { , …, }i i i n,1 , has
cardinality n, and edge set:

≠ ≠ ≠ ∈E x x x i j i k j k r s p n= {{ , , } , , , , , {1, …, }}.i r j s k p, , ,

Now, let n be even and ≡v 2 mod 3, ≥v 8. We construct a P (2, 4)(3) ‐decomposition of Kv n×
(3)

starting from an edge balanced ( )S 2, + 2
v(3) − 2

3
‐design of order v. On X x x= { , …, }v1 consider

an edge balanced ( )S 2, + 2
v(3) − 2

3
‐design XΣ = ( , ) of order v. Since Σ is edge balanced, for

any ∈i j v, {1, …, } , ≠i j, x x{ , }i j occupies a central position in exactly one block of  by

BONACINI AND MARINO | 7



Theorem 2.1. Moreover for any triple ∈x x x E K{ , , } ( )i j k v
(3) just one of the couples x x{ , }i j ,

x x{ , }i k , x x{ , }j k occupies the central position in a block of . If x x{ , }i j is such a couple for the
triple x x x{ , , }i j k , then we consider the blocks:

x x x x r s n h
n

[( , ), , ], , = 1, …, and = 0, …,
2
− 1.i r j s k h k h, , ,2 +1 ,2 +2

The set ′ of all these blocks obviously provides a P (2, 4)(3) ‐decomposition of Kv n×
(3) . Let

VΣ′ = ( , ′) such a system of blocks.

Theorem 5.1. Let ∈v , ≡v 2 mod 3, and ≥v 44. Then Σ′ is a BP (2, 4)(3) ‐
decomposition of Kv×2

(3) with feasible set ∪













v{2, 3} ,

v

2
and color classes that verify the

following conditions:

• in a 2 and 3‐coloring the color classes contain at most two partite sets;

• in a k‐coloring, with ∈













k v,

v

2
, any color class is equal either to a partite set or to the

union of two partite sets.

Conversely, any partition of V in k subsets that verifies the above conditions is a
k‐coloring of Σ′.

Proof. Let v m= 2 + 3 , for some ∈m , ≥m 14. The vertex set is ∪ ⋯ ∪V X X= v1 ,
where the partite sets X1 ,…, Xv have two elements each.

Obviously a coloring satisfying one of the conditions of the statement provides a k‐coloring
ofΣ′. We need to prove that there are no other k‐colorings for ∈ ∪














k m{2, 3} , 3 + 2

m3 + 2

2

and there are no k‐colorings for ∉ ∪













k m{2, 3} , 3 + 2

m3 + 2

2
(note that for k = 2, 3 this is

obvious).
Given a k‐coloring of Σ′ we denote by A1 ,…, Ak the color classes. Since the partite sets

have just two elements each, we can say that for any i k= 1, …, we have:

∪A A A= ′ ″,i i i

where the following conditions hold for any i k= 1, …, :

• ∩ ∅A A′ ″ =i i ,
• either ⊆X A ′j i or ∩ ∅X A ′ =j i for any j v= 1, …, ,
• ∈ A ′ {0, 2, 4}i , otherwise there would be monochromatic blocks,
• ∩ ≤ A X′ 1i j for j v= 1, …, .

First case. Suppose, now, that there exists a k‐coloring of Σ′ such that for some
∈i j v, {1, …, } , ≠i j, the elements xi,1 , xi,2 , xj,1 , and xj,2 are in four different color classes.

Without loss of generality we can take i = 1 and j = 2. So, denoted by A A, …, k1 the k
color classes, we can suppose that ∈x A1,1 1 , ∈x A1,2 2 , ∈x A2,1 3 , and ∈x A2,2 4 . We will
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use the following notation: for any ∈x X x x= { , …, }v1 we denote by Gx the graph having
⧹X x{ } as set of vertices and edges



y z y z

x y z

{{ , } { , } occupies

the central position in the block of containing { , , } }.

Since Σ is edge balanced, given:

∈ ∈T i m x x E G= { {3, …, 3 + 2} { , } ( )}x1 1 2 i

and

⧹T m T= {3, …, 3 + 2} ,2 1

we know that  T m=1 and  T m= 22 . Moreover, for any ∈j T2 either ∈x x E G{ , } ( )j x1 2
or

∈x x E G{ , } ( )j x2 1
. Clearly, it must be:

∈ ⇒ ∈ ∪ ∪ ∪j T x x A A A A, .j j2 ,1 ,2 1 2 3 4

Moreover, if for some i k= 5, …,

∈ ⇒ ∈ ∈x A j T x x Aand , .j r i j j i, 1 ,1 ,2

Let ∈j T2 . Then:

∈ ⇒ ∈ ∪

∈ ⇒ ∈ ∪

x x E G x x A A

x x E G x x A A

{ , } ( ) { , } ,

{ , } ( ) { , } .

j x j j

j x j j

1 ,1 ,2 3 4

2 ,1 ,2 1 2

2

1

So for any ∈j T2 either ⊂ ∪x x A A{ , }j j,1 ,2 1 2 or ⊂ ∪x x A A{ , }j j,1 ,2 3 4 . Let ∈j T1 . Then:

⊈ ⇒

⊆ ∪ ⊆ ∪

x x A i k

x x A A x x A A

{ , } , for any = 5, …,

either { , } or { , } .

j j i

j j j j

,1 ,2

,1 ,2 1 2 ,1 ,2 3 4

So, we can say that    A A n″ = ″ =1 2 1 and    A A n″ = ″ =3 4 2 , for some ∈n n,1 2 .
Moreover, we can suppose that:

∪

∪

∪

∪

⋮

{ }

{ }

{ }

{ }

A x x x A

A x x x A

A x x x A

A x x x A

A A

A A

= , , …, ′

= , , …, ′

= , , …, ′

= , , …, ′,

= ′

= ′

n

n

n n n

n n n

k k

1 1,1 3,1 +1,1 1

2 1,2 3,2 +1,2 2

3 2,1 +2,1 + ,1 3

4 2,2 +2,2 + ,2 4

5 5

1

1

1 1 2

1 1 2
(2)
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where A ′i , for i k= 1, …, have the following properties:

•  A p′ = 2i i , for i k= 1, …, , where ∈p {0, 1, 2}i for i = 1, 2, 3, 4 and ∈p {1, 2}i for
i k= 5, …, ;

• each A ′i for i k= 1, …, contain pi couples x x{ , }j j,1 ,2 .

Moreover, it must be ≤ p mi
k

i=5 .

Suppose, now, that ≥k 5. Consider, now, the triples x x x{ , , }i j l , with
∈i j n, {1, 3, …, + 1}1 , ≠i j, and ∈l n n n{2, + 2, …, + }1 1 2 . Then, for any r s, = 1, 2 in

the corresponding blocks of ′ either x x{ , }i r l s, , or x x{ , }j r l s, , occupy the central positions.
The same happens when we consider the triples x x x{ , , }i j l , with ∈i n{1, 3, …, + 1}1 and

∈j l n n n, {2, + 2, …, + }1 1 2 , ≠j l. Moreover, if we take the triples x x x{ , , }i j l , with
∈i n{1, 3, …, + 1}1 , ∈j n n n{2, + 2, …, + }1 1 2 and l such that ⊂ ∪ ⋯ ∪x x A A{ , } ′ ′l l k,1 ,2 5 ,

then for any r s, = 1, 2 in the corresponding blocks of ′ the edges x x{ , }i r j s, , occupy the
central positions. So, for any r s, = 1, 2 we have:



 


 


 


n

n
n

n n n p
2

+
2

+
i

k

i
1

2
2

1 1 2

=5

blocks of ′ having in the central position an edge with one vertex xi r, with
∈i n{1, 3, …, + 1}1 and the other xj s, with ∈j n n n{2, + 2, …, + }1 1 2 . Since Σ is edge

balanced, any edge occupies such a position exactly m times. This means that:

≤

⇒ ≤




( ) ( )n n n n p n n m

n n p m

+ +

( + ) − 1 + .

n n

i

k

i

i

k

i

2 2 2 1 1 2

=5

1 2

1

2 1 2

=5

1 2

Since n n p m+ + = 3 + 2i
k

i1 2 =1 , we get:

≤ ⇒ ≤ ⇒ ≤m p p p p p m v+ + + + 8 26.
i

k

i
=5

1 2 3 4

This means that in a coloring as in (2) it must be ≤k 4.
Suppose, now, that k = 4 and ≥n n, 21 2 . For any ∈i j n, {1, 3, …, + 1}1 , ≠i j, we know

that x x x x[( , ), , ]i r j s l l, , ,1 ,2 is a block in ′ for m values of ∈l m{1, …, 3 + 2} and the only
possibilities are that either ∈l n{1, 3, …, + 1}1 or ⊂x x A{ , } ′l l p,1 ,2 , p = 3, 4. So, for each such
couple there are at most n p p( − 2) + +1 3 4 possibilities, where the n − 21 ones correspond
to triples in n{1, 3, …, + 1}1 . Since each of these triples corresponds to exactly one block of′
and each edge occupies the central position in these blocks exactlym times, we can say that:

≤ ⇒ ≥


 


 


 


 


 


n

m
n

p p
n

n v
2 3

+ ( + )
2

− 12.1 1
3 4

1
1
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Similarly we get ≥n v − 122 and so:

≥ ≥ ⇒ ≤v n n v v+ 2 − 24 241 2

which is a contradiction.
If k = 4 and n = 11 , then clearly in ′ the vertices x1,1 and x1,2 occupy the lateral

positions in at most ( ) ( ) n p p− − ( + )
m n3 + 1

2 2 2 3 4
2 blocks. Since Σ is edge balanced, by

Theorem 4.1 we have:

≥


 


 


 


m n

n p p
m m3 + 1

2
−

2
− ( + )

(3 + 1)

2
.2

2 3 4

We know that m n p3 + 2 = + 1 + i i2
4 ; so, if p p= = 03 4 , then ≥n m3 − 32 and

we get ≤m 7. If ≥p p+ 13 4 , then ≥n m3 − 72 and so ≤ ⇒ ≤m v12 38. This is a
contradiction. Since we can reason in a similar way if n = 12 , this proves that a
coloring as in 2 is impossible.

Second case: Suppose that there exists a k‐coloring such that for some ≠i j we have
∈x x A,i j,1 ,1 1 , ∈x Ai,2 2 and ∈x Aj,2 3 . Without loss of generality we can take i = 1 and

j = 2. Again, since Σ is edge balanced, given:

∈ ∈T i m x x E G= { {3, …, 3 + 2} { , } ( )}x1 1 2 i

and

⧹T m T= {3, …, 3 + 2} ,2 1

we know that  T m=1 and  T m= 22 . Note that for ∈j T2 either ∈x x E G{ , } ( )j x1 2
or

∈x x E G{ , } ( )j x2 1
. Clearly, it must be ∈ ∪ ∪x A A Aj r, 1 2 3 for any ∈j T2 and r = 1, 2. So in

Ai for i k= 4, …, there are only xj r, for some ∈j T1 and, in such a case, both ∈x x A,j j i,1 ,2 .
So, we can suppose that:

∪

∪

∪

⋮

A A A

A A A

A A A

A A

A A

= ′ ″

= ′ ″

= ′ ″

= ′,

= ′k k

1 1 1

2 2 2

3 3 3

4 4

(3)

where A ′i , for i k= 1, …, have the following properties:

•  A p′ = 2i i , for i k= 1, …, , where ∈p {0, 1, 2}i for i = 1, 2, 3 and ∈p {1, 2}i for
i k= 4, …, ;

• each A ′i for i k= 1, …, contain pi couples x x{ , }j j,1 ,2 ;
• ≤ p mi

k
i=4

and moreover none of A″1 , A″2 and A″3 contain couples x x,i i,1 ,2 for any i.

BONACINI AND MARINO | 11



Suppose that ≥k 5 and consider for any r s, = 1, 2 the edges x x{ , }i r j s, , , where
∈ ∪ ⋯ ∪x x A A, ′ ′i r j s k, , 4 have different colors. Each of these edges must occupy the

central position in the blocks of ′ exactlym times and this happens only if the other two
vertices in such blocks have the same color. So it must be:

≤


































































 

m p

p p p p

− ( − 1)

+ − ( − 1) ( + + ).

p

i

k

i

p p

i

k

i

2
=4

3 2
=4

1 2 3

i

k

i

i

k

i
i

k

i

=4

=4 =4

Since ≥m p p p> 6 + +1 2 3 and ≤ p p( − 1) − 1i
k

i i
k

i=4 =4 , we get:

≤ m p p p p− − −
1

3
.

i

k

i1 2 3
=4

However, we know that ≤ p mi
k

i=4 and that ≤p p p+ + 61 2 3 . This implies that
≤ ⇒ ≤m v9 29, which is a contradiction.
Let k = 4 and let:

∈ ∈ ≠{ }A l x A x A r s r s= ″, ″, , = 1, 2,ij l r i l s j, ,

and

 a A=ij ij

for i j, = 1, 2, 3, ≠i j. Then we have a a a m p+ + = 3 + 2 − i i12 13 23 =1
4 . We will need a

few remarks. Take ∈i j l m, , {1, …, 3 + 2} , pairwise distinct.

• If ∈x x A, ′l l,1 ,2 4 , ∈i A12 and ∈j A13 , then in the blocks of ′ corresponding to the
triple x x x{ , , }i j l the vertices x x,l l,1 ,2 must occupy the lateral positions. Clearly, we
can reason in a similar way for A12 and A23 and A13 and A23 . So we get that in the
blocks of ′xl,1 and xl,2 occupy the lateral positions at least a a a a a a+ +12 13 12 23 13 23

times. So by Theorem 4.1:

≤a a a a a a
m m

+ +
(3 + 1)

2
.12 13 12 23 13 23 (4)

• Taken ∈i A12 , ∈ ∪j A A13 23 and ∈x x A, ′l l,1 ,2 4 , we see that the above remark shows
also that the edge x x{ , }l i occupies a lateral position in the blocks of  at least
a a+13 23 times. So, since Σ is edge balanced, we can say that:

≠ ⇒ ≤ ⇒ ≥ a a a m a m p0 + 2 + 2 − .
i

i12 13 23 12

=1

4

(5)
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Similarly, we can say that:

≠ ⇒ ≤ ⇒ ≥ a a a m a m p0 + 2 + 2 −
i

i13 12 23 13

=1

4

(6)

≠ ⇒ ≤ ⇒ ≥ a a a m a m p0 + 2 + 2 − .
i

i23 12 13 23

=1

4

(7)

• Let ≥p 11 and take ∈x x A, ′l l,1 ,2 1 and ∈ ∪j l A A, 12 13 . Then xl must occupy a
central position in the blocks of . By Theorem 4.1 we get:

≥ ⇒ ≤


 


p

a a
m m1

+

2
(3 + 1);1

12 13

and similarly:

≥ ⇒ ≤


 


p

a a
m m1

+

2
(3 + 1);2

12 23

≥ ⇒ ≤


 


p

a a
m m1

+

2
(3 + 1).3

13 23
(8)

• Let p = 21 and take ∈x x x x A, , , ′i i j j,1 ,2 ,1 ,2 1 . Then for any ∈ ∪l A A12 13 in the blocks
corresponding to the triple x x x{ , , }i j l the edges x x{ , }i r j s, , for any r s, = 1, 2 must
occupy the central positions. Since Σ is edge balanced, we can say that:

⇒ ≤ ⇒ ≥ p a a m a m p= 2 + 2 + 2 −
i

i1 12 13 23

=1

4

(9)

and similarly:

⇒ ≤ ⇒ ≥ p a a m a m p= 2 + 2 + 2 −
i

i2 12 23 13

=1

4

(10)

⇒ ≤ ⇒ ≥ p a a m a m p= 2 + 2 + 2 − .
i

i3 13 23 12

=1

4

(11)

Now, if ≥a a a m, , − 312 13 23 , then by (4) we get:

≤ ⇒ ≤ ⇒ ≤m
m m

m v3( − 3)
(3 + 1)

2
10 32,2

which is a contradiction.
Suppose that ≤a m − 412 , with ≠a 012 the minimum between a12 , a13 , and a23 . Then

we know that ≤a a m+ 213 23 by (5) and also:
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≥ a a m a p m p+ = 3 + 2 − − 2 + 6 − .
i

i
i

i13 23 12

=1

4

=1

4

(12)

So we can say that ≥ p 6i i=1
4 , which implies that either p = 21 or p = 22 or p = 23 .

By (5) and (9) if p = 21 we get:

≤ a p − 2.
i

i13

=1

4

Since ≥a a13 12 , by (5) we get:

≤ ⇒ ≤ ≤ ⇒ ≤  m p p m p v+ 2 − − 2 2 − 4 12 38,
i

i
i

i
i

i
=1

4

=1

4

=1

4

which is a contradiction. In a similar way we get a contradiction if p = 22 . So, since
≥ p 6i i=1

4 , the only possibility is that p = 11 , p = 12 , p = 23 , and p = 24 . However,
reasoning as done earlier, if p = 23 , by (11) and (12), we get ≤m 0, which is not
possibile.

So we can suppose that a = 012 and by our initial assumption we know that
≠a a, 013 23 . If ≥p 13 , then by the fact that ≥a a m+ 3 − 613 23 and by (8) we get ≤m 12,

so that ≤v 38, which is a contradiction.
This means that we can suppose that a = 012 and p = 03 . By (9) and (10) we get that, if

p p= = 21 2 , then

≥ ≥ ⇒ ≤ ⇒ ≤m a a m p m m v2 + = 3 + 2 − 3 − 4 4 14.
i

i13 23

=1

4

So we can say that ≤ p 5i i=1
4 . Then by (4):

≤ ⇒ ≤a a
m m

a m a
m m(3 + 1)

2
(3 − 3 − )

(3 + 1)

2
.13 23 13 13

Since ≤ ≤m a m− 3 213 by (6) and (7), we get that this holds only if ≤ ⇒ ≤m v13 41,
which is a contradiction. This shows that we cannot have a coloring as in (3).

Third case: We suppose that ≥k 4 and that ∅A″ =i for i k= 3, …, . Let
∈h k{0, …, − 2} be the number of indices ∈i k{3, …, } such that  A ′ = 2i . So for
∈h k{1, …, − 3} we can suppose that the color classes are the following:

∪

∪

⋮

⋮

A A A

A A A

A A

A A

A A

A A

= ′ ″

= ′ ″

= ′

= ′

= ′

= ′

h h

h h

k k

1 1 1

2 2 2

3 3

2+ 2+

3+ 3+

(13)
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where:

•  A n″ =i for i = 1, 2 and none of them contains couples x x,i i,1 ,2 for any i;
•  A p′ = 2i i , for i k= 1, …, , where ∈p {0, 1, 2}i for i = 1, 2, p = 1i for i h= 3, …, 2 +

and p = 2i for i h k= 3 + , …, ;
• each A ′i for i k= 1, …, contain pi couples x x{ , }j j,1 ,2 .

In the case h = 0, keeping the above notation, we have that for  A ′ = 4i for any
i k= 3, …, . Similarly, for h k= − 2 we have that  A ′ = 2i for i k= 3, …, .

Consider for any r s, = 1, 2 the vertices ∈ ∪ ⋯ ∪x x A A, ′ ′i r j s k, , 3 having different
colors. Then, any vertex ∈ ∪x A A″ ″l p, 1 2 , with p = 1, 2, occupies the central position in
the corresponding blocks. If c ′il is the number of times that for any r p, = 1, 2 an edge
x x{ , }l p i r, , occupies the central position in such blocks, we have:

 

 


c

k h
k h′ =

2 − 4 −

2
− ( − 2 − ).

i
il

Since we have k h2 − 4 − of such edges, we can say that there exists j such that:

≥c
k h

′
2 − 6 −

2
.j l

So, since Σ is edge balanced, it must be:

≤
k h

m
2 − 6 −

2
.

Since v m n p p k h= 3 + 2 = + + + 2 − 4 −1 2 , we get:

≥n m p p− − .1 2

On the other hand, for any r s t, , = 1, 2 consider the triples x x x{ , , }i r j s l t, , , , with
∈ ∪x A A″ ″i r, 1 2 and ∈ ∪ ⋯ ∪x x A A, ′ ′j s l t k, , 3 with different colors. The edge x x{ , }j r l t, ,

must occupy a lateral position in the corresponding block. So each of these edges
x x{ , }j r l t, , occupies a lateral position n times.

Now, for any r s t, , = 1, 2 consider the



 


k h2 − 4 −

3

triples ⊂ ∪ ⋯∪x x x A A{ , , } ′ ′i r j s l t k, , , 3 , and denote by lij the number of times that the edge
x x{ , }i r j s, , occupies a lateral position in the blocks corresponding to such triples. It clearly
must be:

 

 


l

k h
= 2

2 − 4 −

3
.ij
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Let:

∈A i j r s x x A l h k= {{ , } for any , = 1, 2, , , for some = + 3, …, }i r j s l, ,

and

∈ ∈

≠

B i j r s x A x A

l l k l l

= {{ , } for any , = 1, 2, ,
′

for some , ′ = 3, …, , ′},

i r l j s l, ,

where:

    

 


A k h B

k h
k h= − 2 − and =

2 − 4 −

2
− ( − 2 − ).

Obviously, for any ∈i j A{ , } it must be ≤l k h2 − 6 −ij and so:

≥
∈

 

 


l

k h
k h k h2

2 − 4 −

3
− ( − 2 − )(2 − 6 − ).

i j B

ij

{ , }

This implies that there exists ∈i j B{ , } such that l k h> (2 − 7 − )ij
2

3
, otherwise it

would be ≤k 3. So for any r s, = 1, 2 the edge { }x x,i r j s, , occupies the lateral positions at
least n l+ ij times. This implies that ≤n l m+ 2ij , because Σ is edge balanced, and so:

n k h m+
2

3
(2 − 7 − ) < 2 .

Since v m n p p k h= 3 + 2 = + + + 2 − 4 −1 2 , the previous inequality implies

⇒ ≤n m n p p m n p p+
2

3
(3 − 1 − − − ) < 2 2 + 2 + 1.1 2 1 2

Since we saw that ≥n m p p− −1 2 , this show that ≤m p p3 + 3 + 11 2 , which im-
plies that ≤m 13 and so ≤v 41. So, this proves that such a coloring exists only for
k = 2, 3 and the statement is proved. □

6 | BP (2, 4)(3) ‐DESIGNS WITH BROKEN FEASIBLE SET

Now we can apply Theorem 5.1 to provide constructions of BP (2, 4)(3) designs with broken
feasible set.

Theorem 6.1. For any ≡v 2 mod 3, ≥v 44, and ∈p , ≤ ≤






 p v

v

2
, there exists a

BP (2, 4)(3) ‐design of order v2 with feasible set ∪ p v{2, 3} [ , ] .

Proof. Let X x x i v= { , = 1, …, }i i,1 ,2 be such hat  X v= 2 and consider a BP (2, 4)(3) ‐
decomposition XΣ = ( , ) of Kv×2

(3) as in Theorem 5.1, with partite sets x x{ , }i i,1 ,2 .
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Let p v= and let  be the family of the following blocks:

x x x x x x x x[( , ), , ], [( , ), , ]i i j j j j i i,1 ,2 ,1 ,2 ,1 ,2 ,1 ,2

for any ∈i j v, {1, …, } , with ≠i j. Then it is easy to see that ∪ XΣ′ = ( , ) is a
BP (2, 4)(3) ‐design with feasible set v{2, 3, } by Theorem 5.1 and by the construction
of  .

Let p v= − 1 and let  be the family of the following blocks:

• x x x x[( , ), , ]i i j j,1 ,2 ,1 ,2 for any ∈i j v, {1, …, − 1} , with ≠i j, with the exception of the
block x x x x[( , ), , ]v v v v−1,1 −1,2 −2,1 −2,2 ;

• x x x x[( , ), , ]v v j j,1 ,2 ,1 +1,2 for any ∈j v{1, …, − 2} ;
• x x x x[( , ), , ]v v v,1 ,2 1,2 −1,1 ;
• x x x x[( , ), , ]i i v v,1 ,2 ,1 ,2 for any ∈i v{1, …, − 2} ;
• x x x x[( , ), , ]v v v s v s−1,1 −1,2 , −2, for s = 1, 2.

Then it is easy to see that ∪ XΣ′ = ( , ) is a BP (2, 4)(3) ‐design with feasible set
v v{2, 3, − 1, } by Theorem 5.1 and by the construction of  .

Let p v r= − , ≥






p

v

2
, with ∈r and ≥r 2, and let  be the family of the following

blocks:

• x x x x[( , ), , ]i i j j,1 ,2 ,1 ,2 , x x x x[( , ), , ]j j i i,1 ,2 ,1 ,2 for any ∈i j p, {1, …, } , with ≠i j, and for
any ∈i j p v, { + 1, …, } , ≠i j;

• x x x x[( , ), , ]i i j j,1 ,2 ,1 +1,2 , for any ∈i p{1, …, } , ∈j p v{ + 1, …, − 1} and for any
∈i p v{ + 1, …, } , ∈j p{1, …, − 1} ;

• x x x x[( , ), , ]i i p v,1 ,2 +1,2 ,1 for any ∈i p{1, …, } ;
• x x x x[( , ), , ]i i p,1 ,2 1,2 ,1 for any ∈i p v{ + 1, …, } .

Then it is easy to see that ∪ XΣ′ = ( , ) is a BP (2, 4)(3) ‐design with feasible set
∪ p v{2, 3} [ , ] by Theorem 5.1 and by the construction of  . □

This paper provides the first examples of BP (2, 4)(3) ‐designs with broken feasible set. Since
this is a blow‐up construction, based on edge balanced hypergraph designs, the order of these
BP (2, 4)(3) ‐designs is a particular one, precisely v2 , with ≡v 2 mod 3 and ≥v 44. So the re-
maining admissible orders represent an open problem, which might be solved thanks to this
construction.
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