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We study the dynamics of heavy quarks in a thermalized quark-gluon plasma with a time-correlated
thermal noise, η. In this case, it is said that η has memory. We use an integro-differential Langevin equation
in which the memory enters via the thermal noise and the dissipative force. We assume that the time
correlations of the noise decay exponentially on a timescale, τ, which we treat as a free parameter. We
compute the effects of τ ≠ 0 on the thermalization time of the heavy quarks, on their momentum
broadening, and on the nuclear modification factor. We find that overall memory slows down the
momentum evolution of heavy quarks: In fact, transverse momentum broadening and the formation of RAA

are slowed down by memory and the thermalization time of the heavy quarks become larger. The potential
impact on other observables is discussed briefly.
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I. INTRODUCTION

A hot and dense phase of nuclear matter, the quark-gluon
plasma (QGP), is expected to form in the ultrarelativistic
heavy-ion collisions at the Relativistic Heavy-Ion Collider
(RHIC) and the Large Hadron Collider (LHC) energies.
Probing and characterizing the bulk properties of QGP is a
field of high contemporary interest. Heavy quarks (HQs)
[1–12] such as charm and beauty are considered as good
probes of the system produced in high-energy nuclear
collisions. In fact, they are produced in the very early
stage due to the hard partonic scatterings on a timescale
τ ¼ Oð1=mÞ where m is the rest mass of the quark. Due to
their large mass and low abundance, they can propagate in
the QGP bringing almost no disturbance to it. Consequently,
they act as good probes that can experience the whole
evolution of the system created in the collisions, from the
very early stage up to the hadronization stage.
The standard approach to study the HQ dynamics in the

QGP is following their position andmomentumevolution by
means of the Langevin equations [13–26] (see also [27,28])
as well as relativistic kinetic theory [9–12,21,29–32]. In the
approaches based on the Langevin equation, the thermal
noise, η, is usually treated as a standardWiener process, thus

without correlations in time. In this work, we relax this
approximation and analyze the case in which η is time
correlated; this class of stochastic processes is called a
process with memory.
The prototype of Langevin equation that we consider in

this work is

dp
dt

¼ −
Z

t

0

γðt − t0Þpðt0Þdt0 þ ηðtÞ; ð1Þ

where p is the momentum of the particle, η is the stochastic
term thatmodels the thermal noise, while the integral term on
the right-hand side is the dissipative force. In previous
studies, the latter is replaced by −γp where γ is the drag
coefficient: This replacement follows from the Fluctuation-
Dissipation Theorem (FDT)when η has no time correlations.
Our goal is to analyze the motion of heavy quarks in a

quark-gluon plasma, when the correlations of the thermal
noise do not decay instantaneously: Instead, we assume that
these correlations decay over a specific timescale thatwe call
the memory time, τ. Hydrodynamic fluctuations [33–35],
diffusion in the evolving Glasma [36–45], diffusion of
electric charge [46], dilepton yields [47], and the electric
conductivity of the quark-gluon plasma [48] are some of the
physical problems where memory can play a role; for these,
τ lies in between 0.1 and 3 fm=c. In this study, we treat τ as a
free parameter and study its effect on a few physical
quantities, namely the momentum broadening of heavy
quarks and on the nuclear modification factor, RAA. The
thermalization time of heavy quarks, τtherm, is of the order of
the lifetime of the QGP. We emphasize that the natural limit
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for the heavy quark dynamics with memory is τ=τtherm ≪ 1.
For the sake of simplicity, we consider the interaction of
heavy quarks with a thermalized quark-gluon plasma at a
fixed, constant temperature T; the diffusion coefficients that
we use in the calculations are those obtained by perturbative
QCD (pQCD) for high T, and by a quasiparticle model
(QPM) for lowT, while the dissipative kernel is related to the
thermal noise by the fluctuation-dissipation theorem (FDT).
We anticipate the main result, namely that memory

delays the dynamics of the heavy quarks in the QGP:
We show this by studying the thermalization time, the
momentum broadening, and the time evolution of RAA.
The latter in particular can be potentially of interest for the
phenomenology of heavy quarks in the QGP due to the fact
that the slower evolution of RAA would require the use of
larger diffusion coefficients in order to reproduce the
experimental data and this, in turn, would require stronger
interactions of the heavy quarks with the bulk, potentially
leading to a larger v2.
The plan of the article is the following: In Sec. II, we

present the calculations for the equilibration time and the
momentum broadening for the Brownian motion with
memory in the nonrelativistic limit; in Sec. III, we discuss
the numerical implementation of the Langevin equation
with an integral kernel, while in Sec. IV, we present our
results. Finally, in Sec. V, we draw our conclusions.

II. NONRELATIVISTIC LIMIT

For the sake of illustration, we consider here a simple
one-dimensional motion of a heavy particle with mass m in
the nonrelativistic limit. Most of the calculations presented
here have been obtained in [49], where a gaussian corre-
lator has been considered; most of the results on super
diffusion can also be found in the literature [50]. Here, we
consider an exponential correlator instead; therefore, we
skip many details that have been given in [49] and limit
ourselves to write explicit results that stand for the
exponential correlator.
The Langevin equation for momentum p is

dp
dt

¼ −
Z

t

0

γðt − t0Þpðt0Þdt0 þ ηðtÞ; ð2Þ

where η is the stochastic term that models the noise, while
the integral term on the right-hand side is the dissipative
force.
The formal solution of Eq. (2) can be obtained by means

of Laplace transforms, namely

pðtÞ ¼ 1

2πi

Z
σþi∞

σ−i∞

p0 þ ΞðsÞ
sþ ΓðsÞ estds; ð3Þ

where p0 ¼ p at t ¼ 0, and Γ and Ξ denote the Laplace
transforms of the dissipative kernel and the noise respec-
tively; the integral is understood on a Bromwich contour

that leaves all the singularities of the integrand on its
left side.
We assume that η is a gaussian random variable with

correlators given by

hηðtÞηðt0Þi ¼ 2Dfðt − t0Þ: ð4Þ

Moreover, we assume that η represents the thermal noise in
a thermalized bath at temperature T. From the FDT, we
have then

γðt; t0Þ ¼ 1

mT
hηðtÞηðt0Þi ¼ 2γfðt − t0Þ; ð5Þ

with

γ ¼ D
mT

: ð6Þ

In order to analyze the thermalization time and the
momentum broadening of the heavy particle, we need to
evaluate the following averages:

hpðtÞi ¼ p0G; ð7Þ

σp ≡ hðpðtÞ − hpiÞ2i ¼ J ; ð8Þ

where we have put

G ¼ 1

2πi

Z
σþi∞

σ−i∞

1

sþ ΓðsÞ e
stds; ð9Þ

which describes momentum randomization due to the
propagation of the particle in the bath, and

J ¼ L−1
� hΞðsÞΞðs0Þi
ðsþ ΓðsÞÞðs0 þ Γðs0ÞÞ

�
ðt; t0Þ; ð10Þ

where L−1½h�ðt; t0Þ is the two-dimensional inverse Laplace
transform of hðs; s0Þ that depends on ðt; t0Þ. In the above
equation, we have put

hΞðsÞΞðs0Þi ¼
Z

∞

0

dt
Z

∞

0

dt0hηðtÞηðt0Þie−stþs0t0 : ð11Þ

In this work, we consider an exponential correlator in
Eqs. (4) and (5), namely

fðtÞ ¼ 1

2τ
e−jtj=τ; ð12Þ

which allows one to solve the problem analytically.We call τ
the memory time since it sets the timescale over which time
correlations of the noise decay. Note that limτ→0 fðtÞ ¼ δðtÞ
in the distributional sense; therefore, it is possible to
interpolate between the local and the nonlocal kernel by
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changing the value of τ. The Laplace transform of the
dissipation kernel is

ΓðsÞ ¼ γ

ðτsþ 1Þ : ð13Þ

Moreover, a quick calculation shows that

hΞðsÞΞðs0Þi ¼ Dð2þ τsþ τs0Þ
ðsþ s0Þð1þ τsÞð1þ τs0Þ : ð14Þ

A. Thermalization

Firstly, we examine the thermalization of the heavy
particle, which consists in the loss of information about the
initial condition and in the equilibration of its kinetic
energy with the bath, hEi ¼ T=2 as required by the
equipartition theorem. From Eqs. (7), (9), and (13), con-
sidering that the zeroes of sþ ΓðsÞ are the solutions of the
equation sþ τs2 þ γ ¼ 0, we get by a straightforward
application of the residues theorem

hpðtÞi ¼ p0

e−
tð1þAÞ

2τ ð−1þ AÞ
2A

þ p0

e−
tð1−AÞ
2τ ð1þ AÞ
2A

; ð15Þ

with A≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4γτ

p
.

Before moving to the thermalization time we pause on
the early, prethermalization behavior of hpðtÞi to empha-
size the differences between the motion with and without
memory. In order to simplify the discussion, we assume
that τ ≪ 1=γ, where 1=γ represents the thermalization time
for processes without memory. For t ≪ τ, we get

hpðtÞi ¼ p0

�
1 −

γt2

2τ

�
; t ≪ τmem; ð16Þ

while for τ ≪ t ≪ 1=γ, we get

hpðtÞi ¼ p0ð1 − γtÞ; ð17Þ

The memory changes the prethermalization evolution of
hpðtÞi from linear to quadratic; in particular, this implies
that the thermalization of the particle in a bath with memory
is slower than the one in a bath without memory with the
same drag coefficient, γ. This result is confirmed by the
calculation of the thermalization time that makes use of
the full result (15).
We define the thermalization time, τtherm, such that

hpðτthermÞi ¼ p0=e with hpðtÞi given by Eq. (15). The
results of this calculation are shown in Fig. 1, where we plot
τtherm as a function of the memory time, both measured in
units of 1=γ. Thermalization time increases with τ in
agreement with the discussion above; the quantitative effect
of memory is negligible for γτ ≪ 1, but becomes sub-
stantial ≈20% already for γτ ≈ 0.5.

The qualitative behavior of the thermalization time can
be understood in simple terms. In fact, thermalization
implies the loss of the correlation with the initial condition:
The heavy particle equilibrates with the bath regardless of
its initial momentum distribution. If the thermal noise of the
bath has memory, the momentum evolution from time t to
tþ Δt does not delete the information of pðtÞ totally
because of the correlations of the noise. Therefore, it is
natural to expect that the loss of the information about the
initialization requires more time.

B. Momentum broadening

Next we turn to the momentum broadening, σp in
Eq. (8). The starting point is the computation of J in
Eq. (10) with correlator given by Eq. (14). We get

σp ¼ D
2γð4γτ − 1Þ e

−tð1þAÞ
τ

× ½1 − 2γτ − 4γτe
tA
τ − A − 2A2e

tð1þAÞ
τ

þ ð1 − 2γτ þ AÞe2tA
τ �; ð18Þ

where A has been defined right after Eq. (15). Although
Eq. (18) is exact but is quite cumbersome, it is convenient to
analyze a few limiting situations in which the result (18) is
manageable; after that, we will present the full result (18)
computed numerically. As in the previous subsection, for the
sake of illustration, we assume that τ ≪ 1=γ: This
assumptionwill be removed in the full numerical calculation;
see Fig. 2. From the results presented in the previous
subsection in this regime, we have τtherm ≈ 1=γ, see Fig. 1.
The dissipative force becomes relevant on the timescale

t ≈ τtherm ≈ 1=γ; thus, for tγ ≪ 1, we can ignore it and put
γ ¼ 0 in Eq. (18). Hence, we get

σp ¼ Dð2t − 2τ þ 2τe−t=τÞ; t ≪ 1=γ: ð19Þ

FIG. 1. Thermalization time versus memory time, both mea-
sured in units of 1=γ.
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In the early stage t ≪ τ, the above result gives

σp ≈
Dt2

τ
; t ≪ τ ≪ 1=γ; ð20Þ

σp ≈ 2Dt; τ ≪ t ≪ 1=γ: ð21Þ

In particular, the result (21) agrees with what we would find
for the Brownian motion without memory. We notice that
the effect of a finite memory time is to slow down the
momentum broadening of the heavy particle, changing the
early time evolution from linear to quadratic.
For late times t ≫ 1=γ, t ≫ τ, the memory with the

exponential kernel has no effect on the equilibration value
of momentum broadening: In fact, in the asymptotic limit
γt ≫ 1, from Eq. (18), we get

σp ≍
D
γ
; ð22Þ

which is in agreement with the standard result for the
Brownian motion.

III. LANGEVIN EQUATION WITH MEMORY:
NUMERICAL IMPLEMENTATION

In this work, we solve the Langevin equation for the heavy
quarks in a bath with a colored noise; the latter has
correlations at different times. In order to generate this noise,
we introduce an ancillary stochastic process, hðtÞ, which
evolves simultaneously to (and independently of) the heavy
quarks, built up in such a way that its correlator at different
times does not vanish. In this section, we firstly define the
ancillary process and specify its correlations at different
times; then, we formulate the Langevin equation where the

heavy quark is coupled to hðtÞ and discuss the numerical
discretization scheme adopted in the calculations.

A. Ancillary stochastic process

Let us consider the stochastic process a that satisfies the
Langevin equation

da
dt

¼ −αaþ αξ; ð23Þ

where ξ is a gaussian white noise,

hξi ¼ 0; ð24Þ

hξðtÞξðt0Þi ¼ 1

α
δðt − t0Þ; ð25Þ

a is assumed to be dimensionless, so 1=α is put in Eq. (25)
to balance the time dimension carried by the δ − function
because ξ is dimensionless too. The formal solution of
Eq. (23) is given by

aðtÞ ¼ a0e−αt þ e−αt
Z

t

0

dt0 αξðt0Þeαt0 ; ð26Þ

where a0 ¼ aðt ¼ 0Þ. Clearly, we have

haðtÞi ¼ a0e−αt: ð27Þ

We define the fluctuating field as

hðtÞ≡ aðtÞ − haðtÞi: ð28Þ

This satisfies Eq. (23) with hðt ¼ 0Þ ¼ 0, which we rewrite
for the sake of future reference:

dh
dt

¼ −αhþ αξ: ð29Þ

We baptize h as the ancillary process because we use it as
an additional stochastic process to generate the colored
noise for the Langevin equation of the heavy quarks,
see below.
From the very definition of h, it is easy to see that

hhðtÞi ¼ 0. Instead the correlator of h at different times is
not a δ − function: It can be obtained easily from Eq. (26),
namely

hhðtÞhðt0Þi ¼ e−αjt−t0j − e−αðtþt0Þ

2
: ð30Þ

Therefore, h is a process with memory, and it can be used in
any Langevin equation. From Eq. (30), it is obvious that
asymptotically

FIG. 2. σp versus time for a one-dimensional motion of charm
quarks in the nonrelativistic limit; see Eq. (6). σp is defined in
Eq. (8). We have considered two values of the memory time, τ.
Analytical results correspond to Eq. (18).
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hhðtÞhðt0Þi ≈ e−αjt−t0j

2
; ð31Þ

namely correlations are washed out on the timescale
1=α≡ τ. Note that for α → þ∞, from Eq. (30), we get

αhhðtÞhðt0Þi ≈ δðt − t0Þ; ð32Þ

that is, the process h becomes a standard white noise in the
limit τ → 0, as expected.
Before going ahead, it is useful to comment on Eq. (30):

We note that the correlator is not a function of t − t0 but of t
and t0 separately. It is convenient to fix t0 and analyze the
correlator for t ≥ t0. The addendum A≡ e−αðtþt0Þ lowers the
value of the correlator; on the other hand, A is suppressed
when t0 ¼ Oð1=αÞ. That is, correlations of h develop
substantially on a timescale t ≈ τ ¼ 1=α necessary to sup-
press A. After this transient regime, time correlations are
approximately given by Eq. (31), which have also the
property to be invariant under time translations. Therefore,
the process (29) describes a noise that needs a time ≈τ to
develop memory: After the system enters this regime, the
correlations of h at different times are approximately
invariant under time translation and decay on a timescale≈τ.
Numerically, Eq. (29) can be discretized in the usual

manner by the replacements

δðt − t0Þ → δt;t0

Δt
; ð33Þ

ξðtÞ ¼ ζðtÞ
ffiffiffiffiffiffiffiffi
1

αΔt

r
; ð34Þ

where Δt corresponds to the discrete time step imple-
mented in the numerical calculation. With these, we have

Δh ¼ −αhΔtþ ffiffiffi
α

p
ζðtÞ

ffiffiffiffiffiffi
Δt

p
: ð35Þ

ζðtÞ will be implemented as a white noise with variance
equal to one.

B. Application to the Langevin equation

Next, we turn to the solution of the Langevin equation,
(2), for heavy quarks in the relativistic limit. We assume the
FDT in the relativistic limit, namely

γðt; t0Þ ¼ 1

ET
hηðtÞηðt0Þi; ð36Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Moreover, the process ηðtÞ in Eq. (2)

is assumed to satisfy hηi ¼ 0 and

hηðtÞηðt0Þi ¼ 2D
2τ

gðt − t0Þ; ð37Þ

where τ is the memory time, and g is a dimensionless
function that defines the correlation of the noise; for
simplicity, we assume, it satisfies gð0Þ ¼ 1. In the case
of a Markov process, τ → 0 and g has to satisfy the
condition

1

2τ
gðt − t0Þ → δðt − t0Þ: ð38Þ

In this work, we generate the noise η by means of the
ancillary process h introduced in the previous subsection
with α ¼ 1=τ. More precisely, we assume that

1

2τ
gðt − t0Þ ¼ 1

τ
hhðtÞhðt0Þi; ð39Þ

see Eq. (30). Therefore, in Eq. (2), we put

ηðtÞ ¼
ffiffiffiffiffiffiffi
2D
τ

r
hðtÞ; ð40Þ

see also Eq. (37). Using Eqs. (32) and (37), we note that in
the limit τ → 0, we get

hηðtÞηðt0Þi ¼ 2Dδðt − t0Þ; ð41Þ

namely, we recover the time correlation of the standard
Brownian motion.
We have noted that the ancillary process (29) develops

substantial correlations after an initial transient stage that
lasts for t0 ≈ τ; after this transient, the correlator is
approximately invariant under time translation and decays
exponentially on the timescale τ. We call this stage the
exponential decay regime. In the numerical calculations,
we start the ancillary process and let it run up to some time
t0, leaving heavy quarks frozen in momentum and coor-
dinate space; then, when the noise is in the exponential
decay regime, we start the evolution of the heavy quarks
including their interaction with the noise itself. In this
regime, the correlator takes the form

hηðtÞηðt0Þi ¼ 2D
e−jt−t0j=τ

2τ
: ð42Þ

With the rescaling (40), the Langevin equation (2) reads

dp
dt

¼ −
Z

t

t0

γðt; t0Þpðt0Þdt0 þ
ffiffiffiffiffiffiffi
2D
τ

r
hðtÞ; ð43Þ

which we solve for t > t0. In Eq. (43), we put

γðt; t0Þ ¼ 2D
Eðt0ÞT

e−jt−t0j=τ

2τ
; ð44Þ

in agreement with the relativistic form of the FDT. The
time-discretized version of Eq. (43) is given by
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Δp ¼ −Δt
Z

t

t0

γðt; t0Þpðt0Þdt0 þ
ffiffiffiffiffiffiffi
2D
τ

r
hðtÞΔt: ð45Þ

Note that differently from the Markov process, the sto-
chastic term in Eq. (45) does not come with the

ffiffiffiffiffiffi
Δt

p
: This

is because now the noise is not a Wiener process due to the
memory. We implement a simple iterative scheme to solve
Eq. (45), namely

pðtÞ ¼ pðt − ΔtÞ − Δt
XN
n¼0

γðt; t0nÞpðt0nÞΔt

þ
ffiffiffiffiffiffiffi
2D
τ

r
hðtÞΔt; ð46Þ

with t00 ¼ t0, t0N−1 ¼ t − Δt and t0N ¼ t. This scheme leads
to the self-consistent solution

pðtÞ½1þ ðΔtÞ2γðt; tÞ� ¼ pðt−ΔtÞ− ðΔtÞ2
XN−1

n¼0

γðt; t0nÞpðt0nÞ

þ
ffiffiffiffiffiffiffi
2D
τ

r
hðtÞΔt: ð47Þ

Equations (35) and (47) allow us to implement the
momentum evolution of the heavy quark in a bath with
a colored noise. h in Eq. (45) is given by the solution of the
ancillary Langevin equation (35). This means that at each
time step, one has to solve Eq. (35) [with the initial
condition hðt ¼ 0Þ ¼ 0] and Eq. (45) simultaneously.
This procedure is different from the one adopted in the
literature in the case of a Markov process, in which the
white noise would be extracted randomly from a Gaussian
distribution at each time step.
For the numerical implementation of the three-dimen-

sional Langevin equation, we are solving Eqs. (35) and (45)
simultaneously for the three components (hx, hy, hz, px, py,
pz) to study HQ momentum evolution coupled with the
coordinate evolution

dri ¼
pi

E
dt; ð48Þ

where dri is the shift of the coordinate in each time step dt.
E and pi are the energy and momentum of the heavy quark,
respectively.
The HQ transport coefficients are computed as follows:

At high T, wemodel the thermalized bath by aQGPmade of
massless quarks and gluons and use the pQCD kinetic
coefficients for the processes cl → cl, where l denotes
either amassless gluon or a quark in the bath. In this case, the
diffusion coefficients arewell known and can be found in the
literature; see, for example, [51,52]. The squared invariant
scattering amplitudes are the Combridge ones that include s,
u, and t channel and their interferences terms. The infrared

divergence associated with the t-channel diagrams is
screened by theDebyemass,mD ¼ gðTÞT. Formore details,
see earlier works [29,53]. On the other hand, at low T, we
model the bath with a gas of quarks and gluons quasipar-
ticles, using the so-called quasiparticle models (QPMs); in
these models, the quasiparticle masses are tuned in order to
reproduce lattice QCD thermodynamics [54,55]. The QPMs
account effectively for the nonperturbative effects for T
close to the quark-hadron transition temperature, Tc. The
main feature of the QPM is that the effective coupling is
significantly stronger than the one of pQCD near Tc, which
enhances the HQ-bulk interactions. We have evaluated the
diffusion coefficient within the QPM starting from the
effective coupling with massive quarks and gluons. For
details, we refer to earlier works [29,53].

IV. RESULTS

A. Nonrelativistic check

In order to check the discretization scheme of the
Langevin equation with correlated noise (45), we plot σp
versus time in Fig. 2; the definition of σp is given in Eq. (8),
and the Langevin equation has been solved for a one-
dimensional motion of charm quarks. We have solved
the equation in the nonrelativistic limit as explained in
Sec. II, namely, replacing the energy with the mass of the
quark in the fluctuation-dissipation theorem; see Eq. (6).
Moreover, we have used a constant diffusion coefficient
D ¼ 0.2 GeV2=fm for illustrative purposes only. Here, T
refers to the bath temperature. The green and blue solid
lines correspond to τ ¼ 0.2 fm=c and τ ¼ 1 × 10−3 fm=c,
respectively. In Fig. 2, σp for pure diffusion means the drag
coefficient is zero in the Langevin equation.
For comparison, in the same figure, we show by dashed

lines the analytical result (18), which is valid in the
nonrelativistic limit: The agreement between the two results
is excellent, showing that our numerical scheme works
properly. We notice that the memory slows down the
evolution of σp as anticipated in Sec. II. Moreover, for
τ ¼ 0.2 fm=c, we notice that the diffusive motion is
characterized by the initial nonlinear increase of σp that
turns into a linear regime before the drag force becomes
relevant and leads to the thermalization of the heavy quark.
In the case of the smaller τ, the charm quark enters the
linear regime immediately, then equilibrates with the
medium.

B. Transverse momentum broadening

In this subsection, we analyze the momentum broad-
ening of heavy quarks in a hot medium; analogously to the
previous section, we define

σp ¼ hðpT − hpTiÞ2i; ð49Þ

where pT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
is the transverse momentum.
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In Fig. 3, we plot σp versus time for three temperatures
and three values of τ, namely τ ¼ 0 fm=c (black lines),
τ ¼ 0.2 fm=c (green lines), and τ ¼ 1 fm=c (red lines).
Calculations correspond to the charm quark. For the three
cases considered, it is clear that increasing the memory time
results in the slowing down of momentum broadening; the
effect is more visible at large temperature, where the drag
force is less effective. At small temperature, it is still
possible to measure some difference between the results
with the three memory times in the early evolution; then for
time t ≥ 5 fm=c, the results with and without memory
coincide.
Here, we are using a constant diffusion coefficient for all

three different temperatures for the sake of illustration.
Since the diffusion coefficient is the same, the drag
coefficient is smaller for a larger temperature. Hence, the
system equilibrates lately, which means it takes more time
to achieve a constant σp at T ¼ 1 GeV and T ¼ 0.5 GeV
cases. However, if we include temperature-dependent
diffusion coefficients, which means larger diffusion at
larger temperature, one can achieve early equilibrium for
larger temperatures.
In Fig. 4, we plot a selection of the results shown in

Fig. 3 for τ ¼ 0.2 fm=c, zooming on the early time
evolution of σp. We notice the nonlinear increase of σp,
induced by memory in agreement with the discussion of
Sec. II, followed by a linear enhancement. In this regime,
the charm quarks experience an almost diffusive motion in
the sense that the energy loss due to the drag force is still
negligible. Qualitatively, the different regimes appear also
for the small temperature case in the figure; however, in this
case, the drag force is stronger, so the linear regime lasts
for a shorter fraction of the evolution, and then σp bends
and eventually saturates, signaling the equilibration of the
charm with the medium.

C. Nuclear modification factor

In this subsection, we analyze the modification factor
RAA, defined as

RAAðpTÞ ¼
ðdN=d2pTÞt

ðdN=d2pTÞFONLL
; ð50Þ

where ðdN=d2pTÞt denotes the spectrum of charm quarks
at time t, and ðdN=d2pTÞFONLL denotes the spectrum at the
initialization time. To this end, at the formation time, we
assume the prompt spectrum obtained within the
fixed order þ next-to-leading log (FONLL) QCD that
reproduces the D-mesons spectra in pp collisions after
fragmentation [56,57].

dN
d2pT

����
prompt

¼ x0
ðx1 þ pTÞx2

; ð51Þ

the parameters that we use in the calculations are
x0 ¼ 6.36548 × 108, x1 ¼ 9.0, and x2 ¼ 10.27890 for
charm quarks; the slope of the spectrum has been calibrated
to a collision at

ffiffiffi
s

p ¼ 5.02 TeV. RAAðpTÞ ≠ 1 implies that
charm quarks experience interactions with the gluon
medium, causing a change in their spectrum. Our motiva-
tion is to highlight the impact of memory on RAAðpTÞ.
In Fig. 5, we plot RAA versus pT for two values of the

memory time τ. The shape of RAA for T ¼ 1 GeV and up to
pT ≈ 5 GeV is in agreement with the one advertised in
[36,37,42]: This is the result of the diffusion-dominated
propagation of the heavy quarks in the hot medium at high
temperature that effectively diffuses low momentum charm
quarks to higher momentum states. This explains why RAA
remains smaller than one up to pT ≈ 2 GeV. For larger pT,
the energy loss is important, and particles migrate to lower
momentum states. At low temperature, the drag force is
dominant in the whole range of pT ; therefore, the general

FIG. 3. σp for charm quarks, defined in Eq. (49), versus time,
for three values of the temperature. The black lines correspond to
τ ¼ 0 fm=c, while the green lines stand for τ ¼ 0.2 and red lines
for τ ¼ 1 fm=c.

FIG. 4. σp for charm quarks, defined in Eq. (49), versus time
and for τ ¼ 0.2 fm=c.
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tendency is that particles move to lower pT states so RAA
stays greater than one up to pT ≈ 2 GeV.
The effect of τ ≠ 0 is to slow down the formation of RAA.

We notice a sizable impact of memory on the RAA. To make
this point clearer, in Fig. 6, we show RAA for τ ¼ 0 and
τ ¼ 1 fm=c at T ¼ 0.25 GeV obtained within QPM. We
notice the slower evolution of RAA when τ ≠ 0.
In Fig. 7, we plot RAA at t ¼ 3 fm=c, for τ ¼ 0, and

τ ¼ 1 fm=c, at T ¼ 0.25 GeV. Red lines correspond to the
results of the QPM model, while blue lines stand for the
pQCD calculations. We notice that RAA obtained within
the QPM model differs considerably from the results of
pQCD, which is in agreement with expectations because
the cross sections within the former are enhanced with
respect to those of the latter, implying that diffusion and
drag coefficients are larger.
The results in Fig. 7 show that memory slows down the

dynamics of the heavy quarks in the whole pT range. In
fact, RAA at large pT , in the process with memory, stays
above that without memory, meaning that the large pT

particles have lost less energy during the evolution. In other
words, memory slows down the energy loss. Hence, also
thermalization in presence of a time-correlated noise is
retarded. Similarly, the diffusion to low pT is slower when
memory is present since RAA in this case remains lower
than the one without memory. These effects are more
evident in the case of the QPM, while they are smaller (but
still present) in the pQCD case.
The results discussed in this section allow us to discuss

the potential impact that memory might have on more
sophisticated phenomenological calculations. As a matter
of fact, our results can be summarized by stating that
memory slows down the heavy quark dynamics. For
example, the formation of RAA of heavy quarks is slower
if the thermal fluctuations of the bath are time correlated.
Therefore, if the diffusion coefficient is tuned in order to
reproduce the experimental RAA, then a larger coefficient is
needed when the bath has memory. The larger diffusion
coefficient will then enhance the elliptic flow, v2. The
memory effect has the potential to alter the heavy quark
RAA-v2 dynamics and can improve the simulations descrip-
tion of heavy quark RAA-v2 [53]. Memory effect may affect
other observables like the heavy quark directed flow,
particle correlations, and so on. Within our present study,
it is impossible to predict quantitatively this change due to
our simplifying assumptions; these simplifications are
partly justified by the fact that it is the first time, to our
knowledge, that the effects of time correlated fluctuations
on heavy quark observables are computed. A more
detailed, quantitative study will be the subject of future
investigations.

V. CONCLUSIONS

We have studied the effects of a time-correlated thermal
noise of a thermalized quark-gluon plasma on the energy loss

FIG. 5. RAA at t ¼ 1 fm=c and t ¼ 3 fm=c, for τ ¼ 0, and
τ ¼ 1 fm=c, at T ¼ 1 GeV obtained within pQCD.

FIG. 6. RAA at t ¼ 1 and t ¼ 3 fm=c, for τ ¼ 0, and
τ ¼ 1 fm=c, at T ¼ 0.25 GeV obtained within QPM.

FIG. 7. RAA at t ¼ 3 fm=c, for τ ¼ 0, and τ ¼ 1 fm=c, at
T ¼ 0.25 GeV. Red lines correspond to the results of the QPM
model, while blue lines stand for the pQCD calculations.
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and the diffusion of heavy quarks. In this case, the time
correlation of the thermal noise does not decay instanta-
neously, as instead it is assumed for the standard Brownian
motion. We have considered a simple situation in which the
time correlations of the noise decay exponentially on the
timescale τ, called the memory time, and treated τ as a free
parameter. We highlight the fact that the natural limit for the
heavy quark dynamics with memory is τ=τtherm ≪ 1. We
have considered an integro-differential Langevin equation
for the heavy quarkmomentum, taking into account memory
effects both in the thermal noise and in the dissipative force.
We have computed several quantities that characterize

the dynamics of heavy quarks in the bath, namely the
thermalization time and the transverse momentum broad-
ening. Then we turned to the nuclear modification factor,
RAA, which we have computed using kinetic coefficients
from pQCD and quasiparticle models. Our results suggest
that memory delays the dynamics of the heavy quarks in the
QGP: Indeed, memory slows down momentum broadening
as well as the formation of RAA, retards the energy loss, and
thus increases the thermalization time.
Our work could be of interest for the phenomenology of

heavy quarks in theQGP; in fact, the slower evolution ofRAA

would require the use of larger diffusion coefficients in
phenomenological calculations for reproducing the exper-
imental RAA, and this in turn would require stronger
interactions of the heavy quarks with the bulk, potentially
leading to a larger v2. The investigation of this point requires
a refined study with realistic initial conditions, including the
initial geometry of the fireball and will be a matter for future
studies. In addition to this problem, it is of certain interest to
analyze processeswith a long tail memory, in which the time
correlations of the noise do not decay exponentially but as
power laws. These processes can be generated via Langevin
equations with fractional derivatives [58,59]; this problem
will also be the subject of future studies.
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