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Abstract

The basic definition of System-of-Systems (SoS) is that of a large-scale

integration of many independent, self-contained systems having the

common aim of satisfying a global need. Under this perspective, lots of

systems of systems can be found in several fields where a common final

goal drives systems towards a final SoS state. In nuclear fusion research

area, several examples of SoS applications can be made. From the inte-

gration of all the constituents of the TOKAMAK machines which work

together to achieve a sustained nuclear fusion reaction, to the circuits

made of active analogue components mimicking plasma behavior, to

the neural networks made of connected units working together in order

to predict plasma variables behavior. In this work, investigation of

several SoS relevant in TOKAMAK scenario is performed and interest-

ing results enhancing the plant capabilities provided. This thesis itself

has been structured with a SoS-like structures where the integration of

self-contained chapters is performed in order to satisfy the global goal

that is improving TOKAMAK performances.
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Chapter 1

Introduction

1.1 System of Systems

Nowadays, the “System-of-Systems” (SoS) approach is widely adopted

to describe the emergence of phenomena in several different fields.

Generally speaking, a SoS is a collection of sub-systems pooling their

capabilities together to assemble a more complex system characterized

by improved functionality and performance with respect to the sum of

the single systems [1]. The elements of a SoS can thus be of any nature

depending on the field of studies and the process under investigation.

In other words, people, software, hardware, policies can all be elements

of a SoS that, by interacting together by mean of specific relationships,

produce a system-level result otherwise not reachable by the elements

alone. In particular, each system has its own management, tasks and

resources which are adapted to meet SoS goals[2]. SoS results include
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system level qualities, properties, characteristics, functions, behavior

and performance.[3].

Under this perspective, appears clear that SoS operate in several

applications and are widely adopted in many different fields, starting

from a circuit, made of integrated active and passive components, able

to reproduce a specific dynamical behavior, to a neural network made

of neurons connected together with the aim of predicting a relevant

variable by optimizing some objectives for decision making ([4]). A

SoS approach has been applied for modeling and understanding of the

national transportation system [5], in sensors networks where each sen-

sor device cooperates and collaborates with the others, in electric power

grids where large-scale, complex, dynamical systems must operate in

order to supply electrical energy to customers providing an emergent

intelligent behavior. Industrial Internet of Things (IIoT) systems rely

on the integration of systems and software engineering with processes

supporting decision making thus requiring well suited IIoT framework

architectures. Thus, IIoT can be considered as SoS and well suited

architecture framework for SoS applications can be adopted [6]. In

[7], a large scale Multinational Missile Defense System is developed

as SoS where independent constituents work together in difficult en-

vironments against threats. A predictive control scheme for freeway

systems is developed in [8] where the freeway system is divided into

heterogeneous portions, called clusters, and each cluster is considered

as a system and the overall freeway as a SoS. A review of modeling

SoS behavior in terms of emergent behavior is provided in [9], where

negative emergence is defined as the one to be suppressed and positive

emergence as the one to elicit.
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From the listed SoS applications it appears evident that one of the

fields where adopting a SoS approach may help dealing with complex

phenomena is nuclear fusion. In fact, in nuclear fusion reactors the

coordination of the constituent systems is very complex thus requiring

to opportunely design a well-defined SoS architectures for most of the

issues related to that.

The most investigated nuclear fusion device is the TOKAMAK, a

machine able to confine highly magnetic particles by mean of strong

directed magnetic field lines [10]. Due to extreme working conditions

plasma instabilities occurs leading to disruption and damages to the

plasma facing components (PFCs). A SoS approach appears to be

well suited to cope with the heterogeneous sub-systems interacting in

TOKAMAK machines. In particular, one can think to adopt a SoS

approach either at a global level or at a specific sub-level. A SoS ap-

proach at a global level relates to the performance of the overall nuclear

fusion machine thus the final stable nuclear fusion state emerges as

the result of the interactions among processes occurring in plasma,e.g.,

during the occurrence of plasma instabilities, processes resulting from

plasma and PFCs interaction, software tools dealing with controlling

and monitoring plasma variables, analogue models able to enhance

plasma instabilities modeling. A SoS approach at a specific sub-level

takes into account issues related to nuclear fusion experimentation

whose solutions emerge from the interactions of subsystems, such as

electronic devices, and software tools. Under this perspective, when

dealing with a specific issue, a contribution to the global task of reach-

ing optimal nuclear fusion performance is generated even at the global

level thus affecting the emergent global plasma behavior.
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1.2 TOKAMAK Scenario

In the last decades, the world-wide growing energy consumption have

led to an heavy energy demand, making barely sufficient the available

energy sources. In this perspective, a promising source able to face this

challenging need guaranteeing inexhaustible, safe and environmentally-

friendly energy production is represented by nuclear fusion. In fact,

exploiting the principle behind the Sun power, nuclear fusion reactions

releases energy from the loss of mass in the product of two hydrogen

nuclei, thus exploiting the mass-energy m−E equivalence E = mc2,

where c is the speed of light in vacuum.

In order to achieve fusion reactions, very tight temperature and

pressure conditions have to be met. In particular, the colliding parti-

cles require high temperatures to overcome the repulsive force acting

between them, thus increasing the difficulties in a stable plasma con-

finement. However, plasma confinement has to be preserved in order

to observe self-sustained fusion reactions. A possible solution to con-

fine highly magnetic particles can be the adoption of strong directed

magnetic fields, but this requires the design of suitable devices such as

TOKAMAKs. These devices consist in a toroidal chamber that confines

plasma at high temperature by means of a strong toroidal and poloidal

magnetic field. Nowaday, research on plasma behaviour inside fusion

plants, and especially TOKAMAKs, is gaining increasing interest in

the scientific community [10].
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1.2.1 TOKAMAK

In 1950, Soviet scientists invented the TOKAMAK machine. Since a

helical magnetic field is required in order to achieve a stable plasma

equilibrium, the application of both a toroidal magnetic field (travelling

around the torus in circles) and a poloidal magnetic field (travelling

in circles orthogonal to the toroidal field)is needed. In a TOKAMAK,

the toroidal field is produced by coils that surround the torus, and the

poloidal field is the result of a toroidal electric current that flows inside

the plasma[11]. This current is induced inside the plasma with a second

set of coils, making the plasma as the secondary circuit of a transformer,

a schematic is shown in figure 1.1.

The core of a TOKAMAK is constituted by a toroidal chamber and

the inner side of the chamber must be maintained constantly in a vac-

uum state by a pumping system in order to have an ideal environment

for the fusion, also called the vacuum chamber.

A toroidal current is essential to maintain an elongated toroidal

system in equilibrium, besides its role in heating the plasma through

ohmic dissipation; without the poloidal magnetic field that this toroidal

current generates, there is a vertical instability of the plasma, drifting

in the direction of elongation. The force driving this instability results

from the interaction of the poloidal field coil currents and the plasma

current.

For a given toroidal magnetic field, plasma pressure increases with

toroidal current up to a limiting value. In present large TOKAMAKs

currents of several MA are used, for conservative assumptions it should

be in the order of 20-30 MA, but technology advances in the direction
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Fig. 1.1 Schematic representation of the magnetic field system of a

TOKAMAK[12].

to lower this value.[11]

A pulsed machine TOKAMAK reactors are pulsed machines; in

each pulse the plasma is created, ramped up to the reference flat-top

current, heated, maintained in a constant state, and finally, cooled down

and terminated. More specifically, a plasma discharge can be roughly

divided into the following four different phases.
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1. breakdown: this is the phase of formation of the plasma: the

hydrogen gas in the vacuum vessel is ionized. The conditions for

the breakdown are generally difficult to be achieved;

2. ramp-Up: during this phase, the plasma current, which is initially

zero, reaches its desired steady-state value. Usually, the plasma

current is linear or it has a singular non linearity during this phase.

Also, the other plasma variables reach their nominal values;

3. flat-Top: during this phase, all the quantities that characterize

the plasma should remain as constant as possible. This is the

most important, and long phase, during which the production

of energy should happen. Therefore, the control requirements

are very stringent. Feedback control in this phase is very critical,

since the plasma current and shape need to be continuously

adjusted, and the disturbances that can happen must be rejected

within a prescribed time;

4. ramp-Down: the plasma current and all the other quantities are

driven to zero. The plasma is extinguished. [13]

Limiter and divertors Plasma is contained within a vacuum

vessel and its interaction with the walls can produce intense local

heating which can cause rapid erosion or even melting of the material

composing the wall. Impurities in the plasma give rise to radiation

losses and to dilution of the fuel. They are basically of two types; there

are impurity ions coming from solid surfaces and secondly there are

α-particles coming from the fusion process being then intrinsic in the

reaction. Limiting their introduction inside the plasma is therefore
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fundamental thus requiring a strategy to separate the plasma from

the vacuum vessel. In this perspectives, two techniques have been

developed; the first one consist of designing an outer surface boundary

for the plasma,that is using a limiter, consisting of particular materials

put in contact with the plasma itself as shown in figure 1.4. The second

one is to magnetically drive particles following a particular shape in

order to keep them away from the vacuum vessel by mean of a magnetic

field divertor as shown in figure 1.4.

The main difference between the two technologies relies in the

different position of the interaction of the plasma, with the divertor

being far from the main chamber. This can give less contamination

to the plasma, giving the possibility to work under better confinement

state.

Plasma Instability In such extreme conditions, unstable phe-

nomena are likely to occur in fusion plasma. In particular, one of

the most dangerous is the Edge Localised Modes (ELMs) as they can

harm first wall of the reactor chamber. ELMs are repetitive bursts of

the plasma edge. Because of their periodicity, this phenomena can be

thought as a single ELM cycle. The most rapid changes occur during an

ELM crash which is usually significantly shorter than the time between

the ELMs. ELM activity may evolve as a short, intense heat load on the

wall leading to the erosion of the divertor or limiter materials. During

the instability, the edge pressure gradient is reduced until the plasma

becomes stable again. Then the pressure gradient starts recovering to

the level where it reaches the stability limit so that another ELM oc-

curs. If the conditions stay constant, the cycle can continue indefinitely.
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Depending on the ELM type and the details of a plasma device, each

ELM removes part of the plasma energy and particles.

The figure 1.6 shows the plasma cross-section and the radial plasma

pressure profile at four different time points during an ELM crash.

First the plasma is stable and has a steep pressure gradient at the

edge. The gradient is maintained by the edge transport barrier that

is always associated with the high confinement mode (H-mode) of

tokamak operation. Then, pressure builds up at the plasma edge. The

onset of an ELM can be imagined as an onset of many small turbulent

eddies at the edge. The pressure collapses and the plasma is lost to

the Scrape-Off Layer (SOL) where it flows along the magnetic field

lines towards the divertor, whose plates produce a distinctive peak

in the D-alpha radiation (visible light emitted by excited atoms of

deuterium fuel). In order to decrease the divertor erosion and, at the

same time, maintain a good control of the pressure profile, several

methods of ELM suppression are considered at present. The two most

promising approaches are the following pace making of ELMs by

injecting small pellets of frozen fusion fuel into the plasma edge at

a high frequency, see e.g. JET’s capabilities in support of ITER and

ELM coils for JET plasma edge ergodisation by resonant perturbations

of the magnetic field. Studies at the DIII-D tokamak demonstrated

an unexpectedly strong ELM suppression via resonant magnetic field

perturbations. This is considered to be a very promising result for a

reactor-relevant operation. Similar observations have been made at the

ASDEX Upgrade tokamak.

Two of the most important TOKAMAK machines are Frascati

TOKAMAK Upgrade (FTU) located in Frascati, Italy and Joint Euro-
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pean TOKAMAK (JET) located in Culham,United Kingdom. These

two TOKAMAKs are similar in the topology but different in scales and

features.

1.2.2 FTU

The Frascati TOKAMAK Upgrade (FTU) is a medium size TOKA-

MAK operating since 1990, located at the ENEA Frascati, Italy. FTU

is able to generate high density plasma by means of toroidal magnetic

fields up to 8T and consequently, with plasma currents of the order

of MA. The basic mechanical structure is provided by the monolithic

toroidal magnet supporting the vacuum chamber and the poloidal field

windings. The machine shown in figure 1.7 is contained in a cryostat,

which is cooled by liquid nitrogen to limit the electrical power and

energy requirements and to take advantage of the higher mechanical

properties of the structural materials at cryogenic temperatures. The

vacuum chamber is a compact, fully welded, stainless steel structure

providing about 6270 cm2 of access. The total height of the machine is

3 m, its overall diameter is 5 m and the total weight is 90 t. [14] The

table 1.1 summarises the design parameters of FTU.

Table 1.1 Main FTU variables

Physical Characteristics Value

Major plasma radius (m) 0.935

Minor plasma radius (m) 0.305

Toroidal magnetic field on plasma axis (T) <8

Plasma current at q=2.5 (MA) 1.6



1.2 TOKAMAK Scenario 11

The main scientific objectives of FTU are the following:

• to study plasma transport at medium-high plasma density in the

presence of strong additional RF heating;

• to test plasma heating and current drive by means of RF systems;

• to study plasma-wall interaction at high power loading;

• to study the influence of plasma profile control on plasma perfor-

mance by means of pellet injection and different RF systems.

At the present time one of the main studies is focusing on plasma wall

interaction using liquid metals, i.e. lithium and tin. The scientific aim of

this program is to investigate and characterize liquid metal technologies

to be applied for future TOKAMAK projects and in particular for the

target plates of DEMO divertor.

Liquid Metals As introduced in the previous sections, at the

strong temperature and pressure conditions needed to obtain fusion

reactions, plasma instability phenomena, such as disruptions, are likely

to occur, thus affecting plasma performance. Finding the appropriate

material for the PFCs in TOKAMAK machines has been one of the

main challenges of the nuclear fusion community. In fact, PFCs need

to meet strict requirements in order to resist to the extreme conditions

characterizing nuclear fusion reactions such as heat loads. It is known

that plasma disruptions may be initiated by material particles release

inside the fusion chamber, thus liquid metals have recently been recon-

sidered in the last decades. In fact, a PFC based on liquid metals do
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not release material particles into plasma, on the other hand they may

improve the quality of plasma by cleaning it from impurities.

Under this perspective, PFCs based on liquid metals have been

deeply investigated in the last few years. In particular, two different

liquid metals limiters have been tested in FTU, namely LLL and tin

liquid limiter (TLL). Their structures are shown in Fig. 1.8. LLL has

already been defined in the previous section: it is based on liquid

lithium that being very reactive, cleans plasma facilitating oxidation

phenomena over the limiter surface. Moreover, the main disadvantage

in using this as PFC is its low boiling point preventing it to resist to high

heat loads. On the other hand, tin boiling point is high thus allowing

to sustain higher heat loads but, being not reactive, it may spreads

impurities into plasma.

1.2.3 JET

Joint European Fusion (JET) was designed to operate in conditions

relevant to fusion reactor, and its structure has been upgraded accord-

ingly with the plasma physics findings, thus remaining a state-of-art

for fusion technology. Nowadays, it is considered a fundamental test

machine for the ITER technology.

JET is usually operated with deuterium fuel, leading to the genera-

tion of high magnetic fields (4T) and plasma current (5MA). The major

and minor radii of the plasma torus are 3m and 0.9m respectively, and

the total plasma volume is 90m3. JET adopts a topology based on a

divertor as main plasma facing components in a vacuum vessel whose

internal surface is covered by beryllium and tungsten tiles, which are

able to cope with high heat loads. JET also has a flexible and pow-
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erful plasma auxiliary heating systems, consisting of Neutral Beam

Injection, Ion Cyclotron Resonance Heating and Lower Hybrid Current

Drive. An extensive diagnostic suite of about 100 devices capturing a

large amount of raw data per plasma pulse is available together with a

high frequency pellet injector for plasma refueling and for the study of

instabilities [15].

Physical Characteristics Value

Major plasma radius (m) 2.96

Minor plasma radius (m) 1.25-2.10

Toroidal magnetic field on plasma axis (T) 3.45

Plasma current at q=2.5 (MA) 3.2

Table 1.2 Main JET variables

In this thesis, a SoS based approach will be used in three different

contexts in order to deal with issues related to TOKAMAK machines.

In particular, analogue SoS will be used in order to properly control

emerging phenomena.

The remaining chapters will be divided as follow: in Chapter 2, ana-

logue SoS is designed in order to dynamically model JET plasma

instabilities taking into account non-ideal effects; in Chapter 3, differ-

ent approaches based on SoS (neural network) are followed in order

to predict thermal trend over the FTU limiter surface; in Chapter 4,

spatio-temporal phenomena emerging from SoS are investigated fo-

cusing on the case of filamentary pattern formation occurring during
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edge-localized-modes in JET; finally, in Chapter 5, the Conclusion of

the overall work will be drawn.
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(a)

(b)

Fig. 1.2 (a) Desired plasma surfaces [16] - (b) System coordinates [11].
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Fig. 1.3 General view of structure of a common TOKAMAK [17].

Fig. 1.4 Separation of plasma from the wall using (a) limiter (b) divertor

[11].
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Fig. 1.5 Separation of plasma from the wall using limiter [16].

Fig. 1.6 Time development of an ELM crash [18].
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Fig. 1.7 FTU top view [16].
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(a)

(b)

Fig. 1.8 The two limiters considered for experimentation: liquid (a)

lithium and (b) tin limiters.





Chapter 2

Analogue SoS for Plasma

Instabilities Dynamical

Models

2.1 Introduction

Research about plasma behaviour inside fusion plants, and especially

TOKAMAK, is gaining increasing interest in the scientific community.

During last decades, several results on the modelling of dynamical

behaviour in plasma have been presented. Among these, particular

attention has been devoted to complex phenomena occurring in fusion

plasmas during different types of instability. Plasma instabilities, in

fact, are probably the most interesting phenomena affecting plasma per-

formance, since their occurrence often leads to plasma disruptions and

to the formation of structured patterns in the relevant measurements.
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Plasma instabilities occurring during nuclear fusion experiments can

be mainly classified in various types on the basis of the source of free

energy driving them, such as density gradients, thermodynamic forces,

anisotropy of the velocity distribution function, or interacting electric

currents. The effects of relevant instabilities have been modelled in the

last few years starting from observations and measurements acquired

during fusion experiments. For instance, radiative collapse leading

to disruption [19], multifaceted asymmetric radiation from the edge

(MARFEs) [20], divertor heat flux asymmetries [21], the low-to-high

(L-H) mode confinement transition [22], deterioration of confinement

[23], and density limits [24]. Other instabilities often observed in fu-

sion plasma are the Toroidal Alfve’n eigenmodes (TAE), triggered by

neutral beam injection [25] and ion-cyclotron resonance heating [26],

alpha-driven TAE modes [27], and fishbone modes [28]. Despite the

abundance of mathematical model mimicking instabilities dynamics,

a complete understanding of some of the most prominent phenomena

occurring during their manifestation has not been achieved yet. In par-

ticular, diagnosing hot plasma behavioural aspects is still a challenging

problem for the scientist dealing with nuclear fusion experiments. In

this perspective, extensive experimental campaigns are necessary in

order to collect the necessary datasets to derive comprehensive mathe-

matical models. However, this approach may be time-consuming and

expensive. The most straightforward alternative approach to investigate

extremely hot plasma behaviour is to exploit analogies with hydraulic

[29], mechanical [30], or electronic systems [31] whose models are

defined according to similar mathematical relationships. Suitably de-

signing analogue and re-scaled setups, it is possible to perform exper-
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iments on these physical analogues, since such models can be easily

implemented and characterized allowing a deeper understanding of

some of the features representing plasma behaviours. However, it is not

possible to realize a physical analogue which is exactly implementing

a given mathematical model, since unavoidable source of nonideality

are intrinsically contained in the device. The main motivation of this

work takes origin from this consideration, trying to change a presumed

drawback into an added-value. Nonideal behaviour is in fact likely to

occur in fusion plasma processes and instability and may be strongly

responsible to those actually observed phenomena still not captured by

the model itself. Identifying the effective role of nonideal sources may

be easier on analogue systems than in fusion plasma. The principal

aim is, then, to apply the analogue system approach to implement the

already known ideal plasma-related behavioural models and exploit the

intrinsic nonidealities of the analogues to refine the ideal models.

Two cases will be investigated, the extension of the conservative

system for gross modeling of plasma instabilities in TOKAMAK and

the hybrid analogue model of ELM.

2.2 Extension of the conservative system for gross

modeling of plasma instabilities in TOKAMAK

Mathematical models able to reproduce real fusion plasma behaviours

give no definitive evidence of being capable to fully explain all their

properties. Let us consider, as an example, the model described in

[32]. It is based on the so-called Taylor - Couette (T-C) experiment,

whose behaviour appears to be closely related to the that of toroidal
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plasma devices. Exploiting this similarity and, under specific symmetry

constraints, the principal qualitative features of instability occurring

during ohmically heated TOKAMAK discharges, such as bursty and

sawtoothing regime in TOKAMAK plasma, can be captured with a

generic model based on ideal symmetry-breaking mode. The conser-

vative model introduced in [32] has been originally used to mimic the

occurrence of instabilities in the Joint European Torus (JET) fusion

plasmas. It is worth to notice that the model reported in [32], such

as many other models derived from experimental observation of insta-

bility processes, are essentially idealization of the real phenomenon.

The main idea at the basis of this work come from the design of an

electrical analog of the same plasma behavioural model. Even if the

corresponding analogue electrical system can be easily implemented

using common off-the-shelf circuit components, the implementation is

affected by unavoidable linear and nonlinear dissipative effects related

to the analogue devices adopted in the circuit. These devices intro-

duce consistent deviations from the ideal conservative behaviour of

the T-C experiment which cannot be eliminated. The resulting three

dimensional dissipative mathematical model, which extends the con-

servative analytical model introduced in [32], shows oscillating and

sawtoothing-like regimes, which however range from periodic to even

chaotic bursting sequences. The onset of this complex phenomena has

been demonstrated to be directly linked to the linear and nonlinear

dissipative nonideal effects. This result may represent a further step

towards a more realistic model of the plasma behaviour generalizing

the conservative plasma gross behavior model. However, in order to

validate this hypothesis the analogue implementation of the ideal model,
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incorporating nonideal behaviours, has to be adopted to fine-tune pa-

rameters of the mathematical model in order to fit the data collected

from real fusion plasma experiments and including the effects of noise

and other nonideal behaviors that are always present in real systems.

In this way, quantitative rather than just qualitative information about

plasma phenomena can be obtained allowing a deeper knowledge on the

actual linear and nonlinear behaviour of plasma during the occurrence

of instabilities.

2.2.1 The dynamical model

Let us consider the following third-order autonomous dynamical sys-

tem:

ẋ = y−ax

ẏ = γx−Rx3 +Γz−by

ż = α −β z2 − x2

(2.1)

where a and b are positive dissipation rates and γ , R, α , β and Γ are

system parameters. This system is an extension of the conservative

system proposed in [32] for gross modeling of plasma instabilities

in magnetic plasma confinement devices such as the TOKAMAK. In

Eqs. (2.1), the dissipative terms ax and by are explicitly considered as

well as a new feedback term Γz coupling the axisymmetric mode z to

the second-order x-y dynamical system modeling instability amplitudes.

An important parameter for the system is γ , considered here as the bi-

furcation parameter and allowing a numerical analysis of Eqs. (2.1).

Choosing a = b = 0.1, R = 1.09, Γ = 0.7, α = 1 and β = 0.001 gives

the bifurcation diagram shown as blue in Fig. 2.1(a). For the range of γ
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considered, there is always a period-1 limit cycle with constant ampli-

tude, similar to the behavior reported in [32] where the axisymmetric

variable z has no effect on the instability amplitude. Now consider a

slight modification of Eqs. (2.1) including a further nonlinearity F(x, ẋ)

given by

ẋ = y−ax

ẏ = γx−RF(x, ẋ)+Γz−by

ż = α −β z2 − x2

(2.2)

where the form of F(x, ẋ) sensibly affects the emergent behavior of

the system in Eqs. (2.1). In particular, the first-order derivative of

x gives the possibility of chaotic dynamics. When F(x, ẋ) = x3 −

δ ẋx2, where δ is a further system parameter, the nonlinear function is

the conjunction of two terms: a static nonlinearity x3, and a product

nonlinearity ẋx2 involving a square and a derivative operation. This

modification corresponds to the explicit introduction of nonideal terms

for two cascaded analog multipliers realizing the cubic operation in the

previous section. Of course the ẋ factor can be replaced by y−ax to

make Eqs. (2.2) formally autonomous.

For δ = 0.16, the system in Eqs. (2.2) shows a bifurcation diagram

with respect to γ that includes a cascade of period doublings towards a

chaotic window shown as red in Fig. 2.1(a). Not shown in the figure is

a region around 0.04 < γ < 0.08 where a period-3 limit cycle coexists

with the period-1 limit cycle. The three Lyapunov exponents shown in

Fig. 2.1(b) confirm that the attractor is chaotic for γ > 0.4.

The attractor obtained for γ = 0.45 is shown in Fig. 2.2 projected

onto the xy-plane. It has Lyapunov exponents given by (0.0692,0,−0.1406)
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and a Kaplan–Yorke dimension of 2.4921. Its basin of attraction is

relatively small, bounded, and with smooth boundaries.

In the range of parameters considered, the occurrence of chaos

is purely a consequence of the dynamical term ẋx2 in the nonlinear

function F .

2.2.2 Nonideal effects in the analog multiplier

The most common nonlinearities in nonlinear (and in particular chaotic)

oscillators are polynomials or the product of two state variables. For

this reason, nonlinear circuits mimicking the behavior of the considered

mathematical model usually require analog multipliers, either voltage

[33] or current multipliers [34].

Off-the-shelf analog multipliers, such as the AD633 adopted in this

work, are based on the four-quadrant multiplier [33]. However, it has

been proved [35] that a static model is not sufficient to describe the

input/output relationship of such multipliers. The dynamic model pre-

sented in [35] considers the memory effect involving time-derivatives

of the inputs so that the output of the multiplier is given by

Vout = K(Vx(t)Vy(t)−TAV̇x(t)Vy(t)−TBVx(t)V̇y(t)) (2.3)

where Vx(t) and Vy(t) are the two inputs, and K, TA, and TB are model

parameters characteristic of the multipliers. The values of the model

parameters can be estimated using the frequency-dependent analysis

described in [35].

To implement polynomial nonlinearities, multipliers in cascade

must be considered. In the case of a cubic term, two multipliers are
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Fig. 2.1 (a) Bifurcation diagrams of system (2.1) (blue) and of system

(2.2) (red) with respect to the bifurcation parameter γ . Local maxima

of the state variable x are represented for each value of γ from 0 to 0.5.

Other parameters are as indicated in the text. (b) Lyapunov spectrum

for system (2.2) with respect to the bifurcation parameter γ , calculated

according to the method in [36] for a total integration time T = 107

with step size ∆t = 0.01. Other parameters are as indicated in the text.
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Fig. 2.2 Attractor for a= b= 0.1, R= 1.09, Γ= 0.7, α = 1, β = 0.001,

δ = 0.16, and γ = 0.45. The two blue dots represent the saddle focus

equilibrium points.

required. In the first, Vx =Vy = x can be considered so that Eq. (2.3)

becomes

Vmult = K[x2 −TAẋx−TBxẋ] (2.4)

and then the output of the second multiplier connected in cascade with

the first gives

Vout = K[Vmultx−TAV̇multx−TBVmult ẋ] (2.5)
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Expanding the previous equation and neglecting higher-order terms,

the output of the two cascaded multiplier blocks is given by

Vout = K2(x3 −T ẋx2) (2.6)

where K and T = TA +TB are model parameters.

These parameters are frequency-dependent [35] and spoil the cor-

rect multiplication of the two input signals. In [35] the model parame-

ters are estimated by applying a DC voltage at one of the inputs and a

frequency swept sinusoidal signal at the other input. Estimates are de-

rived from measuring the phase shift and amplitude response of the AC

signals. Here a similar approach is adopted. The two cascaded multipli-

ers are driven with a sinusoidal forcing signal at different frequencies,

and the output is acquired using a NI-USB6255 data acquisition board

with a sampling frequency fs = 400kHz. Acquired data are then fitted

to Eq. (2.6) using a symbolic regression algorithm [37] deriving the

values of K( f ) and T ( f ) for each frequency f .

Figure 2.3 shows the functional dependence of the model parame-

ters on the frequency and indicates how the nonideal effects introduced

by the multiplier are weighted. However, this characterization gives

information only for the simple case in which the signals are periodic,

and it is not sufficient for the design of chaotic circuits.

Chaotic signals are characterized by a broadband spectrum in a

range of frequencies. Usually, chaotic circuits produce signals with

frequencies as high as 10 to 60kHz, or more [31]. To derive a dynamical

model of the analog multiplier that can be used for chaotic circuit

design, the broadband nature of the signals must be considered. For

this reason, the cascade multiplier have been characterized using input
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Fig. 2.3 Parameter estimation of the multiplier model using sinusoidal

inputs: (a) K as a function of the frequency f of the input signal and

a linear fit K = −5 · 10−6 f + 1.097, and (b) T as a function of the

frequency f of the input signal and a linear fit T = −1.65 ·10−10 f +
8.263 ·10−6.

noise filtered with a low-pass filter with different cut-off frequencies.

In Fig. 2.4 the functional dependence of the model parameters on the

cut-off frequency is shown.
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Fig. 2.4 Parameter estimation of the multiplier model using broadband

signals: (a) K as a function of the bandwidth B of the noise input signal

of the input signal and a linear fit K =−0.002B+1.04, and (b) T as a

function of the bandwidth B of the noise input signal and a linear fit

T =−5.56 ·10−8B+6.274 ·10−6.

The linear fits of the model parameters evaluated from the data

allow temporal rescaling of the nonlinear circuits so that the nonideal

behavior can be suitably exploited. In particular, the nonideal term
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T ẋx2 can be considered in the design, allowing new chaotic dynamics to

be realized without using additional circuit components, thus reducing

the circuit complexity.

In the following, this approach is applied to design a new chaotic

circuit in which the occurrence of strange attractors is purely a conse-

quence of the nonideal term in the cascaded analog multipliers.

2.2.3 Circuit Implementation

The usual implementation of an analog circuit based on Eqs. (2.2)

would involve a series of ideal components ranging from standard

passive elements, i.e. resistors and capacitors, to active devices, such

as operational amplifiers (OP-AMPs) to implement algebraic adders

and integrators, and analog multipliers to implement the nonlinearities.

Furthermore, the product involving a derivative would require a multi-

plier and an active differentiator block. While analog multipliers are

often expensive, the differentiator can be realized using simple circuit

elements but has intrinsic instability at high frequencies and a high

sensitivity to noise due to the capacitive input.

The procedure described in Sec. 4.3 overcomes both problems,

allowing a nonlinear circuit with only two analog multipliers to im-

plement the whole nonlinear function F(x, ẋ). The other nonlinear

terms can be realized by piece-wise linear (PWL) approximations im-

plemented through standard diodes to avoid the occurrence of other

nonideal terms. A circuit realizing the third-order nonlinear model in

Eqs. (2.2) was designed and implemented with off-the-shelf compo-

nents. In particular, the state variable approach in [31] was followed.
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The designed circuit as shown in Fig. 2.5 uses OP-AMPs U1A,

U8B and U2B to implement the active integrators made by a passive RC

group and an algebraic adder, and the two cascaded analog multipliers

U7 and U9 to realize the nonlinearity. OP-AMPs U11A and U13B

allow the parameter γ to be adjusted, and OP-AMPs U10B and U12B

together with diodes and resistors realize the square terms x2 and z2 as

reported in [31].

The equations governing the circuit behavior are

ẋ = 1
RC1C1

[

(RF1
R1

−1)x+ RF2
R2

y

]

ẏ = 1
RC2C2

[

− RF2
R4

F + R3RF2
R14R15

x++RF2
R5

z+(RF2
R6

−1)y

]

ż = 1
RC3C3

[

RF3
R10

V − RF3
R8

x2 − RF3
R9

R33
R32

z2 +(RF3
R7

−1)z

]

(2.7)

The nonlinear function F = x3 − δ ẋx2 of Eqs. (2.2) has parame-

ters fixed by a temporal rescaling according to Fig. 2.4. Comparing

function F with Eq. (2.6), it is possible to derive relationships mapping

the parameters of the cascaded multipliers to the circuit parameters

such as R = K2 RF2

R4
and δ = κT , where κ is the temporal rescaling

introduced as τ = κt. It follows that K =
√

R R4

RF2
= 0.93, which ac-

cording to Fig. 2.4(a) is the value obtained when the spectrum of the

input signal has a bandwidth of 55kHz. Since the mathematical model

has bandwidth of 1.1Hz a coefficient κ = 50000 has been introduced

leading to a value of T = 3.22 ·10−6 as derived from Fig. 2.4(b). This

implies an implemented value of δ = 0.16.
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Since the temporal scaling factor is given by

κ =
1

RC1C1

=
1

RC2C2

=
1

RC3C3

= 50000 (2.8)

values of RC1 = RC2 = RC3 = 2kΩ, and C1 = C2 = C3 = 10nF have

been chosen.

The other circuit parameters are chosen so that (2.7) matches

(2.2). In particular, R2 = R7 = R9 = R10 = R11 = RF1 = RF2 = RF3 =

100kΩ,R1 =R6 = 112kΩ,R4 = 80kΩ,R5 = 142kΩ,R8 = 100MΩ,R12 =

72kΩ,R13 = 100MΩ,R14 = 200kΩ,R15 = 100kΩ,R16 =R18 = 1kΩ,R17 =

R19 = 9kΩ,R20 =R21 =R22 =R23 =R26 =R27 =R28 =R29 = 10kΩ,R24 =

R30 = 4kΩ,R25 = R31 = 20kΩ, while R3 is a 100kΩ potentiometer.

Signals were acquired using a National Instrument (NI-USB6255)

data acquisition board with a sampling frequency fs = 400kHz, and the

circuit behavior with respect to γ was analyzed. Figure 2.6 shows that

the circuit follows the same route to chaos as the model in Eqs. (2.2)

with a window of chaotic oscillation in good agreement with the pre-

dictions shown in Fig. 2.1a.

The attractor shown in Fig. 2.7 was obtained from the circuit with

γ = 0.45 and agrees well with the simulated attractor in Fig. 2.2.
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Fig. 2.6 Experimental bifurcation diagram with respect to the parameter

γ shown in the local maxima of the state variable x.

Fig. 2.7 Oscilloscope trace of the attractor on the xy-plane from the

circuit with γ = 0.45.
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2.3 The Hybrid Analogue Model of the Edge Lo-

calized Modes

Several models have been defined in order to reproduce the behavior of

plasma related variables. Some of them [38] are aimed to determine the

physical relationships which drive the instability process, while others

are based on the identification of dynamical systems whose behavior

qualitatively follows that observed in real experiments. In this para-

graph, we will focus on the minimal model introduced in [39], which

is based on two physical equations, related to plasma pressure and

magnetic field, aiming at qualitatively understand large scale plasma

instabilities resulting in periodic nonlinear plasma perturbation. It is a

low dimensional model describing the quasi-periodic plasma dynamics

observed in fusion experiments in Tokamaks is studied. In fact, un-

derstanding ELMs formation and evolution represents one of the main

challenges in nuclear fusion research since these can damage PFCs due

to their extreme high energy transfer rate.

A low-dimensional description of ELMs dynamics is fundamental to

qualitatively understand the effect of changes in the driving parameters

(e.g. heating power) allowing to design dedicated control strategies

(e.g. pellet injection for ELM mitigation). Analyzing the main features

of the plasma quantities by adopting an analogue model, in particular

when instabilities occur, could be helpful in order to control the overall

reaction and to set up the confinement time.

The hybrid analogue model is designed and implemented in order

to deeply investigate plasma variables dynamical behavior in presence
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of ELMs. In particular, the analysis of the system dynamics before and

after pellets injection is performed and a control strategy designed in

order to be able to suppress ELMs.

2.3.1 Low-dimensional Model of the single cell

The model introduced in [39] is essentially based on the interaction

occurring between a driving process and a relaxation process, charac-

terized by different time-scales. In particular, the model is composed

by two equations, the first one describing the instability phenomena

and the fast events due to instability growth, where the displacement of

the magnetic field from equilibrium represents a relevant variable to

be considered. The second equation describes the power balance at the

pedestal during ELMs and models the pressure gradient behavior.

Thus, the normalized dynamical system is given by the following

equations:

ξ̈ = (p−1)ξ −δ ξ̇

ṗ = η(h− p−βξ 2z)
(2.9)

where ξ is magnetic field, p is the pressure gradient and δ , η , β and h

are system parameters. The choice of focusing on the pressure gradient

is a simplification introduced in [39] since it is considered much more

relevant with respect to the current gradient in presence of ELMs.

The corresponding dimensionless system of three first-order differ-

ential equations can be derived posing x = ξ̇ , y = κξ , and z = p, with

κ a normalizing factor including also parameter β .
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ẋ = (z−1)y−δx

ẏ = x

ż = η(h− z− y2z)

(2.10)

This model is able to qualitatively describe different dynamical be-

haviors depending on the value of three bifurcation parameters, namely

h, η and δ . In particular h is the power input normalized with respect to

the critical value of the pressure gradient, η is a term representing the

heat diffusion coefficient and δ is related to the dissipation/relaxation

of perturbations related to ELMs bursts.

The definition of parameter h is given so that the instability phe-

nomenon occurs above a given input power threshold, i.e. when h > 1,

implying that the critical pressure value is reached. As a consequence,

by setting h = 1.5, i.e. so that instability can take place, and varying η

and δ different dynamical regimes can be observed. In particular, for

very low values of η , ELMs type oscillations appear as characterized

by a slow-fast dynamics, with long rise time and short crash time.

Numerical integration of Eqs. (3.13) with h = 1.5, δ = 0.5, η =

0.01 are reported in Fig.2.8, in which the three variables are plotted.

In particular, the trend of z, i.e. the pressure gradient, resembles the

typical behavior of the electron density measured in JET experiments

during an ELM.

One of the strategies adopted in order to suppress ELMs is by

injecting pellets as it was previously stated. In fact, pellets injection into

the plasma can mitigate their occurrrences ELMs [39]. The modeling

of such working condition is considered in [39] where a perturbation

term is added in the first equation of the model 3.13:
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Fig. 2.8 Dynamical trend of x(t), y(t) and z(t) when δ = 0.5, η = 0.01

and h = 1.5.

ẋ =−{1− [z+P(t)]}y−δx

ẏ = x

ż = η [h− zy2z]

(2.11)

The perturbation P(t) simulates the pellet injection and can be

selected in the form :

P(t) = a∗ exp{−[t − tperiod int(t/tperiod)−δP]
2/b} (2.12)

where a is the perturbation amplitude, tperiod is the perturbation

period, δP is the perturbation shift and b is the perturbation width. The
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symbol "int" specify that the ratio must be integer.

The system parameters are set to work in the ELMs region: h = 1.5,

δ = 0.5, η = 0.009. Instead the perturbation parameters are chosen in

the following way: a = 5, tperiod = 5, δP = 2 and b = 2.

The capability of the model to catch typical features of plasma

measured quantities has been clearly discussed and assessed in [39].

2.3.2 Hybrid Circuit

Circuit design By adopting the same steps described in the pre-

vious section, the circuit design and implementation is performed in

agreement with the model 2.11. Let us fix C2 = 220nF , RC2 = 2kΩ

and RF2 = 100kΩ. The circuital equations are derived in 2.13

ẋ = 1
RC1C1

[(

RF1

R1
−1

)

x− RF1

R2
y+ RF1

R3
V ∗+ RF1

R2

P(t)y
10

]

ẏ = 1
RC2C2

[

RF2

R4
x+

(

RF2

R5
−1

)

y

]

ż = 1
RC3C3

[

RF3

R7
V − z− RF3

R6
V ∗∗

]

(2.13)

where R4 =RF2 = 100kΩ,R5 =RF2 = 100kΩ,R∗∗=RF2 = 100kΩ,R7 =

RF3 = 100kΩ,R∗∗∗ = R6 = 10kΩ

The perturbation term is integrated in the circuit with an AD633

multiplier. Circuit parameters are chosen so that 2.13 matches 2.11. In

order to have comparable frequencies with the perturbation the capaci-
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tor values used in the circuit are set in the following way: C1 =C2 =

C3 = 10nF .

The overall analogue circuit implementation is shown in Fig. 2.9:
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Fig. 2.9 Circuit implementation.

Perturbation implementation by using Arduino The perturba-

tion P(t) is implemented by using the microcontroller board Arduino®Uno

[40]. It is a robust multipurpose board, the most used and docu-

mented board of the whole Arduino®family. The microcontroller is

programmed so that the perturbation is implemented and the result

coded as an 8-bit word and sent to the circuit by means of the digital
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output of the board.

Fig. 2.10 Electrical scheme of the R-2R converter.

The digital to analog converter is implemented utilizing a R-2R

converter with an output buffer [41]. R is equal 10kΩ and the buffer

is an operational amplifier TL084. The power supply is a dual voltage

equal to ±15V .

2.3.3 Results

The sampling frequency is equal to fs = 150kHz. The two cases , before

and after pellets injection are analyzed. In particular, in figure 2.11 the

dynamical trends of plasma variables in ELMs conditions are shown by

using both simulations and experimental results. As it can be noticed,

the dynamical behavior is quasi-periodic as it is supposed to be during

ELMs occurrence in real nuclear fusion experiments. Once pellets

injection is activated, the dynamics of the system become chaotic and

the ELMs are suppressed as it is shown in Fig. 2.12 where the behavior

of the z variable is shown. The obtained results agree with the known

literature stating that the dynamics of plasma variables during ELMs

suppression is chaotic [42, 43].
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(a) (b)

Fig. 2.11 Experimental trend of z variable before pellet injection.

(a) (b)

Fig. 2.12 Experimental trend of ELMs with pellet injection. Perturba-

tions P(t) are shown by green lines in the case (a) and by red lines in

the case (b).
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The attractors for both the situations are shown in Fig. 2.13 and

Fig. 2.14. Thus, the applied external perturbation changes the plasma

variables dynamical regime and increases ELMs frequency.

(a) (b)

Fig. 2.13 Experimental trend of the attractor on the zy-plane before

pellet injection.

The tperiod parameter space has then been explored- In fact, tperiod

in the perturbation expression 2.12 affect the frequency of the signal as

it can be noticed in Fig. 2.15 is shown the case with tperiod = 35:

As a consequence, increasing the t period, the frequency of the

perturbation signal decrease thus leading to a more slighter effect on

the ELMs.

The bifurcation diagram as a function of tperiod is shown in 2.16

where it can be noticed that for higher tperiod , ELMs region is char-

acterized by limit cycle because pellet injection has lower effects on

their dynamics. On the other hand, for lower tperiod the system behaves

chaotically because the pellet injetion higher affects ELMs thus sup-



2.3 The Hybrid Analogue Model of the Edge Localized Modes 47

(a) (b)

Fig. 2.14 Experimental trend of the attractor on the zy-plane after pellet

injection.

(a) (b)

Fig. 2.15 Experimental trend of ELMs with pellet injection by varing

the parameter tperiod . Perturbations P(t) are shown by green lines in the

case (a) and by red lines in the case (b).
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pressing them.

As expected the numbers of minimum points decrease with the increase

of the tperiod .

Fig. 2.16 Experimental bifurcation diagram with respect to the parame-

ter tperiod .

2.4 Conclusion

The realization of reliable nonlinear electronic circuits for modeling

complex phenomena and exploring their behavior is a fundamental

topic in nonlinear science. In this chapter, the implementation of two

analogue model mimicking two different kind of plasma instabilities

occurring in TOKAMAK machines have been performed.



2.4 Conclusion 49

In the first paragraph, a new strategy to design nonlinear electronic

circuits which exploits the intrinsic nonideal properties of analog multi-

pliers is proposed. In particular, the nonideal behavior of two cascaded

analog multipliers has been characterized by deriving a dynamical

model which takes into account unavoidable memory effects intro-

duced by the four-quadrant cell. The response of analog multipliers

in the presence of broadband signals, such as chaotic oscillations, has

been studied, unveiling the relationship between model parameters and

the bandwidth of the input signals. To demonstrate the effectiveness

of the proposed design scheme, a new chaotic circuit in which the

nonideal terms of the analog multipliers play a crucial role in the onset

of chaos is introduced. The guidelines for designing reliable nonlinear

electronic circuits exploiting the unwanted nonideal behaviors of ana-

log devices introduced in this work pave the way for the definition of a

new class of nonideal chaotic circuits. The proposed circuit represents

a new three-dimensional dissipative mathematical model which extends

the conservative analytical model introduced in [32] by introducing a

further feedback term. It represents the generalization of the so-called

plasma gross behavior model introduced to mimic the occurrence of

instabilities in the Joint European Torus (JET) fusion plasmas. During

the last decades, significant effort has gone into deriving models that

reproduce the behavior of the most relevant instabilities. The idea of

incorporating nonideal behaviors can thus be adopted for fine-tuning

such physical models. In the investigated case, the analogue imple-

mentation appears fundamental in order to enhance the mathematical

plasma gross-behavioral model.
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The same objective drove the second paragraph, where the need of

controlling dangerous plasma instabilities ELMs have led to implement

an analogue qualitative model that can be adopted to fine-tune the ideal

physical model in time. In particular, an hybrid analogue model made

of both an analog circuital part and a digital part has been designed

able to model both the plasma variables during ELMs and after pellet

injection. From the results, it has been possible to identify a parameter

that can be adopted to control ELMs suppression by acting on pellets

perturbations. The analog model implementation paves the way towards

a more complex issue that is the modeling of the spatio-temporal

phenomena occurring during ELMs. In particular, in the next chapter,

a spatial extension of the previously investigated lumped parametric

model will be performed in order to model the plasma edge phenomena

emerging in TOKAMAK machines during ELMs.



Chapter 3

Modeling spatiotemporal

complexity: analogue SoS

for plasma instabilities

spatio-temporal models

3.1 Introduction

In the previous chapter, the importance of analogue models implemen-

tation to catch non ideal dynamical behaviors of the plasma gross-

behavioral model has been revealed. A part from the latter model, oth-

ers have been formulated to mimic plasma variables dynamics during

the occurrence of instabilities. In particular, one of the most investi-

gated plasma instabilities is ELMs characterized by a peculiar trend in
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time and space.

In this chapter, we propose a novel approach towards the qualitative

modeling of spatiotemporal phenomena occurring in plasma during

instabilities such as ELMs. The modeling strategy adopted is based on

the representation of the pedestal area of the plasma torus by means of

connected cells, following the paradigm of reaction-diffusion cellular

nonlinear networks that has been widely adopted to model emerging

spatiotemporal phenomena in complex systems.

This chapter is organized as follow : firstly we will focus on the

general topic of modeling spatiotemporal complexity by using Reaction

Diffusion Cellular Nonlinear Network (RD-CNN) and we will see an

example of pattern formation (Turing patterns) from biology to show

the impact of RD-CNN in modeling spatiotemporal phenomena; in the

second part ,a detailed description of the plasma instabilities scenario

and the characteristic spatiotemporal phenomena occurring during nu-

clear fusion experiments is provided, in particular the 2D dynamical

model of a N ×N RD-CNN considered to characterize the onset of

spatiotemporal patterns during plasma instabilities is presented describ-

ing the motivations at the basis of the spatial extension of the model

highlighting the relevance of the proposed model for the qualitative

reproduction of the real behavior of relevant plasma variables during

instabilities.
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3.2 Emerging phenomena in Reaction-Diffusion

Cellular Nonlinear Network

A useful SoS tool to model spatio-temporal phenomena is the reac-

tion diffusion paradigm . In fact, this paradigm allows to investigate

phenomena emerging from the dynamical interactions of spatially con-

nected cells such as patterns formation.

In the last decades, the mechanisms leading to pattern formation in

biology, chemistry and other science areas have been widely studied.

The landmark in this field was given by Alan Turing in his seminal

paper [44] on morphogenesis in biological organisms. Starting from

these observations, the occurrence of patterns in spatially-extended

systems has been intensively studied, focusing, among many other sys-

tems, on mechanical [45], electronic [46] and thermodynamic systems

[47]. Phenomena related to pattern formation in biological systems are

modeled by the interaction of chemicals called morphogenes through

spatial biological arrays. These systems of spatially coupled nonlinear

units can be modeled by means of a class of nonlinear differential equa-

tions, known as reaction-diffusion models, which are capable to exhibit

the dynamics of pattern development. Each unit, which is usually

referred to as a cell, is usually modeled as a two-dimensional system

whose state variables represent two concentrations of morphogenes,

one acting as activator and other as inhibitor.

The reaction process takes place locally in each cell: the activator

reacts autocatalytically, along with the inhibitor, which inhibits itself,

and the activator. This reactive process, however, is not sufficient

to ensure pattern formation but a diffusive process acting on both
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the activator and the inhibitor is also needed. The diffusion of the

two species must occur in a way such that the activator diffuses at a

smaller rate than the inhibitor. The different diffusion of morphogenes

ensures that, eventually, a decrease of the activator takes place, thus

providing long-range stability. This mechanism is responsible of the

generation of a non-trivial, heterogeneous pattern in a system made

of homogeneous, i.e. identical, cells. Diffusion processes occur in

the presence of a gradient in the concentration of one morphogene

that induces a flux of the same morphogene (self-diffusion) and/or of

another chemical species (cross-diffusion). Although cross-diffusion is

generally neglected in efforts to explain dissipative patterns in reaction-

diffusion systems [46, 48], in many natural system it is shown to play a

central role [49].

To carry out our analysis, an architecture based on Cellular Nonlin-

ear Networks (CNNs) is considered because fits perfectly the structure

of reaction-diffusion systems. In fact, CNNs have been widely used for

the study of spatio-temporal phenomena (such as Turing patterns and

autowaves) typically observed in reaction-diffusion systems, since they

can map partial differential equations [46].

As concerns the cell nonlinearity, many works focused on the use

of the Chua’s diode or other operational amplifiers-based nonlinear-

ities [46]. In this work, the memristor is used as nonlinear element

with memory. This device now is gaining considerable interest from

different scientific fields including digital and analog electronics and

neuroscience [50]-[56]. Along with the resistor, inductor and capacitor,

memristor is the fourth basic circuit element. Postulated in 1971 [57]

and experimentally realized in the Hewlett-Packard laboratories after
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three decades [50], it is a two-terminal electronic device displaying a

functional relationship between the time integral of the current through

it and that of the voltage across its terminals. Usually, its nonlinear-

ity is modeled by piece-wise linear functions [51] or physics-based

approaches [58, 59].

In this chapter, a CNN architecture is adopted in order to prove

the onset of Turing patterns (TPs) in complex systems. In particular,

two equivalent cells are considered: i) a circuit made of a capacitor, an

inductor and an active nonlinear element, and ii) an equivalent Chua’s

oscillator with the memristor as the nonlinear element. We show that

the structure may generate Turing patterns and derive the conditions

for their onset in an analytical way.

3.2.1 The Cellular Nonlinear Network

The CNN consists of M×N basic cells diffusively connected. We first

describe the basic cell and then introduce the equations for the whole

structure. As the basic cell we can consider the two equivalent circuits

reported in Fig. 3.1. Let us consider the memristor-based oscillator

reported in Fig. 3.1(a), where M is a flux controlled memristor. The

circuit is described by the following equations:

C1v̇1 = G(v2 − v1)−W (φ)v1

C2v̇2 =−G0v2 −G(v2 − v1)

φ̇ = v1

(3.1)

where G = 1
R

, G0 =
1

R0
, v1 and v2 are the voltages across capacitors C1

and C2, respectively, and φ is the flux associated with the memristor.

As in [51] we assume the following model for the memductance W (φ):



56

Modeling spatiotemporal complexity: analogue SoS for plasma

instabilities spatio-temporal models

W (φ) =
dq(φ)

d(φ)

{

a |φ | ≤ 1

b |φ |> 1
(3.2)

Model (3.1) can be rewritten in a more tractable form, by using the

dimensionless variables x = v1/E, y = v2/E, z = φ/φ0 (with E = 1V

and φ0 = 1V s) and introducing the parameters α =− G
C1

, β = G
C2

, and

γ = G0

C2
:

ẋ = α(−y+W (z)x)

ẏ =−β (y− x)+ γy

ż = x

(3.3)

where

W (z) =

{

1+ 1
G

a |z| ≤ 1

1+ 1
G

b |z|> 1
(3.4)

When R0 =−R in Fig. 3.1(a), we have β = γ and Eqs.(3.1) reduce

to:

ẋ = α(−y+W (z)x)

ẏ = βx

ż = x

(3.5)

Observe that the same set of equations, namely Eqs. (3.5), also

model the circuit of Fig. 3.1(b), made of three elements: a capacitor,

an inductor, and a flux-controlled memristor. We note that this cell

has been also used to build a CNN for generating autowaves [60].

However, in that case, the parameters of the isolated cell were designed
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(a)

(b)

Fig. 3.1 Schematic representation of two memristor-based circuits: (a)

Chua’s oscillator with memristor; (b) memristor-inductor-capacitor

circuit. When G =−G0, both circuits are defined by model (3.5).

to obtain a limit cycle with slow-fast dynamics, whereas a totally

different approach is adopted here.

Without loss of generality, in the following we normalize Eqs. (3.5)

considering G = 1. Since ẏ = β ż, it follows that

z =
y

β
+ c (3.6)

where c is a constant term that takes into account the initial conditions

of the memristor.

The normalized system now reads:
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ẋ = α(−y+W ( y
β + c)x)

ẏ = βx
(3.7)

The CNN is obtained by connecting the above cell into a grid of

M×N cells, each one described by Eqs. (3.13). Each cell is diffusively

connected to its four neighbors according to the following equations:

ẋi, j = α(−yi, j +W (
yi, j

β + c)xi, j)+

+D11(xi−1, j + xi+1, j + xi, j−1 + xi, j+1 −4xi, j)+

+D12(yi−1, j + yi+1, j + yi, j−1 + yi, j+1 −4yi, j)

ẏi, j = βxi, j +D21(xi−1, j + xi+1, j + xi, j−1 + xi, j+1 −4xi, j)+

+D22(yi−1, j + yi+1, j + yi, j−1 + yi, j+1 −4yi, j)

(3.8)

where D11 and D22 represent the self-diffusion coefficients, while D12,

and D21 are the so-called cross-diffusion coefficients. Eqs. (3.15)

represent a reaction-diffusion system based on Eqs. (3.13) with the

more general form for diffusion, i.e., the one including both self- and

cross-diffusion. In the next Section, we show that, indeed, both terms

are required to obtain Turing patterns in the structure.

For convenience Eqs. (3.15) are rewritten in a compact form by

defining f (x,y) = α(−y+W ( y
β + c)x) and g(x,y) = βx, and adopting

the following notation for the two-dimensional discrete Laplacian:

∇
2xi, j = xi+1, j + xi, j−1 + xi, j+1 −4xi, j

∇
2yi, j = yi+1, j + yi, j−1 + yi, j+1 −4yi, j

(3.9)

In this way, system (3.15) is written as
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ẋi, j = f (xi, j,yi, j)+D11∇
2xi, j +D12∇

2yi, j

ẏi, j = g(xi, j,yi, j)+D21∇
2xi, j +D22∇

2yi, j

(3.10)

In addition, in the following the partial derivative of the functions

f (x,y) and g(x,y) appearing in the dynamics of the CNN will be de-

noted by fx =
∂ f

∂x
, fy =

∂ f

∂y
, gx =

∂g
∂x

and gy =
∂g
∂y

.

The reaction-diffusion system (3.10) exhibits Turing patterns, that

is diffusion-driven instability, when the equilibrium solution of the

isolated cell is stable to small perturbations but unstable when diffusion

is present. This principle can be translated into mathematical conditions

by first considering the cell as isolated, linearizing the dynamics around

its equilibrium and studying the stability of its equilibrium through the

analysis of the Jacobian matrix. A first set of conditions is obtained by

imposing that the equilibrium point is stable. Then, the effect of the

diffusion is considered through a technique based on spatial eigenvalues

and able to decouple the cell from the others. After that, the stability of

the isolated linearized system is investigated. This time, the conditions

on the parameters derived from imposing that the equilibrium point

becomes unstable thanks to the presence of diffusion [61]. These

conditions derived in [62] translate in Eqs. (3.10).
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αW (c)< 0 (C.1)

αβ > 0 (C.2)

D22αW (c)+D21α −D12β > 0 (C.3)

(D22αW (c)+D21α −D12β )2 −4det(D)αβ > 0 (C.4)

det(D) = D11D22 −D12D21 > 0 (C.5)

We remark that, if only self-diffusions are present, i.e. D12 =D21 =

0, because D22 is a positive coefficient, and conditions (C.1) and (C.3)

cannot be simultaneously satisfied. Hence, in this case the instability

must be driven by the cross-diffusion terms. Moreover, condition (C.5)

appears because of the cross-diffusion terms. In fact D12 = D21 = 0

implies that det(D) = D11D22, which is positive by definition.

In order to give a circuit interpretation of the self and cross-diffusion

coupling, let us consider the schematic representation reported in

Fig. 3.2. It represents the nonlinear circuit model for a two-dimensional

CNN having both self and cross diffusions. Resistors are used to im-

plement self-diffusions, while cross-coupling is realized through the

two port block transferring the current related to cross-diffusion terms

to both dynamical equations (see Eqs. (3.15)).
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Fig. 3.2 Nonlinear circuit model for a two-dimensional Reaction-

Diffusion CNN with both self and cross diffusion. Linear resistors with

given conductance implements self-diffusion coefficients D11 and D22,

while the white two-port blocks implement cross-diffusion terms.
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3.2.2 Numerical results

Numerical simulations of the CNN in Eqs. (3.10) have been performed

considering M = N = 100. Without loss of generality, the initial con-

ditions for the variables xi, j and yi, j were chosen to have a random

uniform distribution between 0 and 1, and zero-flux boundary condi-

tions are imposed.

Firstly, we discuss the simulations of a 100×100 CNN for a spe-

cific set of parameters, namely: α = 1, β = 0.8, D11 = 1, D12 = 4,

D21 = 6, D22 = 26, a =−0.01, b =−0.61, and four values of c (c = 0,

c = 0.2, c = 0.5, and c = −0.5) are chosen. These parameters sat-

isfy conditions (C.1)-(C.6). Similar results have been obtained for

other sets of parameters satisfying these conditions. The results are

shown in Fig. 3.3, where we observe Turing patterns in all four cases.

We note that the value of c strongly influences the final pattern. In

fact, by varying c, different structures can be observed ranging from

stripes, mixed and spots/reverse spots patterns. From eq. (3.6), one

gets c = z(0)− y(0)
β , so the parameter c accounts for the effect of the

initial conditions of the memristor.

Clearly, the other parameters of the systems, the diffusion coeffi-

cients particularly, also affect the final state. Here, we illustrate the

patterns obtained as a function of the ratio of self-diffusion coefficients

d = D11

D22
and of the parameter c, keeping constant D12, and D21. In

Fig. 3.4 a sketch of the different regions of the parameter space c-d is

presented, when α = 1, β = 0.8, D12 = 4, D21 = 6, a = −0.01, and

b =−0.61. It is evident that for the same value of the memristor param-

eter c, different patterns emerge when d is varied. Interestingly, higher



3.2 Emerging phenomena in Reaction-Diffusion Cellular Nonlinear

Network 63

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(a)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(c)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

(d)

Fig. 3.3 Turing patterns generated from a 100 × 100 CNN as in

Eqs. (3.10) in layer x, where c assumes four different values: (a) c = 0,

stripes, (b) c = 0.2, mixture of stripes and spots, (c) c = 0.5, red spots

in blue background, and (d) c = −0.5, blue spots in red background.

The other parameters are fixed as: α = 1, β = 0.8, D11 = 1 , D12 = 4,

D21 = 6, D22 = 26, a = −0.01, b = −0.61. Without loss of general-

ity, initial conditions are taken randomly from a uniform distribution

between 0 and 1, zero-flux boundary conditions are considered.

values of d lead to a wider c region, in which mixed stripe/spot patterns

emerge, while lower values lead to a wider region of spot patterns.
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Fig. 3.4 Dependence of the type of pattern on the parameters c and

d = D11

D22
. Other parameters are fixed as α = 1, β = 0.8, D12 = 4,

D21 = 6, a = −0.01, and b = −0.61. Different colors indicate the

emergence of stripes, spots, or mixed stripe/spot patterns.

The spatial wavelength of the emerging pattern may be related

to the so called average diffusion [63], defined as the square root of

the determinant of the diffusion matrix. In particular, if we define the

critical wave number at the onset of Turing patterns as

ν =

√

det(A)

det(D)
(3.11)

it follows that the critical TP wavelength is

Ω =
2π

ν
=

2π
√

det(A)
det(D)

(3.12)

As a consequence, if all parameters, except the cross-diffusion

coefficients, are kept constant, patterns with different wavelengths may

emerge. In fact, since det(D) = D11D22−D12D21, if D12D21 decreases,
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then from Eq. (3.12) it follows that the spatial wavelength increases.

Setting the parameters to α = 1, β = 0.8, a = −0.01, b = −0.61,

D11 = 1, and D22 = 25.5, different patterns with different values of c,

D12 and D21 have been obtained as shown in Fig. 3.5. Observe that for

both the stripes and spots patterns, the spatial wavelength decreases as

D21D12 increases. It is important to remark that D12 and D21 have been

set to satisfy conditions (C.1)-(C.6).

3.2.3 Conclusions

The occurrence of complex spatio-temporal phenomena in spatially-

extended electronic circuits is a well-known topic in nonlinear electron-

ics. The contribution presented in this section provides further insights

by considering the use of memristive devices as non linear electronic el-

ements and characterizing their role in Turing pattern formation. From

an analytical perspective, the conditions under which Turing patterns

can be observed in a CNN have been outlined, thereby providing a

strategy for the design of memristive structures leading to complex

patterns. Furthermore, the possibility to satisfy such conditions on

the basis of the memristor state, i.e. its memory of past events, shows

that pattern formation is definitely driven by the use of this peculiar

nonlinear memory device. The proposed approach has focused on the

generation of Turing patterns in 2D. However, it, and in particular

Eqs. (3.10), may also be used to generate Turing patterns in 3D. To this

aim, the Laplacian terms have to be generalized to include diffusion in

the three spatial dimensions as described in [64].
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Fig. 3.5 Turing patterns generated from a 100× 100 CNN on layer

x obtained by fixing D11 = 1, and D22 = 25.5 and by varying D21D12

and c. (a) c = 0.5, D12 = 4, D21 = 6 (D21D12 = 24), (b) c = 0, D12 = 4,

D21 = 6 (D21D12 = 24), (c) c = 0.5, D12 = 3, D21 = 7 (D21D12 = 21),

(d) c = 0, D12 = 3, D21 = 7 (D21D12 = 21), (e) c = 0.5, D12 = 1,

D21 = 9 (D21D12 = 9), (f) c = 0, D12 = 1, D21 = 9 (D21D12 = 9).

Other parameters as indicated in the text.
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In the next section, a similar approach will be followed considering

the model describing plasma instabilities dynamics as elementary cell.

In particular, the RD-CNN paradigm will be adopted to spatially extend

this dynamical model.

3.3 Qualitative spatiotemporal model of the Pedestal

Spatial Extension

One of the most important aspect in plasma physics is the capability

of the TOKAMAK to magnetically confine plasma. In the 1980’s a

new operating mode has been described [65]. In fact, by increasing

the heating power beyond a given threshold it has been observed that a

bifurcation to a new confinement state, called H-mode, occurs leading

to a dramatic increase in the plasma magnetic confinement. This was

due to the formation of an insulating region at the plasma edge and steep

gradient pressure that, besides the plasma confinement, leads to the

occurrence of instabilities, such as the ELMs [65].Being characterized

by the emission of a large amount of energy and particles towards the

plasma facing components and, therefore, they can lead to damage

and even disruptions. As a consequence, many studies have been

devoted to better understand the behavior and the nature of these kind

of instabilities in order to accordingly design suitable control strategies

with the aim of avoiding their onset.

In the previous chapter, the analogue of the minimal model de-

scribed in [39], which is based on two plasma pressure and magnetic

field, has been deeply investigated and control strategy to suppress

ELMs opportunely designed. This minimal model is a lumped parame-
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ter model derived considering the portion of space of the pedestal as

a unique domain in which the interaction occurring between the insta-

bility dynamics, modeled as a relaxation phenomenon, with the power

balance dynamics, drives the system towards the onset of instability

depending on global quantities. By using this dynamical model, the

behavior of a complex plasma process can be described in terms of

drive and relaxation, and therefore, two equations are considered, one

related to the instability dynamics and one to power conservation. The

model adopted in this work is therefore capable to generate nonlinear

oscillations whose dynamics qualitatively resembles those typically

observed during ELMs onset in the pressure gradient at the pedestal

region, the edge of plasma region with significantly enhanced profiles

gradient [66]. The analysis carried in [67] uncovered the rich bifurca-

tion scenario that can be observed in the mathematical model, while

in [39] the possibility to qualitatively reproduce dynamical behavior

similar to that collected in real data has been investigated.

On the other hand, the occurrence of ELMs has been linked to the

emergence of a complex spatiotemporal phenomenon consisting in fila-

ments observable inside the vacuum vessel. In particular, formation of

filaments has been already observed and characterized in MAST (Mega

Ampere Spherical TOKAMAK), a TOKAMAK located in Culham,

by means of a videocamera capturing images in the visible range [68].

Also in COMPASS (COMPact ASSembly), a TOKAMAK located in

Prague, filaments have been characterized by means of specific probes

capturing pressure gradient along the pedestal [69]. Aim of this contri-

bution is to investigate the possibility to obtain a similar behavior in a

2D medium composed by locally coupled elements, each governed by
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the minimal model reported in [39]. The 2D medium can be considered

as a spatial discretization of the area of the pedestal, assuming that

each small portion of space obeys to the dynamical equation of the

qualitative minimal model.

The mathematical formalization adopted to describe the 2D medium

follows the paradigm of RD-CNNs. This choice is motivated by the rel-

ative simplicity of the paradigm, which definitely represents a universal

solver for partial differential equations. Several studies, in fact, adopt

such approach to investigate emerging phenomena in spatiotemporal

nonlinear domains [70, 62, 71].

3.3.1 Qualitative model of the filamentary pattern forma-

tion at the pedestal region

The well known qualitative dynamical model able to mimic plasma

behavior during ELMs has been deeply analyzed in the previous chapter.

The dynamical model is reported in Eqs. (3.13).

ẋ = (z−1)y−δx

ẏ = x

ż = η(h− z− y2z)

(3.13)

In this section, we aim to exploit this model to determine whether

or not a coherent spatiotemporal behavior can emerge in a 2D medium

representing a section of the pedestal region. As it is commonly known

[70], pattern formation is strictly linked to the presence of a slow-fast

dynamics, such that observed from the model behavior reported in

Fig. 2.8. This consideration encourages us to follow this approach in

order to find a region of the parameter space for the minimal model in
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Eqs. (3.13), in which pattern formation can be observed. To clarify the

plausibility of adopting the Reaction-Diffusion paradigm as approach

to spatially extend the dynamic model of the single cell, let us focus

on the origin of the third equation in (3.13), i.e. that representing

the dynamics of the pressure gradient. It derives from the following

equation governing the variation of the pressure gradient:

d p′

dt
=

1

cp

p′SD (3.14)

where cp is a scaling factor, S is the surface of the considered volume,

and D is the diffusion coefficient. In this work, we considered the

volume as partitioned in smaller portions, each regulated by the same

equation, among which diffusion of the pressure gradient occurs.

A section of the medium resulting from this spatial discretization

is investigated in order to study the possibility to obtain a filamentary

structure, similar to that appearing in presence of ELMs. The section

of the area at the pedestal is represented as a grid of N ×N cells, each

one connected with its four nearest neighbors and whose dynamics

is described by Eqs. (3.13). The diffusive term, encompassing the

coupling between cells, is included in the third dynamical equations

according to the considerations made above.

The resulting system can thus be described by the following equa-

tions:

ẋi, j = (zi, j −1)yi, j −δxi, j

ẏi, j = xi, j

żi, j = η(h− zi, j − y2
i, jzi, j)+

+D̄(zi−1, j + zi+1, j + zi, j−1 + zi, j+1 −4zi, j)

(3.15)
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where D̄ represents the normalized diffusion coefficient. Eqs. (3.15)

represent a Reaction-Diffusion CNN system based on Eqs. (3.13).

For convenience Eqs. (3.15) are rewritten in a compact form adopt-

ing the following notation for the two-dimensional discrete Laplacian:

∇
2zi, j = zi−1, j + zi+1, j + zi, j−1 + zi, j+1 −4zi, j (3.16)

In this way, system (3.15) is written as

ẋi, j = (zi, j −1)yi, j −δxi, j

ẏi, j = xi, j

żi, j = η(h− zi, j − y2
i, jzi, j)+ D̄∇

2zi, j

(3.17)

The numerical simulations are performed considering the same set

of parameters used in the previous section, thus h = 1.5, δ = 0.5, η =

0.01, since we want to observe the spatiotemporal dynamics in presence

of ELMs. As concern the diffusion coefficient we have considered

different values leading to pattern formation. The results reported in

the following are related to D̄ = 0.5, which, since the coefficient is

normalized, represents an mean diffusion rate. Furthermore, a very

important choice regards the boundary conditions. In fact, due to the

fact that ELMs are governed by gradient profiles on the edge transport

barrier, fixed boundary conditions have been applied to a RD-CNN

with N = 50. Namely, the cells in the boundary are connected to a

frame whose cells have states fixed to zero.

The spatial behavior of the pressure gradient z in the considered

medium is reported in Fig. 3.6 for T = 1s, where the formation of

propagating filaments similar to autowaves emerges. A qualitatively
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similar representation can be obtained considering the central row of

the N ×N CNN and plotting the behavior of the pressure gradient as in

Fig. 3.7. Here, the cells in the considered row reflects different radial

positions, namely we plot the cells located at the edge of the medium

representing the pedestal.

Furthermore, as observed in COMPASS TOKAMAK [69] the fil-

amentary pattern emerging from profile gradient can be seen through

plasma pressure gradient measurements, performed by specific probes.

In particular, the values of the pressure gradient at different plasma

layers of the pedestal can be measured, and then plotted as a function

of the radial position over a string, determining a peculiar profile. Such

profile assumes a characteristic decreasing behavior towards the edge of

the pedestal region. The behavior of the RD-CNN reflects this structure,

as reported in Fig. 3.8 where the value of the profile of the pressure

gradient at T = 5s assumes a qualitatively similar behavior.

3.3.2 Conclusion

Modeling spatiotemporal phenomena occurring in the vacuum ves-

sel of large TOKAMAKs is an highly interesting task. Furthermore,

capturing the main features of the spatiotemporal evolution of plasma

quantities during instabilities can be helpful in controlling their occur-

rence. This would lead to the improvement of the reactor performance

and, consequently, to the increase of the confinement time towards

ignition of self-sustained reactions.

In this chapter, we considered a model able to replicate the qual-

itative behavior of real observations of pressure gradient fluctuations

during ELMs occurrence. We used such model as an elementary cell to
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Fig. 3.6 Filaments formation in the two-dimensional RD-CNN: spatial

distribution of the variable z when δ = 0.5, η = 0.01 , h = 1.5, N = 50

and D = 0.5. Here, the right part of the medium is reported.
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Fig. 3.7 Evolution of the pressure gradient along different layers of the

simulated plasma torus as a function of time when δ = 0.5, η = 0.01,

h = 1.5, N = 50 and D = 0.5.

define a new spatiotemporal framework, which exploits the paradigm

of RD-CNNs, aiming to reproduce the behavior of a section of the

pedestal region. This has been done considering a spatial discretization
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Fig. 3.8 Profile of the pressure gradient at T = 5s along different layers

of the simulated plasma torus as a function of the radial position when

δ = 0.5, η = 0.01, h=1.5, N = 50 and D = 0.5.

of the area of interest assuming that each cell obeys to the dynamical

equation of the global model. In this framework, a diffusion of the

pressure gradient occurs and reveals to be fundamental in the formation

of patterned structures. The investigation of such structures in the

simulated medium allowed us to retrieve the characteristic behavior of

filaments formation in real experiments during ELMs, namely the pe-

culiar pressure profile with respect to different radial positions toward

the edge.

The results obtained and discussed in this chapter are merely qual-

itative, as well as those reported in [39]. Despite this, they allow us

to assess the effectiveness of the proposed method based on a widely

accepted qualitative dynamical model thus representing the first attempt

to model with a simple but efficient approach fundamental spatiotem-

poral dynamics linked to the occurrence of instable behavior in fusion

plasma.

One of the negative consequences of plasma instabilities occur-

rences such as ELMs on nuclear fusion experiments is the damages
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of plasma facing components (PFCs) and the consequent releases of

materials inside plasma due to steep heat loads hitting PFCs. Thus, be-

sides modeling plasma variables during the occurrences of instabilities

in order to study effective control strategy, being able to monitor and

predict heat loads on PFCs would be useful to deal with those.

In the next chapter, a model able to predict thermal loads on the

PFCs adopted in FTU is identified and promising results presented.





Chapter 4

A SoS approach for Thermal

Modeling Identification

In this chapter, the thermal model identification of the limiter surface

placed in nuclear fusion plants facilities is presented. Experimental

data measured at the Frascati TOKAMAK Upgrade (FTU) have been

considered in order to identify a nonlinear dynamical model of the

temperature distribution over the Cooled Lithium Limiter used in FTU.

Three data-driven approaches have been followed: a linear autore-

gressive model, a nonlinear autoregressive model, and a Hammerstein

model. The selection procedure of the relevant physical quantities will

be outlined and a comparison among the obtained models will be given.
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4.1 Introduction

The heat load on the PFCs installed in FTU, is evaluated by three differ-

ent diagnostics: a fast infrared camera observing in real-time the whole

limiter, a pair of thermocouples located on the limiter water circula-

tion system and three Langmuir probes measuring the local electron

temperature and density. From these source of data, information on

the status of the temperature distribution over the limiter surface can

be gained. However, models able to predict the dynamical behavior

of temperatures can be of help in controlling the plasma behavior far

from instabilities and disruptions, even in presence of uncertainties

and sources of non ideal behavior. A dynamical model, in fact, would

allow to predict the thermal behavior of the limiter surface, ensuring

fundamental insights to define suitable realtime control strategies to

maximize the performance of the limiter, i.e. to maintain the tempera-

ture over the whole limiter surface homogeneous, in order to address

the power exhausts task.

In many works, the control strategies developed for the temperature

regulation of the LLL surface exploit a physical model derived in [72].

It is an ideal approximation of the LLL thermal behavior and, although

it can be very useful in standard working condition, it fails in modeling

the system behavior in working conditions far from ideality, e.g. when

disruptions occur.

In order to obtain an effective data-driven thermal model able to

predict the global behavior during the experiments, this work aims to

explore the performance of three different data-driven models, namely

a linear autoregressive model (ARX), a nonlinear autoregressive model

(NARX), and an Hammerstein model (HW) [73]. In order to do this, a
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preliminary analysis of the available measured candidate input variables

has to be performed with the aim of identifying those more related to

the thermal process. This chapter is organized as follows: in Section

4.3 the input variables selection procedure is discussed, in Section 4.4

the linear and nonlinear models adopted are described, while Section

4.5 is devoted to the comparative analysis of models performance.

Conclusive remarks on the suitability of the modeling approach are

given in Section 4.6.

4.2 Data pre-processing

The dataset available from FTU diagnostics includes a large amount of

measured and reconstructed variables related to the physical processes

involved in a fusion experiments, i.e. electromagnetic, thermodynamic

and geometrical quantities. Since we are interested in a dynamical

model, we considered the dataset related to a specific experiment per-

formed at FTU where disruption did not occur and in which the transient

regime is significant. The variables in the dataset are measured over

the entire duration T = 1.734s of the selected pulse.

The main source of information for the identification procedure

is the infrared (IR) camera located inside the TOKAMAK chamber.

The IR camera is inserted through a port within the vacuum chamber

wall and points to the limiter surface as schematically represented in

Fig. 4.5. The output of the camera is a video stream taken with a

frame rate of 120fps. The camera is pointed on the limiter surface

whose shape can be clearly noticed in Figure 4.6 in which each pixel

represents the temperature of a given area. The camera points also to
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the areas surrounding the limiter (blue regions external to the limiter

in Figure 4.6) which are neglected throughout this work. This is also

the unique diagnostic able to spatially monitor the temperature over

the limiter surface is the IR camera. In fact, a spatial information

is fundamental to analyze how heat loads distribute over the adopted

limiter surfaces. The IR camera needs a calibration phase able to correct

the emissivity errors. Generally speaking, either the tabulated value

of emissivity for the specific material of an object or a measurement

of another diagnostic device is enough for the calibration phase when

surface properties are homogeneous. In this case, a unique target

temperature is considered for all the points of the object surface. When

performing this procedure on liquid metal limiters in FTU, several

practical aspects have to be taken into account.

In fact, as previously stated, a limiter based on an highly reactive

liquid metal may undergo to spatio-temporal phenomena such as oxi-

dation. Oxidation highly affect radiative properties of the object thus

making the limiter surface heterogeneous. Since these kind of phenom-

ena affect the measurement of the temperature, a punctual information

of the temperature over the limiter surface is required. As a conse-

quence, a further spatio-temporal diagnostic of the thermal distribution

over the PFC surface should be used in order to calibrate point by point

the images coming from the IR camera. In this section, a punctual

correction map based on the fusion point detection of the liquid metal

limiter installed in FTU is presented.

One of the temperature references that can be definitely verified is

the temperature for which the material undergo a state phase transition

such as the fusion point. Thus, by monitoring the thermal evolution of
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Fig. 4.1 Thermal evolution and corresponding melting point for the

pixel (110,65) of the LLL recorded on the 07/13/2016.

the limiter during a phase transition, the fusion point can be detected

and used as reference temperature for the calibration phase. This

procedure can be applied to each pixel of the IR image measuring the

temperature over the limiter surface. The cooling phase of the limiter

has to be monitored and when the metal undergos a phase transition, an

horizontal flat will characterize its temporal trend at the metal melting

point. This point have to be recorded for each pixel and a first map

of the fusion points as detected from the IR stream generated. From

the direct comparison between the detected values and the reference

tabulated temperature of the fusion point, a correction map can be

built. It allows to monitor spatiotemporal phenomena occurring over

the limiter surface and to correct thermal measurements point by point.

Thus, the first step is recording the thermal free evolution over the

liquid metal limiter. It is shown in Fig. 4.1 where it is noticeable the flat

line in corrispondence of the fusion point. Then, the reference fusion

point temperature for both LLL and TLL are considered as 180.6 C◦

and 232 C◦ respectively. Results obtained for both the cases are shown
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in Fig. 4.2 and 4.3 where it can be noticed how spatial phenomena can

be caught by the spatial tool whose output show a continuous realistic

thermal distribution especially for the LLL case. In fact, it was already

expected that being lithium highly reactive, spatial phenomena occurred

and thanks to this novel procedure, they can be deeply investigated. The

cases analyzed for the LLL were the free evolution recorded at the end

of each day taken from four consecutive experimental campaign. It is

noteworthy the effectiveness of this approach to monitor the evolution

of spatiotemporal phenomena, such as oxidation. From the first day

to the fourth one, it can be noticed the evolution of the oxidation level

due to the lithium reaction with oxygen.

For the TLL a more uniform map is obtained as it was expected. In

fact, being low reactive, spatial phenomena are difficult to occur thus

the correction map is almost uniform and equal to the tabulated emis-

sivity value (0.4). In conclusion, the emergence of a spatial continuous

map as a result of computing independent nodes action have shown the

effectiveness of adopting an SoS approach in monitoring phenomena

such as oxidation on LLL limiter paving the way for IR data correction.

A sample frame, taken when the plasma ring heats the limiter

surface, as obtained from the camera after the pre-processing is reported

in Figure 4.6. The inhomogeneous distribution is particularly relevant

in some specific points, which have been recognized as hot spots strictly

related to geometrical imperfections over the limiter [74].
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(a)

(b)

Fig. 4.2 Correction Map obtained from the correction tool by using IR

frames recorded in July 12th and 13th 2016.
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(a)

(b)

Fig. 4.3 Correction Map obtained from the correction tool by using IR

frames recorded in July 14th and 15th 2016.
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Fig. 4.4 TLL emissivity maps for TLL 11/11/16 experimental cam-

paign.

4.3 Input variables selection

In order to perform the input variables selection procedure, we analyzed

the correlation among the thermal information coming from each pixel

of the IR camera with respect to each candidate variable. In particular,

accordingly to the models discussed in [72, 75], we focused on the geo-

metrical features of the plasma ring, including information on its shape

and on its location within the TOKAMAK vacuum chamber. This

choice is motivated by the fact that the main purpose of the proposed

model is to provide useful information to control the shaping of the

plasma so that a uniform temperature distribution can be attained over

the limiter surface. Moreover, it is important to stress that geometrical

properties of the plasma are determined on the basis of other character-
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Fig. 4.5 Location of the LLL within the vacuum vessel and IR camera

port.

istic measurements such as the plasma current IPL and the toroidal field

BTOR.

The model is designed to identify the thermal process occurring

over the limiter surface in response to heat load provided by the plasma.

In particular, the heat transferred within the vacuum chamber to the

LLL is represented by the subtraction between ohmic power and ra-

diated power, which depends on the distance between the last closed

magnetic surface and the limiter. In the discharges discussed in the

contribution , in fact, the power provided by the additional heating

system is negligible with respect to ohmic heating. Plasma current and

vertical field both act on the plasma shaping and the corresponding

geometrical features. Especially the ratio between the vertical and

feedback field intensity determines the elongation and the radii of the

plasma being the vertical field a function of the plasma current.
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Fig. 4.6 Infrared camera output during an experiment. Temperatures

are pre-processed to avoid camera systematic errors. Axes indicate

pixels of the IR camera image.

Focusing on plasma geometrical properties, we can characterize 4

measures, the internal and external plasma radius, the upper and lower

plasma radius from which it is possible to reconstruct the plasma elon-

gation, i.e. the ratio between semi-axes, as schematically represented

in Fig. 4.7.

The correlation analysis led to the results reported in Fig.4.8, where

the cross-correlation between each plasma configuration parameter

with respect to the temperature recorder over the whole extension of

the limiter surface are reported. Each pixel of the figure represents the

correlation coefficient, colorcoded according to the reported colorbar,

between the transient regime of the temperature trend of the same pixel

with respect to the trend of the given candidate variable. We report here
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Fig. 4.7 Estimation of the geometrical features of the plasma ring:

coordinates indicating the radii measures are taken by means of recon-

struction based on magnetic measurements.

the results considering the elongation E(k) and the upper radius Z1(k)

for shot 377890. It is worth to notice that the shape of the limiter is

clearly observable and the levels of correlation are higher than the 60%

over the entire surface for both Z1 and E with a concentration on the

rightmost part of the limiter due to the specific position of the plasma

with respect to the limiter.

In order to further verify that the information provided by IPL and

BTOR are already included in that provided by Z1 and E, we computed

the correlation coefficient also for these quantities. The correlation

maps are reported in Fig. 4.9 and clearly indicate the same spatial

distribution observed for Z1 and E, but with lower correlation values.

The cross-correlation plots for Z1 and E with respect to the tem-

perature on a single pixel are reported as a function of the time-lags in

Fig. 4.10. As it can be noticed, high correlation values are obtained

also for larger time-lags.
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The correlation analysis provides similar results for all pulses in the

considered datasets. A number of other variables can been considered

as potential inputs of the models, i.e. the internal and external plasma

radii, since they appear highly correlated to the temperature over the

limiter surface. However, due to the fact that the elongation of the

plasma ring is evaluated also on the basis of these measurement, their

influence of the model output did not provide a sensible increase in the

performance.

Moreover, we focused on the fact that the temperature distribution

can be driven also by a heat diffusion process occurring over the limiter

surface. In order to catch this dynamics, we consider also the contribu-

tion given by temperatures of pixels located within a given distance. A

schematic representation of the considered neighborhood is reported in

Figure 4.11 where Nr represents the neighborhood radius with respect

to pixel (i, j). Good results have been obtained with a neighborhood

radius Nr = 1.

The following set of input variables has been therefore selected to

model the temperature of pixel (i, j):

• E(k): elongation of the plasma ring;

• Z1(k): upper radius of the plasma ring;

• Ti+Ni, j(k), . . . ,Ti+1, j(k),Ti−Ni, j(k), . . . ,Ti−1, j(k),

Ti, j+N j
(k), . . . ,Ti, j+1(k),Ti, j−N j

(k), . . . ,Ti, j−1(k): temperature of

the proximal pixels.

From a careful inspection of the available data in the time do-

main, five peculiar dynamical behaviors can been observed in different

regions of the limiter surface, as shown in Fig. 4.12:
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1. Initial peak: early onset of a temperature peak;

2. Fully saturated: temperature reaches the upper limit of the sensor

range for the whole duration of the shot;

3. Partially saturated: temperature reaches the upper limit of the

sensor range in a given time interval of the shot;

4. Disruption: temperature oscillates due to plasma disruption;

5. Normal: temperature increases towards a regime value and then

collapse when plasma disappears.

The presence of an initial peak in the temporal trend of a pixel

temperature is an hint of erroneous measurement of the actual temper-

ature, it is probably due to modification of the light condition inside

the TOKAMAK when the plasma lights up. The presence of satura-

tions is strictly related to the hot spots areas [74] and indicates that

the measured temperature reached the upper limit of the sensor range.

The temperature behavior during a pulse whose outcome is a disruptive

phenomenon sensibly differs from the normal behavior, since continu-

ous oscillations can be observed until the plasma turns off. These four

behaviors should not be considered in the model training, since they

are not representative of the temperature dynamics in normal opera-

tive conditions, therefore they are not included in the training dataset.

However, in order to test the models capabilities even in presence of

nonideal behaviors, the temperatures recorded during disruptions are

used in the validation dataset.

Since the magnitudes of the selected measurements are incompara-

ble, the whole dataset has been normalized in the range
[

−1; 1

]

.
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We have considered the FTU 2013 experimental campaign with the

LLL, consisting in 26 complete pulses. The training set consists in 22

time-series for each pulse, each related to the trend of the temperature

of a specific pixel of the video stream selected randomly in the set of

the normal behavior pixels. Each time-series consists in 233 samples

taken with a sampling time of 0.0085s, for a grand total of 4860 train-

ing patterns for each pulse. The validation set is formed by 15 pixels

for each pulse, including normal behaviors and disruptions, for a total

of 3645 validation patterns for each pulse. Signals are taken randomly

from all the 26 available pulses.

4.4 Model identification

In this work, we perform the comparison of three models, a linear and

two nonlinear ones, identified by using the same identification dataset.

Namely, we focused on a linear autoregressive model with exogenous

inputs (ARX), a nonlinear ARX (NARX) implemented by using neural

networks and an Hammerstein model (HM) [73].

We adopted the following regressors structure to estimate the output

at time k:
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(Ti, j(k−n), . . . ,Ti, j(k−1),

E(k−n1), . . . ,E(k−1),

Z1(k−n2), . . . ,Z1(k−1),

Ti+Ni, j(k−n3), . . . ,Ti+1, j(k−1), . . . ,Ti+1, j(k−1),

Ti−1, j(k−n3), . . . ,Ti−1, j(k−1),

Ti, j+1(k−n3), . . . ,Ti, j+1(k−1),

Ti, j−1(k−n3), . . . ,Ti, j−1(k−1)),

Ti+1, j−1(k−n3), . . . ,Ti+1, j−1(k−1)),

Ti−1, j−1(k−n3), . . . ,Ti−1, j−1(k−1)),

Ti+1, j+1(k−n3), . . . ,Ti+1, j+1(k−1)),

Ti−, j+1(k−n3), . . . ,Ti−, j+1(k−1))

(4.1)

where Ti, j(k) is the temperature of the i, j− th pixel at time k, E(k) is

the elongation of the plasma ring at time k, Z1(k) is the upper radius

of the plasma ring at time k. The number of regressors is defined by n

(regressors of the state), n1 (regressors of the elongation), n2 (regressors

of the internal radius), and n3 (regressors of the proximal temperatures).

The number of regressors for each variable has been selected for

each model by using a trial-and-error procedure evaluating a number

of performance indices such as the correlation coefficient between

estimated and measured output, the root mean square error (RMS), the

maximum of the absolute value of the error (MAE). In the following,

we give details on the performance of the best models for each of the

three classes considered.
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4.4.1 ARX linear model

Among the linear autoregressive model considered in the trial-and-

error procedure, we present here results related to the best performance

corresponding to a model with n = 3 poles, and two zeros, i.e. n1 =

n2 = n3 = 2.

The identification of the ARX model leads to the estimation of the

coefficients of the following polynomial:

Ti, j(k) = 0.8536Ti, j(k−1)+0.1785Ti, j(k−2)

−0.0831Ti, j(k−3)+0.01184Ti−1, j−1(k−1)

−0.03215Ti−1, j−1(k−2)+0.04667Ti, j−1(k−1)

−0.02897Ti, j−1(k−2)+0.02028Ti+1, j−1(k−1)

−0.01781Ti+1, j−1(k−2)+0.1103Ti−1, j(k−1)

−0.06416Ti−1, j(k−2)−0.08168Ti+1, j(k−1)

+0.07613Ti+1, j(k−2)+0.1581Ti−1, j+1(k−1)

−0.1743Ti−1, j+1(k−2)+0.01438Ti, j+1(k−1)

+0.01556Ti, j+1(k−2)−0.08213Ti+1, j+1(k−1)

+0.06798Ti+1, j+1(k−2)−0.08E(k−1)

+0.06419E(k−2)+0.09457Z1(k−1)−0.06456Z1(k−2)

(4.2)

The model results, after denormalization of the model outputs, re-

ported in Figure 4.13 are related to a pixel belonging to the validation

set. The trend of the temperature obtained as output of the identi-

fied model and the corresponding measured temperature are show in

Figure 4.13(a). The autocorrelation of the error (Fig. 4.13(b)), the

distribution of the residuals (Fig. 4.13(c)) and the normal probability
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plot (Fig. 4.13(d)) are also reported. Similar results have been obtained

for all the pixel belonging to the validation set.

As it can be observed from Figures 4.13, the ARX model perfor-

mance are satisfactory. The overall performance indices are evaluated

in the following section.

4.4.2 NARX nonlinear model

As a second approach a nonlinear model has been identified. The

NARX model, in fact, allows to consider nonlinear effects neglected by

the ARX identification. Using the regressors structure (4.1), the NARX

model has been implemented by using multilayer perceptron (MLP)

neural networks [76–78]. The use of neural networks in modeling

plasma behavior has already proven to be effective [79–82]. Best

performance has been obtained with a single hidden layer MLP with

8 neurons. We present here results related to the best performance

corresponding to a model with n = 3, and n1 = n2 = n3 = 2.

The performance of the identified NARX model are shown in Fig-

ure 4.14, after denormalization of the model outputs. The temperature

obtained as output of the model for a single pixel of the validation set

is shown in Figure 4.14(a) together with the corresponding measured

temperature. The three plots reported in Figures 4.14(b), 4.14(c), and

4.14(d) show the residuals autocorrelation, histogram, and normal prob-

ability plot. Better results with respect to the ARX model are obtained

considering also the other pixels of the validation set.
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4.4.3 Hammerstein model

Taking into account that the behavioral model reported in [72] encom-

passes a single static nonlinearity applied to the geometrical features

of the plasma ring, we decided to identify an Hammerstein model. De-

spite this, our model sensibly differs from that discussed in [72] where

the distance with respect to the limiter surface is approximated, since

calculating the exact distance would require to solve a fourth-order

polynomial and a nontrivial trigonometric equation. Our approach is

not physics-based and therefore it is able to estimate both parameters

and functional relationship between plasma geometrical features and

temperature distribution over the entire limiter surface maintaining a

mathematical structure which is physics-relevant.

The Hammerstein structure is schematically represented in Fig-

ure 4.15. In its most general form, it describes the system dynamics

by using a single static nonlinear block in series with a dynamic linear

block. The input signal u(k) passes through the nonlinear block f (·)

and then through the dynamic linear block to produce the output signal.

Best results have been obtained with a linear block with n = 3 poles,

n1 = n2 = n3 = 1 zero, while the input nonlinearities are identified

using neural networks with three units applied to both the elongation

E(k) and the upper radius Z1(k). Temperatures are not subjected to a

nonlinear function.

The input/output relationship of the Hammerstein model is:
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Ti, j(k) =
B1(z)
F1(z)

Ti−1, j−1(k)+
B2(z)
F2(z)

Ti, j−1(k)

+B3(z)
F3(z)

Ti+1, j−1(k)+
B4(z)
F4(z)

Ti−1, j(k)

+B5(z)
F5(z)

Ti, j+1(k)+
B6(z)
F6(z)

Ti−1, j+1(k)

+B7(z)
F7(z)

Ti, j+1(k)+
B8(z)
F8(z)

Ti+1, j+1(k)

+B9(z)
F9(z)

f1(E(k))+
B10(z)
F10(z)

f2(Z1(k))

(4.3)

where f1 and f2 are the nonlinear functions identified for the two input

variables E(k) and Z1(k) as reported in Fig. 4.16, while the polynomials

B(z) and F(z) are reported in Tab. 4.1 for each input variable.

The four plots reported in Figure 4.17 show the performance of the

Hammerstein model identified by means of an output error minimiza-

tion performed using a subspace Gauss-Newton least square algorithm

[73] and a subsequent refinement based on a prediction-error minimiza-

tion algorithm.

The temperature predicted by the model is shown in Figure 4.17(a)

together with the corresponding measured temperature. The three plots

reported in Figures 4.17(b), 4.17(c), and 4.17(d) show the residuals

autocorrelation, histogram, and normal probability plot.

As it can be observed from Figures 4.17, the model performance are

sensibly higher with respect to both the ARX and NARX identification.

This will be remarked in the following section by means of the reported

overall performance indices.

4.5 Comparative analysis

In this section the three models identified have been evaluated and

compared by means of a number of performance indices. The values
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of the correlation coefficient (CC) between estimated and measured

output, the root mean square error (RMS), and the maximum of the

absolute value of the error (MAE) are reported for the identification set

in Table 4.2, and for the validation set in Table 4.3.

In order to directly compare the capabilities of the three models,

we report in Figure 4.18 the trends of the output of the models for

four further pixels of the test set, together with the actual measured

temperature. The identification of a linear model provides a simple and

reliable tool but at the cost of neglecting nonlinear dynamics which

may be fundamental in reconstructing the thermal behavior. The ARX

model, in fact, is able to predict the trend of the real data, even if the

reconstructed values are slightly different. The use of the nonlinear

model NARX leads to an increasing in the model performance, despite

a corresponding increase in the model complexity and a difficult physi-

cal interpretation of its parameters.

The adoption of a model which links the simple structure of linear mod-

els with the nonlinear features introduced by input functions allows to

improve the model performance with a slight increase in its complexity.

On the basis of the time plots and of the performance indices

evaluated in this section, the Hammerstein model provides a better

identification of the thermal behavior of the limiter surface. This

confirms the theoretical expectations of the model reported in [72],

and being identified from experimental data, introduces a sensible

improvement in modeling the transient regime. Furthermore, while the

theoretical model does not take into account the spatial coordinates of

the limiter surface, our model encompasses this aspect.
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The good performance of the Hammerstein model are particularly

relevant when predicting abnormal behavior occurring during disrup-

tions. In Fig. 4.19 the temporal behavior of the temperature of a single

pixel over the limiter during a shot in which the plasma current is

intentionally set to a lower value is reported and compared with the

predicted output provided by the three models. The peculiar behavior

of this experiment is due to a non optimal control of the plasma ring

position. Nonetheless, the model is still able to accurately predict the

thermal behavior. The superiority of the Hammerstein model prediction

is, hence, evident.

4.6 Conclusion

The possibility to derive a dynamical data-driven model of the temper-

ature distribution over the limiter surface in TOKAMAKs is a funda-

mental milestone in the view of controlling the plasma experiment far

from disruptive events. In this chapter, we report the result of three

different models which allow us to estimate the temporal evolution

of the temperature spatial distribution on the limiter surface operating

at the FTU. The models take into account both the effects of a set of

external variables, such as those related to the geometrical features

of the plasma ring, and the effects of the temperatures of neighboring

regions in order to cope with the heat diffusion process occurring over

the surface. The models reported in this chapter pave the way to the

definition of new and more accurate strategies to control the plasma

ring in order to avoid disruptions.
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Three different models have been identified by using a suitable set

of experimental measurements, namely a linear autoregressive model, a

nonlinear autoregressive model, and an Hammerstein model. The anal-

ysis of models performance leads to assess the suitability of the three

approaches which produce good results. However, the Hammerstein

model, which reveals to be more adherent to the theoretical background

of the physical process, shows better statistical properties of the error

dynamics along with a relatively simple structure in which only static

input nonlinearities are considered. Furthremore, the Hammerstein

model is able to predict temperature behavior also in presence of abnor-

mal plasma experiments, i.e. those experiments in which the plasma

ring shows instabilities leading to an early end.

The proposed model can be embedded in real-time monitoring

systems, such that currently running at JET [83] in which a physics-

based model similar to that proposed in [72] is implemented.

In the view of the application in a ITER-like scenario, in which

diverted plasmas will be considered and where the power generated

by the additional heating systems is not negligible, it must be pointed

out that the experimental conditions considered in our work imply

that the power is concentrated on a surface of 50cm2, leading to heat

loads in the order of 10MW/m2, which are consistent to the reference

adopted as maximum heat loads for ITER. Besides this consideration,

the proposed modeling approach includes the parameter Nr, which we

fixed as Nr = 1. Increasing Nr allows to tackle diffusion processes

acting on different spatial and temporal scales, thus it can be fixed

accordingly to the specific case study, allowing the adoption of the

proposed modeling approach in different scenarios.
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Finally, the proposed modeling approach is able to provide reliable

performance even in the case of pulse durations lower than that planned

for ITER, making FTU a valid benchmark, especially in the view of a

real-time control of plasma shaping.
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Fig. 4.8 Correlation analysis between plasma ring elongation (a) and

upper radius (b) with respect to temperatures over the limiter surface.

The values of the correlation coefficient are colorcoded according to

the colorbar: the temperatures measured by the camera are highly

correlated with the plasma ring elongation over the entire surface. Axes

indicate pixels of the IR camera image.
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Fig. 4.9 Correlation analysis between (a) toroidal field and (b) plasma

current with respect to temperatures over the limiter surface. The values

of the correlation coefficient are colorcoded according to the colorbar:

the temperatures measured by the camera are highly correlated with

the plasma ring elongation over the entire surface. Axes indicate pixels

of the IR camera image.
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Fig. 4.10 Plot showing the correlation coefficient as a function of the

lag between a specific pixel of the IR camera and each geometrical

plasma variables.
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Fig. 4.11 Schematic representation of the interaction radius between

pixel considered to take into account the heat diffusion process acting

over the limiter surface.

Fig. 4.12 Signals prototypes that have been neglected from the training

dataset.
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(a) (b)

(c) (d)

Fig. 4.13 Performance of the ARX model evaluated for one pixel of

the validation set: trends of the measured and modeled temperature (a),

error autocorrelation (b), error histogram (c), and error normal plot (d).
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(a) (b)

(c) (d)

Fig. 4.14 Performance of the NARX model evaluated for one pixel of

the validation set: trends of the measured and modeled temperature (a),

error autocorrelation (b), error histogram (c), and error normal plot (d).

Fig. 4.15 Block diagram of the considered Hammerstein model.
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Fig. 4.16 Input nonlinearities identified for the Hammerstein model:

(a) elongation, and (b) upper radius.

(a) (b)

(c) (d)

Fig. 4.17 Performance of the Hammerstein model evaluated for one

pixel of the validation set: trends of the measured and modeled tem-

perature (a), error autocorrelation (b), error histogram (c), and error

normal plot (d).
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Table 4.1 Transfer functions identified for the Hammerstein model.

Input
B(z)
F(z)

Ti−1, j−1(k)
−0.115z−1−0.2439z−2

1+0.07z−1−0.2314z−2+0.2534z−3

Ti, j−1(k)
0.7z−1−0.7z−2

1−0.817z−1−0.3579z−2+0.175z−3

Ti+1, j−1(k)
−0.0824z−10.0497z−2

1−0.9157z−1−0.7545z−2+0.08327z−3

Ti−1, j(k)
0.4146z−1−0.3758z−2

1−1.3157z−1+0.4068z−2−0.0064z−3

Ti+1, j(k)
0.1408z−1−0.1236z−2

1−1.2301z−1−0.0591z−2+0.3623z−3

Ti−1, j+1(k)
0.0062z−1−0.0012z−2

1+0.7747z−1−0.7867z−2−0.89z−3

Ti, j+1(k)
0.2551z−1−0.019z−2

1+0.2636z−1−0.1207z−2+0.2791z−3

Ti+1, j+1(k)
−0.0284z−1+0.0264z−2

1−0.9336z−1−0.8531z−2+0.8283z−3

E(k) −0.3z−1+z−2

1+0.2415z−1−0.7681z−2−0.3223z−3

Z1(k)
−1.6587z−1+z−2

1−0.7333z−1−0.9441z−2−0.7146z−3

Table 4.2 Performance indices for the training phase.

CC RMS MAE

ARX 0.981 5.624 19.056

NLARX 0.989 4.265 18.418

HM 0.996 1.926 12.6



4.6 Conclusion 109

Table 4.3 Performance indices for the validation phase.

CC RMS MAE

ARX 0.972 8.3 23.5
NLARX 0.983 6.8 22.7

HM 0.995 2.6 16.3
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Fig. 4.18 Temporal evolution of the temperature of four non contiguous

pixels from the test dataset. Trends are concatenated. Comparison

between the output of the three models with respect to the measured

variable.
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Fig. 4.19 Temporal evolution of the temperature of a pixel during a

disruption: comparison between the output of the three models with

respect to the measured variable.



Chapter 5

Conclusion

In this work, a SoS approach has been used in order to improve the

performance of nuclear fusion machines. Each facet has been devel-

oped by integrating the actions of single units being able to elicit an

SoS emerging behaviour. In particular, suitably controlling the relevant

parameters, each SoS has been driven to the desired state. As shown by

the obtained results, the performance of the TOKAMAK machines by

using the adopted SoS strategies can be widely improved. Plasma insta-

bilities leading to steep heat loads hitting the plasma-facing component,

and consequently leading to plasma disruptions, may be opportunely

modeled and an suitable control strategy designed. The thermal loads

over the CLL limiter investigated as plasma-facing components has

been modeled being able to spatially predict the thermal distribution

over its surface thus being able to control heat loads leading again

to disruptive events. Thus, as overall result, a step forward plasma

disruptions avoidance has been performed by both opportunely mod-

eling plasma instabilities and by predicting the thermal behaviour of
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the plasma-facing components therefore being able to act before the

disruptive events occur.
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