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Abstract: In this article, the assessment of the radioactivity content in bovine meat from the Calabria
region, Southern Italy, was performed. For this purpose, High Purity Germanium (HPGe) gamma
spectrometry measurements were carried out in order to investigate any possible radioactive contam-
ination by natural (40K) and anthropogenic (137Cs) radionuclides. Experimental mean values were
found to be in the range from (78.9 ± 10.5) Bq kg−1 to (88.2 ± 12.5) Bq kg−1 for 40K and lower than
the minimum detectable activity (MDA) in all cases for 137Cs, respectively. Moreover, any possible
radiological health risk was also estimated, by calculating the total annual effective dose due to
the ingestion of bovine meat by adult members of the population and by comparing it with the
total natural radioactivity value (external + internal) for humans. Obtained values are in the range
from 10.3 µSv y−1 to 11.5 µSv y−1, several orders of magnitude lower than the value of the total
exposure to natural radioactivity for human beings, i.e., 2.4 mSv y−1. It is worth noting that the used
approach could be used, in principle, for the evaluation of the radiological risk due to the presence of
radionuclides in a large variety of food samples of particular interest, and thus it can constitute a
guideline for investigations focused on the monitoring of food quality.

Keywords: bovine meat; radioactivity; contamination; high purity germanium gamma spectrometry;
radiological risk

1. Introduction

Humans are exposed to radiations from natural and artificial sources in their life envi-
ronments [1–4]. Natural radioactivity is due to the presence of cosmogenic and primordial
radionuclides in the Earth’s crust [5–7], and it provides the greatest contribution to the dose
received by the population [8,9]. Artificial fallout radionuclides, such as 137Cs, are derived
mainly from global nuclear tests conducted between the mid 1940s and the 1980s, as well
as from nuclear accidents [10,11].

There are three ways of exposure to ionizing radiations for humans: external gamma
rays, inhalation of radon as well as other radioactive nuclides and the ingestion of radioiso-
topes through food and water [12–15]. In the last case, in particular, concern about radioac-
tivity levels in food samples is very important in order to safeguard human health [16,17].
In fact, food intake is usually the most important pathway, through which natural and
anthropogenic radionuclides can enter the human body [18,19]. Accordingly, the estima-
tion of radionuclide concentrations in different foods and diets appears to be crucial for
estimating the human intake of these radionuclides [20].

The natural radioactivity in food mainly comes from 40K, while uranium and thorium
daughter products are usually present in traces [21]. When ingested radionuclides are
distributed among body organs (according to the metabolism of the involved radioisotope
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and the specific type of organs), each of which is typically characterized by different radio
sensitivities [22], they can induce potential harmful effects, including neoplasia and genetic
mutations at somatic and germ cell levels, respectively [23,24].

As a matter of fact, natural and anthropogenic radioactivity has been already ex-
tensively quantified in foods and, in particular, in different types of meat from various
places [25–28], but there are little data on meat samples from Italy. Meat is a very important
food, as it supplies valuable nutrients for health [29]. It constitutes an essential building
block of a well-balanced and healthy nutrition, as it holds high levels of protein, vitamins,
minerals and micronutrients crucial for growth and development [30,31].

Moreover, wild animals are bioindicators of environmental pollution, as game meat
can be contaminated, mainly in areas heavily polluted by radioactive fallout, by the radio-
logical hazards that circulate in the food chain between soil, plants and wild animals [32].
After the Chernobyl accident, bovines with increased radioactivity levels were detected
across Europe and, since that time, the analysis of radioactivity content in bovine meat has
been part of the environmental radioactivity monitoring network of the “National System
for Environmental Protection in Italy” [33].

In the light of the aforementioned considerations, the present article is devoted to the
estimation, for the first time, of the radioactivity content in bovine meat from the Reggio
Calabria district, Calabria region, Southern Italy. Of note, there are no articles in literature
referring to the radioactivity measurement in bovine meat of the investigated geographical
area. High Purity Germanium (HPGe) gamma spectrometry measurements were carried
out, with the aim to first provide information on the background specific activity of the 40K
natural radioisotope and contribute to the creation of databases on natural radioactivity.
Moreover, the investigation of the 137Cs content in bovine meat allowed for the evaluation
of the residual impact of nuclear weapon tests and the Chernobyl and Fukushima accidents
in Southern Italy. Finally, the calculation of the total annual effective dose due to the
ingestion of bovine meat by adult members of the population, and a comparison with the
total natural radioactivity value (external + internal) for humans, permitted the authors
to properly evaluate whether the ingestion of bovine meat, as complementary foodstuff
consumed by the local population, constitute a potential radiological hazard.

2. Materials and Methods
2.1. Samples’ Collection

Fifteen samples of bovine meat (muscle), 1 kg each, were collected for each one of the
three hygiene points (site IDs 1, 2 and 3) of the Reggio Calabria district, in the south of Italy
(see Figure 1 and Table 1), according to that reported in [34]. Hygiene points are those places
where the veterinary check is carried out from the hygienic–sanitary point of view. Each
hygiene point is representative of the central, Ionian and Tyrrhenian area, respectively.

At the laboratory, each sample was first frozen at −20 ◦C. After, they were unfrozen
just before the analysis and the inedible parts were removed before homogenization.

Table 1. The IDs and GPS coordinates of the sampling sites.

Site ID
GPS Coordinates

Latitude Longitude

1 38.100833 15.646944
2 38.004444 15.857777
3 38.484166 16.082500
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Figure 1. The map of the sampling area (a), with the site IDs (1–3) indicated (b). 
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Figure 1. The map of the sampling area (a), with the site IDs (1–3) indicated (b).

2.2. HPGe Gamma Spectrometry Measurements

For the gamma spectrometry analysis, samples were enclosed in 1 L capacity plastic
Marinelli containers and counted for 70,000 s. The 661.66 keV 137Cs and 1460.8 keV 40K
gamma ray lines were used to determine their specific activity.

The experimental setup consists of an Ortec HPGe detector and integrated digital
electronics. In detail, it is a negative biased detector (GMX), cooled by the Ortec recycler
condensing liquid nitrogen cooling Mobius system [35], characterized by a Full Width at
Half Maximum FWHM of 1.94 keV, a peak to Compton ratio of 65:1 and a relative efficiency
of 37.5% at 1.33 MeV (60Co). The Eckert and Zigler Nuclitec GmgH traceable multinu-
clide radioactive standard, number AK-5901, with an energy range of 59.54 to 1836 keV,
reproducing the exact samples geometries in a water-equivalent epoxy resin matrix, was
employed to perform efficiency and energy calibrations [36].

The Quality Controls (QC) of radiation measurements were conducted according
to [37]. The Gamma Vision software (Ortec) was used to acquire and analyze the data [38].

The specific activity (Bq kg−1) of the investigated radioisotopes was calculated using
the following formula [39]:

C =
NE

εEtγd M
(1)

where NE indicates the net area of the peak at the energy E; εE and γd are the efficiency
and yield of the photopeak at the energy E, respectively; M is the mass of the sample after
treatment (kg) and t is the live time (s).

In measuring the error, at the 95% confidence level, the components taken into ac-
count were: uncertainties of count assessment, calibrating source, calibration efficiency,
background subtraction, and γ-branching ratio [40].

The quality of the gamma spectrometry experimental results was certified by the
Italian Accreditation Body (ACCREDIA) [41]. This implies continuous testing (annually)
of whether the performance characteristics of the gamma spectrometry method are main-
tained [42].
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2.3. Assessment of Radiological Hazard Effects

The possible radiological risk for human health, due to bovine meat consumption, is
expressed by the total annual effective dose due to the ingestion of bovine meat by adult
members of the population, calculated with the following:

E
(

Sv y−1
)
= ICdc (2)

where I is the annual intake of bovine meat (kg per person), C is the the specific activity
(Bq kg−1) and dc is the conversion factor, equal to 1.3 × 10−8 Sv Bq−1 and 6.2 × 10−9 Sv
Bq−1 for 137Cs and 40K, respectively [43].

The assessment of the dose levels due to bovine meat consumption is a critical point
in order to evaluate whether it is safe from the radiological point of view and does not
adversely affect human health.

3. Results and Discussion
3.1. Radioactivity Analysis

The 40K and 137Cs specific activity for the analyzed bovine meat samples is reported
in Table 2 for each site ID, together with the mean value. Its uncertainty (for each ID) is the
standard deviation.

Table 2. The specific activity of 40K and 137Cs for the analyzed bovine meat samples.

Sampling
Point

40K
(Bq kg−1)

137Cs
(Bq kg−1)

Sampling
Point

K-40
(Bq kg−1)

Cs-137
(Bq kg−1)

Sampling
Point

K-40
(Bq kg−1)

Cs-137
(Bq kg−1)

ID1

86.5 ± 6.8 <0.12

ID2

71.9 ± 5.9 <0.13

ID3

83.2 ± 11.5 <0.09

73.4 ± 5.7 <0.08 83.1 ± 11.1 <0.09 84.5 ± 12.3 <0.10

74.8 ± 5.9 <0.15 90.3 ± 12.5 <0.09 73.1 ± 12.5 <0.16

90.1 ± 12.1 <0.10 67.3 ± 9.4 <0.08 85.4 ± 11.5 <0.08

72.1 ± 10.1 <0.12 80.3 ± 11.4 <0.08 59.6 ± 8.1 <0.07

83.6 ± 12.5 <0.09 97.2 ± 14.5 <0.18 52.5 ± 7.6 <0.07

75.4 ± 4.9 <0.12 74.2 ± 10.6 <0.10 78.1 ± 11.5 <0.09

65.2 ± 5.4 <0.08 76.5 ± 5.4 <0.11 91.6 ± 12.6 <0.07

93.2 ± 12.5 <0.07 77.6 ± 12.5 <0.14 113.6 ± 15.1 <0.07

79.2 ± 5.2 <0.11 87.1 ± 5.2 <0.12 142.5 ± 19.4 <0.08

79.5 ± 5.3 <0.09 68.6 ± 5.3 <0.10 84.3 ± 12.4 <0.08

81.8 ± 11.3 <0.08 86.1 ± 11.3 <0.08 80.4 ± 11.5 <0.12

77.3 ± 5.1 <0.09 70.9 ± 5.1 <0.09 110.5 ± 15.4 <0.07

88.5 ± 10.6 <0.11 81.1 ± 10.6 <0.13 77.5 ± 11.4 <0.10

70.5 ± 8.5 <0.08 71.2 ± 8.5 <0.11 106.4 ± 15.1 <0.18

Mean value 79.4 ± 8.1 <0.10 Mean value 78.9 ± 10.5 <0.11 Mean value 88.2 ± 12.5 <0.09

As can be noted, the mean 40K activity concentration is (79.4 ± 8.1) Bq kg−1,
(78.9 ± 10.5) Bq kg−1 and (88.2 ± 12.5) Bq kg−1 for the sites ID1, ID2 and ID3, respec-
tively. As expected, the maximum variation range of potassium is limited (11.08%), since
it is an essential nutrient, and so its value does not exhibit a high variance for the same
specimen type.

Further, as far as any possible anthropogenic contamination of investigated bovine
meat samples is a concern, the 137Cs specific activity was also quantified. Generally, differ-
ent possible factors affecting the level of 137Cs in the analyzed samples can be distinguished:
(i) the amount of the radioactive fallout, (ii) the climatic conditions and (iii) the radionu-
clide’s bioavailability. From the results (see Table 2), the 137Cs specific activity was found
to be lower than the minimum detectable activity (MDA) in all cases, demonstrating the
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lack of residual contamination by antrophic radioactivity. It is worth noting, however, that
different areas within the same country can be affected by different levels of radioactive
pollution [44]. In this sense, an evaluation of the 137Cs content in the soil appears to be
crucial from the perspective of ecology, which will be the subject of a future investigation.

Of note, all the obtained experimental data are in a good agreement with those reported
in the database of the “Italian Institute for the Environmental Protection and Research”
(ISPRA) [45], since they are of the same order of magnitude and also very similar. It should
be also observed that the 40K activity concentration, measured for each sample, account for
the amount of radioactivity and not the radiological health risk to human beings, for which
additional factors need to be considered.

Finally, Table 3 reports a comparison of the values of 40K activity concentration in
bovine meat samples of various countries [46–49], including the results of the present
study, revealing some differences. This may be explained by the physical properties of soil
according to the geographical location, the characteristics of the growing grass, climatic
condition during the growth of the grass, the race of grazing animals and their spending
time on the pasture for grazing.

Table 3. Comparison of values of 40K activity concentration (Bq kg−1) in bovine meat samples of
various countries.

Country
40K Activity Concentration

(Bq kg−1)
References

Southern Italy 78.9–88.2 Present study

Turkey 99.6 [46]

Egypt 44.0 [47]

Korea 90.1 [48]

Nigeria 265.9 [49]

3.2. Potential Health Hazards Resulting from Bovine Meat Consumption

The analysis of the bovine meat quality is of great relevance, given the growing global
trend referring to the consumption of such foodstuffs [50]. In particular, with reference
to national and supranational regulations related to bovine meat, the Council Regulation
2016/52 (Euratom) sets maximum permitted levels of radioactivity for food and feed
following a nuclear accident or any other case of radiological emergency [51]. Specifically,
it sets threshold levels only for anthropogenic radionuclides in various types of foodstuffs,
in the particular scenario reported above. However, since the district investigated in
the present study has never been affected by nuclear accidents, the assessment of any
potential health risk for the population due to bovine meat consumption was carried
out by calculating the effective dose for bovine meat ingestion by adult members of the
population (Equation (2)), and by comparing it with the total natural radioactivity value
(external + internal) for humans. More in detail, the effective dose was evaluated taking
into account, as the average consumption per person, per year, 21 kg, according to the
literature [50], and that the 137Cs specific activity was found to be lower than the MDA in
all investigated samples (see Table 2).

The obtained total effective dose value, due to the 40K radionuclide, is reported
in Table 4.

Table 4. The total effective dose due to sample ingestion by adult members of the population.

Sampling Point Ek-40
(µSv y−1)

ID1 10.3
ID2 10.3
ID3 11.5
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Worthy of note, the aforementioned doses are several orders of magnitude lower than
the value of the total (external + internal) exposure to natural radioactivity for human
beings, i.e., 2.4 mSv y−1 [52], thus, excluding any significant radiological health risk due to
the ingestion of the investigated bovine meat.

4. Conclusions

The concentration levels of natural (40K) and anthropogenic (137Cs) radionuclides in
bovine meat samples from the Calabria region, Southern Italy, were evaluated through
the High Purity Germanium (HPGe) gamma spectrometry. In particular, regarding 40K,
the variation range of its specific activity was found to be limited, since it is an essential
nutrient; thus, its value does not exhibit a high variance for the same specimen type. With
reference to 137Cs, otherwise, the obtained values were found to be lower than the minimum
detectable activity (MDA) in all cases, demonstrating the lack of residual contamination by
anthropogenic radioactivity. Moreover, the results of 40K activity concentration reported
in the present study were compared with 40K specific activity in bovine meat samples of
other countries, revealing some differences. This may be due to different reasons, such as
the physical properties of soil according to the geographical location, the characteristics of
the growing grass, climatic condition during the growth of the grass, the race of grazing
animals and their spending time on the pasture for grazing.

Further, in order to assess any possible radiological risk for the population, the effective
dose for bovine meat ingestion was evaluated. The calculated values were then compared
with the total (external + internal) exposure to natural radioactivity for human beings,
i.e., 2.4 mSv y−1 and they were found to be about three orders of magnitude lower. It can
therefore be concluded that, in our case, radionuclide intoxication with consequent adverse
impacts for humans is not a concern.

Data reported in this article thus confirm that the analyzed samples are safe for food
purposes, in terms of natural (40K) and anthropogenic (137Cs) radionuclide content, and
hence, no remedial actions are needed. Moreover, obtained results also represent a main
reference for the investigated area and can be used as a baseline to extend this investigation
to the whole region. Moreover, they will be implemented in the future with an increase in
the sampling points and the number of samples analyzed, but, noteworthily, the approach
reported in this paper could be applied, in principle, for the evaluation of any potential
radiological health risk due to the presence of radioactive elements in a large variety of
food samples, by constituting a guideline for investigations focused on the monitoring of
food quality.
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