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Abstract
Land surface temperature (LST) plays an essential role in developing and applying preci-
sion agriculture protocols, especially for calculating crop evapotranspiration (ETc) by sur-
face energy balance (SEB) approaches; and for determining crop water status. However, 
LST is quite dependent on the meteorological conditions, which can rapidly vary. This 
variability, together with the limited meterological data acquisition frequency in most 
weather stations, can lead to the miscalculation of the SEB components, especially rel-
evant when used for irrigation purposes.

The present study assessed the temporal dynamic of LST in a very short period of time 
(20-minutes) through the acquisition of multiple thermal imagery. Additionally, a combi-
nation of SEB approach with Eddy Covariance technique was performed for quantifying 
the effect that LST variations have on the sensible (H) and latent (LE) heat fluxes.

Even under steady meteorological conditions, temporal variations in LST of 3.5 and 
4.0 K were observed for tree canopy and sunny bare soil surfaces, respectively. These 
LST oscillations reached values of about 7.8 and 17.9 K for tree canopies and bare soil 
when heterogeneous meteorological conditions were observed (i.e. cloud presence). Such 
LST differences translated into H and LE differences of about 26 and 19%, respectively; 
with variations up to 5 (for H) and 2.7 times (for LE) under fast-varying meteorological 
conditions.

The obtained results suggest the necessity of acquiring thermal imagery when steady 
meteorological conditions exist or, otherwise, ensuring the collection of instantaneous me-
teorological data for applying post-processing corrections. This is of importance when 
incorporating the obtained ETc maps into precision irrigation protocols.
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Introduction

An accurate determination of crop evapotranspiration (ETc) is essential for increasing the 
productivity of irrigated agriculture (Filgueiras et al., 2019; Gong et al., 2019). Generally, 
ETc can be determined using measurement or estimation methods (Rana & Katerji, 2000). 
Measurement methods can be “direct” if the ETc value is quantified using an instrument 
(e.g., eddy covariance (EC); lisimetry or scintillometry) or “indirect” if the approach con-
siders the relationship among other parameters (e.g. sap flow or water balance techniques). 
The accuracies and the advantages/disadvantages of these techniques are widely discussed 
by Allen et al., (2011). As examples, EC and scintillometry methods use sophisticated and 
expensive instruments that require accurate installation and in field maintenance activities. 
Lysimeter and sap flow techniques provide point-based values of ETc that could not be 
representative of the whole area of interest. Even for large lysimeter, the representativeness 
of ETc measured is dependent on different crop densities and heights, root characteristics, 
soil water and nutrient status and soil profile structures between the internal and external 
part of the lysimeters (Allen et al., 2011). On the other hand, the estimation methods are 
mainly based on models (including energy balance, mass transfer, and the use of crop coeffi-
cients, Kc) characterized by different levels of complexity in terms of number of parameters 
implied for the ETc schematization. Some of these models have been combined with remote 
sensing (RS) information in order to obtain spatially distributed ETc estimates over wide 
areas (Paço et al., 2014; Ramírez-Cuesta et al., 2020; Consoli & Vanella 2014a, b).

RS estimation methods are usually based on two different approaches: the vegetation 
indexes (VI) and the surface energy balance (SEB) models. A review of different satellite-
based ETc approaches is discussed by Zhang et al., (2016). In general, VI approaches are 
based on the FAO-56 approach (Allen et al., 1998) for deriving the Kc (i.e. single and double 
Kc), and thus ETc, from empirical site-specific relationships between the vegetation fraction 
cover and the canopy reflectance in the visible (VIS) and near-infrared (NIR) regions of the 
electromagnetic spectrum together with ancillary soil and weather data (Longo-Minnolo 
et al., 2020; Ramírez-Cuesta et al., 2019). Conversely, SEB models determine ETc as a 
residual of the land SEB equation on the basis of the energy conservation principle. Spa-
tially distributed SEB models are generally coupled with land surface temperature (LST) 
remotely sensed from thermal infra-red (TIR) imagery data based on radiative transfer mod-
els, including also VIS/NIR information and ground-based data. Several schematizations 
are given in literature for describing the parameters involved in SEB schemes (Zhang et 
al., 2016). These schemes mainly differ for the state of the overlying atmosphere and the 
belowing soil water content and for the roughness and thermal properties of the land sur-
face, considering its complexity in terms of density and type of the vegetation cover. Some 
examples of SEB approaches application in semi-arid areas are reported by Maltese et al., 
(2018) and Vanella & Consoli (2018).

In SEB models, the accuracy on the estimation of the LST plays a critical role in determ-
ing realible instantaneous ETc fluxes. Usually, the hypothesis of daytime self-preservation of 
the evaporative fraction is considered for estimating daily ETc values (Crago, 1996; Allen et 
al., 2007b). According to this hypothesis, the fraction of available energy used for the latent 
heat flux (LE) process is considered constant during diurnal hours. Thus, instantaneous LE 
values are assumed to be representative of the daily values for determining ETc. The magni-
tude and temporal variation of LST is generally determined by the conductive, convective, 
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and radiative energy exchange process at the Earth atmosphere interface in response to the 
solar radiation and surface characteristics. Accurate LST retrieval from remotely sensed 
TIR data depends on atmospheric effects, sensor parameters (i.e., spectral range and view-
ing angle) and surface parameters, such as land surface emissivity and geometry. LST is a 
fundamental thermodynamic state variable and represents one of the most important energy 
driven factor in many eco-hydrological processes occurring at the land-atmosphere inter-
face (Leinonen & Jones, 2004; Sepulcre-Cantó et al., 2006; Ramírez-Cuesta et al., 2017a). A 
number of authors have recognized direct but complex relationships among LST, soil water 
status, vegetation density, and SEB from local to global scales (e.g., Carlson et al., 1981, 
1994, Idso et al., 1975, Monteith, 1981).

Contactless sensors (i.e., thermal cameras and infrared radiometers, IRR) and wired 
sensors (such as thermocouple and resistive temperature detector) are usually adopted 
for measuring LST at different spatial scales for vegetation/soils monitoring applications. 
Applications of the thermal domain to precision agriculture varies in function of the plat-
form where the sensor is mounted. Thus, for instance, satellite platforms have been most 
commonly used for ETc estimation applications (Bastiaanssen et al., 1998b; Allen et al., 
2007b). Nevertheless, the boom of unmanned aerial vehicle (UAVs) in the last years with the 
consequent improvement of spatial resolution, has increased the interest of researchers to 
use this type of platforms for ETc determination and precision irrigation (Liang et al., 2021, 
Riveros-Burgos et al., 2021). On the contrary, thermal images obtained from on-ground, 
UAV or airborne are generally used for determining crop water status (Ben-Gal et al., 2009; 
Cohen et al., 2012), delineating crop management zones (Cohen et al., 2017; Rouze et al., 
2021) and identifying and quantifying pest diseases (Zarco-Tejada et al., 2018; Poblete et 
al., 2021).

Thermal cameras and IRR are sensitive to infrared radiation from 8 to 14 μm (atmo-
spheric window) in order to minimize the atmosphere influence (amount of water vapor 
and carbon dioxide) and provide high-accuracy LST measurements. Specifically, thermal 
cameras capture the emitted energy and converts the energy received by each pixel to a 
scaled digital number (DN). Processing software then uses empirical calibration coefficients 
for converting the DN to LST at pixel level. Thus, thermal cameras provide continuous LST 
spatial information with the inconvenient of being representative of a certain instantaneous 
time. On the contrary, IRR provide only punctual information about the LST within the field 
of view (FOV) of the instrument, but they are able to register continuously on time LST 
information. They can be typically fixed in situ and/or portable for on field data collection.

Several uncertainties are associated with the retrieval of remotely sensed LST measure-
ments. In fact, LST derived by ground-based, airborne, and space-borne RS sensors rep-
resents the aggregated radiometric temperature of all land surface components (i.e., soil 
and vegetation) within the sensor FOV (Krishnan et al., 2020). Also the geometric optics 
strongly influence RS-based LST measurements acquire from TIR instruments. Other 
uncertainties are related to the thermal camera calibration. In addition, LST measurements 
can be affected by external sources of interference (camera sensor noise, surface properties 
of vegetation and environmental conditions). Moreover, image acquisition time results criti-
cal to avoid LST heterogeneity caused by the shadows, which is minimized when the sun is 
relatively close to the solar zenith angle (Ramírez-Cuesta et al., 2017a).

Furthermore, the interpretation of thermal data suffers from the LST considerable tempo-
ral dynamism due to weather variables (such as wind speed, air temperature or cloud pres-
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ence). In this sense, Agam et al., (2013) evaluated the sensitivity of Crop Water Stress Index 
(CWSI, Idso et al., 1981) and LST to changes in solar radiation, observing a decrease in this 
index when solar radiation dropped due to clouds, specially under water stress conditions. 
However, no studies have assessed the influence that such drastic and instantaneous meteo-
rological variations have on the energy balance components. This is of particular relevance 
when LST is derived from UAV platform where there can be variations in the environmental 
conditions during the acquisition of the images for the whole area of study.

The main objectives of this research were to investigate (i) how abrupt variations in 
meteorological conditions, especially solar radiation, influence LST obtained from proximal 
sensing; and (ii) the sensibility of sensible (H) and LE fluxes of an orange orchard to this 
LST temporal dynamism. These objectives will allow to evaluate the hypothesis of whether 
on-ground and UAV derived instantaneous LST, H and LE data can be considered represen-
tative of a wider temporal scale under homogeneous and non-homogeneous meteorological 
conditions.

Materials and methods

Study site

The study was performed in a 0.7 ha orange orchard located in Southern Italy (Eastern Sic-
ily, Lentini, SR; 37°20’12.65” N, 14°53’33.04” E, WGS84; Fig. 1). At the study site, orange 
trees (Citrus sinensis (L.) Osbeck cv “Tarocco Sciara”) were planted in 2010 with a frame-
work of 6 m × 4 m. Average (± standard error) tree height and trunk and canopy diameters in 
2020 were 4.5 m (± 0.27 m), 0.15 m (± 0.05 m) and 3.5 m (± 0.13 m), respectively.

According to the Köppen-Geiger classification system, the study area climate is classi-
fied as hot-summer Mediterranean (Code Csa). Within the period 2002–2020, the average 

Fig. 1 Experimental design at the study area
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(± standard deviation) air temperature (Ta), relative humidity (RH) and wind speed (u2) val-
ues were 21.2 ± 7.4 °C, 59 ± 9% and 1.96 ± 0.04 m s− 1 in spring – summer; and 15.4 ± 6.1 °C, 
70 ± 2% and 1.77 ± 0.11 m s− 1, in winter – autumn. Average cumulative annual precipitation 
(P) and reference evapotranspiration (ET0) ranged from 340 (in 2002) to 833 (in 2015) mm 
and from 1186 (in 2019) to 1420 (in 2012) mm, respectively, with averages values during 
the entire period of 580 and 1268 mm, respectively. Based on these values, Aridity Index 
(Barrow, 1992) varies between 0.3 and 0.7, corresponding to semi arid – dry sub humid 
climates (data obtained from Lentini meteorological station, 37°21’1.76"N 14°54’29.05"E, 
WGS84; Servizio Informativo Agrometeorologico Siciliano, www.sias.regione.sicilia.it).

The soil has a sandy loam texture, with soil field capacity (θFC) and permanent wilting 
point (θWP) values of 0.28 and 0.14 m3 m− 3, respectively. The soil bulk density is about 
1.25 g·cm− 3 (Aiello et al., 2014; Consoli et al., 2017).

Eddy Covariance measurements

An eddy covariance (EC) system was installed at the study site on a 7 m micrometeorologi-
cal tower (Fig. 1) in 2016 (Saitta et al., 2020). Location requirements in terms of crop area 
representativeness, fetch/footprint and topography, were considered for EC tower instal-
lation (Vanella & Consoli, 2018; Saitta et al., 2020). The EC system is composed of a 
3-dimensional sonic anemometer (CSAT3-3D, Campbell Scientific Inc., Logan, Utah) for 
measuring at high frequency (10 Hz) the three wind components (Ux, Uy, Uz; m s− 1), the 
sonic temperature (Ta,EC); and of an infrared open-path gas analyzer (Li-7500, Li-cor Bio-
sciences Inc., Lincoln, Nebraska) for retrieving water vapor and carbon dioxide (mg m− 3) 
concentrations. Additionally, the EC system incorporates a net radiometer (CNR-1 Kipp 
and Zonen, Delft, Netherlands) and three self-calibrated soil heat flux plates (HFP01SC, 
Hukseflux, Delft, Netherlands) for quantifying at low frequency (30 s) net radiation (Rn,EC; 
W m− 2) and soil heat fluxes (GEC; W m− 2), respectively. Semi-hourly Rn,EC and GEC fluxes 
together with the high frequency components (i.e. wind speed, Ta,EC and water vapour den-
sity) were recorded in a CR1000 logger (Campbell Scientific Inc., Logan, Utah), and pro-
cessed following EUROFLUX methodology (Aubinet et al., 2000). From EC, the sensible 
heat flux (HEC; W m− 2) was calculated as:

 HEC = ρ · cp · σwT  (1)

where, ρ is the air density (g m− 3), cp is the air specific heat capacity at constant pressure (J 
g− 1 K− 1) and σwT is the covariance between the vertical wind speed and the air temperature 
(m s− 1 K).

The latent heat flux (LEEC; W m− 2) was computed as:

 LEEC = λ · cp · σwT  (2)

where, λ is the latent heat of vaporization (J g− 1); and σwq is the covariance between the 
vertical wind speed and water vapour density (g m− 2 s− 1).

http://www.sias.regione.sicilia.it
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Thermal data acquisition

Camera details

The infrared camera used is an Optris PI 160 model (Optris GmbH, Berlin, Germany). The 
camera uses a 160 × 120 pixel @ 120 Hz Uncooled Focal Plane Array (UFPA) detector 
and has a spectral range of 7.5–13 μm, with an accuracy of ± 2 °C @ 23 °C. The used lens 
guarantees a Field Of View (FOV) of 72° x 52°. The camera is based on standard Infrared 
Thermometry and the emissivity parameters it uses can be set between 0.1 and 1.1; it uses 
a unique calibration dataset based on camera Serial Number. Using a dedicated online tool 
(https://www.optris.global/optics-calculator, last accessed 23rd November 2021) it is pos-
sible to calculate all the required parameters. For a target distance of about 5.2 m, it has 
7.4 m (HFOV) and 5.1 m (VFOV), with a Pixel size: 39 mm (IFOV) at object level. The 
camera comes with a dedicated acquisition software (PIX Connect; Optris GmbH, Berlin, 
Germany) from Optris, that allows to set all the camera parameters and to capture images, 
numerical thermal data for each pixel in CSV format and video through an USB2 connec-
tion to a Windows PC. Specifically, a constant surface emissivity of 0.98 (corresponding to 
vegetation covers; Salisbury & D’Aria 1992; Ramírez-Cuesta et el. 2017a) was applied to 
the entire image. This emissivity value was updated a posterior for bare soil covers (assign-
ing a value of 0.96; Salisbury & D’Aria 1992; Sobrino et al., 2009) identified during the 
segmentation process (Section “Images post-processing”).

Experimental design

Figure 1 shows the experimental design used for thermal data acquisition at the study area. 
The thermal camera (see Section “Camera details”) was installed on a horizontal metal sup-
port of about 2 m long mounted on the EC tower, at 5.2 m height from the soil surface (and 
3 m from the center of canopy height). These dimensions allowed covering a footprint, at 
soil level, of 5.1 m x 7.4 m, which included both canopy and soil.

The trial was conducted for 5 days on June 2020 (days of the year, DOYs 161–164 and 
167). A total of 96 thermal images were acquired around solar midday (between 12:50 and 
13:10 CEST): 15 images during DOY 161, 20 images for DOYs 162, 163 and 167; and 21 
images for DOY 166 (Table 1).

For each thermal camera acquisition time-step (Table 1), infrared measurements were 
acquired using a portable Apogee radiometer (Apogee Instruments, Inc. MI-210, Logan, 
Utah, USA). This infrared thermometer has a FOV of 22° (half angle) and an accuracy 

Acquisition day (DOY) Hour interval
(CEST*)

Number of 
images

Ta,EC 
(K)

161 12:50–13:10 15 303.7
162 12:51–13:10 20 305.3
163 12:51–13:10 20 304.7
164 12:50–13:10 21 303.4
167 12:50–13:09 20 304.9
*Central European Summer Time (UTC + 02:00)

Table 1 Images acquisition 
time (DOY and hour), number 
of images acquired each day 
and sonic air temperature 
(Ta,EC) registered by the eddy 
covariance system during the 
acquisition period

 

https://www.optris.global/optics-calculator
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of 0.3 °C. It has a spectral range of 8–14 μm, which is comparable with that of the Optris 
camera used in this study (see “Camera details” section). In particular, at each time-step, 
three independent thermal measurements were acquired, representative of the tree canopy, 
shaded soil and sunny soil, respectively. The brightness temperature measured by the infra-
red radiometer (Tsensor, in K) were afterward corrected for surface emissivity (ε) as follows 
(Apogee Instruments 2020):

 
LSTrad =

4

√
T 4

sensor − (1 − ε) T 4
background

ε  (3)

where LSTrad (in K) is the instantaneous corrected LST of the target surface (Tc, Ts,sha, and 
Ts,sun, for tree canopy, shaded and sunny soil, respectively); and Tbackground (in K) is the 
brightness temperature of the background (usually the sky). The values of ε were assumed 
0.98 for tree canopy and 0.96 for the soil component (Salisbury & D’Aria, 1992; Sobrino 
et al., 2009).

Thermal images post-processing

Thermal data registered in CSV format using PIX Connect software were converted to TIFF 
format (Fig. 2a) using ArcGIS (10.5; Esri, Redlands, CA, USA). Then, isotherms at 0.1 K 
intervals were generated in order to facilitate the separation between vegetation and bare 
soil (Fig. 2b). This discrimination is based on the general theory of most edge detection 
methods (Prewitt, 1970; Sobel, 1970; Canny, 1986), which find the edges at those points 
where the gradient of the variable of interest (i.e. LST) is maximum. Specifically, the seg-
mentation between vegetation and bare soil was performed by visually selecting threshold 
isotherm, located in the region of contact between both cover types, where the isotherms 

Fig. 2 (a) Thermal image retrieved from the thermal sensor; (b) 0.1 K interval isotherms with the selected 
threshold isotherm highlighted in thick black; and (c) cover type classification product derived from the 
segmentation process
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were closer to each other (Fig. 2b). Once both cover types were differentiated (Fig. 2c), 
their LST values were extracted and an emissivity correction was applied to the bare soil for 
considering an emissivity value of 0.96 (Salisbury & D’Aria, 1992; Sobrino et al., 2009), 
consisting of an inversion of Eq. 3 using the Tbackground measured by the portable Apogee 
radiometer at each specific moment.

Influence of surface temperature on crop evapotranspiration

The SEB approach was followed for assessing how LST variations influence ETc fluxes. 
This approach describes the distribution of SEB fluxes toward and away from a reference 
surface as:

 Rn − G = H + LE  (4)

where, Rn is the net radiation, G is the soil heat flux below the canopy, H is the sensible heat 
flux from the canopy to the air, and LE is the latent heat flux to the air. All SEB components 
are expressed in W m− 2. Figure 3 summarises the methodology followed in the study to 
evaluate the effect of LST temporal dynamism on H and LE.

The H can be expressed in terms of temperature difference (Tc–Ta) as:

 
H = ρ · cP · Tc − Ta

ra  (5)

Fig. 3 Flow chart of the methodology followed to evaluate the effect of LST temporal dynamism on H and 
LE. Grey rectangles with dotted lines indicate the inputs (Eddy covariance and thermal camera, with EC and 
tc subindexes, respectively), whereas grey rectangles with continuous lines indicate final results. Blank rect-
angles correspond to intermediate results and the procedures used in the study. Numerical subindexes identify 
each individual image of the total number of images (n) acquired with the thermal camera
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where, ρ is the air density (kg m− 3), cp is the specific heat of the air (J kg− 1 °C− 1), ra is the 
aerodynamic resistance (s m− 1), Tc and Ta are the canopy and air temperatures at the refer-
ence height (°C), respectively (Jackson et al., 1981; González-Dugo et al., 2006).

By inverting Eq. 5 and using H computed by EC system (HEC; Eq. 1), ra can be retrieved 
as follows:

 
ra =

ρCp(Tc,tc − Ta,EC)
HEC  (6)

whereTa,EC is provided by the high frequency 3-D sonic anemometer data and Tc,tc is 
retrieved from the thermal camera.

The term Tc,tc was separately computed from the canopy (Tc) and sunlit soil (Ts,sunlit) 
temperatures extracted from the individual photographs, averaged by the vegetated fraction 
cover (VFC) of the experimental site, as:

 Tc,tc = Tc ∗ V FC + Ts,sunlit ∗ (1 − V FC) (7)

Once ra has been calculated, H was re-calculated from Eq. 5 for each thermal image time-
step (1-min interval), assuming constant ra; and including the Tc from the specific image 
and Ta,EC. Thus, an H value per minute was obtained (total of 16–20 values depending of 
the number of images per day; Table 1). From these H values, LE was calculated at 1-min 
frequency as the residual of the SEB equation:

 LE = Rn,EC − GEC − H  (8)

where, Rn,EC and GEC are measured by EC system at the considered period.

Results

Micrometeorological characterisation

The temporal variation of the SEB components measured by the EC system during the 
reference period (Table 1) is shown in Fig. 4 flux-by-flux (Rn,EC, HEC, LEEC and GEC). 
Regarding Rn,EC rates, maximum semi-hourly values of about 750–800 W m− 2 were reached 
around midday of all considered days. However, the trend of the Rn,EC fluxes observed dur-
ing the thermal images acquisition times (from 12:50 to 13:10 CEST) differed from one 
day to another. In this sense, DOYs 162–164 exhibited a smooth continuous shape of the 
Rn,EC rates, whereas in DOYs 161 and 167 a less steady time-response was observed with 
the presence of Rn,EC decline peaks. It was specially relevant for DOY 162, when a Rn,EC 
decrease of 52% was observed in one hour (from 752 W m− 2 at 11:00 to 358 W m− 2 at 
12:00; Fig. 4). Similar daily-trends were observed for LEEC and HEC, with maximum semi-
hourly values occurring at midday, being of around 200–300 and 400 W m− 2 for LEEC and 
HEC, respectively. On the contrary, GEC depicted lower semi-hourly values, with maximum 
of 50–75 W m− 2 achieved around 17:00 pm.
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Surface temperature temporal variation

The temporal evolution of the LST for sunlit (Ts,sun) and shaded soil (Ts,sha) and tree canopy 

Fig. 5 Temporal evolution of the land surface temperature (LST) derived from the infrared radiometer (rad) 
and from the thermal camera (cam) for the sunny and shaded soil (Ts,sun and Ts,sha, respectively) and the tree 
canopy (Tc). Shaded areas represent the presence of clouds when acquiring the measurements

 

Fig. 4 Energy balance fluxes (W m− 2) measured by the EC system during the thermal images acquisition 
days. Rn,EC, HEC, LEEC, GEC refers to net radiation, sensible, latent and soil heat fluxes, respectively
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(Tc) measured from the infrared radiometer (rad) and from the thermal camera (cam) dur-
ing the considered DOYs is shown in Fig. 5. Nearly constant values were obtained for 
the DOYs 162, 163 and 164 for all surfaces (soil and vegetation), with LST variations in 
the 20-minutes periods considered of less than 4.0, 3.5 and 2.4 K for Ts,sun, Tc, and Ts,sha, 
respectively. Contrarily, DOYs 161 and 167 presented a wider LST variation range for the 
same temporal period, reaching LST variations of 17.9, 7.8 and 3 K for Ts,sun, Tc and Ts,sha, 
respectively (Fig. 5). This wider LST variation occurred in a small period of time, i.e. 7 and 
4 min for DOYs 161 and 167, respectively.

When comparing the LST obtained from the infrared radiometer, LST(rad) with that from 
the thermal camera, LST(cam), similar values were registered (R2 of 0.98) with average dif-
ferences among the two measurements techniques of 2 K, both for Tc and Ts,sun (Fig. 6).

Temperature impact on turbulent fluxes estimation

Figure 7 shows the partition of the available energy (Rn,EC – GEC) between H and LE in each 
one of the evaluated days at the 20-min period corresponding to the image acquisition. In 

Fig. 6 Comparison between the surface temperature (both for the canopy, Tc, and the sunny soil, Ts,sun, K) 
measured by the thermal camera (LSTcam) and the infrared radiometer (LSTrad) during the reference period
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particular, the available energy was 503, 778, 779, 746 and 723 W m− 2 for DOYs 161–164 
and 167, respectively. A nearly constant temporal pattern was observed in H and LE at 
DOYs 162–164 with H values of about 371, 423 and 386 W m− 2; LE values of 407, 423 and 
386 W m− 2, and standard deviations (SD) ranging from 12 to 23 W m− 2 (Fig. 7). Contrarily, 
in DOYs 161 and 167 there were more important H and LE variations (SD = 76–146 W 
m− 2), with average H values of 206 and 353 W m− 2; and average LE values of 298 and 
370 W m− 2, respectively (Fig. 7). These variations concentrated from 12:50 h to 12:55 h 
and from 13:03 h to 13:08 h in DOY 161; and from 12:50 h to 13:01 h in DOY 167. The rest 
of the time of these two days, H and LE remained almost constant, with absolute variations 
in comparison to their mean values of less than 6% and 7%, respectively. Additionally, the 
stabilization of the fluxes occurred 3–4 min after the disappearance of intermittent clouds 
(i.e. when LE started to decline and H to increase; Fig. 7). Specifically, in DOY 161, even 
if clouds disappear at 13:06 h, H and LE fluxes did not stabilize until 13:09 h (Fig. 7). 
The same pattern was observed in DOY 167, when H and LE fluxes stabilized at 13:01 h 
although clouds disappeared at 12:57 h (Fig. 7).

Discussion

The use of thermography in precision agriculture, specially for detecting and monitoring 
plant water relations, has been a subject of research interest since the 60’s (Tanner, 1963; 
Idso et al., 1981; Sepulcre-Cantó et al., 2006; Meron et al., 2010, 2013; Bellvert et al., 2014; 
Cohen et al., 2017; Gonzalez-Dugo et al., 2020). This approach is particularly interesting 
for mapping the variations in plant water status variables over large areas of study enabling 

Fig. 7 Temporal evolution of the sensible (H) and latent (LE) heat fluxes derived from the combination of 
eddy covariance system and thermal imagery
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the possibility of determining different orchard management zones. In addition, the remote 
estimation of ETc based on thermography will allow to derive protocols for a precision 
irrigation in terms of matching the water application to the average water requirements and 
by defining areas with different water needs. However, for this type of precision agriculture 
applications, some authors have hinted the importance of clear-sky conditions for acquiring 
quality thermal imagery (Ramírez-Cuesta et al., 2017a); but a deep analysis of how short-
term meteorological changes influence ETc has not been quantified yet.

Generally, micro-meteorological conditions gradually evolve during a day without expe-
riencing abrupt changes, specially in Spring and Summer seasons, when the conditions are 
generally more steady (Ramírez-Cuesta et al., 2017b). However, there exist certain days 
when conditions are dynamic during the day and noteworthily vary even in short periods of 
time. In this sense, this study has shown that considerable changes in LST (e.g. up to 4 K 
for Ts,sun,) occurred even with homogeneous meteorological conditions (DOYs 162–164), 
being much more evident under fast-varying conditions (e.g. 17.9 K for Ts, sun).

Among the meteorological variables, solar radiation and wind speed are those that most 
influence LST variation, since they can experience abrupt changes within small periods 
of time. In this sense, the phenomena that most affect solar radiation is the cloud presence 
resulting in a decrease of the energy arriving to the surface causing the consequent drop in 
LST. Similarly, when the wind moves with a high speed, the heat stored on the surface is 
more easily taken away, and thus cooling the land cover. Wind speed also causes canopy 
structure changes, exposing previously shaded regions, resulting in that a lower LST is 
received by the sensor. On the contrary, the other meteorological variables, as Ta or RH, 
exhibit more gradual changes during the day, not leading to sudden changes in LST. Even if 
for some applications, Ta can be used as a proxy of LST because Ta measurements are com-
monly available and typically collected at weather stations, for other purposes, such as esti-
mating biophysical attributes, Ta is not representative of the LST because this can diverge 
substantially from Ta (Jin & Dickinson, 2010). The present study confirms the observations 
made by Jin & Dickinson (2010) about that gradients in LST - Ta are largest on calm days 
when aerodynamic conductances are lowest and still air layers develop adjacent to plant 
canopies and individual leaves. In this sense, Still et al., (2019) recommended the need of 
measuring complementary environmental properties for correcting interferences, especially 
Ta, during thermal camera acquisitions.

The LST response to short-term changes of meteorological conditions (i.e. presence of 
clouds) depended also on the different considered surface components (i.e. shaded or sunlit 
soil or tree canopy). In this sense, Ts,sun responded quicker to meteorological changes than 
Ts,sha and Tc, being Ts,sun more consistent with Tair variations reaching also differences up to 
25% as observed by Ni et al., (2019). In comparison to Ts,sun, Tc variations were smoothed 
since plants require more time for auto-regulating the stomatal aperture/closure. The time-
lag until initial stomatal opening can be different for each individual stoma (Steppe et al., 
2006). However, when considering Ts,sha, these LST variations were lower due to the fact 
that this surface is less exposed to meteorological changes than Tc and Ts,sun. Thus, for 
instance, shaded soil will be less affected to solar radiation changes due to a momentary 
presence of clouds since shaded soil will remain always shaded, experiencing very small 
changes in its temperature. Thus, heterogeneous crops as the one studied here, where a 
large proportion of bare soil is directly exposed to solar radiation, will be more influenced 
by short-term meteorological conditions than homogeneous crops completely covering the 
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soil surface. In this sense, it is expected that heterogeneous crops with natural vegetation 
between tree rows, less sensitive to meteorological variations than those with traditional 
tilling, although more research is needed to confirm this hypothesis.

It is well known the critical role that LST plays on computing ETc by using energy bal-
ance models (Bastiaanssen, 1995; Norman et al., 1995; Anderson et al., 1997; Bastiaanssen 
et al., 1998a; Allen et al., 2007a). This kind of approaches requires from meteorological 
variables usually recorded in weather stations. Most of these weather stations provides agro-
meteorological variables at hourly/semi-hourly or daily scale, so meteorological changes 
occurring within these time intervals could be not captured. Results obtained in this work 
demonstrated that special attention need to be paid when combining hourly/semi-hourly 
averaged meteorological data with images acquired at a specific time. Thus, for instance, 
when a single averaged value of (Rn-G) is considered during a 20 min interval (i.e. at the 
frequency registered by the weather station; Fig. 7), it can be observed that H and LE energy 
balance components are quite dependent on short-term variations captured by the thermal 
sensor. Thus, changes of up to 26 and 19% in H and LE, respectively, were observed under 
homogeneous meteorological conditions; whereas H and LE variations up to 5 and 2.7 times, 
respectively, were reached under fast-varying meteorological conditions. It is important to 
note that the influence of solar radiation variations (i.e. cloud presence) on H and LE fluxes 
persisted 4–5 min after the clouds disappearance, which should be taken into account when 
planning a flight campaign even under homogeneous conditions. Such H and LE varia-
tions could be also influenced by the strong short-term stomatal oscillations when variations 
in solar radiation, air temperature, humidity, and wind speed occurs (Steppe et al., 2006; 
Maes & Steppe, 2012; López-Bernal et al., 2018; Agam et al., 2013) observed that solar 
radiation reduction caused by clouds presence resulted in a CWSI decrease, also finding 
weaker correlation between this index and physiological measurements under cloudy condi-
tions than under homogeneous clear conditions. Additionally, these authors also remarked 
the necessity of high radiometric resolution imagery and constant reference measurements 
when using CWSI for water status detection. It has led to search crop water status indexes 
less sensitive to meteorological conditions (Iseki et al., 2020). Those results evidence the 
extremely importance of taking the images when meteorological changes are not expected 
to occur during the interval between two consecutive meteorological variables registers. 
Otherwise, changes due to instantaneous disturbances could be wrongly associated to crop 
water status differences, especially when the study area is so large that it needs to be covered 
by several photograms. Even if this work includes only images taken on-ground, similar 
results are expected when using satellite images due to their instantaneous nature, although 
additional research is needed to confirm this assumption. However, satellite images taken at 
a given moment will consider a much larger area of study that when UAV-based images are 
processed. Therefore instantaneous changes in the surrounding conditions are much more 
likely to affect ETc estimation based on thermal imagery taken from UAV campaigns.

One of the main concerns when using remote sensing images (including satellite, airborne 
and UAV) for precision agriculture is that, commonly, it is assumed that the meteorological 
conditions at the time of the image are representative of those of the period registered by the 
weather station (i.e. semi hourly or hourly frequency), therefore, assuming that the avail-
able energy is constant within this temporal period. This limitation is even more severe in 
the case of satellite images, since, contrary to the temporal flexibility provided by UAVs, 
satellites have a fixed image acquisition schedule. A possible solution could be increasing 
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the acquisition frequency of the weather station taken as reference (e.g. at 1 Hz) to better 
describe the meteorological conditions at the acquisition time. However, it is only possible 
when the user has plenty capabilities to manage the weather station, which rarely occurs 
since, commonly, the weather stations used are part of an independent weather station net-
work (public or private), not being possible to change the acquisition frequency. In this 
case, the installation of a radiometer on board the drone can be considered for calculating 
the relationship between the solar radiation at the time of the image acquisition and the solar 
radiation registered at hourly (or semi-hourly) frequency in the weather station. A similar 
procedure is often performed to up-scaling instantaneous ET values obtained at the image 
acquisition time to daily values Allen et al., 2007a; Jiménez-Bello et al., 2015).

Conclusions

The present study reveals and quantifies the main effects that short-term meteorological 
variations, especially solar radiation, have on land surface temperature and on the sensible 
and latent heat fluxes. Thus, the main conclusions are summarized as in the following:

 ● Sunny bare soil, reaching LST variations up to 17.9 K in a 7-min interval, resulted more 
susceptible to short-terms meteorological changes than tree canopy temperature (with 
maximum LST variations of 7.8 K);

 ● The variations in LST strongly influenced the turbulent heat fluxes estimations from 
SEB approaches, resulting in H and LE variations up to 5 and 2.7 times;

 ● Complementary and high frequency meteorological measurements are required to accu-
rately consider the instantaneous meteorological conditions at the image acquisition 
time, specially for fast varying scenarios.
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