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Characterization of the n TOF EAR-2 neutron beam
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Abstract. The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n TOF), which is
operational since 2014, is designed and built as a short-distance complement to the experimental area 1
(EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize
the beam profile and the shape of the neutron flux at EAR-2. The prompt γ-flash which is used for calibrating
the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.

1. Introduction
A second experimental area (EAR-2) at CERN’s neutron
time-of-flight facility (n TOF), having a flight path of
∼20 m from the spallation lead target and 90 degrees
respect to the incoming proton beam, has been designed
and built, offering advantages compared with the former
experimental area (EAR-1): 1) much higher neutron flux
of about a factor 25; 2) for highly radioactive samples an
additional factor 10 is obtained for the signal to noise ratio
due to shorter time interval resulting from the 10 times
shorter flight distance [1,2], thus fulfilling the demands of
the neutron science community for a time-of-flight facility
with a higher flux [3].

In this contribution we present the characterization of
the EAR-2 neutron beam by means of a measurement with
the Parallel Plate Avalanche Counter (PPAC).

2. Experimental setup
2.1. n TOF facility at CERN

The n TOF facility at CERN is based on a spallation
neutron source which can provide neutrons from thermal
energy up to GeV by impinging 20 GeV/c protons onto a
thick lead target. The proton beam has a typical intensity
of 7×1012/pulse with 7 ns (RMS) pulse width and a cycle
of 1.2 s or its multiple, yielding about 300 neutrons per
single incident proton. The layout of the n TOF facility is
depicted in Fig. 1 showing the two perpendicular neutron
beam lines.

The horizontal neutron beam line sends neutrons
to EAR-1 through a ∼185 m flight path which has a
10 degree angle regarding to the proton beam in the
horizontal plane. While EAR-1 is in operation since 2001,
the vertical ∼20 m beam line associated with EAR-
2 has been constructed and is operational since 2014,
performing its high neutron flux and attenuated γ-flash as a
complement. Detailed technical descriptions of the n TOF
facility can be found in Refs. [4,5].

2.2. PPAC monitor (PPACmon) setup at EAR-2

The PPACs used at n TOF, which were developed
at Institut de Physique Nuclaire d’Orsay (IPNO) in

France [6], are gaseous detectors filled with C3F8
(octafluoropropane) and working at around 4 mbar
typically. Each PPAC consists of a central anode used
for timing measurements and two cathodes on each side
of the anode for localization with a resolution of 2 mm.
The active surface is 200 mm × 200 mm, and the overall
assembled dimensions of a PPAC are 305 mm × 305 mm
and 13 mm in thickness. Several PPAC detectors can be
arranged with interleaved targets, in different experiment
configurations.

A new chamber, called PPACmon, was designed and
constructed by IPNO, jointly with the University of
Santiago de Compostela (Spain) and CERN. As sketched
in Fig. 2, the configuration used in EAR-2 consists of 3
PPACs and 2 235U targets perpendicular to the neutron
beam. Each 235U target deposited on a 0.7 µm aluminium
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Figure 1. Layout of the n TOF facility.

Figure 2. PPAC monitor setup at n TOF EAR-2.
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Figure 3. Comparison of the experimental fission rate and
235U(n,f) cross section in the database.

backing with a thickness of ∼70 µg/cm2 is surrounded
by 2 PPACs, so that fission events can be selected by
the coincident detection of the fission fragments. This
coincidence method is highly selective on fission reactions,
rejecting radioactive emissions and more importantly other
spallation reactions above tens of MeV.

3. Results and discussions
3.1. Energy determination

The incident neutron energy is determined by the velocity

v D L
T − T0

(1)

where L is the flight path, T is the time recorded by the
detector and T0 is the starting flight time. So T − T0 is the
time-of-flight (TOF). Among these 3 parameters, only T
is precisely known which is directly given by the anode of
the PPAC. L and T0 need to be determined.

L is obtained by the comparison of the detected fission
rate and the standard 235U(n, f ) cross section [7] in the
resonance region where T is large enough that T0 can be
neglected and we can use T instead of TOF. We adjust
L for obtaining the best match with the JENDL/HE-2007
database [7] (Fig. 3).

T0 is usually determined by the prompt γ-flash signal
which is a sharp narrow peak at the beginning of the
signal frame in case of the measurement at EAR-1. But
this method is not applicable here since the sharp peak
is not visible at EAR-2. Instead, we use the pickup (PK)
signal of proton beam as the time reference to determine
T0. Because the PK signal is delayed compared with the
true T0, an offset is added to determine TOF. The offset
is determined based both on the simulation and the first
fission event of each proton pulse which could be induced
by photons or other high energy particles.

TOF D T − PK C o f f set (2)

The TOF spectrum with 100 bins per decade (bpd) is
shown in Fig. 4 and the fission rate as a function of neutron
energy with 100 bpd is shown in Fig. 5.

3.2. Beam profile reconstruction

The position distributions of the fission fragments on
PPAC 1 and PPAC 2 (Det 1 and Det 2 in Fig. 2) are
shown in Figs. 6 and 7. In Fig. 7 there is a distorted

Figure 4. Neutron TOF spectrum with 100 bpd.

Figure 5. The fission rate as a function of neutron energy with
100 bpd.

Figure 6. Fission fragment distribution on PPAC 1.

Figure 7. Fission fragment distribution on PPAC 2.

region around −20 mm ≤ X ≤ 40 mm and −20 mm ≤ Y ≤
20 mm, probably due to a hardware problem of PPAC 2
during the experiment.
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Figure 8. Neutron beam profile at n TOF EAR-2.

Figure 9. Unnormalized lethargic neutron flux at n TOF EAR-2
obtained with the PPACmon.

The beam profile (Fig. 8), i.e. the emitting points on the
target between PPAC 1 and PPAC 2, can be reconstructed
according to Figs. 6 and 7 based on the back to back
emission of fission fragments.

3.3. Neutron flux

The energy dependence of the neutron flux can be obtained
by dividing the fission rate (Fig. 5) by the 235U(n,f) cross
section [7]. For neutrons above 1 MeV, the fission fragment
angular distribution (FFAD) is not isotropic any more due
to the momentum transfer from the incident neutrons to the
target nuclei. The anisotropy correction is applied in the
calculation of the neutron flux above 1 MeV based on
the FFAD of 235U from a PPAC measurement in 2011
[8]. The unnormalized energy dependence of the lethargic
neutron flux is shown in Fig. 9.

The unnormalized preliminary result in Fig. 9 shows
that PPACs are covering a wide energy range, extending
to very high energies. A more dedicated and specific work
for the evaluation of EAR-2 neutron flux by the n TOF
collaboration which will be published soon.

4. Conclusions
We present the first PPACmon experiment, done at n TOF
EAR-2, for characterizing the beam profile and neutron
flux at this new facility. We also found that the prompt γ-
flash signal (sharp narrow peak with a high amplitude) is
not visible at EAR-2, contrary to EAR-1. It means that the
these prompt γ-flash is not caused by the deexcitation of
nuclei in the spallation target but from the angle focused
in-flight decay of high velocity particles which follow the
horizontal beam line and are, therefore, excluded from the
vertical beam line to EAR-2. Geant4 simulation indicates
that prompt γ-rays are essentially from the decay of
neutral pions (π0), with π0s coming from nucleon-nucleon
collision in intranuclear cascades. Since π0s are highly
boosted forward along the proton beam in laboratory
frame, so are the γ-rays, which means they can follow the
horizontal beam line to EAR-1 but only very litte can fly to
EAR-2. The deexcitation of the nuclei in the lead target and
neutron capture in lead and moderation layer can produce
both prompt and delayed γ-rays, results in a broad γ-flash
lasting up to a few hundred nanoseconds. This is quasi
isotropic and visible both at EAR-1 and EAR-2.

The USC group contribution has been partly supported by
Spanish grant FPA2013-46236-P.
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